One pulse applied to MAS crystal
AIM: We provide a new Mathematica-5 notebook to simulate single-quantum and multiple-quantum coherence line intensities for MQMAS NMR applied to half-integer quadrupole spin in a crystal.
Method: We simulate single-quantum and multiple-quantum coherence line intensities of a spin I = 3/2 with increasing pulse duration in a crystal rotating at the magic angle.
The parameters for these simulations are:
- Observed line intensity: central transition
- Nucleus: 23Na
- Spin: 3/2
- 23Na Larmor frequency: 105.8731007 MHz
- Proton Larmor frequency: 400 MHz
- Amplitude of the radio-frequency pulse: 100 kHz
- Initial pulse duration: 0
- Final pulse duration: 20 μs
- Pulse duration increment: 1 μs
- Rotor spinning speed: 15 kHz
- Quadrupole interaction: first and second orders
- Quadrupole coupling constant: 8 MHz
- Asymmetry parameter: -1
- Crystal file: rep100_simp
- αPR: 30
- βPR: 30
- γPR: 30
- Number of summation steps of the Euler angle γ of the rotor: 1
(A) Mathematica-5 notebook: oneCrystalMAS.nb
Get["QUADRUPOLE"]; (*------------- Nucleus ----------*) quadrupoleSpin = 1.5; larmorFrequencyMhz = 105.8731007; (*----- Quadrupole interaction ----*) quadrupoleOrder = 2; QCCMHz = 8; η = -1; (*--- Rotor Euler angles in PAS ---*) αPR = 30; βPR = 30; γPR = 30; (*----------- Parameters ----------*) startOperator = 0.4*Iz; ωRFkHz = 100; spinRatekHz = 15; powderFile = "rep100_simp"; numberOfGammaAngles = 1; t1 = 20; Δt = 1; np = t1/Δt; (*--------- Pulse sequence ---------*) detectelt = {{3, 2}}; fsimulation := ( acq0; For [p = 1, p <= np, p++, { pulse[Δt, ωRFkHz]; acq[p]; }]; ); (*---Execute, plot, and save simulation in "oneCrystalMAS" file--------------*) run; tabgraph["oneCrystalMAS"];
(1) Preliminary
- Download Mathematica-5 notebook oneCrystalMAS.nb (the corresponding PDF file), that for MAS NMR utilities QUADRUPOLE_1_0.nb (the corresponding PDF file), and the crystal file rep100_simp.
- Save these three files into Mathematica-5 folder. Forbidden the Operating System of your computer to include extra file extension to rep100_simp by providing the file name with double quotes such as "rep100_simp".
- Open QUADRUPOLE_1_0.nb file with Mathematica-5.
- Press "Ctrl-A" to select the notebook, then press "Shift-enter" to start the notebook. (Some warning messages appear but they have no consequences on the results.) A new file called QUADRUPOLE is created in Mathematica-5 folder.
(2) Simulation
- Open oneCrystalMAS.nb file with Mathematica-5.
- Press "Ctrl-A" to select the notebook, then press "Shift-enter" to start simulation. (Some warning messages precede the simulation.) At the end a data file called oneCrystalMAS is created in Mathematica-5 folder. MS Excel can open this data file for graphic representation.
(B) Result
The simulated line intensities are gathered in the following table.
t (μs) |
oneCrystalMAS.nb New version |
crystal_MAS.nb |
---|---|---|
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
0 0.1909263462 0.1179498378 -0.1095760968 -0.1748410673 0.05933795078 0.349769756 0.3342515848 -0.2783335973 -0.4104664941 -0.04702774168 0.4073285563 0.3241038495 -0.1948624526 -0.4306262691 -0.05748909539 0.4018103486 0.3128637066 -0.1999188914 -0.4520927211 -0.01315623676 |
0 0.1909263462 0.1179498378 -0.1095760968 -0.1748410673 0.05933795078 0.349769756 0.3342515848 -0.2783335973 -0.4104664941 -0.04702774168 0.4073285563 0.3241038495 -0.1948624526 -0.4306262691 -0.05748909539 0.4018103486 0.3128637066 -0.1999188914 -0.4520927211 -0.01315623676 |
(C) Conclusion
The two notebooks provide identical line intensities.