dumbod2: homonuclear dipole-dipole windowed-dumbo decoupling pulse program for TopSpin2.1

Home and Applets > Pulse Program > Topspin 2.1, Avance III > HPdec and CPMAS > Homonuclear Dipole-Dipole Windowed-DUMBO Decoupling
windowed dumbo sequence

*** Outline ***

Code for Avance III spectrometers with topSpin2.1 operating system

;dumbod2 (TOPSPIN 2.1)
;windowed DUMBO homonuclear decoupling, digital mode, 
;Leskes, Madhu and Vega, Chem. Phys. Lett. modification to remove center spike
;HF 26.9.2007

;spin 10-13 kHz according to RF field
;p9 2.4-4.5 usec, depending on probe deadtime, usually:
;for 200 and 300 MHz, CRAMPS probe required or use 4.5 usec,
;acqu or p9 must be as short as possible, avoiding dipolar coupling effects between DUMBO sequences,
;l11 or d9 must be as large as possible to improve S/N ratio, but keeping acqu positive,
;before ft, set s sw=sw/0.50

;set:
;d1 : recycle delay
;p1 : proton 90 degree pulse at pl12
;set o1p close to resonance
;pl12 : power level for initial pulse,
;pl13 : power level for DUMBO
;ns=n*4
;spnam1=dumbo1, generated and set with au program dumbo; chose 1 cycle; uses p10 pulse
;at lower field, p10 is used as set (=32 usec), at higher field (500 MHz and up) 24 usec is better
;at higher power, of course.
;set l11=number of oversampled data points to be averaged into one dwell point, 2-32 depending on
;available window, more oversampled data points improve S/N, check acqu in ased to be finite

;$COMMENT=homonuclear decoupling with dumbo
;$CLASS=Solids
;$DIM=1D
;$TYPE=homonuclear decoupling
;$SUBTYPE=explicit acquisition

;cnst11 : to adjust t=0 for acquisition, if digmod = baseopt
"acqt0=1u*cnst11"

"sp1=pl13"

dwellmode auto

#include <Avancesolids.incl>
#include <Delayssolids.incl>
  "d9=0.1u*(l11)"               ;set the sampling window, defined in Avancesolids.incl
define delay dead
  "dead=1.2u"
define delay acqu               ;small window defined by p9, 2.5-4.5 usec depending
  "acqu=2*p9-1.2u-d9-.1u"       ;on probe deadtime
                                ;acqu or p9 must be as short as possible, avoiding dipolar coupling effects
                                ;l11 or d9 must be as large as possible but keeping acqu positive
define delay cycle
  "cycle=4*p9+2*p10+.1u"
define loopcounter count
  "count=aq/cycle"              ;make sure td datapoints are sampled
define delay rest               ;make sure sampling proceeds throughout the sequence
  "rest=aq-(count*cycle)"
define pulse dumbop
  "dumbop=p10"                  ;p10 provided by au program dumbo
  "blktr2 = 0.6u"               ;this opens the transmitter gate 0.6 usec before the
                                ;pulse, so the transmitter noise is not sampled

1 ze                            ;acquire into a cleared memory
2 d1 pl12:f1                    ;recycle delay
  10u reset1:f1                 ;synchronise pulse and detection RF
  STARTADC                      ;prepare adc for sampling, set reference frequency, defined in Avancesolids.incl
  RESETPHASE                    ;reset reference phase
  1u rpp10                      ;reset phase list pointer
  p1:f1 ph1                     ;first 90 at pl12
  .1u DWL_CLK_ON
4 dead
  acqu
  d9 RG_ON
  .1u RG_OFF                    ;take l11  complex data points	
  (dumbop:sp1 ph10^):f1
  dead
  acqu
  d9 RG_ON
  .1u RG_OFF
  (dumbop:sp1 ph10^):f1
  lo to 4 times count           ;make sure td points are sampled
  rest
  1u DWL_CLK_OFF
  rcyc=2                        ;next scan
5 100m wr #0                    ;save data
6 exit                          ;finished


ph0= 0
ph1= 0 1 2 3
ph10=0 2
ph30=0
ph31=0 1 2 3
  

Example-1: 1H in Glycine with AV500

1H glycine windowed dumbo spectrum

1H windowed DUMBO spectrum of glycine in a 4-mm diameter, 12-µL HRMAS rotor spinning at 10 kHz; P10 = 27 µs, H-XY probe; Glycine viewed with Jmol.

Pulseprogram parameters for dumbod2.ppm:

General  
PULPROG dumbod2.ppm
TD 1000
NS 4
DS 0
SWH [Hz] 25000.00
AQ [s] 0.0200700
RG 16
DW [µs] 20.000
DE [µs] 4.50
CNST11 0.0000000
D1 [s] 5.00000000
d9 [s] 0.00000360
L11 36
P9 [µs] 2.80
P10 [µs] 27.00
PL13 [dB] 4.20
acqu [s] 0.00000070
count 307
cycle [s] 0.00006530
dead [s] 0.00000120
rest [s] 0.00002290
Channel f1  
dumbop [µs] 27.00
NUC1 1H
P1 [µs] 4.40
PL1 [dB] 9.80
PL12 [dB] 9.80
SFO1 [MHz] 500.16415410
SP1 [dB] 4.2
SPNAM1 dumbo_1+0
SPOAL1 0.500
SPOFFS1 [Hz] 0.00

1H glycine windowed dumbo spectrum

1H windowed DUMBO spectrum of glycine in a 4-mm diameter, 12-µL HRMAS rotor spinning at 10 kHz; P10 = 24 µs.

Pulseprogram parameters for dumbod2:

General  
PULPROG dumbod2
TD 700
NS 4
DS 0
SWH [Hz] 20000.00
AQ [s] 0.0175750
RG 4
DW [µs] 25.000
DE [µs] 4.50
CNST11 0.0000000
D1 [s] 5.00000000
d9 [s] 0.00000260
L11 26
P9 [µs] 2.60
P10 [µs] 24.00
PL13 [dB] 2.50
acqu [s] 0.00000130
count 300
cycle [s] 0.00005850
dead [s] 0.00000120
rest [s] 0.00002500
Channel f1  
dumbop [µs] 24.00
NUC1 1H
P1 [µs] 2.00
PL1 [dB] 3.80
PL12 [dB] 3.80
SFO1 [MHz] 500.2121980
SP1 [dB] 2.50
SPNAM1 dumbo_1+0
SPOAL1 0.500
SPOFFS1 [Hz] 0.00

1H glycine windowed dumbo spectrum

1H windowed DUMBO spectrum of glycine in a 4-mm diameter, 12-µL HRMAS rotor spinning at 10 kHz; P10 = 36 µs.

Pulseprogram parameters for dumbod2:

General  
PULPROG dumbod2
TD 700
NS 4
DS 0
SWH [Hz] 20000.00
AQ [s] 0.0175750
RG 4
DW [µs] 25.000
DE [µs] 4.50
CNST11 0.0000000
D1 [s] 5.00000000
d9 [s] 0.00000300
L11 30
P9 [µs] 2.80
P10 [µs] 36.00
PL13 [dB] 7.00
acqu [s] 0.00000130
count 210
cycle [s] 0.00008330
dead [s] 0.00000120
rest [s] 0.00008200
Channel f1  
dumbop [µs] 24.00
NUC1 1H
P1 [µs] 2.00
PL1 [dB] 3.80
PL12 [dB] 3.80
SFO1 [MHz] 500.2121980
SP1 [dB] 7.00
SPNAM1 dumbo_1+0
SPOAL1 0.500
SPOFFS1 [Hz] 0.00

1H glycine windowed dumbo spectrum

1H windowed DUMBO spectra of glycine in a 4-mm diameter, 12-µL HRMAS rotor spinning at 10 kHz; H-XY probe, for 5 DUMBO pulse duration p10 values (23.6, 23.8, 24.0, 24.2, and 24.4 µsec).

1H glycine windowed dumbo spectrum

1H windowed DUMBO spectra of glycine in a 4-mm diameter, 12-µL HRMAS rotor spinning at ωrotor = 10 kHz and an H-XY probe, for 2 DUMBO pulse duration p10 values: 26 µsec (blue spectrum) and 27 µsec (red spectrum); rotor-RF peaks are located at 5808, 5345, 4668, and 4169 Hz relative to the carrier frequency.

The position f of a rotor-RF peak is defined by f = m*ωrotor + n/p10, where f, ωrotor, and p10 are expressed in Hz, kHz, and msec units, respectively.

The two rotor-RF peak positions 4169 and 4668 Hz allow us to determine the equation for the low frequency peak:
fL = 1764 ωrotor - 350/p10

The other two rotor-RF peak positions 5345 and 5808 Hz allow us to determine the equation for the high frequency peak:
fH = -642 ωrotor + 318/p10

Pulseprogram parameters for dumbod2.ppm:

General  
PULPROG dumbod2.ppm
TD 700
NS 4
DS 0
SWH [Hz] 25000.00
AQ [s] 0.0140700
RG 4
DW [µs] 20.000
DE [µs] 4.50
CNST11 0.0000000
D1 [s] 5.00000000
d9 [s] 0.00000360
L11 36
P9 [µs] 2.80
P10 [µs] 26 and 27
PL13 [dB] 4.60
acqu [s] 0.00000070
count 240
cycle [s] 0.00005850
dead [s] 0.00000120
rest [s] 0.00003000
Channel f1  
dumbop [µs] 24.00
NUC1 1H
P1 [µs] 4.00
PL1 [dB] 9.80
PL12 [dB] 9.80
SFO1 [MHz] 500.1661743
SP1 [dB] 4.60
SPNAM1 dumbo_1+0
SPOAL1 0.500
SPOFFS1 [Hz] 0.00

1H glycine windowed dumbo spectrum

1H windowed DUMBO spectrum of glycine in a 4-mm diameter, 12-µL HRMAS with several rotor spinning speeds; P10 = 24 µs.

Pulseprogram parameters for dumbod2:

General  
PULPROG dumbod2
TD 700
NS 4
DS 0
SWH [Hz] 25000.00
AQ [s] 0.0140500
RG 1
DW [µs] 20.000
DE [µs] 4.50
CNST11 0.0000000
D1 [s] 5.00000000
d9 [s] 0.00000260
L11 26
P9 [µs] 2.60
P10 [µs] 24.00
PL13 [dB] 4.20
acqu [s] 0.00000130
count 240
cycle [s] 0.00005850
dead [s] 0.00000120
rest [s] 0.00003000
Channel f1  
dumbop [µs] 24.00
NUC1 1H
P1 [µs] 2.00
PL1 [dB] 3.80
PL12 [dB] 3.80
SFO1 [MHz] 500.1650049
SP1 [dB] 4.20
SPNAM1 dumbo_1+0
SPOAL1 0.500
SPOFFS1 [Hz] 0.00
  1. Renée Siegel, Luís Mafra, and João Rocha
    Improving the 1H indirect dimension resolution of 2D CRAMPS NMR spectra: A simulation and experimental investigation,
    Solid State Nucl. Magn. Reson. 39, 81-87 (2011).
    Abstract
  2. Lorenzo Stievano, Frederik Tielens, Irne Lopes, Nicolas Folliet, Christel Gervais, Dominique Costa, and Jean-François Lambert
    Density functional theory modeling and calculation of NMR parameters: An ab initio study of the polymorphs of bulk glycine,
    Cryst. Growth Des. 10, 3657-3667 (2010).
    Abstract
  3. Jean-Paul Amoureux, Bingwen Hu, Julien Trébosc, Qiang Wang, Olivier Lafon, and Feng Deng
    Homonuclear dipolar decoupling schemes for fast MAS,
    Solid State Nucl. Magn. Reson. 35, 19-24 (2009).
    Abstract
  4. Waclaw Kolodziejski and Avelino Corma
    2H → 1H cross-polarization in deuterated glycine ,
    Solid State Nucl. Magn. Reson. 7, 67-72 (1996).
    Abstract

Example-2: 1H in L-tyrosine.HCl with AV500 and AV700

1H L-tyrosine-HCl windowed dumbo spectrum

1H windowed DUMBO spectrum of L-tyrosine-HCl in a 4-mm diameter, 12-µL HRMAS rotor spinning at 10 kHz; P10 = 24 µs; L-tyrosine viewed with Jmol.

Pulseprogram parameters for dumbod2:

General  
PULPROG dumbod2
TD 700
NS 4
DS 0
SWH [Hz] 20000.00
AQ [s] 0.0175750
RG 4
DW [µs] 25.000
DE [µs] 4.50
CNST11 0.0000000
D1 [s] 5.00000000
d9 [s] 0.00000200
L11 20
P9 [µs] 3.00
P10 [µs] 24.00
PL13 [dB] 3.00
acqu [s] 0.00000270
count 292
cycle [s] 0.00006010
dead [s] 0.00000120
rest [s] 0.00002580
Channel f1  
dumbop [µs] 24.00
NUC1 1H
P1 [µs] 2.50
PL1 [dB] 3.50
PL12 [dB] 3.80
SFO1 [MHz] 500.1709253
SP1 [dB] 3.00
SPNAM1 dumbo_1+0
SPOAL1 0.500
SPOFFS1 [Hz] 0.00

1H L-tyrosine-HCl windowed dumbo spectrum

1H windowed DUMBO spectrum of L-tyrosine-HCl in a 4-mm diameter, 12-µL HRMAS rotor spinning at 10 kHz; P10 = 27 µs, H-XY probe.

Pulseprogram parameters for dumbod2.ppm:

General  
PULPROG dumbod2.ppm
TD 1000
NS 4
DS 0
SWH [Hz] 25000.00
AQ [s] 0.0200700
RG 16
DW [µs] 20.000
DE [µs] 4.50
CNST11 0.0000000
D1 [s] 5.00000000
d9 [s] 0.00000360
L11 36
P9 [µs] 2.80
P10 [µs] 27.00
PL13 [dB] 4.20
acqu [s] 0.00000070
count 307
cycle [s] 0.00006530
dead [s] 0.00000120
rest [s] 0.00002290
Channel f1  
dumbop [µs] 27.00
NUC1 1H
P1 [µs] 4.40
PL1 [dB] 9.80
PL12 [dB] 9.80
SFO1 [MHz] 500.1641541
SP1 [dB] 4.20
SPNAM1 dumbo_1+0
SPOAL1 0.500
SPOFFS1 [Hz] 0.00

1H L-tyrosine-HCl windowed one pulse spectrum with AV700 and 2.5 mm diameter rotor

1H one-pulse spectrum of L-tyrosine-HCl in a 2.5-mm diameter rotor spinning at 30 kHz; P1 = 2.3 µs; PL1 = 2.25 dB; AV700SB.

1H L-tyrosine-HCl windowed dumbo spectrum with AV700 and 2.5 mm diameter rotor

1H windowed DUMBO spectrum of L-tyrosine-HCl in a 2.5-mm diameter rotor spinning at 15 kHz; P10 = 36 µs, AV700SB.

Pulseprogram parameters for dumbod2:

General  
PULPROG dumbod2
TD 700
NS 4
DS 0
SWH [Hz] 14124.29
AQ [s] 0.0248654
RG 16
DW [µs] 35.400
DE [µs] 4.50
CNST11 0.0000000
D1 [s] 5.00000000
d9 [s] 0.00000280
L11 28
P9 [µs] 3.00
P10 [µs] 36.00
PL13 [dB] 5.00
acqu [s] 0.00000190
count 295
cycle [s] 0.00008410
dead [s] 0.00000120
rest [s] 0.00005590
Channel f1  
dumbop [µs] 36.00
NUC1 1H
P1 [µs] 2.30
PL1 [dB] 2.00
PL12 [dB] 2.00
SFO1 [MHz] 700.1345530
SP1 [dB] 5.00
SPNAM1 dumbo_1+0
SPOAL1 0.500
SPOFFS1 [Hz] 0.00
  1. Luis Mafra, Renée Siegel, Christian Fernandez, Denis Schneider, Fabien Aussenac, and João Rocha
    High-resolution 1H homonuclear dipolar recoupling NMR spectra of biological solids at MAS rates up to 67 kHz,
    J. Magn. Reson. 199, 111-114 (2009).
    Abstract
  2. B.-J. van Rossum, C. P. de Groot, V. Ladizhansky, S. Vega, and H. J. M. de Groot
    A method for measuring heteronuclear (1H-13C) distances in high speed MAS NMR,
    J. Am. Chem. Soc. 122, 3465-3472 (2000).
    Abstract
  3. B.-J. van Rossum, H. Förster, and H. J. M. de Groot
    High-field and high-speed CP-MAS 13C NMR heteronuclear dipolar-correlation spectroscopy of solids with frequency-switched Lee-Goldburg homonuclear decoupling,
    J. Magn. Reson. 124, 516-519 (1997).
    Abstract
  4. Anne Lesage, Dimitris Sakellariou, Stefan Steuernagel, and Lyndon Emsley
    Carbon-proton chemical shift correlation in solid-state NMR by through-bond multiple-quantum spectroscopy,
    J. Am. Chem. Soc. 120, 13194-13201 (1998).
    Abstract
  5. Elena Vinogradov, P. K. Madhu, and Shimon Vega
    Phase modulated Lee-Goldburg magic angle spinning proton nuclear magnetic resonance experiments in the solid state: A bimodal Floquet theoretical treatment,
    J. Chem. Phys. 115, 8983-9000 (2001).
    Abstract
  6. Elena Vinogradov, P. K. Madhu, and Shimon Vega
    A bimodal Floquet analysis of phase modulated Lee-Goldburg high resolution proton magic angle spinning NMR experiments,
    Chem. Phys. Lett. 329, 207-214 (2000).
    Abstract
  7. Michal Leskes, Stefan Steuernagel, Denis Schneider, P. K. Madhu, and Shimon Vega
    Homonuclear dipolar decoupling at magic-angle spinning frequencies up to 65 kHz in solid-state nuclear magnetic resonance,
    Chem. Phys. Lett. 466, 95-99 (2008).
    Abstract

Example-3: 1H in L-lysine with AV500

1H L-lysine windowed dumbo spectrum

1H windowed DUMBO spectrum of L-lysine in a 4-mm diameter, 12-µL HRMAS rotor spinning at 10 kHz; P10 = 24 µs; L-lysine viewed with Jmol.

Pulseprogram parameters for dumbod2:

General  
PULPROG dumbod2
TD 700
NS 16
DS 0
SWH [Hz] 20000.00
AQ [s] 0.0175750
RG 4
DW [µs] 25.000
DE [µs] 4.50
CNST11 0.0000000
D1 [s] 5.00000000
d9 [s] 0.00000260
L11 26
P9 [µs] 2.60
P10 [µs] 24.00
PL13 [dB] 3.50
acqu [s] 0.00000130
count 300
cycle [s] 0.00005850
dead [s] 0.00000120
rest [s] 0.00002500
Channel f1  
dumbop [µs] 24.00
NUC1 1H
P1 [µs] 2.00
PL1 [dB] 3.80
PL12 [dB] 3.80
SFO1 [MHz] 500.1653244
SP1 [dB] 3.50
SPNAM1 dumbo_1+0
SPOAL1 0.500
SPOFFS1 [Hz] 0.00
  1. Caltec, Division of Geological and Planetary Sciences, Geoffrey A. Blake:
    Spectroscopic Methods in Biochemistry (PDF file)
  2. Régis D. Gougeon, Marc Reinholdt, L. Delmotte, Jocelyne Miehé-Brendlé, and Philippe Jeandet
    Solid-state NMR investigation on the interactions between a synthetic montmorillonite and two homopolypeptides,
    Solid State Nucl. Magn. Reson. 29, 322-329 (2006).
    Abstract

Example-4: 1H in MgO with AV500

1H MgO windowed dumbo spectrum

1H windowed DUMBO spectrum of MgO in a 4-mm diameter rotor spinning at ωrotor = 10 kHz; P10 = 24 µs; H-XY probe; n = 1 before the scaling of the F2 axis and n = 2 after the scaling of the F2 axis.

Pulseprogram parameters for dumbod2.ppm:

General  
PULPROG dumbod2.ppm
TD 700
NS 10424
DS 0
SWH [Hz] 20000.00
AQ [s] 0.0175750
RG 4
DW [µs] 25.000
DE [µs] 4.50
CNST11 0.0000000
D1 [s] 5.00000000
d9 [s] 0.00000360
L11 26
P9 [µs] 2.80
P10 [µs] 24.00
PL13 [dB] 4.60
acqu [s] 0.00000070
count 296
cycle [s] 0.00005930
dead [s] 0.00000120
rest [s] 0.00002220
Channel f1  
dumbop [µs] 24.00
NUC1 1H
P1 [µs] 4.00
PL1 [dB] 9.80
PL12 [dB] 9.80
SFO1 [MHz] 500.1632788
SP1 [dB] 4.60
SPNAM1 dumbo_1+0
SPOAL1 0.500
SPOFFS1 [Hz] 0.00
  1. Céline Chizallet, Hugo Petitjean, Guylène Costentin, Hélène Lauron-Pernot, Jocelyne Maquet, Christian Bonhomme, and Michel Che
    Identification of the OH groups responsible for kinetic basicity on MgO surfaces by 1H MAS NMR,
    J. Catal. 268, 175-179 (2009).
    Abstract
  2. Céline Chizallet, Guylène Costentin, Hélène Lauron-Pernot, Michel Che, Christian Bonhomme, Jocelyne Maquet, Françoise Delbecq, and Philippe Sautet
    Study of the structure of OH groups on MgO by 1D and 2D 1H MAS NMR combined with DFT cluster calculations,
    J. Phys. Chem. C 111, 18279-18287 (2007).
    Abstract
  3. Céline Chizallet, Guylène Costentin, Hélène Lauron-Pernot, Jocelyne Maquet, and Michel Che
    1H MAS NMR study of the coordination of hydroxyl groups generated upon adsorption of H2O and CD3OH on clean MgO surfaces,
    Appl. Catal. A 307, 239-244 (2006).
    Abstract

Example-5: 1H in L-alanine with AV500

1H L-alanine windowed dumbo spectrum

1H windowed DUMBO spectrum of L-alanine in a 4-mm diameter, 80-µL rotor spinning at 10 kHz; P10 = 27 µs, H-XY probe; L-alanine viewed with Jmol.

Pulseprogram parameters for dumbod2.ppm:

General  
PULPROG dumbod2.ppm
TD 1000
NS 4
DS 0
SWH [Hz] 25000.00
AQ [s] 0.0200700
RG 16
DW [µs] 20.000
DE [µs] 4.50
CNST11 0.0000000
D1 [s] 5.00000000
d9 [s] 0.00000360
L11 36
P9 [µs] 2.80
P10 [µs] 27.00
PL13 [dB] 4.20
acqu [s] 0.00000070
count 307
cycle [s] 0.00006530
dead [s] 0.00000120
rest [s] 0.00002290
Channel f1  
dumbop [µs] 27.00
NUC1 1H
P1 [µs] 4.40
PL1 [dB] 9.80
PL12 [dB] 9.80
SFO1 [MHz] 500.16415410
SP1 [dB] 4.2
SPNAM1 dumbo_1+0
SPOAL1 0.500
SPOFFS1 [Hz] 0.00
  1. Wen-Qing Wang, Wei Min, Zhi Liang, Li-Ying Wang, Lei Chen, and Feng Deng
    NMR and parity violation: low-temperature dependence in 1H CRAMPS and 13C CP/MAS ssNMR spectra of alanine enantiomer,
    Biophys. Chem. 103, 289-298 (2003).
    Abstract
  2. Anne Lesage, Luminita Duma, Dimitris Sakellariou, and Lyndon Emsley
    Improved resolution in proton NMR spectroscopy of powdered solids,
    J. Am. Chem. Soc. 123, 5747-5752 (2001).
    Abstract
  3. Ingo Schnell, Adonis Lupulescu, Siegfried Hafner, Dan E. Demco, and Hans W. Spiess
    Resolution enhancement in multiple-quantum MAS NMR spectroscopy,
    J. Magn. Reson. 133, 61-69 (1998).
    Abstract

References

  1. Meghan E. Halse and Lyndon Emsley
    A common theory for phase-modulated homonuclear decoupling in solid-state NMR,
    Phys. Chem. Chem. Phys. 14, 9121-9130 (2012).
    Abstract
  2. Paul Hogdkinson
    High-resolution 1H NMR spectroscopy of solids,
    Annu. Rep. Nucl. Magn. Reson. Spectrosc. 72, 185-223 (2011).
    Abstract, Google book
  3. Andreas Brinkmann, Suresh Kumar Vasa, Hans Janssen, and Arno P. M. Kentgens
    Proton micro-magic-angle-spinning NMR spectroscopy of nanoliter samples,
    Chem. Phys. Lett. 485, 275-280 (2010).
    Abstract
  4. Olivier Lafon, Qiang Wang, Bingwen Hu, Julien Trébosc, Feng Deng, and Jean-Paul Amoureux
    Proton-proton homonuclear dipolar decoupling in solid-state NMR using rotor-synchronized z-rotation pulse sequences,
    J. Chem. Phys. 130, 014504/1-014504/13 (2009).
    Abstract
  5. Elodie Salager, Robin S. Stein, Stefan Steuernagel, Anne Lesage, Bénédicte Elena, and Lyndon Emsley
    Enhanced sensitivity in high-resolution 1H solid-state NMR spectroscopy with DUMBO dipolar decoupling under ultra-fast MAS,
    Chem. Phys. Lett. 469, 336-341 (2009).
    Abstract
  6. Subhradip Paul, Rajendra Singh Thakur, Mithun Goswami, Andrea C. Sauerwein, Salvatore Mamone, Maria Concistrè, Hans Förster, Malcolm H. Levitt, and P. K. Madhu
    Supercycled homonuclear dipolar decoupling sequences in solid-state NMR,
    J. Magn. Reson. 197, 14-19 (2009).
    Abstract
  7. P. K. Madhu
    High-resolution solid-state NMR spectroscopy of protons with homonuclear dipolar decoupling schemes under magic-angle spinning,
    Solid State Nucl. Magn. Reson. 35, 2-11 (2009).
    Abstract
  8. Michal Leskes, Stefan Steuernagel, Denis Schneider, P. K. Madhu, and Shimon Vega
    Homonuclear dipolar decoupling at magic-angle spinning frequencies up to 65 kHz in solid-state nuclear magnetic resonance,
    Chem. Phys. Lett. 466, 95-99 (2008).
    Abstract
  9. Michal Leskes, P. K. Madhu, and Shimon Vega
    A broad-banded z-rotation windowed phase-modulated Lee-Goldburg pulse sequence for 1H spectroscopy in solid-state NMR,
    Chem. Phys. Lett. 447, 370-374 (2007).
    Abstract
correlation in openoffice

Correlation in OpenOffice.org Calc.

Solid-state NMR bibliography for:

Aluminum-27
Antimony-121/123
Arsenic-75
Barium-135/137
Beryllium-9
Bismuth-209
Boron-11
Bromine-79/81
Calcium-43
Cesium-133
Chlorine-35/37
Chromium-53
Cobalt-59
Copper-63/65
Deuterium-2
Gallium-69/71
Germanium-73
Gold-197
Hafnium-177/179
Indium-113/115
Iodine-127
Iridium-191/193
Krypton-83
Lanthanum-139
Lithium-7
Magnesium-25
Manganese-55
Mercury-201
Molybdenum-95/97
Neon-21
Nickel-61
Niobium-93
Nitrogen-14
Osmium-189
Oxygen-17
Palladium-105
Potassium-39/41
Rhenium-185/187
Rubidium-85/87
Ruthenium-99/101
Scandium-45
Sodium-23
Strontium-87
Sulfur-33
Tantalum-181
Titanium-47/49
Vanadium-51
Xenon-131
Zinc-67
Zirconium-91
[Contact me] - Last updated February 24, 2020
Copyright © 2002-2025 pascal-man.com. All rights reserved.