Reference for MQ-MAS signal enhancement with FAM




Home and Applets > Pulse Sequence > FAM MQ-MAS Reference

FAM MQ-MAS references

Below are provided some NMR references about MQ-MAS with Fast Amplitude Modulation sequence applied to half-integer quadrupole spins. These references contain
(1) the pulse-sequence diagram,
(2) the coherence-transfer pathways,
(3) the phase-cycling,
(4) the receiver-phase relationship.

  • T. Brauniger and P. K. Madhu
    Fast amplitude-modulated pulse trains with frequency sweep (SW-FAM) in solid-state NMR of spin-7/2 nuclei, (1)(2)
    J. Magn. Reson. 193, 102-109 (2008).
     
  • J. Kanellopoulos, D. Freude, and A. Kentgens
    A practical comparison of MQMAS techniques,
    Solid State NMR 32, 99-108 (2008).
     
  • M. Kotecha, S. Chaudhuri, C. P. Grey, and L. Frydman
    Dynamic effects in MAS and MQMAS NMR spectra of half-integer quadrupolar nuclei: Calculations and an application to the double perovskite cryolite,
    J. Am. Chem. Soc. 127, 16701-16712 (2005).
     
  • J. Gu and W. P. Power
    Improved quantitation in 3QMAS of spin 5/2 nuclei by RF power modulation of FAM-II, (1)(2)(3)
    Solid State NMR 27, 192-199 (2005).
     
  • F. H. Larsen and I. Farnan
    Site populations and short range order in aluminosilicates investigated by 27Al solid-state NMR, (1)(2)(3)
    J. Phys. Chem. B 108, 9764-9771 (2004).
     
  • C. M. Morais, M. Lopes, C. Fernandez, and J. Rocha
    Assessing the potential of fast amplitude modulation pulses for improving triple-quantum magic angle spinning NMR spectra of half-integer quadrupolar nuclei, (1)(2)
    Magn. Reson. Chem. 41, 679-688 (2003).
     
  • T. Bräuniger, K. J. Pike, R. K. Harris, and P. K. Madhu
    Efficient 5QMAS NMR of spin-5/2 nuclei: use of fast amplitude-modulated radio-frequency pulses and cogwheel phase cycling, (1)(2)(3)
    J. Magn. Reson. 163, 64-72 (2003).
     
  • P. K. Madhu, O. G. Johannessen, K. J. Pike, R. Dupree, M. E. Smith, and M. H. Levitt
    Application of amplitude-modulated radiofrequency fields to the magic-angle spinning NMR of spin-7/2 nuclei, (1)(2)
    J. Magn. Reson. 163, 310-317 (2003).
     
  • A. Jerschow and R. Kumar
    Calculation of coherence pathway selection and cogwheel cycles, (1)(2)
    J. Magn. Reson. 160, 59-64 (2003).
     
  • A. Goldbourt, M. V. Landau, and S. Vega
    Characterization of aluminum species in alumina multilayer grafted MCM-41 using 27Al FAM(II)-MQMAS NMR, (1)(2)(3)
    J. Phys. Chem. B 107, 724-731 (2003).
     
  • M. H. Levitt, P. K. Madhu, and C. E. Hughes
    Cogwheel phase cycling, (1)(2)(3)
    J. Magn. Reson. 155, 300-306 (2002).
     
  • A. Goldbourt and P. K. Madhu
    Multiple-Quantum Magic Angle Spinning: High-resolution solid state NMR spectroscopy of half-integer quadrupolar nuclei, (1)(2)
    Monatsh. Chem. 133, 1497-1534 (2002).
     
  • P. K. Madhu and M. H. Levitt
    Signal enhancement in the triple-quantum magic-angle spinning NMR of spins-3/2 in solids: the FAM--RIACT--FAM sequence,
    J. Magn. Reson. 155, 150-155 (2002).
     
  • A. Goldbourt and S. Vega
    Signal enhancement in 5QMAS spectra of spin-5/2 quadrupolar nuclei, (1)(2)(3)
    J. Magn. Reson. 154, 280-286 (2002).
     
  • K. H. Lim, T. Charpentier, and A. Pines
    Efficient triple-quantum excitation in modified RIACT MQMAS NMR for I = 3/2 nuclei, (1)(2)
    J. Magn. Reson. 154, 196-204 (2002).
     
  • D. Freude, T. Loeser, D. Michel, U. Pingel, and D. Prochnow
    17O NMR studies of low silicate zeolites, (1)(2)
    Solid State NMR 20, 46-60 (2001).
     
  • P. D. Zhao, P. S. Neuhoff, and J. F. Stebbins
    Comparison of FAM mixing to single-pulse mixing in 17O 3Q- and 5Q-MAS NMR of oxygen sites in zeolites, (1)(2)(4)
    Chem. Phys. Lett. 344, 325-332 (2001).
     
  • P. K. Madhu, A. Goldbourt, L. Frydman, and S. Vega
    Fast radio-frequency amplitude modulation in MQMAS NMR: Theory and experiments, (1)(3)
    J. Chem. Phys. 112, 2377-2391 (2000).
     
  • A. Goldbourt, P. K. Madhu, S. Kababya, and S. Vega
    The influence of the radiofrequency excitation and conversion pulses on the lineshapes and intensities of the triple-quantum MAS NMR spectra of I = 3/2 nuclei, (1)
    Solid State NMR 18, 1-16 (2000).
     
  • A. Goldbourt, P. K. Madhu, and S. Vega
    Enhanced conversion of triple to single-quantum coherence in the triple-quantum MAS NMR spectroscopy of spin-5/2 nuclei, (1)
    Chem. Phys. Lett. 320, 448-456 (2000).
     
  • P. K. Madhu, A. Goldbourt, L. Frydman, and S. Vega
    Sensitivity enhancement of the MQMAS NMR experiment by fast amplitude modulation of the pulses, (1)(3)
    Chem. Phys. Lett. 307, 41-47 (1999).
     
  • A. Medek and L. Frydman
    Multiple-Quantum Magic-Angle Spinning NMR: A new technique for probing quadrupolar nuclei in solids, (1)(2)
    J. Braz. Chem. Soc. 10, 263-277 (1999).
     

Related bibliography

  • M. Goswami and P. K. Madhu
    Sensitivity enhancement of the central-transition signal of half-integer spin quadrupolar nuclei in solid-state NMR: Features of multiple fast amplitude-modulated pulse transfer,
    J. Magn. Reson. 192, 230-234 (2008).
     
  • Thomas Bräuniger, P. K. Madhu, André Pampel, and Detlef Reichert
    Application of fast amplitude-modulated pulse trains for signal enhancement in static and magic-angle-spinning 47,49Ti-NMR spectra,
    Solid-State NMR 26, 114-120 (2004).
     
  • T. Bräuniger, K. Ramaswamy, and P. K. Madhu
    Enhancement of the central-transition signal in static and magic-angle-spinning NMR of quadrupolar nuclei by frequency-swept fast amplitude-modulated pulses,
    Chem. Phys. Lett. 383, 403-410 (2004).
     
  • S. Vega and Y. Naor
    Triple quantum NMR on spin systems with I = 3/2 in solids,
    J. Chem. Phys. 75, 75-86 (1981).
     
 

(top)

[Contact me] - Last updated December 15, 2012
Solid-state NMR bibliography for
Aluminum-27
Antimony-121/123
Arsenic-75
Barium-135/137
Beryllium-9
Bismuth-209
Boron-11
Bromine-79/81
Calcium-43
Cesium-133
Chlorine-35/37
Chromium-53
Cobalt-59
Copper-63/65
Deuterium-2
Gallium-69/71
Germanium-73
Gold-197
Hafnium-177/179
Indium-113/115
Iodine-127
Iridium-191/193
Krypton-83
Lanthanum-139
Lithium-7
Magnesium-25
Manganese-55
Mercury-201
Molybdenum-95/97
Neon-21
Nickel-61
Niobium-93
Nitrogen-14
Osmium-189
Oxygen-17
Palladium-105
Potassium-39/41
Rhenium-185/187
Rubidium-85/87
Ruthenium-99/101
Scandium-45
Sodium-23
Strontium-87
Sulfur-33
Tantalum-181
Titanium-47/49
Vanadium-51
Xenon-131
Zinc-67
Zirconium-91



Copyright © 2002- pascal-man.com. All rights reserved.