Analytical expression of W(4,0) for rotating crystal in VAS and MAS NMR
The second-order quadrupole interaction is related to W(4,0):
In VAS (MAS) NMR experiments, W(4,0) is defined by:
with
The final expression of W(4,0) in VAS (MAS) NMR is:
The analytical expressions of a40, a4n, and b4n coefficients can be determined as follows:
(1) Select and copy the following green lines; then paste them into a cell of Mathematica, a software for numerical and symbolic calculations.
(2) Press "Ctrl-A" for select all; then
press "Shift-enter" for evaluate cells.
(Or in the menu bar, select Kernel > Evaluation > Evaluate Cells)
Using Mathematica-5 running with a 3-GHz processor, some spelling error messages followed by the analytical expression of coefficients involved in W(4,0) for VAS and MAS NMR are obtained in 80 seconds.
(* D4 is a reduced form (5 rows x 9 columns) of the 4-th order Wigner active rotation matrix *) D4 = { { (1 + Cos[beta])^4*E^(-I*(4*alpha + 4*gamma))/16, -Sqrt[2]*(1 + Cos[beta])^3*Sin[beta]*E^(-I*(4*alpha + 3*gamma))/8, Sqrt[7]*(1 + Cos[beta])^2*Sin[beta]^2*E^(-I*(4*alpha + 2*gamma))/8, -Sqrt[7/2]*(1 + Cos[beta])*Sin[beta]^3*E^(-I*(4*alpha + gamma))/4, Sqrt[35/2]*Sin[beta]^4*E^(-4*I*alpha)/8, -Sqrt[7/2]*(1 - Cos[beta])*Sin[beta]^3*E^(-I*(4*alpha - gamma))/4, Sqrt[7]*(1 - Cos[beta])^2*Sin[beta]^2*E^(-I*(4*alpha - 2*gamma))/8, -Sqrt[2]*(1 - Cos[beta])^3*Sin[beta]*E^(-I*(4*alpha - 3*gamma))/8, (1 - Cos[beta])^4*E^(-I*(4*alpha - 4*gamma))/16}, {Sqrt[7]*(1 + Cos[beta])^2*Sin[beta]^2*E^(-I*(2*alpha + 4*gamma))/8, -Sqrt[7/2]*(1 - 2*Cos[beta])*(1 + Cos[beta])^2*Sin[beta] *E^(-I*(2*alpha + 3*gamma))/4, (1 + Cos[beta])^2*(1 - 7*Cos[beta] + 7*Cos[beta]^2) *E^(-I*(2*alpha + 2*gamma))/4, -Sqrt[2]*(1 + Cos[beta])*(-1 - 7*Cos[beta] + 14*Cos[beta]^2)*Sin[beta] *E^(-I*(2*alpha + gamma))/8, Sqrt[5/2]*(-1 + 7*Cos[beta]^2)*Sin[beta]^2 *E^(-2*I*alpha)/4, -Sqrt[2]*(1 - Cos[beta])*(-1 + 7*Cos[beta] + 14*Cos[beta]^2)*Sin[beta] *E^(-I*(2*alpha - gamma))/8, (1 - Cos[beta])^2*(1 + 7*Cos[beta] + 7*Cos[beta]^2) *E^(-I*(2*alpha - 2*gamma))/4, -Sqrt[7/2]*(1 - Cos[beta])^2*(1 + 2*Cos[beta])*Sin[beta] *E^(-I*(2*alpha - 3*gamma))/4, Sqrt[7]*(1 - Cos[beta])^2*Sin[beta]^2*E^(-I*(2*alpha - 4*gamma))/8}, { Sqrt[35/2]*Sin[beta]^4*E^(-4*I*gamma)/8, Sqrt[35]*Cos[beta]*Sin[beta]^3*E^(-3*I*gamma)/4, Sqrt[5/2]*(-1 + 7*Cos[beta]^2)*Sin[beta]^2*E^(-2*I*gamma)/4, Sqrt[5]*Cos[beta]*(-3 + 7*Cos[beta]^2)*Sin[beta]*E^( -I*gamma)/4, (3 - 30*Cos[beta]^2 + 35*Cos[beta]^4)/8, -Sqrt[5]*Cos[beta]*(-3 + 7*Cos[beta]^2)*Sin[beta]*E^( I*gamma)/4, Sqrt[5/2]*(-1 + 7*Cos[beta]^2)*Sin[beta]^2*E^(2*I*gamma)/4, -Sqrt[35]*Cos[beta]*Sin[beta]^3*E^(3*I*gamma)/4, Sqrt[35/2]*Sin[beta]^4*E^(4*I*gamma)/8}, { Sqrt[7]*(1 - Cos[beta])^2*Sin[beta]^2*E^(-I*(-2*alpha + 4*gamma))/8, Sqrt[7/2]*(1 - Cos[beta])^2*(1 + 2*Cos[beta])*Sin[beta] *E^(-I*(-2*alpha + 3*gamma))/4, (1 - Cos[beta])^2*(1 + 7*Cos[beta] + 7*Cos[beta]^2) *E^(-I*(-2*alpha + 2*gamma))/4, Sqrt[2]*(1 - Cos[beta])*(-1 + 7*Cos[beta] + 14*Cos[beta]^2)*Sin[beta] *E^(-I*(-2*alpha + gamma))/8, Sqrt[5/2]*(-1 + 7*Cos[beta]^2)*Sin[beta]^2 *E^(2*I*alpha)/4, Sqrt[2]*(1 + Cos[beta])*(-1 - 7*Cos[beta] + 14*Cos[beta]^2)*Sin[beta] *E^(-I*(-2*alpha - gamma))/8, (1 + Cos[beta])^2*(1 - 7*Cos[beta] + 7*Cos[beta]^2) *E^(-I*(-2*alpha - 2*gamma))/4, Sqrt[7/2]*(1 - 2*Cos[beta])*(1 + Cos[beta])^2*Sin[beta] *E^(-I*(-2*alpha - 3*gamma))/4, Sqrt[7]*(1 + Cos[beta])^2*Sin[beta]^2*E^(-I*(-2*alpha - 4*gamma))/8}, { (1 - Cos[beta])^4*E^(-I*(-4*alpha + 4*gamma))/16, Sqrt[2]*(1 - Cos[beta])^3*Sin[beta]*E^(-I*(-4*alpha + 3*gamma))/8, Sqrt[7]*(1 - Cos[beta])^2*Sin[beta]^2*E^(-I*(-4*alpha + 2*gamma))/8, Sqrt[7/2]*(1 - Cos[beta])*Sin[beta]^3*E^(-I*(-4*alpha + gamma))/4, Sqrt[35/2]*Sin[beta]^4*E^(4*I*alpha)/8, Sqrt[7/2]*(1 + Cos[beta])*Sin[beta]^3*E^(-I*(-4*alpha - gamma))/4, Sqrt[7]*(1 + Cos[beta])^2*Sin[beta]^2*E^(-I*(-4*alpha - 2*gamma))/8, Sqrt[2]*(1 + Cos[beta])^3*Sin[beta]*E^(-I*(-4*alpha - 3*gamma))/8, (1 + Cos[beta])^4*E^(-I*(-4*alpha - 4*gamma))/16} }; MatrixForm[D4]; (* W4pas is a row-matrix with 5 columns containing the 5 nonzero eigenvalues of the EFG expressed as a 4-th rang spherical tensor, in (eq)(eq) unit *) W4pas = {{eta*eta/4, 3*eta/(2*Sqrt[7]), (9 + eta*eta/2)/Sqrt[70], 3*eta/(2*Sqrt[7]), eta*eta/4}}; MatrixForm[W4pas]; (* W4k is a row-matrix with 9 columns *) W4k = W4pas.ComplexExpand[D4]; (* D4VAS is a reduced form (9 rows x 1 column) of the 4-th order Wigner active rotation matrix *) D4VAS = { {Sqrt[35/2]*Sin[thetaVAS]^4 *E^(-4*I*rot*t)/8}, {-Sqrt[35]*Cos[thetaVAS]*Sin[thetaVAS]^3 *E^(-3*I*rot*t)/4}, {Sqrt[5/2]*(-1 +7*Cos[thetaVAS]^2)*Sin[thetaVAS]^2 *E^(-2*I*rot*t)/4}, {-Sqrt[5]*Cos[thetaVAS]*(-3 +7*Cos[thetaVAS]^2)*Sin[thetaVAS] *E^(-I*rot*t)/4}, {(3 - 30*Cos[thetaVAS]^2 + 35*Cos[thetaVAS]^4)/8}, {Sqrt[5]*Cos[thetaVAS]*(-3 +7*Cos[thetaVAS]^2)*Sin[thetaVAS] *E^(I*rot*t)/4}, {Sqrt[5/2]*(-1 +7*Cos[thetaVAS]^2)*Sin[thetaVAS]^2 *E^(2*I*rot*t)/4}, {Sqrt[35]*Cos[thetaVAS]*Sin[thetaVAS]^3 *E^(3*I*rot*t)/4}, {Sqrt[35/2]*Sin[thetaVAS]^4 *E^(4*I*rot*t)/8} }; MatrixForm[D4VAS]; (* W40vas is an expression *) W40vas = W4k.ComplexExpand[D4VAS]; v1 = Expand[W40vas] /. {Cos[a_ + b_] -> Cos[a] Cos[b] - Sin[a] Sin[b], Sin[a_ + b_] -> Cos[b] Sin[a] + Cos[a] Sin[b]}; v2 = Collect[Expand[v1], {Cos[x_ *rot*t], Sin[y_ *rot*t], Cos[rot*t], Sin[rot*t] }]; (* suppression of the double curve brackets {{}} of v2 *) v22 =v2[[1,1]]; size = Length[v22]; (* a44VAS = amplitude of Cos[4*gamma]*Sin[4*rot*t] *) a44VAS = FullSimplify[Coefficient[v22[[size, 2]], Cos[4*gamma]]]; a44MAS = a44VAS /. thetaVAS -> ArcCos[Sqrt[1/3]]; (* b44VAS = amplitude of Sin[4*gamma]*Sin[4*rot*t] *) b44VAS = FullSimplify[Coefficient[v22[[size, 2]], Sin[4*gamma]]]; b44MAS = b44VAS /. thetaVAS -> ArcCos[Sqrt[1/3]]; (* c44VAS = amplitude of Cos[4*gamma]*Cos[4*rot*t] *) (* c44VAS = -b44VAS *) c44VAS = FullSimplify[Coefficient[v22[[size - 1, 2]], Cos[4*gamma]]]; (* d44VAS = amplitude of Sin[4*gamma]*Cos[4*rot*t] *) (* d44VAS = a44VAS *) d44VAS = FullSimplify[Coefficient[v22[[size - 1, 2]], Sin[4*gamma]]]; (* a43VAS = amplitude of Cos[3*gamma]*Sin[3*rot*t] *) a43VAS = FullSimplify[Coefficient[v22[[size - 2, 2]], Cos[3*gamma]]]; a43MAS = a43VAS /. thetaVAS -> ArcCos[Sqrt[1/3]]; (* b43VAS = amplitude of Sin[3*gamma]*Sin[3*rot*t] *) b43VAS = FullSimplify[Coefficient[v22[[size - 2, 2]], Sin[3*gamma]]]; b43MAS = b43VAS /. thetaVAS -> ArcCos[Sqrt[1/3]]; (* c43VAS = amplitude of Cos[3*gamma]*Cos[3*rot*t] *) (* c43VAS = -b43VAS *) c43VAS = FullSimplify[Coefficient[v22[[size - 3, 2]], Cos[3*gamma]]]; (* d43VAS = amplitude of Sin[3*gamma]*Cos[3*rot*t] *) (* d43VAS = a43VAS *) d43VAS = FullSimplify[Coefficient[v22[[size - 3, 2]], Sin[3*gamma]]]; (* a42VAS = amplitude of Cos[2*gamma]*Sin[2*rot*t] *) a42VAS = FullSimplify[Coefficient[v22[[size - 5, 2]], Cos[2*gamma]]]; a42MAS = FullSimplify[a42VAS /. thetaVAS -> ArcCos[Sqrt[1/3]]]; (* b42VAS = amplitude of Sin[2*gamma]*Sin[2*rot*t] *) b42VAS = FullSimplify[Coefficient[v22[[size - 5, 2]], Sin[2*gamma]]]; b42MAS = FullSimplify[b42VAS /. thetaVAS -> ArcCos[Sqrt[1/3]]]; (* c42VAS = amplitude of Cos[2*gamma]*Cos[2*rot*t] *) (* c42VAS = -b42VAS *) c42VAS = FullSimplify[Coefficient[v22[[size - 4, 2]], Cos[2*gamma]]]; (* d42VAS = amplitude of Sin[2*gamma]*Cos[2*rot*t] *) (* d42VAS = a42VAS *) d42VAS = FullSimply[Coefficient[v22[[size - 4, 2]], Sin[2*gamma]]]; (* a41VAS = amplitude of Cos[gamma]*Sin[rot*t] *) a41VAS = FullSimplify[Coefficient[v22[[size - 7, 2]], Cos[gamma]]]; a41MAS = FullSimplify[a41VAS /. thetaVAS -> ArcCos[Sqrt[1/3]]]; (* b41VAS = amplitude of Sin[gamma]*Sin[rot*t] *) b41VAS = FullSimplify[Coefficient[v22[[size - 7, 2]], Sin[gamma]]]; b41MAS = FullSimplify[b41VAS /. thetaVAS -> ArcCos[Sqrt[1/3]]]; (* c41VAS = amplitude of Cos[gamma]*Cos[rot*t] *) (* c41VAS = -b41VAS *) c41VAS = FullSimplify[Coefficient[v22[[size - 6, 2]], Cos[gamma]]]; (* d41VAS = amplitude of Sin[gamma]*Cos[rot*t] *) (* d41VAS = a41VAS *) d41VAS = FullSimplify[Coefficient[v22[[size - 6, 2]], Sin[gamma]]]; (* a40VAS *) a40VAS = FullSimplify[Sum[v22[[i]], {i, 1, size - 8}]]; a40MAS = FullSimplify[a40VAS /. thetaVAS -> ArcCos[Sqrt[1/3]]]; (*----------- Table of a4jVAS and b4jVAS for VAS ----------*) tableW40VAS = List[{"a40VAS", a40VAS}, {"a41VAS", a41VAS}, {"b41VAS", b41VAS}, {"a42VAS", a42VAS}, {"b42VAS", b42VAS}, {"a43VAS", a43VAS}, {"b43VAS", b43VAS}, {"a44VAS", a44VAS}, {"b44VAS", b44VAS}]; Print[TableForm[tableW40VAS, TableHeadings -> {None, {"VAS", "expression of a4jVAS and b4jVAS in VAS"}}]]; Print["******************************************"]; (*----------- Table of a4jMAS and b4jMAS for MAS ----------*) tableW40MAS = List[{"a40MAS", a40MAS}, {"a41MAS", a41MAS}, {"b41MAS", b41MAS}, {"a42MAS", a42MAS}, {"b42MAS", b42MAS}, {"a43MAS", a43MAS}, {"b43MAS", b43MAS}, {"a44MAS", a44MAS}, {"b44MAS", b44MAS}]; Print[TableForm[tableW40MAS, TableHeadings -> {None, {"MAS", "expression of a4jMAS and b4jMAS in MAS"}}]]; Remove[D4, alpha, beta, gamma, W4pas, eta, W4k, D4VAS, thetaVAS, rot, t, W40vas, v1, v2, v22, size, a44VAS, a43VAS, a42VAS, a41VAS, a40VAS, b44VAS, b43VAS, b42VAS, b41VAS, c44VAS, c43VAS, c42VAS, c41VAS, d44VAS, d43VAS, d42VAS, d41VAS, a44MAS, a43MAS, a42MAS, a41MAS, a40MAS, b44MAS, b43MAS, b42MAS, b41MAS, c44MAS, c43MAS, c42MAS, c41MAS, d44MAS, d43MAS, d42MAS, d41MAS, tableW40VAS, tableW40MAS];