DUMBOdqBABA1sq: 2D BABA BABA 2Q/1Q correlation with DUMBO decoupling pulse program for TopSpin2.1

Home and Applets > Pulse Program > Topspin 2.1, Avance III > 2Q/1Q and DUMBO > 2D Homonuclear Dipole-Dipole DUMBOdqBABA1sq Decoupling
BABA double quantum / single quantum pulse sequence with DUMBO decoupling

Since non-phase cycling is applied to the BABA reconversion pulse, four-phase cycling is applied to the BABA excitation pulse for filtering DQ coherences and four-phase cycling is applied to the detection pulse P12 for selecting the 0Q -> -1Q coherence order jump.

*** Outline ***

Code for Avance III spectrometers with topSpin2.1 operating system

;DUMBOdqBABA1sq (Avance II+ version)

;2D DQ-SQ proton-proton correlation, with BABA1 DQ excitation/reconversion
;with homonuclear DUMBO decoupling DQ evolution without prepulses during t1
;and windowed DUMBO acquisition
;S. P. Brown, A. Lesage, B. Elena and L. Emsley, J. Am. Chem. Soc. 126, 13230-13231 (2004).
;M. Feike, D.E. Demco, R. Graf, J. Gottwald, S. Hafner, and H.W. Spiess JMR A 122, 214-221 (1996)
;modified after Leskes, Madhu and Vega, Chem. Phys. Lett. to remove center artefact

;p9 2.4-4.5 usec, depending on probe deadtime, usually:
;for 200 and 300 MHz, CRAMPS probe required or use 4.5 usec,
;acqu or p9 must be as short as possible, avoiding dipolar coupling effects between DUMBO sequences,
;l11 or d9 must be as large as possible to improve S/N ratio, but keeping acqu positive and small,

;parameters:
;p1  : 90 degree pulse in BABA and presaturation sequences
;p12 : 90 degree 1H detection pulse
;p9  : acquisition window, 1.7-4.5 usec, depending on probe deadtime
;p10 : windowed dumbo pulse for t2
;p20 : dumber-22 pulse for t1

;d1 : recycle delay
;d5 : z filter delay
;d20: delay between saturation pulses

;l0 : 0 as initial t1
;l1 : number BABA1 cycles, for protons 2-4 in real solids
;l3 : t1-increment multiplier, usually 2-4, to reduce required number of rows
;l11: number of oversampled data points to be averaged into one dwell point
;l20: # of pulses in saturation pulse train, 0 if undesired

;pl1 : 1H BABA1 and presaturation power
;pl12: 1H power for pulses P1
;pl13: dumbo power
;sp1 : 1H power for windowed dumbo-1 (t2)
;sp2 : 1H power for dumber-22 (t1) (usually somewhat less power than sp1 since 
;      there is no window), set to pl13 as in setup experiments

;cnst31 : rotation rate in Hz
;ns     : n*16
;FnMode : undefined
;MC2    : STATES-TPPI
;zgoptns:-Dpresat or blank

;$COMMENT=SQ-DQ experiment with BABA for 1 rotor period
;$DIM=2D
;$TYPE=direct excitation
;$SUBTYPE=homonuclear correlation
;$OWNER=Bruker
;$CLASS=Solids

;cnst11 : to adjust t=0 for acquisition, if digmod = baseopt
"acqt0=1u*cnst11"

dwellmode auto

#include <Avancesolids.incl>
#include <Delayssolids.incl>

  "d3=p9"                      ;p9 sets the window to make sure it is in microseconds
  "d9=0.1u*(l11)"              ;set the sampling window, defined in Avancesolids.incl
  "blktr2 = 0.6u"              ;this opens the transmitter gate 0.6 usec before the
                               ;pulse, so the transmitter noise is not sampled
  "l0=0"                       ;reset F1 dwell counter
  "inf1=(l3*(2*d3+p20))*2"     ;t1 increment
  "sp1=pl13"
  "sp2=pl13"

define delay dead
  "dead=1.2u"
define delay acqu              ;small window, defined by d3, 2.5-4.5 usec depending
  "acqu=2*p9-1.2u-d9-.1u"      ;on probe deadtime
                               ;acqu or p9 must be as short as possible, avoiding dipolar coupling effects
                               ;l11 or d9 must be as large as possible but keeping acqu positive
define delay cycle
  "cycle=4*p9+2*p10+.2u"
define loopcounter count
  "count=aq/cycle"             ;make sure td datapoints are sampled
define delay rest              ;make sure sampling proceeds throughout the sequence
  "rest=aq-(count*cycle)"

define loopcounter count1      ;for STATES-TPPI procedure
  "count1=td1/2"               ;and STATES cos/sin procedure

define delay tau
  "tau=0.5s/cnst31-p1*2"

  "d31=1s/cnst31"

1 ze                           ;acquire into a cleared memory
2 d31

#ifdef presat                  ;set with -Dpresat
pres, d20                      ;delay between saturation pulses
  (p1 pl1 ph4):f1              ;saturation loop if required
  lo to pres times l20
#endif /* presat */

  d1                           ;recycle delay
  10u reset1:f1                ;synchronise pulse and detection RF
  1m rpp15                     ;reset phase list pointer in w-dumbo
  1m rpp25                     ;reset phase list pointer in dumber-22

3 (p1 pl1 ph1):f1              ;BABA1 DQ excitation:
  tau
  (p1 ph10):f1
  (p1 ph11):f1
  tau
  (p1 ph12):f1
  lo to 3 times l1

5 d3                           ;DQ evolution:
  d3
  (p20:sp2 ph25^):f1           ;dumber-22
  d3
  d3
  (p20:sp2 ph25^):f1           ;dumber-22
  lo to 5 times l0

6 (p1 pl1 ph2):f1              ;BABA1 DQ reconversion:
  tau
  (p1 ph20):f1
  (p1 ph21):f1
  tau
  (p1 ph22):f1
  lo to 6 times l1

  d5 pl12:f1                   ;z filter delay
  STARTADC                     ;prepare adc for sampling, set reference frequency, 
                               ;defined in Avancesolids.incl
  RESETPHASE                   ;reset reference phase

  (p12 ph3):f1                 ;90° detection pulse at pl12
  .1u DWL_CLK_ON
7 dead
  acqu
  d9 RG_ON
  .1u RG_OFF                   ;take l11 complex data points
  (p10:sp1 ph15^):f1           ;w-dumbo, use 24 usec at 600 MHz or higher
  dead
  acqu
  d9 RG_ON
  .1u RG_OFF
  (p10:sp1 ph15^):f1
  lo to 7 times count          ;make sure td points are sampled

  rest
  1u  DWL_CLK_OFF
  rcyc=2                       ;next scan
  100m wr #0 if #0 zd          ;save data

  1m ip1                       ;increments all phases of ph1, ph10, ph11, 
  1m ip10                      ;and ph12 by 45°, but 90° phase for DQ coherence
  1m ip11
  1m ip12
  lo to 2 times 2              ;t1 quadrature detection

8 1m iu0                       ;increment counter l0 by 1
  lo to 8 times l3             ;for multiple t1 increment

  ;1m rp1                      ;reset all phases of ph1, ph10, ph11, and ph12 
  ;1m rp10                     ;to their original values, i.e. to the values they 
  ;1m rp11                     ;had before the first ip1, ip10, ip11, and ip12
  ;1m rp12                     ;in case of STATES remove semicolon at beginning of the 4 lines

  lo to 2 times count1         ;count1 = td1/2
  exit                         ;finished

ph4=0                          ;for presaturation pulse
ph1= (8) 0 2 4 6               ; x  y -x -y
ph10=(8) 4 6 0 2               ;-x -y  x  y
ph11=(8) 2 4 6 0               ; y -x -y  x
ph12=(8) 6 0 2 4               ;-y  x  y -x
ph2= 0                         ; x
ph20=2                         ;-x
ph21=1                         ; y
ph22=3                         ;-y
ph25=0 2                       ;dumber-22 phase during t1
ph15=0 2                       ;windowed dumbo phase during t2
ph3= 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3   ;detection pulse
ph30=0                         ;needed for acquisition, involved in RESETPHASE
ph31=0 2 0 2 1 3 1 3 2 0 2 0 3 1 3 1
  

References

  1. Pinelopi Moutzouri, Manuel Cordova, Bruno Simões de Almeida, Daria Torodii, and Lyndon Emsley
    Two-dimensional pure isotropic proton solid state NMR,
    Angew. Chem. Int. Ed. 62, e202301963 (2023).
    Open access
  2. Renée Siegel, Luís Mafra, and João Rocha
    Improving the 1H indirect dimension resolution of 2D CRAMPS NMR spectra: A simulation and experimental investigation,
    Solid State Nucl. Magn. Reson. 39, 81-87 (2011).
    Abstract
  3. Vadim Zorin and David Rice
    Direct-drive waveform programming for solid-state NMR with the DD2 MR system,
    PDF file
  4. Andreas Brinkmann, Suresh Kumar Vasa, Hans Janssen, and Arno P. M. Kentgens
    Proton micro-magic-angle-spinning NMR spectroscopy of nanoliter samples,
    Chem. Phys. Lett. 485, 275-280 (2010).
    Abstract
  5. Luis Mafra, Renée Siegel, Christian Fernandez, Denis Schneider, Fabien Aussenac, and João Rocha
    High-resolution 1H homonuclear dipolar recoupling NMR spectra of biological solids at MAS rates up to 67 kHz,
    J. Magn. Reson. 199, 111-114 (2009).
    Abstract
    DQ-DUMBO-RN pulse sequence

    RN-DQ/SQ-DUMBO excitation pulse sequence.

  6. Luís Mafra, José R. B. Gomes, Julien Trébosc, João Rocha, and Jean-Paul Amoureux
    1H-1H double-quantum CRAMPS NMR at very-fast MAS (νR = 35 kHz): A resolution enhancement method to probe 1H-1H proximities in solids,
    J. Magn. Reson. 196, 88-91 (2009).
    Abstract
    DQ-SAM-BABA pulse sequence

    BABA-DQ/SQ-SAM excitation pulse sequence.

  7. Elodie Salager, Robin S. Stein, Chris J. Pickard, Bénédicte Elena, and Lyndon Emsley
    Powder NMR crystallography of thymol,
    Phys. Chem. Chem. Phys. 11, 2610-2621 (2009).
    Abstract
  8. Michal Leskes, P. K. Madhu, and Shimon Vega
    Proton line narrowing in solid-state nuclear magnetic resonance: New insights from windowed phase-modulated Lee-Goldburg sequence,
    J. Chem. Phys. 125, 124506/1-124506/18 (2006).
    Abstract
  9. Steven P. Brown, Anne Lesage, Bénédicte Elena, and Lyndon Emsley
    Probing proton-proton proximities in the solid state: High-resolution two-dimensional 1H-1H double-quantum CRAMPS NMR spectroscopy,
    J. Am. Chem. Soc. 126, 13230-13231 (2004).
    Abstract
    DQ-DUMBO-PC7 pulse sequence

    DQ-DUMBO excitation pulse sequence.

  10. P. K. Madhu, Elena Vinogradov, and Shimon Vega
    Multiple-pulse and magic-angle spinning aided double-quantum proton solid-state NMR spectroscopy,
    Chem. Phys Lett. 394, 423-428 (2004).
    Abstract
  11. G. P. Drobny, J. R. Long, T. Karlsson, W. Shaw, J. Popham, N. Oyler, P. Bower, J. Stringer, D. Gregory, M. Mehta, and P. S. Stayton
    Structural studies of biomaterials using double-quantum solid-state NMR spectroscopy,
    Annu. Rev. Phys. Chem. 54, 531-571 (2003).
    Abstract
  12. T. Karlsson, A. Brinkmann, P. J. E. Verdegem, J. Lugtenburg, and M. H. Levitt
    Multiple-quantum relaxation in the magic-angle-spinning NMR of 13C spin pairs,
    Solid State Nucl. Magn. Reson. 14, 43-58 (1999).
    Abstract
  13. M. Hohwy, C. M. Rienstra, C. P. Jaroniec, and R. G. Griffin
    Fivefold symmetric homonuclear dipolar recoupling in rotating solids: Application to double quantum spectroscopy,
    J. Chem. Phys. 110, 7983-7992 (1999).
    Abstract
  14. M. Hohwy, H. J. Jakobsen, M. Edén, M. H. Levitt, and N. C. Nielsen
    Broadband dipolar recoupling in the nuclear magnetic resonance of rotating solids: A compensated C7 pulse sequence,
    J. Chem. Phys. 108, 2686-2694 (1998).
    Abstract
  15. W. A. Dollase, M. Feike, H. Förster, T. Schaller, I. Schnell, A. Sebald, and S. Steuernagel
    A 2D 31P MAS NMR study of polycrystalline Cd3(PO4)2,
    J. Am. Chem. Soc. 119, 3807-3810 (1997).
    Abstract
  16. Y. K. Lee, N. D. Kurur, M. Helmle, O. G. Johannessen, N. C. Nielsen, and M. H. Levitt
    Efficient dipolar recoupling in the NMR of rotating solids. A sevenfold symmetric radiofrequency pulse sequence,
    Chem. Phys. Lett. 242, 304-309 (1995).
    Abstract
  17. A. Wokaun and R. R. Ernst
    Selective detection of multiple quantum transitions in NMR by two-dimensional spectroscopy ,
    Chem. Phys. Lett. 52, 407-412 (1977).
    Abstract

Solid-state NMR bibliography for:

Aluminum-27
Antimony-121/123
Arsenic-75
Barium-135/137
Beryllium-9
Bismuth-209
Boron-11
Bromine-79/81
Calcium-43
Cesium-133
Chlorine-35/37
Chromium-53
Cobalt-59
Copper-63/65
Deuterium-2
Gallium-69/71
Germanium-73
Gold-197
Hafnium-177/179
Indium-113/115
Iodine-127
Iridium-191/193
Krypton-83
Lanthanum-139
Lithium-7
Magnesium-25
Manganese-55
Mercury-201
Molybdenum-95/97
Neon-21
Nickel-61
Niobium-93
Nitrogen-14
Osmium-189
Oxygen-17
Palladium-105
Potassium-39/41
Rhenium-185/187
Rubidium-85/87
Ruthenium-99/101
Scandium-45
Sodium-23
Strontium-87
Sulfur-33
Tantalum-181
Titanium-47/49
Vanadium-51
Xenon-131
Zinc-67
Zirconium-91
[Contact me] - Last updated February 24, 2020
Copyright © 2002-2025 pascal-man.com. All rights reserved.