CP-CPMG pulse program for topSpin2.1 operating system

Home and Applets > Pulse Program > Topspin 2.1, Avance III > 1D-QCPMG > CP-CPMG for TopSpin2.1
Cross-polarisation Carr-Purcell-Meiboom-Gill echo train

*** Outline ***

Code for Avance III spectrometers with topSpin2.1 operating system

;cpcpmg.fau (TopSpin 2.1 pl3)

;cp experiment with CPMG detection
;written by FAU 08.01.2009
;use rotor-synchronized CPMG train of refocusing pulses to create the echoes

;Avance III version
;parameters: 
;p3 : proton 90 at power level pl12
;p4 : 180 degree pulse at pl22
;p15 : contact time at pl1 (f1) and sp0 (f2)
;pl1 : X power level during contact
;sp0 : proton power level during contact
;      sp0 is the max power level during shape pulse
;pl2 : =120dB, not used
;pl12 : decoupling power level (if not pl13)
;pl13 : special decoupling power level
;pl22 : rf power level
;d1 : recycle delay
;d3 : time to allow pulse ringdown, 10 to 100 us
;d6 : duration of FID
;pcpd2 : pulse duration in decoupling sequence (for tppm15, ~(170/90)*90° pulse duration)
;cpdprg2 : cw, tppm (at pl12), or 
;          lgs, cwlg. cwlgs (LG-decoupling, here pl13 is used instead of pl12)
;spnam0 : use e.g. ramp.100 for variable amplitude CP
;zgoptns : -Dfslg, -Dlacq, or blank
;p25 : dummy pulse, not used for acq.
;l22 : # of echos to be acquired
;cnst1 : set td to number of acquired complex data points, td=cnst1
;cnst21 : on resonance, usually = 0

;$COMMENT=cp experiment with CPMG detection
;$CLASS=Solids
;$DIM=1D
;$TYPE=cross polarisation
;$SUBTYPE=simple 1D
;$OWNER=Bruker

prosol relations=<solids_cp>

#include <Avancesolids.incl>         ;commands necessary for acquisition

#ifdef fslg
#include <lgcalc.incl>
;cnst20 : RF field achieved at pl13
;cnst21 : on resonance, usually = 0
;cnst22 : positive LG offset
;cnst23 : negative LG offset
;cnst24 : additional LG-offset
#endif /* fslg */

"cnst1=((d6*2+d3*2+p4)*l22+d6+d3)/dw"
define delay rest
"rest=aq-(cnst1*dw)"
"p25=1/cnst1"
;cnst11 : to adjust t=0 for acquisition, if digmod = baseopt
"acqt0=1u*cnst11"

1 ze

2 d1 do:f2                              ;recycle delay, decoupling off
#include <p15_prot.incl>	
            ;make sure p15 does not exceed 10 msec
            ;let supervisor change this pulseprogram if 
            ;more is needed
#ifndef lacq
            ;disable protection file for long acquisition change decoupling power!!!
            ;or you risk probe damage
            ;if you set the label lacq (ZGOPTNS -Dlacq), the protection is disabled

#include <aq_prot.incl>
            ;allows max. 50 msec acquisition time, supervisor
            ;may change to max. 1s at less than 5% duty cycle
            ;and reduced decoupling field
#endif /* lacq */

    1u                  fq=cnst21:f2    ;used in tppm15 for example
                                        ;if cnst21=0, make sure cp is done with proton freq
                                        ;set by O2
  (p3 ph1):f2           (1u pl12):f2    ;proton 90° pulse
  (p15 pl1 ph2):f1 (p15:sp0 ph10):f2    ;use square.100 or ramp.100 shape for sp0
                                        ;in proton channel F2
                         1u cpds2:f2    ;select appropriate decoupling sequence, switch on 
                                        ;cw or tppm15 decoupling executed at power level pl12
                                        ;or LG-decoupling executed at power level pl13
    1u pl22:f1                          ;set 180° pulse power level
  STARTADC                              ;arm adc
  RESETPHASE                            ;reset reference phase for detection
    0.1u DWL_CLK_ON
3 d6 RG_ON
    0.1u RG_OFF
  d3
  (p4 pl22 ph3):f1
  d3
  d6 RG_ON
  lo to 3 times l22
  d6
  d3
    rest RG_OFF                do:f2     ;set decoupling off
    0.1u DWL_CLK_OFF
  rcyc=2                                 ;loop NS times
  1m                           do:f2     ;set decoupling off
  100m wr #0                             ;write signal
HaltAcqu, 1m                             ;jump address for protection
exit

ph0= 0
ph1= 1 3
ph2= 0 0 2 2 1 1 3 3
ph3= 0 0 2 2 1 1 3 3
ph10=0
ph30=0
ph31=0 2 2 0 1 3 3 1
  
Cross-polarisation Carr-Purcell-Meiboom-Gill pulse sequence diagram

Graphic representation associated with the TopSpin2.1 cpcpmg.fau pulse program.


Example1: 29Si in TSP-d4 with AV500

Silicon-29 echo train of tsp-d4 acquired with cpcpmg pulse program

29Si echo train of TSP-d4 in 4-mm diameter rotor spinning at 10 kHz. A contact duration P15 = 8 ms increases the amplitude of the echo train by two.

Acquisition parameters:

General  
PULPROG cpcpmg.fau
TD 7644
NS 1920
DS 0
SWH [Hz] 20000.00
AQ [s] 0.1911500
RG 114
DW [µs] 25.000
DE [µs] 6.50
const1 7642.463867
CONST11 0.0000000
D1 [s] 30.00000000
D3 [s] 0.00005000
D6 [s] 0.01000000
L22 9
P25 [µs] 0.00
ZGOPTNS -Dlacq
rest [s] 0.00008840
Channel f1  
NUC1 29Si
P15 [µs] 4000.00
P4 [µs] 12.40
PL1 [dB] 6.00
PL1W [W] 130.4819793
PL22 [dB] 6.00
PL22W [W] 130.4819793
SFO1 [MHz] 99.3774009
Channel f2  
CNST21 0.00000000
CPDPRG2 tppm15
NUC2 1H
P3 [µs] 11.00
PCPD2 [µs] 20.70
PL2 [dB] 120.00
PL2W [W] 0.00000000
PL12 [dB] 16.00
PL12W [W] 8.05732536
SFO2 [MHz] 500.2113720
SP0 [dB] 10.00
SP0W [W] 32.07678986
SPNAM0 ramp.100
SPOAL0 0.500
SPOFFS0 [Hz] 0.00

Effect of the strength of decoupling magnetic field

Silicon-29 echo train of tsp-d4 acquired with cpcpmg pulse program

29Si echo train of TSP-d4 in 4-mm diameter rotor spinning at 10 kHz, NS = 8, and decoupling with PL12 = 16 dB

Silicon-29 echo train of tsp-d4 acquired with cpcpmg pulse program

29Si echo train of TSP-d4 in 4-mm diameter rotor spinning at 10 kHz, NS = 8, and decoupling with PL12 = 10 dB

Solid-state NMR bibliography for:

Aluminum-27
Antimony-121/123
Arsenic-75
Barium-135/137
Beryllium-9
Bismuth-209
Boron-11
Bromine-79/81
Calcium-43
Cesium-133
Chlorine-35/37
Chromium-53
Cobalt-59
Copper-63/65
Deuterium-2
Gallium-69/71
Germanium-73
Gold-197
Hafnium-177/179
Indium-113/115
Iodine-127
Iridium-191/193
Krypton-83
Lanthanum-139
Lithium-7
Magnesium-25
Manganese-55
Mercury-201
Molybdenum-95/97
Neon-21
Nickel-61
Niobium-93
Nitrogen-14
Osmium-189
Oxygen-17
Palladium-105
Potassium-39/41
Rhenium-185/187
Rubidium-85/87
Ruthenium-99/101
Scandium-45
Sodium-23
Strontium-87
Sulfur-33
Tantalum-181
Titanium-47/49
Vanadium-51
Xenon-131
Zinc-67
Zirconium-91
[Contact me] - Last updated February 24, 2020
Copyright © 2002-2025 pascal-man.com. All rights reserved.