Echo or antiecho optimization with MQMAS sequence in solid-state MAS NMR using a JDK1.3 applet

Home and Applets > JDK1.3 Java Applet for MQ-MAS > Simpson 2

We have simulated the same experiment as that described in Example 2 using SIMPSON version 1.1.0, a general simulation program for solid-state NMR spectroscopy provided by M. Bak, J. T. Rasmussen, and N. C. Nielsen, J. Magn. Reson. 147, 296-330 (2000).

*****Simpson 2 for MQMAS*****

# mqp2.in
# spin-3/2 echo amplitude optimization
# with p2 in MQMAS sequence

spinsys {
  channels 23Na
  nuclei   23Na
  quadrupole 1 1 1e6 0 0 0 0
}



par {
  spin_rate        10000
  variable tsw     0.25
  sw               1.0e6/tsw
  np               41
  crystal_file     rep320
  gamma_angles     10
  start_operator   I1z
  verbose          1101
  variable rf      100000
  proton_frequency 400e6
}

proc pulseq {} {
  global par
  maxdt $par(tsw)

  matrix set 1 elements {{4 1}}




  matrix set detect elements {{2 3}}



  acq

  pulse 6 $par(rf) x-pulse


  filter 1


  for {set i 1} {$i < $par(np)} {incr i} {

    pulse $par(tsw) $par(rf) x-pulse


    acq -y

  }
}


proc main {} {
  global par
  fsave [fsimpson] $par(name).fid
  puts "Larmor frequency (Hz) of 23Na: "
  puts [resfreq 23Na $par(proton_frequency)]
}

***Comment***

File name.
Description.




Spin I = 3/2.
1st-order
quadrupole
interaction,
qcc = 1 MHz,
eta = 0.

10 kHz.
0.25 µs increment

2nd pulse: 10 µs.




100 kHz RF pulse.





0.25 µs increment.

-3Q from
the 1st pulse,
density matrix
convention.

Central transition,
fictitious spin-1/2
convention.

No pulse,
no signal.
The 1st x-pulse
has 6 µs duration

Select -3Q
coherence.



2nd x-pulse is
variable pulse.

Receiver -y.

SIMPSON uses gyromagnetic ratios provided by IUPAC for the determination of the Larmor frequency of a nucleus. For example:

23Na Larmor frequency = Proton Larmor frequency * 23Na gyromagnetic ratio / Proton gyromagnetic ratio;

400 MHz * 7.0808493 / 26.7522128 = 105.8731007 MHz.


This curve represents the simulated central-transition echo amplitude versus the second-pulse length p2 with SIMPSON for a spin I = 3/2 system excited by the MQMAS sequence.

Central-transition echo amplitude versus p2 simulated with SIMPSON

Correlation curve of SIMPSON versus JDK1.3 Java applet for the MQMAS sequence

This figure represents the correlation curve relating two simulations generated with SIMPSON (Simpson 2) and JDK1.3 Java applet (Example 2) for the MQMAS sequence applied to a spin I = 3/2 system.

Solid-state NMR bibliography for:

Aluminum-27
Antimony-121/123
Arsenic-75
Barium-135/137
Beryllium-9
Bismuth-209
Boron-11
Bromine-79/81
Calcium-43
Cesium-133
Chlorine-35/37
Chromium-53
Cobalt-59
Copper-63/65
Deuterium-2
Gallium-69/71
Germanium-73
Gold-197
Hafnium-177/179
Indium-113/115
Iodine-127
Iridium-191/193
Krypton-83
Lanthanum-139
Lithium-7
Magnesium-25
Manganese-55
Mercury-201
Molybdenum-95/97
Neon-21
Nickel-61
Niobium-93
Nitrogen-14
Osmium-189
Oxygen-17
Palladium-105
Potassium-39/41
Rhenium-185/187
Rubidium-85/87
Ruthenium-99/101
Scandium-45
Sodium-23
Strontium-87
Sulfur-33
Tantalum-181
Titanium-47/49
Vanadium-51
Xenon-131
Zinc-67
Zirconium-91
[Contact me] - Last updated February 18, 2020
Copyright © 2002-2024 pascal-man.com. All rights reserved.