# al-shifted-echo-amplitude-80-cycling-p1.in # approach: 80-phase cycling the first and the third pulses and the receiver # spin-5/2 echo and antiecho amplitude optimization # versus the first-pulse duration # in three-pulse shifted-echo amplitude-modulated 5Q-MAS sequence, # the second-pulse duration p2 = 4 micro seconds # the third-pulse duration p3 = 2 micro seconds spinsys { channels 27Al nuclei 27Al quadrupole 1 2 3e6 0 0 0 0 } par { spin_rate 5000 variable tsw 0.25 sw 1.0e6/tsw np 17 crystal_file rep10 gamma_angles 10 proton_frequency 800e6 start_operator I1z detect_operator I1c verbose 1101 variable rf 90000 variable rf3 93000 variable p2 4 variable p3 2 variable NA 10 variable NC 8 variable deltapA -5 variable deltapC 2 } proc pulseq {} { global par maxdt $par(tsw) acq -y for {set i 1} {$i < $par(np)} {incr i} { pulse $par(tsw) $par(rf) $par(phA) store 2 pulse $par(p2) $par(rf) $par(phB) pulse $par(p3) $par(rf3) $par(phC) acq [expr $par(phREC) - 90] reset prop 2 } } proc main {} { global par set par(phB) 0 for {set jC 0} {$jC < $par(NC)} {incr jC} { set par(phC) [expr $jC*360./$par(NC)] for {set jA 0} {$jA < $par(NA)} {incr jA} { set par(phA) [expr $jA*360./$par(NA)] set par(phREC) [expr $par(deltapA)*$par(phA) + $par(deltapC)*$par(phC)] set g [fsimpson] if [info exists f] { fadd $f $g funload $g } else { set f $g } } } fsave $f $par(name).fid funload $f puts "Larmor frequency (Hz) of 27Al: " puts [resfreq 27Al $par(proton_frequency)] } # SIMP # NP=17 # SW=4000000 # TYPE=FID # DATA # 0 0 # -4.00373845e-10 -1.83763949e-10 # -8.0789056e-08 -3.32564649e-08 # 1.73580652e-06 -4.92521218e-07 # 5.43525345e-05 -1.88578251e-06 # 0.000370139599 1.49246121e-06 # 0.00104315797 3.84020073e-05 # 0.000777150781 0.0001815053 # -0.00422078434 0.000555422222 # -0.0188998406 0.00130283123 # -0.0451581481 0.00247952688 # -0.0772621615 0.00390962986 # -0.101303845 0.00512257077 # -0.101245754 0.00548453375 # -0.0682724404 0.00449463826 # -0.00699848861 0.00208332752 # 0.0651817992 -0.00124818717 # END