Analytical expression of W(2,0) for rotating crystal in VAS and MAS NMR
The second-order quadrupole interaction is related to W(2,0):
In VAS (MAS) NMR experiments, W(2,0) is defined by:
with
The final expression of W(2,0) in VAS (MAS) NMR is:
The analytical expressions of a20, a2n, and b2n coefficients can be determined as follows:
(1) Select and copy the following green lines; then paste them into a cell of Mathematica, a software for numerical and symbolic calculations.
(2) Press "Ctrl-A" for select all; then
press "Shift-enter" for evaluate cells.
(Or in the menu bar, select Kernel > Evaluation > Evaluate Cells)
Using Mathematica-5 running with a 3-GHz processor, some spelling error messages followed by the analytical expression of coefficients involved in W(2,0) for VAS and MAS NMR are obtained in 15 seconds.
(* D2 is a reduced form (5 rows x 3 columns) of the 2-nd order Wigner active rotation matrix *) D2 = { { (1 + Cos[beta])^2*E^(-I*(2*alpha + 2*gamma))/4, -(1 + Cos[beta])*Sin[beta]*E^(-I*(2*alpha + gamma))/2, Sqrt[3/8]*Sin[beta]^2*E^(-2*I*alpha), -(1 - Cos[beta])*Sin[beta]*E^(-I*(2*alpha - gamma))/2, (1 - Cos[beta])^2*E^(-I*(2*alpha - 2*gamma))/4}, { Sqrt[3/8]*Sin[beta]^2*E^(-2*I*gamma), Sqrt[3/8]*Sin[2*beta]*E^(-I*gamma), (-1 + 3*Cos[beta]^2)/2, -Sqrt[3/8]*Sin[2*beta]*E^(I*gamma), Sqrt[3/8]*Sin[beta]^2*E^(2*I*gamma)}, { (1 - Cos[beta])^2*E^(I*(2*alpha - 2*gamma))/4, (1 - Cos[beta])*Sin[beta]*E^(I*(2*alpha - gamma))/2, Sqrt[3/8]*Sin[beta]^2*E^(2*I*alpha), (1 + Cos[beta])*Sin[beta]*E^(I*(2*alpha + gamma))/2, (1 + Cos[beta])^2*E^(I*(2*alpha + 2*gamma))/4} }; MatrixForm[D2]; (* W2pas is a row-matrix with 3 columns containing the 3 nonzero eigenvalues of the EFG expressed as a 2-nd rang spherical tensor, in (eq)(eq) unit *) W2pas = {{Sqrt[3/7]*eta, (eta*eta - 3)/Sqrt[14], Sqrt[3/7]*eta}}; MatrixForm[W2pas]; (* W2k is a row-matrix with 5 columns *) W2k = W2pas.ComplexExpand[D2]; (* D2VAS is a reduced form (5 rows x 1 column) of the 2-nd order Wigner active rotation matrix *) D2VAS = { {Sqrt[3/8]*Sin[thetaVAS]^2*E^(-2*I*rot*t)}, {-Sqrt[3/8]*Sin[2*thetaVAS]*E^(-I*rot*t)}, {(-1 + 3*Cos[thetaVAS]^2)/2}, {Sqrt[3/8]*Sin[2*thetaVAS]*E^(I*rot*t)}, {Sqrt[3/8]*Sin[thetaVAS]^2*E^(2*I*rot*t)} }; MatrixForm[D2VAS]; (* W20vas is an expression *) W20vas = W2k.ComplexExpand[D2VAS]; m1 = Expand[W20vas] /. {Cos[a_ + b_] -> Cos[a] Cos[b] - Sin[a] Sin[b], Sin[a_ + b_] -> Cos[b] Sin[a] + Cos[a] Sin[b]}; m2 = Collect[m1, {Cos[x_ *rot*t], Sin[y_ *rot*t], Cos[rot*t], Sin[rot*t] }]; (* suppression of the double curve brackets {{}} of m2 *) m22 =m2[[1,1]]; size = Length[m22]; (* a22VAS = amplitude of Cos[2*gamma]*Sin[2*rot*t] *) a22VAS = FullSimplify[Coefficient[m22[[size - 3, 2]], Cos[2*gamma]]]; a22MAS = FullSimplify[a22VAS /. thetaVAS -> ArcCos[Sqrt[1/3]]]; (* b22VAS = amplitude of Sin[2*gamma]*Sin[2*rot*t] *) b22VAS = FullSimplify[Coefficient[m22[[size - 3, 2]], Sin[2*gamma]]]; b22MAS = FullSimplify[b22VAS /. thetaVAS -> ArcCos[Sqrt[1/3]]]; (* a21VAS = amplitude of Cos[gamma]*Sin[rot*t] *) a21VAS = FullSimplify[Coefficient[m22[[size - 1, 2]], Cos[gamma]]]; a21MAS = FullSimplify[a21VAS /. thetaVAS -> ArcCos[Sqrt[1/3]]]; (* b21VAS = amplitude of Sin[gamma]*Sin[rot*t] *) b21VAS = FullSimplify[Coefficient[m22[[size - 1, 2]], Sin[gamma]]]; b21MAS = FullSimplify[b21VAS /. thetaVAS -> ArcCos[Sqrt[1/3]]]; (* c22VAS = amplitude of Cos[2*gamma]*Cos[2*rot*t]*) (* c22VAS = -b22VAS *) c22VAS = FullSimplify[Coefficient[m22[[size - 2, 2]], Cos[2*gamma]]]; (* d22VAS = amplitude of Sin[2*gamma]*Cos[2*rot*t] *) (* d22VAS = a22VAS *) d22VAS = FullSimply[Coefficient[m22[[size - 2, 2]], Sin[2*gamma]]]; (* c21VAS = amplitude of Cos[gamma]*Cos[rot*t] *) (* c21VAS = -b21VAS *) c21VAS = FullSimplify[Coefficient[m22[[size, 2]], Cos[gamma]]]; (* d21VAS = amplitude of Sin[gamma]*Cos[rot*t] *) (* d21VAS = a21VAS *) d21VAS = FullSimplify[Coefficient[m22[[size, 2]], Sin[gamma]]]; (* a20VAS *) a20VAS = FullSimplify[Sum[m22[[i]], {i, 1, size - 4}]]; a20MAS = FullSimplify[a20VAS /. thetaVAS -> ArcCos[Sqrt[1/3]]]; (*--------------- Table of a2jVAS and b2jVAS for VAS --------------*) tableW20VAS = List[{"a20VAS", a20VAS}, {"a21VAS", a21VAS}, {"b21VAS", b21VAS}, {"a22VAS", a22VAS}, {"b22VAS", b22VAS}]; Print[TableForm[tableW20VAS, TableHeadings -> {None, {"VAS", "expression of a2jVAS and b2jVAS in VAS"}}]]; Print["******************************************"]; (*--------------- Table of a2jMAS and b2jMAS for MAS --------------*) tableW20MAS = List[{"a20MAS", a20MAS}, {"a21MAS", a21MAS}, {"b21MAS", b21MAS}, {"a22MAS", a22MAS}, {"b22MAS", b22MAS}]; Print[TableForm[tableW20MAS, TableHeadings -> {None, {"MAS", "expression of a2jMAS and b2jMAS in MAS"}}]]; Remove[D2, alpha, beta, gamma, W2pas, eta, W2k, D2VAS, thetaVAS, rot, t, W20vas, m1, m2, m22, size, a22VAS, a21VAS, a20VAS, b22VAS, b21VAS, c22VAS, c21VAS, d22VAS, d21VAS, a22MAS, a21MAS, a20MAS, b22MAS, b21MAS, c22MAS, c21MAS, d22MAS, d21MAS, tableW20VAS, tableW20MAS];