package nmrsvd; /** *

Title:

* *

Description:

* *

Copyright: Copyright (c) 2012

* *

Company:

* * @author Pascal P. Man * @version 2.1 */ import java.io.*; import com.sun.jna.Library; import com.sun.jna.Native; import com.sun.jna.NativeLibrary; public class SVDMVCModelGPU implements Library, Serializable { public static final String JNA_LIBRARY_NAME = "svdComplexDevice2"; public static final NativeLibrary JNA_NATIVE_LIB = NativeLibrary.getInstance(SVDMVCModelGPU.JNA_LIBRARY_NAME); static { Native.register(SVDMVCModelGPU.JNA_LIBRARY_NAME); } /** * Function declarations
* Original signature : void selfSVD(const int, const int, * float*, float*, float*, float*)
* native declaration : line 5 */ public static native void selfSVD(int M, int N, float[] matrixA, float[] matrixS, float[] matrixR, float[] matrixT); /** * Function declarations
* Original signature : void selfgemm(int, int, int, * float*, float*, float*)
* native declaration : line 8 */ public static native void selfgemm(int M, int N, int K, float[] matrixA, float[] matrixB, float[] matrixC); private static final long serialVersionUID = 1L; private double[] fidRe, fidIm; private int maxNbComplex, td, //initial TD/2 value tdeff, //TDeff/2 value n, //number of lines of Hankel matrix m, //number of columns of Hankel matrix minnm; //min(n,m) private double[] eigenvalue; //1D singular value matrix private float[] MatrixA; //1D Hankel matrix private float[] MatrixS; //1D singular value matrix private float[] MatrixR; //1D U matrix private float[] MatrixT; //1D VT matrix public SVDMVCModelGPU(){ } //---------------------// // Setters and getters // //---------------------// public int getmaxNbComplex() {return maxNbComplex;} public int setmaxNbComplex(int x) {return maxNbComplex = x;} public int getmvalue() {return m;} public int setmvalue(int x) {return m = x;} public int getnvalue() {return n;} public int setnvalue(int x) {return n = maxNbComplex - x + 1;} public int getTD() {return td;} //modified 25 march 2012 public int setTD(int x) {return td = x;} public int getTDeff() {return tdeff;} //modified 25 march 2012 public int setTDeff(int x) {return tdeff = x;} public double[] getfidRe() {return fidRe;} public double[] setfidRe(double[] x) {return fidRe = x;} public double[] getfidIm() {return fidIm;} public double[] setfidIm(double[] x) {return fidIm = x;} public double[] getSVD() {return eigenvalue;} public double[] setSVD(double[] x) {return eigenvalue = x;} public void essaiZsvd() { minnm = Math.min(n, m); eigenvalue = new double[minnm]; MatrixA = new float[2*n*m]; MatrixS = new float[minnm]; MatrixR = new float[2*n*n]; MatrixT = new float[2*m*m]; int p = 0; float ary[][] = new float[2*n][m]; //first row for (int i = 0; i < m; i++) { ary[0][i] = (float)fidRe[p]; ary[1][i] = (float)fidIm[p]; p++; } //last column for (int i = 2; i < 2*n; i =i+2) { ary[i] [m - 1] = (float)fidRe[p]; ary[i+1][m - 1] = (float)fidIm[p]; p++; } //remaining Hankel matrix elements for (int i = 2; i < 2*n; i=i+2) { for (int j = 0; j < m - 1; j++) { ary[i] [j] = ary[i-2][j+1]; ary[i+1][j] = ary[i-1][j+1]; } } //input Hankel as vector for selfSVD int q = 0; for (int i = 0; i < m; i++) { //column for (int j = 0; j < 2*n; j++) { //line MatrixA[q] = ary[j][i]; q++; } } //First parameter: n, number of lines of Hankel MatrixA //Second parameter: m, number of columns of Hankel MatrixA selfSVD(n, m, MatrixA, MatrixS, MatrixR, MatrixT); for (int i = 0; i < minnm; i++){ eigenvalue[i] = MatrixS[i]; //conversion from float to double } }//end of essaiZsvd public void createFID() { float[] MatrixS2D = new float[2*n*m]; float[] MatrixTmp = new float[2*n*m]; float[] MatrixHankel = new float[2*n*m]; double[][] hankelreDouble = new double[n][m]; double[][] hankelimDouble = new double[n][m]; //Initialization of MatrixS2D to zero for (int i = 0; i < 2*n*m; i++) { MatrixS2D[i] = 0; } //conversion from 1D double to 2D float of singular value matrix int q = 0; for (int p = 0; p < minnm; p++) { MatrixS2D[q] = (float)eigenvalue[p]; q = q + 2*(n+1); } selfgemm(n, m, m, MatrixS2D, MatrixT, MatrixTmp); selfgemm(n, m, n, MatrixR, MatrixTmp, MatrixHankel); //Hankel matrix transformation from 1D vector to 2D matrix int p = 0; for (int i = 0; i < m; i++) { //column for (int j = 0; j < n; j++) { //row hankelreDouble[j][i] = MatrixHankel[p]; hankelimDouble[j][i] = MatrixHankel[p+1]; p = p + 2; } } //clear for (int i = 0; i < maxNbComplex; i++) { fidRe[i] = 0; fidIm[i] = 0; } //first row, upper part for (int i = 0; i < m - 1; i++) { for (int j = 0; j <= i; j++) { fidRe[i] += hankelreDouble[i - j][j]; fidIm[i] += hankelimDouble[i - j][j]; } fidRe[i] /= i + 1; fidIm[i] /= i + 1; } //last column, middle part for (int i = 0; i <= n - m; i++) { for (int j = 0; j < m; j++) { fidRe[m - 1 + i] += hankelreDouble[m - 1 + i - j][j]; fidIm[m - 1 + i] += hankelimDouble[m - 1 + i - j][j]; } fidRe[m - 1 + i] /= m; fidIm[m - 1 + i] /= m; } //last column, lower part for (int i = 0; i < m - 1; i++) { for (int j = 0; j < m - 1 - i; j++) { fidRe[n + i] += hankelreDouble[n - m + 1 + i + j][m - 1 - j]; fidIm[n + i] += hankelimDouble[n - m + 1 + i + j][m - 1 - j]; } fidRe[n + i] /= m - 1 - i; fidIm[n + i] /= m - 1 - i; } }//end of createFID }//end of class SVDMVCModelGPU