SPC5CP1d: 1D double quantum excitation 180°-phase shift supercycled POST-C5 CP pulse program for TopSpin2.1

Home and Applets > Pulse Program > Topspin 2.1, Avance III > 2Q/1Q Correlation > 1D SPC5 CP Pulse Program
Double-quantum excitation with SPC5 CP pulse sequence

Since non-phase cycling is applied to the SPC5 excitation pulse, four-phase cycling is applied to the detection pulse P1 for selecting the 0Q -> -1Q coherence order jump, and four-phase cycling is applied to the SPC5 reconversion pulse for filtering DQ coherences.

Avoid cross-polarization during SPC5 excitation and reconversion.

*** Outline ***

Code for Avance III spectrometers with topSpin2.1 operating system

;spc5cp1D (TopSpin 2.0)

;1D SQ-DQ correlation experiment with SPC5 sequence and cross polarization
;for the original C7 sequence see: Lee et al. Chem Phys Lett 242, 304-309, 1995
;see Hohwy, Rienstra, Jaroniec and Griffin, JCP 110, 7983, 1999

;Avance II+ version
;parameters:
;d1 : recycle delay

;p1  : excitation pulse f1 at pl1
;p3  : 1H excitation pulse @ PL12
;p5  : FSLG 2pi pulse set by lgcalc.incl
;p15 : HH contact pulse
;pcpd2 : decoupling pulse f2 @ PL12, pcpd2 = 2*P3-0.2us used by TPPM and SPINAL
;pcpd1 : decoupling pulse during SPC5

;pl1  : for X contact pulse
;pl2  : =120dB, not used
;pl11 : for SPC5 recoupling sequence B1=5*cnst31 in Hz
;pl12 : for 1H excitation and decoupling
;pl13 : for LG decoupling cpdprg1 = cwlg or cw13 or tppm13
;sp0  : proton power level during contact
;spnam0 : for CP on 1H e.g. ramp.64 
;cpdprg1: decoupling f2 during SPC5, e.g. cw (or cwlg) or tppm
;cpdprg2: decoupling f2, e.g. tppm15, SPINAL64

;cnst20: LG-RF field as adjusted, in Hz used to calculate cnst22 and cnst23 +and - LG frequency
;cnst21: =0 frequency reset (set by lgclac.incl)
;cnst22: +LG frequency offset calc. by lgcalc.incl
;cnst23: -LG frequency offset calc. by lgcalc.incl
;cnst24: offset for 1H evol. during FSLG: 0 - -2000
;cnst31: spinning speed
;l0  : number of composite SPC5 cycles in excitation multiple of 5
;l1  : number of composite SPC5 cycles in reconversion multiple of 5
;ns  : 32*n

;$COMMENT=DQ excitation sequence SPC5, cp for excitation
;$CLASS=Solids
;$DIM=1D
;$TYPE=cross polarisation
;$SUBTYPE=homonuclear correlation
;$OWNER=Bruker

define pulse pul360
  "pul360=(1s/cnst31)/5"         ;360° pulse
define pulse pul90
  "pul90=(0.25s/cnst31)/5"       ; 90° pulse
define pulse pul270
  "pul270=(0.75s/cnst31)/5"      ;270° pulse

  "d31=(1s/cnst31)"

;cnst11 : to adjust t=0 for acquisition, if digmod = baseopt
"acqt0=1u*cnst11"

#include <lgcalc.incl>
                                 ;calculates cnst22 from cnst20, RF field at pl13
#include <rot_prot.incl>
                                 ;protect for too slow rotation

  ze
1 10m
2 d1 do:f2                       ;recycle delay, F2 decoupler off
  1m rpp11                       ;reset the phase ph11 pointer to the first element
  1m rpp12                       ;reset the phase ph12 pointer to the first element
  1m rpp13                       ;reset the phase ph13 pointer to the first element
  1m rpp14                       ;reset the phase ph14 pointer to the first element
  1u fq=cnst21:f2

  (p3 pl12 ph1):f2               ;proton 90° pulse
  (p15 pl1 ph2):f1 (p15:sp0 ph10):f2    ;contact pulse with square or
                                        ;ramp shape ramp.100 on F2
  (p1 pl1 ph4):f1                ;90° pulse putting magnetization back to z-axis 
                                 ;for SPC5 double-quantum excitation
  1u pl11:f1 cpds1:f2            ;switch to SPC5 RF condition
                                 ;F2 decoupling during SPC5 cw (or cwlg) or tppm

3 (pul90  ph11 ipp13 ipp14):f1   ;SPC5 DQ excitation
                                 ;increment reconversion pulse phase ph13 and ph14 pointers
  (pul360 ph12 ipp12):f1         ;increment phase ph12 pointer
  (pul270 ph11 ipp11):f1         ;increment phase ph11 pointer
  lo to 3 times l0               ;l0 = multiple of 5

5 (pul90  ph13):f1               ;SPC5 DQ reconversion
  (pul360 ph14 ipp14):f1         ;increment phase ph14 pointer
  (pul270 ph13 ipp13):f1         ;increment phase ph13 pointer
  lo to 5 times l1               ;l1 = multiple of 5

  (p1 pl1 ph5):f1 (1u do):f2     ;detection pulse, F2 decoupler off
  1u cpds2:f2                    ;F2 decoupling with TPPM or SPINAL during acquisition
  gosc ph31                      ;gosc does not loop to 1
                                 ;start ADC with ph31 signal routing
  1m do:f2                       ;F2 decoupling off
                                 ;DQ filtering (four phase cycling):
  1m ip13*16384                  ;increments all phases of ph13 by 90°
  1m ip14*16384                  ;increments all phases of ph14 by 90°
  lo to 1 times ns               ;next scan

  100m wr #0                     ;save data on disk
HaltAcqu, 1m
exit

ph1= 1 1 1 1 3 3 3 3
ph2= 0
ph4= 3 3 3 3 1 1 1 1
ph5= 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3
ph10=0

ph11= (65536)     0 13107 26214 39322 52429 32768 45875 58982  6554 19661
ph12= (65536) 32768 45875 58982  6554 19661     0 13107 26214 39322 52429

ph13= (65536) 16384 29491 42598 55706  3277 49152 62259  9830 22937 36044
ph14= (65536) 49152 62259  9830 22937 36044 16384 29491 42598 55706  3277

ph31= 0 2 0 2 0 2 0 2 2 0 2 0 2 0 2 0 1 3 1 3 1 3 1 3 3 1 3 1 3 1 3 1
  

References

  1. Robert Schneider, Karsten Seidel, Manuel Etzkorn, Adam Lange, Stefan Becker, and Marc Baldus
    Probing molecular motion by double-quantum (13C,13C) solid-state NMR spectroscopy: Application to ubiquitin,
    J. Am. Chem. Soc. 132, 223-233 (2010).
    Abstract
  2. Mei Hong, Tatiana V. Mishanina, and Sarah D. Cady
    Accurate measurement of methyl 13C chemical shifts by solid-state NMR for the determination of protein side chain conformation: The influenza A M2 transmembrane peptide as an example,
    J. Am. Chem. Soc. 131, 7806-7816 (2009).
    Abstract
  3. G. P. Drobny, J. R. Long, T. Karlsson, W. Shaw, J. Popham, N. Oyler, P. Bower, J. Stringer, D. Gregory, M. Mehta, and P. S. Stayton
    Structural studies of biomateriaux using double-quantum solid-state NMR spectroscopy,
    Annu. Rev. Phys. Chem. 54, 531-571 (2003).
    Abstract
  4. T. Karlsson, A. Brinkmann, P. J. E. Verdegem, J. Lugtenburg, and M. H. Levitt
    Multiple-quantum relaxation in the magic-angle-spinning NMR of 13C spin pairs,
    Solid State Nucl. Magn. Reson. 14, 43-58 (1999).
    Abstract
  5. Mei Hong
    Solid-state dipolar INADEQUATE NMR spectroscopy with a large double-quantum spectral width,
    J. Magn. Reson. 136, 86–91 (1999).
    Abstract
  6. M. Hohwy, C. M. Rienstra, C. P. Jaroniec, and R. G. Griffin
    Fivefold symmetric homonuclear dipolar recoupling in rotating solids: Application to double quantum spectroscopy,
    J. Chem. Phys. 110, 7983-7992 (1999).
    Abstract
    SPC5 pulse sequence

    Definition of SPC5 excitation pulse.

  7. M. Hohwy, H. J. Jakobsen, M. Edén, M. H. Levitt, and N. C. Nielsen
    Broadband dipolar recoupling in the nuclear magnetic resonance of rotating solids: A compensated C7 pulse sequence,
    J. Chem. Phys. 108, 2686-2694 (1998).
    Abstract
  8. Y. K. Lee, N. D. Kurur, M. Helmle, O. G. Johannessen, N. C. Nielsen, and M. H. Levitt
    Efficient dipolar recoupling in the NMR of rotating solids. A sevenfold symmetric radiofrequency pulse sequence,
    Chem. Phys. Lett. 242, 304-309 (1995).
    Abstract

Solid-state NMR bibliography for:

Aluminum-27
Antimony-121/123
Arsenic-75
Barium-135/137
Beryllium-9
Bismuth-209
Boron-11
Bromine-79/81
Calcium-43
Cesium-133
Chlorine-35/37
Chromium-53
Cobalt-59
Copper-63/65
Deuterium-2
Gallium-69/71
Germanium-73
Gold-197
Hafnium-177/179
Indium-113/115
Iodine-127
Iridium-191/193
Krypton-83
Lanthanum-139
Lithium-7
Magnesium-25
Manganese-55
Mercury-201
Molybdenum-95/97
Neon-21
Nickel-61
Niobium-93
Nitrogen-14
Osmium-189
Oxygen-17
Palladium-105
Potassium-39/41
Rhenium-185/187
Rubidium-85/87
Ruthenium-99/101
Scandium-45
Sodium-23
Strontium-87
Sulfur-33
Tantalum-181
Titanium-47/49
Vanadium-51
Xenon-131
Zinc-67
Zirconium-91
[Contact me] - Last updated February 24, 2020
Copyright © 2002-2024 pascal-man.com. All rights reserved.