wpmlgd2: homonuclear dipole-dipole windowed-pmlg decoupling pulse program for TopSpin2.1

Home and Applets > Pulse Program > Topspin 2.1, Avance III > HPdec and CPMAS > Homonuclear Dipole-Dipole Windowed-PMLG Decoupling
windowed pmlg sequence

Code for Avance III spectrometers with topSpin2.1 operating system

;wpmlgd2 (TOPSPIN 2.1)
;windowed PMLG homonuclear decoupling, after Leskes, Madhu, and Vega, Chem. Phys. Lett., in press,
;with 180 degree phase alternation
;digital mode
;using shapes for wpmlg
;HF 26.09.07
;spin 10-15 kHz according to RF field
;set: 
;p9 2.4-4.5 usec, depending on probe deadtime, usually:
;for 200 and 300 MHz, CRAMPS probe required or use 4.5 usec
;use digital mode, swh=10-20 kHz
;before ft, set s sw=sw/0.47

;set:
;d1 : recycle delay

;p1 : proton 90 degree pulse at pl12
;set o1p around 10 ppm or -4 ppm, usually better on left side of spectrum

;pl12 : power level for initial pulses
;pl13 : power level for pmlg, set cnst20 to RF field at pl13, for simplicity, use pl13=pl12
;       sensible proton RF-field: 80 000 Hz for 300-400 MHz proton frequency, 100000 for 500-600 MHz
;       120000 for 600 MHz and higher (due to probe bandwidth differences)
;ns=n*4
;spnam1=m5m or m3m, m5p or m3p 
;p5 is the 294 degree pulse 
;shape consists of 10 (6) slices of length 2*p5/10 (/6), 
;set cnst20 for approximate RF field, adjust power for best result, 
;shape duration recalculated so slice is a multiple of 100 ns
;set l11=number of oversampled datapoints to be sampled, 8-32 depending on
;    available window, check acqu in ased for sensible value.
;n.b.: scaling factor differs from wpmlg!

;$COMMENT=homonuclear decoupling with w-pmlg
;$CLASS=Solids
;$DIM=1D
;$TYPE=homonuclear decoupling
;$SUBTYPE=explicit acquisition

;cnst11 : to adjust t=0 for acquisition, if digmod = baseopt
"acqt0=1u*cnst11"

dwellmode auto

#include <Avancesolids.incl>
#include <Delayssolids.incl>
#include <lgcalc.incl>   /*;set cnst20 to RF field at pl13, wpmlg pulse calculated as multiple of 100 ns */

  "sp1=pl13"
  "d3=p9"                       ;p9 sets the window to make sure it is in micorseconds
  "d9=0.1u*(l11)"               ;set the sampling window in Avancedru.incl
  "blktr2 = 0.7u"               ;this opens the transmitter gate 0.7 usec before the
                                ;pulse, so the transmitter noise is not sampled

define delay dead
  "dead=1.2u"
define delay acqu               ;small window, defined by d3, 2.5-4.5 usec depending
  "acqu=2*p9-1.2u-d9-.1u"       ;on probe deadtime large window-sampling period
                                ;make sure shape slice durations are a multiple of 0.1 usec
define loopcounter smooth
  "smooth=10*p5"
define pulse polish
  "polish=1u*smooth/10"
define pulse wpmlg
  "wpmlg=2*polish"
define delay cycle
  "cycle=4*p9+2*wpmlg+.2u"
define loopcounter count
  "count=aq/cycle"              ;make sure td datapoints are sampled
define delay rest               ;make sure sampling proceeds throughout the sequence
  "rest=aq-(count*cycle)"


1 ze                            ;acquire into a cleared memory
2 d1 pl12:f1                    ;recycle delay, set power level for the first pulse
  10u reset1:f1                 ;synchronise pulse and detection RF
  STARTADC                      ;prepare adc for sampling, set reference frequency, defined in Avancedru.incl
  RESETPHASE                    ;reset reference phase
  1u rpp10                      ;reset phase list pointer
  p1:f1 ph1                     ;first 90 at pl12
  .1u DWL_CLK_ON
4 dead
  acqu
  d9 RG_ON
  .1u RG_OFF                    ;take l11  complex data points	
  (wpmlg:sp1  ph10^):f1         ;select shape
  dead
  acqu
  d9 RG_ON
  .1u RG_OFF
  (wpmlg:sp1  ph10^):f1
  lo to 4 times count           ;make sure td points are sampled
  rest
  1u  DWL_CLK_OFF
  rcyc=2                        ;next scan
5 100m wr #0                    ;save data
6 exit                          ;finished



ph0= 0
ph1= 0 1 2 3
ph10=0 2
ph30=0                          ;needed for acquisition, involved in RESETPHASE
ph31=0 1 2 3                                            ;involved in STARTADC
  
1H glycine windowed pmlg spectrum

1H windowed PMLG5 spectrum of glycine in a 4-mm diameter, 12-µL HRMAS rotor spinning at 10 kHz; P5 = 7 µs.

Pulseprogram parameters for dumbod2:

General  
PULPROG wpmlgd2
TD 700
NS 4
DS 0
SWH [Hz] 20000.00
AQ [s] 0.0175750
RG 4
DW [µs] 25.000
DE [µs] 4.50
CNST11 0.0000000
CNST20 116600.0000000
CNST21 1.0000000
CNST22 1.0000000
CNST23 1.0000000
CNST24 1.0000000
D1 [s] 5.00000000
D3 [s] 0.00000300
d9 [s] 0.00000300
L11 30
p5 [µs] 7.00
P9 [µs] 2.60
PL13 [dB] 5.00
acqu [s] 0.00000090
count 455
cycle [s] 0.00003860
dead [s] 0.00000120
polish [µs] 7.00
rest [s] 0.00001200
smooth 70
Channel f1  
NUC1 1H
P1 [µs] 2.00
PL1 [dB] 3.80
PL12 [dB] 3.80
SFO1 [MHz] 500.2145808
SP1 [dB] 5.00
SPNAM1 m5m
SPOAL1 0.500
SPOFFS1 [Hz] 0.00
wpmlg [µs] 14.00

References

  1. Subhradip Paul, Rajendra Singh Thakur, Mithun Goswami, Andrea C. Sauerwein, Salvatore Mamone, Maria Concistrè, Hans Förster, Malcolm H. Levitt, and P. K. Madhu
    Supercycled homonuclear dipolar decoupling sequences in solid-state NMR,
    J. Magn. Reson. 197, 14-19 (2009).
    Abstract
  2. P. K. Madhu
    High-resolution solid-state NMR spectroscopy of protons with homonuclear dipolar decoupling schemes under magic-angle spinning,
    Solid State Nucl. Magn. Reson. 35, 2-11 (2009).
    Abstract
  3. Michal Leskes, Stefan Steuernagel, Denis Schneider, P. K. Madhu, and Shimon Vega
    Homonuclear dipolar decoupling at magic-angle spinning frequencies up to 65 kHz in solid-state nuclear magnetic resonance,
    Chem. Phys. Lett. 466, 95-99 (2008).
    Abstract
  4. Michal Leskes, P. K. Madhu, and Shimon Vega
    A broad-banded z-rotation windowed phase-modulated Lee-Goldburg pulse sequence for 1H spectroscopy in solid-state NMR,
    Chem. Phys. Lett. 447, 370–374 (2007).
    Abstract
  5. Elena Vinogradov, P. K. Madhu, and Shimon Vega
    Proton spectroscopy in solid state nuclear magnetic resonance with windowed phase modulated Lee–Goldburg decoupling sequences,
    Chem. Phys. Lett. 354, 193-202 (2002).
    Abstract

Solid-state NMR bibliography for:

Aluminum-27
Antimony-121/123
Arsenic-75
Barium-135/137
Beryllium-9
Bismuth-209
Boron-11
Bromine-79/81
Calcium-43
Cesium-133
Chlorine-35/37
Chromium-53
Cobalt-59
Copper-63/65
Deuterium-2
Gallium-69/71
Germanium-73
Gold-197
Hafnium-177/179
Indium-113/115
Iodine-127
Iridium-191/193
Krypton-83
Lanthanum-139
Lithium-7
Magnesium-25
Manganese-55
Mercury-201
Molybdenum-95/97
Neon-21
Nickel-61
Niobium-93
Nitrogen-14
Osmium-189
Oxygen-17
Palladium-105
Potassium-39/41
Rhenium-185/187
Rubidium-85/87
Ruthenium-99/101
Scandium-45
Sodium-23
Strontium-87
Sulfur-33
Tantalum-181
Titanium-47/49
Vanadium-51
Xenon-131
Zinc-67
Zirconium-91
[Contact me] - Last updated February 24, 2020
Copyright © 2002-2024 pascal-man.com. All rights reserved.