
Copyright (C) 1999 by Bruker Analytik GmbH
All rights reserved. No part of this publication may be reproduced, stored in a retrieval sys-
tem, or transmitted, in any form, or by any means without the prior consent of the publisher.

Printed: 21 Aug 2001

Product names used are trademarks or registered trademarks of their respective holders.

AU PROGRAMS

Reference Manual

DONE

INDEX

INDEX

Bruker software support is available via phone, fax, e-mail, Internet, or ISDN.
Please contact your local office, or directly:

Address: Bruker Analytik GmbH
Software Department
Silberstreifen
D-76287 Rheinstetten
Germany

Phone: +49 (721) 5161 440
Fax: +49 (721) 5161 480
E-mail: nmr-software-support@bruker.de
FTP: ftp.bruker.de / ftp.bruker.com
WWW: www.bruker.de / www.bruker.com
ISDN: on request

http://www.bruker.de
http://www.bruker.de
http://www.bruker.de
http://www.bruker.com
http://www.bruker.com

Contents
Chapter 1 Introduction . 5
1.1 What are AU programs?. 5
1.2 What is new in XWIN-NMR 3.1 . 5
1.3 Quick reference to using AU programs . 6
1.4 Installing and compiling AU programs . 7
1.5 Executing AU programs. 8
1.6 Viewing AU programs . 8
1.7 About AU macros. 9
1.8 About Bruker library functions . 9
1.9 Creating your own AU programs . 9
1.10 How an AU program is translated into C-code . 16
1.11 Listing of all predefined C statements . 18

Chapter 2 Inventory of AU macros and Bruker library functions 23
2.1 Naming conventions. 23
2.2 Macros for dataset handling . 24
2.3 Macros prompting the user for input . 26
2.4 Macros handling XWIN-NMR parameters . 26
2.5 Acquisition macros. 28
2.6 Macros handling the shim unit and the sample changer. 29
2.7 Macros handling the temperature unit . 30
2.8 Macros handling the MAS and HPCU unit . 30
2.9 1D processing macros. 31
2.10 Peak picking, integration and miscellaneous macros . 32
2.11 Macros for algebraic operations on datasets . 33
2.12 Bayes, deconvolution and T1/T2 macros . 34
2.13 2D processing macros. 35
2.14 Macros reading and writing projections etc. 37
2.15 3D processing macros. 39
2.16 XWIN-NMR plotting macros . 39
2.17 XWIN-PLOT related macros . 40
2.18 Macros converting datasets from Aspect 2000/3000 and other vendors 41
2.19 Macros to execute other AU programs, XWIN-NMR macros or commands 42
2.20 Bruker library functions . 42
2.21 Macros to return from an AU program. 43
3

4

DONE

INDEX

INDEX

Chapter 3 General AU macros . 45
Chapter 4 Macros changing the current AU dataset . 51
Chapter 5 Macros copying datasets . 65
Chapter 6 Macros handling rows/columns . 69
Chapter 7 Macros converting datasets . 81
Chapter 8 Macros handling XWIN-NMR parameters . 89
Chapter 9 Macros for XWIN-PLOT/autoplot . 101
Chapter 10 Macros prompting the user for input. 111
Chapter 11 Bruker library functions . 117
Chapter 12 List of Bruker AU programs . 143

12.1 Short description of all Bruker AU programs . 143
Chapter 13 XWIN-NMR parameter types . 159

13.1 Integer parameters . 160
13.2 Float parameters . 161
13.3 Double parameters . 162
13.4 Character-string parameters . 163

Introduction 5
DONE

INDEX

INDEX

Chapter 1

Introduction

1.1 What are AU programs?

AU programs can be considered as user defined XWIN-NMR commands. Any repet-
itive task is most effectively accomplished through an AU program. All commands
which can be entered on the XWIN-NMR command line can also be entered in an
AU program in the form of macros. This includes selecting and changing datasets,
reading and setting parameters, starting acquisitions, processing data and plotting
the result. A simple AU program is nothing else than a sequence of such macros
which execute the corresponding XWIN-NMR commands. However, AU programs
may also contain C-language statements. In fact, an AU program is a C-program
because all AU macros are translated to C-statements. XWIN-NMR automatically
compiles AU programs to executable binaries, using a C-compiler.

XWIN-NMR offers two other ways of creating user defined commands: XWIN-NMR

macros (not to be confused with AU macros) and Tcl/Tk scripts.They differ from
AU programs in that they do not need to be compiled.

1.2 What is new in XWIN-NMR 3.1

Standard processing AU programs, like proc_1d contain the AUTOPLOT macro
for plotting whereas in XWIN-NMR 3.0 and older, the PLOT macro was used. How-

6 Introduction
DONE

INDEX

INDEX

ever, AU programs that contain PLOTX macros; are still used in the original form.
The old AU programs, using PLOT macro, are still available under the names
p_*. For example, the standard 1D processing AU program is available as:

proc_1d - contains the AUTOPLOT macro
p_1d - contains the PLOT macro

ICON-NMR 3.1 automatically uses AU programs with the AUTOPLOT macro.

Processing AU programs that contain the AUTOPLOT macro can be used with
one of the options e, h or t. They cause AUTOPLOT to store the plot as a post-
script file. For example, the AU program proc_1d can be enter as:

proc_1d - prints to the printer defined in the layout

proc_1d e - also prints to a postscript file in the dataset procno

proc_1d h - also prints to a postscript file in the users home directory

proc_1d t - also prints to a postscript file in the TEMP directory

(see also the header of the AU program plot_to_file)

ICON-NMR 3.1 can be configured to use the call the AU programs with the e option
(Configuration ! Automation Driver Engine ! Master Switches ! Generate
Spectrum Print-Out ...). Note that if Datamail in the User Settings ! User Man-
ager is checked, the plot is not stored but sent as an Email.

The commands wsr and wsc take an extra argument, the experiment number. The
corresponding AU macros must be specified as follows:

WSR(row, procno, expno, name, user, disk)

WSC(column, procno, expno, name, user, disk)

The new command rser2d exists. The corresponding AU macro can be used as
follows:

RSER2D(direction, plane, expno, procno)

1.3 Quick reference to using AU programs

Bruker delivers a library of standard AU programs with XWIN-NMR. After XWIN-
NMR has been installed you must do the following in order to use them:

1. Run expinstall once to install all AU programs

Introduction 7
DONE

INDEX

INDEX

2. Run compileall once to compile all AU programs

3. Enter the name of an AU program to execute it

Furthermore, you can write you own AU programs in the following way:

1. Enter edau <name>
The file <name> will be opened with a text editor

2. Do one of the following:

• Write your own AU program from scratch

• Read in an existing AU program and modify it according to your needs

3. Save the result and exit from the editor.
Press return to answer the question about compilation.

4. Enter the name of the AU program to execute it.

After you have installed a new version of XWIN-NMR, you must run expinstall
and compileall again to install and compile both Bruker’s and your own AU
programs.

1.4 Installing and compiling AU programs

When you have installed a new version of XWIN-NMR, you must install the library
AU programs once by executing the XWIN-NMR command expinstall. Your
own AU programs which you created under a previous version of XWIN-NMR are
still available, they only need to be re-compiled.

After running expinstall, there are 5 different commands to compile AU pro-
grams:

• compileall
compile all library and user-defined AU programs

• cplbruk <name> or cplbruk all
compile one or all Bruker AU programs

• cpluser <name> or cpluser all
compile one or all user-defined AU programs

• edau <name>
create (or view) and compile one AU program

• xau <name>
compile and execute one AU program

8 Introduction
DONE

INDEX

INDEX

1.5 Executing AU programs

Once an AU program has been installed, there are 3 different ways to execute it:

1. Enter the name of the AU program. This will work if:

• The AU program is already compiled

• No XWIN-NMR command or macro 1 with the same name exist

2. Enter xau au-program-name

If the AU program is not yet compiled, it will first be compiled and then execut-
ed. Otherwise, the program is immediately executed.

3. Enter xau

A list of available AU programs will appear. Click on the AU program you want
to execute. If it is not yet compiled, it will first be compiled and then executed.
Otherwise, the AU program is immediately executed.

1.6 Viewing AU programs

You can view existing AU programs in the following way:

1. View the entire content of one AU program:

a) Enter edau

A list of all existing AU programs are displayed in two columns. The left col-
umn shows the user defined AU programs, the right column the Bruker li-
brary AU programs.

b) Click on an AU program in the list

When you select a Bruker AU program, it is shown in view mode which
means you cannot edit it. When you click on a user-defined AU program it is
shown in edit mode which means you can change it.

2. Enter listall_au

A list and a short description of all library AU programs is stored in the file
listall in the users home directory. Note that this list is also available in

1. Here we refer to an XWIN-NMR macro created with edmac

Introduction 9
DONE

INDEX

INDEX

Chapter 12 of this manual.

1.7 About AU macros

We will use the word macro rather often throughout this manual referring to AU
macros. This should not be confused with XWIN-NMR macros which are files con-
taining a sequence of XWIN-NMR commands. XWIN-NMR macros are created with
edmac and executed with xmac. An AU macro, however, is a statement in an AU
program which defines one or more XWIN-NMR commands, library functions or C-
language statements. In its simplest form, an AU macro defines one XWIN-NMR

command. For example the macros ZG and FT execute the XWIN-NMR commands
zg and ft, respectively. Other macros like FETCHPAR and IEXPNO do not
define XWIN-NMR commands, their function is only relevant in the context of an
AU program. More complex macros may contain several XWIN-NMR commands
and/or C-statements. All macros in AU programs should be written in capital let-
ters. They are automatically translated to the corresponding C-code when the AU
program is compiled. AU macros are defined in the file:

/xwhome/prog/include/aucmd.h

1.8 About Bruker library functions

Bruker library functions are C-functions which are contained in Bruker libraries.
They offer several features which are also used in the XWIN-NMR interface, for
example the display of a list of datasets from which the user can select one dataset.
If you use a Bruker library function in an AU program the corresponding library is
automatically linked to the AU program during compilation. The most important
and versatile Bruker library functions are described in chapter 9.

1.9 Creating your own AU programs

1.9.1 Writing a simple AU program

Before you start writing an AU program, you might want to check if an AU pro-
gram already exists which (almost) meets your requirements. If this is not the case,
you can write your own AU program in the following way:

10 Introduction
DONE

INDEX

INDEX

1. Enter edau <au-name>
Your preferred XWIN-NMR text editor will be opened 1

2. Do one of the following:

• Insert an existing library AU program and modify it to your needs.

• Write a new AU program using the macros as described in this manual.

The first macro in an AU program should always be GETCURDATA, the last
macro should always be QUIT (or QUITMSG).

3. Save the file and exit from the editor.

4. A dialogue will appear asking you whether you want to compile the AU pro-
gram, quit without compilation or go back to a listing of all AU programs:

• Press Return to compile the AU program.

1.9.2 Using variables

Since AU programs are C programs you can use C-language variables. Several
variables are already predefined for usage in AU programs. In fact, we distinguish
three different types of variables: predefined dedicated variables, predefined gen-
eral variables and user defined variables.

1.9.2.1 Predefined dedicated variables

Predefined dedicated variables have the following properties:

• they do not need to be declared in an AU program

• their declaration is automatically added during compilation

• they are known to the AU main body and to possible subroutines

• they are set implicitly by certain macros, e.g. the variable expno is set by
macros like GETCURDATA, DATASET and IEXPNO

• they should not be set explicitly, so do NOT use statements like:

expno = 11;
FETCHPAR("NS", &expno)

• they can be evaluated in macros or C-statements, e.g.:

1. You can change the XWIN-NMR text editor by entering the command setres.

Introduction 11
DONE

INDEX

INDEX

DATASET(name, expno, 2, disk, "guest")
i1=expno+1;

• examples of different types of predefined dedicated variables are:
char-string: name, disk, user, name2
integer: expno, procno, loopcount1, loopcount2, lastparflag

A complete list of all predefined dedicated variables with their types can be found
in Chapter 1.11.2

1.9.2.2 Predefined general variables

Predefined general variables have the following properties:

• they do not need to be declared in an AU program

• their declaration is automatically added during compilation

• they are known to the AU main body but not to possible subroutines

• they can be freely used for various purposes

• examples of different types of predefined general variables are:
integer: i1, i2, i3
float: f1, f2, f3
double:d1, d2, d3
char-string: text

A complete list of all predefined general variables with their types and initial val-
ues can be found in Chapter 1.11.3.

1.9.2.3 User defined variables

For simple AU programs the number of predefined general variables is sufficient,
you do not need to declare any additional variables. For more complex AU pro-
grams you might need more variables or you might want to use specific names. In
these cases you can define your own variables in the AU program. User defined
variables have the following properties:

• they must be declared at the beginning of an AU program

• they can be freely used for various purposes

• they are known to the main AU program but not to possible subroutines

• examples of declarations are:

12 Introduction
DONE

INDEX

INDEX

int ivar1, ivar2;
float fvar1, fvar2, fvar3;
double dvar1, dvar2, dvar3;
char cstr1[20], cstr2[200];

1.9.3 Using AU macros with arguments

Several AU macros take one or more arguments. Arguments can be constants (val-
ues) or variables. In fact, an argument can be specified in four different ways as
described here for the macro REXPNO:

• as a constant, e.g.:

REXPNO(3)

• as a predefined dedicated variable e.g.:

REXPNO(expno+1)

• as predefined general variable, e.g.:

i1=6;
REXPNO(i1)

• as a user defined variable,e.g.:

int my_exp;
....
my_exp=1;
REXPNO(my_exp)

It is very important that the arguments are of the correct type. Macros can take
arguments of the type integer (like REXPNO), float, double or character-string.

Some macros, for example STOREPAR, take XWIN-NMR parameters as arguments
and each parameter is of a certain type. For example, the AU statement

STOREPAR("O1", d1)

stores the value of the variable d1 into the parameter O1. The predefined (double)
variable d1 is used since O1 is of the type double. The second argument could also
be a constant, e.g.:

STOREPAR("O1", 287.15)

A list of all XWIN-NMR parameters and their type can be found in Chapter 13.

Introduction 13
DONE

INDEX

INDEX

1.9.4 Using C-language statements

AU programs can contain AU macros but also C-language statements like:

• define statements, e.g.: #define MAXSIZE 32768

• include statements, e.g.: #include <time.h>

• variable declarations, e.g. int ivar;

• variable assignments, e.g.: ivar = 20;

• loop structures, e.g.: for, while, do

• control structures, e.g.: if-else

• C-functions, e.g.: strcpy, strcmp, sprintf

Important: several C-language statements (including declarations of variables) are
already predefined and automatically added during compilation of the AU pro-
gram.

A example of an AU program using macros and C-statements is:

int eno, pno;
char datapath [500], dataname[50], datauser[50], datadisk[200];

GETCURDATA
(void) strcpy (dataname,name);
(void) strcpy (datauser,user);
(void) strcpy (datadisk,disk);
eno = expno;
pno = procno;
(void) sprintf (datapath,"%s/data/%s/nmr/%s/%d/pdata/%d/title",
datadisk, datauser, dataname, eno, pno);
if ((i1 = showfile (datapath)) < 0)
{

Proc_err (DEF_ERR_OPT,"Problems with showfile function");
}
QUIT

Note that GETCURDATA and QUIT are AU macros, strcpy and sprintf are C-
functions and showfile and Proc_err are Bruker library functions.

For an explanation of C-functions and more information on C-language we refer to
the literature on C-programming.

14 Introduction
DONE

INDEX

INDEX

1.9.5 Additional hints on C-statements

If you are using C-language code in your AU programs, then there are a few things
to be considered.

1. Using C-language header files

Several C-language header files are automatically added to your AU program
during compilation. If you are using C-code which requires additional header
files you must write your AU program in a special way. The main AU program
should be a call to a subroutine which performs the actual task of the AU pro-
gram. The include statements for the header file must be entered between the
main AU program and the subroutine. This gives the following structure:

GETCURDATA
subroutine(curdat, cmd)
QUIT
#include <headerfile.h>

subroutine(curdat,cmd)
char *curdat, *cmd;
{

MACRO1
MACRO2

}

or

subroutine(curdat, cmd)
QUIT
#include <headerfile.h>

subroutine(curdat,cmd)
char *curdat, *cmd;
{

GETCURDATA
MACRO1
MACRO2

}

Such a structure is used in several Bruker library AU programs (e.g. amplstab,
decon_t1, etc.). Several Bruker library functions like PrintExpTime,
gethighest, getxwinvers, pow_next and unlinkpr also require an in-

Introduction 15
DONE

INDEX

INDEX

clude statement in the AU program (see Chapter 11).

2. Some macros, e.g. IEXPNO and IPROCNO change the current AU dataset but
do not make it available for subsequent commands. If they are followed by a
CPR_exec or any C-statement which access the current AU dataset, then you
must precede that statement with SETCURDATA (see also the descriptions of
GETCURDATA, SETCURDATA, IEXPNO etc. in Chapter 4).

3. If you are using C-languages loop statements like for, do or while or control
statements like if, we strongly recommend to always put the body of such state-
ments between {}. If the body only contains simple macros like ZG or FT you
can omit them because these macro definitions already contain {}. However,
more complex macros might internally define C-statements that include loop or
control structures. If such a macro is used within a loop or control structure in
the AU program, then you create nested loops which require the usage of {}.

1.9.6 Viewing Bruker standard AU programs for macro syntax

The syntax of many AU macros is trivial, just enter the XWIN-NMR command in
capital letters. Other macros and especially Bruker library functions are more com-
plex. A detailed description of frequently used AU macros and functions can be
found in subsequent chapters of this manual. Alternatively, you can also look for
an existing AU program containing this macro or function. If, for example, you
want to know the syntax of the macro WRPA you can do the following:

On an UNIX workstation:

• open a UNIX shell

• cd /<xwhome>/prog/au/src.exam

• grep -i wrpa *

where <xwhome> is the directory where XWIN-NMR is installed.

On a Windows PC:

• Click Start -> Find -> Files or Folders

• Click Browse and open C:\Bruker\xwin-nmr\prog\au\src.exam

• Click Advanced, in the field Containing text enter wrpa

• Click on Find now

assuming XWIN-NMR is installed in C:\Bruker.

16 Introduction
DONE

INDEX

INDEX

1.10 How an AU program is translated into C-code

This paragraph is intended for users who want to get a deeper understanding of the
compilation process. If you simply want to write and use AU programs you can
skip this paragraph.

XWIN-NMR automatically translates your AU program into C-language and com-
piles it. Files and directories used during AU program compilation are:

/<xwhome>/exp/stan/nmr/au/makeau
/<xwhome>/exp/stan/nmr/au/vorspann
/<xwhome>/exp/stan/nmr/au/mk_AUtable.exe
/<xwhome>/prog/include/aucmd.h
/<xwhome>/prog/include/inc

The compilation process is entirely controlled by the script makeau which per-
forms the following steps.

1. The file vorspann is concatenated with your AU program. This file contains
a variety of definitions including

• the C-program main statement

• #include statements of C-header files (which in turn contain other defini-
tions)

• #define statements which define constants

• predefined dedicated variables, e.g.: name, disk, user, expno, procno

• predefined general variables, e.g. : text, i1, i2, i3, f1, f2, f3, d1, d2, d3

2. After vorspann and your code have been concatenated, a pre-processor pro-
gram called mk_AUtable.exe scans the file for macro definitions and
replaces them. The pre-processor searches for macro definitions in the file
aucmd.h and in the inc directory. All AU macros are defined in the ascii file
aucmd.h. Additional macros are defined in the files in the inc directory. In
some cases, the name of the macro is the name of one of the files in inc direc-
tory and the entire content of the file represents that macro.

3. After mk_AUtable.exe has generated a C program source file, this file is
compiled and an executable program is created. The compilation is done with
the GNU C-compiler gcc. The linking process is done with the native linker
which is part of the native C-compiler cc. All AU program’s source files reside
in:

Introduction 17
DONE

INDEX

INDEX

/<xwhome>/exp/stan/nmr/au/src

executables will be stored into:

/<xwhome>/prog/au/bin.

The following section shows the result of concatenating vorspann with the fol-
lowing AU program:

GETCURDATA
EFP
APK
SREF
QUIT

For better presentation, only a part of vorspann is shown. All variables declared
in vorspann are listed in chapter 1.10.

#include <stdio.h>
#include <stdlib.h>

...........................

main(argc,argv)
int argc;
char **argv;
{
char curdat[PATH_MAX];
char arglist[BUFSIZ];
int modret;
modret = AU_program(curdat,arglist);
}

.............................

AU_program(curdat,cmd)
char *curdat;
char *cmd;
{
int i1=0,i2=0,i3=0;
float f1=0,f2=0,f3=0,f998=0,f999=0;
double d1=0,d2=0,d3=0;
char text[BUFSIZ/2];

18 Introduction
DONE

INDEX

INDEX

GETCURDATA
EFP
APK
SREF
QUIT

Note that the macro QUIT defines the closing C-language ’}’statement.

1.11 Listing of all predefined C statements

1.11.1 Including header files

The following C-language header files are automatically included during compila-
tion:

stdio.h, stdlib.h, unistd.h, string.h, errno.h, math.h, limits.h, fcntl.h

which reside in the following directories:

under UNIX : /usr/include
under Windows: C:\Program Files\Microsoft Visual Studio\VC98\Include

and

erropt.h, brukdef.h, lib/uni.h, lib/libcb.h, lib/util.h, sample.h, aucmd.h

which reside in the directory:

/xwhome/prog/include

Note that the latter group of header files is delivered with XWIN-NMR.

1.11.2 Predefined dedicated variables

The following list contains all predefined dedicated variables, their type and the
AU macros by which they are set. Note that most variables are set or modified by
several macros and only one or two are listed here.

Introduction 19
DONE

INDEX

INDEX

type variable set by macros

int lastparflag USELASTPARS, USECURPARS

int loopcount1 TIMES/END

int loopcount2 TIMES2/END

int loopcount3 TIMES3/END

int loopcountinf TIMESINFINITE

char disk[256] GETCURDATA

char user[64] GETCURDATA

char type[16] GETCURDATA

char name[64] GETCURDATA

int expno GETCURDATA, IEXPNO

int procno GETCURDATA, IPROCNO

char disk2[256] GETCURDATA2

char user2[64] GETCURDATA2

char type2[16] GETCURDATA2

char name2[64] GETCURDATA2

int expno2 GETCURDATA2

int procno2 GETCURDATA2

char disk3[256] GETCURDATA3

char user3[64] GETCURDATA3

char type3[16] GETCURDATA3

char name3[64] GETCURDATA3

int expno3 GETCURDATA3

int procno3 GETCURDATA3

char parsettype[10] PARSETTYP, SETPARSET

char namelist[10][64] SETDATASET

char dulist[10][256] SETDATASET

Table 1.1

20 Introduction
DONE

INDEX

INDEX

1.11.3 Predefined general variables

The following list contains all predefined general variables, their types and initial

char userlist[10][64] SETDATASET

char parsetlist[10][16] RPARSETLIST

char pulproglist[10][16] RPULPROGLIST

int expnolist[15] SETDATASET

int procnolist[15] SETDATASET

int loopcountlist[15] RLOOPCOUNTLIST

float vtlist[128] RVTLIST

int xloopcount ILOOPCOUNTLIST

int xpulprog IPULPROGLIST

int xparset IPARSETLIST

int xdataset IDATASETLIST

int xvt IVTLIST

int listcount1 TIMESLIST

FILE *textfilepointer

FILE *debug

char longpath[PATH_MAX]

char Hilfs_string[BUFSIZ/2]

type variable set by macros

Table 1.1

Introduction 21
DONE

INDEX

INDEX

values:

type variable initial value

int i1 0

int i2 0

int i3 0

double d1 0

double d2 0

double d3 0

float f1 0

float f2 0

float f3 0

float f998 0

float f999 0

char text[BUFSIZ/2]

Table 1.2

22 Introduction
DONE

INDEX

INDEX

Inventory of AU macros and Bruker library functions 23
DONE

INDEX

INDEX

Chapter 2

Inventory of AU macros and
Bruker library functions

2.1 Naming conventions

This chapter lists most AU macros and Bruker library functions that are available
for AU programming. Simple macros with their short description are only men-
tioned in this chapter. More complex macros and AU functions are mentioned here
and described more extensively in the following chapters. Table 2.1 explains the

24 Inventory of AU macros and Bruker library functions
DONE

INDEX

INDEX

macro conventions used in this chapter.

Several AU macros that are described in this chapter require one or more argu-
ments. These arguments can be constants or variables as described in Chapter
1.9.3. It is very important to use the correct type of argument in a macro call. The
macros described in the tables of this chapter use the following arguments:

integer : i1, i2, i3, eno, pno
float : f1
double : d1
char-string: text, cmd, file, flag, mac, parm, parset, prog, shim, typ, dsk, usr, nam

Note that the arguments i1, i2, i3, f1, d1 and text have the same names as the corre-
sponding predefined general variables. The predefined general variables are easy
to use because they do not need to be declared. You can, however, use your own
variables as macro arguments.

2.2 Macros for dataset handling

Macro Explanation

XXX The macro can be typed "as is". There is no further explana-
tion for the macro in this manual.

XXX(arg1,arg2) The macro XXX takes two arguments. Because the macro is
easy to use, there is no further description in this manual.

XXX * Like XXX, but there is a detailed description in one of the
following chapters.

XXX(....) * The macro XXX takes one or more arguments and its usage
is described in one of the following chapters.

Table 2.1 Macro conventions

Macro Description

GETCURDATA * The first AU program statement; get the foreground dataset

SETCURDATA * Make the current AU dataset available for subsequent AU
statements

GETDATASET * Prompt the user to specify a new dataset

Inventory of AU macros and Bruker library functions 25
DONE

INDEX

INDEX

DATASET(....) * Set the current AU dataset

DATASET2(....) * Set the 2nd dataset (like the XWIN-NMR command edc2)

DATASET3(....) * Set the 3rd dataset (like edc2)

GETCURDATA2 Read the 2nd dataset (like edc2)

GETCURDATA3 Read the 3rd dataset (like edc2)

DEXPNO * Decrease the experiment number by one

IEXPNO * Increase the experiment number by one

REXPNO(i1) * Set the experiment number to the value of i1

DPROCNO * Decrease the processing number by one

IPROCNO * Increase the processing number by one

RPROCNO(i1) * Set the processing number to the value of i1

GDATASETLIST Prompt the user to enter a dataset list filename and read its
contents

GLIST Prompt the user to enter the dataset list filename and read its
contents. In addition to the GDATASETLIST macro, GLIST
also expects a pulse program and a parameter set name in the
dataset list file.

DDATASETLIST Decrement to the previous entry in the dataset list

IDATASETLIST Increment to the next entry in the dataset list

RDATASETLIST(i1) Read the dataset at position i1 of the dataset list and make it
the current AU dataset

IFEODATASETLIST Checks if the end of the dataset list is reached. The answer is
true if there is no further entry.

SETDATASET Set the current AU dataset to the one currently defined by the
dataset list

DU(dsk) Set the disk unit to dsk

SETUSER(usr) Set the user name to the user usr

WRA(i1) * Copy the raw data to the experiment number i1

WRP(i1) * Copy the processed data to the processing number i1

Macro Description

26 Inventory of AU macros and Bruker library functions
DONE

INDEX

INDEX

2.3 Macros prompting the user for input

2.4 Macros handling XWIN-NMR parameters

WRPA(....) * Copy the raw and processed data to the specified dataset

VIEWDATA * Show the current AU program dataset in XWIN-NMR

Macro Description

GETDOUBLE(text,d1) * Prompt the user to enter a double value

GETFLOAT(text,f1) * Prompt the user to enter a float value

GETINT(text,i1) * Prompt the user to enter an integer value

GETSTRING(text,nam) * Prompt the user to enter a text string

Macro Description

GETPROSOL * Copy the probehead and solvent dependent parame-
ters to the corresponding acquisition parameters

FETCHPAR(parm,&val) * Get an acquisition, processing or output parameter

FETCHPAR1(parm,&val) Get an F1 dimension parameter (2D acquisi-
tion/processing)

FETCHPAR3(parm,&val) Get an F1 dimension parameter (3D acquisi-
tion/processing)

FETCHPARS(parm,&val) * Get a status parameter (acquisition and processing)

FETCHPAR1S(parm,&val) Get an F1 dimension status parameter (2D)

FETCHPAR3S(parm,&val) Get an F1 dimension status parameter (3D)

STOREPAR(parm,val) * Store an acquisition, processing or output parameter

STOREPAR1(parm,val) Store an F1 dimension parameter (2D)

STOREPAR3(parm,val) Store an F1 dimension parameter (3D)

STOREPARS(parm,val) * Store a status parameter (acquisition and processing)

STOREPAR1S(parm,val) Store an F1 dimension status parameter (2D)

Macro Description

Inventory of AU macros and Bruker library functions 27
DONE

INDEX

INDEX

STOREPAR3S(parm,val) Store an F1 dimension status parameter (3D)

FETCHPARM(parm,&val) Get a tomography measurement parameter

STOREPARM(parm,val) Store a tomography measurement parameter

FETCHPLPAR(parm,&val) Get a plot parameter

STOREPLPAR(parm,val) Store a plot parameter

FETCHPLWPAR(parm,&val) Get a white-washed stacked plot parameter

STOREPLWPAR(parm,val) Store a white-washed stacked plot parameter

FETCHPLXPAR(parm,&val) Get an expansion plot parameter

STOREPLXPAR(parm,val) Store an expansion plot parameter

FETCHT1PAR(parm,&val) Get a T1 parameter

STORET1PAR(parm,val) Store a T1 parameter

FETCHDOSYPAR(parm,&val) Get a dosy (eddosy) parameter

STOREDOSYPAR(parm,val) Store a dosy (eddosy) parameter

RPAR(parset,typ) * Read a parameter set to the current dataset

WPAR(parset,typ) * Write the current dataset parameters to a parameter
set

DELPAR(parset) Delete the parameter set parset

GPARSETLIST Prompt the user to enter the name of the parameter
set list and read its contents

DPARSETLIST Decrement to the previous parameter set name in the
parameter set list

IPARSETLIST Increment to the next parameter set name in the
parameter set list

PARSETTYP(typ) Set the type of parameter file (acqu, proc, outd or
plot) to be read by SETPARSET or RPARSETLIST

RPARSETLIST(i1) Read the parameter set name from position i1 in the
parameter set list and then read the parameters from
this parameter set

Macro Description

28 Inventory of AU macros and Bruker library functions
DONE

INDEX

INDEX

2.5 Acquisition macros

SETPARSET Read the parameters from the parameter set name in
position i1 of the parameter list

IFEOPARSETLIST Checks if the end of the parameter set list is reached.
The answer is true if there is no further entry.

Macro Description

ZG Start acquisition; if raw data already exist, they are overwrit-
ten

GO Continue the acquisition on already existing raw data by add-
ing to them

II Initialize acquisition interface

RGA Automatic receiver gain adjustment

MAKE_ZERO_FID Create an empty FID

DEG90 Determine 90 degree pulse automatically

GPULPROGLIST Prompt the user to enter the name of a pulse program list file
and read its contents

DPULPROGLIST Decrement to the previous name in the pulse program list

IPULPROGLIST Increment to the next name in the pulse program list

RPULPROGLIST(i1) Read the pulse program name in position i1 of the pulse pro-
gram list and write it to the acquisition parameters

SETPULPROG Store the current pulse program name from the pulse pro-
gram list

IFEOPULPROGLIST Check if the end of the pulse program list is reached. The
answer is true if there is no further entry.

Macro Description

Inventory of AU macros and Bruker library functions 29
DONE

INDEX

INDEX

2.6 Macros handling the shim unit and the sample changer

Macro Description

EJ Eject sample from the magnet

IJ Insert sample into the magnet

ROT Turn rotation on (use value RO from acquisition parameters)

ROTOFF Turn rotation off and wait until rotation was turned off

LOPO Set the lock parameters (lock power, lock gain, loop filter, loop
time and loop gain)

LFILTER(i1) Set the loop filter to the value of i1

LG Auto-adjust the lock gain

LGAIN(f1) Set the loop gain to the value of f1

LO(f1) Set the lock power to the value of f1

LTIME(f1) Set the loop time to the value of f1

LOCK Lock according to the parameters LOCNUC and SOLVENT using
the lock parameters from the edlock table

RSH(file) Read the shim values from the specified file

SETSH(shim,i1) Set one shim to the value of i1

WSH(file) Write the shim values to the specified file

TUNE(file) Start autoshimming with the specified tune file

TUNESX Start autoshimming with the tune file defined by the currently
defined probehead and solvent

ZSPOIL(i1) Set value for Z-spoil gradient pulse from BSMS

30 Inventory of AU macros and Bruker library functions
DONE

INDEX

INDEX

2.7 Macros handling the temperature unit

2.8 Macros handling the MAS and HPCU unit

Macro Description

TESET Set the temperature on the temperature unit to the value of the
acquisition parameter TE.

TEGET Get the temperature from the temperature unit and store it in the
acquisition status parameter TE

TE2SET Set the temperature on the second regulator of the temperature
unit to the value of the acquisition parameter TE2.

TE2GET Get the temperature from the second regulator of the temperature
unit and store it in the acquisition status parameter TE2

TEREADY(i1,f1) After the temperature is set, wait until it is accurate to f1 degrees
for at least 10 sec., then wait i1 seconds for stabilization.

TE2READY(i1,f1) After the second temperature is set, wait until it is accurate to f1
degrees for at least 10 sec., then wait i1 seconds for stabilization.

TEPAR(file) Read a file with parameter settings for the temperature unit

GVTLIST Prompt the user to enter the variable temperature list name and
read its contents

RVTLIST Read the contents of the variable temperature list file defined by
the acquisition parameter VTLIST.

DVTLIST Decrement to the previous value in the vtlist

IVTLIST Increment to the next value in the vtlist

VT Read and set the temperature according to the current value of
the vtlist

Macro Description

MASE Eject sample from MAS unit

MASI Insert sample into MAS unit

MASR Set spinning rate according to the acquisition parameter MASR

Inventory of AU macros and Bruker library functions 31
DONE

INDEX

INDEX

2.9 1D processing macros

MASRGET Get spinning rate from the MAS unit and store it in the status acquisi-
tion parameters

MASG(i1) Start spinning of sample in MAS with at the most i1 retries

MASH Halt spinning of sample in MAS

GETHPCU Get (read) the HPCU parameters

SETHPCU Set the HPCU parameters

RACKPOW Switch the HPCU rack power on or off (depending on what the
parameter POWMOD is set to)

Macro Description

ABS Automatic baseline correction (creates intrng file !)

ABSD Automatic baseline correction with DISNMR algorithm (creates intrng
file !)

ABSF Automatic baseline correction between limits ABSF1 and ABSF2

APK Automatic phase correction

APK0 Zero order automatic phase correction

APK1 First order automatic phase correction

APKF Automatic phase correction using the spectral region determined by
ABSF2 and ABSF1 for the calculation of the phase values.

APKS Automatic phase correction especially suitable for polymer spectra

BC Baseline correction of FID (DC correction)

CONVDTA Convert digitally filtered FID into analogue (conventional) form

EF Exponential window multiplication + Fourier transform

EFP Exponential window multiplication + Fourier transform + phase cor-
rection using the processing parameters PHC0 and PHC1

EM Exponential window multiplication of FID

FMC Fourier Transform + magnitude calculation

Macro Description

32 Inventory of AU macros and Bruker library functions
DONE

INDEX

INDEX

2.10 Peak picking, integration and miscellaneous macros

FP Fourier Transform + phase correction using the processing parameters
PHC0 and PHC1

FT Fourier Transform

GENFID Create FID from processed data

GF Gaussian window multiplication + Fourier Transform

GFP Gaussian window multiplication + Fourier Transform + phase correc-
tion using the processing parameters PHC0 and PHC1

GM Gaussian window multiplication

HT Hilbert Transform

IFT Inverse Fourier Transform

MC Magnitude calculation

PK Phase correction using the processing parameters PHC0 and PHC1

PS Power spectrum calculation

QSIN Squared sine window multiplication

SAB Spline baseline correction using base_info file

SINM Sine window multiplication

SINO Calculate signal to noise ratio

SREF Automatic spectral referencing using 2Hlock parameters

TM Trapezoidal window multiplication

TRF Processing according to the currently defined processing parameters

UWM user-defined window multiplication

Macro Description

PP Peak picking according to currently set processing parameters

PPH Like PP, but with a peak histogram along the listing

PPP Like PP, but the output is written to the file peaklist in the cur-
rent processing data directory (PROCNO)

Macro Description

Inventory of AU macros and Bruker library functions 33
DONE

INDEX

INDEX

2.11 Macros for algebraic operations on datasets

PPJ Like PP, but store peaks in JCAMP-DX format

LI List integrals according to the currently defined intrng file. The
macro ABS can be used to create an intrng file.

LIPP List integrals and all peaks in the integral ranges

LIPPF Like LIPP, but works always on the full spectrum

NMRQUANT(file) Do quantitative integration with an nmrquant region file

RLUT(file) Read color look-up table for 2D or 3D datasets

RMISC(typ,file) Read a file from one of the following list types: base_info,
baslpnts, intrng, peaklist or reg

WMISC(typ,file) Write a base_info, baslpnts, intrng, peaklist or reg file to its lists
directory

Macro Description

ADD Add 2nd and 3rd dataset and put the result into the current dataset. The
3rd dataset is multiplied by DC.

ADDC Add the constant DC to the current dataset

AND Put logical "and" of 2nd and 3rd dataset into the current dataset

AT Same as ADD

CMPL Put the "complement" of the 2nd and 3rd dataset into the current dataset

DIV Divide 2nd and 3rd dataset and put the result into the current dataset. The
3rd dataset is multiplied by DC.

DT Calculate the first derivative of the dataset

FILT Apply a software digital filter to the current dataset

LS Left shift spectrum or FID by NSP points

MUL Multiply 2nd and 3rd dataset and put the result into the current dataset.
The 3rd dataset is multiplied by DC.

MULC Multiply the current dataset with DC

NM Negate current spectrum

Macro Description

34 Inventory of AU macros and Bruker library functions
DONE

INDEX

INDEX

2.12 Bayes, deconvolution and T1/T2 macros

RS Right shift spectrum or FID by NSP points

RV Reverse the spectrum

ZF Zero the spectrum (1r,1i)

ZP Zero the first NZP points of the spectrum or FID

Macro Description

BAYX Execute Bayesian calculation

BAYED Edit the Bayes parameters

BAYEDX Edit the Bayes parameters and then run the calculation

LIBAY List the result of the Bayesian calculation

VIBAY Display the result of the Bayesian calculation

GDCON Gaussian deconvolution of the peaks automatically picked according to
the currently set processing parameters

LDCON Lorentzian deconvolution of the peaks automatically picked according to
the currently set processing parameters

MDCON Mixed Gaussian/Lorentzian deconvolution of the peaks in the peaklist
file. The peaklist file can be created with the ppp command and it can be
modified using the edmisc command.

CT1 Calculate the T1 value of the current peak

DAT1 Calculate T1 value for all peaks picked with PD

DAT2 Calculate T2 value for all peaks picked with PD

PD Pick data points for relaxation analysis

PD0 Pick data points for relaxation analysis at constant peak position

PF Peak pick points from a series of FIDs in a 2D ser file

PFT2 Peak pick points from a single FID

SIMFIT Simplex fit; multiple component relaxation analysis of one peak

Macro Description

Inventory of AU macros and Bruker library functions 35
DONE

INDEX

INDEX

2.13 2D processing macros

SIMFITALL Simplex fit; multiple component relaxation analysis of all peaks

SIMFITAS-
CALL

Simplex fit; multiple component relaxation analysis of all peaks as
defined in the file t1ascii

Macro Description

ABS1 Baseline correction in F1 dimension

ABS2 Baseline correction in F2 dimension

ABSD1 Baseline correction in F1 dimension using the DISNMR algorithm

ABSD2 Baseline correction in F2 dimension using the DISNMR algorithm

ABSOT1 Trapezoidal baseline correction in F1 dimension using a slightly differ-
ent algorithm than abst1

ABSOT2 Trapezoidal baseline correction in F2 dimension using a slightly differ-
ent algorithm than abst2

ABST1 Trapezoidal baseline correction in F1 dimension using the processing
parameters ABSF1, ABSF2, SIGF1, SIGF2

ABST2 Trapezoidal baseline correction in F2 dimension using the processing
parameters ABSF1, ABSF2, SIGF1, SIGF2

ADD2D Add the 2nd dataset to the current dataset.

BCM1 Baseline correction of all columns using the coefficients that were
obtained with a manual 1D baseline correction

BCM2 Baseline correction of all rows using the coefficients that were obtained
with a manual 1D baseline correction

INVSF Interchange the frequencies of the two dimensions

LEVCALC Calculate the levels for the contour representation of the 2D matrix

PTILT Tilt the 2D matrix by an arbitrary angle

PTILT1 Tilt the 2D matrix along its central vertical line

REV1 Reverse the spectrum in F1 dimension

REV2 Reverse the spectrum in F2 dimension

Macro Description

36 Inventory of AU macros and Bruker library functions
DONE

INDEX

INDEXSUB1 Subtract 1D spectrum in F1 dimension (no change in sign !)

SUB2 Subtract 1D spectrum in F2 dimension (no change in sign !)

SUB1D1 Subtract 1D spectrum in F1 dimension

SUB1D2 Subtract 1D spectrum in F2 dimension

SYM Symmetrize COSY spectrum

SYMA Symmetrize phase sensitive COSY spectrum

SYMJ Symmetrize J-resolved spectrum

TILT Tilt J-resolved spectrum by an internally calculated angle

XF1 Fourier transform in F1 dimension

XF1P Phase correction in F1 dimension using the processing parameters
PHC0 and PHC1

XF2 Fourier transform in F2 dimension

XF2P Phase correction in F2 dimension using the processing parameters
PHC0 and PHC1

XFB Fourier transform in both dimensions

XFBP Phase correction in both dimensions

XF1M Magnitude calculation in F1 dimension

XF2M Magnitude calculation in F2 dimension

XFBM Magnitude calculation in both dimensions

XF1PS Power spectrum in F1 dimension

XF2PS Power spectrum in F2 dimension

XFBPS Power spectrum in both dimensions

XHT1 Hilbert Transform in F1 dimension

XHT2 Hilbert transform in F2 dimension

XIF1 Inverse Fourier transform in F1 dimension

XIF2 Inverse Fourier transform in F2 dimension

XTRF 2D processing according to processing parameter flags (starts always
on the raw data !)

Macro Description

Inventory of AU macros and Bruker library functions 37
DONE

INDEX

INDEX

2.14 Macros reading and writing projections etc.

XTRF2 2D processing according to F2 processing parameter flags only (starts
always on the raw data !)

XTRFP 2D Processing according to the processing parameter flags

XTRFP1 2D processing according to the F1 processing parameter flags only

XTRFP2 2D processing according to the F2 processing parameter flags only

ZERT1 Zero a region of each column (F1). The region is determined by
ABSF1/ABSF2 (first column) and SIGF1/SIGF2 (last column)

ZERT2 Zero a region of each row (F1). The region is determined by
ABSF1/ABSF2 (first row) and SIGF1/SIGF2 (last row)

GENSER Create a 2D series file from the processed data

Macro Description

F1SUM(i1,i2,pno) Read sum of columns from i1 to i2 into the 1D
processing number pno

F2SUM(i1,i2,pno) Read sum of rows from i1 to i2 into the 1D
processing number pno

F1DISCO(i1,i2,i3,pno) Read disco projection between i1 and i2 columns
with reference row i3 into the 1D processing
number pno

F2DISCO(i1,i2,i3,pno) Read disco projection between i1 and i2 rows
with reference column i3 into the 1D processing
number pno

F1PROJN(i1,i2,pno) Read partial negative projection between columns
i1 and i2 into the 1D processing number pno

F1PROJP(i1,i2,pno) Read partial positive projection between columns
i1 and i2 into the 1D processing number pno

F2PROJN(i1,i2,pno) Read partial negative projection between rows i1
and i2 into the 1D processing number pno

Macro Description

38 Inventory of AU macros and Bruker library functions
DONE

INDEX

INDEXF2PROJP(i1,i2,pno) Read partial positive projection between rows i1
and i2 into the 1D processing number pno

PROJ Calculate the projections of the 2D spectrum

RHNP(pno) Read horizontal (F2) negative projection into the
1D processing number pno

RHPP(pno) Read horizontal (F2) positive projection into the
1D processing number pno

RSC(i1,pno) * Read column i1 of 2D into the 1D processing
number pno

RSR(i1,pno) * Read row i1 of 2D into the 1D processing number
pno

RVNP(pno) * Read vertical (F1) negative projection into the 1D
processing number pno

RVPP(pno) * Read vertical (F1) positive projection into the 1D
processing number pno

RSER(i1,eno,pno) * Read row i1 of 2D raw data into the eno and pno

RSER2D(direc, i1,eno, pno) * Read plane number i1 in direction direc of 3D raw
data into the eno and pno

WSC(i1,pno,eno,nam,usr,dsk) * Write a column back into position i1 of a 2D data-
set defined by pno, eno, nam, usr and dsk

WSR(i1,pno,eno,nam,usr,dsk) * Write a row back into position i1 of a 2D dataset
defined by pno, eno, nam, usr and dsk.

WSER(i1,nam,eno,pno,dsk,usr)
*

Write an FID back into position i1 of a 2D raw
data defined by eno, pno, nam, dsk and usr.

WSERP(i1,nam,eno,pno,dsk,usr)
*

Write a processed FID back into position i1 of a
2D raw data defined by eno, pno, nam, dsk and
usr.

Macro Description

Inventory of AU macros and Bruker library functions 39
DONE

INDEX

INDEX

2.15 3D processing macros

2.16 XWIN-NMR plotting macros

Macro Description

TF3(flag,dsk) Fourier transform in F3 dimension. The flag can be "y" or "n"
and determines whether the imaginary parts are stored or not.
The processed are stored on disk unit dsk.

TF2(flag) Fourier transform in F2 dimension (flag as in TF3)

TF1(flag) Fourier transform in F1 dimension (flag as in TF3)

TF3P(flag) Phase correction in F3 dimension (flag as in TF3)

TF2P(flag) Phase correction in F2 dimension (flag as in TF3)

TF1P(flag) Phase correction in F1 dimension (flag as in TF3)

TABS3 Automatic baseline correction in F3 dimension

TABS2 Automatic baseline correction in F2 dimension

TABS1 Automatic baseline correction in F1 dimension

R12(i1,eno,flag,dsk) Read F1-F2 plane into a new expno (with or without imagi-
nary parts according to flag) on the unit dsk

R13(i1,eno,flag,dsk) Read F1-F3 plane into a new expno (with or without imagi-
nary parts according to flag) on the disk unit dsk

R23(i1,eno,flag,dsk) Read F2-F3 plane into a new expno (with or without imagi-
nary parts according to flag) on disk unit dsk

Macro Description

PLOT Plot according to current plot parameters (edg)

PLOTX Plot expansions of the integral ranges as defined with edgx

PLOTS Suspend plot (put plot in queue)

PLOTW Plot a white washed stack plot as defined with edgw

FLPLOT Flush all suspended plots

40 Inventory of AU macros and Bruker library functions
DONE

INDEX

INDEX

2.17 XWIN-PLOT related macros

LOCKPLOTS Lock plot queue for current AU program. No other plot com-
mands can now interfere with the suspended plots generated in
the current AU program.

UNLOCKPLOTS Unlock the plot queue of the current AU program.

RMPLOT Remove all suspended plots from queue

GETLIM Get frequency of leftmost and rightmost peak from a 1D spec-
trum and adjust the sweep width of the 1D spectrum to the differ-
ence + 10%

GETLCOSY Get frequency of leftmost and rightmost peak from a 1D spec-
trum and adjust the sweep width of a COSY spectrum to the dif-
ference + 10%

GETLXHCO Get frequency of leftmost and rightmost peak from two 1D spec-
tra and adjust the sweep width of an X-H correlation spectrum to
the difference + 10%

GETLJRES Get frequency of leftmost and rightmost peak from a 1D spec-
trum and adjust the sweep width of an J-RESolved spectrum to
the difference + 10%

GETLINV Get frequency of leftmost and rightmost peak from a 1D spec-
trum and adjust the sweep width of an INVerse spectrum to the
difference + 10%

XWP_LP * Create a parameter listing for a plot with
XWIN-PLOT

XWP_PP * Create a peak picking listing for a plot
with XWIN-PLOT

AUTOPLOT * Plot the current dataset according to the
XWIN-PLOT layout defined by the edo
parameter LAYOUT.

Macro Description

Inventory of AU macros and Bruker library functions 41
DONE

INDEX

INDEX

2.18 Macros converting datasets from Aspect 2000/3000 and other
vendors

AUTOPLOT_TO_FILE(filename) * as AUTOPLOT except that the plot is not
sent to the printer but store in the post-
script file filename.

DECLARE_PORTFOLIO * Initialize the usage of other XWIN-PLOT

portfolio AU macros. Must be inserted at
the beginning of the AU program.

CREATE_PORTFOLIO(filename) * Create the XWIN-PLOT portfolio filename.

ADD_TO_PORTFOLIO(disk, user, name,
expno, procno) *

Add the dataset that is specified with the
arguments to the portfolio created with
CREATE_PORTFOLIO.

ADD_CURDAT_TO_PORTFOLIO * Add the current dataset to the portfolio
created with CREATE_PORTFOLIO

CLOSE_PORTFOLIO * Close the definition for the portfolio cre-
ated with CREATE_PORTFOLIO. Must
be used before AUTOPLOT_* macros.

AUTOPLOT_WITH_PORTFOLIO * Plot the dataset(s) defined in the portfolio
created with CREATE_PORTFOLIO
according to the layout defined by the
edo parameter LAYOUT.

AUTOPLOT_WITH_PORTFOLIO_TO_
FILE(filename) *

as AUTOPLOT_WITH_PORTFOLIO
except that the plot is not sent to the
printer but store in the postscript file
filename.

Macro Description

CONV(....) * Convert Bruker Aspect 2000/3000 datasets to XWIN-NMR format

CONVCP(....) * Like CONV but with additional backup copy of the original data

FROMJDX(....) * Convert a JCAMP-DX file to XWIN-NMR data format

TOJDX(....) * Convert a dataset to JCAMP-DX format

42 Inventory of AU macros and Bruker library functions
DONE

INDEX

INDEX

2.19 Macros to execute other AU programs, XWIN-NMR macros or
commands

2.20 Bruker library functions

JCONV(....) * Convert a Jeol dataset to Bruker XWIN-NMR format

VCONV(....) * Convert a Varian dataset to Bruker XWIN-NMR format

Macro Description

CPR_exec(....) * C-function for executing special XWIN-NMR commands

WAIT_UNTIL(....) * Hold the AU program until the specified date and time

XAUA Execute the acquisition AU program stored in AUNM (eda).
The next line in the AU program is executed after the AU pro-
gram AUNM has finished.

XAUP Execute the processing AU program stored in AUNMP
(edp). The next line in the AU program is immediately exe-
cuted after the AU program AUNMP has been started.

XAUPW Execute the processing AU program stored in AUNMP
(edp). Like XAUP, but now the next line in the AU program
is executed after the AU program AUNMP has finished.

XAU(prog) Execute the AU program prog with the wait option.

XCMD(cmd) * Execute the XWIN-NMR command for which no dedicated
macro exists.

XMAC(mac) Execute an XWIN-NMR macro mac.

Macro Description

CalcExpTime() * Calculate the experiment time for the current experiment

PrintExpTime(....) * Print the experiment time for the current experiment

check_pwd(usr) * Prompt the user usr to enter a password

GetNmrSuperUser() * Get the name of the current XWIN-NMR superuser

Macro Description

Inventory of AU macros and Bruker library functions 43
DONE

INDEX

INDEX

2.21 Macros to return from an AU program

getdir(....) * Get all file names and/or directory names within a directory

freedir(....) * Free memory allocated by getdir

uxselect(....) * Display a list from which an entry can be selected by mouse-
click

dircp(....) * Copy a file

dircp_err(i1) * Return the error message that corresponds to the error return
value of a dircp function call

fetchstorpl(....) * Read or store one or several plot parameters

gethighest(....) * Return the next highest unused experiment number of a data-
set

getstan(....) * Return the pathname to the user’s current experiment direc-
tory

getxwinvers(....) * Return the current version and patchlevel of XWIN-NMR

mkudir(....) * Create a complete directory path

PathXWinNMR() * A class of functions which return pathnames to certain
XWIN-NMR directories

pow_next(i1) * Round i1 to the next larger power of two

Proc_err(....) * Show a message in a window on the XWIN-NMR screen

Show_status(text) * Show a string in the status line of XWIN-NMR

showfile(file) * Show the contents of a file in an XWIN-NMR window

ssleep(i1) * Pause in an AU program for i1 seconds

unlinkpr(....) * Delete all processed data files (1r, 1i, 2rr, 2ii etc.) of a dataset

Macro Description

ABORT Abort the AU program or any of its subroutines with the return
value of -1

ERRORABORT Return from an AU program or any of its subroutines with the
value of AUERR if it is less than 0

Macro Description

44 Inventory of AU macros and Bruker library functions
DONE

INDEX

INDEXQUIT Return from an AU program with the value of AUERR. QUIT is
usually the last statement of the AU program code.

QUITMSG(text) Print the text message and then return from the AU program with
the value of AUERR. This is an alternative to QUIT.

STOP Stop the AU program with the return value of AUERR.

STOPMSG("text") Stop the AU program with the return value of AUERR and display
the message "text"

Macro Description

General AU macros 45
DONE

INDEX

INDEX

Chapter 3

General AU macros

This chapter contains a description of all general AU macros which can be used for
various purposes.

46 General AU macros
DONE

INDEX

INDEX

CPR_exec

NAME

CPR_exec - C-function for executing special XWIN-NMR commands

SYNTAX
CPR_exec(char *command, int mode);

DESCRIPTION

CPR_exec is a C-library function which can be used for executing XWIN-NMR

commands in AU. The first argument of CPR_exec is an XWIN-NMR command,
the second argument must be one of the following values:

WAIT_TERM - wait for the command to finish, then start the next command
CONT_EX - start the command and immediately start the next command

Most commands are available as a dedicated macro, like ZG for zg and FT for
ft. If you want to use XWIN-NMR commands for which no dedicated macro ex-
ist, e.g. editor commands or commands with special arguments, then you can use
the general macro XCMD which takes only one argument, the XWIN-NMR com-
mand. Dedicated macros and XCMD internally call CPR_exec with
WAIT_TERM. The only reason to use CPR_exec explicitly is to start a com-
mand with CONT_EX, i.e. to run commands simultaneously. In summary:

• Use dedicated AU macros whenever you can

• Use XCMD when no dedicated macro is available

• Use CPR_EXEC only when you want to use CONT_EX

NOTES

Dedicated macros and XCMD call SETCURDATA before they do their actual
task. This ensures that they operate on the current AU dataset. If you use
CPR_exec explicitly, it is recommended to precede it with SETCURDATA. This
is not always necessary but hardly ever wrong (see SETCURDATA).

During sample changer automation, processing and plotting commands are start-
ed with CONT_EX to allow simultaneous acquisition on the next sample.

General AU macros 47
DONE

INDEX

INDEX

EXAMPLE

The following AU program gets the foreground dataset, runs an acquisition,
starts the Fourier Transform and immediately continues an acquisition on the
next experiment number:

GETCURDATA
TIMES(10)
ZG
CPR_exec("ft", CONT_EX);
IEXPNO
END
QUIT

SEE ALSO
XCMD - general macro to execute commands for which no dedicated macro ex-
ists
SETCURDATA - make the current AU dataset available for subsequent AU
statements

48 General AU macros
DONE

INDEX

INDEX

XCMD

NAME

XCMD - execute a command for which no dedicated macro exists

SYNTAX
XCMD(char *command)

DESCRIPTION

XCMD is a general macro to execute XWIN-NMR commands for which no dedi-
cated macro exists. For most XWIN-NMR commands a dedicated macro does ex-
ist and we strongly recommend to:

Use dedicated macros whenever available

EXAMPLE
The following AU program gets the foreground dataset, opens the acquisition
parameter editor (eda) and runs an acquisition and Fourier transform:

GETCURDATA
XCMD("eda")
ZG
FT
QUIT

SEE ALSO
CPR_exec - C-function for executing special XWIN-NMR commands

General AU macros 49
DONE

INDEX

INDEX

WAIT_UNTIL

NAME
WAIT_UNTIL - hold the AU program until the specified date and time

SYNTAX
int WAIT_UNTIL(int hour, int minute, int day, int month)

DESCRIPTION

The function WAIT_UNTIL waits in an AU program until the specified date has
been reached. The variables are internally converted to seconds. Every sixty sec-
onds, the function checks whether the current date matches with the selected
date. This function basically allows to program an event or command to start at
a certain date rather than waiting for a certain time until something is executed.

EXAMPLE
Wait in the AU program until the 31st of October, 6 pm, and then continue:

WAIT_UNTIL(18,0,31,10)

SEE ALSO
ssleep - pause in an AU program for a certain number of seconds

50 General AU macros
DONE

INDEX

INDEX

Macros changing the current AU dataset 51
DONE

INDEX

INDEX

Chapter 4

Macros changing the current
AU dataset

This chapter contains a description of all AU macros which can be used to change
the current AU dataset, i.e. the dataset on which subsequent AU statements oper-
ate.

52 Macros changing the current AU dataset
DONE

INDEX

INDEX

GETCURDATA

NAME

GETCURDATA - the first AU program statement; get the foreground dataset

SYNTAX
GETCURDATA

DESCRIPTION

GETCURDATA should be the first macro in any AU program and should only
be used at the beginning of an AU program. GETCURDATA gets the foreground
dataset, i.e. the dataset which is visible when the AU program is started. This da-
taset becomes the current AU dataset. In fact, GETCURDATA sets the prede-
fined data path variables disk, user, type, name, expno and procno which define
the pathname of the current dataset. Subsequent macros, like ZG, FT etc. will
then work on this dataset. The current AU dataset can be changed within the AU
program with macros like DATASET, IEXPNO or IPROCNO.

GETCURDATA defines the current AU dataset but it takes another macro, SET-
CURDATA, to make this dataset available for subsequent AU statements. For
most predefined macros, like ZG and FT, as well as XCMD etc., this is automatic
because SETCURDATA is part of the macro definition.

EXAMPLE

The following AU program gets the foreground dataset and runs an acquisition
on it:

GETCURDATA
ZG
QUIT

SEE ALSO
SETCURDATA - make the current AU dataset available for AU commands
DATASET - set the current AU dataset
GETDATASET - prompt the user to specify a new dataset

Macros changing the current AU dataset 53
DONE

INDEX

INDEX

SETCURDATA

NAME
SETCURDATA - make the current AU dataset available for subsequent AU
statements

SYNTAX

SETCURDATA

DESCRIPTION
SETCURDATA makes the current AU dataset, i.e. the dataset defined by the
data path variables disk, user, type, name, expno and procno, available for sub-
sequent AU commands. Normally, you do not need to enter SETCURDATA be-
cause it is automatically called by macros which operate on datasets before they
perform their actual task. Furthermore, the macros DATASET and GETDATA-
SET, which change the current AU dataset, automatically call SETCURDATA
after they performed their actual task. In some cases, however, SETCURDATA
must be specified explicitly in the AU program. For example, the macros IEX-
PNO and IPROCNO change the current AU dataset, but do not call SETCUR-
DATA. If they are followed by a CPR_exec or any C-statement which access the
current AU dataset, then you must precede that statement with SETCURDATA.

EXAMPLE

This example shows the part of the library AU program multizg which calculates
the total experiment time of all acquisitions performed by this AU program:

int expTime;
static void PrintExpTime();

GETCURDATA
....

expTime = 0;

TIMES(i1)
SETCURDATA;
expTime += CalcExpTime() + 4;

54 Macros changing the current AU dataset
DONE

INDEX

INDEX

IEXPNO;
END
DEXPNO;
....

QUIT

Note that IEXPNO is followed by SETCURDATA in the next cycle of the loop.

SEE ALSO

GETCURDATA - the first AU program statement; get the foreground dataset
DATASET - set the current AU dataset
IEXPNO - increase the experiment number by one

Macros changing the current AU dataset 55
DONE

INDEX

INDEX

DATASET

NAME
DATASET - set the current AU dataset

SYNTAX
DATASET(char *name, int expno, int procno, char *disk, char *user)

DESCRIPTION

The macro DATASET sets the current AU dataset. All data path variables name,
expno, procno, disk and user must be specified as arguments. Subsequent AU
commands will operate on this dataset.

EXAMPLE

The following AU program first gets the foreground dataset, then selects a new
dataset and runs an acquisition:

char[20] newname;
GETCURDATA
strcpy(newname, "glycerine");
DATASET(newname, expno, 3, disk, "peter")
ZG
QUIT

The data path variables in this example are entered in the following way:

• expno and disk keep the values which were obtained with GETCURDATA

• name gets the value of newname, a variable defined in this AU program

• procno and user get the values 3 and peter, respectively, which are entered
as constants

SEE ALSO
GETCURDATA - the first AU program statement; get the foreground dataset
GETDATASET - prompt the user to specify a new dataset
DATASET2 - set the second dataset
IEXPNO - increase the experiment number by one

56 Macros changing the current AU dataset
DONE

INDEX

INDEX

DATASET2/DATASET3

NAME

DATASET2 - set the second AU dataset
DATASET3 - set the third AU dataset

SYNTAX

DATASET2(char *name, int expno, int procno, char *disk, char *user)
DATA /x/xw2.5

cd SET3(char *name, int expno, int procno, char *disk, char *user)

DESCRIPTION

The macro DATASET2 sets the second AU dataset. The current (first) AU data-
set is not affected by this macro. DATASET2 is typically used in combination
with algebra macros, like ADD or MUL, which operate on the second and third
dataset.

EXAMPLE
The following AU program gets the foreground dataset, adds the spectra of the
next processing number and the one after that and stores the result into the cur-
rent dataset:

GETCURDATA
DATASET2(name, expno, procno+1, disk, user)
DATASET3(name, expno, procno+2, disk, user)
ADD
QUIT

SEE ALSO

GETCURDATA - the first AU program statement; get the foreground dataset
DATASET - set the current AU dataset
GETDATASET - prompt the user to specify a new dataset

Macros changing the current AU dataset 57
DONE

INDEX

INDEX

GETDATASET

NAME
GETDATASET - prompt the user to specify a new dataset

SYNTAX
GETDATASET

DESCRIPTION

The macro GETDATASET prompts the user to specify a new dataset. A dia-
logue is opened and the user is requested to enter the data path variables name,
expno, procno, user and disk. Subsequent AU commands will operate on this da-
taset. GETDATASET can be used anywhere in an AU program but, since it re-
quires user input, should not be used in fully automated sequences.

NOTE
GETDATASET is not used very often. In AU programs, datasets are usually
changed without user interaction, e.g. with the macros DATASET, IEXPNO etc.

EXAMPLE
The following AU program gets the foreground dataset, prompts the user to
specify a new dataset and then processes this dataset:

GETCURDATA
GETDATASET
EFP
QUIT

Actually you could begin this AU program with GETDATASET. This is one of
the very few examples where you may omit the macro GETCURDATA.

SEE ALSO

GETCURDATA- the first AU program statement; get the foreground dataset
DATASET - set the current AU dataset
IEXPNO - increase the experiment number by one
IPROCNO - increase the processing number by one

58 Macros changing the current AU dataset
DONE

INDEX

INDEX

IEXPNO

NAME

IEXPNO - increase the experiment number by one

SYNTAX
IEXPNO

DESCRIPTION

The macro IEXPNO increases the experiment number of the current AU dataset
by one. In fact, the value of the data path variable expno is incremented by one.
Subsequent macros will operate on this new expno. IEXPNO is typically used in
AU programs which run a series of acquisitions on datasets with the same name
and successive expnos.

EXAMPLE
The following AU program gets the foreground dataset and runs acquisitions on
eight successive expnos:

GETCURDATA
TIMES(8)

ZG
IEXPNO

END
QUIT

NOTE
IEXPNO must be followed by a SETCURDATA if the AU program continues
with an explicit CPR_exec or C-statement (see SETCURDATA).

SEE ALSO

DEXPNO - decrease the experiment number by one
REXPNO - set the experiment number to the specified value
IPROCNO - increase the processing number by one
DATASET- set the current AU dataset

Macros changing the current AU dataset 59
DONE

INDEX

INDEX

DEXPNO

NAME
DEXPNO - decrease the experiment number by one

SYNTAX
DEXPNO

DESCRIPTION

The macro DEXPNO decreases the experiment number of the current AU data-
set by one. In fact, the value of the data path variable expno is decremented by
one. Subsequent macros will operate on this new expno. DEXPNO is typically
used after a loop which includes an IEXPNO at the end, to revert the effect of
the last (unnecessary) IEXPNO.

EXAMPLE
The following AU program gets the foreground dataset, runs acquisitions on
eight successive expnos and displays the data of the last expno:

GETCURDATA
TIMES(8)

ZG
IEXPNO

END
DEXPNO
VIEWDATA
QUIT

Note that DEXPNO must be followed by a SETCURDATA if the AU program
continues with an explicit CPR_exec or C-statement (see SETCURDATA).

SEE ALSO
IEXPNO - increase the experiment number by one
REXPNO - set the experiment number to the specified value
DPROCNO - decrease the processing number by one

60 Macros changing the current AU dataset
DONE

INDEX

INDEX

REXPNO

NAME

REXPNO - set the experiment number to the specified value

SYNTAX
REXPNO(int number)

DESCRIPTION

The macro REXPNO sets the experiment number of the current AU dataset to
the specified value. In fact, the value of the data path variable expno is set. Sub-
sequent macros will operate on this new expno.

EXAMPLE

The following AU program gets the foreground dataset, runs acquisitions on
eight successive expnos then sets the current AU dataset back to the first expno
and Fourier transforms it:

GETCURDATA
i1=expno;
TIMES(8)

ZG
IEXPNO

END
REXPNO(i1)
FT
QUIT

Note that REXPNO must be followed by a SETCURDATA if the AU program
continues with an explicit CPR_exec or C-statement (see SETCURDATA).

SEE ALSO
IEXPNO - increase the experiment number by one
DEXPNO - decrease the experiment number by one
RPROCNO - set the processing number to the specified value

Macros changing the current AU dataset 61
DONE

INDEX

INDEX

IPROCNO

NAME
IPROCNO - increase the processing number by one

SYNTAX
IPROCNO

DESCRIPTION

The macro IPROCNO increases the processing number of the current AU data-
set by one. In fact, the value of the data path variable procno is incremented by
one. Subsequent macros will operate on this new procno. IPROCNO is typically
used in an AU program which processes a series of datasets with same name and
expno and successive procnos.

EXAMPLE
The following AU program runs Fourier transforms on eight successive proc-
nos:

GETCURDATA
TIMES(8)

FT
IPROCNO

END
QUIT

Note that IPROCNO must be followed by a SETCURDATA if the AU program
continues with an explicit CPR_exec or C-statement (see setcurdata).

SEE ALSO

DPROCNO - decrease the processing number by one
RPROCNO - set the processing number to the specified value
IEXPNO - increase the experiment number by one

62 Macros changing the current AU dataset
DONE

INDEX

INDEX

DPROCNO

NAME

DPROCNO - decrease the processing number by one

SYNTAX
DPROCNO

DESCRIPTION

The macro DPROCNO decreases the processing number of the current AU da-
taset by one. In fact, the value of the data path variable procno is decremented
by one. Subsequent macros will operate on this new procno. DPROCNO is typ-
ically used after a loop which includes an IPROCNO at the end, to revert the ef-
fect of the last (unnecessary) IPROCNO.

EXAMPLE
The following AU program gets the foreground dataset, runs a Fourier transform
on eight successive procnos and displays the data of the last procno:

GETCURDATA
TIMES(8)

FT
IPROCNO

END
DPROCNO
VIEWDATA
QUIT

Note that DPROCNO must be followed by a SETCURDATA if the AU program
continues with an explicit CPR_exec or C-statement (see setcurdata).

SEE ALSO
IPROCNO - decrease the experiment number by one
RPROCNO - set the processing number to specified value
DEXPNO - decrease the experiment number by one

Macros changing the current AU dataset 63
DONE

INDEX

INDEX

RPROCNO

NAME
RPROCNO - set the processing number to the specified value

SYNTAX
RPROCNO(int number)

DESCRIPTION

The macro RPROCNO changes the current AU dataset by setting the processing
number to the specified value. In fact, the value of the data path variable procno
is set. Subsequent macros will then operate on this new procno.

EXAMPLE

The following AU program gets the foreground dataset and runs a Fourier trans-
form on eight successive procnos.Then the current AU dataset is set back to the
first procno which is then phase corrected:

GETCURDATA
i1=procno;
TIMES(8)

FT
IPROCNO

END
RPROCNO(i1)
APK
QUIT

Note that RPROCNO must be followed by a SETCURDATA if the AU program
continues with an explicit CPR_exec or C-statement (see SETCURDATA).

SEE ALSO
IPROCNO - increase the processing number by one
DPROCNO - decrease the processing number by one
REXPNO - set the experiment number to the specified value

64 Macros changing the current AU dataset
DONE

INDEX

INDEX

VIEWDATA

NAME

VIEWDATA - Show the current AU program dataset in XWIN-NMR

SYNTAX
VIEWDATA

DESCRIPTION

The macro VIEWDATA shows the current AU program dataset in XWIN-NMR.
In other words, the current AU dataset becomes the foreground dataset. VIEW-
DATA is used whenever the current AU dataset is changed within the AU pro-
gram, i.e. with DATASET, IEXPNO etc. and this dataset must be shown in
XWIN-NMR.

EXAMPLE
The following AU program gets the foreground dataset, increases the processing
number and performs a Fourier transform storing the spectrum in this processing
number. The spectrum is then shown in XWIN-NMR:

GETCURDATA
IPROCNO
FT
VIEWDATA
QUIT

SEE ALSO
GETCURDATA - the first AU program statement; get the foreground dataset
GETDATASET - prompt the user to specify a new dataset
DATASET - set the current AU dataset
IEXPNO - increase the experiment number by one
IPROCNO - increase the processing number by one

Macros copying datasets 65
DONE

INDEX

INDEX

Chapter 5

Macros copying datasets

This chapter contains a description of all AU macros which can be used to copy
the current AU dataset or parts of it to a new dataset.

66 Macros copying datasets
DONE

INDEX

INDEX

WRA

NAME

WRA - copy the raw data to the specified experiment number

SYNTAX
WRA(int expno)

DESCRIPTION

The macro WRA copies the raw data, including the acquisition and processing
parameters of the current AU dataset to a new experiment number. It does not
copy the processed data.

EXAMPLE

The following AU program gets the foreground dataset and copies the raw data
to eight successive experiment numbers, starting with expno 11:

GETCURDATA
i1=11;
TIMES(8)

WRA(i1)
i1++;

END
QUIT

SEE ALSO

WRP - copy the processed data to the specified processing number
WRPA - copy the raw and processed data to the specified dataset

Macros copying datasets 67
DONE

INDEX

INDEX

WRP

NAME
WRP - copy the processed data to the specified processing number

SYNTAX
WRP(int procno)

DESCRIPTION

The macro WRP copies the processed data, including the processing parameters
of the current AU dataset, to the specified processing number.

EXAMPLE
The following AU program gets the foreground dataset and copies the processed
data to eight successive processing numbers, starting with procno 11:

GETCURDATA
i1=11;
TIMES(8)

WRP(i1)
i1++;

END
QUIT

SEE ALSO
WRA - copy the raw data to the specified experiment number
WRPA - copy the raw and processed data to the specified dataset

68 Macros copying datasets
DONE

INDEX

INDEX

WRPA

NAME

WRPA - copy the raw and processed data to the specified dataset

SYNTAX
WRPA(char *name, int expno, int procno, char *disk, char *user)

DESCRIPTION

The macro WRPA copies the raw and processed data of the current AU dataset
to the specified dataset. WRPA takes 5 arguments, name, expno, procno, disk
and user, i.e. the data path variables which define the dataset path. You can set
one, several, or all of these variables to new values in order to define the desti-
nation dataset. You can, for instance, archive your data to an external medium
by changing the value of the variable disk and leaving the other path variables
the same.

EXAMPLE
The following AU program copies the current dataset to the jaz drive which is
mounted as /jaz:

GETCURDATA
WRPA(name, expno, procno, "/jaz", user)
QUIT

SEE ALSO

WRA- copy the raw data to the specified experiment number
WRP- copy the processed data to the specified processing number

Macros handling rows/columns 69
DONE

INDEX

INDEX

Chapter 6

Macros handling rows/columns

This chapter contains a description of all AU macros which can be used to read
(write) rows or columns from (to) a 2D dataset and AU macros that can be used to
read rows or planes from 3D raw data.

70 Macros handling rows/columns
DONE

INDEX

INDEX

RSR

NAME

RSR - read a row from a 2D spectrum and store it as a 1D spectrum

SYNTAX
RSR(int row, int procno)

DESCRIPTION

The macro RSR reads a row from a 2D spectrum and stores it as a 1D spectrum.
It can be used in the following ways:

• specified with procno > 0, executed on a 2D dataset
the specified row is stored under the current dataname, the current expno
and the specified procno.

• specified with procno = -1, executed on a 2D dataset
the specified row is stored under dataset ~TEMP/1/pdata/1

• specified with procno > 0, executed on a 1D dataset
the specified row is read from a 2D dataset that resides under the current
dataname, the current expno and the specified procno.

• specified with procno = -1, executed on a 1D dataset
the specified row is read from the 2D dataset from which the current 1D
dataset was extracted (as defined in the file used_from).

EXAMPLE
The following AU program gets a 2D dataset and processes it. Then it reads row
16 and stores that under procno 999:

GETCURDATA
DATASET("my_2D_data", 1, 1, "/x", "guest")
XFB
RSR(16, 999)
QUIT

SEE ALSO

RSC - read a column from a 2D spectrum and store it as a 1D spectrum

Macros handling rows/columns 71
DONE

INDEX

INDEX

RSC

NAME
RSC - read a column from a 2D spectrum and store it as a 1D spectrum

SYNTAX
RSC(int column, int procno)

DESCRIPTION

The macro RSC reads a column from a 2D spectrum and stores it as a 1D spec-
trum. It can be used in the following ways:

• specified with procno > 0, executed on a 2D dataset
the specified column is stored under the current dataname, the current
expno and the specified procno.

• specified with procno = -1, executed on a 2D dataset
the specified column is stored under dataset ~TEMP/1/pdata/1

• specified with procno > 0, executed on a 1D dataset
the specified column is read from a 2D dataset that resides under the cur-
rent dataname, the current expno and the specified procno.

• specified with procno = -1, executed on a 1D dataset
the specified column is read from the 2D dataset from which the current
1D dataset was extracted (as defined in the file used_from).

EXAMPLE
The following AU program gets a 2D dataset and processes it in the F2 dimen-
sion. Then it reads column 128 and processes the resulting 1D dataset:

GETCURDATA
DATASET("my_2D_data", 1, 1, "/x", "guest")
XF2
RSC(128, 10)
RPROCNO(10)
EF
QUIT

72 Macros handling rows/columns
DONE

INDEX

INDEX

SEE ALSO

RSR - read a row from a 2D spectrum and store it as a 1D spectrum
WSC - replace a column of a 2D spectrum by a 1D spectrum

Macros handling rows/columns 73
DONE

INDEX

INDEX

WSR

NAME
WSR - replace a row of a 2D spectrum by a 1D spectrum

SYNTAX
WSR(int row, int procno, int expno, char *name, char *user, char *disk)

DESCRIPTION

The macro WSR replaces a row of a 2D spectrum by a 1D spectrum. It can be
used in the following ways:

• executed on a 1D dataset
the specified row of the specified dataset (must 2D data) is replaced by
the current 1D data.

• executed on a 2D dataset
the specified row of the current 2D dataset is replaced by the specified
dataset (must be 1D data)

Note that WSR exist in this form in XWIN-NMR 3.1 and newer. In XWIN-NMR 3.0
and older, WSR takes only 5 arguments, the expno cannot be specified.

EXAMPLE

The following AU program gets a 2D dataset, reads row 16, phase corrects this
row and writes it back to the 2D data:

GETCURDATA
DATASET("my_2D_data", 1, 1, "/x", "guest")
XFB
RSR(16, 999)
RPROCNO(999)
APK
WSR(16, 1, expno, name, user, disk)
QUIT

SEE ALSO
WSC - replace a column of a 2D spectrum by a 1D spectrum

74 Macros handling rows/columns
DONE

INDEX

INDEX

RSR - read a row from a 2D spectrum and store it as a 1D spectrum

Macros handling rows/columns 75
DONE

INDEX

INDEX

WSC

NAME
WSC - replace a column of a 2D spectrum by a 1D spectrum

SYNTAX
WSC(int column, int procno, int expno, char *name, char *user, char *disk)

DESCRIPTION

The macro WSC replaces a column of a 2D spectrum by a 1D spectrum. It can
be used in the following ways:

• executed on a 1D dataset
the specified column of the specified dataset (must 2D data) is replaced
by the current 1D data.

• executed on a 2D dataset
the specified column of the current 2D dataset is replaced by the speci-
fied dataset (must be 1D data)

Note that WSC exist in this form in XWIN-NMR 3.1 and newer. In XWIN-NMR 3.0
and older, WSC takes only 5 arguments, the expno cannot be specified.

EXAMPLE

The following AU program gets a 2D dataset, reads column 16, phase corrects
this column and writes it back to the 2D data:

GETCURDATA
DATASET("my_2D_data", 1, 1, "/x", "guest")
RSC(16, 999)
RPROCNO(999)
APK
WSC(16, 1, expno, name, user, disk)
QUIT

SEE ALSO

WSR - replace a row of a 2D spectrum by a 1D spectrum
RSC - read a column from a 2D spectrum and store it as a 1D spectrum

76 Macros handling rows/columns
DONE

INDEX

INDEX

RSER

NAME

RSER - read a row from 2D or 3D raw data and store it as a 1D FID

SYNTAX
RSER(int row, int expno, int procno)

DESCRIPTION

The macro RSER reads a row from 2D or 3D raw data and stores it as a 1D fid.
It can be used in the following ways:

• specified with expno > 0, executed on a 2D dataset
the specified row is stored under the current dataname and the specified
expno. Processing parameters are stored under procno 1.

• specified with expno = -1, executed on a 2D dataset
the specified row is stored under dataset ~TEMP/1/pdata/1

• specified with expno > 0, executed on a 1D dataset
the specified row is read from a 2D raw data that resides under the cur-
rent dataname and the specified expno. Processing parameters are read
from procno 1.

• specified with expno = -1, executed on a 1D dataset
the specified row is read from the 2D dataset from which the current 1D
dataset was extracted (as defined in the file used_from).

EXAMPLE

The following AU program splits 2D raw data into single fids that are stored in
successive expnos:

int td;

GETCURDATA
FETCHPAR1S("TD",&td)
i1=0;
TIMES(td)

i1 ++;
RSER(i1,i1+expno,1)

Macros handling rows/columns 77
DONE

INDEX

INDEX

END
QUITMSG("--- splitser finished ---")

Note that this is the AU program splitser that is delivered with XWIN-NMR.

SEE ALSO

WSER - replace a row of 2D raw data by 1D raw data
RSER2D - read a plane from 3D raw data and store it as 2D raw data
RSR - read a row from a 2D spectrum and store it as a 1D spectrum

78 Macros handling rows/columns
DONE

INDEX

INDEX

WSER

NAME

WSER - replace a row of 2D raw data by 1D raw data

SYNTAX
WSER(int row, char *name, int expno, int procno, char *disk, char *user)

DESCRIPTION

The macro WSER replaces a row of 2D raw data by 1D raw data. It can be used
in the following ways:

• executed on a 1D dataset
the specified row of the specified dataset (must be 2D data) is replaced
by the current 1D data.

• executed on a 2D dataset
the specified row of the current 2D dataset is replaced by the specified
dataset (must be 1D data)

EXAMPLE
The following AU program writes a number of 1D fids that are stored under the
same data name and incremental expnos to 2D raw data.:

int ne, exp1, proc1;
char nm1[20];

GETCURDATA

ne=1; exp1=1; proc1=1;

strcpy(nm1, name);
GETSTRING("Enter name of 1D series: ", nm1)
GETINT("Enter starting EXPNO: ", exp1)
GETINT("Enter starting PROCNO: ", proc1)
GETINT("Enter # of Fids: ", ne)
USECURPARS
TIMES(ne)

WSER(loopcount1+1, nm1, exp1, proc1, disk, user)
exp1++;

Macros handling rows/columns 79
DONE

INDEX

INDEX

END
QUIT

Note that this is the AU program fidtoser that is delivered with XWIN-NMR.

SEE ALSO

RSER - read a row from 2D or 3D raw data and store it as a 1D FID
WSR - replace a row of a 2D spectrum by a 1D spectrum
WSC - replace a column of a 2D spectrum by a 1D spectrum

80 Macros handling rows/columns
DONE

INDEX

INDEX

RSER2D

NAME

RSER2D - read a plane from 3D raw data and store it as 2D pseudo raw data

SYNTAX
RSER2D(char *direction, int plane, int expno, int procno)

DESCRIPTION

The macro RSER2D reads a plane from 3D raw data and stores it as 2D pseudo
raw data. The first argument, the plane direction can be "s23" or "s13" for the
F2-F3 or F1-F3 direction, respectively. The specified plane is stored under the
current data name, the specified expno and the specified procno.

RSER2D only exists in XWIN-NMR 3.1 an newer.

EXAMPLE
The following AU program gets a 3D dataset, reads the F2-F3-plane 64 and
stores that under expno 11. It then switches to the output 2D dataset and proc-
esses it.

GETCURDATA
DATASET("my_3D_data", 1, 1, "/x", "guest")
RSER2D("s23", 64, 11, procno)
REXPNO(11)
XFB
END
QUIT

SEE ALSO

RSER - read a row from 2D or 3D raw data and store it as a 1D FID
WSER - replace a row of 2D raw data by 1D raw data

Macros converting datasets 81
DONE

INDEX

INDEX

Chapter 7

Macros converting datasets

This chapter contains a description of all AU macros which can be used to convert
XWIN-NMR data. This includes the conversion of Bruker Aspect 2000/3000 data,
Varian data and Jeol data to XWIN-NMR data format as well as the conversion of
XWIN-NMR data to JCAMP-DX.

82 Macros converting datasets
DONE

INDEX

INDEX

TOJDX

NAME

TOJDX - convert a dataset to JCAMP-DX format

SYNTAX
TOJDX(char *path, int type, int mode, char *title, char *origin, char *owner)

DESCRIPTION

The macro TOJDX converts the current AU data to standard JCAMP-DX for-
mat. It takes 6 arguments:

1. the pathname of the output file, e.g. /tmp/data1.dx

2. the output type: enter 0, 1 or 2
0=FID (default), 1=real spectrum, 2=complex spectrum.

3. the compression mode: enter 0, 1, 2 or 3
0=FIX, 1=PACKED, 2=SQUEEZED, 3=DIFF/DUP (default)

4. the title as it appears in the output file: enter a character-string

5. the origin as it appears in the output file: enter a character-string

6. the owner as it appears in the output file: enter a character-string

If "*" is entered as an argument, then the default value is used.

In XWIN-NMR 3.1 and newer, TOJDX can convert 1D and 2D data. In older ver-
sions, it can only convert 1D data.

EXAMPLE
The following AU program gets the foreground dataset and performs a conver-
sion to JCAMP on 5 successive experiment numbers. The name of the JCAMP
file contains the name and expno of the corresponding XWIN-NMR dataset.

GETCURDATA
TIMES(5)

sprintf(text,"/tmp/%s_%d.dx", name, expno);
TOJDX(text, 0, 3, "*", "*", "*")
IEXPNO

END

Macros converting datasets 83
DONE

INDEX

INDEX

QUIT

SEE ALSO
FROMJDX - convert a JCAMP-DX file to XWIN-NMR data format

84 Macros converting datasets
DONE

INDEX

INDEX

FROMJDX

NAME

FROMJDX - convert a JCAMP-DX file to XWIN-NMR data format

SYNTAX
FROMJDX(char *input-file, char *overwrite)

DESCRIPTION

The macro FROMJDX converts a JCAMP-DX file to XWIN-NMR data format. It
takes 2 arguments:

1. the pathname of the input file, e.g. /tmp/data1.dx

2. the overwrite flag which is either "o" or "n"

In XWIN-NMR 3.1 and newer, FROMJDX can convert 1D and 2D data. In older
versions, it can only convert 1D data.

EXAMPLE
The following AU program converts all files with the extension .dx in the di-
rectory /tmp to an XWIN-NMR dataset:

char **listfile;
GETCURDATA
i1 = getdir ("/tmp",&listfile,"*.dx");
TIMES(i1)

sprintf(text, "/tmp/%s", listfile[loopcount1]);
FROMJDX(text, "o")

END
QUIT

SEE ALSO

TOJDX - convert a dataset to JCAMP-DX format
getdir - get all file names and/or directory names within a directory

Macros converting datasets 85
DONE

INDEX

INDEX

CONV/CONVCP

NAME
CONV - convert Bruker Aspect 2000/3000 datasets to XWIN-NMR format
CONVCP - like CONV but with additional backup copy of the original data

SYNTAX

CONV(char *instrument, char *filename)
CONVCP(char *instrument, char *filename, char *targetdir)

DESCRIPTION
The macro CONV converts Bruker Aspect 2000/3000 datasets to XWIN-NMR

data format. Input datasets must be stored in the directory:

/<var>/bruknet/<instrument>/<user>

where <var> can be one of the following:

• <du> the disk unit of the current XWIN-NMR dataset

• specified in the file /usr/local/lib/destination (UNIX only)

CONV takes 2 parameters:

1. the instrument where the dataset was acquired, e.g. ac250

2. the name of the dataset. If "*" is specified the next available dataset in the
storage directory will be converted.

The macro CONVCP is identical to CONV except that it makes a copy of the
original data. Therefore, it takes a third argument; the target directory this copy.

EXAMPLE

This example shows the content of the library AU program remproc which
continuously converts all datasets which are sent from an A3000 computer
named asp. After conversion it processes each dataset by calling a dataset spe-
cific processing AU program with the macro XAUPW:

#define STATION "asp"

GETCURDATA
CPR_exec("setdef ackn no",CONT_EX);

86 Macros converting datasets
DONE

INDEX

INDEX

TIMESINFINITE
CONV(STATION,"*")
GETCURDATA
XAUPW

END
QUIT

Macros converting datasets 87
DONE

INDEX

INDEX

VCONV

NAME
VCONV - convert a Varian dataset to Bruker XWIN-NMR format

SYNTAX
VCONV(char *v-name, char *x-name, int expno, char *disk, char *user)

DESCRIPTION

The macro VCONV converts a Varian dataset to XWIN-NMR data format. It takes
5 parameters:

1. the name of the input Varian dataset

2. the name of the output XWIN-NMR dataset

3. the experiment number of the output XWIN-NMR dataset

4. the disk unit of the output XWIN-NMR dataset

5. the user of the output XWIN-NMR dataset

EXAMPLE

The following AU program converts a Varian dataset to XWIN-NMR format:

GETCURDATA
VCONV("pinen_h.fid", "pinen_h", 1, "u", "joe")
QUIT

SEE ALSO
JCONV - convert a Jeol dataset to Bruker XWIN-NMR format

88 Macros converting datasets
DONE

INDEX

INDEX

JCONV

NAME

JCONV - convert a Jeol dataset to Bruker XWIN-NMR format

SYNTAX
JCONV(char *j-name, char *x-name, int expno, char *disk, char *user)

DESCRIPTION

The macro JCONV converts a Jeol dataset to XWIN-NMR data format. It takes 5
parameters:

1. the name of the input Jeol dataset

2. the name of the output XWIN-NMR dataset

3. the experiment number of the output XWIN-NMR dataset

4. the disk unit of the output XWIN-NMR dataset

5. the user of the output XWIN-NMR dataset

EXAMPLE

The following AU program converts a Jeol dataset to XWIN-NMR format:

GETCURDATA
JCONV("gx400h.gxd", "gx400h", 1, "u", "joe")
QUIT

SEE ALSO
VCONV - convert a Varian dataset to Bruker XWIN-NMR format

Macros handling XWIN-NMR parameters 89
DONE

INDEX

INDEX

Chapter 8

Macros handling XWIN-NMR

parameters

This chapter contains a description of AU macros which can be used to get and
store XWIN-NMR parameters. Parameters are subdivided in acquisition, processing,
output and plot parameters. Furthermore, they exist in two different forms; as fore-
ground and status parameters. Finally, multi-dimensional datasets have parameter
sets for each dimension. Different AU macros are available for getting and storing
parameters of all categories, forms or dimensions.

90 Macros handling XWIN-NMR parameters
DONE

INDEX

INDEX

FETCHPAR

NAME

FETCHPAR - get an acquisition, processing or output parameter

SYNTAX
FETCHPAR(parm, &val)

DESCRIPTION

The macro FETCHPAR gets the value of a foreground parameter and stores it
into an AU variable. This AU variable can then be used in subsequent AU state-
ments. FETCHPAR allows to get acquisition parameters (eda), processing pa-
rameters (edp) and output parameters (edo). It is typically used to check or
modify a parameter prior to an acquisition or processing statement.

The macro FETCHPAR takes two arguments:

1. the name of the parameter

2. the AU variable into which the parameter value will be stored

There are two important things to be considered:

1. The type of the AU variable must be the same as the type of the parame-
ter (see Chapter 13).

2. The second argument must be specified as the variable’s address, i.e. it
must be prepended with the ’&’ character. This, however, does not count
for a text variable since a text variable is already an address.

FETCHPAR works on 1D, 2D or 3D datasets and always gets a parameter of the
first dimension (F2 for 1D, F2 for 2D and F3 for 3D).

The handling of the macros FETCHPAR1, FETCHPAR3, FETCHPARM,
FETCHPLPAR, FETCHPLWPAR, FETCHPLXPAR, FETCHT1PAR and
FETCHDOSYPAR is equivalent to the handling of FETCHPAR.

EXAMPLES
The following AU program gets the value of the processing parameter SI and
processes the data 4 times, each time doubling the spectrum size and storing the
data in successive processing numbers:

Macros handling XWIN-NMR parameters 91
DONE

INDEX

INDEX

GETCURDATA
FETCHPAR("SI", &i1)
TIMES(4)

EFP
IPROCNO
i1 = i1*2;
STOREPAR("SI", i1)

END
QUIT

The following AU statements get the values of the acquisition parameter DW
and the processing parameter STSI and stores them in the predefined variables
f1 and i1, respectively. Then it gets value of the parameter ABSF1 and stores it
in the user defined variable leftlimit. Finally, it gets the value of the output pa-
rameter CURPLOT and stores it in the predefined variable text.

float leftlimit;
...
FETCHPAR("DW", &f1)
FETCHPAR("STSI", &i1)
FETCHPAR("ABSF1", &leftlimit)
FETCHPAR("CURPLOT", text)

SEE ALSO
FETCHPARS - get a status parameter (acquisition and processing)
STOREPAR - store an acquisition, processing or output parameter

92 Macros handling XWIN-NMR parameters
DONE

INDEX

INDEX

FETCHPARS

NAME

FETCHPARS - get a status parameter (acquisition and processing)

SYNTAX
FETCHPARS(parm, &val)

DESCRIPTION

The macro FETCHPARS gets the value of a status parameter and stores it into
an AU variable. This AU variable can then be used in subsequent AU state-
ments. Acquisition status parameters are set by acquisition commands and de-
scribe the status of the dataset after acquisition. Note that the status parameters
(dpa) describe what really happened and that this is sometimes different from
what was set up before the acquisition as acquisition parameters (eda). For ex-
ample, the status NS is smaller than originally specified when an acquisition was
halted prematurely. Any AU program statement which follows an acquisition
command and evaluates acquisition parameters must read status parameters.
Therefore, FETCHPARS is typically used after acquisition or processing state-
ments, for example for error or abort conditions (see example below).

The macro FETCHPARS takes two arguments:

1. the name of the parameter

2. the AU variable into which the value is value will be stored

There are two important things to be considered:

1. The type of the AU variable must be the same as the type of the parame-
ter (see Chapter 13).

2. The second argument must be specified as the variable’s address, i.e. it
must be prepended with the ’&’ character. This, however, does not count
for a text variable since a text variable is already an address.

The handling of the macros FETCHPARS1 and FETCHPARS3 is equivalent to
the handling of FETCHPARS.

EXAMPLE
The following AU program performs a series of acquisitions on the same dataset

Macros handling XWIN-NMR parameters 93
DONE

INDEX

INDEX

until a minimum signal/noise is reached. In a loop 8 scans are acquired, Fourier
transformed and phase corrected. Then the signal/noise of the spectrum is calcu-
lated and compared with the minimum value. If the minimum signal/noise was
not reached yet, 8 more scans are accumulated etc. A maximum of 8000 scans
is acquired. After the acquisition has been stopped, the total number of actually
acquired scans is displayed.

GETCURDATA
STOREPAR("NS", 8)
GETFLOAT("Please enter the minimum signal/noise", f1)
ZG
TIMES(1000)

FT
APK
SINO
FETCHPARS("SINO", f2)
if (f1 >= f2)

break;
GO

END
FETCHPARS("NS", i1)
Proc_err (DEF_ERR_OPT,"Acquisition stopped after %d scans", i1);
QUIT

SEE ALSO
FETCHPAR - get an acquisition, processing or output parameter
STOREPARS - store a status parameter (acquisition and processing)

94 Macros handling XWIN-NMR parameters
DONE

INDEX

INDEX

STOREPAR

NAME

STOREPAR - store an acquisition, processing or output parameter

SYNTAX
STOREPAR(parm, val)

DESCRIPTION

The macro STOREPAR stores the value of an AU variable into a parameter. This
AU variable can then be used in subsequent AU statements. STOREPAR can be
used for acquisition parameters (eda), processing parameters (edp) and output
parameters (edo). It is typically used to set parameters prior to an acquisition or
processing statement. STOREPAR takes two arguments:

1. the name of the parameter

2. the value to be stored which can specified in two different forms:

• as a constant

• as the name of an AU variable

Important: the type of the parameter must be the same as the type of the constant
or variable. (see Chapter 13).

NOTES

STOREPAR works on 1D, 2D or 3D datasets and always stores a parameter of
the first dimension (F2 for 1D, F2 for 2D and F3 for 3D).

The handling of the macros STOREPAR1, STOREPAR3, STOREPARM,
STOREPLPAR, STOREPLWPAR, STOREPLXPAR, STORET1PAR and
STOREDOSYPAR is equivalent to the handling of STOREPAR.

EXAMPLE
The following AU program reads a standard parameter set, sets the pulse pro-
gram and power level, asks the user for the number of scans and sets the plotter.
Then a dataset is acquired, processed and plotted according to these parameters.

char curplotter[20];

Macros handling XWIN-NMR parameters 95
DONE

INDEX

INDEX

GETCURDATA
RPAR("PROTON", "all")
STOREPAR("PULPROG", "zg30")
STOREPAR("PL 1", 10.0)
GETINT("Please enter the number of scans:", i1)
STOREPAR("NS", i1)
(void) strcpy(curplotter, "hplj5l");
STOREPAR("CURPLOT", curplotter)
ZG
EFP
PLOT
QUIT

SEE ALSO

STOREPARS - store a status parameter (acquisition and processing)
FETCHPAR - get an acquisition, processing or output parameter

96 Macros handling XWIN-NMR parameters
DONE

INDEX

INDEX

STOREPARS

NAME

STOREPARS - store a status parameter (acquisition and processing)

SYNTAX
STOREPARS(parm, val)

DESCRIPTION

The macro STOREPARS stores the value of an AU variable into a status param-
eter. This AU variable can then be used in subsequent AU statements. Status pa-
rameters are set by an acquisition or processing command and describe the status
of the dataset after this acquisition or processing command. If the data are now
manipulated by AU statements which do not update the status parameters, these
must be set explicitly with STOREPARS. For example, if you add two fid’s with
addfid, the total number of scans of the resulting dataset is not automatically
updated. This must be done explicitly with STOREPARS.

The handling of the macros STOREPAR1S and STOREPAR3S is equivalent to
the handling of STOREPARS.

EXAMPLE
The following AU program reads the foreground dataset, adds the fid of the next
experiment number and the experiment number after that and stores the result in
the foreground dataset. The number of scans of the original fid’s are added and
stored in the status parameter NS of the resulting dataset.

int expno_save;

GETCURDATA
DATASET2(name, expno+1, procno, disk, user)
DATASET3(name, expno+2, procno, disk, user)
expno_save=expno;
IEXPNO
FETCHPARS("NS", &i1)

IEXPNO
FETCHPARS("NS", &i2)

Macros handling XWIN-NMR parameters 97
DONE

INDEX

INDEX

REXPNO(expno_save)
ADDFID
STOREPARS("NS", i1+i2)
QUIT

SEE ALSO
FETCHPARS - get a status parameter (acquisition and processing)
STOREPAR - store an acquisition, processing or output parameter

98 Macros handling XWIN-NMR parameters
DONE

INDEX

INDEX

RPAR

NAME

RPAR - read a parameter set to the current AU dataset

SYNTAX
RPAR(char *parset, char *typ)

DESCRIPTION

The macro RPAR reads a parameter set to the current AU dataset. This can be a
standard Bruker parameter set or a user defined parameter set which was stored
with WPAR. RPAR takes two arguments:

1. the name of the parameter set

2. the type of parameters which are to be read

The second argument can be:

• acqu for acquisition parameters (eda)

• proc for processing parameters (edp)

• plot for plot parameters (edg)

• outd for output parameters (edo)

• all for acquisition, processing, plot and output parameters

EXAMPLE

The following AU program reads the standard Bruker parameter set PROTON,
sets the number of scans to 1024 and runs an acquisition:

GETCURDATA
RPAR("PROTON", "all")
STOREPAR("NS", 1024)
ZG
QUIT

SEE ALSO
WPAR - write the current dataset parameters to a parameter set

Macros handling XWIN-NMR parameters 99
DONE

INDEX

INDEX

WPAR

NAME
WPAR - write the current dataset parameters to a parameter set

SYNTAX
WPAR(char *parset, char *typ)

DESCRIPTION

The macro WPAR writes the parameters of the current AU dataset to a parameter
set. You can only write to user defined parameter sets. Bruker standard parame-
ters sets cannot be overwritten. WPAR is typically used in AU programs to store
a temporary parameter set. It takes two arguments:

1. the name of the parameter set

2. the type of parameters which are to be stored

The second argument can be:

• acqu for acquisition parameters (eda)

• proc for processing parameters (edp)

• plot for plot parameters (edg)

• outd for output parameters (edo)

• all for acquisition, processing, plot and output parameters

EXAMPLE
The following AU program reads the acquisition parameters of the Bruker stand-
ard parameter set PROTON, sets the number of scans, the frequency offset and
time domain data size and writes the acquisition parameters to a temporary pa-
rameter set. It then performs 8 successive acquisitions with these parameters.

GETCURDATA
RPAR("PROTON", "all")
STOREPAR("NS", 16)
STOREPAR("O1", 766.23)
STOREPAR("TD",8192)
WPAR("partemp", "acqu")

100 Macros handling XWIN-NMR parameters
DONE

INDEX

INDEX

TIMES(8)
ZG
IEXPNO
RPAR("partemp", "acqu")

END
QUIT

SEE ALSO

RPAR - read a parameter set to the current AU dataset

Macros for XWIN-PLOT/autoplot 101
DONE

INDEX

INDEX

Chapter 9

Macros for XWIN-PLOT/autoplot

This chapter contains a description of AU macros which can be used to plot data
using XWIN-PLOT portfolios and layouts. These include macros for the creation
and definition of portfolios and for plotting to the printer, to a postscript file or
enhanced metafile.

102 Macros for XWIN-PLOT/autoplot
DONE

INDEX

INDEX

AUTOPLOT

NAME

AUTOPLOT - plot the current dataset according an XWIN-PLOT layout

SYNTAX
AUTOPLOT

DESCRIPTION

The macro AUTOPLOT plots the current dataset according to the XWIN-PLOT

layout that is defined by the edo parameter LAYOUT.

The XWIN-PLOT layout can be:

• a standard layout that was delivered with XWIN-NMR

• a user defined layout that was setup and stored from XWIN-PLOT

In XWIN-NMR 3.1 and newer, standard processing AU programs, like proc_1d
contain the AUTOPLOT macro for plotting (see the example below) whereas in
older versions, the PLOT macro was used. However, AU programs that contain
PLOTX macros; are still used in the original form. Furthermore, the old AU pro-
grams, using PLOT macro, are still available under the names p_*.

EXAMPLE

This AU program processes the current 1D dataset and plots it according to the
XWIN-PLOT layout specified in edo:

GETCURDATA
EF
APK
SREF
ABS
AUTOPLOT

QUIT

SEE ALSO

AUTOPLOT_TO_FILE, AUTOPLOT_WITH_PORTFOLIO,
AUTOPLOT_WITH_PORTFOLIO_TO_FILE

Macros for XWIN-PLOT/autoplot 103
DONE

INDEX

INDEX

AUTOPLOT_TO_FILE

NAME
AUTOPLOT_TO_FILE - as AUTOPLOT but store the output into a file

SYNTAX
AUTOPLOT_TO_FILE(filename)

DESCRIPTION

The macro AUTOPLOT_TO_FILE plots the current dataset according to the
XWIN-PLOT layout defined by the edo parameter LAYOUT. The output is not
sent to the printer but stored in the file that is specified as an argument. The ar-
gument is normally a full pathname. If it is not, the file is stored in the XWIN-
NMR home directory.

If the filename has the extension .ps, the output is stored as a postscript file. If
(under Windows) it has the extension .emf, as in the example below, the output
will be stored as an enhanced metafile.

AUTOPLOT_TO_FILE is actually a composite macro that consists of several
PORTFOLIO*/AUTOPLOT* macros. This, however, is transparent to the user.

EXAMPLE
This AU program processes the current 1D dataset and plots it according to the
XWIN-PLOT layout specified in edo. The result is stored in an enhanced meta-
file.

GETCURDATA

EF
APK
SREF
ABS
AUTOPLOT_TO_FILE("/users/guest/mydata.emf")

QUIT

SEE ALSO
AUTOPLOT, AUTOPLOT_WITH_PORTFOLIO

104 Macros for XWIN-PLOT/autoplot
DONE

INDEX

INDEX

DECLARE_PORTFOLIO

NAME

DECLARE_PORTFOLIO - initialize the use of XWIN-PLOT portfolio macros

SYNTAX
DECLARE_PORTFOLIO

DESCRIPTION

The macro DECLARE_PORTFOLIO initializes the use of other XWIN-PLOT

portfolio AU macros. It must be inserted at the beginning of the AU program
(before GETCURDATA). Note that this macro initializes portfolio use but does
not create one.

EXAMPLE
This AU program plots the current dataset according to the XWIN-PLOT layout
specified in edo. It just is a simple demonstration of the use of PORTFOLIO
macros.

DECLARE_PORTFOLIO

GETCURDATA

CREATE_PORTFOLIO(“/temp/myPortfolio.por”)
ADD_CURDAT_TO_PORTFOLIO
CLOSE_PORTFOLIO

AUTOPLOT_WITH_PORTFOLIO

QUIT

Note that this AU program does the same as the command autoplot.

SEE ALSO

CREATE_PORTFOLIO, ADD_TO_PORTFOLIO, CLOSE_PORTFOLIO

Macros for XWIN-PLOT/autoplot 105
DONE

INDEX

INDEX

CREATE_PORTFOLIO

NAME
CREATE_PORTFOLIO - create a XWIN-PLOT portfolio

SYNTAX
CREATE_PORTFOLIO(name)

DESCRIPTION

The macro CREATE_PORTFOLIO creates the XWIN-PLOT portfolio that is
specified as an argument. It takes one argument; the filename of the portfolio.

The argument is normally specified as a full pathname. If it is not, the portfolio
is stored under the XWIN-NMR home directory. If the specified file already exists,
it is overwritten. Note that CREATE_PORTFOLIO creates the portfolio but does
not insert any dataset specifications.

EXAMPLE

This AU program plots the current dataset according to the XWIN-PLOT layout
specified in edo. It is just a simple demonstration of the use of PORTFOLIO
macros.

DECLARE_PORTFOLIO

GETCURDATA

CREATE_PORTFOLIO(“/temp/myPortfolio.por”)
ADD_CURDAT_TO_PORTFOLIO
CLOSE_PORTFOLIO

AUTOPLOT_WITH_PORTFOLIO

QUIT

Note that this AU program does the same as the command autoplot.

SEE ALSO
DECLARE_PORTFOLIO, ADD_TO_PORTFOLIO, CLOSE_PORTFOLIO

106 Macros for XWIN-PLOT/autoplot
DONE

INDEX

INDEX

ADD_CURDAT_TO_PORTFOLIO

NAME

ADD_CURDAT_TO_PORTFOLIO - add the current dataset to the portfolio

SYNTAX
ADD_CURDAT_TO_PORTFOLIO

DESCRIPTION

The macro ADD_CURDAT_TO_PORTFOLIO adds the current dataset to the
XWIN-PLOT portfolio that was previously create with CREATE_PORTFOLIO.

EXAMPLE
This AU program plots two datasets, the current and next processing number of
the current data name, according to the XWIN-PLOT layout specified in edo.

DECLARE_PORTFOLIO

GETCURDATA

CREATE_PORTFOLIO(“/temp/myPortfolio.por”)
ADD_CURDAT_TO_PORTFOLIO
IPROCNO
ADD_CURDAT_TO_PORTFOLIO
CLOSE_PORTFOLIO

AUTOPLOT_WITH_PORTFOLIO
QUIT

SEE ALSO
DECLARE_PORTFOLIO, CREATE_PORTFOLIO, CLOSEPORTFOLIO

Macros for XWIN-PLOT/autoplot 107
DONE

INDEX

INDEX

ADD_TO_PORTFOLIO

NAME
ADD_TO_PORTFOLIO - add the specified dataset to the portfolio

SYNTAX
ADD_TO_PORTFOLIO(disk,user, name, expno, procno)

DESCRIPTION

The macro ADD_TO_PORTFOLIO adds a dataset to the portfolio that was pre-
viously created with CREATE_PORTFOLIO. The dataset to be added is com-
pletely specified by the five arguments of ADD_TO_PORTFOLIO. Note that
these arguments can be constants (values) or variables.

EXAMPLE
This AU program plot two datasets according to the XWIN-PLOT layout specified
in edo. Note that the first dataset to be plotted is the so called second dataset
(edc2), specified by the predefined dedicated variables disk2, user2 etc.

DECLARE_PORTFOLIO

GETCURDATA

CREATE_PORTFOLIO(“/temp/myPortfolio.por”)
ADD_TO_PORTFOLIO(disk2, user2, name2, expno2, procno2)
ADD_TO_PORTFOLIO("C:/xw", "guest", "mydata", 1, 3)
CLOSE_PORTFOLIO

AUTOPLOT_WITH_PORTFOLIO

QUIT

SEE ALSO

ADD_CURDAT_TO_PORTFOLIO

108 Macros for XWIN-PLOT/autoplot
DONE

INDEX

INDEX

CLOSE_PORTFOLIO

NAME

CLOSE_PORTFOLIO - closes the portfolio definition

SYNTAX
CLOSE_PORTFOLIO

DESCRIPTION

The macro CLOSE_PORTFOLIO closes the definition of the portfolio that was
previously created with CREATE_PORTFOLIO. It must be used after the last
ADD_CURDAT_TO_PORTFOLIO or ADD_TO_PORTFOLIO macro and be-
fore the first AUTOPLOT* macro.

EXAMPLE
This AU program plots the current dataset according to the XWIN-PLOT layout
specified in edo. It is just a simple demonstration of the use of PORTFOLIO
macros.

DECLARE_PORTFOLIO

GETCURDATA

CREATE_PORTFOLIO(“/temp/myPortfolio.por”)
ADD_CURDAT_TO_PORTFOLIO
CLOSE_PORTFOLIO

AUTOPLOT_WITH_PORTFOLIO

QUIT

Note that this AU program does the same as the command autoplot.

SEE ALSO

DECLARE_PORTFOLIO, CREATE_PORTFOLIO, ADD_TO_PORTFOLIO

Macros for XWIN-PLOT/autoplot 109
DONE

INDEX

INDEX

AUTOPLOT_WITH_PORTFOLIO

NAME
AUTOPLOT_WITH_PORTFOLIO - plot the dataset(s) of the current portfolio

SYNTAX
AUTOPLOT_WITH_PORTFOLIO

DESCRIPTION

The macro AUTOPLOT_WITH_PORTFOLIO plots the dataset(s) defined in
the portfolio created with CREATE_PORTFOLIO according to the XWIN-PLOT

layout defined by the edo parameter LAYOUT.

EXAMPLE

This AU program plots the current dataset according to the XWIN-PLOT layout
specified in edo. It is just a simple demonstration of the use of PORTFOLIO
macros.

DECLARE_PORTFOLIO

GETCURDATA

CREATE_PORTFOLIO(“/temp/myPortfolio.por”)
ADD_CURDAT_TO_PORTFOLIO
CLOSE_PORTFOLIO

AUTOPLOT_WITH_PORTFOLIO

QUIT

Note that this AU program does the same as the command autoplot.

SEE ALSO
AUTOPLOT, AUTOPLOT_WITH_PORTFOLIO_TO_FILE

110 Macros for XWIN-PLOT/autoplot
DONE

INDEX

INDEX

AUTOPLOT_WITH_PORTFOLIO_TO_FILE

NAME

AUTOPLOT_WITH_PORTFOLIO_TO_FILE - plot the dataset(s) of the cur-
rent portfolio and store the output into a file

SYNTAX

AUTOPLOT_WITH_PORTFOLIO_TO_FILE(filename)

DESCRIPTION
The macro AUTOPLOT_WITH_PORTFOLIO_TO_FILE plots the dataset(s)
defined in the XWIN-PLOT portfolio that was previously created with
CREATE_PORTFOLIO. The plot is made according to the layout defined by the
edo parameter LAYOUT. The output is stored in the file that is specified as an
argument to the macro. The argument is normally a full pathname. If it is not, the
portfolio is stored under the XWIN-NMR home directory.

If the filename has the extension .ps, as in the example below, the output will
be stored as a postscript file. If (under Windows) it has the extension .emf, the
output is stored as an enhanced metafile.

EXAMPLE
This AU program plots the current dataset according to the XWIN-PLOT layout
specified in edo and stores the result into a postscript file.

DECLARE_PORTFOLIO

GETCURDATA

CREATE_PORTFOLIO(“/temp/myPortfolio.por”)
ADD_CURDAT_TO_PORTFOLIO
CLOSE_PORTFOLIO

AUTOPLOT_WITH_PORTFOLIO_TO_FILE("/users/guest/mydata.ps")

QUIT

SEE ALSO AUTO
PLOT_WITH_PORTFOLIO, AUTOPLOT_TO_FILE

Macros prompting the user for input. 111
DONE

INDEX

INDEX

Chapter 10

Macros prompting the user for
input.

This chapter contains a description of all AU macros which can be used to prompt
the user for input and store the input into an AU variable. Different macros are
available for requesting integer, float, double or text values.

112 Macros prompting the user for input.
DONE

INDEX

INDEX

GETINT

NAME

GETINT - prompt the user to enter an integer value

SYNTAX
GETINT("Please enter an integer value : ", i1)

DESCRIPTION

The macro GETINT prompts the user to enter an integer value and stores this
value into an integer variable. It can be used for various purposes, for example
to set the value of an XWIN-NMR (integer) parameter or to specify the number of
cycles in an AU program loop. GETINT takes two arguments:

1. a text string which prompts the user to enter an integer value

2. an integer variable into which the value is stored

EXAMPLE
The following AU program prompts the user for the number of scans per acqui-
sition and the number of experiments to be done:

GETCURDATA
GETINT("Please enter the number of scans:", i1)
GETINT("Please enter the number of experiments:", i2)
TIMES(i2)

STOREPAR("NS", i1)
ZG
IEXPNO

END
QUIT

SEE ALSO
GETFLOAT - prompt the user to enter a float value
GETDOUBLE - prompt the user to enter a double value
GETSTRING - prompt the user to enter a text string

Macros prompting the user for input. 113
DONE

INDEX

INDEX

GETFLOAT/GETDOUBLE

NAME
GETFLOAT - prompt the user to enter a float value
GETDOUBLE - prompt the user to enter a double value

SYNTAX

GETFLOAT(text, f1)
GETDOUBLE(text, d1)

DESCRIPTION
The macro GETFLOAT prompts the user to enter a float value and stores this
value into a float AU variable. It is used to get the value for an XWIN-NMR (float)
parameter which can then be stored with STOREPAR. GETFLOAT takes 2 ar-
guments:

1. a text string which prompts the user to enter an float value

2. the float variable into which the value is store

The description for GETDOUBLE is equivalent, except that it is used for XWIN-
NMR (double) parameters.

EXAMPLE

The following AU program prompts the user for the frequency offset and Gaus-
sian broadening, stores these values into the parameters O1 and GB respectively
and then runs an acquisition, Gaussian multiplication and Fourier transform:

GETCURDATA
GETDOUBLE("Please enter the frequency offset:", d1)
STOREPAR("o1", d1);
GETFLOAT("Please enter the Gaussian broadening:", f1)
STOREPAR("GB", f1)
ZG
GM
FT
QUIT

114 Macros prompting the user for input.
DONE

INDEX

INDEX

SEE ALSO

GETINT - prompt the user to enter an integer value
GETSTRING - prompt the user to enter a text string

Macros prompting the user for input. 115
DONE

INDEX

INDEX

GETSTRING

NAME
GETSTRING - prompt the user to enter a text string

SYNTAX
GETSTRING(text, cval)

DESCRIPTION

The macro GETSTRING prompts the user to enter a text string which is then
stored into an AU variable. It can be used for various purposes, for example to
ask the user a question or prompt the user to enter a name. GETINT takes two
arguments:

1. a text string which prompts the user to enter a text string

2. the character-string variable into which the value is stored

EXAMPLE
The following AU program asks the user if an integration must be done and, if
yes, which intrng file must be used. Then the integrals are calculated and listed:

char answer[8];

GETCURDATA
GETSTRING("Do you want to do an integration (yes/no)?", answer)
if (!strcmp(answer,"yes"))
{

GETSTRING("Which intrng file must be used?", text)
RMISC("intrng", text)
LI

}
QUIT

SEE ALSO
GETINT - prompt the user to enter an integer value
GETFLOAT - prompt the user to enter a float value
GETDOUBLE - prompt the user to enter a double value

116 Macros prompting the user for input.
DONE

INDEX

INDEX

Bruker library functions 117
DONE

INDEX

INDEX

Chapter 11

Bruker library functions

This chapter contains a description of various C functions which are available as
part of Bruker libraries. Several of them concern the handling of dataset lists or
directory lists. You can, for instance, get a list of filenames, display it, select a file
from the list and then copy the file to a different directory. The functions described
in this chapter are particularly useful for files located in the directories
/<xwhome>/conf and /<xwhome>/exp. For copying datasets, we recommend to
use the macros described in Chapter 4.

118 Bruker library functions
DONE

INDEX

INDEX

CalcExpTime/PrintExpTime

NAME

CalcExpTime - calculate the experiment time for the current experiment
PrintExpTime - print the experiment time for the current experiment

SYNTAX

static void PrintExpTime();

int CalcExpTime ();
void PrintExpTime (int exptime, int expno);

#include<inc/exptutil>

DESCRIPTION
The function CalcExpTime calculates the experiment time for the current ex-
periment. The return value is the experiment time in seconds. The function
PrintExpTime can be used to print the experiment time in the form "days hours
minutes seconds".

EXAMPLE
The following AU program calculates and prints the experiment time of a se-
quence of 10 experiments starting with the foreground dataset.

static void PrintExpTime();

GETCURDATA
TIMES(10)

PrintExpTime(CalcExpTime(),loopcount1);
IEXPNO

END
QUIT
#include<inc/exptutil>

Note that the declaration of PrintExpTime must appear at the beginning of the
AU program and the #include statement at the end of the AU program.

SEE ALSO
multiexpt - a standard Bruker library AU program

Bruker library functions 119
DONE

INDEX

INDEX

check_pwd, GetNmrSuperUser

NAME
check_pwd - prompt the user to enter a password
GetNmrSuperUser - get the name of the XWIN-NMR NMR superuser

SYNTAX

int check_pwd (char *username);
char *GetNmrSuperUser();

DESCRIPTION
The function check_pwd prompts the user for the password of the specified us-
er. The return value is 0, if the correct password was entered. In all other cases,
the return value is -1. This function can be combined with the function GetN-
mrSuperUser which returns the name of the XWIN-NMR NMR superuser.

EXAMPLE

GETCURDATA
if (check_pwd (GetNmrSuperUser()) != 0)
{

Proc_err(DEF_ERR_OPT,"Sorry, you are not privileged");
ABORT

}
else
{

Proc_err(DEF_ERR_OPT,"OK, you may proceed !");
}
QUIT

120 Bruker library functions
DONE

INDEX

INDEX

getdir

NAME

getdir - get all file names and/or directory names within a directory

SYNTAX
int getdir (char *directory, char ***filelist, char *match-code);

DESCRIPTION

The function getdir opens a directory and gets all file and directory names in
that directory. This list is stored in a 2 dimensional character-string variable
which can be evaluated by subsequent AU statements. The list can be limited by
specifying a match-code; only names matching this string are entered into the
list. getdir takes three arguments:

1. the source directory

2. the variable into which the list of names is stored

3. the match-code; an arbitrary string of characters

The third argument, can also be "/files" to get all files but not directories, or
"/dir" to get all directories but not files.

The return value of getdir is the number of successfully matched file names
and/or directory names.

The function getdir is frequently used in connection with the uxselect
function which is also described in this chapter. getdir internally allocates
memory for the list of names. Officially, you must free this memory with the
Bruker library function freedir. In practice, however, you can omit freedir
because all memory allocated by the AU program is automatically freed when
the AU program finishes.

EXAMPLES

The following AU statements will create a list of experiment directories from an
XWIN-NMR dataset. All entries are returned because no match-code was speci-
fied.

char sourcedir[200], **listfile;
GETCURDATA

Bruker library functions 121
DONE

INDEX

INDEX

sprintf (sourcedir, "%s/data/%s/%s/%s/",disk,user,type,name);
i1 = getdir (sourcedir,&listfile,NULL);

The following AU statements will create a list of shim files starting with the let-
ters a to p from the bsms directory.

char sourcedir[200], **listfile;
GETCURDATA
sprintf (sourcedir, "%s/lists/bsms/",getstan(0,0));
i1 = getdir (sourcedir,&listfile,"[a-p]*");

The following AU statement will create a list of all files but not directories from
the users home directory.

i1 = getdir (getenv("HOME"),&listfile,"/files");

The following AU statement will return a list of all directory names from the us-
ers home directory.

i1 = getdir (getenv("HOME"),&listfile,"/dir");

SEE ALSO
uxselect - display a list from which an entry can be selected by mouse-click
freedir - free memory allocated by getdir

122 Bruker library functions
DONE

INDEX

INDEX

freedir

NAME

freedir - free memory allocated by getdir

SYNTAX
void freedir (char **listfile);

DESCRIPTION

The function freedir frees the memory that was allocated by a getdir func-
tion call.

EXAMPLE
See the example under the function uxselect.

SEE ALSO

getdir - get all file names and/or directory names within a directory
uxselect - display a list from which an entry can be selected by mouse-click

Bruker library functions 123
DONE

INDEX

INDEX

uxselect

NAME
uxselect - display a list from which an entry can be selected by mouse-click

SYNTAX
char *uxselect (char *sourcedir, char **listfile, char *headerline, int mode);

DESCRIPTION

The function uxselect displays a list of names, like file names or directory
names, and allows the user to select of one of these names. Depending on the
mode with which uxselect was called the entries in the list can be viewed, re-
named, deleted, new entries can be added etc.Note that uxselect does not cre-
ate the list of names. Before you use uxselect in an AU program, you must
first create such a list with another AU statement, e.g. with the function getdir.

The function uxselect takes four arguments:

1. the directory in which the listed files/directories reside

2. the variable containing the list of names

3. the header line which appears at the top of the selection window

4. the mode which determines the layout and functionality of the selection
window

The first argument must be an actual directory name when the fourth argument
(mode) is SEL_DIR_SUB, SEL_WR_CONF, SEL_RENAME or
SEL_DELETE. Only in those cases, the uxselect function needs to know the
source directory because it will access it. For all other modes, uxselect will
simply use the list of names as it was created by a previous AU statement (like
getdir) and the first argument of can be NULL.

The return value of uxselect is a character-string, usually the selected file or
the directory name. The return value can be assigned to a variable and used in
subsequent AU statements. If, however, you close the selection window by
clicking the Cancel button the return value of uxselect is NULL.

The following modes are available.

• SEL_READ 0

124 Bruker library functions
DONE

INDEX

INDEX

A list of names is displayed in select mode. If you select an entry it becomes
the return value of uxselect and can be used in subsequent AU statements.

• SEL_WRITE 1

A list of names is displayed in select mode. Furthermore, a new name can be
entered at the bottom of the screen. If you select an entry or enter a new name,
this will be the return value of uxselect. Note that entering a new name
does not automatically create a file or directory with this name. You can use
the return value in subsequent AU statements.

• SEL_DIR_ONLY 2

A list of names is displayed in view only mode. No entry can be selected, but
the whole listing can be printed out.

• SEL_DIR_SUB 3

A list of directory names is displayed in view only mode. This mode can only
be used for lists of directory names, not file names. All entries in the directo-
ries (files and subdirectories) are also displayed.

• SEL_RD_WIDE 4

A list of names is displayed in select mode in an extra wide window. If the
user selects an entry, this becomes the return value of uxselect. This mode
is similar to SEL_READ.

• SEL_WR_CONF 5

A list of names is displayed in select mode. Furthermore, a new name can be
entered at the bottom of the screen. If you select an entry or enter a new name,
the overwrite permissions of the corresponding file or directory are checked.
If it is writable, the name will be the return value of uxselect. This mode
is used in the XWIN-NMR command wpar. There are hardly any applications
for this mode in AU programs.

• SEL_RENAME 6

A list of names is displayed in write mode. Selecting an entry allows to re-
name it.

• SEL_ED_WIDE 7

The list of names is displayed in write mode. An empty entry is added in
which a new name can be entered. Every entry in the list can be renamed.
This mode is used in the XWIN-NMR command edhead. There are hardly

Bruker library functions 125
DONE

INDEX

INDEX

any applications for this mode in AU programs.

• SEL_ALL 8

A list of names is displayed in select mode. You can select a single entry or
click the button Select all to select all entries.

• SEL_DELETE 9

A list of names is displayed in select mode. The selection window contains
the buttons execute and select all. When you select an entry and click on ex-
ecute the corresponding file or directory is deleted. When you click select all
and then execute, all files/directories in the list are deleted.

We strongly recommend to specify the mode with its symbolic name rather than
with its number. The reason is that the numbers might change in future releases
of XWIN-NMR, but the symbolic names will not.

EXAMPLE
The following AU program will get a listing of all shim files with the extension
.mike and will display this list in a selection window. If an entry is selected,
then the corresponding shim file is read with the macro RSH. If no entries were
found or selected, the AU program aborts.

char sourcedir[200], **listfile, *answer;

GETCURDATA
sprintf (sourcedir, "%s/lists/bsms/",getstan(0,0));
if ((i1 = getdir (sourcedir,&listfile,"*.mike")) <= 0)
{

Proc_err (DEF_ERR_OPT,"No shim files with extension .mike found");
ABORT

}
else
{

if ((answer = uxselect(NULL,listfile,"shim files",SEL_READ)) != 0)
{

RSH(answer)
}

}
freedir (listfile);
QUIT

126 Bruker library functions
DONE

INDEX

INDEX

SEE ALSO

getdir - get all file names and/or directory names within a directory
getstan - return the pathname to the user’s current experiment directory

Bruker library functions 127
DONE

INDEX

INDEX

dircp

NAME
dircp - copy a file
dircp_err - return the error message that corresponds to the error return value
of a dircp function call

SYNTAX
dircp (char *sourcefile, char *targetfile);
char *dircp_err (int return-value);

DESCRIPTION

The function dircp copies the sourcefile into the targetfile. If the targetfile ex-
ists, it will be overwritten. A negative number is returned if copying was not pos-
sible. The function dircp_err will return the corresponding C error message.
A return value of 0 indicates successful execution.

EXAMPLE
The following AU program copies the title file of the foreground dataset to
the users home directory.

char sourcefile[200], targetfile[200];

GETCURDATA
sprintf (sourcefile, "%s/data/%s/%s/%s/%d/pdata/%d/title",

disk,user,type,name,expno,procno);
sprintf (targetfile, "%s/title",getenv("HOME"));
if ((i1 = dircp (sourcefile,targetfile)) < 0)

Proc_err (DEF_ERR_OPT, dircp_err(i1));
QUIT

128 Bruker library functions
DONE

INDEX

INDEX

fetchstorpl

NAME

fetchstorpl - read or store one or several plot parameters

SYNTAX
int fetchstorpl (char *directory, int mode, int where, varargs);

DESCRIPTION

The function fetchstorpl can read or write one or several plot parameters in
one function call. This routine is primarily used when several plot parameters are
to be stored. Fetchstorpl is also used when plot parameters are to be stored
in a parameter set rather than an XWIN-NMR dataset. If you simply want to get or
store one plot parameter, you can use the FETCHPLPAR and STOREPLPAR
macros, respectively.

fetchstorpl takes four arguments:

1. directory
Must be curdat if the third argument (where) is 0
Must be the pathname to a parameter set if the third argument (where) is 1

2. mode
Must be 0 if the parameters are to be stored.
Must be 1 if the parameters are to be read.

3. where
Must be 0 if the parameters are to be stored in a dataset.
Must be 1 if the parameters are to be stored in a parameter set.

4. varargs consists of two parts

• A list of plot parameters separated by white spaces. This list must be
double quoted with " " which makes it a character-string.

• A list of values or variables, all separated by commas. Each value or var-
iable must match the type of parameter from the above mentioned list.

EXAMPLE
• This example stores CX and CY in the parameter set PROTON.AB:

(void) sprintf (text,"%s/par/PROTON.AB",getstan(0,0));

Bruker library functions 129
DONE

INDEX

INDEX

i1 = fetchstorpl(text,0,1,"CX CY",20.0,12.0);
Note that this will only work, if the parameter set is writable for the user
who runs the AU program.

• This example stores CX and CY in the current AU program dataset:
i1 = fetchstorpl(curdat,0,0,"CX CY",20.0,12.0);
Note that the variable curdat has a special meaning. In any AU program,
curdat always and automatically refers to the current AU program dataset.

• This example reads SXLLEFT, SHEI, DHEI and CY from the current AU
program dataset:
float sxlleft, shei, dhei, cy;
i1 = fetchstorpl(curdat,1,0,"SXLLEFT SHEI DHEI CY",

&sxlleft,&shei,&dhei,&cy);

SEE ALSO
FETCHPLPAR - get a plot parameter
STOREPLPAR - store a plot parameter
stack1d - generate a stacked plot of 1D spectra from a series of experiments

130 Bruker library functions
DONE

INDEX

INDEX

gethighest

NAME

gethighest - return the next highest unused experiment number of a dataset

SYNTAX
int gethighest (char *directory);

#include <inc/sysutil>

DESCRIPTION
The function gethighest scans a directory for all subdirectories whose name
is a number and returns then returns the next highest unused number. gethigh-
est is typically used to scan a dataset name directory of an XWIN-NMR dataset.
In that case, it returns the highest unused experiment number. If, for example,
the highest used experiment number is 56, the function will return the value 57.
The function can also be used to return the highest unused processing number of
a dataset.

EXAMPLE
The following AU program will copy the current XWIN-NMR experiment into the
next highest unused experiment dataset.

GETCURDATA
(void) sprintf (text,"%s/data/%s/nmr/%s",disk,user,name);
i1 = gethighest (text);
WRA(i1)
QUIT
#include <inc/sysutil>

Note that the #include statement must be included at the end of the AU program.

Bruker library functions 131
DONE

INDEX

INDEX

getstan

NAME
getstan - return the pathname to the user’s current experiment directory

SYNTAX
char *getstan (char *pathname, const char *subdir);

DESCRIPTION

The function getstan returns the pathname to the user’s current experiment di-
rectory. The returned pathname can be concatenated with a known subdirectory
pathname as a part of the same getstan function call.

EXAMPLE

The following AU program will get the pulse program of the current AU dataset.
It will then prompt the user to confirm the name of the pulse program or to enter
a new name. Finally, the pulse program will be shown in an XWIN-NMR window.

char pulprog[80];

GETCURDATA
FETCHPAR("PULPROG",pulprog)
GETSTRING ("Enter the name of the pulse program: ",pulprog);
(void) sprintf (text,"%s/%s",getstan (NULL,"lists/pp"),pulprog);
showfile (text);
QUIT

NOTE
In the above example, the function call getstan (NULL,"lists/pp") returns the
pathname /<xwhome>/exp/stan/nmr/lists/pp. The function call get-
stan(NULL,NULL) returns /<xwhome>/exp/stan/nmr/.

SEE ALSO
PathXWinNMR - a class of functions which return pathnames to certain XWIN-
NMR directories
multi_integ - an AU program for multiple integrations in AI mode.

132 Bruker library functions
DONE

INDEX

INDEX

getxwinvers

NAME

getxwinvers - return the current version and patchlevel of XWIN-NMR

SYNTAX
int getxwinvers (char *curversion);

#include <inc/sysutil>

DESCRIPTION
The function getxwinvers returns the version and patchlevel of the currently
running XWIN-NMR program into the variable curversion. This variable can
then be printed out.

EXAMPLE
The following AU program prints the current version and patchlevel in the status
line of XWIN-NMR.

char curversion[80];

GETCURDATA
i1 = getxwinvers(curversion);
show_status (curversion);
QUIT
#include <inc/sysutil>

Note that the #include statement must be included at the end of the AU program.

Bruker library functions 133
DONE

INDEX

INDEX

mkudir

NAME
mkudir - create a complete directory path

SYNTAX
int mkudir (char *directory);

DESCRIPTION

The function mkudir scans the specified directory for the last /. Then it checks
recursively for the existence of all components of the directory path and creates
them if necessary. The function returns -1 if an error occurs, otherwise 0.

If the full pathname is to be created, then the directory must end with a / (see the
example below).

EXAMPLE
The following AU program will create a dataset which has an experiment
number one higher than the current foreground dataset.

GETCURDATA
(void) sprintf (text,"%s/data/%s/nmr/%s/%d/pdata/%d/",

disk,user,name,expno+1,procno);
if (mkudir(text) < 0)

Proc_err (DEF_ERR_OPT, "could not create :\n%s",text);
QUIT

134 Bruker library functions
DONE

INDEX

INDEX

PathXWinNMR

NAME

PathXWinNMR - a class of functions which return pathnames to certain XWIN-
NMR directories

SYNTAX

char *PathXWinNMRConf ();
char *PathXWinNMRCurDir ();
char *PathXWinNMRDotXWinNMR ();
char *PathXWinNMRExp ();
char *PathXWinNMRPlot ();
char *PathXWinNMRProg ();

DESCRIPTION

The above functions return pathnames to certain XWIN-NMR mostly subdirecto-
ries of the XWIN-NMR directory <xwhome>. For a standard installation,
<xwhome> is:

• on UNIX systems: /u

• on Windows systems: C:\Bruker

For a user-defined installation, <xwhome> can be any directory. The following
table lists the directory pathnames returned by the above functions. For exam-
ples, please check the Bruker AU program library.

char *PathXWinNMRConf : returns /<xwhome>/conf

char *PathXWinNMRCurDir : returns /<xwhome>/prog/curdir

char *PathXWinNMRDotXWinNMR : returns $HOME/.xwinnmr-hostname

char *PathXWinNMRExp : returns /<xwhome>/exp

char *PathXWinNMRPlot : returns /<xwhome>/plot

char *PathXWinNMRProg : returns /<xwhome>/prog

SEE ALSO
getstan - return the pathname to the user’s current experiment directory

Bruker library functions 135
DONE

INDEX

INDEX

pow_next

NAME
pow_next - round to the next larger power of two

SYNTAX
int pow_next (int i1);
#include <inc/sysutil>

DESCRIPTION
The function pow_next takes i1 and rounds it to the next larger integer value
which is a power of two. The return value of the function is this power of two
value. The function has no error handling. If i1 is smaller than 1, then the func-
tion will return 1.

EXAMPLE
The following AU program will return 8192 in i2 because this is the next larger
number (compared to i1) which is a power of two.

GETCURDATA
i1 = 7000;
i2 = pow_next(i1);
QUIT
#include <inc/sysutil>

Note that the #include statement must be included at the end of the AU program.

136
DONE

INDEX

INDEX

Proc_err

NAME
Proc_err - show a error message in a window on the XWIN-NMR screen

SYNTAX
int Proc_err (int flag, char *format);

int Proc_err (int flag, char *format, varargs);

DESCRIPTION
The function Proc_err can be used to construct a error message which will be
displayed in a window on the XWIN-NMR screen. The function takes two or three
arguments:

1. a flag which determines the type and the number (2 or 3) of buttons in the
error window.

2. the error message to be displayed. If this argument contains %d, %f, or %s
statements, then Proc_err needs a third argument which provides the cor-
responding variables.

3. variables who’s values replace the corresponding %d, %f, or %s statements
of the second argument.

The first argument (flag) can have the following values:

• DEF_ERR_OPT
The error window has one button (OK). The AU programs holds until the
user clicks OK.

• INFO_OPT
The error window has one button (Seen). The AU program continues but the
error window remains on the screen until it is cleared by another error win-
dow or the user clicks Seen.

• QUESTION_OPT
The error window has two buttons, OK and CANCEL. Proc_err returns
ERR_OK (0) if the OK button is clicked and ERR_CANCEL (-1) if the
CANCEL button is clicked. The return value is normally used by subse-
quent control statements to decide whether or not to continue the AU pro-
gram.

Bruker library functions 137
DONE

INDEX

INDEX

Note that the message in the Proc_err window is constructed in the same way
as the C function sprintf constructs its strings.

EXAMPLE
The following examples show several possibilities of constructing error messag-
es for the Proc_err function call.

• Example for DEF_ERR_OPT :
(void) sprintf (text,"%s/data/%s/nmr/%s/%d/pdata/%d/",

disk,user,name,expno+1,procno);
Proc_err (DEF_ERR_OPT, "could not create :\n%s",text);

• Example for QUESTION_OPT :
i1 = Proc_err(QUESTION_OPT,"Continue with the AU program ?\n\
Click OK to continue, click cancel stop");
if (i1 == ERR_OK)
{

/* Further AU statements */
}
if (i1 == ERR_CANCEL)
{
ABORT
}

• Example for INFO_OPT :
i1 = 7;
i2 = 5;
Proc_err(INFO_OPT,"%d is bigger than %d",i1,i2);

SEE ALSO
Show_status - show a string in the status line of XWIN-NMR

All AU programs from the Bruker AU program library which use Proc_err

138
DONE

INDEX

INDEX

Show_status

NAME
Show_status - show a string in the XWIN-NMR status line

SYNTAX
void Show_status (char *text);

DESCRIPTION

The function Show_status displays the specified text in the XWIN-NMR status
line. This function can be used as an alternative to the Proc_err function. One
difference to Proc_err is that there is no window that needs to be acknowl-
edged.

EXAMPLE
The following AU program will display the line "The AU program test has start-
ed" in the status line of XWIN-NMR:

GETCURDATA
(void) strcpy(text,"The AU program test has started");
Show_status (text);
QUIT

SEE ALSO
Proc_err - show a message in a window on the XWIN-NMR screen

Bruker library functions 139
DONE

INDEX

INDEX

showfile

NAME
showfile - show the contents of a file in an XWIN-NMR window

SYNTAX
int showfile (char *file);

DESCRIPTION

The function showfile reads the specified file and displays it in an XWIN-NMR

window. This display is a read-only display, so the file cannot be changed.

EXAMPLE
The following AU program will show the title file in an XWIN-NMR window.

GETCURDATA
(void) sprintf (text,"%s/data/%s/nmr/%s/%d/pdata/%d/title",
disk,user,name,expno,procno);
i1 = showfile (text);
QUIT

140
DONE

INDEX

INDEX

ssleep

NAME
ssleep - pause in an AU program for a certain number of seconds

SYNTAX
int ssleep (int seconds);

DESCRIPTION

The function ssleep will cause the AU program to wait with the execution of
the next statement until the specified number of seconds has elapsed.

EXAMPLE
The following AU program will wait for 3 minutes before it resumes execution.

GETCURDATA
i1 = ssleep (180);
EFP
QUIT

SEE ALSO
WAIT_UNTIL - hold the AU program until the specified date and time

Bruker library functions 141
DONE

INDEX

INDEX

unlinkpr

NAME
unlinkpr - delete all processed data files (1r, 1i, 2rr, 2ii etc.) of a dataset

SYNTAX
int unlinkpr (char *directory);

#include <inc/sysutil>

DESCRIPTION
The function unlinkpr deletes all processed data files (1r, 1i, 2rr, 2ii,
2ri, 2ir, dsp, dsp.hdr, dsp_low) in the specified dataset directory. There
is no error check whether the files could be deleted; the return value of the func-
tion is always 0 and can be ignored.

EXAMPLE
The following AU program will delete the processed data files of the foreground
dataset.

GETCURDATA
(void) sprintf (text,"%s/data/%s/nmr/%s/%d/pdata/%d",
disk,user,name,expno,procno);
i1 = unlinkpr (text);
QUIT
#include <inc/sysutil>

Note that the #include statement must be included at the end of the AU program.

142
DONE

INDEX

INDEX

List of Bruker AU programs 143
DONE

INDEX

INDEX

Chapter 12

List of Bruker AU programs

12.1 Short description of all Bruker AU programs

This chapter contains a list with the names and short-descriptions of all
Bruker library AU programs. This list was made for XWIN-NMR 3.1. Some
AU programs are not available for older versions of XWIN-NMR.

144
DONE

INDEX

INDEX

Z-spoil Set a Z-spoil value within the SCM.

abs2.water Performs an F2 baseline correction on a 2D dataset left and
right of the water peak.

abs2D Performs a baseline correction on a 2D dataset in both
dimensions.

acqu_fid_ser Acquires a single FID of the current 2D experiment and
replaces the old fid in the ser file.

acqulist Set up and start acquisitions using f1, f2, f3, vt, vc, vd, vp
lists.

amplstab Calculates the amplitude stability based on a peaklist file.

angle Perform multiple acquisitions and ft’s. This program is par-
ticularly interesting when you want to adjust the magic angle
for MAS type experiments.

asclev Converts the level file in the current processed data directory
to ASCII and writes it to the file

au_getl1d Acquire sweep width optimized 1D spectra.

au_getlcosy Acquire sweep width optimized COSY spectra.

au_getlinv Acquire sweep width optimized 2D inverse spectra.

au_getlxhco Acquire sweep width optimized XH correlated spectra.

au_mult AU program for C13 multiplicity analysis.

au_noediff noe difference spectroscopy using different expnos.

au_noemult noe difference spectroscopy with multiple irradiation points
for each multiplet using different expnos.

au_water Acquire water-suppression spectra for use in foreground
(xau,xaua).

au_watersc Acquire water-suppression spectra for use in automation,
e.g., with sample changer.

au_zg General AU program for data acquisition.

au_zg135 Acquire DEPT135 type spectra.

au_zgcosy Acquire COSY type spectra.

List of Bruker AU programs 145
DONE

INDEX

INDEX

au_zgglp Automatic data evaluation according to GLP standards. This
AU program takes O1, SW and O2 as arguments and then
works like au_zg.

au_zgnr Acquisition with rotation switched off.

au_zgonly General AU program for data acquisition.

au_zgsino Acquisition with signal to noise break up.

au_zgte Acquisition with temperature setting.

aunmp_tojdx Used in LIMS automation to process data. First, AUNMP is
executed, then, if specified, the command given on the com-
mand line.

autoflist Automatic generation of a frequency list for the peaks in the
plot region of the spectrum.

autot1 Automatic processing of a 2D T1/T2 experiment with subse-
quent T1/T2 calculation.

bintoasc Converts experiments from /<xwhome>/exp/stan/nmr/par
containing old binary metafiles to an experiment which then
contains the same plot parameters but in ASCII format.

bsms_exam Example AU program which shows how to use low level
functions to read or write BSMS parameters.

bsms_vtu_exam Example AU program which shows how to use low level
functions to read or write BSMS or VTU (BVT1000/BDTC)
parameters.

butselau Acquisition with butselnmr (buttonmr for selective experi-
ments) from within XWIN-NMR.

buttonau Acquisition with buttonnmr from within XWIN-NMR.

calcphhomo Phase calculation program for noesytp, cosygsmftp, roesytp,
mlevtp. Phase in F2 by reading and phasing ser file accord-
ing to pulse program Phases in F1 are calculated.

calcphinv Calculate the phase correction for the F1 dimension in
HMQC/HSQC type experiments.

calcplen Calculate the pulse length according to the power level.

calcpowlev Calculate the power level according to the pulse length.

146
DONE

INDEX

INDEX

calctemp Calculate the temperature in the probe using the chemical
shift difference between the aliphatic and OH protons.

calfun Calculates an FID from an arbitrary function. This AU pro-
gram is especially useful when you want to create a user
defined window function for the ’uwm’ command.

check-vtu Updates TE variable from the actual temperature and store it
in a separate file (edte) in the dataset.

cmdpanaux Controls the start and function of command panels (see cpan
command for more details).

coiltemp Read the Shim Coil Temperature.

col_to_black Set all colours to black that are defined for the current plot
(NT only).

convto1d Converts a 2D spectrum to 1D format.

decon_t1 Automatic deconvolution of a 2D T1/T2 experiment.

deptcyc Creates 3 DEPT experiments from 13C experiment with
CPD and then performs multiple cycles of NS scans (times 2
for DEPT90).

depthalt Halt "deptcyc" AU program.

diffe Calculate the difference spectra between expnos.

diffp Calculate the difference spectra between procnos.

dosy Setup for diffusion/DOSY experiments linear gradient
amplitude ramp.

elim_ints Eliminates regions from the intrng file that contain the sol-
vent and/or reference signals. The result will be an intrng
file where the integral trails have a more reasonable scaling
and smaller integrals are better resolved.

f1ref Corrects the referencing in F1 for inverse type experiments.

fidadd Add up FID’s in incremented expno’s.

fidtoser Writes a number of fids that are stored under the same
NAME and incremental EXPNOs to a ser file.

getphsum Reads the total phase values from the status parameters and
stores them back to the actual parameters.

List of Bruker AU programs 147
DONE

INDEX

INDEX

getti

goalternate Acquire alternated X/Y measurements. N averages are
acquired alternatingly in two experiments.

graderror

gontp Starts an ntp test program.

gradpreemp Preemphasis adjustment for gradient spectroscopy on
AMX/ARX/ASX with gradient waveform memory.

gradprog Set the relevant parameters and generate the necessary files
for the execution of pulse programs containing up to ten
shaped gradient pulses in three orthogonal directions. For
AMX/ARX/ASX with gradient waveform memory.

gradratio Calculates gradient ratios for common inverse gradient pulse
programs.

gradratiogs Calculates gradient ratios for common inverse gradient pulse
programs.

gradshapes Calculate various gradient shapes.

gradshimau Start gradshim gradient shimming procedure.

gssel_setup AU program to determine the transmitter offset for 1H selec-
tive gradient shimming using 1H as observe nucleus.

guide Perform a remote request server for the 'NMR Guide and
Encyclopedia' client.

gv Returns the currently running xwinnmr version and the
directory it is stored in.

humpcal Performs the ’hump test’. Measures the width of a peak at
0.55% and 0.11% of its signal height.

hwcal Calculate the width of a peak at half height.

iexpno Program to change to a new experiment number.

ilhalt Stop an interleaved acquisition which was started with the
AU program interleave.

interleave Perform interleaved acquisitions

jconv_aufx Converts Jeol FX data in a loop. The data must be stored
with increasing extensions like proton.1, proton.2, ... etc.

148
DONE

INDEX

INDEX

list_pp Scans all experiment numbers of the current data set for the
pulse program name and the first 30 characters of the title.
All experiments that are found are listed on the screen. If an
experiment is selected, then it is made the foreground data-
set.

listall_au Scans all AU programs and extracts the name and the short
description. This information is then copied into the file
listall in your home directory. This list corresponds to the list
you are currently reading.

loadshimZ Reads the on-axis shim values from disk and loads them to
the BSMS.

lock_off Switch off the lock to start data acquisition on the lock chan-
nel.

lock_on Switch on the lock if it has been disabled.

loopadj Parameter optimization au program which calculates
the lock parameters loop filter, loop gain and loop time
for optimal long-time stability after adjusting lock
phase and lock gain to optimal.

make2d Create a new 2D dataset from the current 1D dataset.
Can be used for 2D spectroscopy andrelaxation experi-
ments. F2 parameters are copied from the 1D data, F1
parameters are set to reasonable values.

mkflist Automatically generates a frequency list file.

mulabel Processing AU program for determination of 13C multiplic-
ity.

multanal Interactive AU program for determination of 13C multiplic-
ity.

multext Processing AU program for determination of 13C multiplic-
ity

multi_decon Automatic deconvolution of a series of 1D spectra with AI
calibration.

multi_integ Automatic integration of a series of 1D spectra with AI cali-
bration.

List of Bruker AU programs 149
DONE

INDEX

INDEX

multi_integ2 Automatic integration of a series of 1D spectra with calibra-
tion of the integral values.

multi_integ3 Automatic integration of a series of 1D spectra with AI cali-
bration. The output is written in a format suitable for import
in excel or similar desktop publishing programs.

multi_zgvd Performs multiple acquisitions on increasing expnos with
delays that are read from a vdlist file. Alternatively, a fixed
delay can be entered.

multi_zgvt Performs multiple acquisitions on increasing expnos
with temperatures that are read from a vtlist file.

multicom Executes an XWIN-NMR command in increasing expnos.

multicyc Cycles through a series of acquisitions of increasing expnos.

multiefp Performs multiple "efp" on increasing expnos.

multiexpt Calculates experimental time for multizg.

multifp Performs multiple "fp" on increasing expnos.

multiftapk Performs multiple "ft;apk" on increasing expnos.

multihalt Halt "multicyc" AU program.

multimas Performs multiple MAS experiments on increasing expnos.

multipcom Executes an XWIN-NMR command in increasing procnos.

multiwinpro Performs multiple processing on increasing expnos. The
program asks for the window function and its parameters.

multixfb Performs multiple "xfb" on increasing expnos.

multizg Performs multiple acquisitions on increasing expnos.

noediff noe difference spectroscopy using different expnos.

noeflist Automatic generation of a frequency list with the peaks from
the current plot region for noe.

noemult noe difference spectroscopy with multiple irradiation points
for each multiplet using different expnos.

o1f1 Correct calibration of F1 axes in 2D MQ experiments of odd
half integer nuclei.

paropt Parameter optimization au program.

150
DONE

INDEX

INDEX

parray Parameter optimization au program using parameter arrays.
Derived from ’paropt’, but several parameters may now be
changed per experiment. In addition, parameters are not
changed via constant increments. Instead, the values are
taken from an array.

pass2d Perform a PASS experiment with 5 Pi-pulses and 16 incre-
ments (samples up to 16 spinning side bands).

pecosy Program to pre-process P.E.COSY raw data before 2D-FT.

phtran Transfer phase correction parameters PHC0 and PHC1 into
acquisition parameters PH_ref and DE.

plintfac Plot integrals with different scaling factors.

plot_3d Plot planes of a 3D dataset.

plot_sino Plot spectrum, scaling depends on Signal/Noise.

plot_to_file Creates a postscript file of the desired plot.

poptau Parameter optimization au program using parameter arrays.
Derived from 'paropt' but several parameters can be opti-
mized. The parameters are changed according to the param-
eter arrays.The AU program will be started from user
interface 'popt' (parameter editor).

popthalt Halt "popt" AU program.

pp2d Performs a 2D peak picking with the help of the XWIN-
NMR command "pp" for 1D spectra.

pp2dmi Sets the peak picking parameter MI according to the param-
eter S_DEV and performs a 2D peak picking with the AU
program "pp2d".

proc_1H Processes and plots 1D spectra. Does not perform baseline
correction.

proc_1d Processes and plots 1D spectra. Uses 'autoplot' for plotting.

proc_1dapks Processes and plot 1D spectra. Uses 'apks' for phase correc-
tion and 'autoplot' for plotting.

proc_1dconlf Processes and plots 1D spectra. Uses 'autoplot' for plotting.
Plots an additional spectrum on the same plot if there are
peaks with a chemical shift > 11.

List of Bruker AU programs 151
DONE

INDEX

INDEX

proc_1dconlf_pr Processes and plots 1D spectra. Uses 'autoplot' for plotting.
Plots an additional wq1spectrum on the same plot if there
are peaks in the lowfield range outside the plot limits.

proc_1dexp Processing AU program for 1D spectra with automatic
expansions.

proc_1dglp Processing AU program with automatic data evaluation
according to GLP standards. This AU program takes CY as
an argument and then works like proc_1d.

proc_1dinfo Processes and plots 1D spectra. Uses 'autoplot' for plotting.
Prints the info file ('edinfo') on the plot

proc_1dlf Processes and plot 1D spectra. Uses 'autoplot' for plot-
ting. Plots an additional lowfield plot.

proc_1dlfexp Processing AU program for 1D spectra with additional low
field plot and automatic expansions.

proc_1dpppti Processes and plots 1D spectra. Creates a special peaklist
file (frequency (Hz) and half width) and prints this on the
plot. Uses 'autoplot' for plotting.

proc_1dppti Processes and plots 1D spectra. Creates a peak picking list
and prints this on the plot. Uses 'autoplot' for plotting.

proc_2d Processing AU program for 2D spectra without plotting.

proc_2dhom Processes and plots 2D homonuclear type spectra. Uses
'autoplot' for plotting.

proc_2dhom_2pp Processes and plots 2D homonuclear type spectra with two
positive projections. Uses 'autoplot' for plotting.

proc_2dinv Processes and plots 2D inverse type spectra. Uses 'autoplot'
for plotting.

proc_2dinv_2p Processes and plots 2D inverse type spectra. Plots two
projections. Uses 'autoplot' for plotting.

proc_2dpl Processes and plots 2D type spectra. Uses 'autoplot' for plot-
ting.

proc_2dsym Processes and symmetrizes 2D type spectra. Uses 'autoplot'
for plotting.

152
DONE

INDEX

INDEX

proc_2dt1 Automatic processing of a 2D T1/T2 experiment with subse-
quent T1/T2 calculation.

proc_cpd135 Processes and plots 13C CPD and DEPT135 spectra that
were acquired with the AU program au_zg135. Uses 'auto-
plot' for plotting.

proc_glp Automatic GLP data evaluation.

proc_intrng Processes and plots 1D spectra. Uses the predefined integral
range file 'testrng' for integration and 'autoplot' for plotting.

proc_no AU program which does no processing.

proc_noe Processes and plots noediff spectra. Uses 'autoplot' for
plotting.

proc_t1 Automatic processing of a 2D T1/T2 experiment with subse-
quent T1/T2 calculation.

proc_tecalib Evaluation of previous temperature calibration experiments.

psys180f1t1 Processing AU program for the 180 degree pulse calibration
tests.

psysamp1s39 Processing AU program for the amplitude stability tests -
with shaped pulse - with 30 degree pulse - with 90 degree
pulse - after gradient echo (5msec, 30 G/cm) - after gradient
echo (5msec, 10 G/cm) - after gradient pulse (1msec,
10G/cm).

psysb1hom Processing AU program for the B1 homogeneity test.

psysb2hom Processing AU program for the B2 homogeneity test.

psyscancel Processing AU program for the - phase cycling cancellation
test - phase cycling cancellation test after gradient pulse.

psysdante1 Processing AU program for the dante type turn on test.

psysdecpro1 Processing AU program for the decoupler profile test.

psysexpro1 Processing AU program for the - excitation profile (16 usec
gauss shape) test - excitation profile (6 msec gauss shape)
test.

psysglitch Processing AU program for the glitch test.

psysgrreco1 Processing AU program for the gradient recovery test.

List of Bruker AU programs 153
DONE

INDEX

INDEX

psysgrzpro Processing AU program for the z-gradient profile.

psysmodl1 Processing AU program for the - modulator linearity test -
shaped pulse modulator linearity test.

psysmultl1 Processing AU program for the amplitude linearity test (1dB
power level steps).

psysphas1st Processing AU program for the - phase stability test ("13
degree test") - shaped pulse phase stability test (16 usec
gaussian shape, "13 degree test").

psysphasf1 Processing AU program for the - phase propagation test -
phase shifting test.

psyspullin1 Processing AU program for the - amplitude linearity test -
shaped pulse amplitude linearity test (pulse length *2, power
level +6).

psysquadim Processing AU program for the quad image suppression test.

psysrgtest Processing AU program for the receiver gain test (analog
and digital).

psyssoftp1 Processing AU program for the shaped pulse comparison
(rectangular, gaussian, eburp1).

psystestab Automatic processing of a 2D Temperature stability experi-
ment, evaluation of temperature and statistic of temperature
stability. Can be used to process data obtained with the AU
program systestab.

psysturnon Processing AU program for the turn on test.

pulse Program to calculate attenuation value for given pulse length
or nutation frequency, or vice versa.

pulsecalib Offset/Pulsecalibration H2O/D2O and Offset/Pulsecalibra-
tion 13C, 15N probehead.

qnpset Define the QNP parameter according to the currently
defined probehead.

quadplot First plots a 2D overview spectrum and then the 4 quadrants
of the 2D spectrum.

queue Queue data acquisition.

queue_init Initialise data acquisition with the AU program queue.

154
DONE

INDEX

INDEX

queuerga Queue data acquisition.

r23mplot Read 2D slices from a 3D data set and plot them.

r23mult Repeatedly reads slices from a 3D data set (3rrr) into succes-
sive experiment numbers.

rampXY 3D gradient shimming with the BSMS RCB board.

remproc Automatic conversion and processing of data sets trans-
ferred via BRUKNET, LIGHTNET, NMR-LINK or TCP-
LINK.

repeat Repeat an acquisition with exactly the same parameters,
pulse program and other lists.

secplot Generate a section plot. The overview spectrum is plotted
together with a vertical expansion of a smaller part of the
spectrum on top of it.

selget Import a shaped pulse into the current dataset.

selput Export the current FID into a wave form file.

set2hdecgp Setup AU program for standard 3D parameter sets.

setccnh3dgp Setup AU program for standard 3D parameter sets.

setdiffparm Extracts diffusion sequence parameters and stores parame-
ters for "vargrad" simfit fitting (T1/T2) or DOSY process-
ing.

seteditedgp Setup AU program for standard 3D parameter sets.

sethccc3dgp Setup AU program for standard 3D parameter sets.

setpar3dgp Setup AU program for standard 3D parameter sets.

setproj Sets the edg projection parameters to appropriate values.

set_sreglist Set SREGLST parameter from NUC1 and SOLVENT.

shear Program for 2D MQ experiments on nuclei with odd half
integer spin for shearing the 2D spectrum after 2D FT.

showpp Start NMR-SIM pulse program display. This program is
used by the NMR guide&encyclopedia.

simplex AU program for autoshimming. It is suitable for adjustment
of strongly coupled shim groups which may be far from the
optimum position.

List of Bruker AU programs 155
DONE

INDEX

INDEX

simtoseq Converts data which have been recorded in digital and qsim
mode to data which appear to be acquired in qseq mode.

sinocal Calculates the signal to noise ratio.

split2D Splits a processed 2D file into single 1D spectra.

splitinvnoe Separate NOE and NONOE data obtained with a pulse pro-
gram like invinoef3gpsi.

splitser Splits a ser file into single fids, starting with the expno
which follows the ser file.

splitxf Separate and combine double half filtered data.

stack1d Generates a stacked plot of 1D spectra from increasing or
decreasing EXPNOs or PROCNOs.

stack2d Generate a 2D stack plot.

stackp1d Generates a stacked plot of 3 to 12 1D spectra from increas-
ing or decreasing EXPNOs or PROCNOs.

sti Displays the title of the current dataset in a window without
opening an editor (FAST!)

suppcal Calculates the width of the Water peak at 100% and 50% of
the DSS signal height. The result is referred to as the ’water
suppression test’.

sys180f1t1 Acquisition AU program for the 180 degree pulse calibra-
tion test with different phases.

sys180f1t2 Acquisition AU program for the 180 degree pulse calibra-
tion test with different flip angles.

sysamp1sp9 Acquisition AU program for the shaped pulse amplitude sta-
bility test.

sysamp1st Acquisition AU program for the amplitude stability tests -
with 30 degree pulse - with 90 degree pulse.

sysb1hom Acquisition AU program for the B1 homogeneity test.

sysb2hom Acquisition AU program for the B2 homogeneity test.

syscancel Acquisition AU program for the phase cycling cancellation
test.

sysdante1 Acquisition AU program for the dante type turn on test.

156
DONE

INDEX

INDEX

sysdecpro1 Acquisition AU program for the decoupler profile test.

sysexpro1 Acquisition AU program for the - excitation profile (16 usec
gauss shape) test - excitation profile (6 msec gauss shape)
test.

sysgenpar Preparation AU program for all HWT test programs.

sysglitch Acquisition AU program for the glitch test.

sysgrcan Acquisition AU program for the phase cycling cancellation
test after gradient pulse.

sysgrecho Acquisition AU program for the amplitude stability test after
gradient echo (5msec, 30 G/cm and 5msec, 10 G/cm).

sysgrreco1 Acquisition AU program for the gradient recovery test.

sysgrstab Acquisition AU program for the amplitude stability test after
gradient pulse (1msec, 10G/cm).

sysgrzpro Acquisition AU program for the z-gradient profile.

sysmodl1 Acquisition AU program for the modulator linearity test

sysmodls1 Acquisition AU program for the shaped pulse modulator lin-
earity test.

sysmultl1 Acquisition AU program for the amplitude linearity test
(1dB power level steps).

sysphas1sp Acquisition AU program for the shaped pulse phase stability
test (16 usec gaussian shape, "13 degree test").

sysphas1st Acquisition AU program for the phase stability test ("13
degree test").

sysphasf1 Acquisition AU program for the - phase propagation test -
phase shifting test.

syspullin1 Acquisition AU program for the amplitude linearity test
(pulse length *2, power level +6).

sysquadim Acquisition AU program for the quad image suppression
test.

sysrgtest Acquisition AU program for the receiver gain test (analog
and digital).

List of Bruker AU programs 157
DONE

INDEX

INDEX

syssoftp1 Acquisition AU program for the shaped pulse comparison
(rectangular, gaussian, eburp1).

syssplin1 Acquisition AU program for the shaped pulse amplitude lin-
earity test (pulse length *2, power level +6).

systestab AU program for a temperature stability experiment per-
formed as pseudo 2D experiment including evaluation of
temperature and statistics of temperature stability.

systurnon Acquisition AU program for the turn on test.

tecalib AU program to determine the temperature calibration curve.

testsuite Test the general functionality of an XWIN-NMR release
version. Basic functionality is given if this program is com-
pleted without error messages.

tmscal Performs a peak picking around the TMS signal. If the two
satellites from the 29Si - 1H coupling can be detected, the
resolution is OK.

tune Tune a probehead.

update_layout Sets the parameter 'LAYOUT' in all parameter sets.

update_aunmp Sets the parameter AUNMP in all parameter sets.

vtu_exam Example AU program which shows how to use low level
functions to read or write VTU (BVT1000/BDTC) parame-
ters.

writeshimZ Reads the on-axis shim values and writes a pseudo shim file.

xfshear Program for shearing of 2D MQMAS spectra of odd half
integer quadrupolar nuclei. Data need to be acquired in
States Mode

xwp_p1dlf Processing AU program for 1D spectra with additional low
field plot.AUTOPLOT (the automatic version of XWIN-
PLOT) is used instead of XWIN-NMR's plot.

xwp_p2dpl Processing AU program for 2D type spectra which don't
need a symmetrization. AUTOPLOT (the automatic version
*of XWIN-PLOT) is used instead of XWIN-NMR's plot.

158
DONE

INDEX

INDEX

xwp_pcpd135 Processing AU program for 13C CPD and DEPT135 spectra
which were acquired with the AU program au_zg135.
AUTOPLOT (the automatic version of XWIN-PLOT) is
used instead of XWIN-NMR's plot.

zeroim Zeroe the imaginary data of a 1D or 2D data set.

zg_2Hoffon General AU program for data acquisition. The lock is
switched off before the acquisition is started.

zgchkte Starts acquisition with zg and monitors the temperature. The
experiment is halted if the current temperature differs too
much from the target temperature.

zg_dfs Calculates shape file for double frequency sweep and subse-
quent data-acquisition.

2df1shift Shift a 2D spectrum along the F1 axis.

2dgetref Gets parameters for a 2D spectrum from the 1D reference
spectra : Nucleus, Frequencies, Spectral Width, and refer-
ence plot data set names. The F2 reference is taken from the
second dataset. The F1 reference is taken from the third
dataset.

2dshift Shift 2D time domain data left or right over NSP points.

2nde Set 2nd data set to new expno and 3rd data set equal to fore-
ground data set.

2ndn Set 2nd data set to new name and 3rd data set equal to fore-
ground data set.

XWIN-NMR parameter types 159
DONE

INDEX

INDEX

Chapter 13

XWIN-NMR parameter types

This chapter contains a list of all XWIN-NMR parameters grouped by their type. The
type of a parameter can be integer, float, double or character-string. Several AU
macros read XWIN-NMR parameters into AU variables or store the value of AU
variables into XWIN-NMR parameters. In both cases it is important that the type of
the AU variable is the same as the parameter type.

160
DONE

INDEX

INDEX

13.1 Integer parameters

The following XWIN-NMR parameters are of the type integer:

ABSG AQORDER AQSEQ AQ_mod

BC_mod BYTORDA BYTORDP DATMOD

DIGMOD DIGTYP DS EXPNO2

EXPNO3 FL1 FL2 FL3

FL4 FnMODE FS[8] FT_mod

HL1 HL2 HL3 HL4

HGAIN[4] HOLDER HPMOD[8] HPPRGN

INTBC L[32] LOCSHFT LPBIN

MC2 ME_mod NBL NC

NCOEF NC_proc NLEV NS

NSP NTH_PI NZP OVERFLW

PAPS PARMODE PHP PH_mod

PKNL POWMOD PPARMOD PR

PRGAIN PSCAL PSIGN PROCNO2

PROCNO3 QNP REVERSE RO

RSEL[10] S[8] SEOUT SI

STSI STSR SURQMSG SYMM

TD TD0 TDeff TDoff

TILT TUNHIN TUNHOUT TUNXOUT

WBST WDW XDIM XGAIN[4]

XL YL YMAX_a YMAX_p

YMIN_a YMIN_p

XWIN-NMR parameter types 161
DONE

INDEX

INDEX

13.2 Float parameters

The following XWIN-NMR parameters are of the type float:

ABSF1 ABSF2 ABSL ALPHA

ASSFAC ASSFACI ASSFACX ASSWID

AZFE AZFW BCFW CNST[32]

DBL[8] DBPOAL[8] DBPOFFS[8] DBP[8]

DC DE DL[8] DPOAL[8]

DPOFFS[8] DP[8] D[32] FCOR

FOV FW GAMMA GB

GPX[32] GPY[32] GPZ[32] INTSCL

ISEN LB LEV0 LOCPHAS

MASR MAXI MI NOISF1

NOISF2 OFFSET PC PCPD[10]

PHC0 PHC1 PHCOR[32] PH_ref

PL[32] P[32] RECPH RG

SIGF1 SIGF2 SINO SPOAL[32]

SPOFFS[32] SP[32] SSB S_DEV

TE TE2 TL[8] TM1

TM2 TOPLEV TPOAL[8] TPOFFS[8]

TP[8] V9 VD ZL1

ZL2 ZL3 ZL4

162
DONE

INDEX

INDEX

13.3 Double parameters

The following XWIN-NMR parameters are of the type double:

BF1 BF2 BF3 BF4

BF5 BF6 BF7 BF8

COROFFS CY F1P F2P

INP[32] IN[32] LFILTER LGAIN

LOCKPOW LTIME O1 O2

O3 O4 O5 O6

O7 O8 SF SFO1

SFO2 SFO3 SFO4 SFO5

SFO6 SFO7 SFO8 SW

WBSW

XWIN-NMR parameter types 163
DONE

INDEX

INDEX

13.4 Character-string parameters

The following XWIN-NMR are of the type character-string:

AUNM[16] AUNMP[16] CPDPRG[16] CPDPRGB[16]

CPDPRGT[16] CUREXP[32] CURPLOT[80] CURPRIN[80]

DBPNAM0[16] DECBNUC[8] DECNUC[8] DFILT[16]

DFORMAT[16] DPNAME0[16] DSLIST[16] DU[256]

DU2[256] DU3[256] EXP[32] F1LIST[16]

F2LIST[16] F3LIST[16] FQ1LIST[16] GPNAM0[64]

GRDPROG[16] INSTRUM[16] LAYOUT[256] LFORMAT[16]

LOCNUC[8] MASRLST[16] NAME[64] NUC1[8]

NUCLEUS[8] PFORMAT[16] PROBHD[64] PULPROG[16]

SOLVENT[32] SPNAM0[64] SREGLST[40] TI[72]

TPNAME0[16] TYPE[16] USER[64] USERA1[80]

USERP1[80] VCLIST[16] VDLIST[16] VPLIST[16]

VTLIST[16]

164
DONE

INDEX

INDEX

Index
A

ABORT 43
ABS 31
ABS1 35
ABS2 35
ABSD 31
ABSD1 35
ABSD2 35
ABSF 31
ABSF1 31
ABSF2 31
ABSOT1 35
ABSOT2 35
ABST1 35
ABST2 35
ADD 33, 56
ADD_CURDAT_TO_PORTFOLIO 41, 106
ADD_TO_PORTFOLIO 41, 107
ADD2D 35
ADDC 33
addfid command 96
AND 33
APK 31, 63
APK0 31
APK1 31
APKF 31
APKS 31
Aspect 2000/3000 dataset 85
AT 33
AU macro 5
aucmd.h 16, 18
Automatic baseline correction 39
AUTOPLOT 40, 102
autoplot command 104
AUTOPLOT_TO_FILE 41, 103
AUTOPLOT_WITH_PORTFOLIO 41, 109
AUTOPLOT_WITH_PORTFOLIO_TO_FILE 41,

110
autoshimming 29

B

base_info file 33
baslpnts file 33
BAYED 34
BAYEDX 34
Bayesian calculation 34
BAYX 34
BC 31
BCM1 35
BCM2 35
brukdef.h 18
Bruker library functions 9
BSMS 29

C

CalcExpTime function 53, 118
cc compiler 16
C-code 16
character string parameters 163
check_pwd function 119
CLOSE_PORTFOLIO 41, 108
CMPL 33
column of a 2D spectrum 71, 75
compileall command 7
compiling AU programs 7
constants 16
control statements 15
CONV 41, 85
CONVCP 41, 85
CONVDTA 31
cplbruk command 7
cpluser command 7
CPR_exec 15, 42, 46, 47, 53
CREATE_PORTFOLIO 41, 105

D

DAT1 34
I-165

I-166
DONE

INDEX

INDEX

DAT2 34
DATASET 25, 52, 53, 55, 64
DATASET2 25, 56
DATASET3 25, 56
DDATASETLIST 25
DECLARE_PORTFOLIO 41, 104
define statements 13, 16
DEG90 28
DELPAR 27
DEXPNO 25, 54, 59
dircp function 127
dircp_err function 127
disk unit 85
DIV 33
dpa command 92
DPARSETLIST 27
DPROCNO 25, 62
DPULPROGLIST 28
DT 33
DU 25
DVTLIST 30

E

eda command 42, 90, 92, 98, 99
edau command 7, 8, 10
edc2 command 25, 107
eddosy command 27
edg command 39, 98, 99
edgw command 39
edgx command 39
edhead command 124
edit mode 8
edlock command 29
edmac command 9
edmisc command 34
edo command 90, 98, 99
edp command 42, 90
EF 31
EFP 31, 57
EJ 29
EM 31
enhanced metafile 103, 110
erropt.h 18
ERRORABORT 43
Executing AU programs 8

expinstall command 6, 7

F

F1DISCO 37
F1PROJN 37
F1PROJP 37
F1SUM 37
F2DISCO 37
F2PROJN 37
F2PROJP 38
F2SUM 37
fcntl.h 18
FETCHDOSYPAR 27
FETCHPAR 26, 90
FETCHPAR1 26, 90
FETCHPAR1S 26
FETCHPAR3 26, 90
FETCHPAR3S 26
FETCHPARM 27, 90
FETCHPARS 26, 92
FETCHPARS1 92
FETCHPARS3 92
FETCHPLPAR 27, 90
FETCHPLWPAR 27, 90
FETCHPLXPAR 27, 90
fetchstorpl function 128
FETCHT1PAR 27, 90
fidtoser AU program 79
FILT 33
first order phase correction 31
float parameters 161
FLPLOT 39
FMC 31
FP 32
freedir function 122
FROMJDX 41, 84
FT 32, 63
ft command 9

G

Gaussian deconvolution 34
Gaussian window multiplication 32
gcc compiler 16
GDATASETLIST 25
GDCON 34

I-167
DONE

INDEX

INDEX

GENFID 32
GENSER 37
GETCURDATA 19, 24, 52
GETCURDATA2 25
GETCURDATA3 25
GETDATASET 24, 57
getdir function 120
GETDOUBLE 26, 113
GETFLOAT 26, 93, 113
gethighest function 130
GETHPCU 31
GETINT 26, 112
GETLCOSY 40
GETLIM 40
GETLINV 40
GETLJRES 40
GETLXHCO 40
GetNmrSuperUser function 119
getstan function 131
GETSTRING 26, 115
getxwinvers function 132
GF 32
GFP 32
GLIST 25
GM 32
GO 28
GPARSETLIST 27
GPULPROGLIST 28
GVTLIST 30

H

header files 18
Hilbert Transform 32, 36
HPCU parameters 31
HT 32

I

IDATASETLIST 20, 25
IEXPNO 25, 47, 52, 54, 58, 64
IFEODATASETLIST 25
IFEOPARSETLIST 28
IFEOPULPROGLIST 28
IFT 32
II 28
IJ 29

ILOOPCOUNTLIST 20
inc directory 16
include statements 13, 14, 16
integer parameters 160
intrng file 33, 115
Inverse Fourier Transform 32

2D 36
INVSF 35
IPARSETLIST 20, 27
IPROCNO 25, 52, 61
IPULPROGLIST 20, 28
IVTLIST 20, 30

J

jaz drive 68
JCAMP-DX file 41, 84
JCAMP-DX format 33, 82
JCONV 42
Jeol dataset 42, 88

L

lastparflag variable 11
LDCON 34
LEVCALC 35
LFILTER 29
LG 29
LGAIN 29
LI 33, 115
LIBAY 34
libcb.h 18
limits.h 18
LIPP 33
LIPPF 33
listall_au AU program 8
LO 29
LOCK 29
lock power 29
LOCKPLOTS 40
LOCNUC 29
loop gain 29
loop statements 15
loop structures 13
loop time 29
loopcount1 variable 11
loopcount2 variable 11

I-168
DONE

INDEX

INDEX

LOPO 29
LS 33
LTIME 29

M

Magnitude calculation 32
MAKE_ZERO_FID 28
makeau file 16
MAS unit 30
MASE 30
MASG 31
MASH 31
MASI 30
MASR 30
MASRGET 31
math.h 18
MC 32
MDCON 34
mkudir function 133
MUL 33, 56
MULC 33
multi_integ AU program 131
multiexpt AU program 118
multizg AU program 53

N

NM 33
NMRQUANT 33
NZP 34

P

p_1d AU program 6
parameter type 159
PARSETTYP 19, 27
PathXWinNMR function 131, 134
PD 34
PD0 34
peaklist file 33
PF 34
PFT2 34
phase correction first order 31
phase correction zero order 31
PHC0 31
PHC1 31
PK 32

plane from 3D raw data 80
PLOT 39
plot_to_file AU program 6
PLOTS 39
PLOTW 39
PLOTX 39
portfolio of XWIN-PLOT 104, 105, 106, 107, 108,

109, 110
postscript file 6, 103, 110
pow_next function 135
Power spectrum 36
POWMOD 31
PP 32
PPH 32
PPP 32
ppp command 34
predefined dedicated variables 10
predefined general variables 10
PrintExpTime function 53, 118
proc_1d AU program 5, 102
Proc_err function 13, 136
processed data 66, 67, 68
PROJ 38
PS 32
PTILT 35
PTILT1 35

Q

QSIN 32
quick reference 6
QUIT 44
QUITMSG 44

R

R12 39
R13 39
R23 39
RACKPOW 31
raw data 66, 68
RDATASETLIST 25
reg file 33
relaxation analysis 34
remproc AU program 85
REV1 35
REV2 35

I-169
DONE

INDEX

INDEX

REXPNO 25, 60
RGA 28
RHNP 38
RHPP 38
RLUT 33
RMISC 33, 115
RMPLOT 40
ROT 29
rotation 29
ROTOFF 29
row of 2D raw data 76, 78
row of a 2D spectrum 70, 73
RPAR 27, 98
RPARSETLIST 27
RPROCNO 25, 63
RPULPROGLIST 20, 28
RS 34
RSC 38, 71
RSER 38, 76
RSER2D 80
rser2d command 6
RSH 29
RSR 38, 70
RV 34
RVNP 38
RVPP 38
RVTLIST 20, 30

S

SAB 32
sample.h 18
second AU dataset 56
SETCURDATA 24, 52, 53, 54
SETDATASET 25
SETHPCU 31
SETPARSET 19, 27, 28
SETPULPROG 28
SETSH 29
SETUSER 25
Show_status function 138
showfile function 139
Sine window multiplication 32
SINM 32
SINO 32
SOLVENT 29

Spline baseline correction 32
splitser AU program 77
SREF 32
ssleep function 140
stack plot 39
stdio.h 17, 18
stdlib.h 17, 18
STOP 44
STOPMSG 44
STOREDOSYPAR 27
STOREPAR 26, 94
STOREPAR1 26, 94
STOREPAR1S 26, 96
STOREPAR3 26, 94
STOREPAR3S 27, 96
STOREPARM 27, 94
STOREPARS 26, 96
STOREPLPAR 27, 94
STOREPLWPAR 27, 94
STOREPLXPAR 27, 94
STORET1PAR 27, 94
strcpy C-function 55
string.h 18
SUB1 36
SUB1D1 36
SUB1D2 36
SUB2 36
subroutines 10, 11
Suspend plot 39
SYM 36
SYMA 36
SYMJ 36

T

T1 value 34
T2 value 34
TABS1 39
TABS2 39
TABS3 39
Tcl/Tk scripts 5
TE2GET 30
TE2READY 30
TE2SET 30
TEGET 30
temperature unit 30

I-170
DONE

INDEX

INDEX

TEPAR 30
TEREADY 30
TESET 30
TF1 39
TF1P 39
TF2 39
TF2P 39
TF3 39
TF3P 39
third AU dataset 56
TILT 36
TIMES2 19
TIMES3 19
TIMESLIST 20
TM 32
TOJDX 41, 82
Trapezoidal baseline correction 35
Trapezoidal window multiplication 32
TRF 32
TUNE 29
TUNESX 29

U

uni.h 18
unistd.h 18
unlinkpr function 141
UNLOCKPLOTS 40
USECURPARS 19
USELASTPARS 19
user defined variables 10, 11
util.h 18
UWM 32
uxselect function 123

V

variable assignments 13
variable declarations 13
Varian dataset 42, 87
VCONV 42, 87
VIBAY 34
view mode 8
VIEWDATA 26, 59, 62, 64
viewing AU programs 8
vorspann file 16
VT 30

VTLIST 30

W

WAIT_UNTIL 42, 49
white washed stack plot 39
WMISC 33
WPAR 27, 99
WRA 25, 66
WRP 25, 67
WRPA 26, 68
WSC 38, 75
wsc command 6
WSER 38, 78
WSERP 38
WSH 29
WSR 73
wsr command 6

X

XAU 42
xau command 7, 8
XAUA 42
XAUP 42
XAUPW 42, 86
XCMD 42, 48
XF1 36
XF1M 36
XF1P 36
XF1PS 36
XF2 36
XF2M 36
XF2P 36
XF2PS 36
XFB 36
XFBM 36
XFBP 36
XFBPS 36
XHT1 36
XHT2 36
XIF1 36
XIF2 36
XMAC 42
xmac command 9
XTRF 36
XTRF2 37

I-171
DONE

INDEX

INDEX

XTRFP 37
XTRFP1 37
XTRFP2 37
XWP_LP 40
XWP_PP 40

Z

zero order phase correction 31
ZERT1 37
ZERT2 37
ZF 34
ZG 28
zg command 9
ZP 34
ZSPOIL 29

I-172
DONE

INDEX

INDEX

	Chapter 1
	Introduction
	1.1 What are AU programs?
	1.2 What is new in Xwin-nmr 3.1
	1.3 Quick reference to using AU programs
	1.4 Installing and compiling AU programs
	1.5 Executing AU programs
	1.6 Viewing AU programs
	1.7 About AU macros
	1.8 About Bruker library functions
	1.9 Creating your own AU programs
	1.9.1 Writing a simple AU program
	1.9.2 Using variables
	1.9.3 Using AU macros with arguments
	1.9.4 Using C-language statements
	1.9.5 Additional hints on C-statements
	1.9.6 Viewing Bruker standard AU programs for macro syntax

	1.10 How an AU program is translated into C-code
	1.11 Listing of all predefined C statements
	1.11.1 Including header files
	1.11.2 Predefined dedicated variables
	1.11.3 Predefined general variables

	Chapter 2
	Inventory of AU macros and Bruker library functions
	2.1 Naming conventions
	2.2 Macros for dataset handling
	2.3 Macros prompting the user for input
	2.4 Macros handling Xwin-nmr parameters
	2.5 Acquisition macros
	2.6 Macros handling the shim unit and the sample changer
	2.7 Macros handling the temperature unit
	2.8 Macros handling the MAS and HPCU unit
	2.9 1D processing macros
	2.10 Peak picking, integration and miscellaneous macros
	2.11 Macros for algebraic operations on datasets
	2.12 Bayes, deconvolution and T1/T2 macros
	2.13 2D processing macros
	2.14 Macros reading and writing projections etc.
	2.15 3D processing macros
	2.16 Xwin-nmr plotting macros
	2.17 Xwin-plot related macros
	2.18 Macros converting datasets from Aspect 2000/3000 and other vendors
	2.19 Macros to execute other AU programs, Xwin-nmr macros or commands
	2.20 Bruker library functions
	2.21 Macros to return from an AU program

	Chapter 3
	General AU macros
	CPR_exec
	XCMD
	WAIT_UNTIL

	Chapter 4
	Macros changing the current AU dataset
	GETCURDATA
	SETCURDATA
	DATASET
	DATASET2/DATASET3
	GETDATASET
	IEXPNO
	DEXPNO
	REXPNO
	IPROCNO
	DPROCNO
	RPROCNO
	VIEWDATA

	Chapter 5
	Macros copying datasets
	WRA
	WRP
	WRPA

	Chapter 6
	Macros handling rows/columns
	RSR
	RSC
	WSR
	WSC
	RSER
	WSER
	RSER2D

	Chapter 7
	Macros converting datasets
	TOJDX
	FROMJDX
	CONV/CONVCP
	VCONV
	JCONV

	Chapter 8
	Macros handling Xwin-nmr parameters
	FETCHPAR
	FETCHPARS
	STOREPAR
	STOREPARS
	RPAR
	WPAR

	Chapter 9
	Macros for Xwin-plot/autoplot
	AUTOPLOT
	AUTOPLOT_TO_FILE
	DECLARE_PORTFOLIO
	CREATE_PORTFOLIO
	ADD_CURDAT_TO_PORTFOLIO
	ADD_TO_PORTFOLIO
	CLOSE_PORTFOLIO
	AUTOPLOT_WITH_PORTFOLIO
	AUTOPLOT_WITH_PORTFOLIO_TO_FILE

	Chapter 10
	Macros prompting the user for input.
	GETINT
	GETFLOAT/GETDOUBLE
	GETSTRING

	Chapter 11
	Bruker library functions
	CALCEXPTIME/PRINTEXPTIME
	CHECK_PWD, GETNMRSUPERUSER
	GETDIR
	FREEDIR
	UXSELECT
	DIRCP
	FETCHSTORPL
	GETHIGHEST
	GETSTAN
	GETXWINVERS
	MKUDIR
	PathXWinNMR
	POW_NEXT
	PROC_ERR
	SHOW_STATUS
	SHOWFILE
	SSLEEP
	UNLINKPR

	Chapter 12
	List of Bruker AU programs
	12.1 Short description of all Bruker AU programs

	Chapter 13
	Xwin-nmr parameter types
	13.1 Integer parameters
	13.2 Float parameters
	13.3 Double parameters
	13.4 Character-string parameters

