One-pulse line intensity for MAS powder, Part 1
AIM: We show that, for simulating a powder sample (樣品), the number of summation steps that the Euler angle α is divided in [0, 2π[ rang must be a 4-fold number so that the results do not depend on the sign of the asymmetry parameter η.
Equipment: Mathematica-5 (or MathReader for reading the notebook if you do not have Mathematica-5).
Method: We simulate the central-line intensities of a spin I = 3/2 for pulse duration t increasing from 0 to 20 μs by steps of 1 μs in a powder rotating at the magic angle, using Mathematica-5 notebook.
The parameters for these simulations are:
- Observed line intensity: central transition
- Nucleus: 23Na
- Spin: 3/2
- 23Na Larmor frequency: 105.8731007 MHz
- Proton Larmor frequency: 400 MHz
- Strength of the radio-frequency pulse: 100 kHz
- Initial pulse duration: 0
- Final pulse duration: 20 μs
- Pulse duration increment: 1 μs
- Number of pulse duration increment: 20
- Rotor spinning speed: 15 kHz
- Quadrupole interaction: first- and second-orders
- Quadrupole coupling constant: 8 MHz
- Asymmetry parameter: -1 or 1
- Number maxα of summation steps of the Euler angle α of the rotor: variable
- Number maxβ of summation steps of the Euler angle β of the rotor: 3
- Number maxγ of summation steps of the Euler angle γ of the rotor: 3
(A) Mathematica-5 notebook
- Download the Mathematica-5 notebook called powder_MAS.nb or the notebook as PDF file powder_MAS.pdf (53 Kb)
- Save this file into the software Mathematica 5 folder.
- Open this file with Mathematica-5 and change the value of the asymmetry parameter.
- Press "Ctrl-A" to select the notebook, then press "Shift-enter" to start the simulation.
- A file called powderMAS.m is created in Mathematica-5 folder. MS Excel can open this file.
(B) Result
The simulated line intensities are gathered in the following table. The two columns concerning maxα = 4 are identical.
t (μs) |
maxα = 2 maxβ = maxγ = 3 |
maxα = 3 maxβ = maxγ = 3 |
maxα = 4 maxβ = maxγ = 3 |
|||
---|---|---|---|---|---|---|
η = 1 | η = -1 | η = 1 | η = -1 | η = 1 | η = -1 | |
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
0 0.169246331 0.1247498304 -0.08616975267 -0.1710133737 -0.01113942073 0.1950035796 0.1548147068 -0.0489675948 -0.1595526638 -0.03961614394 0.1296392382 0.1491536129 -0.00958629567 -0.135343748 -0.08502827052 0.08936989872 0.130908683 0.01545694808 -0.07862456927 -0.04270830957 |
0 0.1643441541 0.09936157567 -0.100488862 -0.1545110357 0.04800325203 0.1782412882 0.06883221946 -0.134747615 -0.09579773525 0.08031402859 0.1456458828 0.00054177111 -0.1440298909 -0.08875314916 0.09126412118 0.1653669534 0.0272556453 -0.1459291249 -0.1133385316 0.1139546669 |
0 0.1724235685 0.1265569597 -0.08405763364 -0.1562376425 0.004517185206 0.165236943 0.1017903497 -0.08146709562 -0.1258229037 0.02332926274 0.1389571002 0.07368661782 -0.0615853822 -0.1012769246 0.007561202221 0.1189730994 0.0624802958 -0.07817301408 -0.08817115105 0.04068766838 |
0 0.1705219413 0.1230602849 -0.04796327787 -0.1171361231 0.002838116869 0.1058729311 0.06948357717 -0.06533060449 -0.07889613371 0.04585908482 0.1179377052 0.0276966918 -0.08996199743 -0.06170846661 0.04056470382 0.1109755805 0.01268431046 -0.08958616147 -0.0741772447 0.08267432174 |
0 0.1667952426 0.112055703 -0.09332930736 -0.1627622047 0.01843191565 0.1866224339 0.1118234631 -0.09185760491 -0.1276751995 0.02034894232 0.1376425605 0.07484769199 -0.07680809329 -0.1120484486 0.00311792533 0.1273684261 0.07908216416 -0.0652360884 -0.09598155045 0.03562317864 |
0 0.1667952426 0.112055703 -0.09332930736 -0.1627622047 0.01843191565 0.1866224339 0.1118234631 -0.09185760491 -0.1276751995 0.02034894232 0.1376425605 0.07484769199 -0.07680809329 -0.1120484486 0.00311792533 0.1273684261 0.07908216416 -0.0652360884 -0.09598155045 0.03562317864 |