RFDR-trev: 2D double quantum excitation RFDR pulse program for TopSpin2.1

Home and Applets > Pulse Program > Topspin 2.1, Avance III > Spin Diffusion > 2D RFDR Pulse Program

*** Outline ***

Code for Avance III spectrometers with topSpin2.1 operating system

;rfdr-trev (TopSpin 2.0)

;RFDR with time reversal for pure phases, modified rfdrps
;for arbitrary scan numbers, ns=n*4 

;2D exchange NMR in rotating solids  
;rotor synchronized, set cnst31=spin rate, spin rate regulation
;recommended
;see Bennet, Ok, Griffin, Vega J. Chem. Phys. 98, 8624 (1992)
;and Boender and Vega, for phase sensitive method
;written by HF, 16.9.98, modified 21.5.2007
;Proton offset at LG frequency during mix to avoid HH transfer
;use STATES-TPPI for transform, 

;Avance III version
;parameters:
;d1 : recycle delay
;p1 : X 90 degree pulse at pl1
;p2 : X 180 degree pulse at pl11
;p3 : 90 degree 1H pulse
;p9 : used as t1 increment and decrement for d0
;p15 : contact pulse (typ. 1ms)
;pcpd2 : pulse length in decoupling sequence
;pl1 : X power level (for CP)
;sp0 : proton power level during contact
;pl2 : =120dB, not used
;pl11 : power level for pi pulses on X
;pl12 : power level for H 90 and standard proton decoupling 
;pl13 : power level for lg decoupling during mixing
;cpdprg2 : decoupling during acquisition
;cpdprg1 : decoupling during RFDR, usually cwlg
;cnst21 : =0, proton offset
;cnst20: proton RF field if LG-decoupling is used (at pl13)
;cnst31 : spinning frequency
;l1 : number of rotor cycles for mixing time
;l3 : =0, scan counter used for time reversal
;parmod = 2D
;td1 = si/4 = si1/2
;nd0=1, in0=ind10=dw, STATES-TPPI
;ns=32*n

;$COMMENT=exchange NMR (RFDR) in rotating solids, rotor synchronized
;$CLASS=Solids
;$DIM=2D
;$TYPE=cross polarisation
;$SUBTYPE=homonuclear correlation
;$OWNER=Bruker

define loopcounter count
  "count=td1/2"
define delay tau
  "tau=0.5s/cnst31-p2/2"
  "d31=1s/cnst31"                 ;allow protection for misset d31
define delay aqf1
  "aqf1=dw*td1+d31"
  "l9=(aqf1/d31+1)"
define delay trev
  "trev=l9*d31"
  "d10=trev"

  "l4=ns/4"
  "d0=1u"
  "cnst21=0"
  "p9=inf1"

;cnst11 : to adjust t=0 for acquisition, if digmod = baseopt
"acqt0=1u*cnst11"

#include <Avancesolids.incl>
            ;standard stuff
#include <rot_prot.incl>
            ;protect for too slow rotation

1 ze
  d31
2 10u
  "l3=0"

3 d1 do:f2                ;recycle delay, F2 decoupler off

#include <p15_prot.incl>
            ;make sure p15 does not exceed 10 msec	
            ;let supervisor change this pulseprogram if 
            ;more is needed
#include <aq_prot.incl>
            ;allows max. 50 msec acquisition time, supervisor
            ;may change  to max. 1s at less than 5 % duty cycle
            ;and reduced decoupling field

  aqf1
  trev
  rpp4                   ;reset the phase ph4 pointer to the first element
  1u fq=cnst21:f2

  (p3 pl12 ph1):f2       ;proton 90° pulse
  (p15 pl1 ph2):f1 (p15:sp0 ph10):f2   ;contact pulse with square or
                                       ;ramp shape ramp.100 on F2

  d0 cpds2:f2            ;F2 decouping during the evolution period

  (p1 pl11 ph3):f1       ;90° pulse putting magnetization back 
                         ;to z-axis for RFDR excitation
  if "l3<2" goto goon    ;scan counter l3
  d10                    ;time-reversed period
goon,                    ;non-time-reversed period
  1u cpds1:f2            ;F2 decoupling during mixing period

5 tau                    ;mixing period with Gullion sequence
                         ;tau = half rotor period - p2/2
  p2:f1 ph4^             ;180° pulse, increment phase ph4 pointer
  tau                    ;tau = half rotor period - p2/2
  lo to 5 times l1       ;set l1 for desired mixing time

  (p1 ph5):f1 (1u cpds2):f2    ;90° detection pulse, 
                               ;F2 decoupling during acquisition
  gosc ph31              ;gosc does not loop to 2
                         ;start ADC with ph31 signal routing
  10u do:f2              ;F2 decoupler off
  "l3=l3+1"
  lo to 3 times 4        ;four scans

  10u
  lo to 2 times l4       ;ns/4 iterations, reset l3=0
  100m wr #0 if #0 zd    ;save data

  1m ip2                 ;increments the phase of ph2 of 
                         ;the CP contact pulse by 90°
  lo to 2 times 2        ;STATES t1 quadrature detection

  "d0=d0+p9"             ;p9 used as increment of the evolution period
  "d10=d10-p9"           ;p9 used as decrement of the time reversal period
  lo to 2 times count    ;count=td1/2
HaltAcqu, 1m
6 exit

ph1= 0
ph2= 1
ph10=1
ph3= 0 0 0 0 2 2 2 2  1 1 1 1 3 3 3 3
ph4= 0 1 0 1 1 0 1 0
ph5= 0 1 2 3 0 1 2 3  1 2 3 0 1 2 3 0
     0 1 2 3 0 1 2 3  3 0 1 2 3 0 1 2
ph31=0 1 2 3 2 3 0 1  0 1 2 3 2 3 0 1
     0 1 2 3 2 3 0 1  0 1 2 3 2 0 3 1
  

References

  1. Griffin group
  2. Darryl Aucoin, Devin Camenares, Xin Zhao, Jay Jung, Takeshi Sato, and Steven O. Smith
    High-resolution 1H MAS RFDR NMR of biological membranes,
    J. Magn. Reson. 197, 77-86 (2009).
    Abstract
  3. Hiroyuki Kono1 and Yukari Numata
    Structural investigation of cellulose Iα and Iβ by 2D RFDR NMR spectroscopy: determination of sequence of magnetically inequivalent D-glucose units along cellulose chain,
    Cellulose 13, 317-326 (2006).
    Abstract
  4. Yao-Hung Tseng, Yun Mou, Chung-Yuan Mou, and Jerry C. C. Chan
    Double-quantum NMR spectroscopy based on finite pulse RFDR,
    Solid State Nucl. Magn. Reson. 27, 266-270 (2005).
    Abstract
  5. Jörg Leppert, Oliver Ohlenschläger, Matthias Görlach, and Ramadurai Ramachandran
    RFDR with adiabatic inversion pulses: Application to internuclear distance measurements,
    J. Biomol. NMR 28, 229-233 (2004).
    Abstract
  6. Ido de Boer, Jörg Matysik, Kees Erkelens, Shin-ichi Sasaki, Tomohiro Miyatake, Shiki Yagai, Hitoshi Tamiaki, Alfred R. Holzwarth, and Huub J. M. de Groot
    MAS NMR structures of aggregated cadmium chlorins reveal molecular control of self-assembly of chlorosomal bacteriochlorophylls,
    J. Phys. Chem. B 108, 16556-16566 (2004).
    Abstract
  7. G. Goobes, G. J. Boender, and S. Vega
    Spinning-frequency-dependent narrowband RF-driven dipolar recoupling,
    J. Magn. Reson. 146, 204-219 (2000).
    Abstract
  8. G. J. Boender, S. Vega, and H. J. M. de Groot
    Quantized field description of rotor frequency-driven dipolar recoupling,
    J. Chem. Phys. 112, 1096-1106 (2000).
    Abstract
  9. G. J. Boender and S. Vega
    Phase sensitive detection of 2D homonuclear correlation spectra in MAS NMR,
    J. Magn. Reson. 133, 281-285. (1998).
    Abstract
  10. Andrew E. Bennett, Chad M. Rienstra, Janet M. Griffiths, Weiguo Zhen, Peter T. Lansbury, and Robert G. Griffin
    Homonuclear radio frequency-driven recoupling in rotating solids,
    J. Chem. Phys. 108, 9463-9479 (1998).
    Abstract
  11. A. E. Bennett, J. H. Ok, and R. G. Griffin
    Chemical shift correlation spectroscopy in rotating solids: Radio frequency-driven dipolar recoupling and longitudinal exchange,
    J. Chem. Phys. 96, 8624-8627 (1992).
    Abstract

Solid-state NMR bibliography for:

Aluminum-27
Antimony-121/123
Arsenic-75
Barium-135/137
Beryllium-9
Bismuth-209
Boron-11
Bromine-79/81
Calcium-43
Cesium-133
Chlorine-35/37
Chromium-53
Cobalt-59
Copper-63/65
Deuterium-2
Gallium-69/71
Germanium-73
Gold-197
Hafnium-177/179
Indium-113/115
Iodine-127
Iridium-191/193
Krypton-83
Lanthanum-139
Lithium-7
Magnesium-25
Manganese-55
Mercury-201
Molybdenum-95/97
Neon-21
Nickel-61
Niobium-93
Nitrogen-14
Osmium-189
Oxygen-17
Palladium-105
Potassium-39/41
Rhenium-185/187
Rubidium-85/87
Ruthenium-99/101
Scandium-45
Sodium-23
Strontium-87
Sulfur-33
Tantalum-181
Titanium-47/49
Vanadium-51
Xenon-131
Zinc-67
Zirconium-91
[Contact me] - Last updated February 24, 2020
Copyright © 2002-2024 pascal-man.com. All rights reserved.