R12_2^5-2d: 2D DQ/SQ correlation R1225 pulse program for TopSpin2.1

Home and Applets > Pulse Program > Topspin 2.1, Avance III > 2Q/1Q Correlation > 2D R12_2^5 Pulse Program
Double-quantum excitation with R12-2-5 pulse sequence

Since non-phase cycling is applied to the R1225 excitation pulse, four-phase cycling is applied to the detection pulse P1 for selecting the 0Q -> -1Q coherence order jump, and four-phase cycling is applied to the R1225 reconversion pulse for filtering DQ coherences.

*** Outline ***

Code for Avance III spectrometers with topSpin2.1 operating system

;r12-2-5_2d (TopSpin 2.0)

;2D SQ-DQ correlation experiment with R12_2^5, use r12-2-5_1d for setup
;M. Carravetta, M. Eden, X. Zhao, A. Brinkmann and M.H. Levitt, 
;Symmetry principles for the design of radiofrequency pulse seqeunces in
;the nuclear magnetic resonance of rotating solids, Chem. Phys. Lett 321 (2000) 205-215 
;by JOS 02/28/03

;Avance II+ version
;parameters:
;d1  : recycle delay
;d0  : incremented delay (2D) [1 usec]
;d20 : delay between saturation pulses

;p1 : detection pulse with pl1 power

;pl1  : f1 power level
;pl11 : for R12_2^5 recoupling sequence B1=(N/2n)*cnst31=3*cnst31 in Hz

;cnst31 : spinning speed
;l0  : number of basic R12_2^5 cycles for DQ excitation
;l3  : number of rotor period for DQ evolution
;l20 : # of pulses in saturation pulse train
;in0 : l3*rotorperiod=l3*(1/cnst31), t1 increment
;ns  : n*16
;FnMode : undefined
;mc2 : STATES-TPPI
;nd0 : 1
;zgoptns :-Dpresat or blank

;$COMMENT=SQ-DQ experiment with R12_2^5
;$CLASS=Solids
;$DIM=2D
;$TYPE=direct excitation
;$SUBTYPE=homonuclear correlation
;$OWNER=Bruker

define loopcounter count    ;for STATES-TPPI procedure
  "count=td1/2"             ;and STATES cos/sin procedure
                            
define pulse pul180
  "pul180=(1.0s/cnst31)/6"  ;180° pulse

  "d31=1s/cnst31"
  "d0=1u"
  "in0=l3*d31"
  "inf1=l3*d31"

;cnst11 : to adjust t=0 for acquisition, if digmod = baseopt
"acqt0=1u*cnst11"

#include <rot_prot.incl>

  ze                        ;acquire into a cleared memory
1 d31

#ifdef presat               ;set with -Dpresat
pres, d20                   ;delay between saturation pulses
  (p1 pl1 ph1):f1           ;saturation loop if required
  lo to pres times l20
#endif /* presat */

2 d1                        ;recycle delay
  1m rpp11                  ;reset the phase ph11 pointer to the first element
                            ;in the DQ excitation pulse
  1m rpp13                  ;reset the phase ph13 pointer to the first element
                            ;in the DQ reconversion pulse
  10u reset:f1
  1u pl11:f1                ;switch to R12_2^5 RF condition

                            ;R12_2^5 DQ excitation
3 (pul180  ph11 ipp11):f1   ;increment phase ph11 pointer
  (pul180  ph11 ipp11):f1   ;increment phase ph11 pointer
  lo to 3 times l0

  d0                        ;DQ evolution

                            ;R12_2^5 DQ reconversion
4 (pul180  ph13 ipp13):f1   ;increment phase ph13 pointer
  (pul180  ph13 ipp13):f1   ;increment phase ph13 pointer
  lo to 4 times l0

  (p1 pl1 ph5):f1           ;detection pulse
  gosc ph31                 ;gosc does not loop to 1

                            ;DQ filtering (four phase cycling):
  1m ip13*16384             ;increments all phases of ph13 by 90°

  lo to 1 times ns          ;next scan
  100m wr #0 if #0 zd       ;save data

  1m ip11*8192              ;increments all phases of ph11 by 45°, 
                            ;90° phase for DQ coherence
  lo to 1 times 2           ;t1 quadrature detection

  1m id0                    ;increment in l3*rotorperiod

  ;1m rp11                  ;reset all phases of ph11 and ph13 
                            ;to their original values, i.e. to the values they 
  ;1m rp13                  ;had before the first ip11 and ip13
                            ;in case of STATES remove semicolon at beginning of the 2 lines

  lo to 1 times count       ;count=td1/2
HaltAcqu, 1m
exit

ph1=0                       ;for saturation pulse

ph11=(65536) 13653  51883   ; 75°  285°  or  75°   -75°
ph13=(65536) 30037   2731   ;165°   15°  or  ph11 + 90°

ph5= 0 0 0 0 2 2 2 2 1 1 1 1 3 3 3 3
ph31=0 2 0 2 2 0 2 0 1 3 1 3 3 1 3 1
  

Example1: 31P in VPI-5 zeolite with AV500

FID of 31P in VPI-5 with zg

31P MAS FID of VPI-5 zeolite. Its duration is about 4 msec.

90° pulse duration of 31P in VPI-5 with zg

31P MAS spectra of VPI-5 zeolite versus the excitation pulse p1 duration (pl1 = 9.5 dB) in zg pulse program, acquired with a 4-mm diameter rotor spinning at 15 kHz, D1 = 10 sec recycle delay, and recorded with Bruker Avance III, 500 MHz WB US magnet.

Pulseprogram parameters for zg:

General  
PULPROG zg
TD 3494
NS 4
DS 0
SWH [Hz] 50000.00
AQ [s] 0.0349900
RG 4
DW [µs] 10.000
DE [µs] 6.50
D1 [s] 10.00000000
TD0 1
Channel f1  
NUC1 31P
P1 [µs] 2.00
PL1 [dB] 9.50
PL1W [W] 39.34462738
SFO1 [MHz] 202.4641779

90° pulse duration of 31P in VPI-5 with zgsat

31P MAS spectra of VPI-5 zeolite versus the excitation pulse p1 duration (pl1 = 9.5 dB) in zgsat.gul pulse program, acquired with a 4-mm diameter rotor spinning at 15 kHz, and recorded with Bruker Avance III, 500 MHz.

Pulseprogram parameters for zgsat.gul:

General  
PULPROG zgsat.gul
TD 2048
NS 4
DS 0
SWH [Hz] 50000.00
AQ [s] 0.0205300
RG 4
DW [µs] 10.000
DE [µs] 6.50
D1 [s] 10.00000000
D20 [s] 0.00800000
L20 20
TD0 1
Channel f1  
NUC1 31P
P1 [µs] 5.00
P20 [µs] 5.00
PL1 [dB] 9.50
PL1W [W] 39.34462738
SFO1 [MHz] 202.4641779

DQ excitation versus pl11 with r12-2-5-1d.ppm for 31P in VPI-5 zeolite

31P MAS spectra of VPI-5 zeolite versus the excitation power pl11 (l0 = 50) in r12-2-5_1d.ppm, acquired with a 4-mm diameter rotor spinning at 15 kHz, and recorded with Bruker Avance III, 500 MHz.

Pulseprogram parameters for r12-2-5_1d.ppm:

General  
PULPROG r12-2-5_1d.ppm
TD 2048
NS 16
DS 0
SWH [Hz] 50000.00
AQ [s] 0.0205300
RG 4
DW [µs] 10.000
DE [µs] 6.50
CNST11 0.0000000
CNST31 15000.0000000
D1 [s] 10.00000000
D20 [s] 0.00800000
d31 [s] 0.00006667
L0 50
L20 20
ZGOPTNS -Dpresat
Channel f1  
NUC1 31P
P1 [µs] 5.00
PL1 [dB] 9.50
PL1W [W] 39.34462738
PL11 [dB] 11.40
PL11W [W] 25.40302658
pul180 [µs] 11.11
SFO1 [MHz] 202.4641779

DQ excitation versus l0 with r12-2-5-1d.ppm for 31P in VPI-5 zeolite

31P MAS spectra of VPI-5 zeolite versus the number l0 of basic unit (pl11 = 11.4 dB) in r12-2-5_1d.ppm, acquired with a 4-mm diameter rotor spinning at 15 kHz, and recorded with Bruker Avance III, 500 MHz.

Pulseprogram parameters for r12-2-5_1d.ppm:

General  
PULPROG r12-2-5_1d.ppm
TD 2048
NS 16
DS 0
SWH [Hz] 50000.00
AQ [s] 0.0205300
RG 4
DW [µs] 10.000
DE [µs] 6.50
CNST11 0.0000000
CNST31 15000.0000000
D1 [s] 10.00000000
D20 [s] 0.00800000
d31 [s] 0.00006667
L0 60
L20 20
ZGOPTNS -Dpresat
Channel f1  
NUC1 31P
P1 [µs] 5.00
PL1 [dB] 9.50
PL1W [W] 39.34462738
PL11 [dB] 11.40
PL11W [W] 25.40302658
pul180 [µs] 11.11
SFO1 [MHz] 202.4641779

31P 2D DQ/SQ spectrum of VPI-5 zeolite

31P R12_2^5 DQ/SQ spectrum of VPI-5 zeolite acquired with a 4-mm diameter rotor spinning at 15 kHz, ino = 1/cnst31, and recorded with Bruker Avance III, 500 MHz. MC2 = STATES-TPPI.

Pulseprogram parameters for r12-2-5_2d.ppm:

General  
PULPROG r12-2-5_2d.ppm
TD 2048
NS 16
DS 0
SWH [Hz] 50000.00
AQ [s] 0.0205300
RG 4
DW [µs] 10.000
DE [µs] 6.50
CNST11 0.0000000
CNST31 15000.0000000
d0 [s] 0.00000100
D1 [s] 10.00000000
D20 [s] 0.00800000
d31 [s] 0.00006667
in0 [s] 0.00006667
inf1 [µs] 66.67
L0 60
L3 1
L20 20
ZGOPTNS -Dpresat
count 64
Channel f1  
NUC1 31P
P1 [µs] 5.00
PL1 [dB] 9.50
PL1W [W] 39.34462738
PL11 [dB] 11.40
PL11W [W] 25.40302658
pul180 [µs] 11.11
SFO1 [MHz] 202.4641779

Acquisition parameters:

  F2 F1
Experiment    
PULPROG r12-2-5_2d.ppm  
AQ_mod DQD  
FnMODE   undefined
TD 2048 128
NS 16  
DS 0  
TD0 1  
Width    
SW [ppm] 246.9573 74.0835
SWH [Hz] 50000.000 14999.250
IN_F [µs]   66.67
AQ [s] 0.0205300 0.0042669
Nucleus1    
NUC1 31P  
O1 [Hz] -8349.05 -8349.05
O1P [ppm] -41.235 -41.235
SFO1 [MHz] 202.4641779 202.4641779
BF1 [MHz] 202.4725270 202.4725270

31P 2D DQ/SQ spectrum of VPI-5 zeolite

31P R12_2^5 DQ/SQ spectrum of VPI-5 zeolite acquired with a 4-mm diameter rotor spinning at 15 kHz, ino = 2*pul180, and recorded with Bruker Avance III, 500 MHz. MC2 = STATES.

31P 2D DQ/SQ spectrum of VPI-5 zeolite

31P R12_2^5 DQ/SQ spectrum of VPI-5 zeolite acquired with a 4-mm diameter rotor spinning at 15 kHz, ino = 2*pul180, and recorded with Bruker Avance III, 500 MHz. MC2 = STATES-TPPI.

Pulseprogram parameters for r12-2-5_2d.ppm:

General  
PULPROG r12-2-5_2d.ppm
TD 2048
NS 16
DS 0
SWH [Hz] 50000.00
AQ [s] 0.0205300
RG 4
DW [µs] 10.000
DE [µs] 6.50
CNST11 0.0000000
CNST31 15000.0000000
d0 [s] 0.00000100
D1 [s] 10.00000000
D20 [s] 0.00800000
d31 [s] 0.00006667
in0 [s] 0.00002222
inf1 [µs] 66.67
L0 60
L20 20
ZGOPTNS -Dpresat
count 140
Channel f1  
NUC1 31P
P1 [µs] 5.00
PL1 [dB] 9.50
PL1W [W] 39.34462738
PL11 [dB] 11.40
PL11W [W] 25.40302658
pul180 [µs] 11.11
SFO1 [MHz] 202.4641779

Acquisition parameters:

  F2 F1
Experiment    
PULPROG r12-2-5_2d.ppm  
AQ_mod DQD  
FnMODE   undefined
TD 2048 280
NS 16  
DS 0  
TD0 1  
Width    
SW [ppm] 246.9573 222.2838
SWH [Hz] 50000.000 45004.500
IN_F [µs]   22.22
AQ [s] 0.0205300 0.0031108
Nucleus1    
NUC1 31P  
O1 [Hz] -8349.05 -8349.05
O1P [ppm] -41.235 -41.235
SFO1 [MHz] 202.4641779 202.4641779
BF1 [MHz] 202.4725270 202.4725270

31P 2D DQ/SQ spectrum of VPI-5 zeolite

31P R12_2^5 DQ/SQ spectrum of VPI-5 zeolite acquired with a 4-mm diameter rotor spinning at 15 kHz, inf1 = p9 = 1/cnst31, and recorded with Bruker Avance III, 500 MHz. MC2 = STATES-TPPI.

Pulseprogram parameters for r12-2-5_2dbsw.ppm:

General  
PULPROG r12-2-5_2dbsw.ppm
TD 2048
NS 16
DS 0
SWH [Hz] 50000.00
AQ [s] 0.0205300
RG 4
DW [µs] 10.000
DE [µs] 6.50
CNST11 0.0000000
CNST31 15000.0000000
d0 [s] 0.00000100
D1 [s] 10.00000000
D20 [s] 0.00800000
d31 [s] 0.00006667
L0 60
L20 20
P9 [µs] 66.67
ZGOPTNS -Dpresat
count 64
Channel f1  
CNST1 1.0000000
NUC1 31P
P1 [µs] 5.00
PL1 [dB] 9.50
PL1W [W] 39.34462738
PL11 [dB] 11.40
PL11W [W] 25.40302658
pul180 [µs] 11.11
SFO1 [MHz] 202.4641779

Acquisition parameters:

  F2 F1
Experiment    
PULPROG r12-2-5_2dbsw.ppm  
AQ_mod DQD  
FnMODE   undefined
TD 2048 128
NS 16  
DS 0  
TD0 1  
Width    
SW [ppm] 246.9573 74.0835
SWH [Hz] 50000.000 14999.250
IN_F [µs]   66.67
AQ [s] 0.0205300 0.0042669
Nucleus1    
NUC1 31P  
O1 [Hz] -8349.05 -8349.05
O1P [ppm] -41.235 -41.235
SFO1 [MHz] 202.4641779 202.4641779
BF1 [MHz] 202.4725270 202.4725270

31P 2D DQ/SQ spectrum of VPI-5 zeolite

31P R12_2^5 DQ/SQ spectrum of VPI-5 zeolite acquired with a 4-mm diameter rotor spinning at 15 kHz, inf1 = p9 = 2*pul180, and recorded with Bruker Avance III, 500 MHz. MC2 = STATES-TPPI.

Pulseprogram parameters for r12-2-5_2dbsw.ppm:

General  
PULPROG r12-2-5_2dbsw.ppm
TD 2048
NS 16
DS 0
SWH [Hz] 50000.00
AQ [s] 0.0205300
RG 4
DW [µs] 10.000
DE [µs] 6.50
CNST11 0.0000000
CNST31 15000.0000000
d0 [s] 0.00000100
D1 [s] 10.00000000
D20 [s] 0.00800000
d31 [s] 0.00006667
L0 60
L20 20
P9 [µs] 22.22
ZGOPTNS -Dpresat
count 140
Channel f1  
CNST1 1.0000000
NUC1 31P
P1 [µs] 5.00
PL1 [dB] 9.50
PL1W [W] 39.34462738
PL11 [dB] 11.40
PL11W [W] 25.40302658
pul180 [µs] 11.11
SFO1 [MHz] 202.4641779

Acquisition parameters:

  F2 F1
Experiment    
PULPROG r12-2-5_2dbsw.ppm  
AQ_mod DQD  
FnMODE   undefined
TD 2048 280
NS 16  
DS 0  
TD0 1  
Width    
SW [ppm] 246.9573 222.2838
SWH [Hz] 50000.000 45004.500
IN_F [µs]   22.22
AQ [s] 0.0205300 0.0031108
Nucleus1    
NUC1 31P  
O1 [Hz] -8349.05 -8349.05
O1P [ppm] -41.235 -41.235
SFO1 [MHz] 202.4641779 202.4641779
BF1 [MHz] 202.4725270 202.4725270

Example2: 1H in L-tyrosine with AV700

90° pulse duration of 1H in adamantane

1H MAS spectra of adamantane versus the excitation pulse p1 duration (pl1 = 4 dB), recycle delay D1 = 10 s, acquired with a 1.3-mm diameter rotor spinning at 60 kHz, and recorded with Bruker Avance III, 700 MHz. Adamantane proton full spectrum.

Pulseprogram parameters for zg:

General  
PULPROG zg
TD 6144
NS 4
DS 0
SWH [Hz] 100000.00
AQ [s] 0.0307750
RG 1
DW [µs] 5.000
DE [µs] 6.50
D1 [s] 10.00000000
TD0 1
Channel f1  
NUC1 1H
P1 [µs] 1.30
PL1 [dB] 4.00
SFO1 [MHz] 699.9812952

LTYR FID dduration

1H MAS FID of L-tyrosine acquired with a 1.3-mm diameter rotor spinning at 60 kHz, and recorded with Bruker Avance III, 700 MHz.

LTYR spectrum

1H MAS spectrum of L-tyrosine acquired with a 1.3-mm diameter rotor spinning at 60 kHz, and recorded with Bruker Avance III, 700 MHz.

Pulseprogram parameters for zg:

General  
PULPROG zg
TD 2048
NS 4
DS 0
SWH [Hz] 50000.00
AQ [s] 0.0205400
RG 1
DW [µs] 10.000
DE [µs] 6.50
D1 [s] 5.00000000
TD0 1
Channel f1  
NUC1 1H
P1 [µs] 1.30
PL1 [dB] 4.00
SFO1 [MHz] 699.9812952

DQ excitation versus l0 with r12-2-5-1d.ppm for 1H in L-tyrosine

1H MAS spectra of L-tyrosine versus the number l0 of basic unit (pl11 = 4.6 dB) in r12-2-5_1d.ppm, acquired with a 1.3-mm diameter rotor spinning at 60 kHz, and recorded with Bruker Avance III, 700 MHz.

Pulseprogram parameters for r12-2-5_1d.ppm:

General  
PULPROG r12-2-5_1d.ppm
TD 2048
NS 16
DS 0
SWH [Hz] 50000.00
AQ [s] 0.0205400
RG 1
DW [µs] 10.000
DE [µs] 6.50
CNST11 0.0000000
CNST31 60000.0000000
D1 [s] 5.00000000
d31 [s] 0.00001667
L0 7
ZGOPTNS  
Channel f1  
NUC1 1H
P1 [µs] 1.30
PL1 [dB] 4.00
PL11 [dB] 4.60
pul180 [µs] 2.78
SFO1 [MHz] 699.9860224

DQ excitation versus pl11 with r12-2-5-1d.ppm for 1H in L-tyrosine

1H MAS spectra of L-tyrosine versus the excitation power pl11 (l0 = 7) in r12-2-5_1d.ppm, acquired with a 1.3-mm diameter rotor spinning at 60 kHz, and recorded with Bruker Avance III, 700 MHz.

Pulseprogram parameters for r12-2-5_1d.ppm:

General  
PULPROG r12-2-5_1d.ppm
TD 2048
NS 16
DS 0
SWH [Hz] 50000.00
AQ [s] 0.0205400
RG 1
DW [µs] 10.000
DE [µs] 6.50
CNST11 0.0000000
CNST31 60000.0000000
D1 [s] 5.00000000
d31 [s] 0.00001667
L0 7
ZGOPTNS  
Channel f1  
NUC1 1H
P1 [µs] 1.30
PL1 [dB] 4.00
PL11 [dB] 6.00
pul180 [µs] 2.78
SFO1 [MHz] 699.9860224

1H 2D DQ/SQ ser file of L-tyrosine

1H R12_2^5 DQ/SQ ser file of L-tyrosine acquired with a 1.3-mm diameter rotor spinning at 60 kHz, ino = 2/cnst31, and recorded with Bruker Avance III, 700 MHz.

1H 2D DQ/SQ spectrum of L-tyrosine

1H R12_2^5 DQ/SQ spectrum of L-tyrosine acquired with a 1.3-mm diameter rotor spinning at 60 kHz, ino = 2/cnst31, and recorded with Bruker Avance III, 700 MHz. MC2 = STATES-TPPI.

Pulseprogram parameters for r12-2-5_2d.ppm:

General  
PULPROG r12-2-5_2d.ppm
TD 2048
NS 32
DS 0
SWH [Hz] 50000.00
AQ [s] 0.0205400
RG 1
DW [µs] 10.000
DE [µs] 6.50
CNST11 0.0000000
CNST31 60000.0000000
d0 [s] 0.00000100
D1 [s] 5.00000000
d31 [s] 0.00001667
in0 [s] 0.00003333
inf1 [µs] 33.33
L0 7
L3 2
ZGOPTNS  
count 90
Channel f1  
NUC1 1H
P1 [µs] 1.30
PL1 [dB] 4.00
PL11 [dB] 6.00
pul180 [µs] 2.78
SFO1 [MHz] 699.9860224

Acquisition parameters:

  F2 F1
Experiment    
PULPROG r12-2-5_2d.ppm  
AQ_mod DQD  
FnMODE   undefined
TD 2048 180
NS 32  
DS 0  
TD0 1  
Width    
SW [ppm] 71.4300 42.8623
SWH [Hz] 50000.000 30002.998
IN_F [µs]   33.33
AQ [s] 0.0205400 0.0029997
Nucleus1    
NUC1 1H  
O1 [Hz] 6022.41 6022.41
O1P [ppm] 8.604 8.604
SFO1 [MHz] 699.9860224 699.9860224
BF1 [MHz] 699.9800000 699.9800000

References

  1. Lena Seyfarth and Jürgen Senker
    An NMR crystallographic approach for the determination of the hydrogen substructure of nitrogen bonded protons,
    Phys. Chem. Chem. Phys. 11, 3522-3531 (2009).
    Abstract
  2. M. Carravetta, A. Danquigny, S. Mamone, F. Cuda, O. G. Johannessen, I. Heinmaa, K. Panesar, R. Stern, M. C. Grossel, A. J. Horsewill, A. Samoson, M. Murata, Y. Murata, K. Komatsu, and M. H. Levitt
    Solid-state NMR of endohedral hydrogen-fullerene complexes,
    Phys. Chem. Chem. Phys. 9, 4879-4894 (2007).
    Abstract
  3. M. Carravetta, M. Edén, O. G. Johannessen, H. Luthman, P. J. E. Verdegem, J. Lugtenburg, A. Sebald, and M. H. Levitt
    Estimation of carbon-carbon bond lengths and medium-range internuclear distances by solid-state nuclear magnetic resonance,
    J. Am. Chem. Soc. 123, 10628-10638 (2001).
    Abstract
  4. Marina Carravetta, Mattias Edén, Xin Zhao, Andreas Brinkmann, and Malcolm H. Levitt
    Symmetry principles for the design of radiofrequency pulse sequences in the nuclear magnetic resonance of rotating solids,
    Chem. Phys. Lett. 321, 205-215 (2000).
    Abstract

Other references

  1. Subhradip Paul, Rajendra Singh Thakur, M. H. Levitt, and P. K. Madhu
    1H homonuclear dipolar decoupling using rotor-synchronised pulse sequences: Towards pure absorption phase spectra, (RNnN/2)
    J. Magn. Reson. 205, 269-275 (2010).
    Abstract
  2. Mattias Edén
    Two-dimensional MAS NMR correlation protocols involving double-quantum filtering of quadrupolar spin-pairs, (R221; R241)
    J. Magn. Reson. 204, 99-110 (2010).
    Abstract
  3. B. Hu, L. Delevoye, O. Lafon, J. Trébosc, and J. P. Amoureux
    Double-quantum NMR spectroscopy of 31P species submitted to very large CSAs, (BR221; BABA-4; SPIP; fp-RFDR)
    J. Magn. Reson. 200, 178-188 (2009).
    Abstract
  4. Q. Wang, B. Hu, O. Lafon, J. Trébosc, F. Deng, and J. P. Amoureux
    Double-quantum homonuclear NMR correlation spectroscopy of quadrupolar nuclei subjected to magic-angle spinning and high magnetic field, (BR221; SR221)
    J. Magn. Reson. 200, 251-260 (2009).
    Abstract
  5. Mattias Edén and Andy Y. H. Lo
    Supercycled symmetry-based double-quantum dipolar recoupling of quadrupolar spins in MAS NMR: I. Theory, (R221; R241; R442; C120; C241)
    J. Magn. Reson. 200, 267-279 (2009).
    Abstract
  6. Jakob J. Lopez, Christoph Kaiser, Sarika Shastri, and Clemens Glaubitz
    Double quantum filtering homonuclear MAS NMR correlation spectra: a tool for membrane protein studies, (R2249)
    J. Biomol. 41, 97-104 (2008).
    Abstract
  7. Gregor Mali, Venčeslav Kaučič, and Francis Taulelle
    Measuring distances between half-integer quadrupolar nuclei and detecting relative orientations of quadrupolar and dipolar tensors by double-quantum homonuclear dipolar recoupling nuclear magnetic resonance experiments, (R221)
    J. Chem. Phys. 128, 204503/1-204503/11 (2008).
    Abstract
  8. Darren H. Brouwer, Per Eugen Kristiansen, Colin A. Fyfe, and Malcolm H. Levitt
    Symmetry-based 29Si dipolar recoupling magic angle spinning NMR spectroscopy: A new method for investigating three-dimensional structures of zeolite frameworks, (SR26411)
    J. Am. Chem. Soc. 127, 542-543 (2005).
    Abstract
  9. Mattias Edén, Hans Annersten, and Åsa Zazzi
    Pulse-assisted homonuclear dipolar recoupling of half-integer quadrupolar spins in magic-angle spinning NMR, (R441)
    Chem. Phys. Lett. 410, 24-30 (2005).
    Abstract
  10. Per Eugen Kristiansen, Marina Carravetta, Wai Cheu Lai, and Malcolm H. Levitt
    A robust pulse sequence for the determination of small homonuclear dipolar couplings in magic-angle spinning NMR, (SR26411)
    Chem. Phys. Lett. 390, 1-7 (2004).
    Abstract
  11. Per Eugen Kristiansen, Dan J. Mitchell, and Jeremy N. S. Evans
    Double-quantum dipolar recoupling at high magic-angle spinning rates, (RN)
    J. Magn. Reson. 157, 253-266 (2002).
    Abstract
  12. Andreas Brinkmann, Jörn Schmedt auf der Günne, and Malcolm H. Levitt
    Homonuclear zero-quantum recoupling in fast magic-angle spinning nuclear magnetic resonance, (R662)
    J. Magn. Reson. 156, 79-96 (2002).
    Abstract

Solid-state NMR bibliography for:

Aluminum-27
Antimony-121/123
Arsenic-75
Barium-135/137
Beryllium-9
Bismuth-209
Boron-11
Bromine-79/81
Calcium-43
Cesium-133
Chlorine-35/37
Chromium-53
Cobalt-59
Copper-63/65
Deuterium-2
Gallium-69/71
Germanium-73
Gold-197
Hafnium-177/179
Indium-113/115
Iodine-127
Iridium-191/193
Krypton-83
Lanthanum-139
Lithium-7
Magnesium-25
Manganese-55
Mercury-201
Molybdenum-95/97
Neon-21
Nickel-61
Niobium-93
Nitrogen-14
Osmium-189
Oxygen-17
Palladium-105
Potassium-39/41
Rhenium-185/187
Rubidium-85/87
Ruthenium-99/101
Scandium-45
Sodium-23
Strontium-87
Sulfur-33
Tantalum-181
Titanium-47/49
Vanadium-51
Xenon-131
Zinc-67
Zirconium-91
[Contact me] - Last updated February 24, 2020
Copyright © 2002-2025 pascal-man.com. All rights reserved.