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Abstract

This chapter provides a number of examples of numerical simulations in NMR. Main
focus is on advanced simulations in solid-state NMR using the widely used SIMPSON
simulation package. The chapter starts with introductory examples providing a gentle

Annual Reports on NMR Spectroscopy # 2020 Elsevier Ltd
ISSN 0066-4103 All rights reserved.
https://doi.org/10.1016/bs.arnmr.2019.12.001

1

ARTICLE IN PRESS

https://doi.org/10.1016/bs.arnmr.2019.12.001


introduction to SIMPSON and various concepts of solid-state NMR. Following the intro-
duction is a demonstration on how SIMPSON can interact with SIMMOL for setting up
spin systems of protein spin systems. Finally, we demonstrate how the versatile Tcl inter-
face of SIMPSON can be used to expand the capabilities of SIMPSON, here exemplified
by simulations of chemical exchange. The examples demonstrate that SIMPSONmay be
regarded a ‘virtual NMR spectrometer’.

Keywords: Solid-state NMR, Numerical simulations, SIMPSON, Virtual spectrometer

1. Introduction

Since the early days of NMR, researchers have benefitted from the

precise relation between the response of the nuclear spins in the spectrom-

eter and the theoretical descriptions of NMR [1–5]. This holds both for

liquid-state NMR pulse sequences, where the product-operator formalism

is very effective [2], for solids where anisotropic interactions need be con-

sidered [3], and for relaxation in liquids [4,5]. In many cases, it is not possible

to derive analytical solutions, in which case researchers turn to numerical

simulations. Such examples include (i) pulse sequences, where effects of

finite radio-frequency (rf ) pulses (nuclear spin interactions occurring simul-

taneously with the rf pulses) cannot be neglected, (ii) powder patterns in

solids, where the analytical description of the line shape cannot be derived,

and (iii) when fitting experimental line shapes.

The nuclear spin interactions that are measured in NMR experiments

of solid samples carry important information on the molecular structure

and dynamics. The most obvious example is the dipole-dipole interaction

between two nuclei, which is inversely proportional to the internuclear

distance to the third power. The chemical shift may also be related to struc-

ture, either through empirically established relations or by comparison

with quantum-chemical calculations. Finally, the quadrupole coupling

and J-coupling interactions are sensitive reporters on various molecular

features. As such, the nuclear spin interactions are equivalent to electron

density maps that crystallographers use to determine crystal structures by

X-ray diffraction.

The nuclear spin interactions are measured experimentally through line

shapes and eventually complex pulse sequences. In the past decades, substan-

tial efforts have been put into the development of NMR experiments that

measure the magnitude of the different nuclear spin interactions with high

precision. The development of such pulse sequences has led to many
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recent breakthroughs in solid-state NMR in so diverse areas as determining

atomic-resolution structures of membrane proteins [6–8] and fibrillating

proteins [9–11], structural characterization of functional materials [12],

and NMR crystallography [13] to name a few. Common for all of these

studies, and most other solid-state NMR studies in the literature, is that they

rely heavily on advanced numerical simulations to extract the structural

information from the NMR data.

Previously, most solid-state NMR research groups developed in-house

software solutions for their specific needs for numerical simulations as part

of the interpretation of their data. This severely limited the exchange of

knowledge and competences in the community. Later, substantial efforts

have been devoted to the development of software for numerical simula-

tions in solid-state NMR [14–21], which can be divided into two differ-

ent classes: (i) User-friendly software for fitting experimental spectra

[14,15,17,18], and (ii) software to understand the underlying spin dynamics

[16,19–23]. The first class is generally easy to use and can be used without

much prior knowledge. The second class is more versatile but generally is

associated with a steeper learning curve.

This chapter is written for students and researchers new to numerical

simulations in solid-state NMR as well as for more experienced users of

the versatile simulation program SIMPSON. The aim is to demonstrate

a number of simulations in different areas of solid-state NMR ranging from

basic introductory examples to advanced simulations of complex pulse

sequences or spin systems. This programwas developed to simulate any spin

system and any pulse sequence. The applications presented here will illus-

trate this by including basic introductory simulations that demonstrate the

concept of anisotropic interactions, powder averaging, nuclear spin inter-

actions, etc. and more advanced simulations including pulse-sequence opti-

mization and fitting experimental spectra. More advanced examples for

simulations of biological solid-state NMR experiments will also be

presented.

2. Basic concepts

SIMPSON is very versatile and may be regarded as a virtual spectrom-

eter able to simulate any spin system under various experimental conditions.

To achieve this flexibility, all relevant parameters obviously need to be

defined to be included in the simulations. SIMPSON reads its instructions
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from an input file, written in a scripting language. SIMPSON is based on the

Tool Command Language (Tcl) [24], which is a very flexible and widely

community-supported scripting language. Since SIMPSON interprets the

Tcl input file, it may be considered an advanced Tcl interpreter that has been

extended with instructions for spin systems, pulse sequences, and spectrum

processing features. This also means that all functionality of Tcl is available in

SIMPSON including the possibility to load third-party libraries. The advan-

tage of relying on a well-established scripting language is that many libraries

have been developed for completely different purposes and that extensive

documentation is available online (see e.g. Ref [24]).

2.1 Elements of the SIMPSON input file
A typical SIMPSON input file contains four sections

1. A specification of the spin system (the virtual sample): spinsys { ... }

2. A specification of elements of the virtual spectrometer: par { ... }

3. A specification of the pulse sequence: proc pulseq { ... }

4. A section to control the simulation: proc main { ... }

The spin system section is defined by the instruction spinsys {...}

which defines the size of the spin system (number and type of nuclei)

and specifies each of the nuclear spin interactions. The nuclear spin inter-

actions may include chemical shifts, J-couplings, dipole–dipole couplings,
and quadrupole coupling tensorial interactions. For the dipole–dipole
coupling, it is possible to specify a motionally averaged dipolar interaction

(dipolar_ave), which appears as a dipolar interaction with an asymmetry

parameter.

A simple example of a spin system involving a single 1H nucleus with an

isotropic chemical shift of 5ppm and a chemical shift anisotropy of 10ppm

for with an asymmetry parameter of η¼0.5 may be specified as.

spinsys {

channels 1H

nuclei 1H

shift 1 5p 10p 0.5 0 0 0

}

The Tcl code spinsys {...} invokes a call to the built-in procedure

‘spinsys’, which sets up the spin system with the given parameters. The first

line defines the channels used in the experiments. Like at the spectrometer,

all isotopes in the experiment must be connected to a channel. Next, all

nuclei in the sample are defined. If, for instance, two different hydrogen

atoms were present in the sample, they should be listed as two nuclei:
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nuclei 1H 1H. If the experiment includes one carbon and two protons, the

three nuclei would be listed.

channels 1H 13C

nuclei 1H 1H 13C

After defining the nuclei involved, all the relevant spin interactions should

be defined. In the example above, only the chemical shift is specified, by the

seven numbers following the shift command: (1) The nucleus number (the

nuclei specified range from 1 to N, where N is the total number of nuclei),

(2) the isotropic chemical shift given in Hz by default, but by appending a

“p” as above, the number will be interpreted as ppm, (3) the chemical shift

anisotropy (see Ref. [16] for a definition), (4) the asymmetry parameter (η),
(5–7) three Euler angles specifying the orientation of the shift tensor in the

crystal reference frame (see definition of reference frames below). Fig. 1 gives

a complete list of nuclear spin interactions implemented in SIMPSON and

the parameters to define them.

Fig. 1 Overview of the different nuclear spin interactions available in SIMPSON. The spin
number or spin-pair numbers (red) are marked (1), the magnitude of the tensor is
marked (2), and the three Euler angles representing the orientation of the tensor
marked (3). The magnitude of the tensor is represented by the isotropic value (chemical
shift and J coupling) the anisotropic value (all interactions), and the asymmetry param-
eter (all but dipole–dipole interaction). For the quadrupole coupling interaction, the
highest order of the interaction is given as (4). Only first and second-order interactions
are available in SIMPSON. Interaction strengths are given in Hz, but for the chemical shift
interaction, the isotropic and anisotropic values may be followed by a ‘p’ indicating that
the value is given in ppm (see text).
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The second section of the SIMPSON input file is the definition of all

other parameters needed to set up the simulation. The complete list of pos-

sible instructions is given in Refs [16, 22, 23]. An example could be.

par {

spin_rate 10000

start_operator I1z

detect_operator I2p

proton_frequency 1.2e9

np 512

gamma_angles 8

sw gamma_angles*spin_rate

crystal_file rep320

verbose 1101

variable tsw 1.0e6/sw

variable rf 50000

variable t90 0.25e6/rf

}

This example demonstrates some of the possibilities including basic calcula-

tions and definition of variables. All quantities are specified without units,

with the implicit requirement that frequencies are given in Hz (thus in

the example above, the spin rate is νr¼10 kHz, and the Larmor frequency

for 1H is ω0/2π¼1.2 GHz) and all pulses and delays are specified in μs.
Hence, the user defined variable tsw corresponds to the dwell time in μs.
The verbose entry takes up to eight zeroes or ones instructing SIMPSON

to provide output about (i) the spin system, (ii) the simulation progress,

(iii) simulation information, (iv) start and detect operators, (v) powder angles,

(vi) the rf averaging profile, (vii) the acquisition block, and (viii) the averag-

ing file. The above value 1101 asks SIMPSON to provide output about the

spin system, the simulation progress, and the start- and detect operators.

The crystal_file entry controls the potential powder averaging and can

specify either an internal or external crystal file that contains the (α, β) angle
pairs for the powder averaging (see below). Internal options, for the crystal file

are: alpha0beta0, alpha0beta90, rep10, rep20, rep30, rep66, rep100, rep144,

rep168, rep256, rep320, rep678, rep2000, zcw20, zcw33, zcw54, zcw88, zcw143,

zcw232, zcw376, zcw615, zcw986, zcw4180, and zcw28656. Crystal files

alpha0beta0 and alpha0beta90 correspond to single crystallites with angles

of (α,β)¼ (0°, 0°) and (α,β)¼ (0°, 90°), respectively. These crystallite files

are used to mimic single-crystal or liquid samples. The repXX crystallites are
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generated using the REPULSION algorithm [25] with XX crystallites, while

the zcwXX crystallites are generated using the approach of Zaremba [26],

Conroy [27], and Wolfsberg [28]. In general, we find that REPULSION

crystallites work best for smaller crystallite sets (fewer than some hundreds

of crystallites), while ZCWcrystallites work best for larger sets. Throughout

this paper, we treat the γ averaging separately, since this angle needs not

be averaged for static samples and may be averaged in synchrony with

the time propagation in favourable cases with sample spinning. However,

SIMPSON is able to handle crystallite files with all three Euler angles. In

cases where this is preferred, substantial efforts have been invested in devel-

oping efficient three-angle sets [29,30], which may be readily embedded in

SIMPSON as an external crystallite file.

The pulse sequence section of the SIMPSON input file is the definition

of a Tcl procedure named pulseq

proc pulseq {} {

global par

pulse $par(t90) $par(rf ) x

acq_block {

delay $par(tsw)

}

}

The first statement global par is a Tcl instruction that makes the parameter

named ‘par’ available in the procedure. If not specified, the program would

complain that the parameter $par(t90) is undefined in the pulseq procedure.

Thereafter, a 90° pulse is used to flip the magnetization into the xy-plane,

and acquisition is performed by the acq_block command of SIMPSON.

With this command, the FID points are separated by the inverse of the spec-

tral width corresponding to the normal dwell time, and the propagator is

obtained using the instruction following the acq_block statement, in this case

just a delay. Hence, the above pulse sequence corresponds to a normal

single-pulse experiment.

The key elements of a pulse sequence are pulses, delays, offset and acqui-

sition instructions, which may be setup in sequence by Tcl commands like

for loops, etc. A pulse instruction takes a number of arguments. First is the

length of the pulse (in μs), then followed by two arguments for each channel

(defined in the spinsys section): rf amplitude (in Hz) and the phase of the

pulse (in degrees or as x, y,�x,�y). A delay instruction takes only one argu-

ment: the duration (in μs). If you want to specify a pulse on one channel
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simultaneously with a delay on another channel, the delay is implemented as

a pulse with zero rf field strength. An offset instruction requires specifica-

tion of the transmitter carrier offset in Hz for each channel. Finally, the

acq_block instruction takes one argument, which is a list of pulses and delays.

Keeping the analogy to the virtual NMR spectrometer, the main section

of the SIMPSON input file contains the instructions the operator of the spec-

trometer would normally give to the spectrometer computer including start-

ing acquisition, apodization, Fourier Transforming, and saving the spectrum.

In SIMPSONterminology, this is embedded in theTcl procedure calledmain:

proc main {} {

# make the par variables available in this procedure

global par

# perform the simulation and store the FID as variable f

set f [fsimpson]

# add 100 Hz line broadening to the FID stored in $f

faddlb $f 100 0

# zerofill the FID

fzerofill $f 1024

# perform a Fourier transformation

fft $f

# save the spectrum in SIMPSON's binary format

fsave $f $par(name).spe -binary

}

In this example, we have used Tcl’s possibility tomake non-interpreted com-

ments by starting lines with the hashtag character ‘#’. The ‘experiment’ is

started by the command fsimpson, which starts the simulation and calculates

the FID using the pulse sequence and other parameters specified in the input

file. The command fsimpson returns a handle to the dataset, and the nomen-

clature set f [...] is the Tcl instruction for defining the variable f with the

value returned by the function in the square brackets. The following lines per-

form apodization (add line broadening, faddlb), zerofilling, Fourier transfor-

mation, and saving the spectrum. All of these instructions operate on the

dataset handle. Note that while the name of the variable storing the dataset

handle is f, the value of the variable is obtained by the instruction $f in Tcl.

It can be noted that as part of a conventional Tcl input file, wemay create

other procedures to perform specific tasks. For example, in the examples

prepared with this chapter, we have redefined the command fsave to allow

saving SIMPSON data in the Core Scientific Data Model [31], which is

more flexible than the default SIMPSON file format.
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2.2 Theory overview
We will not go into details with the underlying theory of solid-state NMR

in this chapter, but just summarize the essential parts necessary to understand

the simulation environment. For further details see refs. [16, 22, 23].

The Hamiltonian describing our spin system in the Zeeman interaction

frame takes the general form, in which all terms may be time dependent.

bH tð Þ ¼ bHCS tð Þ + bHDip tð Þ + bHQ tð Þ + bHJ tð Þ + bHrf tð Þ (1)

referring to the tensorial chemical shift (CS), homo- and heteronuclear

dipole-dipole coupling (Dip), quadrupolar (Q), J-coupling (J) nuclear spin

interactions as well as the rf field (rf ). Expressions for these Hamiltonians are

given elsewhere [16]. This Hamiltonian directs the density operator

according to the Liouville-von-Neumann equation.

d

dt
bρ tð Þ ¼ �i bH tð Þ,bρ tð Þ� �

: (2)

The solution to this differential equation introduces the propagator in the

equation of motion.

bρ tð Þ ¼ bU tð Þbρ 0ð Þ bU�1
tð Þ, bU tð Þ ¼ bTe�i

R t
0
bH t0ð Þdt0 (3)

where bT is the Dyson time-ordering operator that ensures correct evaluation

of the integral that involves non-commuting terms.

SIMPSON establishes expressions of all terms of the Hamiltonian in

Hilbert space, where the spin operators may be described by a square matrix

of dimensions (2I+1)� (2I+1), where I is the nuclear spin quantum num-

ber of the nucleus. When the spin system contains more nuclei, the Hilbert-

space matrices are expanded through the tensor product of the matrices

for the individual spins, leading to overall matrix dimensions n�n of a spin

system with N spins, where n is given by.

n ¼
YN
i¼1

2I i + 1ð Þ: (4)

Thus, a spin system with 10 1H atoms (spin I¼1/2) has matrix dimen-

sions of 210�210¼1024�1024, and a spin system consisting of two 93Nb

atoms (spin I¼9/2) has dimensions 102�102¼100�100. Due to the expo-

nential growth of matrix dimensions with the number of spins, selecting a

small yet relevant spin system is crucial. Most of the internal computations
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involvematrixmultiplication and diagonalization,which both are operations

where the computation time scales with the matrix dimensions in the third

power. Hence, adding an additional hydrogen atom to the simulation will in

general make the computation eight times longer.

SIMPSON solves the equation of motion (Eq. (3)) by dividing the pulse

sequence into sufficiently small steps that the Hamiltonian may be consid-

ered time-independent over the time step and then finds the most efficient

way to calculate the overall propagator [23]. In favourable cases, SIMPSON

exploits the potential sparsity of the matrices through arranging the

Hamiltonian in a block-diagonal fashion, leading to significant reduction

of the computation time. Knowing the propagator, the specified start oper-

ator (bρ 0ð Þ in Eq. ((3)) is propagated to find bρ tð Þ and its projection onto the

detect operator bQdet to give the detected signal.

s tð Þ ¼ bQ{
detjbρ tð Þ

D E
: (5)

When this equation is evaluated in matrix formalism, we calculate

s tð Þ ¼ Tr bQdetbρ tð Þ
� �

. The result scales with the size of the matrix, so a

two-spin system will have a different scaling than a single-spin system.

It would be possible to scale internally, but which scaling should be chosen

is not obvious. Hence, we have chosen to provide the signal unscaled in

SIMPSON.

The Hamiltonians for the nuclear spin interactions may conveniently be

written in the irreducible spherical tensor formalism, where they in general

consist of a rank-0 and a rank-2 term, and for the second-order quadrupolar

interaction also a rank-4 term.

bHλ ¼
X

l¼0, 2, 4ð Þ
Aλ
l0

� �L bT λ

l0 (6)

where (Al0
λ )L is the spatial rank-l element of interaction λ expressed in the

laboratory (L) frame, and bTI0

λ
is the spin-part of the Hamiltonian.

The spatial part of the Hamiltonian is established through the magni-

tude and asymmetry of the tensor and the orientation of its principal axis

frame in the crystal frame. The orientation is specified by three Euler angles

using the convention shown in Fig. 2A. Commonly, we represent the

coordinate transformation from frame X to frame Y by the Euler angles

ΩXY¼ (αXY,βXY, γXY). To obtain the description of the tensor in the labora-
tory frame,we use a series of coordinate transformations as outlined in Fig. 2B.
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Note the difference between the static and MAS case, since we need to

include a rotor-fixed coordinate system to simulate the effect of MAS.

In the static case, the second-rank tensor transforms as.

Aλ
20

� �L ¼ λaniso
3 cos 2βPL � 1ð Þ

2
� η

ffiffiffi
3

8

r
cos 2αPL sin

2βPL

 !
, (7)

with ΩPL representing the Euler angles for the rotation P!L.

The powder averaging is performed by the coordinate transformation

relating the crystal frame to either the laboratory frame or the rotor frame,

i.e. through ΩCL or ΩCR. The first case applies to static samples, for which

the last Euler angle γCL corresponding to a rotation around the z axis in the

laboratory frame is irrelevant, hence only the two angles αCL, βCL are nec-
essary. For a spinning sample, the axis of the last rotation coincides with the

rotor axis, hence all time-dependent terms of the Hamiltonian include

ωRt+ γCR, why we have chosen to keep the γ-angle of the crystallite

y′

γXY

βXY

αXY

zY

zX

yY

yL

zL

xL

xR

yR

xC

yC

zC

zP

xP

yP

zR

xY

yX

xX

A

B

Fig. 2 (A) Illustration of the rotations performed with three Euler angles relating two
frames marked X and Y. (B) Coordinate transformations used in SIMPSON. The nuclear
spin interactions are defined in their principal axis frame ‘P’, then transformed into the
crystal frame ‘C’ using the Euler anglesΩPC, then for static samples transformed directly
into the laboratory frame ‘L’ through ΩCL. For spinning samples, the intermediate rotor
frame ‘R’ is required.
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averaging separate in both the static and MAS case, as in many cases we can

make an efficient propagation e.g. using the γ-COMPUTE algorithm

[32]. Summation over different αCL, βCL crystallites in SIMPSON is done

by providing a so-called crystal file that contains a list of crystallites and

their relative weights. SIMPSON has a number of built-in crystal files

as listed above.

3. Basic SIMPSON examples

The following section provides a number of basic SIMPSON exam-

ples that we have used at summer schools, courses, and at conferences. The

examples have a dual purpose in this context: (i) Introducing the features of

the SIMPSON simulation environment and (ii) providing an introduction

to basic concepts of solid-state NMR such as powder averaging, magic-

angle spinning, coherence transfer through cross polarization, heteronuclear

decoupling, and quadrupolar nuclei.

All the examples may be run through the web platform EasyNMR here:

https://easynmr.pastis.dk/arns. The SIMPSON input files are also available

on nmr.au.dk for local execution of the program. All figures in this chapter

displaying simulations as a result of the example files provided with this

chapter are plotted using EasyNMR.

3.1 CSA static and MAS
The first example covers the orientation-dependence of tensorial nuclear

spin interactions as well as the concept of powder averaging. At the end, sim-

ulations of the same spin system under MAS are introduced, and the

resulting spectra compared with the static case.

We start by setting up the spin system for a single 1H nucleus with an iso-

tropic chemical shift of 0ppm and a chemical shift anisotropy of 10ppm for

an axially symmetric shift tensor (η¼0). If we orient the spin parallel to the

reference frame (corresponding to P!C Euler angles ofΩPC¼ (0, 0,0), the

entire spin system is defined by:

spinsys {

channels 1H

nuclei 1H

shift 1 0p 10p 0 0 0 0

}
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Bear in mind that which the keyword shift is an instruction that takes seven

numeric arguments:<index>< iso><aniso><eta><alpha><beta>
<gamma> (Fig. 1).

We perform our simulation on a static sample in a virtual spectrometer

operating at 400MHz proton frequency. Our simulation includes 2048

points of the FID, and we keep a spectral width of 20,000Hz. To simplify

our simulation, we set our starting operator to Ix for spin number 1 (I1x) and

define the detect operator as I+¼ Ix+ iI_y for spin 1 (I1p). Thereby, the

entire parameter section is given by

par {

spin_rate 0

np 2048

proton_frequency 400e6

start_operator I1x

detect_operator I1p

method direct

crystal_file alpha0beta0

gamma_angles 1

sw 20000

variable tsw 1.0e6/sw

verbose 1101

}

We further specify that crystallite averaging should use the crystal file

alpha0beta0, which corresponds to a single crystallite with angles

(αCL,βCL)¼ (0,0) implying that the crystal frame is aligned with the labo-

ratory frame. Hence, in this case the chemical shift tensor is aligned with

the laboratory frame.

The pulse program is in this case just acquisition of our signal:

proc pulseq {} {

global par

acq_block {

delay $par(tsw)

}

}

After generating the FID, we add a 100Hz apodization and zero-fill to 8192

points before the data is Fourier transformed and saved. This is controlled in

the main procedure of the input file.

13Versatile NMR simulations using SIMPSON
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proc main {} {

global par

set f [fsimpson]

faddlb $f 100 0

fzerofill $f 8192

fft $f

fsave $f $par(name).csdf \

-csdf -sfrq $par(proton_frequency) -name "Simulation"

}

We recommend the reader to read and understand the entire input file

before performing the tasks in the following exercise. The exercise may

be executed using the web platform EasyNMR here: https://easynmr.

pastis.dk/arns.

1. Run the simulation and verify that the resonance lies at the expected

position cf. Eq. (7). Try representing the x axis with either Hz or

ppm on the axis.

2. Change the angle beta (in degrees) and see what happens to the spec-

trum. At least make sure to check the angles 0, 90, and 54.74 and com-

pare with Eq. (7). Fig. 3A shows a number of simulations with different

β-angles.
3. Change the crystal file from alpha0beta0 to an entry that allows to sim-

ulate a powder pattern. This may be done using the crystal file zcw28656,

which is a powder with 28,656 crystallites distributed according to the

algorithm of Zaremba, Conroy and Wolfsberg [26–28]. Using this crys-

tal file, the spectrum becomes a powder pattern (see Fig. 3B).

4. If the crystallite has too few crystallites, e.g. by using the crystal file rep678,

the spectrumwill appear ragged indicating that there are not enough crys-

tallites to provide a smooth converged powder lineshape. As a rough rule

of thumb, several thousands of crystallites are required to provide a smooth

lineshape simulation (see the grey spectrum in Fig. 3B).

5. Change the crystal file back to zcw28656 and change the asymmetry

parameter. As evident from Fig. 3C, this moves the singularities in

the spectrum as expected.

Turning to the MAS example, only few lines need be changed in the input

file. In the parameter section, the spin_rate instruction should give the spin

rate in Hz and the number of γCR-angles (specified by the instruction

gamma_angles) should be larger than one (vide infra).

6. Use the MAS example file to and simulate the spectrum under 1kHz

MAS using 8 γCR-angles and observe the result. Spinning sidebands with
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zcw4180
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MAS 
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05 -5

kHz

Fig. 3 Simulation of static spectra for a single 1H atomwith a chemical shift anisotropy
of 10ppm. (A) Spectra for different values for βCL give resonances at different frequen-
cies. (B) Overlay of simulations of a powder pattern with an insufficient number
of crystallites (blue, rep678) or sufficient number of crystals (orange, zcw4180).
(C) Simulations of powder patterns with different values for the asymmetry parameter
(η). (D) Comparison between a static (orange) and a MAS (blue) simulated spectra.
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negative intensity indicate that there is not sufficient of γCR-angles, so
and you should increase the value for gamma_angles until a converged

spinning sideband manifold is obtained. In this example, 16 γCR-angles
should be enough.

7. Change the spin rate to different speed and use these simulations to

observe how all spinning sidebands except the center band (located at

the isotropic shift) move.

The simulation resulting from point 6 above is shown in Fig. 3D and is com-

pared with the corresponding static simulation. As a rule of thumb, the num-

ber of γCR angles for a MAS simulation should be larger than the number of

spinning sidebands observed in the spectrum. Simulation of a spinning side-

band manifold requires substantially fewer crystallites than a static powder

pattern, so a general advice is to choose a few hundreds of αCR, βCR-
crystallites for a MAS spinning sideband manifold whereas a powder pattern

requires thousands of crystallites.

3.2 1H decoupling
High-power decoupling in solids at low or moderate spinning speeds is a

challenging task due to the strong dipolar interactions present in solids.

Several pulse schemes have been proposed to ameliorate this task. Two-

pulse phase modulation (TPPM) [33], XiX [34], and SPINAL-64 [35] are

just a few commonly used sequences. SIMPSON is a perfect tool to examine

the performance of such sequences. Here, we will investigate the TPPM and

XiX pulse sequences, both of which can be represented by the pulse

sequence shown in Fig. 4A, andwhich have also beenmapped into the recent

Unified Two-Pulse heteronuclear Decoupling (UTPD) scheme [36]. For

TPPM themaximum intensity is foundwhen the pulse length τp corresponds
to approximately a π-pulse and the TPPM angle is around 10–15° as shown
in Fig. 4B. XiX is a special case where ϕ¼π/2 and the pulse length is sig-

nificantly longer. The characteristics of this pulse sequence have been inves-

tigated in detail in Ref. [37] and are reproduced in Fig. 4C. Here, pulse

lengths of quarter-integer multiples of the rotor period lead to recoupling

conditions and thereby poor decoupling, while the non-resonant conditions

in general perform better than TPPM.

The spin system used in this example is larger than for the previous exam-

ple: Here we use the spin system of a –CH2– group with a carbon-13 atom

including all three interatomic dipolar couplings. For the specification of the

Euler angles of the dipolar couplings, we have aligned one of the C–Hbonds
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Fig. 4 (A) Pulse scheme for heteronuclear decoupling. (B) Experimental decoupling effi-
ciency obtained using TPPM decoupling for Ca in glycine using a spin rate of 25kHz and
an rf field strength of 150kHz for the decoupling. (C) Experimental decoupling efficiency
of XiX for the Ca resonance of alanine using a spin rate of 30kHz and an rf field strength
of 150kHz for the decoupling. The dashed line represents the intensity obtained
with TPPM decoupling. (D) SIMPSON simulations of 13C NMR spectra of a CH2 groupwith
CW or TPPM decoupling using different values for the TPPM angle. Panel (B): Adapted
from ref. I. Scholz, P. Hodgkinson, B.H. Meier, M. Ernst, Understanding two-pulse phase-
modulated decoupling in solid-state NMR, J. Chem. Phys. 130 (2009) 114510 with the
permission of AIP Publishing. Panel (C): Adapted from ref. A. Detken, E.H. Hardy, M.
Ernst, B.H. Meier, Simple and efficient decoupling in magic-angle spinning solid-state
NMR: the XiX scheme, Chem. Phys. Lett. 356 (2002) 298–304 with permission from Elsevier.
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(from C1 to H2) along the z axis of the crystal frame implying that the Euler

angles of the dipolar coupling between nuclei 1 and 2 are all zero. The other

C–H bond is inclined at an angle of 109.5° relative to the first C–H bond.

The dipolar couplings strengths are 23.3kHz and 21.3kHz for C–H and

H–H respectively. For the creation of bigger spin systems, go to the

SIMMOL section for inspiration.

In the SIMPSON input file for TPPM we have chosen to control the

angle ϕ by the Tcl variable par(tppm_angle) specified by the following line

in the parameter section.

variable tppm_angle 15

and the acquisition using TPPM decoupling is achieved by the following

pulse sequence.

proc pulseq {} {

global par

acq_block {

pulse $par(t180) $par(rf ) $par(tppm_angle) 0 0

pulse $par(t180) $par(rf ) [expr -$par(tppm_angle)] 0 0

}

}

where the decoupling is achieved using the two pulse instructions with the

rf field strength $par(rf ) on the hydrogen channel and zero on the carbon

channel. Note that we have used the Tcl command expr to evaluate the

expression providing the negative TPPM angle.

For XiX, we have chosen to specify the pulse length in fractions of the

rotor period using the variable par(xix_frac) and the following acquisition

statement in the pulse sequence.

acq_block {

pulse [expr $par(tr)*$par(xix_frac)] $par(rf ) x 0 0

pulse [expr $par(tr)*$par(xix_frac)] $par(rf ) -x 0 0

}

where the variable par(tr) is the rotor period. In both cases, the SIMPSON

command acq_block seeks to find the most efficient way to propagate the

evolution of the spin system by reusing propagators at different times if

possible [23].

In the exercise, we compare the efficiency of tppm and XiX to that of

continuous wave decoupling.

1. Run the three simulations and compare the results. Try varying the

parameters defining the characteristics of TPPM and XiX (tppm_angle

and xix_frac), and observe how they change the quality of the spectra.
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2. Change the spinning speed to 111kHz and evaluate the efficiency of

decoupling in the low power condition (ca ¼ of the spinning fre-

quency) [38]. You may have to increase the number of points to sample

the entire FID.

The outcome of the simulations in point 1 is shown in Fig. 4D. These sim-

ulations demonstrate that both TPPM and XiX, when optimized, provide

superior decoupling to conventional CW decoupling.

3.3 Cross-polarization
One of the most important application areas of the versatile numerical sim-

ulations offered by SIMPSON and other general-purpose NMR simula-

tion programs is the examination and evaluation of pulse sequences. In

other words, SIMPSON offers information about the stability of the pulse

sequences towards variations in offsets, pulse strength and other parameters.

To illustrate such an application, we will focus on heteronuclear coherence

transfer using cross polarization [39]. This example investigates the cross-

polarization pulse sequence for transfer of coherence from 1H to 13C for

a simple two-spin model system. We will investigate the transfer as a func-

tion of the length of the mixing time and the rf field strengths on the two

channels. We know that the Hartmann-Hahn match is obtained by the

condition.

νIrf ¼ �νSrf � nνr , n ¼ 1, 2 (8)

On the spectrometer, investigations of the transfer efficiency as a func-

tion of the mixing time would require acquisition of a number of experi-

ments with different values for the mixing time, for which the total

intensity would be examined as outlined in Fig. 5A. Since the total intensity

in the spectrum is proportional to the first point in the FID, it is much more

convenient just to sample the first point in the FID and then continue the

propagation with the mixing pulse, since we do not have to worry about

pulse deadtime etc. in numerical simulations. This scenario is outlined in

Fig. 5B. It is once again the command acq_block, which is responsible

for this stepwise incrementation of the mixing time. As we only sample

the first point of the FID, the SIMPSON input file does not contain any

command to Fourier transform the signal after end simulation.

As a final simplification of the simulation, we will assume that it is pos-

sible to perform an ideal 90° pulse, so we will not waste simulation time on

calculating the effect of the first pulse on the 1H channel. Instead, we will just

set the start operator to I2x (Ix on channel 2, hydrogen) and detect the
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transferred coherence using I1x (Ix on channel 1, carbon), so the pulse

sequence reduces to

proc pulseq {} {

global par

acq_block {

pulse $par(tsw) $par(rfC) x $par(rfH) x

}

}

To investigate the ability of the CP pulse sequence to transfer coherence

between different spins, we first start by running a simulation of the trans-

fer efficiency versus the mixing time using the above pulse sequence for a

single 13C–1H spin pair oriented along the magnetic field. The sample is

static and we put 50kHz RF field strength on both channels, and the

mixing time is varied in steps of 5μs (defined by the parameter $par(tsw)).

Since we sample 512 points ($par(np)), the maximum mixing time is

2.56ms.

Perform the following steps:

1. Run the simulation and observe the build-up for a single crystal of an

isolated C–H spin pair.

2. Change the rf field strength on the 13C channel. This is controlled by

the line variable rfC 50000 in the parameter section of the input file.

1H

13C

A

1H

13C

B

Fig. 5 Cross polarization pulse sequences. (A) Conventional setup for performing a
series of experiments with increased contact time. The first point in the FID is indicated
by a red dot. (B) SIMPSON simulation strategy for such an experiment, where only the
first point in the FID is sampled for each contact time. Hence the simulation is performed
as a one-dimensional simulation.
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By changing this value, you move away from Hartmann-Hahn match

leading to poorer transfer efficiency and a modulation of the periodicity

of the transfer.

3. Change back rfC and modify the dipolar coupling. Look at the oscilla-

tion period of the build-up curve and see how this depends on the dipo-

lar coupling strength.

Having established these basic tests, it is now time to investigate the spin

dynamics of the CP pulse sequence for a powder sample. In a powder, the

effective dipolar coupling will be modified by the factor (3cos2βCL�1)/2,

according to Eq. (7), whichwill affect the oscillation frequency observed pre-

viously. CP simulations of static and MAS powder samples are investigated

using the following steps:

4. Change the crystal file to rep168 to make a powder simulation and

observe the result.

5. Change to MAS by setting the spin rate and increasing the number

of γ-angles to e.g., 8. Verify that the maximum intensity reaches

the theoretical maximum of 73%, when appropriate values for the rf

field strengths are used to fulfil the Hartmann-Hahn match for a

spinning sample cf. Eq. (8). Try different conditions and observe the

sign of the responding signal depending on the matching condition

in Eq. (8).

3.4 REDOR
Sometimes, pulse sequences contain a number of repeated blocks, for which

it will be convenient to reuse the propagators for these repeated blocks. The

heteronuclear recoupling technique REDOR—rotational echo double

resonance—introduced by Gullion and Schaefer [40] is a nice example of

such a sequence. The pulse sequence is sketched in Fig. 6A. The pulse

sequence typically starts with cross-polarization from hydrogen followed

by an echo on the detected nucleus with repeated, rotor synchronized

refocusing pulses on the third channel during the echo/mixing time.

Two experiments are performed; the experiment with refocusing pulses

on the third channel recouples the heteronuclear dipolar coupling (S),

and a reference experiment without the refocusing pulses (S0) to be

able to compensate transverse relaxation during the experiment. A plot

of S/S0 as a function of the echo time allows determination of the

heteronuclear dipolar coupling.
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For the simulation of this pulse sequence, we will only consider the part

framed by the grey box in Fig. 6A. For this reason, we omit the protons

when defining the spin system and define only the 13C and 15N channels,

the two spins and their dipole-dipole coupling.

spinsys {

channels 13C 15N

nuclei 13C 15N

dipole 1 2 895 10 20 30

}

We perform the experiment at a 400MHz spectrometer using a spin rate of

10kHz. The density operator after the initial CP is given by I1x, and we

detect I1p. We use the par section of the input file to define the rf field

strength in Hz and calculate the rotor period (in μs) and pulse lengths.

1H

13C

A

15N

1 2 1

B

0 1 2 3 4 5 6
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Fig. 6 (A) REDOR pulse sequence with indication of the part considered in the SIMPSON
simulation framed in the grey box. Below the pulse sequence is indicated the propaga-
tors used in the efficient SIMPSON simulation (see text). (B) SIMPSON simulated REDOR
dephasing curves for different distances for a 13C–15N spin pair.
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We set the pulse power 50kHz implying that the π-pulses will have a dura-
tion of 10μs. In REDOR, the increment of the mixing time corresponds to

two rotor periods. In SIMPSON, we need to specify the spectral width for

the dimension, which hence corresponds to νr/2. The complete parameter

section then reads.

par {

np 32

spin_rate 10000

proton_frequency 400e6

start_operator I1x

detect_operator I1p

method direct

crystal_file rep66

gamma_angles 8

sw spin_rate/2

variable tsw 1e6/sw

verbose 1101

variable tr 1e6/spin_rate

variable tr2 0.5e6/spin_rate

variable rf 50000

variable t180 0.5e6/rf

}

For simplicity and since REDOR is in general not too sensitive to rf imper-

fections, we will use the ideal pulse implementation available in SIMPSON

[16] for all pulses. Ideal pulses are called by the command.

pulseid <duration> <rf> <phase> ...

identically to regular pulses. The difference is that although a pulse duration

is specified, this value is only used to calculate the flip angle of the pulse. The

ideal pulse has zero effective duration, making it easy to implement a rotor-

synchronized pulse sequence.

The pulse sequence is more complicated than those in the prior examples

and uses all the common pulse-sequence elements: pulses, delays, and acqui-

sition instructions. The pulse sequence is implemented as a one-dimensional

experiment following the same strategy as in the CP example above, such

that only the intensity for each mixing time is sampled. Incrementation

of the mixing period is controlled by the for loops that ensure that more

and more pulses are employed on the 15N channel:
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proc pulseq {} {

global par

acq

for {set i 0} {$i < $par(np)-1} {incr i} {

reset

# First half of the sequence of π-pulses on 15N

for {set j 1} {$j <= $i} {incr j} {

delay $par(tr2)

pulseid $par(t180) 0 0 $par(rf ) x

delay $par(tr2)

pulseid $par(t180) 0 0 $par(rf ) y

}

# Central echo with π-pulse on 13C

delay $par(tr2)

pulseid $par(t180) 0 0 $par(rf ) x

delay $par(tr2)

# Second half of the sequence of π-pulses on 15N

pulseid $par(t180) $par(rf ) x 0 0

for {set j 0} {$j <= $i} {incr j} {

delay $par(tr2)

pulseid $par(t180) 0 0 $par(rf ) x

delay $par(tr2)

pulseid $par(t180) 0 0 $par(rf ) y

}

acq

}

}

Note that we need not record the S0 reference spectrum, as there is no relax-

ation in the SIMPSON implementation of REDOR. The brute-force sim-

ulation described above is time consuming, as the same pulse sequence

elements are calculated over and over again. SIMPSON has a convenient

solution to this problem; it is possible to calculate a pulse sequence block once,

store its propagator, and reuse it again at a later stage. This is possible, when-

ever the (potentially time dependent) Hamiltonian providing the propagator

is identical at several places in the pulse sequence. This also implies that when

reusing propagators in a MAS simulation, the propagator can only be used at

the same time relative to the rotor period to ensure fulfilment of this criterion.

The numbered brackets below the pulse sequence in Fig. 6A show the two

different pulse sequence blocks that are repeated over and over again in
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the REDOR pulse sequence. Hence, we calculate these two propagators for

efficient simulation of the pulse sequence. The propagators are first calculated

once and stored using the command store <n> and are reused through the

prop <n>, leading to the simpler and faster REDOR implementation.

proc pulseq {} {

global par

# Calculation of the first propagator

reset

delay $par(tr2)

pulseid $par(t180) 0 0 $par(rf ) x

delay $par(tr2)

pulseid $par(t180) 0 0 $par(rf ) y

store 1

# Calculation of the second propagator

reset

# Acquisition of the first datapoint

acq

delay $par(tr2)

pulseid $par(t180) 0 x $par(rf ) x

delay $par(tr2)

pulseid $par(t180) $par(rf ) x 0 x

prop 1

store 2

# Acquisition of the second datapoint

acq

# Acquisition of remaining datapoint

for {set i 2} {$i < $par(np)} {incr i} {

reset

prop 1

prop 2

prop 1

store 2

acq

}

}

Clearly, this is a very compact but rather obscure way to implement the

REDOR pulse sequence. However, this implementation is significantly
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more efficient and leads to significant shorter calculation times. The pro-

vided input file allows to perform the simulation in a brute-force manner

without reusing propagators or using an input file with propagators.

1. Try both input files to appreciate the improved speed of the propagator-

programmed input file. These simulations show the dephasing as a func-

tion of theREDOR time. Vary the dipole coupling strength and examine

the dephasing curve.

Fig. 6B shows some simulations representing different dipolar couplings, and

the well-known dephasing curves are observed. This example may serve as

an example for simulation of REDOR dephasing curves to compare with

experimental curves. Importing experimental data into SIMPSON for a real

fitting is a different challenge that we will address for a different type of

experiments below.

3.5 Fitting an experimental spectrum
When fitting an experimental spectrum, we use an external Tcl optimization

library that calls the SIMPLEX [41] algorithm. The algorithm varies a

defined set of parameters to minimize a predefined function [42]. In this

exercise, we wish to minimize the root-mean square (RMS) deviation

between the experimental and simulated spectrum by changing the param-

eters for the chemical shift tensor governing the spinning-sideband manifold

of the spectrum. Before doing that, it is convenient to condition the exper-

imental spectrum by (i) ensuring that the baseline is correct, (ii) extracting

the relevant region of the spectrum, and (iii) adjust the number of points in

the experimental spectrum by interpolation to a Fourier number (2n). If the

experiment is performed usingMAS, the range should preferably be an inte-

ger multiple of the spin rate to ensure the fastest possible simulations. We

note that steps (ii) and (iii) are handled internally in some simulation pack-

ages like dmFIT [18] and STARS [15], but in SIMPSONwe need to specify

these things by hand. In the simulation example, these steps are done using

the input file baseline.in, which performs no simulations but sets up the

baseline ranges and defines the new spectral window for the experimental

spectrum. The script uses SIMPSON’s ability to load a spectrum (through

the command fload) and process spectral data to perform the desired oper-

ations. For convenience, it returns three spectra: (1) the baseline corrected

spectrum extraction, (2) the baseline, and (3) the baseline ranges. Plotting all

three spectra gives a good impression of the quality of the baseline algorithm.

The experimental spectrum used here is a 13C spectrum of hexamethyl-

benzene (HMB) recorded at 400MHz using 1H decoupling and a spin rate
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of νr¼2200 Hz. In the top of the script baseline.in, baseline regions are

specified as intervals between the spinning side bands and the new spectral

width that should be fitted. As shown in Fig. 7A, the spectrum shows a spin-

ning sideband manifold in the range from 20 to 215ppm and an intense peak

at 14.5ppm. The intense peak is attributed to the methyl groups, while the

spinning sidebandmanifold is due to the CSA of the aromatic carbons. Upon

executing the script baseline.in, we obtain a spectrum with reduced spec-

tral width and information about the selected baseline. Fig. 7A also shows

the selected baseline ranges.

To fit the CSA pattern, we pass the processed experimental spectrum

into the SIMPSON input file fit.in, which loads the experimental spec-

trum using the instruction.

fload “baseline_0.spe”

in the main section of the input file. The fitting is performed using the Opt

library [42] that is loaded using the instruction.

package require opt 1.0

in the top of the input file. The opt package is initialized, and the relevant

fitting parameters are defined with the code.

100 0 -100
13C shift (ppm)

200

150 100 50
13C shift (ppm)

0200

A

B

Fig. 7 (A) Experimental spectrum (orange) and base line regions (blue) for a 400MHz
13C solid-state NMR spectrum of hexamethylbenzene. (B) Baseline-corrected expansion
of the experimental spectrum (blue) and fitted CSA spinning-sidebands for the
aromatic site.
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opt::function rms

opt::newpar csa 100 2

opt::newpar eta 0.2 0.05

opt::newpar iso 130 0.1

opt::newpar lb 100 10 10200

The first line specifies that the library should minimize the return value of

the Tcl function rms, which is specified in the input file. The remaining lines

specify the parameters to optimize, their starting value, and the initial step

size to establish the SIMPLEX kernel. The latter line has two extra (optional)

numbers specified: The minimum and maximum values the parameter is

allowed to take, in this case ensuring that the applied line broadening is

between 10Hz and 200Hz. If no boundaries are specified, the algorithm

allows an unconstrained optimization.

Fig. 7B shows an overlay of the processed experimental spectrum and the

simulation to allow direct comparison. We observe an excellent agreement

for the spinning sideband manifold of the aromatic site, suggesting that we

found the correct parameters. Run the scripts baseline.in and fit.in in this

order and observe the output.

A potential next step in an optimization is to assess the accuracy of the

different parameters. To determine this, we typically calculate 95% confi-

dence intervals for the individual parameters. With the opt package, this

is a straightforward process that has previously been illustrated for different

cases [23]. In addition, a thorough explanation of how the opt library cal-

culates 95% confidence intervals is given in the accompanying documenta-

tion [42]. Fig. 8 reproduces such 95% confidence interval calculations for an

optimization of the experimental 15N spectrum of a peptide with a single
15N labelled amino acid in oriented lipid bilayers. The spectrum is recorded

using homonuclear decoupling and yields a doublet due to the 1H–15N
dipolar coupling. The asymmetry of the doublet may be explained by the

presence of mosaic spread in the sample. The SIMPSON simulation con-

vincingly reproduces the asymmetry as seen in Fig. 8A. The accuracy of

the fitting parameters is assessed from the 95% confidence intervals shown

in Fig. 8B showing the expected parabolic variation of the optimum rms

deviation when a parameter is systematically varied.

3.6 Satellite transitions for quadrupolar nuclei
Quadrupolar nuclei represent a very exciting target for SIMPSON and other

full density-matrix simulation programs, as such programs offer the possibil-

ity to exploit the combined effect of rf pulses and the quadrupolar coupling,
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Fig. 8 Illustration of calculating 95% confidence intervals to determine the precision
of fitted parameters. (A) Experimental (bottom) and simulated (top) 15N spectra of
alamethicin-15N-Aib8 in oriented lipid bilayers. The spectrum is recorded using 1H
FSLG decoupling resulting in an asymmetric doublet due to the 1H–15N dipolar cou-
pling in the amide and mosaic spread in the alignment [83]. (B) Calculations of
95% confidence intervals for the four parameters optimized. The solid lines represent
the parabolic fit to the points. Reproduced from Ref. Z. Tošner, R. Andersen, B.
Stevensson, M. Ed�en, N.C. Nielsen, T. Vosegaard, Computer-intensive simulation of
solid-state NMR experiments using SIMPSON, J. Magn. Reson. 246 (2014) 79–93 with
permission from Elsevier.
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which is often too strong to neglect during the rf pulses. Such effects will

be discussed further in the section on excitation of multiple-quantum

coherences below.

Here, we will investigate the basic features of quadrupolar nuclei dis-

playing satellite transitions depending on the nuclear spin and therefore we

have omitted any pulses from the input file. First, we will investigate the posi-

tion and intensities of the transitions observed for a single crystallite of a
27Al (spin I¼5/2). The quadrupole coupling tensor is setup by this line in

the spin system description.

quadrupole 1 1 0.6e6 0.2 0 0 0

The first number represents the nucleus, the second indicates to which order

in the Magnus expansion the quadrupole coupling should be considered. In

this case the specification is that only the first-order quadrupolar interaction

should be considered. The following two numbers are the quadrupolar cou-

pling, CQ, and the asymmetry parameter, ηQ, and the last three are the three
Euler angles, ΩPC, for the quadrupole coupling tensor. Since the first-order

quadrupolar Hamiltonian is independent of the magnetic field strength, the

proton Larmor frequency needs not be specified. The following steps give an

illustrative introduction to quadrupolar nuclei, and selected simulations are

shown in Fig. 9 for illustration:

1. Run the simulation of a single 27Al nucleus and ensure you see the

expected 5 lines corresponding to two outer satellites, two inner satel-

lites, and a central transition.

2. Measure the intensity ratio between the lines. Ideally the ratio should

follow the equation I(I+1)�m(m�1).

3. Try the same simulation with 93Nb (spin I¼9/2) instead of 27Al.

4. Change back the nucleus to 27Al and the crystal file to rep678 or even

higher to get a nice powder pattern. Are the singularities located where

you expected them to be? Bear in mind that pattern for each of the sat-

ellite transitions is just the powder pattern of a second-rank tensor, just

like a CSA pattern.

5. When simulating a powder pattern of the satellite transitions, it may be

convenient to use I1p-I1c as detect operator to remove the sharp central

peak. The operator I1c represents the operator I+ for the central transi-

tion of nucleus number 1.

6. Try similar simulations with different values for the asymmetry param-

eter. You may need to increase the number of crystallites for conver-

gence of the line shape.

30 Dennis W. Juhl et al.

ARTICLE IN PRESS



3.7 Second-order quadrupolar line shapes
When the quadrupole coupling becomes larger (some MHz) we will start

to observe the second-order quadrupolar broadening of the central transi-

tion for quadrupolar nuclei with half-integer nuclear spin. Notably, this line

broadening cannot be completely removed byMAS, only reduced. To inves-

tigate this effect, an example is provided for an 87Rb nucleus with quadrupole

coupling parameters ofCQ¼3.3 MHz, ηQ¼0.2 corresponding to the quad-

rupole coupling parameters of 87Rb inRbClO4 [43]. In order to compare the

static and MAS spectra easily, the input file is constructed to simulate both at

the same time. To do so, the static spectrum is simulated first, and then the

spin rate and gamma angles are changed in themain section of the SIMPSON

input in order to fit a MAS spectrum.

1. Run the simulation and observe the result. Are the singularities located at

correct frequencies for both the static and MAS spectra? See for example

recent reviews of Bain and co-workers [44,45].

200 0 -200

kHz

200 0 -200

kHz

200 0 -200

kHz

200 0 -200

kHz

A B

C D 

Fig. 9 Satellite transitions in quadrupolar nuclei. (A) Simulation of the NMR spectrum for
a 27Al nucleus in a single crystal with a quadrupole coupling of 600kHz. (B) Same sim-
ulation, but for a 93Nb spin. (C, D) 27Al powder patterns for the same spin system as
applied in (A). In (C) the detect operator is I+ for all transitions, while the central tran-
sition is omitted in (D).
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2. What is—approximately—the center of gravity for the line? How does

that match with the isotropic chemical shift of 0ppm?

3. Try the two simulations with different values for the asymmetry

parameter.

Fig. 10A shows the static and MAS spectra obtained by the input file of this

example. The narrowing throughMAS is clearly observed, but most notably

we also observe that there is a significant second-order line broadening for

both the MAS and static spectra.

A convenient feature of SIMPSON is the ability to use crystallite inter-

polation as explained elsewhere [23]. This is particularly interesting when

simulating line shapes, where conventional powder averaging requires too

many crystallites. To simulate the MAS spectrum above using crystallite

interpolation, we specify the methods entry in the par section as well as

the crystal_file, which now needs two sets of crystallites.

method gcompute freq FWTASGinterpolation

crystal_file LEBh/LEBh295 ROSELEBh/ROSELEBh4057

Static
MAS

10 0 -10 -20

kHz

20

-2 -3 -4 -5
kHz

-1

Normal
Interpolation

A

B

Fig. 10 (A) Simulated spectra showing the line shapes of the second-order quadrupolar
interaction in 87Rb static and MAS experiments for a nucleus with quadrupole coupling
parameters of CQ¼3.3 MHz and η¼0.2. (B) The MAS spectrum simulated using the nor-
mal time-domain simulation (blue) or using frequency-domain interpolation (orange), in
both cases without applying any linebroadening.

32 Dennis W. Juhl et al.

ARTICLE IN PRESS



The method statement instructs SIMPSON to use the γ-COMPUTE algo-

rithm [23]. along with Fast Wigner Transform (FWT) [46] and Alderman-

Solum-Grant [47] crystallite interpolation.

The efficiency of using crystallite interpolation is illustrated in Fig. 10B,

where a simulation using the LEBh/ROSELEBh crystallites with 4057 crys-

tallites is compared with the conventional simulation using a zcw crystal file

with 4180 crystallites. It should be noted that the spectra are represented

without any apodization.

3.8 RF pulses for quadrupolar nuclei
With large quadrupole couplings, we cannot neglect the quadrupolar inter-

action during RF pulses. This has implications for the choice of RF field

strengths and pulse lengths. In the case of very strong pulses, we can neglect

the quadrupole coupling interaction as we typically do with other interac-

tions. This is typically referred to as the strong-pulse regime.

For half-integer quadrupolar nuclei, there exists an interesting weak-

pulse regime, in which the pulse only affects the central transition while

it leaves the satellite transitions untouched. Between the weak- and

strong-pulse regimes, the effect of the rf pulse does not follow simple rules

like the well-known fact that the flip angle in the strong-pulse regime

equals the product of the rf field strength and the pulse length: θ¼τpνrf.
In the weak-pulse regime, interestingly, the nutation frequency is different,

because of the truncated Hamiltonian: θ¼ (I+1/2)τpνrf. Hence, the nutation

frequency is doubled for a spin-3/2 nucleus when using a central-transition

selective pulse (weak-pulse regime). Fig. 11 illustrates this effect through
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Fig. 11 Nutation curves showing the intensity as a function of the pulse length for a
87Rb atom experiencing a quadrupole coupling of 1MHz. The nutation curves represent
rf field strengths of 10kHz (blue) and 200kHz (orange) as well as for an ideal pulse.
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plots of the intensity as a function of the product of the pulse length and rf

field strength for a 87Rb nucleus (spin-3/2) experiencing a quadrupole

coupling of 1MHz. This figure clearly illustrates the conventional

(corresponding to the strong-pulse regime) and the central-transition

selective regimes as well as the nutation curve for an intermediate rf field

strength providing a distorted nutation curve.

The exercise investigates this effect in detail by addressing the following

points.

1. Run the simulation and check the nutation frequency. We expect to be

in the central-transition selective regime for the present setup.

2. Try to vary the RF field strength and see if there are any values for which

you obtain the expected nutation frequency. (Hint: try going to lower

RF field strengths).

3. Change the spin system to perform the simulation for a 27Al nucleus

(I ¼5/2). What happens to the nutation frequency?

3.9 Triple-quantum coherence excitation in MQMAS
experiments

The MQMAS experiment [48] providing high-resolution NMR spectra of

half-integer quadrupolar nuclei with large quadrupole couplings has signif-

icantly impacted the field of quadrupolar nuclei. The experiment is simple to

setup and is very stable. However, relying on excitation and reconversion of

the “forbidden” triple-quantum (3Q) transition, the experiment is associ-

ated with low sensitivity. Hence, it is important to find the optimum param-

eters for the excitation and mixing pulses. SIMPSON is an ideal tool to

investigate this. The example provides simulations of the 3Q excitation

and for the 3Q!1Q mixing as a function of the pulse length and for dif-

ferent mixing schemes.

To simulate the 3Q coherence buildup during a pulse we do not need to

simulate a whole spectrum. We will just acquire the triple-quantum coher-

ence using SIMPSON. In the pulseq procedure we specify the detection

matrix by the command matrix set detect coherence {3}. The pulse

sequence is otherwise quite similar to the CP simulation above, however

only using a single channel. Execute the input file and verify the resulting fid.

1. At what pulse length is the maximum intensity?

2. Vary the quadrupole coupling constant in the range 2–10MHz and note

down the maximum excitation efficiency. What do you observe?
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3. Use a quadrupole coupling constant of 3.3MHz, and this time try to vary

the rf field strength from 50 to 500kHz. What do you observe?

4. Set the spinning frequency up to 30kHz and the rf power down to

37kHz and compare the simulation with the first 100kHz simulation.

Which one has the better sensitivity?

Fig. 12 shows two simulations of the 3Q coherence buildup as a function of

the pulse length. The two examples vary by their spin rate and include a con-

ventional “brute force” excitation using 200kHz for a sample spinning at

10kHz. The other example exploits the FASTER resonance condition

[49] for a sample spinning at 30kHz. The FASTER condition states that

3Q coherences are efficiently excited with low rf field strengths in between

resonance conditions occurring at half-integer multiples of the rotor fre-

quency. Indeed, a choice 37kHz rf field strength (avoiding the resonance con-

ditions at 30kHz and 45kHz) provides excellent 3Q excitation efficiency as

evident from Fig. 12.

4. SIMMOL

While SIMPSON and other general-purpose simulation software

programs allow simulation of essentially any spin system, it still remains a

complex task to establish such spin systems with the correct orientation

of all the tensorial spin interactions. For this purpose, we developed the

SIMMOL program to help constructing such multispin systems for protein
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Fig. 12 Simulated excitation transfer efficiencies of 3Q coherences for 87Rb with quad-
rupole coupling parameters of CQ¼3.3 MHz, η¼0.2 using νR¼10 kHz/νrf¼150 kHz
(blue) and νR¼30 kHz/νrf¼37 kHz (orange).
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molecules [50]. This program allows to load existing protein structures (or

generate synthetic poly-alanine chains with specified torsion angles) and

use the PDB structure to generate the spin system and provide 3D visual-

ization of the molecular structure with user-defined representation of

relevant atoms, bonds, peptide planes, coordinate systems, and anisotropic

interaction tensors.

4.1 Establishment of a spin system
To illustrate how the generation of a larger spin system is performed with

SIMMOL, we wish to setup a spin system aiming to visualize a large spin

system of strongly coupled hydrogen atoms in a protein. The use of this

spin system in an actual simulation will be addressed in a separate section

on ultrafast MAS below. The model spin system will be selected from the

SH3 protein, which is commonly used as a model protein system in

solid-state NMR. Specifically, we wish to focus on the SH3 domain of

the human RAS P21 protein activator, for which the protein structure is

reported as PDB ID 2M51 and the chemical shifts are reported in the

BioMagResBank under ID 19033. For this example, we focus on the amide

hydrogen of Leu44 and assume that the network of hydrogens can be repre-

sented by all hydrogens within 4 Å of Leu44-HN. As outlined elsewhere

[50,51], we assume that the CSA of the amide hydrogens can be represented

by a tensor of a specific orientation relative to the peptide plane of the

amino acid with a magnitude of δaniso¼7.7 ppm and an asymmetry param-

eter of η¼0.65 [50]. For alpha protons, the corresponding values are

assumed to be δaniso¼5.5 ppm and η¼0.12. For all other hydrogens, we

assume that there is no chemical shift anisotropy. For all hydrogens, we

take the isotropic chemical shifts from the BMRB ID 19033.

The example is commented to explain the role of the individual ele-

ments. In brief, the molecule is loaded, and default values for the tensorial

interactions are setup using the following commands

set m [mload 2M51.pdb]

mloadtensors $m -default

Next, Leu44-HN is selected and stored in the atom buffer 1

mselect $m 1 atom H residue &44

Following this, we select all other hydrogens and assign dipolar couplings for
distances within 4 Å away from Leu44-HN by the commands
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mselect $m 2 atom H*

set dipoles [mdipole $m 1 2 0AA 4AA]

where we have chosen to store the output of the mdipole command as

the variable dipoles. The return value from this command is a Tcl list that

for each dipole-coupled spin pair returns information about the dipolar

coupling. In this example, the $dipoles contains.

{{461 720} -2405.10 {0 111.204 -115.572}} \

{{707 720} -13571.8 {0 98.1711 -176.192}} \

{{720 721} -5656.99 {0 80.8573 -131.456}} \

{{720 722} -5116.14 {0 128.384 -178.698}} \

{{720 723} -2690.14 {0 100.606 -168.168}} \

{{720 724} -20769.4 {0 87.2539 133.757}} \

{{720 742} -4524.57 {0 137.63 -77.2703}}

That is, a line for each dipolar spin pair consisting of a list with three ele-

ments: (i) a list containing the two atom numbers involved in the dipolar

coupling, (ii) the coupling strength, and (iii) the Euler angles specifying

the orientation of the dipolar coupling. In general, these return values are

not needed, but in the present example, we wish to use them to establish

the homonuclear 1H–1H dipolar couplings in the spin system as well as

the chemical shifts for each atom. Hence, we create a unique list of all

the atoms by the following commands.

set atoms {}

foreach d $dipoles {

set atoms [concat $atoms [lindex $d 0]]

}

set atoms [lsort -unique $atoms]

The first line creates an empty list named atoms. The foreach loop sequen-

tially assigns the variable d to each of the elements in the list elements in

$dipoles and appends the two atom numbers (first element of the line,

obtained by the command lindex $d 0). Finally, as the atom number 720

occurs numerous places in the final list, multiple occurrences are removed

by replacing the atoms list by its unique values, obtained by the last line. The

variable $atoms now contains the following list

461 707 720 721 722 723 724742

which are the atom numbers (from the PDB) for the atoms involved in the

spin system.
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With this list of atoms, we may now assign the chemical shifts for which

we have generated an array named cs,

set cs(LEU44,HB3) {1.343 0 0}

set cs(ARG45,H) {8.452 7.7 0.65}

set cs(LEU44,HG) {1.443 0 0}

set cs(LEU44,H) {8.841 7.7 0.65}

set cs(LEU44,HA) {4.049 5.5 0.12}

set cs(ASN43,HA) {4.409 5.5 0.12}

set cs(LEU44,HB2) {1.483 0 0}

set cs(PHE28,HA) {5.659 5.5 0.12}

Furthermore, we create a coordinate system aligned with the laboratory

frame by the command

msetcoordsys $m {1 0 0} {0 0 0} {0 1 0}

since we need to specify a user-defined coordinate system for the tensorial

interactions of all atoms not associated with a peptide plane.We then use the

foreach command to loop over the atoms

foreach a $atoms {

set at [mselect $m 1 atom $a]

set type [lindex $at 0 1]

set key “[lindex $at 0 3][lindex $at 0 2],$type”

if {$type == ”H”} {

mshift $m 1 -magnitude $cs($key)

} else {

mshift $m 1 -magnitude $cs($key) -angles {0 0 0} -usecoordsys

}

mselect $m 2 atom j$a
}

The final line in the loop is just to append each atom to buffer 2, such that we

can calculate all dipolar couplings between the atoms by

mdipole $m 2 2 0AA 0Hz

Remember that the last two arguments of the mdipole command are the bou-

nds of the dipolar couplings, specified either by the distance in Ångstrøm

(using the unit AA) or by the value in Hertz.

The spin system generated through this example is shown in Fig. 13 along

with the graphics output showing the backbone cartoon rendering of all the
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molecule. Furthermore, the graphical output highlights atoms and bonds

of amino acids 43–45 and visualises the dipolar couplings and chemical shift

tensors defined by SIMMOL. The spin system is given in SIMPSON format,

so it is ready to include in a SIMPSON input file.

A B

Fig. 13 (A) SIMMOL-generated representation of the SH3 protein highlighting the car-
toon representation of the protein backbone and with a ball-and-stick representations
of the atoms of residues 43–45. The figure also visualises the chemical shift tensors of
selected atoms (see text) as red ellipsoids as well the homonuclear dipolar couplings
between these hydrogens. (B) SIMPSON-formatted spin system output for the SH3 spin
system generated using SIMMOL.
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5. NMR simulations of proteins and peptides

5.1 PISA wheels
SIMMOL exists as a standalone program, but it also exists as a Tcl library

that may be included into SIMPSON. In some cases, this is convenient, since

it allows us to generate spin systems ‘on the fly’ from within SIMPSON,

if specific spin systems are required. This feature is relevant, for example,

if we wish to simulate a separated-local field (SLF) experiment like

PISEMA [52] for a uniformly 15N labelled α-helical protein. It is well-
established that such SLF spectra will provide a set of resonances that form

a characteristic wheel pattern depending on the membrane-bound confor-

mation of the helix [53,54], termed PISA wheels. Such wheels have been

simulated previously both by using SIMMOL and other software

[51,55,56]. Here, we demonstrate how to perform such simulations using

SIMPSON in combination with SIMMOL.

First, we load SIMMOL into SIMPSON through the command.

package require Simmol

This makes all the SIMMOL commands available in SIMPSON, so we can

construct an α-helical protein (torsion angles �65 ° ,�40°) through the

command.

mmake 3 -65 -40

This peptide is then rotated by the mrotate command, and the 15N chemical

shift and 1H–15N dipolar coupling for the backbone amide are calculated by

the commands.

set shift_angles [lindex [mshift $m 1] 0 2]

set dipole_angles [lindex [mdipole $m 1 2 0AA 0Hz] 0 2]

where the returned Euler angles from commands mshift and mdipole are

used as input for SIMPSON when doing the simulation by the command.

set g [fsimpson [list \

[list shift_2_alpha [lindex $shift_angles 0]] \

[list shift_2_beta [lindex $shift_angles 1]] \

[list shift_2_gamma [lindex $shift_angles 2]] \

[list dipole_1_2_beta [lindex $dipole_angles 1]] \

[list dipole_1_2_gamma [lindex $dipole_angles 2]] \

]]
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Having specified the Euler angles for the tensorial interactions ‘on the fly’

when starting the simulation, implementing a SLF pulse sequence like

PISEMA is simple, based on our previous knowledge on implementing

pulse sequences. Examples of PISEMA spectra resulting from this example

for different helix conformations is shown in Fig. 14, where the wheel

shapes (PISA wheels) are clearly visible.

5.2 Ultrafast magic-angle spinning
Current technology of magic angle spinning (MAS) allows to rotate the sam-

ple at frequencies reaching up to about 130kHz [57]. To achieve higher

rotation rates, smaller rotors are used. The loss of measurable material is com-

pensated by increased sensitivity of smaller RF coils, narrower resonances, and

by detection of more sensitive nuclei like protons. Besides improved resolu-

tion of 1H spectra, faster MAS brings longer coherence lifetimes which allows

application of sophisticated multidimensional experiments on biological/pro-

tein samples in a similar fashion to solution state studies [58].

However, it turns out to be extremely difficult to average homonuclear

dipole-dipole interactions in densely coupled proton networks [59]. Using

100kHz MAS spinning and 850MHz 1H Larmor frequency, linewidths on

Fig. 14 Simulation of PISEMA spectra for α-helical peptides with different orientations
relative to the magnetic field. (See text for details.) The peptide conformation is visual-
ized above the spectrum and its tilt angle relative to the magnetic field indicated in the
spectrum.
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the order of 300Hz are reported for β-Asp-Ala dipeptide [60]. It is known
that higher magnetic fields help to decouple inter-proton interactions due to

larger separation of the partners in their chemical shifts [59]. Proton dilution

by deuteration of protein samples is another popular route to increase the

resolution [61]. Using a polycrystalline ubiquitin sample, amide proton

line widths are reported to be about 100Hz (126kHz MAS frequency,

850MHz) for fully protonated sample, and about 20Hz for perdeuterated

protein with all amide hydrogen atoms back-exchanged (120kHz MAS

frequency, 850MHz) [57].

There is ahope that even faster spinningandevenhighermagnetic fieldswill

remove the necessity of deuteration. But how fast should the rotation be? Two

recent studies [57,62] predict that MAS frequencies on the order of 1MHz are

required to reach solution-like line widths. Such extrapolations are based both

on experimental observations and mainly numerical simulations.

In this example, we will use SIMPSON to set up MAS rates and B0 field

conditions that are far from being realized in a real NMR spectrometer. We

will focus on simulation of 1H line shape for an amide proton of Val-44 res-

idue of the SH3 domain. The spin system used here was established in the

SIMMOL example above.

We will calculate the spectrum using the γ-COMPUTE algorithm in a

frequency domain for the efficient simulation of the large spin system [23].

Using frequency domain calculation, we are free to choose the spectral

width and number of points. Since we plan to increase MAS rate, we should

consider proper setting of the time-step used for integration of the equation

of motion by the SIMPSON parameter maxdt. It should be sufficiently short

in order to follow changes in Hamiltonian even under ultrafast spinning.

The γ-COMPUTE algorithm works in a way that it splits one rotor period

in par(gamma_angles) steps and thereby decreases maxdt automatically when

the spin rate is increased. We use these parameters.

par {

spin_rate 110000

proton_frequency 1e9

method gcompute freq block_diag dsyev

np 16384

start_operator Inx

detect_operator I2p

crystal_file rep66

gamma_angles 8

sw 30000

}
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where specifically the entry method needs attention. The specification

above sets up a simulation using γ-COMPUTE in the frequency domain

with block diagonalization of the matrices whenever possible, and uses

the dsyev algorithm for diagonalisation of the Hamiltonian in order to eval-

uate its matrix exponent. For further details about the method, see Ref. [23].

The pulse sequence code uses the acq_block to acquire the spectrum.

proc pulseq {} {

global par

acq_block {

delay [expr 1.0e6/$par(spin_rate)/$par(gamma_angles)]

}

}

The idea of the exercise is to run the simulation with different values for the

spin rate to observe how large a spin rate is required before no further gain in

resolution is obtained. Fig. 15 shows a series of spectra simulated with dif-

ferent spin rates. We see that the line shape consists of one sharp and one

broad component that both are getting narrower as the MAS frequency

increases towards extreme values. The broad component contains most of

the signal intensity and is responsible for improvements in the peak amplitude.

The sharp component, on the other hand, is responsible for experimentally

observable peak width and resolution, since the broad component often

contributes just to a baseline in a crowded 2D spectrum. The full-width-

at-half-height does improve only slightly when increasing MAS frequency

beyond 300kHz. However, we obtain only about 25% of the available

40 kHz
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100 kHz
200 kHz
500 kHz

1 MHz
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9.5 9 8.5 8
ppm

Fig. 15 Simulated 1H spectra under ultrafast MAS employing spin rates indicated in the
figure for an eight-spin system from the SH3 protein (see text for details).
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signal amplitude. The peak height continues to increase dramatically with

MAS frequency and settles only at about 5MHz. Such spinning frequencies

are clearly beyond all limits of a physical device.

5.3 NCOCA solid-state NMR optimization
With its versatility and function as a virtual spectrometer, we wish to opti-

mize a ‘real’ experiment to tune the mixing times and transmitter carrier off-

set in an NCOCA correlation experiment that correlates backbone amide

nitrogen with Cα in the preceding residue through the carbonyl. We wish

to use cross polarization for the heteronuclear transfer (termed double CP,

DCP [63]) followed by POST-C7 [64] for the homonuclear transfer.

Fig. 16A shows the schematic representation of the pulse sequence. For this

example, we consider an 800MHz spectrometer.

For each of the transfer steps, the transfer efficiency depends critically on

the mixing/contact time and transmitter carrier offset. Since backbone

amide nitrogens are typically not very dispersed with respect to their isotro-

pic chemical shift, we assume that we can place the carrier on-resonance

with the nitrogen. On the other hand, given that the backbone nitrogen

is directly bonded to both the carbonyl on the preceding residue and Cα
on the same residue, we need to ensure that the transfer primarily goes to

CO. This can be tuned by the carrier offset on the carbon channel since

the carbonyl has a chemical shift of around 170ppm, while Cα’s typically
resonate around 50ppm. Throughout the optimization, we will disregard

the effect of hydrogens.

To investigate this transfer step, we use SIMMOL to generate a realistic

spin system consisting of a backbone amide nitrogen and its directly bonded

CO and Cα atoms in a synthetic α-helix with torsion angles ϕ¼ �65°,
ψ¼ �40° as seen in the online example. The resulting spin system is.

spinsys {

# 1 2 3

# A2-N A2-CA A1-C

#

channels 15N 13C

nuclei 15N 13C 13C

shift 1 119p 99p 0.19 76.984 168.06 -17.701

shift 2 50p -20p 0.43 39.857 18.335 127.98

shift 3 170p -76p 0.9 -71.727 78.37 -4.4068

dipole 3 1 1304.7 0 71.671 -98.316
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dipole 3 2 -526.39 0 101.65 -91.974

dipole 1 2 988.16 0 128.61 -84.947

jcoupling 3 1 -15 0 0 0 0 0

jcoupling 1 2 -11 0 0 0 0 0

}

For each value for the carbon transmitter carrier offset, the DCP step is

implemented as we did in the CP example above. To obtain a two-

dimensional plot of the transfer intensity, we create an empty two dimensional

spectrum using the fcreate command and move the one-dimensional
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Fig. 16 Simulations of the optimizations necessary for an optimal NCOCA experiment
using DCP and POST-C7. (A) Two-dimensional plot of the N!CO intensity as a function
of the CP contact time and the transmitter carrier offset on carbon. (B) POST-C7 transfer
intensity from CO!CA as a function of the mixing time and transmitter carrier offset.
(C) Plot of the intensity of the CO, CA, and CB signals as a function of the POST-C7mixing
time. (D) 2D plot of the DCP-POST-C7 NCOCA experiment for a single site (see text for
details).
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simulation of the transfer as a function of the contact time into the two-

dimensional spectrum using the findex and fsetindex commands of

SIMPSON. The resulting 2D plot is shown in Fig. 16B. It shows a clear max-

imum around 1.2ms contact time and 34kHz carbon (�170ppm) carrier

offset.

The second step is the homonuclear transfer from CO to Cα, for which
we will use the POST-C7 pulse sequence. The spin system for this transfer

involves four carbons: CO, Cα, and Cβ on the target residue and Cα on the

next residue. The latter is to ensure that the coherences do not leak to the

neighbouring residues. The resulting spin system reads.

spinsys {

# 1 2 3 4

# A1-C A1-CA A2-CA A1-CB

#

channels 13C

nuclei 13C 13C 13C 13C

shift 1 170p -76p 0.9 -71.727 78.37 -103.63

shift 2 50p -20p 0.43 39.857 18.335 127.98

shift 3 50p -20p 0.43 39.857 18.335 127.98

shift 4 30p 10p 0 -98.452 122.65 84.753

dipole 2 1 -2142.4 0 133.91 177.8

dipole 2 3 -138.04 0 114.04 171.64

dipole 2 4 -2159.4 0 57.347 -95.247

dipole 1 3 -526.39 0 101.65 168.81

dipole 1 4 -489.19 0 41.169 -53.333

dipole 3 4 -86.178 0 57.826 -28.202

jcoupling 2 1 55 0 0 0 0 0

jcoupling 2 4 35 0 0 0 0 0

}

The POST-C7 pulse sequence element is designed for longitudinal homo-

nuclear transfer, i.e. bI1z ! bI2z . As in the previous step, we will implement

the two-dimensional optimizations as a series of one-dimensional simulations,

each calculating the transfer as a function of themixing time for a specific trans-

mitter carrier offset. The resulting simulation is shown in Fig. 16C. The sim-

ulation shows that the best transfer is obtained at mixing time of 800μs and
30kHz (�150ppm) offset. The value for the transmitter carrier offset is in

the expected range, since POST-C7 (and other pulse sequences for
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homonuclear transfer) provide the best transfer if the carrier offset is centered

between the two nuclei.

For experiments where a selective transfer is desired, it is interesting to

use SIMPSON to follow the leakage of coherences to other nuclei. For this

purpose, we employ the optimum transmitter carrier offset in a simulation,

where we investigate the transfer from the carbonyl carbon to all the other

carbon atoms in the spin system. The plot resulting from this simulation is

shown in Fig. 16D and demonstrates the expected strong transfer to Cα on

the same residue, while only a little fraction is transferred to Cα of the neigh-
bouring residue. Interestingly, there is a relayed transfer to Cβ at longer

mixing times.

Finally, we wish to carry out a simulation of the entire pulse sequence for

a single set of resonances by combining the optimized DCP transfer from
15N to 13C with the POST-C7 block for homonuclear transfer. The

resulting spectrum is shown in Fig. 16E.

6. Optimal control

Optimal control theory has been developed to solve general optimi-

zation problems of steering dynamical systems in a desired way, to maximize

outcome and/or tominimize the necessary resources [65–67]. In the context
of designingNMR experiments, the Liouville-vonNeumann equation pro-

vides a detailed description of dynamics for typical spin systems with specific

internal spin interactions. Radiofrequency pulses are used as means of exter-

nal manipulation to control the spin evolution. The quest is to find such

pulse sequences that maximize transfers between known operators (or

reproduce evolution under a particular effective Hamiltonian) [68,69].

Optimal control theory provides easy access to the first derivative of the

objective function and allows to optimize tens of thousands of pulse param-

eters at once. It has been applied in NMR to improve sensitivity [70–72] or
achieve specific features of the NMR experiment [73–75]. The success of
the method originates from the ability to include a range of experimental

limitations and hardware imperfections in the optimization process. This

variability is demonstrated in the recent study of dipolar recoupling between
15N and 13C nuclei under MAS conditions where the sample rotation leads

to temporal modulations of rf amplitudes and phases due to spatially inho-

mogeneous excitation field of solenoidal coils [71].
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In this example, we focus on deuterium (2H) and polarization transfer to
13C in perdeuterated proteins. The challenge of experimental design comes

from the fact that 2H possesses a quadrupole moment that interferes strongly

with the applied RF pulses. In the work of Wei et al. [76], optimal control

was used to develop 2H excitation pulse that corresponds to ideal 90°-pulse
on spin-1/2 nuclei. Interestingly, the resulting optimal pulse sequence con-

sists of isolated short pulses applied every rotor period. It is a nice example

where numerical optimization leads to an analytical pulse sequence.

Similarly, optimization of 2H–13C polarization transfer became inspiration

for development of RESPIRATION-CP method [77] which is applicable

for spin-1/2 nuclei and which shows improved robustness towards rf inho-

mogeneity and rf amplitude mismatch.

Important parts of the SIMPSON input file for optimal control calculation

[22] are the procedures target_function and gradient. The first function

defines what quantity should be maximized, and the latter provides proper

gradient of the target function. Through these procedures SIMPSON pro-

vides full flexibility in defining arbitrary target functions. In our case we opti-

mize transfer starting from the 2H operator ρ(0)¼ I1x and arriving to the

desired 13C operatorC¼ I2x, i.e. a transfer between twoHermitian operators.

The pulse sequence is represented by two shaped pulses applied simulta-

neously to 2H and 13C rf channels. Each shaped pulse consists of $par(NOC)

elements characterized by the amplitude and phase pairs. In the pulse sequence

definition (procedure pulseq) we use the command oc_acq_hermit instead of

the usual acquisition in order to trigger calculation of a target function or the

gradient. The procedure target_function takes a simple form of calling

fsimpson calculating a single number according to the formula.

Φ ¼ Tr C+U 0,Tð Þρ 0ð ÞU+ 0,Tð Þf g (9)

while the procedure gradient leads to calculation of a pseudo-fid containing

first derivatives of the target function with respect to pulse element param-

eters. The length of this pseudo-fid corresponds to the number of elements

in all optimized rf shapes, that is 2*$par(NOC) in our case. Optimization is

invoked by the command oc_optimize in the main section and is controlled

using several parameters. Besides the GRAPE algorithm with conjugated

gradients (CG), SIMPSON also implements a quasi-Newton optimization

using the limited memory Broyden–Fletcher–Goldfarb–Shanno algorithm

(L-BFGS) [23]. The choice of algorithm is determined by setting $par

(oc_method) variable to CG or L-BFGS. For L-BFGS, it is essential to use
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higher precision gradients [78] which is controlled by parameter $par

(oc_grad_level) set to the corresponding order of the gradient approximation.

The resulting RF shapes are presented in Fig. 17 as x- and y-components

of the RF field. Note the short pulses spaced by 50 μs (corresponding to one
rotor period at MAS frequency of 20kHz) on the 2H channel. On the 13C

channel we observe rf irradiation with alternating phase in a fashion similar

to the RESPIRATION-CP.

In our example, all parameters are set such that SIMPSON calculation

progresses reasonably fast. For a real application it is necessary to increase

powder averaging, include rf field inhomogeneities and spread of chemical

shifts or coupling constants. All of that averaging can easily be parallelized

and done on a high-performance computing cluster [23]. An example

implementation of chemical shift spread is included via procedures get_lims

and prepare_ave that generate a text file with a list of parameter distri-

butions. This file is then loaded automatically when the variable $par

(averaging_file) is set to its name.

The optimization is prone to find local maxima and thus calculations

should be repeated many times from different (random) initial guesses.

But here we all start from the well tested initial shape of constant 1kHz irra-

diation on both channels.

Fig. 17 Pulse shapes for 2H (top) and 13C (bottom) resulting from an optimal-control
optimization of the 2H! 13C coherence transfer in a directly bonded 13C–2H spin sys-
tem. The plots show the x and y components of the rf field strengths in red and blue,
respectively.
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7. Dynamics

SIMPSON uses the Hilbert-space representation of the Hamiltonian,

i.e. a representation where the Hamiltonian is represented as a matrix

expanded by the wave functions of the Zeeman interaction. The advantage

of using a Hilbert-space representation is the modest exponential growth of

the matrix size with respect to the spin system size (see Eq. (4)) compared to

the Liouville space, where the matrix is expanded by the spin operatorsbE, bIx, bI y, and bIz . When dynamics and spin exchange is concerned, the

Liouville-space representation has the advantage that it is always possible

to relate a matrix element of the Hamiltonian to a specific spin operator,

hence it is straightforward to simulate exchange by operations of the type

2bI1zbI2x $ 2bI1xbI2z, while this is more complicated in Hilbert space.

In order to be able to simulate spin exchange, we proposed to use

mixed Hilbert- and Liouville-space simulations in SIMPSON by using

the versatile Tcl interface [79]. This allowed us to simulate 1H-mediated

spin exchange in the protein kaliotoxin [6] in a so-called CHHC experi-

ment shown in Fig. 17A. The basic idea was to use SIMPSON to simulate

the effect of the cross-polarization blocks using relatively small spin sys-

tems, while the spin exchange could then be simulated by considering

exchange between spins. In fact, we did not use a full Liouville-space rep-

resentation, as the pulse sequence uses longitudinal (bI1z $ bI2z) transfer, for
which it is very efficient to use an exchange-matrix representation. The

selection of spin systems and the resulting spectrum for kaliotoxin from

Ref. [79] is shown in Fig. 18.

A simpler case is a two-site jump involving two spins with resonance fre-

quencies of νA and νB, experiencing exchange with a rate constant k. In this
case, the analytical expression for the spectrum is known.

s νð Þ ¼ k νA � νBð Þ2
π2 ν� νAð Þ2 ν� νBð Þ2 + k2 ν� νA + νB

2

� �2 (10)

To implement this equation in SIMPSON, we can generate a spectrum

by using the ability of SIMPSON to access the individual datapoints of the

spectrum using the findex and fsetindex commands. The full sequence of

commands could be implemented as a procedure.
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Fig. 18 SIMPSON simulations of spin exchange in a CHHC experiment. (A) The CHHC
pulse sequence that uses cross-polarization blocks to transfer magnetisation from
hydrogen to carbon and back, a mixing block in which spin exchange among the hydro-
gens occurs, and finally, a cross-polarization block to transfer magnetization to carbon
for detection. (B) Illustration of typical selections of spin systems for the different blocks
of the pulse sequence. (C) Simulated CHHC spectrum for the protein kaliotoxin. For fur-
ther details see Ref. [79]. Adapted from Ref. T. Vosegaard, Challenges in numerical simu-
lations of solid-state NMR experiments: spin exchange pulse sequences, Solid State Nucl.
Magn. Reson. 38 (2010) 77–83 Copyright (2010) with permission from Elsevier.
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proc fexchange {sw np nuA nuB k} {

set f [fcreate -type spe -sw $sw -np $np]

set dnu [expr ($nuA-$nuB)]

for {set i 1} {$i <= $np} {incr i} {

set nu [fx $f $i]

set dnuA [expr $nu - $nuA]

set dnuB [expr $nu - $nuB]

set dnuAB [expr $nu - ($nuA+$nuB)/2.0]

set s [expr $k*$dnu*$dnu/(9.8696044 \

* $dnuA*$dnuA*$dnuB*$dnuB \

+ $k*$k*$dnuAB*$dnuAB)]

fsetindex $f $i $s 0

}

return $f

}

In this implementation, we first create an empty spectrum using the fcreate

command. The spectrum is then populated through the for loop over all

points in the spectrum. For each point, we obtain the frequency by the com-

mand fx. The frequency is used to calculate the various frequency differences,

which then are used in Eq. (10). Finally, the generated spectrum is returned

by the procedure through the return $f instruction.

The two-site jump has the so-called coalescence point, where the inten-

sity seems very low, since the lines are broad and partially overlapping.

According to Bain [80], this occurs when kcoalescence ¼ 2π νA � νBj j= ffiffiffi
8

p
.

Fig. 19A investigates this effect through a spin system consisting of two

nuclei with νA¼ �100 Hz and νB¼100 Hz with different values for the

exchange constant. Indeed, we observe the characteristic coalescence lin-

eshape in the middle spectrum (k¼450 s�1), which is very close to the

expected coalescence point kcoalescence�444 s�1. In this figure, we also

observe the expected transition from two distinct peaks at slow exchange

to one peak at fast exchange.

We can extend this approach to model two-site jumps to more advanced

examples by merging it into SIMPSON. The goal is to simulate the 2H

solid-state NMR spectra of a phenylalanine amino acid undergoing

ring-flip motion in a protein. The complication over the previous example

is two-fold. First, the resonance frequencies of the deuterons are orientation

dependent and need be calculated for each crystallite in the powder.

Second, 2H is a spin-1 nucleus, which has two single-quantum transitions.
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The two-spinHamiltonian for two 2H nuclei will be of dimensions 9�9 and

will have the diagonal elements m1m2j bH jm1m2

	 

, wherem1 andm2 represent

the mz(+1,0,�1) spin quantum number each of the nuclei. The single-

quantum transition frequencies may be obtained as.

ω1, + 1$0¼ +1mj Ĥ j +1m	 
� 0mj Ĥ j 0m	 

ω1,0$�1 ¼ 0mj Ĥ j 0m	 
� �1mj Ĥj �1m

	 

ω2, + 1$0 ¼ m+1j Ĥ jm+1

	 
� m0j Ĥ jm0	 

ω2,0$�1¼ m0j Ĥjm0	 
� m�1j Ĥ jm�1

	 

(11)

The idea is to calculate these frequencies and insert them into Eq. (9) for

each of the transitions in SIMPSON by the Hamiltonian obtained by the

command matrix get hamiltonian:

0 -50 -10050100

Hz

200 s-1

450 s-1

1000 s-1

0 -50 -10050100

kHz

4 x 103 s-1

4 x 105 s-1

4 x 107 s-1

A B

Fig. 19 SIMPSON simulations of chemical exchange. (A) Simple chemical exchange
between two sites with resonance frequencies of �100Hz and different exchange
rates as specified in the figure. (B) Simulations of aromatic ring flip in phenylalanine
measured by 2H solid-state NMR with exchange rate constants specified in
the figure.
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set h [matrix get hamiltonian]

set w11 [expr [lindex $h 0 0 0] - [lindex $h 3 3 0]]

set w10 [expr [lindex $h 3 3 0] - [lindex $h 6 6 0]]

set w21 [expr [lindex $h 0 0 0] - [lindex $h 1 1 0]]

set w20 [expr [lindex $h 1 1 0] - [lindex $h 2 2 0]]

As discussed above, simulation of lineshapes in cases where we cannot use

crystallite interpolation requires a considerable number of crystallites to

get a converged lineshape. Hence, instead of using the above Tcl proce-

dure to account exchange, we have chosen to implement the same pro-

cedure in a C routine that we compile into a Tcl library through the

C API of Tcl [81]. This gives the same result but with a tremendous gain

in speed.

The example for a phenylalanine ring flip uses the following spin system.

spinsys {

channels 2H

nuclei 2H 2H

quadrupole 1 1 180e3 0.05 0 60 0

quadrupole 2 1 180e3 0.05 0 -60 0

}

where the only difference between the two spins is the 120° difference
in their orientation corresponding to the Hδ1 and Hδ2 of phenylalanine,

respectively, as explained by Vugmeyster and Ostrovsky [82]. The resulting

simulations are shown for different exchange rate constants in Fig. 19B and

essentially reproduce the lineshapes of Ref. [82] illustrating the versatility of

SIMPSON to simulate such complex lineshapes.

8. Conclusions

Wehave provided a number of examples ranging from simple introduc-

tory SIMPSON simulations to advanced simulations of lineshapes under

chemical exchange that serve a triple purpose: (i) provide a gentle introduction

to the SIMPSON Tcl interface, (ii) to provide an introduction to various

aspects of solid-state NMR, and (iii) to demonstrate the capabilities of the ver-

satile SIMPSON interface to simulate a broad range of different pulse

sequences and experiments. We believe that these examples together demon-

strate that the open source software package SIMPSON may be regarded a

‘virtual NMR spectrometer’. And that with such in silico experiments, ultra-

high fields of the currently available 1.2GHz and above come at no extra cost.
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