# nb-cogwheel_159_-9_0_3_69.in # approach: selection of the desired coherence (7Q) after the first pulse # and (1Q) after the second pulse with cogwheel phase cycling # N = 159, wA = -9, wB = 0, wC = 3, and wRec = 69 # spin-9/2 echo amplitude optimization # versus the first-pulse duration # in three-pulse split-t1 7QMAS, # the second-pulse duration p2 = 4 micro seconds # the third-pulse duration p3 = 2 micro seconds spinsys { channels 93Nb nuclei 93Nb quadrupole 1 1 1e6 1 0 0 0 } par { spin_rate 5000 variable tsw 0.25 sw 1.0e6/tsw np 17 crystal_file rep10 gamma_angles 10 proton_frequency 800e6 start_operator I1z detect_operator I1c verbose 1101 variable rf 90000 variable rf3 93000 variable p2 4 variable p3 2 variable N 159 variable wA -9 variable wB 0 variable wC 3 variable wRec 69 } proc pulseq {} { global par maxdt $par(tsw) acq -x for {set i 1} {$i < $par(np)} {incr i} { pulse $par(tsw) $par(rf) $par(phA) store 2 pulse $par(p2) $par(rf) $par(phB) pulse $par(p3) $par(rf3) $par(phC) acq [expr $par(phREC) - 90] reset prop 2 } } proc main {} { global par for {set j 0} {$j < $par(N)} {incr j} { set par(phA) [expr $j*$par(wA)*360./$par(N)] set par(phB) [expr $j*$par(wB)*360./$par(N)] set par(phC) [expr $j*$par(wC)*360./$par(N)] set par(phREC) [expr $j*$par(wRec)*360./$par(N)] set g [fsimpson] if [info exists f] { fadd $f $g funload $g } else { set f $g } } fsave $f $par(name).fid funload $f puts "Larmor frequency (Hz) of 93Nb: " puts [resfreq 93Nb $par(proton_frequency)] } # SIMP # NP=17 # SW=4000000 # TYPE=FID # DATA # 0 0 # 1.53730229e-08 5.3079825e-09 # -1.7651111e-07 6.09808648e-09 # -6.81181402e-06 6.77867362e-09 # -8.35658681e-05 7.33817274e-09 # -0.000566299195 7.76563347e-09 # -0.00262916943 8.05082578e-09 # -0.00935361546 8.18451529e-09 # -0.0271997264 8.15922352e-09 # -0.0673036154 7.96999977e-09 # -0.145609547 7.61593721e-09 # -0.280992955 7.10113657e-09 # -0.491432255 6.43580922e-09 # -0.789389504 5.63636959e-09 # -1.17793231 4.72472728e-09 # -1.64844027 3.72662878e-09 # -2.17970447 2.66955524e-09 # END