We also simulate the VFF composite-pulse nutation (the first-pulse length is variable whereas the other two are constant) using SIMPSON version 1.1.1, a general simulation program for solid-state NMR spectroscopy provided by M. Bak, J. T. Rasmussen, and N. C. Nielsen, J. Magn. Reson. 147, 296-330 (2000).
Due to different conventions for the definition of the asymmetry parameter used in SIMPSON and the Java applets, these two approaches provide different simulations. Fortunately, as proposed by Klaus Eichele, if we add 90° to alpha, the first Euler angle in SIMPSON TCL scripts, these two approaches give identical results.
***Simpson for composite pulses***# compositevffxtal.in # Spin-3/2 central-line intensity calculation # for a static crystal. # With alpha0beta0 crystal_file and # whatever the asymmetry parameter, # qcc = 1 MHz gives a line splitting of 500 kHz # and a quadrupole coupling omegaQ of 250 kHz. spinsys { channels 23Na nuclei 23Na quadrupole 1 1 1e6 1 90 0 0 } par { proton_frequency 400e6 spin_rate 0 variable tsw 0.5 sw 1.0e6/tsw np 41 crystal_file alpha0beta0 gamma_angles 1 start_operator 0.2*I1z detect_operator I1c verbose 1101 variable rf 100000 variable p1 0 variable p2 5 variable p3 5 } proc pulseq {} { global par acq for {set i 1} {$i < $par(np)} {incr i} { pulse $par(tsw) $par(rf) $par(ph1) store 1 pulse $par(p2) $par(rf) $par(ph2) pulse $par(p3) $par(rf) $par(ph3) acq $par(ph31) Reset prop 1 } } proc main {} { global par foreach p {{-x x x -y}\ {-x x -x y}\ { x x -x -y}\ { x x x y}} { set par(ph1) [lindex $p 0] set par(ph2) [lindex $p 1] set par(ph3) [lindex $p 2] set par(ph31) [lindex $p 3] set g [fsimpson] if [info exists f] { fadd $f $g funload $g } else { set f $g } } fsave $f $par(name).fid funload $f puts "Larmor frequency (Hz) of 23Na: " puts [resfreq 23Na $par(proton_frequency)] } |
****Comment****File name. Description. Spin I = 3/2. 1st-order quadrupole interaction, qcc = 1 MHz, eta = 1. Static crystal. 0.5 µs pulse increment. 40 pulse increments. 0.2 for normalization. Central-transition. 100 kHz RF pulse. 1st-pulse duration. 2nd-pulse duration. 3th-pulse duration. No pulse, no signal. 1st (variable) pulse with ph1 phase. Save propagator. 2nd-pulse with ph2 phase. 3th-pulse with ph3 phase. Receiver phase ph31. Reset propagator to initial value. Recall the propagator at the end of the 1st pulse. RF pulse and receiver phase cycling. |
SIMPSON uses gyromagnetic ratios provided by IUPAC for the determination of the Larmor frequency of a nucleus. For example:
23Na Larmor frequency = Proton Larmor frequency * 23Na gyromagnetic ratio / Proton gyromagnetic ratio;
400 MHz * 7.0808493 / 26.7522128 = 105.8731007 MHz.