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NMR Processing

Main processing steps

— Apodization
* noise reduction
* resolution enhancement
— On-resonance water suppression
— Zero-filling / linear prediction
— Fourier transform

Post-pr ocessing

— Baseline correction
— Denoising
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FT - Convolution properties

A convolution is defined as

—+00

F1(1) % fo(t) = / (1) fo(t — T)dIT

—00

FifaO)x (O} = F{f(t)} - F{f(t)}

For discrete data this is equivalent to

1N1

DFT (da), ijAn,

Special case: Convolution of a function with itself

Fil)x 1O} = F{f(0)) - F{f(t)}
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Time Domain Convolution Watersuppression
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Wavelet Transforms

Ondelettes (wavelets) - Yves Meyer, 1980s

Wavelet < “waving” above and below the x-axis <
integrate to zero.

Wavelets chop up data into frequency com-
ponents , and analyze each frequency compo-
nent with a resolution matched to its scale.

Applications:

— data approximation (smoothing)

— noise reduction

— data compression (jpeg, mpeg, mp3)
— time-frequency analysis

— Image analysis

Fast dyadic wavelet transform (DWT) - N operations,
compare: FFT Nlog(N).
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Wavelet Transforms

A time series
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® FT: high resolution in the time domain, each point contains in-
formation about all frequencies.

e WFT: divides the time-frequency plane in rectangular boxes.
The resolution in time is increased at the expense of the fre-

guency resolution.

® DWT: scaling of the basis functions relative to their support.
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The Haar System

A. Haar in 1909, appendix to a thesis.
The Haar function is a simple step function
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Dilatations and Translations

The Haar function () is used to define a mother wavelet.

Dilatations and translations — other wavelets.
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W k() = 2172 (2x— k). (1)

Integer translation indices k and dilatation indices |.

=0, k=0

] j=4, k=13 |

0

I I I I I I I I I
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

[J U. Gunther, Eurolabs Course 2001



Properties of the Haar wavelet

Haar wavelets ; x have a compact support

supp(W k) = [k277, (k+1)277] (2)

l.e. they are zero outside this interval.
For each Haar wavelet )  the integral

/_Oo L|Jj7k<X)dX: 0.

|.e. the area above the X-axis is equal to the area below
the X-axis.
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Orthonormal System

{Wjk, J,k € Z} constitutes a complete orthonormal ba-
sisin Ly

<= Any square integrab le function can be appro-
ximated arbitraril y well by a linear combination of

these basis functions.

L,>(R) = space of complex valued functions with a finite
L>-norm:

IFllz= ([ 11(f)

(00)
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Father Wavelet

e For the Haar wavelet the father wavelet is a simple
step function:

1, xe][0,1]
"’:{ 0, x¢[0,1] °

e Required for fast DWT and wavelet construction (fa-
ther wavelet — mother wavelet).

e With the scaling function @ we can expand our origi-
nal set to {Qj,k; Wik, ] = Jo,K € Z}. The combined
set is again an orthonormal basis in Lo.
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Signal Appr oximation in the Haar System

A signal can be represented as

n—12i—-1

f(X) = Coo®(X) + J; kZO Cj kW k (X) (3)

Cj k are wavelet coefficients,
)j x are wavelets derived from a mother wavelet
@ is a scaling function (father wavelet)

Original Function Approximation with j=4
o
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o A
o 4
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Step Function — Wavelet Transform

Approximations of a function with increasing resolution
by a step function.

e Any Lo-function can be approximated by a simple
step function.

e The approximation converges for infinitely small
steps.

e Step functions do not constitute an orthonormal ba-
sis for L.
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Multiresolution Analysis (MRA)

G. Mallat

general framework to construct wavelet bases
start from a father wavelet

derive an orthonormal mother wavelet

and wavelet subspaces suitable to approximate
function with increasing resolution
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MRA 1

Start with the scaling function (father wavelet)

Qo = Px—K)
Set {@«} = orthonormal basis for a reference space
Vo.

The functions in Vy have the form
f(x) = Z (X —K)

Define a function space Vp, functions in [k, k+ 1]

Vo={f(x) = chcp(x— k)}.
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MRA 2

Starting from V we define linear spaces

Vi = {h(x) = f(2x) : f Vo)

Vi = {h(x) = f(2)x) : f €W}
V;: all functions constant on [5, <],
Set {1k} is an orthonormal basis in V3
with
PLi(X) = V20(2x— K)
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MRA 3

Vo — Vi —V,

Basis functions of V; are @; x = 2//2@(2)x— k).

(p generates a sequence of spaces {Vj, ] € Z} which
are nested :

VoCcViC...CVC...

Vj CVji1 | €Z.

If in addition every square integrable function can be
approximated by functions in

UV

>0

than {Vj, ] € Z} is a MRA!
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MRA 4

{Vj, ] € Z} is not a basis in L!
To obtain a basis we must orthogonaliz e it.
— find a W for which

v,

Figure 1: V1 = Vo PWo.

Vi =VoEPWb.
W is the orthogonal complement of Vj in V;.
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MRA 6

28

0 1

O, = Ux)

1
L Uy = 0(x)

- L)

2k

0

1

(P1k must be a linear combination of @y and Wo:

Po(X) = V20(2X) = v/2{@oo(X) — Woo(X)} /2
= —5{@00(X) — Woo(X)}
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MRA 7

Repeat the same process for higher values of |.
— consecutive summation of subspaces

Vist = VieW,
= VioWi_10W,
—_— Vo@Wo@Wl@...@VVj

j
= W @V\rf
1—0

Finally this sum of nested spaces spans :

j
Lo(R) =Vo® EQW.

|=0
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Lo(R) =Vo® GJ}W-

|=0

—> every square integrable function can be represen-
ted as the series

09 = 3 a0+ ;Z B k().

e The father wavelet ¢ creates a MRA

® Ok and Bok = coefficients for mother and father wa-
velets

e f provides a location in time and frequency

— The location in time is determined by k
— the location in frequency by | (the larger |, the
higher the frequency related to j k).
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n—12i—-1

f(X) = dog®(X) + Ci kWi k(X), (4)
(X) 00P(X) J;”(ZOJKUJJK()

Summation for f(X) stops at 2/~ for finite data sets
N = 2= =pumber of data points.
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multiresolution decomposition
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Thresholding

Noise reduction = Search for the largest "true" wavelet
coefficients.

Hard thresholding function: "keep or kill" selection:

X, 1f [X| > A
6hard(x) — { 0. if IXI <A

Soft thresholding:
If x> A

If |x| <A

{ XA, if x< A
ol

\ \
" \

Figure 2: Hard and soft thresholding.

soft

Universal threshold selection for white noise;

A =0y/2logn/y/n
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Denoising Procedure

Signal (FID)
4 DWT
Wavelet coeffs.
J Thresholding
J IDWT
Denoised signal
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Smoother Wavelet Bases

Must form an orthonormal basis for Ly(IR).
Minimize the wavelet coefficients for smooth functions.

Number constraints during the design of wavelets de-
termines number of vanishing moments.

Figure 3: Types of wavelets from left to right:
Daubechies (4), Coiflet (5) and Symmlet (8).

e Daubechies wavelets: vanishing moments for mo-
ther but not for father wavelets, asymmetric.

e Coiflets: additional vanishing moments for father wa-
velets.

e Symmlets are as close to symmetry as possible.
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WAVEWAT

Multiresolution Decomposition
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Noise Suppression

A: or iginal spectrum B: denoised spectrum
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C: wavelet coefficients D: wavelet coefficients after soft thresh.
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Wavelet shrinkage using a Daubechies (4) wavelet and
soft thresholding.
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SVD

H=U,SuViy.
Uand V are (L x L) and (M x M) unitary matrices
Sis (L x M) in size and contains the singular values.
Singular values<=> signal components in H.
Large signal components <> large singular values.
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SVD noise suppression

FID:

f=(%,S1,---,SN-1)
derive Hankel type matrix:

S S S 0 Svaa
H=| > 2 2w
S-1 S S+1 o N-1

No noise: Rank of H is equivalent to the number of si-
gnals in the FID.

Noise: — full rank.

Periodic components in the FID will be represented sin-
gular values.

O((L —M)2M) process!
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Linear prediction

LP-SVD: by Kumaresan and Tufts modified by Porat
and Friedlander.

Forward linear prediction: describe a data point by a
linear combination of K preceding points:

K

Xa =) &Xn-k; (5)
k=1

Backward linear prediction model by a linear combina-
tion of the K following points:

K

k=1
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K
Xn = Z DK X k- (7)
K=1

Equation 5 in matrix form:

X=a-Y

inversion of Y — matrix coefficients a:

by SVD:
Y = UAVT
— Y' is obtained by
YT =vA~iUT.
a= VA 1Ux
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Prediction coefficients ay — frequencies and damping
by calculating the roots of the polynomial

X —a - .. —ck=0.

The Z* must be damped exponentials!

The signal X, is described by
o 1
Xn=» AZ (8)
k=1

Ay = encode phase and amplitude of each signal
determined by an additional SVD of Z.

X=AZ.
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Forwar d-backward LP

Calculate Ay LP coefficients for forward and backward
LP

— two sets of polynomial roots

Forward linear prediction: complex roots inside the unit
circle, outside: noise / exp. incr. signal

Backward linear prediction: inside the unit circle

Root reflection: replace z by z/|z| = noise realted
signals are eliminated

061

L L L ! Lk L L L L ) = L L L ! e F L L L
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
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and C. Ludiwig

Standard processing: FFT, apodization functions,
phase correction, baseline correction (FLATT and
other algorithms), linear prediction (Ipsvd with root
reflection), Cadzow algorithm

Export to NMRVIEW, AURELIA
Peak picking: Export of peak lists to DYANA (NOAH)

SAR by NMR evaluation: Principal component ana-
lysis, clustering

Advanced wavelet algorithms

— Noise reduction (2D and 3D)
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— Wavelet based suppression of solvent signals
— Save data in wavelet format (50-80% reduced da-
ta size)
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NMRLab

Table 1: NMRDAT structure

NVMRDAT  field name
NAVE Dataset name. Used for saving su
SER Converted SER file.
MAT Processed data matrix.
ACQUS Acquisition parameters (3D).
PROC Processing parameters (3D).
DI SP Display parameters.
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NMR processing functions in NMRLAB.

Function

Description
hf t :
Hilbert Transform
fft*
Fast Fourier transform
| ft* _
Inverse fast Fourier
transform
df t :
Fourier transform
of BRUKER digital
filtered data
rft _
Real Fourier transform
for TPPI-type data
SNO :
smooth = polynomial
sovent filter [?]
sol . :
solvent filter by time-
domain convolution [?]
wavewat
WAVEWAT water sup-
pression
wdwf 2 _ :
Window functions
(gm, em, sine bell,
CUbiC Sine be”)D U. Gunther, Eurolabs Course 2001
basel | ne2

Different  algorithms
for baseline correction
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Contr ol functions in NMRLAB.

Function Description

nnr | ab MATLAB script to setup parameters for NN
re read raw data from disk

relist read series of experiments

readser read BRUKER ser files.

readacqus read parameters from BRUKER ser file
snd show data sets and sizes NMRDAT

ui phase interactive phase correction

ui cont interactive contour plotting®

sartitr analyze series of 2D NMR spectra (e.g. S.
edp edit proocessing parameters

edd edit display parameters

br owse browse, edit, save, export and load NMRLC
xfb process two dimensional data

xfal | process series of 2D data sets (e.g. SAR |
tf process three dimensional data

absc 2D/3D post processing baseline correctior
phasend 2D/3D post processing phase correction
denoi se 2D/3D post processing wavelet denoising
Xyztranspose  transpose 3D structures

makespc utility to create synthetic spectra

*MATLAB > 5.3 will automatically activate graphical tools and

For MATLAB 5.0-5.2 use the zoom and plotedit commands ins

Table 3:
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[ht]

Wavelet Shrinka ge Parameters in NMRLAB

gmf_type

par

thr_type

normalize
WT _type**

thr

wavelet type

(quadrature mirror filter)

QMF paramater

Type of shrinkage

Low-Frequency cutoff for shrinkage.

normalize noise *

threshold value

Haar,
Coiflet,

Daube
Vaidyal

Colflet:
(3).Dat
4,6,8,1
Symml

(8).

hard,

SURE,
MinMa;
must b
N = nt

period
fully tr

manual
versal

= num
points.

*2D and 3D version of normalizatidti"hasseeririzimented ir

**Other wavelet transforms (i.e. the Meyer wt) are available in

Parameters which yield good results for NMR spectroscopy hz




[ht]

Type of LP algorithm parameter ve
| psvd SVD based linear prediction  [FID, start,sto
prony PRONY’s method [FID,NB,NA]
st mbc Steiglitz McBride [FID,NB,NA,N
| pc LPC [FID,N]
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