Analytical expression of V(2,0) for rotating crystal in VAS and MAS NMR
The first-order quadrupole interaction is related to V(2,0):
In VAS (MAS) NMR experiments, V(2,0) is defined by:
with
The final expression of V(2,0) in VAS (MAS) is:
The analytical expressions of a0, an, and bn coefficients can be determined as follows:
(1) Select and copy the following green lines; then paste them into a cell of Mathematica, a software for numerical and symbolic calculations.
(2) Press "Ctrl-A" for select all; then
press "Shift-enter" for evaluate cells.
(Or in the menu bar, select Kernel > Evaluation > Evaluate Cells)
Using Mathematica-5 running with a 3-GHz processor, some spelling error messages followed by the analytical expression of coefficients involved in V(2,0) for VAS and MAS NMR are obtained in 15 seconds.
(* D2 is a reduced form (5 rows x 3 columns) of the 2-nd order Wigner active rotation matrix *) D2 = { { (1 + Cos[beta])^2*E^(-I*(2*alpha + 2*gamma))/4, -(1 + Cos[beta])*Sin[beta]*E^(-I*(2*alpha + gamma))/2, Sqrt[3/8]*Sin[beta]^2*E^(-2*I*alpha), -(1 - Cos[beta])*Sin[beta]*E^(-I*(2*alpha - gamma))/2, (1 - Cos[beta])^2*E^(-I*(2*alpha - 2*gamma))/4}, { Sqrt[3/8]*Sin[beta]^2*E^(-2*I*gamma), Sqrt[3/8]*Sin[2*beta]*E^(-I*gamma), (-1 + 3*Cos[beta]^2)/2, -Sqrt[3/8]*Sin[2*beta]*E^(I*gamma), Sqrt[3/8]*Sin[beta]^2*E^(2*I*gamma)}, { (1 - Cos[beta])^2*E^(I*(2*alpha - 2*gamma))/4, (1 - Cos[beta])*Sin[beta]*E^(I*(2*alpha - gamma))/2, Sqrt[3/8]*Sin[beta]^2*E^(2*I*alpha), (1 + Cos[beta])*Sin[beta]*E^(I*(2*alpha + gamma))/2, (1 + Cos[beta])^2*E^(I*(2*alpha + 2*gamma))/4} }; MatrixForm[D2]; (* V2pas is a row-matrix with 3 columns containing the 3 nonzero eigenvalues of the EFG expressed as a 2-nd rang spherical tensor, in eq unit *) V2pas = {{eta/2, Sqrt[3/2], eta/2}}; MatrixForm[V2pas]; (* V2k is a row-matrix with 5 columns *) V2k = V2pas.ComplexExpand[D2]; (* D2VAS is a reduced form (5 rows x 1 column) of the 2-nd order Wigner active rotation matrix *) D2VAS = { {Sqrt[3/8]*Sin[thetaVAS]^2*E^(-2*I*rot*t)}, {-Sqrt[3/8]*Sin[2*thetaVAS]*E^(-I*rot*t)}, {(-1 + 3*Cos[thetaVAS]^2)/2}, {Sqrt[3/8]*Sin[2*thetaVAS]*E^(I*rot*t)}, {Sqrt[3/8]*Sin[thetaVAS]^2*E^(2*I*rot*t)} }; MatrixForm[D2VAS]; (* V20vas is an expression *) V20vas = V2k.ComplexExpand[D2VAS]; m1 = Expand[V20vas] /. {Cos[a_ + b_] -> Cos[a] Cos[b] - Sin[a] Sin[b], Sin[a_ + b_] -> Cos[b] Sin[a] + Cos[a] Sin[b]}; m2 = Collect[m1, {Cos[x_ *rot*t], Sin[y_ *rot*t], Cos[rot*t], Sin[rot*t] }]; (* suppression of the double curve brackets {{}} of m2 *) m22 =m2[[1,1]]; size = Length[m22]; (* a2VAS = amplitude of Cos[2*gamma]*Sin[2*rot*t] *) a2VAS = FullSimplify[Coefficient[m22[[size - 3, 2]], Cos[2*gamma]]]; a2MAS = FullSimplify[a2VAS /. thetaVAS -> ArcCos[Sqrt[1/3]]]; (* b2VAS = amplitude of Sin[2*gamma]*Sin[2*rot*t] *) b2VAS = FullSimplify[Coefficient[m22[[size - 3, 2]], Sin[2*gamma]]]; b2MAS = FullSimplify[b2VAS /. thetaVAS -> ArcCos[Sqrt[1/3]]]; (* a1VAS = amplitude of Cos[gamma]*Sin[rot*t] *) a1VAS = FullSimplify[Coefficient[m22[[size - 1, 2]], Cos[gamma]]]; a1MAS = FullSimplify[a1VAS /. thetaVAS -> ArcCos[Sqrt[1/3]]]; (* b1VAS = amplitude of Sin[gamma]*Sin[rot*t] *) b1VAS = FullSimplify[Coefficient[m22[[size - 1, 2]], Sin[gamma]]]; b1MAS = FullSimplify[b1VAS /. thetaVAS -> ArcCos[Sqrt[1/3]]]; (* c2VAS = amplitude of Cos[2*gamma]*Cos[2*rot*t] *) (* c2VAS = -b2VAS *) c2VAS = FullSimplify[Coefficient[m22[[size - 2, 2]], Cos[2*gamma]]]; (* d2VAS = amplitude of Sin[2*gamma]*Cos[2*rot*t] *) (* d2VAS = a2VAS *) d2VAS = FullSimply[Coefficient[m22[[size - 2, 2]], Sin[2*gamma]]]; (* c1VAS = amplitude of Cos[gamma]*Cos[rot*t] *) (* c1VAS = -b1VAS *) c1VAS = FullSimplify[Coefficient[m22[[size, 2]], Cos[gamma]]]; (* d1VAS = amplitude of Sin[gamma]*Cos[rot*t] *) (* d1VAS = a1VAS *) d1VAS = FullSimplify[Coefficient[m22[[size, 2]], Sin[gamma]]]; (* a0VAS *) a0VAS = FullSimplify[Sum[m22[[i]], {i, 1, size - 4}]]; a0MAS = FullSimplify[a0VAS /. thetaVAS -> ArcCos[Sqrt[1/3]]]; (*--------------- Table of aiVAS and biVAS for VAS --------------*) tableV20VAS = List[{"a0VAS", a0VAS}, {"a1VAS", a1VAS}, {"b1VAS", b1VAS}, {"a2VAS", a2VAS}, {"b2VAS", b2VAS}]; Print[TableForm[tableV20VAS, TableHeadings -> {None, {"VAS", "expression of aiVAS and biVAS in VAS"}}]]; Print["******************************************"]; (*--------------- Table of aiMAS and biMAS for MAS ---------------*) tableV20MAS = List[{"a0MAS", a0MAS}, {"a1MAS", a1MAS}, {"b1MAS", b1MAS}, {"a2MAS", a2MAS}, {"b2MAS", b2MAS}]; Print[TableForm[tableV20MAS, TableHeadings -> {None, {"MAS", "expression of aiMAS and biMAS in MAS"}}]]; Remove[D2, alpha, beta, gamma, V2pas, eta, V2k, D2VAS, thetaVAS, rot, t, V20vas, m1, m2, m22, size, a2VAS, a1VAS, a0VAS, b2VAS, b1VAS, c2VAS, c1VAS, d2VAS, d1VAS, a2MAS, a1MAS, a0MAS, b2MAS, b1MAS, c2MAS, c1MAS, d2MAS, d1MAS, tableV20VAS, tableV20MAS];