Simulation of R- and C-Sequences with
SIMPSON-1.0.1
Jorn Schmedt auf derGuinne

13.08.2001

1 Introduction

R- and C-Sequences are two pulse sequence classes which have been used in solid state NMR
spectroscopy. You can find a number of publications on this subject on Malcolm Levitts Hdhpage
. Here You can find a short introduction on how to calculate theses sequences numerically using
SIMPSON][*]_. This includes a small library of routines that allows to setup phase-, timing- and
amplitude lists in a convenient way.

2 Requirements

® SIMPSON. Get ihere
® R/C-Sequences package. Get it H&gfe
® A computer.

3 The R- andC-Library

R- and C-Sequences generate a pulse train which can be specified by the three symmetry numbers the
basic R element (composite pulse defined as in Fig. 1) and the supercycling scheme which is used. An
RN¥ sequence symmetry will be written { ¥ n v} in the input files. For the composite pulse a

notation will be used, which is explained in following fig{ite.

number of rotor revolutions n

o |1 MN-1
fime
R-element
0 180 phase
0.25 0.75 fraction of the R—elemen!

Figure: An R-Sequence with an R-element

http://nmr.imsb.au.dk/simpson

To give some examples for this notation:

® A C-element consisting out of 2 pi pulses with a 180 degree phase change, would be written as:
C = 360y, 36015 Or in terms of fraction-phase-flipangle

€ = {fraction phase flipangle} = {{0.50.5} {0180} {360360}}

® A R-element consisting of a simple pi-pulse, would be written as:
R = 180y or in terms of fraction-phase-flipangle

R= {{1.0} {0} {180}}

Note that this notation also allows for windows in a pulsesequence. One simply has to set the flipangle
to 0.

The simulation of R- and C-sequences is straightforward. The only error-prone step is the calculation
of the numerical values of phases and amplitudes and timings. In fact for a general R- or C-sequence
with a complicated composite pulse this step becomes very tedious. The idea is therefore to provide
functions which calculate phase- amplitude- and timinglists which can be used like phase lists in a
spectrometer pulse program. These functions take R- and C-symmetry, the composite and the
supercycling as input.

In this chapter follows a simple inputfile for the calculation of a double-quantum excitation curve as a
startup example, that doesn’t make use of any of the special functions, then the same example with
these functions and after that a description of all functions and the implemented options.

3.1 SimpleExample

This is an input file which performs the calculation of a C7-double quantum curve. The C7-sequence
used is the one from the original C7-paper.

CT7: C-element = 360y, 360,59

----snip----examplel.in-----------

#C7_2 1 with a 360_0 360_180 C-element
spinsys {

channels 31P

nuclei 31P 31P

dipole 12-2000000

}

par {
proton_frequency 400e6
method direct

spin_rate 20000
gamma_angles 1
np 32

crystal_file bcr100
start_operator Inz
detect_operator -Inz

verbose 11111111111111
}

proc pulseq {} {
global par spinsys
matrix set 1 totalcoherence {2 -2}
set length_c_ele [expr 2000000.0/$par(spin_rate)/7]
set amplitude_c [expr $par(spin_rate)*7]
set phase_incr_c [expr 360.0/7]
maxdt [expr $length_c_ele/20.0]

-- calculate propagator for C7 C=360_0 360_180 --

reset

set phase c 0

for {set i 0} {$i < 7} {incr i} {
pulse [expr $length_c_ele/2.0] $amplitude_c [expr $phase_c]
pulse [expr $length_c_ele/2.0] $amplitude_c [expr $phase_c+180.0]
set phase_c [expr $phase_incr_c+$phase_c]

}

store 1

#-- calculate evolution and sample points--
reset
store 2
for {set i O} {$i < $par(np)} {incr i} {
reset
prop 2
prop 1
store 2
filter 1
prop 2
acq
}
}

proc main {} {
global par spinsys

-- set sweep width --
set par(sw) [expr double($par(spin_rate))/2]

-- start powder loop --
set f [fsimpson]

-- process and save data --
fsave $f $par(name).fid
funload $f

}

snip

3.2 Simple Example With R- andC-Library

Same as ift] . This time making use of the R- and C-Library. This requires that the file
RCpackage.tcl is in the same directory as example2.in. Changes are magdeexplanations for
the red code are markétle

C7: C-element = 360y, 360,59

----snip----example2.in-----------
C7_2_1 with a 360_0 360_180 C-element

load procedures froRC-library
source ./RCpackage.tcl

spinsys {
channels 31P
nuclei 31P 31P
dipole 12-2000000

}

par {
proton_frequency 400e6
method direct

spin_rate 20000

gamma_angles 1

np 32

crystal_file bcrl00

start_operator Inz

detect_operator -Inz

verbose 11111111111111

Define C Symmetry and €lement

variable Csym {7 4}

variable composite {{0.5 0.5}
{0.0 180.0}
{360.(360.0}}

}

proc pulseq {} {
Make global variableseadable

global par spinsyslement_phase_c element_amplitude_c element_lengftortest pulse
Calculate maxdt from shortest pulse inskquence

maxdt [expr$shortest_pulse/10.0]

matrix set 1 totalcoherence {2 -2}

-- calculate propagator for C-cycle --

reset
Longest list is usually the phase list. Use phase-, amplitude- and timinglists to calculate the pulse
values.

for {set i 0} {$i < [llength $element_phase_c]} {incr {
pulse [lindex $element_length_c [expr $i%][llength $element_length_c]]]
[lindex $element_amplitude_c [expr $i%][llength $element_amplitudée c]]]
[lindex $element_phase_c $i]

}

store 1

-- calculate evolution and sample points --
reset
store 2
for {set i O} {$i < $par(np)} {incr i} {
reset
prop 2
prop 1
store 2
filter 1
prop 2
acq
}
}

proc main {} {
Make variables global, so they can be read in “jmdseq”
global par spinsyslement_phase_c element_amplitude_c element_lengltiortest pulse

-- set sweep width --
set par(sw) [expr double($par(spin_rate))/[lindex $par(Cshjin)

-- Create timing list-
set element_length_c [generatePulselengthCList $par(Csym) $par(compuaifepin_rate)]

-- Create phase list
set element_phase_c [C_phase $par(C$pa)(composite)]

-- determine shortest element -> maxdt
set shortest_pulse [smallestNumberinbsiement_length_c]

-- Create amplitude list
set element_amplitude_c [generateAmplitudeCList $par(Csym) $par(com@psité&pin_rate)]

-- start powder loop --
set f [fsimpson]

-- process and save data --
fsave $f $par(name).fid
funload $f

}

snip

What are the advantages compared to examplel.in?

® Pulse sequence symmetry and compaosite pulse become parameters
® |t is possible to change composite pulse, symmetry and spinning frequency without doing any
other changes to the pulgmgram.

3.3 Procedures andOptions
Non-essential options are written in brackets.

phase list R_phaseRsymmetry Relement [Supercyclenu SupercycleNstep Addphase |

Generates a phase list according to the R-element, R-symmetry (notation sefg]ahakre

supercycling scheme and an additive phase. There are two supercycling schemes available. Both may
be switched of by either not specifying the last three parameters or by Sagngyclenu and
SupercycleNstep to 1. SettindSupercyclenu to 2 introduces a supercyCyde Cyee’ such that all

phases ilCyde" are the negative values Cyde . SettingSupercycleNstep to an integer value
introduces a supercycCydeg Cycle, .. . Cydesypercyeienstap—1 SUCh that all phases &, may be
calculated by addin36(” /SupereycleNstep to the phases (Ty,—; .

timing_list generatePulselengthRLisRsymmetry Relement spin_rate
Generates a timing list according to the R-element, R-symmetry (notation se¢*ajcved spin rate

rf_amplitude_list generateAmplitudeRList Rsymmetry Relement spin_rate
Generates a timing list according to the R-element, R-symmetry (notation sed¢*hjcvwed spin rate

phase list C_phaseCsymmetry Celement [Supercyclenu SupercycleNstep Addphase |

Generates a phase list according to the C-element, C-symmetry (notation sefg]aharel the
supercycling scheme. There are two supercycling schemes available. Both may be switched of by
either not specifying the last three parameters or by s@tipejcyclenu andSupercycleNstep to 1.
SettingSupercyclenu to 2 introduces a supercyyde Cyde’ such that all phases Cyde’ are the

negative values (Cydle . SettingSupercycleNstep to an integer value introduces a supercCycleg
Cyde, .. . Cydegypercyeienstep— SUCh that all phases ¢, may be calculated by adding

360° [Supercycle Natep to the phases 7, .

timing_list generatePulselengthCLisCsymmetry Celement spin_rate

Generates a timing list according to the C-element, C-symmetry (notation sed¢*hjcved spin rate

rf_amplitude_list generateAmplitudeCList Csymmetry Celement spin_rate
Generates a timing list according to the C-element, C-symmetry (notation se¢*abced spin rate

number smallestNumberlInList list
Sortslist and returns the smalleasimber

4 DownloadSection

Use it at your own risk. The functions described work and are slowly going to be improved to give a
better error feedback.

® Downloadsimpson_RC_lib-0.1.tar.gz

5 Feedback andReferences

Before sending any emails please check that the simple examples, that come with SIMPSON, are
working fine. In case you find mistakes please let me keowail:gunnej@tom.fos.su.se

[1] For information on R- and C-Sequences chidalkcolm H. Levitts page. He has written a review
on these sequences for the “Encyclopedia in NMR”.

[2] SIMPSON by Niels C. Nielsen and co-workers you can ffiea:

2001-08-16

http://nmr.imsb.au.dk/simpson
http://www.fos.su.se/~mhl

	Simulation of R- and C-Sequences with SIMPSON-1.0.1
	1 Introduction
	2 Requirements
	 3 The R- and C-Library
	 3.1 Simple Example
	3.2 Simple Example With R- and C-Library
	3.3 Procedures and Options

	 4 Download Section
	5 Feedback and References

