One-pulse line intensity for MAS powder, Part 2
AIM: With a same crystal file for powder simulation, we show that Mathematica-5 notebook and SIMPSON1.1.1 Tcl script generate identical results.
Equipment: Mathematica-5 (or MathReader for reading the notebook if you do not have Mathematica-5) and SIMPSON1.1.1.
Method: We simulate the central-line intensities of a spin I = 3/2 for pulse duration t increasing from 0 to 20 μs by steps of 1 μs in a powder rotating at the magic angle, using Mathematica-5 notebook and SIMPSON1.1.1 Tcl script. The crystal files rep100 and rep100_simp are used for the summation of the Euler angles α and β.
The parameters for these simulations are:
- Observed line intensity: central transition
- Nucleus: 23Na
- Spin: 3/2
- 23Na Larmor frequency: 105.8731007 MHz
- Proton Larmor frequency: 400 MHz
- Strength of the radio-frequency pulse: 100 kHz
- Initial pulse duration: 0
- Final pulse duration: 20 μs
- Pulse duration increment: 1 μs
- Number of pulse duration increment: 20
- Rotor spinning speed: 15 kHz
- Quadrupole interaction: first- and second-orders
- Quadrupole coupling constant: 8 MHz
- Asymmetry parameter: -1 or 1
- Crystal file: rep100
- Number maxγ of summation steps of the Euler angle γ of the rotor: 3
(A) Mathematica-5 notebook
- Download the Mathematica-5 notebook called powder_MAS_rep.nb or the notebook as PDF file powder_MAS_rep.pdf (53 Kb) and the crystal file rep100_simp.
- Save these files into the software Mathematica-5 folder.
- Open this file with Mathematica-5 and change the value of the asymmetry parameter.
- Press "Ctrl-A" to select the notebook, then press "Shift-enter" to start simulation.
- A file called powderMASrep.m is created in Mathematica-5 folder. MS Excel can open this data file.
(B) SIMPSON1.1.1 Tcl script
- Select and paste the following green lines in MS Bloc-notes.
- Save this file as "onepowderMAS.in" into the software SIMPSON folder.
- Modify the value of the asymmetry parameter and save modification.
- Run this SIMPSON Tcl script file in a DOS window.
- The simulated line intensities are saved in the file called onepowderMAS.fid in SIMPSON folder.
SIMPSON Tcl script# onepowderMAS.in# Spin-3/2 central-line intensity calculation # for a powder rotating at the magic angle, # submitted to the first- and the second-order # quadrupole interactions. spinsys { channels 23Na nuclei 23Na quadrupole 1 2 8e6 1 0 0 0 } par { proton_frequency 400e6 spin_rate 15000 variable tsw 1 sw 1.0e6/tsw np 21 crystal_file rep100 gamma_angles 3 start_operator 0.4*I1z verbose 1101 variable rf 100000 } proc pulseq {} { global par maxdt $par(tsw) matrix set detect elements {{2 3}} acq for {set i 1} {$i < $par(np)} {incr i} { pulse $par(tsw) $par(rf) x acq -y } } proc main {} { global par fsave [fsimpson] $par(name).fid puts "Larmor frequency (Hz) of 23Na: " puts [resfreq 23Na $par(proton_frequency)] } |
CommentFile name.Description. Spin I = 3/2. 1st- and 2nd-order quadrupole interactions, qcc = 8 MHz, eta = 1. MAS powder. 1 μs pulse increment. 20 pulse increments. Powder simulation. Number of gamma. 0.4 for normalization. 100 kHz RF pulse. 1 μs pulse increment. Central transition, fictitious spin-1/2 convention. No pulse, no signal. Variable x-pulse. Receiver phase -y. |
(C) Result
The simulated line intensities are gathered in the following table.
t (μs) |
Mathematica-5 powder_MAS_rep.nb |
SIMPSON1.1.1 Tcl script onepowderMAS.in |
||
---|---|---|---|---|
η = 1 | η = -1 | η = 1 | η = -1 | |
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
0 0.1963519484 0.139885498 -0.07450714233 -0.1511577544 0.006769210342 0.1593556203 0.1029767836 -0.0742168327 -0.1230433622 0.01279076315 0.137397243 0.07944278327 -0.05992684336 -0.08156846799 0.02760405068 0.1019645589 0.04178107761 -0.05554552193 -0.05549098729 0.02988776444 |
0 0.1966516113 0.1407515005 -0.07013333075 -0.1418308959 0.004308044472 0.1484301615 0.09519135239 -0.06704005251 -0.1129497492 0.01198907045 0.124670265 0.07777468433 -0.04395928328 -0.07373481123 0.01932615899 0.08592484193 0.03816589776 -0.04505499021 -0.04325721476 0.03423029552 |
0 0.196651611 0.140751501 -0.0701333307 -0.141830896 0.00430804447 0.148430161 0.0951913524 -0.0670400525 -0.112949749 0.0119890704 0.124670265 0.0777746843 -0.0439592833 -0.0737348112 0.019326159 0.0859248419 0.0381658978 -0.0450549902 -0.0432572148 0.0342302955 |
0 0.196351948 0.139885498 -0.0745071423 -0.151157754 0.00676921034 0.15935562 0.102976784 -0.0742168327 -0.123043362 0.0127907631 0.137397243 0.0794427833 -0.0599268434 -0.081568468 0.0276040507 0.101964559 0.0417810776 -0.0555455219 -0.0554909873 0.0298877644 |
(D) Conclusions
- With a crystal file for simulating powder, both Mathematica-5 notebook and SIMPSON1.1.1 Tcl script provide differents results for opposite values of the asymmetry parameter.
- Mathematica-5 notebook, which uses the convention η = (VXX - VYY)/VZZ, and SIMPSON Tcl script, which uses the opposite convention, generate the same results if we choose the same convention for the asymmetry parameter.