SPC5CP2d: 2D double quantum excitation phase-inversion supercycled POST-C5 CP pulse program for TopSpin2.1

Home and Applets > Pulse Program > Topspin 2.1, Avance III > 2Q/1Q Correlation > 2D SPC5 CP Pulse Program
Double-quantum excitation with SPC5 pulse sequence

Since non-phase cycling is applied to the SPC5 excitation pulse, four-phase cycling is applied to the detection pulse P1 for selecting the 0Q -> -1Q coherence order jump, and four-phase cycling is applied to the SPC5 reconversion pulse for filtering DQ coherences.

Avoid cross-polarization during SPC5 excitation and reconversion.

*** Outline ***

Code for Avance III spectrometers with topSpin2.1 operating system

;spc5cp2d  (TopSpin 2.1)
;modified for AVIII by HF, May 14, 07

;2D SQ-DQ correlation experiment with SPC5 sequence and cross polarization
;for the original C7 sequence see: Lee et al. Chem Phys Lett 242, 304-309, 1995
;see Hohwy, Rienstra, Jaroniec and Griffin, JCP 110, 7983, 1999

;Avance III version
;parameters:
;d1 : recycle delay
;d0 : min. delay in t1 evolution

;p1  : excitation pulse f1 at pl1
;p3  : 1H excitation pulse @ PL12
;p5  : FSLG 2pi pulse set by lgcalc.incl
;p15 : HH contact pulse
;pcpd2 : decoupling pulse f2 @ PL12, pcpd = 2*P3-0.2us used by TPPM and SPINAL

;pl1  : for X contact pulse
;pl2  : =120dB, not used
;pl11 : for SPC5 recoupling sequence B1=5*cnst31 in Hz
;pl12 : for 1H excitation and decoupling
;pl13 : for LG decoupling cpdprg1 = cwlg or cw13 or tppm13
;sp0  : proton power level during contact
;spnam0 : for CP on 1H e.g. ramp.64 
;cpdprg1 : decoupling f2 during SPC5, e.g. cw (or cwlg) or tppm
;cpdprg2 : decoupling f2, e.g. tppm15, SPINAL64

;cnst20 : LG-RF field as adjusted, in Hz used to calculate cnst22 and cnst23 +and - LG frequency
;cnst21 : =0 frequency reset (set by lgclac.incl)
;cnst22 : +LG frequency offset calc. by lgcalc.incl
;cnst23 : -LG frequency offset calc. by lgcalc.incl
;cnst24 : offset for 1H evol. during FSLG: 0 - -2000
;cnst31 : spinning speed
;in0 : inf1=l3*(1s/cnst31), t1 increment multiple of rotor periods
;l0 : number of composite SPC5 cycles multiple of 5 in DQ excitation
;l2 : number of composite SPC5 cycles multiple of 5 in DQ reconversion
;ns : 32*n
;FnMode : undefined
;mc2 : STATES-TPPI
;nd0 : 1
;WDW : F1 QSINE 3,  F2 QSINE 2 or EM
;use "xau xfshear rotate" to shift spectrum suitably along f1

;$COMMENT=SQ-DQ experiment with SPC5 sequence, cp for excitation
;$CLASS=Solids
;$DIM=2D
;$TYPE=cross polarisation
;$SUBTYPE=homonuclear correlation
;$OWNER=Bruker

define pulse pul360
  "pul360=(1s/cnst31)/5"       ;360° pulse
define pulse pul90
  "pul90=(0.25s/cnst31)/5"     ; 90° pulse
define pulse pul270
  "pul270=(0.75s/cnst31)/5"    ;270° pulse

define loopcounter count       ;for STATES-TPPI procedure
  "count=td1/2"                ;and STATES cos/sin procedure

  "d31=(1s/cnst31)"
  "in0=l3*d31"

;cnst11 : to adjust t=0 for acquisition, if digmod = baseopt
"acqt0=1u*cnst11"

#include <lgcalc.incl>
            ;calculates cnst22 from cnst20, RF field at pl13
#include <rot_prot.incl>
            ;protect for too slow rotation

  ze
  "d0=1u"
1 d31
2 d1 do:f2                     ;F2 decoupler off

#include <p15_prot.incl>
            ;make sure p15 does not exceed 10 msec	
            ;let supervisor change this pulseprogram if 
            ;more is needed
#include <aq_prot.incl>
            ;allows max. 50 msec acquisition time, supervisor
            ;may change  to max. 1s at less than 5 % duty cycle
            ;and reduced decoupling field

  1m rpp11                     ;reset the phase program ph11 pointer to the first element
  1m rpp12                     ;reset the phase program ph12 pointer to the first element
  1m rpp13                     ;reset the phase program ph13 pointer to the first element
  1m rpp14                     ;reset the phase program ph14 pointer to the first element
  1u fq=cnst21:f2

  (p3 pl12 ph1):f2             ;proton 90° pulse
  (p15 pl1 ph2):f1 (p15:sp0 ph10):f2    ;contact pulse with square or
                                        ;ramp shape ramp.100 on F2
  (p1 ph4):f1                  ;90° pulse putting magnetization back to z-axis 
                               ;for SPC5 double-quantum excitation
  1u pl11:f1 cpds1:f2          ;switch to SPC5 RF condition
                               ;F2 decoupling during SPC5: cw (or cwlg) or tppm

3 (pul90 ph11 ipp13 ipp14):f1  ;SPC5 DQ excitation
                               ;increment reconversion pulse phase ph13 and ph14 pointers
  (pul360 ph12 ipp12):f1       ;increment phase ph12 pointer
  (pul270 ph11 ipp11):f1       ;increment phase ph11 pointer
  lo to 3 times l0             ;l0 = multiple of 5

4 d0 cpds2:f2                  ;F2 decoupling during DQ evolution: tppm15, or SPINAL64
  1u cpds1:f2                  ;F2 decoupling during SPC5: cw (or cwlg) or tppm

5 (pul90 ph13):f1              ;SPC5 DQ reconversion
  (pul360 ph14 ipp14):f1       ;increment phase ph14 pointer
  (pul270 ph13 ipp13):f1       ;increment phase ph13 pointer
  lo to 5 times l2             ;l2 = multiple of 5

  (p1 pl1 ph5):f1              ;flip into the xy plane
  1u cpds2:f2                  ;F2 decoupling with TPPM or SPINAL during acquisition
  gosc ph31                    ;gosc does not loop to 1
                               ;start ADC with ph31 signal routing
  1m do:f2                     ;F2 decoupler off
                               ;DQ filtering (four phase cycling):
  40u ip13*16384               ;increments all phases of ph13 by 90°
  40u ip14*16384               ;increments all phases of ph14 by 90°
  lo to 1 times ns             ;next scan
  1m do:f2                     ;F2 decoupler off
  100m wr #0 if #0 zd          ;save data on disk

  1m ip11*8192                 ;increments all phases of ph11 by 45°, 
                               ;90° phase for DQ coherence
  1m ip12*8192                 ;increments all phases of ph12 by 45°,
                               ;90° phase for DQ coherence
  lo to 1 times 2              ;t1 quadrature detection

  1m id0

  ;1m rp11                     ;reset all phases of ph11, ph12, ph13, and ph14 
  ;1m rp12                     ;to their original values, i.e. to the values they 
  ;1m rp13                     ;had before the first ip11, ip12, ip13, and ip14
  ;1m rp14                     ;in case of STATES remove semicolon at beginning of the 4 lines

  lo to 1 times count          ;count = td1/2

  1m do:f2                     ;F2 decoupler off
HaltAcqu, 1m
exit

ph1= 1 1 1 1 3 3 3 3
ph2= 0
ph4= 3 3 3 3 1 1 1 1
ph5= 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3
ph10=0   
ph11= (65536)     0 13107 26214 39322 52429 32768 45875 58982  6554 19661
ph12= (65536) 32768 45875 58982  6554 19661     0 13107 26214 39322 52429
ph13= (65536) 16384 29491 42598 55706  3277 49152 62259  9830 22937 36044
ph14= (65536) 49152 62259  9830 22937 36044 16384 29491 42598 55706  3277
ph31= 0 2 0 2 0 2 0 2 2 0 2 0 2 0 2 0 1 3 1 3 1 3 1 3 3 1 3 1 3 1 3 1
  

References

  1. Robert Schneider, Karsten Seidel, Manuel Etzkorn, Adam Lange, Stefan Becker, and Marc Baldus
    Probing molecular motion by double-quantum (13C,13C) solid-state NMR spectroscopy: Application to ubiquitin,
    J. Am. Chem. Soc. 132, 223-233 (2010).
    Abstract
  2. Mei Hong, Tatiana V. Mishanina, and Sarah D. Cady
    Accurate measurement of methyl 13C chemical shifts by solid-state NMR for the determination of protein side chain conformation: The influenza A M2 transmembrane peptide as an example,
    J. Am. Chem. Soc. 131, 7806-7816 (2009).
    Abstract
  3. G. P. Drobny, J. R. Long, T. Karlsson, W. Shaw, J. Popham, N. Oyler, P. Bower, J. Stringer, D. Gregory, M. Mehta, and P. S. Stayton
    Structural studies of biomateriaux using double-quantum solid-state NMR spectroscopy,
    Annu. Rev. Phys. Chem. 54, 531-571 (2003).
    Abstract
  4. T. Karlsson, A. Brinkmann, P. J. E. Verdegem, J. Lugtenburg, and M. H. Levitt
    Multiple-quantum relaxation in the magic-angle-spinning NMR of 13C spin pairs,
    Solid State Nucl. Magn. Reson. 14, 43-58 (1999).
    Abstract
  5. Mei Hong
    Solid-state dipolar INADEQUATE NMR spectroscopy with a large double-quantum spectral width,
    J. Magn. Reson. 136, 86–91 (1999).
    Abstract
  6. M. Hohwy, C. M. Rienstra, C. P. Jaroniec, and R. G. Griffin
    Fivefold symmetric homonuclear dipolar recoupling in rotating solids: Application to double quantum spectroscopy,
    J. Chem. Phys. 110, 7983-7992 (1999).
    Abstract
    SPC5 pulse sequence

    Definition of SPC5 excitation pulse.

  7. M. Hohwy, H. J. Jakobsen, M. Edén, M. H. Levitt, and N. C. Nielsen
    Broadband dipolar recoupling in the nuclear magnetic resonance of rotating solids: A compensated C7 pulse sequence,
    J. Chem. Phys. 108, 2686-2694 (1998).
    Abstract
  8. Y. K. Lee, N. D. Kurur, M. Helmle, O. G. Johannessen, N. C. Nielsen, and M. H. Levitt
    Efficient dipolar recoupling in the NMR of rotating solids. A sevenfold symmetric radiofrequency pulse sequence,
    Chem. Phys. Lett. 242, 304-309 (1995).
    Abstract

Solid-state NMR bibliography for:

Aluminum-27
Antimony-121/123
Arsenic-75
Barium-135/137
Beryllium-9
Bismuth-209
Boron-11
Bromine-79/81
Calcium-43
Cesium-133
Chlorine-35/37
Chromium-53
Cobalt-59
Copper-63/65
Deuterium-2
Gallium-69/71
Germanium-73
Gold-197
Hafnium-177/179
Indium-113/115
Iodine-127
Iridium-191/193
Krypton-83
Lanthanum-139
Lithium-7
Magnesium-25
Manganese-55
Mercury-201
Molybdenum-95/97
Neon-21
Nickel-61
Niobium-93
Nitrogen-14
Osmium-189
Oxygen-17
Palladium-105
Potassium-39/41
Rhenium-185/187
Rubidium-85/87
Ruthenium-99/101
Scandium-45
Sodium-23
Strontium-87
Sulfur-33
Tantalum-181
Titanium-47/49
Vanadium-51
Xenon-131
Zinc-67
Zirconium-91
[Contact me] - Last updated February 24, 2020
Copyright © 2002-2024 pascal-man.com. All rights reserved.