Line intensity simulation including NMR probehead deadtime
AIM: We provide a SIMPSON1.1.1 Tcl script for simulating the effect of NMR probehead deadtime on the central-line intensities in one-pulse MAS NMR applied to half-integer quadrupole spin in a powder.
Method: Instead of using the delay command to simulate the deadtime, we use the pulse command. We analyze the results obtained in decreasing the RF amplitude from 1 Hz to 0 Hz, via 0.001 Hz and 0.000001 Hz.
(A) SIMPSON1.1.1 Tcl: onepowderMAS-deadtime.in
The parameters for these simulations are:
- Observed line intensity: central transition
- Nucleus: 23Na
- Spin: 3/2
- 23Na Larmor frequency: 105.8731007 MHz
- Proton Larmor frequency: 400 MHz
- Amplitude of the radio-frequency pulse: 100 kHz
- Amplitude of the weak radio-frequency pulse: 1 Hz, 0.001 Hz, 0.000001 Hz, and 0 Hz
- Initial strong RF pulse duration: 0
- Final strong RF pulse duration: 20 μs
- Strong pulse duration increment: 1 μs
- Rotor spinning speed: 15 kHz
- Quadrupole interaction: first and second orders
- Quadrupole coupling constant: 8 MHz
- Asymmetry parameter: 1
- Crystal file: rep100
- Number of summation steps of the Euler angle γ of the rotor: 3
- Deadtime or weak RF pulse duration: 1 μs
- Maxdt: 1 μs
The corresponding SIMPSON1.1.1 Tcl script for fitting the weak RF pulse amplitude and that for fitting the weak RF pulse amplitude and the quadrupole coupling constant are also available.
(B) Result
The simulated central-line intensities versus the strong RF pulse duration t for the four weak RF pulse amplitudes are gathered in the following table.
t (μs) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
1-Hz RF amplitude 0 0.182193018 0.0979927806 -0.088359578 -0.0983289152 0.0594444674 0.127937818 0.0247682716 -0.0817982774 -0.0462399493 0.0723006936 0.0775342799 -0.0104305579 -0.0509575505 0.00469790108 0.0556601961 0.0346636019 -0.0223360065 -0.0209033572 0.023717633 0.0419457937 |
0.001-Hz RF amplitude 0 0.182191968 0.0979958634 -0.0883554318 -0.0983317506 0.0594375688 0.127938414 0.0247765951 -0.0817951103 -0.0462480946 0.07229373 0.0775403402 -0.0104213664 -0.0509591817 0.00468879641 0.0556574129 0.034671224 -0.0223292586 -0.020907561 0.0237097787 0.0419453603 |
0.000001-Hz RF amplitude 0 0.182191967 0.0979958665 -0.0883554277 -0.0983317535 0.0594375619 0.127938414 0.0247766034 -0.0817951071 -0.0462481027 0.072293723 0.0775403462 -0.0104213572 -0.0509591834 0.0046887873 0.0556574101 0.0346712316 -0.0223292518 -0.0209075652 0.0237097708 0.0419453599 |
0-Hz RF amplitude 0 0.182423558 0.0989424049 -0.0905746502 -0.0995905549 0.0637974991 0.129704616 0.0234087454 -0.0800400754 -0.0394933071 0.0702655428 0.0709753475 -0.0126538606 -0.0487570241 0.00684655207 0.0564105692 0.0369406466 -0.0167652653 -0.018874834 0.0129901036 0.034967544 |
(C) Conclusion
When the weak RF amplitude tends to zero, the central-line intensities do not tend to those of the weak RF pulse with zero amplitude. Therefore, the pulse command in SIMPSON1.1.1 should be used with a non-zero RF amplitude. Obviously, this is its main function.
The problem is that replacing the pulse command with zero RF amplitude in the Tcl script by the delay command generates the same central-line intensities. We expect that the delay command provides us with central-line intensities similar to those generated by the pulse command with 0.000001-Hz RF amplitude.