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Dances with Spins: Whispered Messages from
the Picometer World
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Dances With Spins
designing effective Hamiltonians
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We can add rotations controlled by the experimentalist. If properly designed

these rotations can selectively cancel out parts of the Hamiltonian.
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The Dance of the Spins
adapting the effective Hamiltonian to our needs
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J. Am. Chem. Soc. 128, 3878 (2006).
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Structure of the Retinylidene Ligand in Rhodopsin
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Where is the Problem in the Design of Effective 
Hamiltonians or Transformations? 

Luckily we have an analytical and reversible transform 
that links the fid with the spectrum...

FT

free induction

decay

spectrum



Where is the Problem in the Design of Effective 
Hamiltonians or Transformations? 

.... more generally there is no analytical solution to the equation relating the pulse 
sequence to the spin system response. This is the general question of how does a 

radiofrequency field (light) interact with the nuclear spin system (matter) ?

Black

Box

time domain

pulse

frequency domain 

response

(Bloch Equations)

Black

Box

time domain

manipulations

Average Hamiltonian

(decoupling, mixing...)

(The denisty matrix

description of NMR)
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Proton Chemical Shift (ppm)



In general the forward transformation
has no analytical solution

There are three main strategies for the forward calculation:

1. Find an analytical solution for a simplified case (rare, always difficult)

time domain

manipulations

Average Hamiltonian

(decoupling, mixing...)
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2. Use approximate methods: Average Hamiltonian Theory, 
Static Perturbation Theory, Floquet Theory

3. Solve the problem numerically



Numerical Methods for Pulse Sequence Optimisation
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Has been used to generate pulses and sequences for:
 numerous MRI applications
 robust selective excitation and inversion (G3, BURP...)
 heteronuclear J decoupling (GARP, ...)
 homonuclear dipolar decoupling in solids (DUMBO)
 coherence transfer in liquids and solids (Optimal Control)

Key authors: Morris, Warren, Freeman, Emsley, Kupce, Glaser



Model Spin System: One isolated spin, 
Bloch Equations, resonance offset or B1 misset

Excitation Function: Pulse flip angles in 
periodic decoupling sequence.

Target: Broadband (low power) J decoupling

Optimisation Routine: 
Gradient descent
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Example: Broadband J Decoupling

Shaka, Barker & Freeman, JMR 64, 547 (1985)

COMMUNICATIONS 551 

b 

C 

1 4 

t2 i-1 0 -I -2 

ABIB; 

FIG. 2. The experimental performance of (a) Sklenai and Starcuk’s modified WALTZ sequence, (b) Fung’s 
PAR-75 sequence, and (c) GARP-1, as a function of the decoupler resonance offset. Spectra are plotted 
every 200 Hz over a range of 10 kHz (yBq/Zr = 2 kHz). The carbon-13 linewidth (formic acid in acetone- 
d.) has been broadened to 1.5 Hz. For narrower lines, all three sequences exhibit noticeable residual splittings. 

carbon- 13 resolution, and it should be emphasized that WALTZ- 16 is still by far the 
best decoupling sequence when resolving power is at a premium, as demonstrated by 
some recent very high resolution experiments by Allerhand (25). Only at the highest 
magnetic field intensities for protons, or for highly temperature-sensitive samples, or 

for decoupling 19F, 13C or 15N should the extended bandwidth of the new sequence , 
be necessary. 
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Model Spin System: One isolated spin, Bloch Equations, resonance offset

Excitation Function: Amplitude modulation described by a truncated Fourier series.

Target: In phase full excitation 
in bandwidth. No excitation out 
of bandwidth.

Optimisation Routine: 
Simulated annealing
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Example: Selective Excitation in Liquids

resonance offset

Geen, Wimperis & Freeman, JMR 85, 620 (1989)
Geen & Freeman, JMR 93, 93 (1991) 



Model Spin System: One isolated spin, Bloch Equations, resonance offset

Excitation Function: Amplitude modulation described by a sum of Gaussians.

Target: Full inversion in bandwidth. 
No effect out of bandwidth.

Optimisation Routine: 
Gradient descent
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Example: Selective Inversion in Liquids

resonance offset

Emsley & Bodenhausen, CPL 165, 469 (1990)
Emsley & Bodenhausen, JMR 97, 135 (1992) 
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More Challenging Examples?

Model Spin System: Two J coupled spins, 
rapid relaxation

Excitation Function: Flip angles and
delays in a multi-pulse sequence

Target: Maximum coherence transfer

Optimisation Routine: 
Optimal control

Frueh et al. J. Biomol. NMR 32, 23 (2005)

CRIPT TROPIC
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More Challenging Examples?

Model Spin System: One spin, 
with quadrupolar coupling, under MAS
in a powder

Excitation Function: Individual time 
steps in an amplitude and phase 
modulated continuous irradiation
sequence.

Target: Maximum excitation 
efficiency

Optimisation Routine: 
Optimal control
Vosegaard et al., JACS 127, 13768 (2005)
+ many other examples for optimal control from Glaser, Khaneja and coworkers

Enhanced MQ MAS experiments
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More Challenging Examples?

Model Spin System: Two dipolar coupled spins. 

Excitation Function: Continuous phase 
modulation defined by a truncated 
Fourier series

Target: Maximise the chemical shift,
remove the dipolar coupling

Optimisation Routine: 
Gradient descent

Sakellariou et al., CPL 319, 253 (2000)

Homonuclear Dipolar Decoupling
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The Solution to All Your Problems?

Model Spin System: Two dipolar coupled spins. 

The weakness of numerical optimisation in that the computer is that 
the solution you obtain, by whatever method, is only as good as the 

accuracy with which the model system you set up actually 
reproduces experiment!

“Out of many results, the 5-TR pulse sequence shown in Figure 1a yielded the highest 3Q 
coherence excitation.”



What Next?
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How Can We Improve the Accuracy of the
Predicted Spin System Response?

We need < 1% accuracy...

...we routinely adjust the B0 homogeniety
to << 1% accuracy...

... by “shimming” directly on the NMR signal response.

We would never imagine shimming by first calculating the field 
map, to predict the best shim values, and then try them!!



The eDUMBO Approach
experimental Decoupling Uses Mind Boggling Optimization
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no need for computer modelling of the spin system (to <1% accuracy)!

Chem. Phys. Lett. 376 , 259 (2003)

! t( ) = an cos n"ct( ) + bn sin n"ct( )( )
n=0
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#

Has been used to generate pulses and sequences for:
 heteronuclear dipolar decoupling under MAS (CM)
 homonuclear dipolar decoulping under MAS (eDUMBO)
 increased carbon-13 transverse dephasing times T2’ (TDOP)
 increased sensitivty in solid-state 1H-13C INEPT & HSQC

Use the NMR signal to find high-performance pulse sequences through 
iterative optimisation: “autoshimming” sequences.



Model sample: [2-13C] Glycine      
Optimisation Method: simplex
Quality Factor: intensity of the carbon-13 CPMAS peak    

80.6 Hz

52.2 Hz
48.5 Hz

53.9%

101.0%
115.9% 116.4%

CW eTPPM XiX

48.6 Hz

   CM
4244 ppm

where c and a are variables for optimisation.

The eDUMBO Approach to Heteronuclear Dipolar

Decoupling 

in Solids
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Chem. Phys. Lett. 376 , 3-4 (2003).

13C spectra of Glycine

150 kHz 1H irradiation

33.33 kHz MAS

Cosine Modulation
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High-Resolution Proton NMR Spectroscopy:

eDUMBO-1

[2-13C] L-Alanine  
CH Doublet

100 kHz 1H-Homodecoupling

 54  52  50  48  46 

13C Chemical Shift (ppm)

 54  52  50  48  46 

13C Chemical Shift (ppm)

1JCH X !dec

DUMBO-1

eDUMBO-112.5

eDUMBO-122

12.5 kHz MAS 22 kHz MAS

q = a (I1 + I2) - b |("1 - "2) - JCH X !M|

Chem. Phys. Lett. 398, 532 (2004).

Model sample: [2-13C] L-Alanine      
Optimisation Method: simplex
Quality Factor: resolution of the 1JCH 
doublet on carbon-13



High-Resolution Proton NMR Spectroscopy:

eDUMBO-1

 *(CH3) exp  cor(CH3) 

DUMBO-1 72 Hz 0.48 152 Hz (0.30 ppm) 

eDUMBO-112.5 72 Hz 0.56 129 Hz (0.26 ppm) 

 

 *(CH3) exp  cor(CH3) 

DUMBO-1 82 Hz 0.48 171 Hz (0.34 ppm) 

eDUMBO-112.5 88 Hz 0.55 161 Hz (0.32 ppm) 

eDUMBO-122 80 Hz 0.57 141 Hz (0.28 ppm) 
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T2'=24.62ms

a.u.
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1H spin decoupling

T2*T2'

Intrinsic Linewidths in Solids:
Coherent Control of Transverse Dephasing Times

standard (13 Hz)

eCM (6 Hz)

1/( T2')

J. Am. Chem. Soc. 125, 13938 (2003)

Model sample: [2-13C] Glycine   
Optimisation Method: simplex
Quality Factor: intensity of the signal after a 30 ms spin echo



Transverse Dephasing Optimised Spectroscopy
Coherent Control of Transverse Dephasing Times
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100 kHz of decoupling

10 kHz of MAS speed

~40 mg, 4 mm rotor

4 days, good S/N
ChemPhysChem 5, 869 (2004)
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"Decoherence Times": Liquids & Solids
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Effective coherence lifetimes in solids can be longer than in liquids!

SSNMR experiments can be more efficient than equivalent liquid-state experiments.



Direct eOptimisation of 1H-13C J-INEPT

Direct experimental optimisation of the CH2 transfer efficiency 

increases the proton coherence lifetime, leading to a >60% 

increase in sensitivity.
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Model sample: [U-13C] Isoleucine   
Optimisation Method: simplex
Quality Factor: intensity of the signal
after an INEPT transfer

J. Am. Chem. Soc. 127, 17296 (2006).



Direct eOptimisation of 1H-13C J-INEPT

In carbon-13 labelled compounds, the efficiency of the transfer

is far superior to that of the J-HMQC sequence.
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Through-Bond INEPT Based HSQC for Proteins

13C Chemical Shift (ppm)  
180 160 140 120 100 80 60 40 20

8

6

4

2

1
H

 C
h
e
m

ic
a
l 
S

h
if
t 
(p

p
m

) 
 

0

1H

13C

!

eDUMBO Het. Dec.

!!

eDUMBO eDUMBO

!

eDUMBO

!

t2!

t1

! ! !

Solid-State Refocused 1H-13C INEPT experiment

!
2

"

" "

!
2

"

!
2

"

!"# $# !"# $## $#

% % %' %'

3.2 mm MAS probe

192 scans

Total expt. time = 20 hours

100 kHz eDUMBO decoupling

Sample temperature = 5! C

Sample cooling using nitrogen gas through the BCU-X

MAS using dry air

22 kHz MAS

@ 700 MHz

J. Am. Chem. Soc. 127, 17296 (2005).



“I don’t like numerical methods, because they
don’t provide any understandable result. It’s all too

much of a black box.”



eOptimised Heteronuclear Decoupling

J. Chem. Phys. 121, 3165 (2004)
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Numerical optimisation converges to a 

very simple answer for heteronuclear 

decoupling (a close cousin of TPPM), 

and demonstrates that the 

parameterisation is very sensitive.

Can we determine why it works?



Proton Decoupling: eCM & TPPM
Modulation Frame HORROR Conditions

J. Chem. Phys. 121, 3165 (2004).
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This point is found to be a 
modulation frame HORROR
condition. The numerical result
provided the key to understanding
the mechanism & parameterisation
of TPPM ! 

... to the Modulation Frame
(defined as the frame rotating around the mean axis x at the frequency of the modulation c) 
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If the approximate analytical solution is sufficiently accurate,
Average Hamiltonian Theory (and cousins) is a good platform for pulse 

sequence development. It provides a detailed understanding.

J decoupling in liquids is an excellent example of where AHT methods
work very well to describe the experimental observations.
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If approximate methods fail, numerical methods  can provide better 
solutions.  

This is often the case where single spin dynamics are sufficient to describe 
the problem accurately. 

Selective pulses are an excellent example of  where numerical 
computer optimisation works well.  Liquid state coherence 

transfer is another area where this approach works.

Methods using computer simulations 
of the spin system can only be as 
accurate as the simulation itself.
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In many cases, especially in solid-state NMR, computer simulations 
do not reproduce the  experimental behavior sufficiently accurately to 

allow useful results. 

In these cases, direct optimisation of the NMR signal  naturally provides 
more accurate results, and can generate the best pulse sequences. 

Homonuclear dipolar decoupling is an excellent 
example of where the experimental optimisation 

yields the best results.
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Summary II
eOptimisation: An Experimental Approach to Pulse Sequence Design

Weaknesses of eOptimisation:

 sensitivity.

 needs a robust experimental quality factor that can be reliably 
calculated automatically.

 in most cases, does not provide feedback for understanding.

 needs a robust optimisation method that can deal with noise in 
the quality factor.



Advantages of eOptimisation:

 naturally integrates all the error terms.

 can be adapted to almost any problem, even when neither a 
theoretical nor a numerical description is available. Is easy to 
carry out.

 in some cases, may provide feedback for understanding.

 can be combined with any robust optimisation method.

 as long as the model compound is valid, no need for 
reoptimisation for each sample.

 it works!

Summary II
eOptimisation: An Experimental Approach to Pulse Sequence Design
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