DUMBOdqSPC5sqbsw: 2D big F1 spectral width SPC5 2Q/1Q correlation with DUMBO decoupling pulse program (TopSpin2.1)

Home and Applets > Pulse Program > Topspin 2.1, Avance III > 2Q/1Q and DUMBO > 2D Big F1 Spectral Width DUMBOdqSPC5sqbsw Decoupling
Double quantum / single quantum pulse sequence with DUMBO

Since non-phase cycling is applied to the SPC5 excitation pulse, four-phase cycling is applied to the detection pulse P1 for selecting the 0Q -> -1Q coherence order jump, and four-phase cycling is applied to the SPC5 reconversion pulse for filtering DQ coherences.

*** Outline ***

Code for Avance III spectrometers with topSpin2.1 operating system

;DUMBOdqSPC5sqbsw
;2D DQ-SQ proton-proton shift correlation
;with SPC5 DQ excitation/reconversion
;with homonuclear DUMBO decoupling DQ evolution without prepulses during t1
;and windowed DUMBO acquisition
;S. P. Brown, A. Lesage, B. Elena and L. Emsley, J. Am. Chem. Soc. 126, 13230-13231 (2004).
;modified after Leskes, Madhu and Vega, Chem. Phys. Lett. to remove center artefact
;using STATES-TPPI
;This pulse program was written according to the corresponding DUMBO-sequence from
;the ENS-Lyon Pulse Program Library

;p9 2.4-4.5 usec, depending on probe deadtime, usually:
;for 200 and 300 MHz, CRAMPS probe required or use 4.5 usec,
;acqu or p9 must be as short as possible, avoiding dipolar coupling effects between DUMBO sequences,
;l11 or d9 must be as large as possible to improve S/N ratio, but keeping acqu positive and small,

;p1 : 90 degree 1H detection pulse
;p2 : presaturation 90 degree pulse
;p9 : acquisition window, 1.7-4.5 usec, depending on probe deadtime
;p10: dumbo-1   pulse for t2
;p20: dumber-22 pulse for t1
;p25: = inf1, for t1 increment

;d1 : recycle delay
;d5 : z filter delay, 0.1 μs or multiple of 1/cnst31, otherwise no signal
;d10: parameter for t1 value
;d20: delay between saturation pulses

;l0 : 0 as initial t1
;l1 : number SPC5 basic cycle elements, for protons 2-4 in real solids
;l3 : t1-increment multiplier, usually 2-4, to reduce required number of rows
;l11: number of oversampled data points to be averaged into one dwell point
;l20: # of pulses in saturation pulse train, 0 if undesired

;pl1 : 1H presaturation power
;pl7 : 1H power for SPC5, B1=5*cnst31 in Hz
;pl12: 1H power for pulses P1
;pl13: dumbo power
;sp1 : 1H power for windowed dumbo-1 (t2)
;sp2 : 1H power for dumber-22 (t1) (usually somewhat less power than sp1 since 
;      there is no window), set to pl13 as in setup experiments

;cnst1 : phase for SPC5 reconversion pulse due to t1 evolution period
;cnst31: spinning frequency (usually not more than 15 kHz possible)
;FnMode: undefined
;MC2   : STATES-TPPI
;NS    : =16*n
;WDW   : F1 QSINE 3, F2 QSINE 2 or EM
;zgoptns :-Dpresat or blank

;$COMMENT=homonuclear decoupling with w-DUMBO
;$CLASS=Solids
;$DIM=2D
;$TYPE=homonuclear decoupling
;$SUBTYPE=explicit acquisition
;$OWNER=hf

;cnst11 : to adjust t=0 for acquisition, if digmod = baseopt
"acqt0=1u*cnst11"


dwellmode auto

#include <Avancesolids.incl>
#include <Delayssolids.incl>

;  "d3=p9"                      ;p9 sets the window to make sure it is in microseconds
  "d9=0.1u*(l11)"              ;set the sampling window, defined in Avancesolids.incl
  "blktr2 = 0.6u"              ;this opens the transmitter gate 0.6 usec before the
                               ;pulse, so the transmitter noise is not sampled
  "l0=0"                       ;reset F1 dwell counter
  "inf1=(l3*(2*d3+p20))*2"     ;t1 increment
  "sp1=pl13"
  "sp2=pl13"

define delay dead
  "dead=1.2u"
define delay acqu              ;small window, defined by d3, 2.5-4.5 usec depending
  "acqu=2*p9-1.2u-d9-.1u"      ;on probe deadtime
                               ;acqu or p9 must be as short as possible, avoiding dipolar coupling effects
                               ;l11 or d9 must be as large as possible but keeping acqu positive
define delay cycle
  "cycle=4*p9+2*p10+.2u"
define loopcounter count
  "count=aq/cycle"             ;make sure td datapoints are sampled
define delay rest              ;make sure sampling proceeds throughout the sequence
  "rest=aq-(count*cycle)"

define loopcounter count1      ;for STATES-TPPI procedure
  "count1=td1/2"               ;and STATES cos/sin procedure

define pulse pul360
  "pul360=(1s/cnst31)/5"       ;360° pulse
define pulse pul90
  "pul90=(0.25s/cnst31)/5"     ; 90° pulse
define pulse pul270
  "pul270=(0.75s/cnst31)/5"    ;270° pulse

  "d31=1.0s/cnst31"
  "p25=inf1"

1 ze                           ;acquire into a cleared memory
  "d10=0.1u"                   ;make sure a short d10 is used initially

2 d31

#ifdef presat                  ;set with -Dpresat
pres, d20                      ;delay between saturation pulses
  (p2 pl1 ph4):f1              ;saturation loop if required
  lo to pres times l20
#endif /* presat */

  d1                           ;recycle delay
  "cnst1=180*cnst31*d10"       ;phase correction for SPC5 reconversion pulse,
                               ;due to t1 DQ evolution period,
                               ;defined by the phase-time relationships

  10u reset1:f1                ;synchronise pulse and detection RF
  1m rpp10                     ;reset phase list pointer
  1m rpp20                     ;reset phase list pointer
  1m rpp11
  1m rpp12
  1m rpp13
  1m rpp14
  10u pl7:f1
                               ;SPC5 DQ excitation:
3 pul90:f1  ph11 ipp13 ipp14   ;increment reconversion phase ph13 and ph14 pointers
  pul360:f1 ph12 ipp12         ;increment phase ph12 pointer
  pul270:f1 ph11 ipp11         ;increment phase ph11 pointer
  lo to 3 times l1

5 d3                           ;DQ evolution:
  d3
  (p20:sp2 ph20^):f1           ;dumber22
  d3
  d3
  (p20:sp2 ph20^):f1           ;dumber22
  lo to 5 times l0

6 pul90:f1  ph13+cnst1 pl7:f1  ;SPC5 DQ reconversion:
                               ;increase ph13 by cnst1 due to evolution period
  pul360:f1 ph14+cnst1 ipp14   ;increase ph14 by cnst1 due to evolution period
                               ;increment phase ph14 pointer
  pul270:f1 ph13+cnst1 ipp13   ;increase ph13 by cnst1 due to evolution period
                               ;increment phase ph13 pointer
  lo to 6 times l1

  d5 pl12:f1                   ;z filter delay
  STARTADC                     ;prepare adc for sampling, set reference frequency, 
                               ;defined in Avancesolids.incl
  RESETPHASE                   ;reset reference phase

  (p1 ph1):f1                  ;90° detection pulse at pl12
  .1u DWL_CLK_ON
7 dead
  acqu
  d9 RG_ON
  .1u RG_OFF                   ;take l11 complex data points
  (p10:sp1  ph10^):f1          ;w-dumbo, use 24 usec at 600 MHz or higher
  dead
  acqu
  d9 RG_ON
  .1u RG_OFF
  (p10:sp1  ph10^):f1
  lo to 7 times count          ;make sure td points are sampled

  rest
  1u  DWL_CLK_OFF
  1m                           ;DQ filtering (four phase cycling):
  1m ip13*16384                ;increments all phases of ph13 by 90°
  1m ip14*16384                ;increments all phases of ph14 by 90°
  rcyc=2                       ;next scan
                               ;The rcyc statement is used for acquisition loops 
                               ;based on adc rather than go=label. Do not 
                               ;specify phase programs behind rcyc
  100m wr #0 if #0 zd          ;save data

  1m ip11*8192                 ;increments all phases of ph11 by 45°, 
                               ;90° phase for DQ coherence
  1m ip12*8192                 ;increments all phases of ph12 by 45°, 
                               ;90° phase for DQ coherence
  lo to 2 times 2              ;t1 quadrature detection

8 1m iu0                       ;increment counter l0 by 1
  lo to 8 times l3             ;for multiple t1 increment

  "d10=d10+p25"                ;p25=inf1=increment for F1 (to make it usec!)
                               ;d10 is the t1 evolution period

  ;1m rp11                     ;reset all phases of ph11, ph12, ph13, and ph14 
  ;1m rp12                     ;to their original values, i.e. to the values they 
  ;1m rp13                     ;had before the first ip11, ip12, ip13, and ip14
  ;1m rp14                     ;in case of STATES remove semicolon at beginning of the 4 lines

  lo to 2 times count1         ;count1 = td1/2
  exit                         ;finished

ph1=  1 1 1 1 2 2 2 2 3 3 3 3 0 0 0 0
ph10= 0 2                      ;windowed dumbo phase during t2

ph11= (65536)     0 13107 26214 39322 52429 32768 45875 58982  6554 19661
ph12= (65536) 32768 45875 58982  6554 19661     0 13107 26214 39322 52429

ph13= (65536) 16384 29491 42598 55706  3277 49152 62259  9830 22937 36044
ph14= (65536) 49152 62259  9830 22937 36044 16384 29491 42598 55706  3277

                               ;an overall constant phase shift of π/2 is applied 
                               ;to the reconversion pulse phases ph13 and ph14 for time reversal

ph4= 0                         ;for presaturation pulse
ph20=0 2                       ;dumber22 phase during t1
ph30=0                         ;needed for acquisition, involved in RESETPHASE
ph31=0 2 0 2 1 3 1 3 2 0 2 0 3 1 3 1                   ;involved in STARTADC
                               ;ph31 = ph1 + 2*ph13 + 1
  

Example: 1H in L-Tyrosine.HCl with AV500

1 - One pulse

1H L-Tyrosine.HCl MAS spectrum versus the one pulse excitation duration

1H MAS spectra of L-Tyrosine.HCl versus the excitation pulse p1 duration (pl1 = 9.8 dB), acquired with a 4-mm diameter, 12-µL HRMAS rotor spinning at 15 kHz, D1 = 5 sec recycle delay, and recorded with Bruker Avance III, 500 MHz WB US magnet.

Pulseprogram parameters for zg:

General  
PULPROG zg
TD 2048
NS 4
DS 0
SWH [Hz] 100000.00
AQ [s] 0.0102900
RG 4
DW [µs] 5.000
DE [µs] 6.50
D1 [s] 5.00000000
TD0 1
Channel f1  
NUC1 1H
P1 [µs] 5.00
PL1 [dB] 9.80
PL1W [W] 33.58852005
SFO1 [MHz] 500.1666284

2 - Dumbod2

1H L-Tyrosine.HCl windowed dumbo spectrum versus DUMBO power

1H L-Tyrosine.HCl windowed dumbo spectrum versus DUMBO power

1H windowed DUMBO spectra of L-Tyrosine.HCl versus the DUMBO power pl13, DUMBO pulse duration dumbop = p10 = 24 µsec and rotor spinning at 14 kHz.

Pulseprogram parameters for dumbod2:

General  
PULPROG dumbod2
TD 700
NS 4
DS 0
SWH [Hz] 20000.00
AQ [s] 0.0175750
RG 4
DW [µs] 25.000
DE [µs] 1.10
CNST11 0.0000000
D1 [s] 5.00000000
D3 [s] 0.00000300
d9 [s] 0.00000320
L11 32
P9 [µs] 3.00
P10 [µs] 24.00
PL13 [dB] 4.30
acqu [s] 0.00000150
count 292
cycle [s] 0.00006010
de [µs] 0.00
dead [s] 0.00000120
rest [s] 0.00000080
Channel f1  
dumbop [µs] 24.00
NUC1 1H
P1 [µs] 5.00
PL1 [dB] 9.80
PL1W [W] 33.58852005
PL12 [dB] 9.80
PL12W [W] 33.58852005
SFO1 [MHz] 500.1666284
SP1 [dB] 4.30
SPNAM1 dumbo_1+0
SPOAL1 0.500
SPOFFS1 [Hz] 0.00

1H L-Tyrosine.HCl windowed dumbo FID

1H windowed DUMBO FID of L-Tyrosine.HCl.

1H L-Tyrosine.HCl windowed dumbo spectrum

1H windowed DUMBO spectrum (red) and one pulse MAS spectrum (blue) of L-Tyrosine.HCl.

1H L-Tyrosine.HCl windowed dumbo spectrum for L11 = 16 and 32

1H windowed DUMBO spectrum of L-Tyrosine.HCl, acquired with the number of oversampling points L11 = 16 (red) and L11 = 32 (blue).


3 - 1D data

1H L-Tyrosine.HCl spectra versus the DQ power, acquired with DUMBO-SPC5 DQ/SQ sequence

1H DQ/SQ spectrum of L-Tyrosine.HCl versus the SPC5 DQ power pl7, L1 = 4.

1H L-Tyrosine.HCl spectra versus the number of SPC5 basic cycles, acquired with DUMBO-SPC5 DQ/SQ sequence

1H DQ/SQ spectrum of L-Tyrosine.HCl versus the number L1 of SPC5 basic cycles, PL7 = 10 dB.

Pulseprogram parameters for DUMBOdqSPC5sqbsw1d.ppm:

General  
PULPROG DUMBOdqSPC5sqbsw.ppm
TD 700
NS 16
DS 0
SWH [Hz] 20000.00
AQ [s] 0.0175500
RG 4
DW [µs] 25.000
DE [µs] 1.10
CNST11 0.0000000
CNST31 14000.0000000
d0 [s] 0.00000000
D1 [s] 5.00000000
d3 [s] 0.00000300
D5 [s] 0.00000100
d9 [s] 0.00000320
d31 [s] 0.00007143
L0 0
L1 4
L11 32
P9 [µs] 3.00
PL13 [dB] 4.30
ZGOPTNS  
acqu [s] 0.00000150
count 291
cycle [s] 0.00006020
de [µs] 0.00
dead [s] 0.00000120
rest [s] 0.00003180
Channel f1  
CNST1 0.000000
NUC1 1H
P1 [µs] 5.00
P10 [µs] 24.00
P20 [µs] 24.00
PL1 [dB] 9.80
PL1W [W] 33.58852005
PL7 [dB] 10.00
PL7W [W] 32.07678986
PL12 [dB] 9.80
PL12W [W] 33.58852005
pul270 [µs] 10.71
pul360 [µs] 14.29
pul90 [µs] 3.57
SFO1 [MHz] 500.1666284
SP1 [dB] 4.30
SP2 [dB] 4.30
SPNAM1 dumbo_1+0
SPNAM2 dumbo_1+0
SPOAL1 0.500
SPOAL2 0.500
SPOFFS1 [Hz] 0.00
SPOFFS2 [Hz] 0.00

The duration of the basic SPC5 cycle is pul270 + pul360 + pul90 = 28.57 µsec. Two basic cycles last 57.14 µsec.

In the evolution period, the duration due to the two DUMBO pulses and the four d3 delays is 2*p20 + 4*d3 = 60 µsec. Since there is no signal sampling during this period, we can decrease the duration of d3 from 3 down to 2.285 µsec so that inf1 = p25 = 57.14 µsec. The 2D spectrum will be on-resonance in the F1 dimension if it is on-resonance in the F2 dimension.


4 - 2D data

1H L-Tyrosine.HCl ser file, acquired with DUMBO-SPC5 DQ/SQ sequence

1H DQ/SQ 2D ser file of L-Tyrosine.HCl, showing the number of FID for the F1 dimension.

1H L-Tyrosine.HCl spectrum, acquired with DUMBO-SPC5 DQ/SQ sequence

1H DQ/SQ 2D spectrum of L-Tyrosine.HCl.

Zoomed 1H L-Tyrosine.HCl spectrum, acquired with DUMBO-SPC5 DQ/SQ sequence

Zoomed 1H DQ/SQ 2D spectrum of L-Tyrosine.HCl, red-coloured numbers are distances separating two protons in Å unit from Luis Mafra et coworkers, J. Magn. Reson. 199, 111-114 (2009).

Pulseprogram parameters for DUMBOdqSPC5sqbsw.ppm:

General  
PULPROG DUMBOdqSPC5sqbsw.ppm
TD 700
NS 16
DS 0
SWH [Hz] 20000.00
AQ [s] 0.0175500
RG 4
DW [µs] 25.000
DE [µs] 1.10
CNST11 0.0000000
CNST31 14000.0000000
D1 [s] 5.00000000
d3 [s] 0.00000228
D5 [s] 0.00000100
d9 [s] 0.00000320
D10 [s] 0.00000010
d31 [s] 0.00007143
inf1 [µs] 57.14
L0 0
L1 4
L3 1
L11 32
P9 [µs] 3.00
p25 [µs] 57.14
PL13 [dB] 4.30
ZGOPTNS  
acqu [s] 0.00000150
count 291
count1 80
cycle [s] 0.00006020
de [µs] 0.00
dead [s] 0.00000120
rest [s] 0.00003180
Channel f1  
CNST1 1.0000000
NUC1 1H
P1 [µs] 5.00
P10 [µs] 24.00
P20 [µs] 24.00
PL1 [dB] 9.80
PL1W [W] 33.58852005
PL7 [dB] 10.00
PL7W [W] 32.07678986
PL12 [dB] 9.80
PL12W [W] 33.58852005
pul270 [µs] 10.71
pul360 [µs] 14.29
pul90 [µs] 3.57
SFO1 [MHz] 500.1666284
SP1 [dB] 4.30
SP2 [dB] 4.30
SPNAM1 dumbo_1+0
SPNAM2 dumbo_1+0
SPOAL1 0.500
SPOAL2 0.500
SPOFFS1 [Hz] 0.00
SPOFFS2 [Hz] 0.00

Acquisition parameters:

  F2 F1
Experiment    
PULPROG DUMBOdqSPC5sqbsw.ppm  
AQ_mod DQD  
FnMODE   undefined
TD 700 160
NS 16  
DS 0  
TD0 1  
Width    
SW [ppm] 39.9866 34.9901
SWH [Hz] 20000.00 17500.875
IN_F [µs]   57.14
AQ [s] 0.0175500 0.0045712
Nucleus1    
NUC1 1H 1H
O1 [Hz] -3371.57 -3371.57
O1P [ppm] -6.741 -6.741
SFO1 [MHz] 500.1666284 500.1666284
BF1 [MHz] 500.1700000 500.1700000

References

  1. Renée Siegel, Luís Mafra, and João Rocha
    Improving the 1H indirect dimension resolution of 2D CRAMPS NMR spectra: A simulation and experimental investigation,
    Solid State Nucl. Magn. Reson. 39, 81-87 (2011).
    Abstract
  2. Vadim Zorin and David Rice
    Direct-drive waveform programming for solid-state NMR with the DD2 MR system,
    PDF file
  3. Andreas Brinkmann, Suresh Kumar Vasa, Hans Janssen, and Arno P. M. Kentgens
    Proton micro-magic-angle-spinning NMR spectroscopy of nanoliter samples,
    Chem. Phys. Lett. 485, 275-280 (2010).
    Abstract
  4. Luis Mafra, Renée Siegel, Christian Fernandez, Denis Schneider, Fabien Aussenac, and João Rocha
    High-resolution 1H homonuclear dipolar recoupling NMR spectra of biological solids at MAS rates up to 67 kHz,
    J. Magn. Reson. 199, 111-114 (2009).
    Abstract
    DQ-DUMBO-RN pulse sequence

    RN-DQ/SQ-DUMBO excitation pulse sequence.

  5. Luís Mafra, José R. B. Gomes, Julien Trébosc, João Rocha, and Jean-Paul Amoureux
    1H-1H double-quantum CRAMPS NMR at very-fast MAS (νR = 35 kHz): A resolution enhancement method to probe 1H-1H proximities in solids,
    J. Magn. Reson. 196, 88-91 (2009).
    Abstract
    DQ-SAM-BABA pulse sequence

    BABA-DQ/SQ-SAM excitation pulse sequence.

  6. Elodie Salager, Robin S. Stein, Chris J. Pickard, Bénédicte Elena, and Lyndon Emsley
    Powder NMR crystallography of thymol,
    Phys. Chem. Chem. Phys. 11, 2610-2621 (2009).
    Abstract
  7. Michal Leskes, P. K. Madhu, and Shimon Vega
    Proton line narrowing in solid-state nuclear magnetic resonance: New insights from windowed phase-modulated Lee-Goldburg sequence,
    J. Chem. Phys. 125, 124506/1-124506/18 (2006).
    Abstract
  8. Steven P. Brown, Anne Lesage, Bénédicte Elena, and Lyndon Emsley
    Probing proton-proton proximities in the solid state: High-resolution two-dimensional 1H-1H double-quantum CRAMPS NMR spectroscopy,
    J. Am. Chem. Soc. 126, 13230-13231 (2004).
    Abstract
    DQ-DUMBO-PC7 pulse sequence

    DQ-DUMBO excitation pulse sequence.

  9. P. K. Madhu, Elena Vinogradov, and Shimon Vega
    Multiple-pulse and magic-angle spinning aided double-quantum proton solid-state NMR spectroscopy,
    Chem. Phys Lett. 394, 423-428 (2004).
    Abstract
  10. G. P. Drobny, J. R. Long, T. Karlsson, W. Shaw, J. Popham, N. Oyler, P. Bower, J. Stringer, D. Gregory, M. Mehta, and P. S. Stayton
    Structural studies of biomaterials using double-quantum solid-state NMR spectroscopy,
    Annu. Rev. Phys. Chem. 54, 531-571 (2003).
    Abstract
  11. T. Karlsson, A. Brinkmann, P. J. E. Verdegem, J. Lugtenburg, and M. H. Levitt
    Multiple-quantum relaxation in the magic-angle-spinning NMR of 13C spin pairs,
    Solid State Nucl. Magn. Reson. 14, 43-58 (1999).
    Abstract
  12. M. Hohwy, C. M. Rienstra, C. P. Jaroniec, and R. G. Griffin
    Fivefold symmetric homonuclear dipolar recoupling in rotating solids: Application to double quantum spectroscopy,
    J. Chem. Phys. 110, 7983-7992 (1999).
    Abstract
  13. M. Hohwy, H. J. Jakobsen, M. Edén, M. H. Levitt, and N. C. Nielsen
    Broadband dipolar recoupling in the nuclear magnetic resonance of rotating solids: A compensated C7 pulse sequence,
    J. Chem. Phys. 108, 2686-2694 (1998).
    Abstract
  14. W. A. Dollase, M. Feike, H. Förster, T. Schaller, I. Schnell, A. Sebald, and S. Steuernagel
    A 2D 31P MAS NMR study of polycrystalline Cd3(PO4)2,
    J. Am. Chem. Soc. 119, 3807-3810 (1997).
    Abstract
  15. Y. K. Lee, N. D. Kurur, M. Helmle, O. G. Johannessen, N. C. Nielsen, and M. H. Levitt
    Efficient dipolar recoupling in the NMR of rotating solids. A sevenfold symmetric radiofrequency pulse sequence,
    Chem. Phys. Lett. 242, 304-309 (1995).
    Abstract
  16. A. Wokaun and R. R. Ernst
    Selective detection of multiple quantum transitions in NMR by two-dimensional spectroscopy ,
    Chem. Phys. Lett. 52, 407-412 (1977).
    Abstract

Solid-state NMR bibliography for:

Aluminum-27
Antimony-121/123
Arsenic-75
Barium-135/137
Beryllium-9
Bismuth-209
Boron-11
Bromine-79/81
Calcium-43
Cesium-133
Chlorine-35/37
Chromium-53
Cobalt-59
Copper-63/65
Deuterium-2
Gallium-69/71
Germanium-73
Gold-197
Hafnium-177/179
Indium-113/115
Iodine-127
Iridium-191/193
Krypton-83
Lanthanum-139
Lithium-7
Magnesium-25
Manganese-55
Mercury-201
Molybdenum-95/97
Neon-21
Nickel-61
Niobium-93
Nitrogen-14
Osmium-189
Oxygen-17
Palladium-105
Potassium-39/41
Rhenium-185/187
Rubidium-85/87
Ruthenium-99/101
Scandium-45
Sodium-23
Strontium-87
Sulfur-33
Tantalum-181
Titanium-47/49
Vanadium-51
Xenon-131
Zinc-67
Zirconium-91
[Contact me] - Last updated February 24, 2020
Copyright © 2002-2024 pascal-man.com. All rights reserved.