VnmrdJ User
Programming

Varian, Inc. Inova and MercuryPlus NMR Systems
With VnmrJ 2.2MI Software

Pub. No. 01-999379-00, Rev. A 0708

NOTICE: This document contains references to Varian.
Please note that Varian, Inc. is now part of Agilent
Technologies. For more information, go to
www.agilent.com/chem.

Agilent Technologies

cc
Temp Agilent

VnmrdJ User
Programming

Varian, Inc. Inova and MercuryPlus NMR Systems
With VnmrJ 2.2MI Software

Pub. No. 01-999379-00, Rev. A 0708

VARIAN

VnmrJ User Programming

Varian, Inc. Inovaand MercuryPlus NMR Systems
With VnmrJ 2.2M| Software

Pub. No. 01-999379-00, Rev. A 0708

Revision history
A Draft A 051908 Initial release for VnmrJ 2.2MlI

Applicability of manual:
Varian, Inc. Inovaand Mercury-vx and Mercury-plus NMR spectrometer systems with
VnmrJ 2.2M| software installed.

Technical contributors: Dan Iverson, Boban John, Frits Vosman, Hung Lin, Debbie
Mattiello, George Gray.

Technical writer and editor: Everett Schreiber

Copyright ©2008 by Varian, Inc.

3120 Hansen Way, Palo Alto, California 94304
www.varianinc.com

1-800-356-4437

All rights reserved. Printed in the United States.

The information in this document has been carefully checked and is believed to be
entirely reliable. However, no responsibility isassumed for inaccuracies. Statementsin
this document are not intended to create any warranty, expressed or implied.
Specifications and performance characteristics of the software described in this manual
may be changed at any time without notice. Varian reserves the right to make changesin
any products herein to improve reliability, function, or design. Varian does not assume
any liability arising out of the application or use of any product or circuit described
herein; neither doesit convey any license under its patent rights nor the rights of others.
Inclusion in this document does not imply that any particular feature is standard on the
instrument.

UNITYINOVA, MERCURY-VX, MERCURY-PLUS, MERCURY, Varian, Inc. NMR
Spectrometer Systems, VnmrJ, VNMR, MAGICAL |1, Magnex, AutoLock, AutoShim,
AutoPhase, imNET, ASM, and SM S areregistered trademarks or trademarks of Varian,
Inc.

Déll, the Dell logo, OptiPlex, Precision, Dimension, Inspiron and Axim are registered
trademarks or trademarks of Dell Computer Corporation. Red Hat is aregistered
trademark of Red Hat, Inc. Linux is aregistered trademark of Linus Torvaldsin the
United States and in other countries. Ethernet is a registered trademark of Xerox
Corporation. VXWORKS and VXWORKS POWERED are registered trademarks of
WindRiver Inc. Other product names in this document are registered trademarks or
trademarks of their respective holders.

http://www.varianinc.com
http://www.varianinc.com

Overview of Contents

INTFOAUCTION ettt e e e e et e e e e e e e e e e e e e e e e e as 21
Chapter 1. MAGICAL I Programming.......ccceeeeieieeeeeieiiiiiieeeseeee e e eee e 23
Chapter 2. Pulse Sequence Programmingccccccieiiiiiieeeeeeeiiiiiieseneeeeeeeeinenn 51
Chapter 3. Pulse Sequence Statement Reference.........ccccceevvviviiiiinieeeeeennns 133
Chapter 4. Linux Level Programming.....cccccoooeieieieiiieiiiiiineeneeeeeeeeiiinan e 267
Chapter 5. Parameters and Data.........cccccvciiiiiiii e 273
Chapter 6. Panels, Toolbars, and MenuUScccccvviiiiiii e e 301
T aTe 1= TR 339

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 3

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Table of Contents

Introduction 21

Chapter 1. MAGICAL I Programming.......ccceeeeieieeeeiieiiiiniee e e ee e e s neeee e 23
1.1 WOrKiNg With IMBCIOS cueieieiieiie ettt e e s eenee s 23
AT LT a0 = W1l TSRS 24
EXECULING @MBEIO ..vviiiiiieciie st stere e st e sr s e sae e e sase e sr e sne s sreessaesane 24
Transferring Macro OUIPULecceeeiveeriueeniersieeseessees e ssseessesssesssesseessressssssnne 26
Loading MacroS intO MEMOIY ...cccueeveerieeinesiiessiesssessveessaeessessseesssssnsessesssessnne 26
1.2 Programming With MAGICAL ..ot s e 27
TOKENS ettt et e e e e s 28
VariaDlE TYPES ..ttt s s s e e sae st s e e a e se e sreeeeesane 31
ATTAYS ciitiiieesiesiteeste s st s e s e s essa e e ss e e e e sae s aeesabe e seee st e sae e ate s seeeaeesreesreennteaann 32
EXPrESSIONS ..viiieeiciieierrieesttesiesstaessees e e s saessaessabesssaeseessae e sessaseessaesnessrnasssesnns 34
[NPUL ATQUIMENES .iveeieiieesttesesseeesseeseessaessaessasesssessanessas e sessnseesssssnsessunssssesnne 35
Name REPIBCEMENToiviiicie i s e srr e e e sae e 36
Conditional StAtEMENLScccevviriieerriirrree e e e 36
LOOPS ciieeieieiittssieee st te et sbe e ss e s e s srae s st s e e s sae st shbe et e sae e sae e e s beeeraesreesreeenaeaane 37
Macro Length and TErmMiNatioNccccvcveeereiiiniennreesrees e esses e essessseessessssesnne 38
Command and MaCro TraCING ...cueeceevveeereeiieerieeneesiessrsesssesseesssesssesssssssssssnees 38
1.3 Relevant VNMrJ COMMANGSc..ooovieieiiieie e e s s 38
Spectral ANalYSISTOOIS ..cccciiieerie ettt s s s sr e en 39
dres Measure linewidth and digital resolution 39
dsn Measure Signal-to-NOISecceveerrernerere e 39
dsnmax Calculate maximum signal-to-Noisecccoevrereeene. 39
getll Get line frequency and intensity from linelist 39
getreg Get frequency limits of a specified region 39
integ Find largest integral in specified regionc.ccce..... 39
mark Determine intensity of the spectrum at apoint 40
nll Find line frequencies and intensitiescccccceveee 40
numreg Return the number of regionsin a spectrum 40
peak Find tallest peak in specified regioncccoceevveeene. 40
select Select spectrum or 2D plane without displaying it 40
INPUL/OULPUL TOOIS ..vviiiirieereiecieeceresseesese e sres e s s e se e s sre e essaneessaesnessrnasseesnne 40
apa Plot parameters automaticallyc.ccoceevveiivcinncnnne 40
banner Display message with large charactersccccueeeee. 40
clear Clear AaWINAOWcocvevieeiieiiieiiee e 41
echo Display strings and parameter valuesin text window 41
format Format areal number or convert astring for output .. 41
input Receive input from keyboardccoccoveincincenne, 41
lookup Look up and return words and lines from text file 41
nrecords Determine number of linesin afile ..o 41
psgset Set up parameters for various pulse sequences 41
write Write output to various deviCescecvveeenerenennns 42
Regression and CUurve FIttiNg ..ccccecceicieerne s svees e sssessseesssssseessessssesnne 42

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 5

analyze Generdized curve fittingcoccovveevrerne s 42

autoscale Resume autoscaling after limits set by scalelimits 42
expfit Least-squaresfit to exponential or polynomial curve 42
expl Display exponential or polynomial curves 42
pexpl Plot exponential or polynomial Curvescc.cc...... 42
polyo0 Display mean of the datain the file regression.inp 42
rinput Input datafor aregression analysisc.cccvevrveenne. 42
scalelimits Set limits for scalesin regressioncocceveeveevneene 43
Mathematical FUNCLIONSc.ceviiririieie et s s 43
abs Find absolute value of anumber ..., 43
acos Find arc cosine of anumber ..o, 43
asin Find arc sine of anumbercccoevicincincincee, 43
atan Find arc tangent of anumberccccoovevncincinene 43
atan2 Find arc tangent of two nUMbErscccevrevrcennn. 43
averag Calculate average and standard deviation of input 43
cos Find cosinevalue of ananglecccoevreincenncenne. 43
exp Find exponentia value of anumber ..., 43
1n Find natural logarithm of anumberc.cocceeeee. 44
sin Find sinevalueof ananglecccevvvvnvinceincenne. 44
tan Find tangent value of anangleccoccoveincnnicennne, 44
Creating, Modifying, and Displaying MaCroScccceevvuerveenivenssiesssessvesssessens 44
crcom Create auser macro without using a text editor 44
delcom Delete aUuSEr MACTOcceuveviiceieceieeee e 44
hidecommand Execute macro instead of command with samename 44
macrocat Display auser macro on the text window 44
macrocp Copy auser macro file ... 44
macrodir LiSt USEr MACIOScvveeeeeece ettt 45
macroedit Edit a user macro with user-selectable editor 45
macrold Load amacro into MEMOrYccceeerveeenieeerieeiieeenens 45
macrorm Remove auser Macrocccceeiiiiiinieiiiisces s 45
macrosyscat Display a system macro on the text window 45
macrosyscp Copy a system macro to become a user macro 45
macrosysdir List SyStemM MaCrOScccovvviiieieeiiieeiee e 45
macrosysrm Remove a system mMacroccccceerieiicieciiciene 45
macrovi Edit auser macro with vi text editorc.ccceeeeenee. 45
mstat Display memory usage StatistiCsccovveerieevrieennne. 45
purge Remove amacro from memoryccccceceeeeeeeennenne 46
record Record keyboard entriesasamacrocccceeeveeennne 46
MiSCElaNEOUS TOOIS ..ccuvieiiireiiirtr et s 46
axis Provide axis|abels and scaling factorscc.c.... 46
beepoff Turn beeper off ..o 46
beepon TUN DEEPES ON .o 46
bootup Macro executed automatically when VnmrJis started 46
exec Execute aVnmrd commandcccevvveeerieinieeineeennnn 46
exists Determine if a parameter, file, or macro exists 46
focus Send keyboard focusto VNMR input window 47
gap Find gap in the current SPECLrUMcccooevveevricennne. 47
getfile Get information about directories and files 47
graphis Return the current graphics display status 47
length Determine length of astringccocovvevreinicinceene. 47
listenoff Disable receipt of messages from send2Vnmr 47
listenon Enable receipt of messages from send2Vnmr 47
login User macro executed when VnmrJ activated 48

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

of £ Make a parameter iNactiveccccovevneinceisieeennns 48

on Make a parameter active or test its statec.cceuee.ee. 48

readlk Read current lock level ... 48

rtv Retrieve individual parametersccoveereevnieennnn. 48

shell Start aUNIX shell ..o 48

solppm Return ppm and peak width of solvent resonances 48

substr Select asubstring from astringc.ccocoevvennennene 49

textis Return the current text display Statusc.ccceeveeenee. 49

unit Define conversion UNitsccoceeveeereseeneceienenenns 49

Chapter 2. Pulse Sequence Programmingcccccueeemeeeiemmieemeemeenneeeneneeeeneee. 51
2.1 Application Type and Execpars Programimingc..cccoeeeeeeeeieeeneseene s sreeenens 51
20 0111/ 01 TSROSO 52

EXECPAN PAr@MELENSooiiieiee ettt st s e e e s ene s 52

Protocol Programming ...c..cooeeoceeeeereeeeeeesesse s seeseeesee e e ese e e sesne s sesseseesean 54

2.2 Overview of Pulse Sequence Programmingccoccoeoeereeeereerineeemneesesieseeseeseieeeees 55
Spectrometer DIffErenNCES ...coouioiierieee ettt s e 55

Pulse Sequence Generation DIFECIONYoceceeveeeireenesee sttt se e e 55
Compiling the New PUlISE SEQUENCEccccoireirieie ettt s 56
Troubleshooting the New PulsSe SEQUENCEccooireeecirnerreeeeee e 57
Creating a Parameter Table for Pulse Sequence Object Codecocovereneeneenne 58

C Framework for PUISE SEQUENCESccorreeririeree ettt e 58

IMPLICIE ACQUISTTION ettt et st ettt e s e e e 60
ACQUISITION SEALUS COUES ...veeneie ettt st ettt ee e e 60

2.3 SPECtrOMELEr CONIOLouiieieieeie ettt er e er e enea 60
Creating @ TIME DElAYoceeeieie ettt ettt s e 61

Pulsing the Observe TranSMIttercccooeorereriee et s e 62

Pulsing a Non-Observe TranSMIttercoceceeeeeriere et e s e 64

Pulsing Channels SImultan@oUSY cocceeeirvirie it e 65

Setting Transmitter Quadrature Phase ShiftSc.cccovereieienrreeeee e 67

Setting Small-Angle Phase ShiftScooiviiriniee e 67
Controlling the OffSEt FIEQUENCY cevruerrtrie e seee ettt e 69
Controlling Observe and Decoupler Transmitter POWErcccoceeevenieneneenenne 70

SEALUS BNA GELING ...eeeeeieeeererieiereeseeereesseeeese e et e e st ese e e seessesseesseensesaeeanannean 73
Interfacing to EXternal USEr DEVICES covciceereerierreersee e ceree e et e sne e sae e 75

2.4 Pulse Sequence Statements: Phase and Sequence Controlccoceeeeevereiiicnieennns 76
Real-Time Variables and CONSIANTScceeeeeeriieiieeie et ee e e e e 77
Calculating in Real-Time Using Integer MathematiCsccccoeeveeierveesienseeneenne 78
Controlling a Sequence Using Real-Time Variablescoceeoeiieicenceiccnieeneene 79
Real-Time vs. Run-Time—When Do Things Happen?ccocceveeveneeneenenenes 80
Manipulating AcquiSItion VariableSccoeireririenirie e 80
Intertransient and Interincrement DElAYScoceecerernnreineese e e e 8l
Controlling Pulse Sequence Graphical Display cccceeeeeeieieeiesieeeeseeeeneee 82

2.5 Real-TIME AP TaDIESo ottt e e en s 83
Loading AP Table Statements from Linux Text FileScccooerveninnnnenennnne. 83

Table Names and STAIEMENEScceeeeeieiie ettt se e e sae s 84

AP Table NOEBLION ...eeee ettt ettt et e e et eese et se e ene e e e 84
Handling AP TaIES ...ttt ettt et se e e e 85

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 7

Examples of USINg AP TaDIESeo ettt e 87

Using Interna Phase TabIESooooeeieiiieiee ettt s e 87
2.6 ACCESSING PArGIMELErSecviiciiiet ettt 89
Categories Of Parameterscoocoeriere et sttt e e 89
Looking Up Parameter VAIUEScoccecrieieeceee et sttt se e e 96
Using Parameters in @ PUlSE SEQUENCEccovereieireeie ettt e s 96
2.7 Using Interactive Parameter AdjUSIMENTocoeiiiiiiiiiicie e 98
GENENal ROULINESoieiieieeieie ettt et st st et e e e e e e e ne 98
GENENIC PUISE ROULINEG ..ottt ettt ettt et e et s e 100
Frequency OffSet SUDFOULINEcc.ooeieiiiiieeee ettt 101
Generic Delay ROULINE ..ottt ettt e 102
Fine POWEr SUDIOULINE ..c..oiuieeieie ettt ettt es e e 103
2.8 Hardware Looping and EXplicit ACQUISITIONc..ociieireie e 103
Controlling Hardware LOOPING .c.ceeceeeeerreerereereesieieseereeieessee e seeses e s saeseeneas 104
Number of Eventsin Hardwar€ LOOPSccoceeeerereerieneneereeinie e 104
EXPlICIT ACQUISITION ..ttt et ettt es e e 105
Receiver Phase For EXplicit ACQUISITIONS ..coccioireereere et 107
Multiple FID ACQUISITION ..eiieeeie ettt ettt et es e e 107
2.9 Pulse Sequence SYNChIrONIZELONoccoveirieieee et 108
EXtErnal TIME BASE ..c.cecieieeeeeieie ettt et e se ettt e es e e e 108
Controlling Rotor Synchronizationcceee e seeneeneee e seeeas 108
2.10 PUISE SNADING -.eiieiieierie ettt et e e e e e 108
Fil@ SPECITICALIONS ceieeieceee ettt sttt ettt ees e sr e ene e seesaneaneeae s 109
Performing Shaped PUISEScoieiiiiiiiinie e s ese e srae s 112
Programmable Transmitter CONtrolcccccceviveevreciveenieenee e seeesseeseesseesees 114
Setting Spin Lock Waveform Controlcocoeeeeeeseeee e 115
Shaped Pulse CaliDrationcccoceeirenenie et ese e sre s 115
2.11 Shaped Pulses USING ATENUALOISoeiieriieiieiiee e 116
AP BusDelay CONSLANLSccccvvveerveiiiniiecieissesesresseessesssesseessrsessesssesssessnees 117
Controlling Shaped Pulses UsSiNg AttENUELOISccecceevreerveenieesseesiessvvessennnne 117
ControlliNg ATENUALTONccceee e ettt ere e e e et ese e e e nes 118
2.12 Internal Hardware DElAYSccooiiiiiiiiciiiee e e e 119
Delaysfrom Changing AteNUALIONceeceeeeerierieereeeeeee et se e s eee e 119
Delaysfrom Changing SEAtUScceceeeeeireeeiee e et et se s e seeeseesne e e 120
Waveform Generator High-Speed Line THQQeEr .coccveveevveenvveeeseeeseeneessee e 121
2.13 Indirect Detection on Fixed-Frequency Channel ..o 122
Fixed-Frequency DECOUPIEr ..o iveiieeeceirieene s e eesees e s sessessnsessneenns 122
2.14 Multidimensional NMR ..o e s e 122
HYPECOMPIEX 2D ..ttt et ettt een e sr e ene e see sneeaneeae s 123
Real Mode Phased 2D: TPPI ...t sttt es e e 124
2.15 Gradient Control for PFG and IMagingcccceereeerirenieieeee s 125
Setting the Gradient Current Amplifier Level ... 126
Generating a Gradient PUISEcccviiveirieiiren et srees e e s e 127
Controlling Lock Field Correction CIrCUITIYcccevvceeeneesseenieesseesisessnessennns 127
Programming Microimaging PulSe SEQUENCESccccevueereriveeenvesieenieeseeesens 127

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

2.16 Programming the Performa XY Z PFG ModUI€cccoiiiieiiiiniieee e 127

Creating Gradient TADIESccoovveeviirieire et s 128

Pulse Sequence Programmingoceecceeceeevesivesseesseessvessssessesssesssessseesssesseean 128

2.17 Imaging-Related StateMENTSccocueirire et e 129
Real-time Gradient StAeMENtScoceeereiriiie et e 131

Obligue Gradient SLALEMENESccveiverieerierrirere s sree s s e ssee e s seeeans 131

Global List and Position SLAEMENEScccovveerereiereiee et 131

L OOPING STALEMENTS ..cuueiiveiriieiierseesseesieesseesressrsesseessreesssesaessrseessessnesssesnseean 131

Waveform Initialization SEEementScocveveveiveene e 132

2.18 User-Customized Pulse Sequence GENerationcooeoeeeerrieeeeenienieseeseereeeenens 132
Chapter 3. Pulse Sequence Statement Reference.........ccccceevvvvviiiiieieeeeeennns 133
abort message Send an error to VnmrJ and abort the PSG process 140
acquire Explicitly acquire datacccoerrerneineneeeseee e 140
add Add iNteger VAIUESc.ooeiicie e 141
apovrride Override internal software APbusdelayc.ccccovveiiieennne 141
apshaped decpulse First decoupler pulse shaping via AP bUSccooeeeriennee. 142
apshaped dec2pulse Second decoupler pulse shaping Via AP bUScccceeeee 142
apshaped pulse Observe transmitter pulse shaping viaAP bus 143
assign ASSIgN INEJEN VAIUBS ..ot s 144
blankingoff Unblank amplifier channels and turn amplifierson 145
blankingon Blank amplifier channels and turn amplifiersoff 145
blankoff Stop blanking observe or decoupler amplifier (obsolete) ... 145
blankon Start blanking observe or decoupler amplifier (obsolete) ... 146
clearapdatatable Zero dl datain acquisition processor memory 146
create delay list Create table of delays ... 146
create freq list Create table of freqUeNCIEs ..o 148
create offset list Create table of frequency Offsets ... 148
dbl Double an integer value ... 151
dcplrphase Set small-angle phase of 1st decouplerccoveineineenns 151
dcplr2phase Set small-angle phase of 2nd decouplerccccovveineenne 152
dcplr3phase Set small-angle phase of 3rd decouplercccocvneinenne 153
decblank Blank amplifier associated with first decoupler 153
dec2blank Blank amplifier associated with second decoupler 153
dec3blank Blank amplifier associated with third decoupler 154
declvloff Return first decoupler back to “normal” power 154
declvlon Turn on first decoupler to full POWerccccevveiieinicennnns 154
decoff Turn off first deCOUPIErc.ovveeiiieic e 154
dec2off Turn off second decoUplercoovvivicinicinceeee 155
dec3off Turn off third decoupler ..o 155
decoffset Change offset frequency of first decouplerccccevneenee 155
dec2offset Change offset frequency of second decouplercc....... 155
dec3offset Change offset frequency of third decouplercccceeenee 155
dec4offset Change offset frequency of fourth decouplerc....... 156
decon Turn on first deCOUPIErcoeveieiiiiiceie e 156
dec2on Turn on second deCOUPIErcoveivviireieneiiee e 156
dec3on Turn on third deCOUPIErcoveeirieeiiiee e 157
decphase Set quadrature phase of first decouplerccooeiniiinennne 157
dec2phase Set quadrature phase of second decouplercccoeeneenene 157
dec3phase Set quadrature phase of third decouplerccccoveineenne 157
dec4phase Set quadrature phase of fourth decouplerccooveinnne 158
decpower Changefirst decoupler power level ... 158

01-999379-00 A 0708

VnmrJ 2.2 Ml User Programming 9

dec2power
dec3power
dec4power
decprgoff
dec2prgoff
dec3prgoff
decprgon
dec2prgon
dec3prgon
decpulse
decpwr
decpwrf
dec2pwrf
dec3pwrf
decr
decrgpulse
dec2rgpulse
dec3rgpulse
dec4rgpulse
decshaped pulse
dec2shaped pulse
dec3shaped pulse
decspinlock
dec2spinlock
dec3spinlock
decstepsize
dec2stepsize
dec3stepsize
decunblank
dec2unblank
dec3unblank
delay
dhpflag

divn

dps off

dps _on

dps_ show
dps_skip
elsenz
endhardloop
endif
endloop
endmsloop
endpeloop
gate
getarray
getelem
getorientation
getstr
getval

G Delay

G Offset

G _Power

G _Pulse

10 VnmrJ 2.2 Ml User Programming

Change second decoupler power levelcccccoeevenenenen. 158

Change third decoupler power levelccoceiveiiiinennn. 159
Change fourth decoupler power levelccccooiiieninennn. 159
End programmable decoupling on first decoupler 159
End programmable decoupling on second decoupler 160
End programmable decoupling on third decoupler 160
Start programmable decoupling on first decoupler 160
Start programmable decoupling on second decoupler 161
Start programmable decoupling on third decoupler 161

Pulsefirst decoupler transmitter with amplifier gating 162
Set first decoupler high-power level, class C amplifier 162

Set first decoupler fine POWENcc.ceeiieririiee e 163
Set second decoupler fine POWErcccceeereveneie e 163
Set third decoupler fine POWErccoiveiiiiiiieeee e 163
Decrement an integer VAUEcccooeeeeeireeneee e 164
Pulsefirst decoupler with amplifier gatingc.cccceeeuee. 164
Pulse second decoupler with amplifier gating 165
Pulse third decoupler with amplifier gatingcccceenee. 166
Pulse fourth decoupler with amplifier gatingccccceue. 166
Perform shaped pulse on first decouplerccccooveeennene 167
Perform shaped pulse on second decouplerccccceeeneeee 168
Perform shaped pulse on third decouplerccccooeneeeen. 169
Set spin lock waveform control on first decoupler 170
Set spin lock waveform control on second decoupler 170
Set spin lock waveform control on third decoupler 171
Set step size for first decouplerooovoeieiineiciereneeenn. 171
Set step size for second decouplercoceeveiieieieneeneenn. 172
Set step size for third decoupler ... 172
Unblank amplifier associated with first decoupler 172
Unblank amplifier associated with second decoupler 173
Unblank amplifier associated with third decoupler 173
Delay for aspecified time ... 173
Switch decoupling from low-power to high-power 173
Divide integer ValUEScooooieieiieee e 174
Turn off graphical display of statementsccccceeeeereenne. 174
Turn on graphica display of statementsccccevceveennen. 174
Draw delay or pulsesin a sequence for graphical display .. 174
Skip graphical display of next statementccccceeeneenne. 177
Execute succeeding statements if argument is nonzero 177
End hardwar€ [00pcooeoeeuireinece e 178
End execution started by ifzero or elsenz ... 178
[0 To Vo] o IO USRS 178
End multisSlice 100D ..c.eoveieeie e 178
End phase-encode 100pcoeieieieirecce e 179
Device gating (ODSOIELE)ccccueiiiieeeieiriee e 180
Get arrayed parameter ValUESccoeieeeeeeneeieieieeeee e 180
Retrieve an element from atable ... 180
Read image plane orientationc.ccovevoeeenencnciennenne 181
Look up vaue of string parameterccooceeeeeieiiieeieeens 182
Look up vaue of numeric parametercoceeeeerveennne. 182
Generic delay roUtiNgcccuceeiiiieiireeee e 183
Frequency offset routingccoocooeeoe i 183
FiNe POWES TOULINE ...ovieiieceieeie e 183
GeNEric PUISE TOULINGccuiieieie e 183

01-999379-00 A 0708

hdwshiminit
hlv

hsdelay
idecpulse
idecrgpulse
idelay

ifzero
incdelay
incgradient
incr

indirect

init rfpattern
init gradpattern
initdelay
initparms_ sis
initval
iobspulse
ioffset
ipulse

ipwrf

ipwrm
irgpulse

1k _hold

lk sample
loadtable
loop

loop check

magradient
magradpulse
mashapedgradient
mashapedgradpulse
mod2

mod4

modn

msloop

mult

obl gradient
oblique gradient
obl shapedgradient
oblique shapedgradient
obsblank
obsoffset
obspower
obsprgoff
obsprgon

obspulse

obspwrf
obsstepsize
obsunblank

offset

pbox adls8o

pbox mix

01-999379-00 A 0708

Initialize next delay for hardware shimmingc.c........ 184

Find half the value of anintegerccccieeoiiiniicieiees 184
Delay specified time with possible homospoil pulse 185
Pulsefirst decoupler transmitter with IPA ... 186
Pulsefirst decoupler with amplifier gating and IPA 186
Delay for aspecified timewith IPA ... 187
Execute succeeding statements if argument iszero 187
Set real-time incremental delay ... 188
Generate dynamic variable gradient pulsecccocooeeeee. 188
Increment an integer Valuecocooeeeeireeneee e 189
Set indirect deteCtioncocoveeeeeiiieie e 189
Create rf pattern file ... 189
Create gradient pattern file ..o 191
Initialize incrementa delayccoooveie i, 191
Initialize parameters for spectroscopy imaging sequences . 192
Initialize areal-time variable to specified value 192
Pulse observe transmitter with IPA ... 192
Change offset frequency with IPA ..., 193
Pulse observe transmitter with IPA ... 193
Change transmitter or decoupler fine power with IPA 194
Change transmitter or decoupler lin. mod. power with IPA 194
Pulse observe transmitter with IPA ... 194
Set lock correction circuitry to hold correction 195
Set lock correction circuitry to samplelock signal 195
Load table elements from table text file ... 196
1S - 1 8 [o o J OSSR UTUSTOR PR 196
Check that number of FIDs s consistent with number of slices,
etc. 197

Simultaneous gradient at the magic angleccccoeceeeeeeen. 197
Gradient pulse at themagic angleccccceeereieininieeeenns 198
Simultaneous shaped gradient at the magic angle 198
Simultaneous shaped gradient pulse at the magic angle 199
Find integer value modulo 2ccccooeriiiie e 200
Find integer value modulo 4ccoooeiiiiieieiecee e 200
Find integer value modulo Nccoooeiiiiie e 200
MUItISITCE 100D . 200
Multiply integer ValUESccooveieeriiee e 201
Execute an oblique gradientc.cooe i 202
Execute an oblique gradientc.coco i 202
Execute a shaped oblique gradientcccoovereieneneneennn. 203
Execute a shaped oblique gradientccccoceveieienencneennn. 203
Blank amplifier associated with observe transmitter 205
Change offset frequency of observe transmitter 205
Change observe transmitter power levelccccooceneeenne. 205
End programmable control of observe transmitter 206
Start programmable control of observe transmitter 206
Pulse observe transmitter with amplifier gating 206
Set observe transmitter fine POWErccoceveeieiecceeinene. 207
Set step size for observe transmitterocoeeeeevinceeennn. 207
Unblank amplifier associated with observe transmitter 207
Change offset frequency of transmitter or decoupler 208
Generate adiabatic 180 deg. shapes using Pbox 209
Generate mixing shapes using PDOX.cccoeeeeererienieeenens 209

VnmrJ 2.2 Ml User Programming 11

pboxHT F1
pboxHT Fle
pboxHT F1i

pboxHT Fls
pboxHT Flr

pe gradient
pe2 gradient
pe3 gradient
pe shapedgradient
pe2 shapedgradient
pe3 shapedgradient

Generate arbitrary Hadamard encoded shapesin F1 using Pbox
210

Generate Hadamard encoded excitation shapesin F1 using
Pbox 210

Generate Hadamard encoded inversion shapesin F1 using Pbox
210

Generate Hadamard encoded sequential inversion shapes . 211

Generate Hadamard encoded refocusing shapesin F1 using

Pbox 211
Oblique gradient with phase encode in one axis 212
Oblique gradient with phase encode in two axes 212
Oblique gradient with phase encode in three axes 213

Oblique shaped gradient with phase encode in one axis 213
Oblique shaped gradient with phase encode in two axes 214
Oblique shaped gradient with phase encode in three axes .. 215

peloop Phase-encode [00Pcoeirerieeiiie e 215
phase encode gradient Oblique gradient with phase encode in one axis 216
phase encode3 gradient Oblique gradient with phase encodein three axes 217
phase encode shapedgradientOblique shaped gradient with PE in one axis 217
phase encode3 shapedgradientOblique shaped gradient with PE in three axes 218
phaseshift Set phase-pulse technique, rf type A or Bccooevvvveivcneee 219
poffset Set frequency based 0N POSItIONcccocevreieeice e 220
poffset list Set frequency from position list ... 220
position offset Set frequency based 0N POSItIONcccocevveieenice e 220
position offset list Set frequency from position listccoovveveeeniiencieiceee 221
power Change pOWer [eVEl ... 221
psg_abort ADbOrt the PSG ProCeSSccveveieiireeee e 222
pulse Pulse observe transmitter with amplifier gating 222
putCmd Send a command to VnmrJ from a pulse sequence 223
pwrf Change transmitter or decoupler fine powercccccee.e. 224
pwrm Change transmitter or decoupler linear modul ator power .. 224
rcvroff Turn off receiver gate and amplifier blanking gate 225
rcvron Turn on receiver gate and amplifier blanking gate 225
readuserap Read input from user AP register ... 226
recoff Turn off recaiver gate Onlycccvveincine i 227
recon Turn on receiver gate ONlYcocveeevveeenieeinienine e 227
rgpulse Pulse observe transmitter with amplifier gating 227
rgradient Set gradient to specified level ..o 228
rlpower Change pOWer [eVEl ... 228
rlpwrf Set transmitter or decoupler fine power (obsolete) 229
rlpwrm Set transmitter or decoupler linear modulator power 229
rotate Sets the standard oblique rotation angles ... 230
rot angle Sets user defined oblique rotation anglesccocevvveeenee. 230
rotorperiod Obtain rotor period of MAS rotorcccoeeineevineeineeiiieenns 230
rotorsync Gated pulse sequence delay from MAS rotor position 230
setautoincrement Set autoincrement attribute for atableccooeiiininne 232
setdivnfactor Set divn-return attribute and divn-factor for table 232
setreceiver Associate the receiver phase cycle with atable 232
setstatus Set status of observe transmitter or decoupler transmitter .. 233
settable Store an array of integersin areal-timetable 233
setuserap Set USEr AP FEJISLEN ... 234
shapedpulse Perform shaped pulse on observe transmitterc.......... 234
shaped pulse Perform shaped pulse on observe transmitterc.......... 234
shapedgradient Generate shaped gradient pulsecoccoveeveeeiceice e 235

12 VnmrJ 2.2 Ml User Programming

01-999379-00 A 0708

shaped2Dgradient Generate arrayed shaped gradient pulsecccoeeveiiiennne 237
shapedincgradient Generate dynamic variable gradient pulsecccoeeeenee 238
shapedvgradient Generate dynamic variable shaped gradient pulse 239
simpulse Pulse observe and decouple channels simultaneously 241
sim3pulse Pulse simultaneously on 2 or 3 rf channelsccocceeee. 242
sim4pulse Simultaneous pulse on four channels ... 242
simshaped pulse Perform simultaneous two-pulse shaped pulse 243
sim3shaped pulse Perform a simultaneous three-pulse shaped pulse 244
sli S SLITINGES .o 245
sp#off Turn off specified spareline (Inova#=1t05)c.ccceeurnen. 246
sp#on Turn on specified spareline (Inova#=1t05)c.ccceeuvuee. 247
spinlock Control spin lock on observe transmitterccocccvveeene. 247
starthardloop Start hardware 100pcocoveeieeeeiececee e 248
status Change status of decoupler and homospoil (z-shim coil) ... 248
statusdelay Execute the status statement with a given delay time 249
stepsize Set small-angle phase SteP SIZeccoveeiiieiiicececee 250
sub Subtract integer VAlUEScccvoiviiiiiieececeeece e 251
text error Send atext error message to VNMrdcccocceeeeiiicinens 251
text message Send amessage to VIMIJ ..o 252
tsadd Add an integer to table elementsccccovevneincrnenine 252
tsdiv Divide an integer into table dementscccoeeevveiceee 252
tsmult Multiply an integer with table elementsc.cccocveereeneee. 252
tssub Subtract an integer from table elementscccoviveviiennne 253
ttadd Add atableto asecond tablecccoveiiineinicine 253
ttdiv Divide atableinto asecond tablecccooeeiieiceiccne 254
ttmult Multiply atable by asecond table ... 254
ttsub Subtract atable from asecond table ... 254
txphase Set quadrature phase of observe transmitter ... 255
vagradient Variable angle gradient ... 256
vagradpulse Variable angle gradient pulSeccceveeierneninenieeeene 256
var_active Checks if the parameter isbeing usedccccooeeveeiineenne 257
vashapedgradient Variable angle shaped gradientcocooeieieiiiciecinenne. 257
vashapedgradpulse Variable angle shaped gradient pulse ... 258
vdelay Set delay with fixed timebase and real-time count 259
vdelay list Get delay value from delay list with real-timeindex 260
vfreq Select frequency from table ... 261
vgradient Set gradient to alevel determined by rea-time math 261
voffset Select frequency offset from table ... 263
vsetuserap Set user AP register using real-time variablec.......... 263
warn message Send awarning message to VNMIdcccevveeneeineeineenens 264
xgate Gate pulse sequence from an external event ... 264
xmtrof £ Turn off observe transmittercoveiveincincicce 264
xmtron Turn on observe tranSMItterccovveiveeinceineeeee 264
xmtrphase Set transmitter small-angle phase ... 265
zero all gradients Zero al gradients ... 265
zgradpulse Create agradient pulse onthe z channel ... 266
Chapter 4. Linux Level Programming.....cccccooovieieieiiieiiiiiineeneeeee e 267
.1 LINUX AN VIIMIET ot er e en s en e enens 267

4.2 LiNUX REFEIENCE GUITEoeieiiieiiec et 267
(0] 0910 0F= 1010 I =l 011 Y RSP RR 268

FIHENGIMES ..ot et e 268

01-999379-00 A 0708

VnmrJ 2.2 Ml User Programming 13

File Handling COMMANGS coueuirieieeeeie ettt se et ss e s 268

DIreCtOry NAMES ...ttt ettt et et et ae s e eae e e 268
Directory Handling COMMANGS ccceeeeoirrirrenie ettt sses e e 268

TEXE COMIMANGS ...cueiee ettt ettt et ee et e e st e et ettt e e e eaes 269

Other COMMEANAS ..c.ueeiee et ettt eee e et e se et e e ese e e e seee s 269

SPECIAl ChArACLEr'Scouieeeeeieeie ettt ee e ettt ae e s e e e s 269

4.3 Linux Commands Accessible from VNMId ... 270
Opening a Text Editor from VNMIJ ...ttt s 270
Opening a Shell from VNMIJ ..o ettt e s 270

4.4 Background VINMR ...ttt 270
Running VNMR Command as aLinux Background Taskcccceeevereeneenns 270

Running VNMR Processing in the Backgroundcceccceveveeveeninseeseeeceeenen. 271

4.5 Shell ProgramiMingco.coeeeee e er e sr s ses e senessenen 272
Shell Variables and Control FOrMALScccceeereriere et 272

S 1 S o T o) S 272
Chapter 5. Parameters and Datauuuueuueeiiieiieiiiiiiiiiieeiieeiieeieeeieeeieeeeeeeees 273
5.1 VNMEIDEAFIIES ..t e e neenean 273
BiNary Data FilES ..ottt ettt ettt et e 273

Data File SITUCLUIES ...ttt st ettt et e es e e e 275

VnmrJ Use of Binary Data FileS ...t 278

StOring MUIIPIE TrACES vereeie ettt ettt et et e e 279

Header and Data DiSplay ...coceeeeereereeinireee et sttt e 280

5.2 FDF (Flexible Data FOrmat) FIlES ..o e 280
File Structures and Naming CONVENLIONScccceereerereeneereerineeseeseseseesee e 280

FIIE FOMMEL ..ttt ettt et e e et ettt et s e se 281

Header Palr@MELEr'Soccooieeeeeeie et eee et see e s see ettt sae s se 282
TranSfOrMELIONS ...c.ueiee ettt e e et et ettt e e e 284
Creating FDF FIES ..ottt ettt e 284
SPlLHING FDF FIIES ..ttt ettt e 285

5.3 Reformatting Data for PrOCESSINGcvveeereciirieiincisier e e 285
Standard and Compressed FOrMALScooivrerenieie et e 286
Compress or DECOMPIESS DaLacccerveerreeriieerineeneee s srees st s e seese s snnesseeeane 287

MOVE 8N REVEISE DAAcevereerieieseereee ettt e s sr et et e et es e e se 287

Tahl© CONVEIT DEIA ...veeveeeieieeeieeieiee et eetee e e e et ettt e e e 287
REFOrMELtiNg SPECIIA ..cucueeeeeeeeie ettt ettt ettt e er e e 287

5.4 Creating and Modifying Parameters ... e 288
Parameter TYPES @0 TIEES ..ocveiuceereereeereereee e et se et ese et es s e 289

Tools for Working with Parameter TreeSceveoeieneeiiere e s se e 289

Format of @ Stored Parametercoceeeeeeeece et eere e see e see s ene s 292

5.5 Modifying Parameter DisplaySin VNMR ..o 294
Display TEMPIELE ...coceeeeeeee ettt se e e e e et e e e e 294
Conditional and Arrayed DiSPlaySccceceeerremersieeene e eese e e e ese e see e eeas 296

OULPUL FOIMEL ...t sr e e s e e see s e e e 297

5.6 User-Written Weighting FUNCLIONSoviiriiiiieee e e 297
Writing aWeighting FUNCLION oociiee et s e 298

14

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Compiling the Weighting FUNCEION cociiiiirinee et 299

5.7 User-WHten FID FIIES ..o e e 300
Chapter 6. Panels, Toolbars, and MEnuUScccvvviiiiiiiii e e 301
6.1 Parameter Panel FEAIUMEScociiiiieieiee et e e s neeneas 301
6.2 UsiNg the Panel EdItOrcoooiiiiiiiccc e e s 301
Starting the Panel EQITOrc.ooeereieieeeie e ettt e 301

Editing Existing Panel EIeMENtS ..ottt s 303

Adding and Removing Panel EIEMENtScccooiiirenie e 304

Saving Panel ChangEScoccirerierieinteie st ee e ettt s e 305

EXiting the Panel BEditOr ...ttt se e e 307

5.3 PaNel EIEMENES ..ottt et et e e e e neenean 307
EIEMENE SEYI .ottt et e sttt et e e e 308

Panel Element ARITDULES ...coceoui ittt ettt e s e 308

Panel EIEMENES ...ttt et s sttt et er e e 309

6.4 Creating @aNEW Panel ..ot 323
WIItiNG COMMANGS ..cueeuiieieiieeeieete et seee e e st se et et eaeese e e e e eae e e seen 323
Creating a New Panel LayOULcccoceirrerieninieniee et s e 324
Creating @ NEW PaJE ...ccooieriee ettt et re e et et se s e eaeseeen 324
Defining and Populating @Pageccccceeerererienereee et 325

Saving and Retrieving aPanel Element ..o iineieinneeseeiee e 325

Files Associated With PanelS ..ottt 326

SIZING PANEIS ..ttt ettt et ettt e 327

6.5 Graphical TOOIDAr MENUS cc.ooiiiiiieiici e e e e s 327
Editing the TOOIDar MENU ..ottt sttt 327
Graphics TOOlbar ParameEerSocccccecieieieeie e ettt s e 328

[CONS ettt ettt st s et et e e sae e eee e s neeen e se e ene e e s 328

Menu File Description Example, dCONIccceveeeeeisiinie e 328

Index 339

01-999379-00 A 0708 vnmrJ 2.2 M User Programming 15

16 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

List of Figures

FIgUre 1. AMPLFIEr GaiNGooceeeie ettt ettt se e s e e s s e e e s e seneeenas 62
Figure 2. Pulse Observe and Decoupler Channels Simultaneouslyccocoveoeeennieeieninecnieieens 66
Figure 3. Waveform Generator OffSet DEl@yoeooeieieieiiee e 122
Figure 4. Magnet Coordinates as Related to User Coordinates.oooeouevereereeieinieeieeinieseene 283
Figure 5. Single-String Display Template With OULPULccoiiiiiieie e 295
Figure 6. Multiple-String Display TEMPIALEcoeiiieieeieie e 296
Figure 7. Panel EQItOr WINAOWcooiiiiiieieceiecee ettt ettt sr e er e sr s eneene 302
Figure 8. Panel and L ocator when Panel Editor iSOPENccooooeviieie e 302
FIOURE O, DIF IMEEINU .ttt ettt ettt e st ea e saeeb e saeeaeeaaeeae e seene e s e e s asaeeesnaesaesaeenee 306
FIOUIE 10, TYPE IMIBINIU .. e ettt ettt e ee e eaeea et e hees e ehe e et e s e e e e s e e e e eneeseesaenes 306

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 17

18 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

List of Tables

Table 1. Reserved WOrdsin MAGICAL. ..o e 28
Table 2. Order of Operator Precedence (Highest First) in MAGICALoocooiieiiiiieee e 29
Table 3. Variable Types in PUISE SEQUENCESccooiiiiieie ettt s eeneeneas 59
Table 4. Delay-Related STAEMENESottt st ees 61
Table 5. Observe Transmitter Pulse-Related SEEEMENLScovveviricririerinieiiieieee e 62
Table 6. Decoupler Transmitter Pulse-Related Statementscocooeveeeiereeie e 64
Table 7. SIMUltaneous PUISES SEEEEMENLScc.ooiiiiiiiiee e 65
Table 8. Transmitter Quadrature Phase Control Statementscccccveeecieie i 67
Table 9. Phase Shift STBEEMENEScviiiii e e e 68
Table 10. Frequency Control SEAtEMENLScocoieiriree e sees e e e eneeneeseeneas 70
Table 11. Power Control SLBEEMENLSc.everiieiieieiee ettt e 71
Table 12. Gating Control SEAEEMENESc.ooiiiiiee ettt se e e e eneeneeneenea 73
Table 13. Mapping Of USEr AP LINES ..ottt e eean 76
Table 14. Integer MathematiCS SEALEMENTScccoieuiriiie et st s 78
Table 15. Pulse Sequence COoNtrol SEEEEMENTSc.uceiiiieeiireiree e eees e se e eeas 79
Table 16. Statements for Controlling Graphical Display of a Sequencecccccoveveieeincicceen. 82
Table 17. Statements for Handling AP TabIES ... e 85
Table 18. Parameter Value LOOKUDP SEELEMENTSc..oueiirieeiirieieie et e 89
Table 19. Global PSG ParaMELEr'Scccoiiiiiiiie ittt s 89
Table 20. Imaging and Other VariableS ..o e 92
Table 21. Hardware Looping Related Statementsccocoooeieiereieeein e 104
Table 22. Number of Events for Statementsin aHardware LOOpccccovoereneeiennieciecincnene 106
Table 23. Rotor Synchronization Control StateMeNtsceooeiererereie e 108
Table 24. Shapelib File SUFFIX LISt ..ottt 109
TaDIE 25, RF PAITEINS ...ttt s sttt st e s 110
Table 26. DECOUPIEr PEILEINScociiieieeieiieiie et ettt ee e e eee e eee e e e eneeneenas 111
Table 27. GradieNnt PaITEINSc.oiicriieeiiet ettt st er et sr st er e sr s s en s en s 111
Table 28. Shaped PulSe SEALEMENLScoiieieieie ettt es e e see e 112
Table 29. Programmable Control SEAtEMENTSccueeeieieeieieiere e s 114
Table 30. Spin Lock Control SLALEMENESoueiiiieeiieiie et se e 115
Table 31. APBUSDElay CONSIANESooviieiuieiieieee ettt e st e e e s 117
Table 32. Statements for Pulse Shaping Through the AP BUScoceiiiniiieee e 118
Table 33. APBUSOVErNead DElAYScooeriiiieciieiie ettt s 119
Teable 34. Example of AP Bus Overhead Delaysfor status Statementcccoceevevncinennnn 121
Table 35. Multidimensional PSG Variables ... e 124
Table 36. Gradient Control SEALEMENES ..ot e 125
Table 37. Delays for Obliquing and Shaped Gradient Statementscccooceeeeeeeerieieeesecrecieen, 126
Table 38. Performa XY Z PFG Module SLAEEMENTSccvevereieieieeiere et 129
Table 39. Imaging-Related SLAEMENTSocuiii ittt s 130
Table 40. Commands for Reformatting Datacc.eeeeoeieeeeriieie e 286
Table 41. Commands for Working with Parameter TreesScccoevericrieieeee e 290
Table 42. Common Attributes of Panel EIEMENTScccocooviiiiiiiiieiicce e 308
Table 43. PanelS @aNd LOCALIONSouciiieeiieiiie st e 326
19 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Table 44. Acquisition Status Codes

20 VnmrJ 2.2 Ml User Programming

01-999379-00 A 0708

Introduction

VnmrJsoftware provides NM R userswith aprogramming environment for customizing the
system software and the operator interface. This manual covers MAGICAL programming,
pul se sequence programming, and manipulating parameters and data.

Overview of this Manual

Thismanua explains how to use these capabilities:

Chapter 1, “MAGICAL Il Programming,” describes MAGICAL Il (MAGnetics
Instrument Control and Analysis Language), a powerful software application that
enables full automation of spectrometer operation and data analysis using macros.

Chapter 2, “Pulse Sequence Programming,” covers pulse sequence programming
using Varian's powerful and extensive set of pulse sequence statements.

Chapter 3, “ Pulse Sequence Statement Reference,” isan a phabetical referenceto each
pul se sequence statement in VnmrJ.

Chapter 4, “Linux Level Programming,” is an overview of the operating system.

Chapter 5, “Parameters and Data,” covers manipulating parameters, using data files,
modifying parameter displays, and writing user-defined weighting functions

Notational Conventions

The following notational conventions are used throughout all VnmrJ manuals:

Typewriter-like characters identify VnmrJand UNIX commands,
parameters, directories, and file namesin the text of the manual. For example:

The shutdown command isin the /etc directory.

Typewriter-like characters also show text displayed on the screen,
including the text echoed on the screen as commands are entered. For example:

Self test completed successfully.

Text shown between angled brackets (<...>) in asyntax entry is optional. For example,
if thesyntax isseggen s2pul<.c>, enteringthe® . ¢” suffix isoptional, and typing
seggen s2pul.c or seqgen s2pul isfunctionally the same.

Lines of text containing command syntax, examples of statements, source code, and
similar material are often too long to fit the width of the page. To show that aline of
text had to be broken to fit into the manual, the lineis cut at a convenient point (such
asat acommanear the right edge of the column), abackslash (\) isinserted at the cut,
and the line is continued as the next line of text. This notation will be familiar to C
programmers. Note that the backslash is not part of the line and, except for C source
code, should not be typed when entering the line.

Because pressing the Return key is required at the end of almost every command or
line of text typed on the keyboard, use of the Return key is mentioned only in cases
whereitisnot used. Thisconvention avoidsrepeating theinstruction “ pressthe Return
key” throughout most of this manual.

Text with a change bar (like this paragraph) identifies new VnmrJ material.

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 21

22 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

chapter 1. MAGICAL Il Programming

Sectionsin this chapter:
® 1.1 *Working with Macros,” this page
® 1.2*Programming with MAGICAL,” page 27
® 1.3*Reevant VnmrJ Commands,” page 38

Many of the actions performed on an NMR spectrometer are performed many times a day.
VnmrJ software incorporates a high-level macro programming language designed for
NMR cdled “NMR” language, MAGICAL 1™ (MAGnetics Instrument Control and
Analysis Language, version |l—usually just called MAGICAL in this chapter) to make
these actions easier. Many commands used in VnmrJ are macros (see /vnmr /maclib).

1.1 Working with Macros
® “Writing aMacro,” page 24
® “Executing aMacro,” page 24
® “Transferring Macro Output,” page 26
® “|oading Macros into Memory,” page 26

A macro is a user-defined command containing along series of commands and parameter
changes that are enter one by one. A spectrum is plotted with a scale under the spectrum,
and parameters on the page using the following sequence of commands:

pl

pscale

hpa

page

A macro, caled plot, containing these commands can be written. A macro called
plot_2d using certain parametersto routinely plot 2D spectra can be written:
wc=160

sc=20

wc2=160

sCc2=20

pcon(10,1.4)

page

MAGICAL provides an entire series of programming tools, such as i f statements and
loops, that can be used as part of macros. MAGICAL also provides other NMR-related
toolswhich give accessto NMR information like peak heights, integrals, and spectral
regions. Using these two sets of tools, “NMR agorithms’ are easily implemented with
MAGICAL.

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 23

Chapter 1. MAGICAL Il Programming

24

Writing a Macro

Consider the following problem: find the largest peak in aspectrum in which the peaks may
be positive or negative (such as an APT spectrum) and adjust the vertical scale of the
spectrum so that the tallest peak is 180 mm high. The following macro (or MAGICAL
program) that we call vsadj illustrates how the MAGICAL tools can be used to quickly
and simply find a solution:

“vsadj --- Adjust scale of spectrum"

peak:Sheight, $frequency "Find largest peak"

if Sheight<0 then Sheight=-$height endif "If negative, make
positive"

vs=180*vs/Sheight "Adjust the vertical
scale"

Aswritten, the macro vsadj hasfour lines:

® The material in double-quotation marks (the first line and parts of other lines) are
comments. MAGICAL permits comments, and asis good programming practice, this
example isfilled with comments to explain what is happening.

® The second line of the macro (“peak: Sheight, .. .") illustrates the ability of
MAGICAL to extract spectral information. The peak command |ooks through the
spectrum and returns to the user the height and frequency of the tallest peak in the
spectrum, which are then stored (in this exampl€) in temporary variables named
$height and $frequency.

® Thethird line of themacro (“if S$height<0...") illustratesthat MAGICAL isa
high-level programming language, with conditional statements (e.g., i f. . .
then. . .), loops, etc. This particular line ensures that the peak height we measureis
always a positive value, which is necessary for the calculation in the next line.

® Thelastline ("vs=180%*vs. ..") illustrates the use of NMR parameters (like vs,
which setsthe vertical scale) as simple variablesin our macro. Thisline accomplishes
the task of calculating anew value of vs that will make the height of the tallest peak
equa to 180 mm.

Part of the power of the MAGICAL macro language is its ability to build on itself. For
example, we can create first-level macros out of existing commands, second-level macros
out of first-level macrosand commands, and so on. Suppose we created amacroplot, for
example, we might also create amacro setuph, another macro acquireh, and yet
another macro processh. Now we might create a “higher-level” macro, H1, which is
equivalentto setuph acquireh processh plot. Perhapswe have created two more
similar macros, c13 and APT. Now we might create yet another higher-level macro
HCAPT, equivalent to H1 C13 APT. At every step of the way, the power of the macro
increases, but without increasing the complexity.

Many macros are part of the standard VnmrJ software. These macros are discussed in the
relevant chapters of the manual Getting Sarted—processing macros are discussed along
with processing commands, acquisition setup macros along with acquisition setup
commands, etc. Refer to the VnmrJ Command and Parameter Reference for a concise
description of standard macros. The examples used here are instructive examples and do
not necessarily represent standard Varian software.

Executing a Macro

When any program is executed, the command interpreter first checksto seeif itisa
standard VVnmrJ command. If the program is not acommand, the command interpreter then

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

1.1 Working with Macros

attemptsto find amacro with the program name. Unlike abuilt-in VVnmrJ command, which
isabuilt-in procedure containing code that normally cannot be changed by users, the code
inside amacro istext that is accessible and can be changed by users as needed.

If aVnmrJ command and a macro have the same name, the VnmrJ command always takes
precedence over amacro. For example, thereisabuilt-in VnmrJ command named wf t. If
someone happensto write amacro also named wf t, the macro wt t will never get executed
because the VnmrJ command wt t takes precedence. To get around this restriction, the
hidecommand command can rename a command so that a macro with the same name as
acommand is executed instead of the built-in command. If the user who wrotethe wtt
macroentershidecommand ('wft '), thecommandisrenamedtowft (first letter made
upper case) and the macro wf t isnow executable directly. The new wt t macro can access
the hidden wt t built-in command by callingit with thenamew£ t. To go back to executing
the command wtt first, enter hidecommand ('WEt ') .

Macro files can reside in four separate locations:
1. Intheuser'smaclib directory.

2. Inthedirectory pointed to by themaclibpath parameter (if maclibpathis
defined in the user's global parameter file).

3. Inthedirectory pointed to by the sysmaclibpath parameter (if defined).
4. Inthesystem maclib directory.

When macros are executed, the four locations are searched in this order. The first location
found is the one that is used. For example, rt isastandard VNMR macro in the system
maclib. If auser putsamacronamed rt intheuser’smaclib, theuser'srt macrotakes
precedence over the system rt macro.

The which macro can search these locations and display the information it finds about
which location contains a macro. For example, entering which ('rt ') determinesthe
location of the macro rt.

The system macro directory /vnmr /maclib can bechanged by the system operator only,
but changes to it are available to all users. Each user also has their own private macro
directory maclib inthe user’svomrsys directory. These macros take precedence over
the system macros if a macro of the same name isin both directories. Thus, users can
modify a macro to their own needs without affecting the operation of other users. If the
command interpreter does not find the macro, it displays an error message to the user.

Macros are executed in exactly the same way as normal system commands, including the
possibility of accepting optional arguments (shown by angled brackets “<. . . >"):
macroname< (argumentl<,argument2, ...>) >

Arguments passed to commands and macros can be constants (examplesare 5. 0 and
'apt '), parametersand variables (pw and Sht), or expressions (2 *pw+5 . 0). Recursive
calls to procedures are allowed. Single quotes must be used around constant strings.

Macros can also be executed three other ways:

® When the VnmrJ program isfirst run, a system macro bootup isrun. This macro in
turn runs a user macro named login in the user’slocal maclib directory if such a
macro exists.

® When any parameter x is entered, if that parameter has a certain “ protection bit” set
(see “Format of a Stored Parameter,” page 292), amacro by thename _x (thatis, the
same name as the parameter with an underline as a prefix) is executed. For example,
changing the value of sw executes the macro _sw.

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 25

Chapter 1. MAGICAL Il Programming

26

® Whenever parameters are retrieved with the rt, rtp, or rtv commands, a macro
named fixpar isexecuted.

If the macro needs to know what macro invoked it, that information is stored by the string
parameter macro available in each parameter set.

Transferring Macro Output

Output from many commands and macros, in addition to being displayed on the screen or
placed in afile, can also be transferred into any parameter or variable of the same type. To
receive the output of a program of this type, the program name (and arguments, if any) are
followed by acolon (:) and one or more names of variables and parameters that are to take
the output:

macroname< (argl<,arg2,...>)>:variablel,variable2, ...

For example, the command peak (described on page 40) findsthe height and frequency of
the tallest peak. Entering the command:

peak:rl,r2

resultsin r1 containing the height of the tallest peak and r2 its frequency. Therefore,
entering the command
peak:S$ht,cr

would set sht equal to the height of thetallest peak and set the cursor (parameter cr) equal
to its frequency, and thus would be the equivalent of a“tallest line” command (similar to
but different than the command n1 to position the cursor at the nearest line).

It is not necessary to receive all of the information. For example, entering
peak:$peakht

puts the height of the tallest peak into the variable $Speakht, and does not save the
information about the peak frequency.

Thecommand that displaysalinelist, d11, a so produces one output—the number of lines.
Entering
dll:sn

reads the number of linesinto variable $n. d11 aloneis perfectly acceptable although the
information about the number of linesisthen “lost.”

Loading Macros into Memory

Every time amacroisused, itis“parsed” before it is executed. This parsing takestime. If
amacro is used many times or if faster execution speed is desirable, the parsed form of the
macro, user or system, can beloaded into memory by themacrold command. When that
macro is executed, it runs substantially faster. One or more macros can be “ pre-loaded” to
run automatically when VnmrJisstarted by inserting somemacrold commandsinto your
login macro.

Macros are aso loaded into memory by themacrovi or macroedit commands to edit
the macro. The only argument in each is the name of the macro file; for example, enter
macrovi ('pa') ormacroedit ('pa') if themacronameis pa. Thechoice depends
on the type of macro and the text editor required:

® For auser macro, use macrovi avi based editor.
® For auser macro from an editor, select macroedit.

® To edit a system macro, copy the macro to your personal macro directory and edit it
therewithmacrovi or macroedit.

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

1.2 Programming with MAGICAL

To select the editor for macroedit, set the operating systems (OS) variable
vamreditor toitsname (vomreditor isset through the OS env command). A script
for the editor in the bin subdirectory of the VnmrJ system directory must also exist. For
example, to select Emacs, set vimreditor=emacs and have ascript vimr _emacs.

Severa minor problems need to be considered in loading macros into memory:

® These macros consume a small amount of memory. In memory-critical situations,
remove one or more macros from memory using thepurge< (file) > command,
where £i1e isthename of amacro fileto beremoved from memory. Entering purge
with no arguments removes al macros loaded into memory.

CAUTION: The purge command with no arguments should never be called from
amacro, because it will remove all macros from memory, including the
macro containing purge. Furthermore, purge, where the argument is
the name of the macro containing the purge command, should never
be called.

® A macro loaded in memory and modified from a separate terminal window leavesthe
copy in memory is unchanged. Executing the causes VNMR to execute the old copy
inmemory. Usemacrovi or macroedit to edit the macro, or if the macro has been
edited in another window use macrold to replace the macro loaded in memory with
the new version.

A personal macro created with the same name as a system macro already in memory
requiresthe use of purge to clear the system macro from memory so the personal version
inmaclib directory is subseguently be executed.

Performanceisimproved if amacro called insideamacro loop is called before entering the
loop and executing the loop. Remove the called macro from memory with the purge
command after exiting the loop.

1.2 Programming with MAGICAL

® “Tokens,” page 28

® “Variable Types,” page 31

® “Arrays,” page 32

® “Expressions,” page 34

® “Input Arguments,” page 35

® “Name Replacement,” page 36

® “Conditional Statements,” page 36

® “|l oops,” page 37

® “Macro Length and Termination,” page 38
® “Command and Macro Tracing,” page 38

MAGICAL has many features, including tokens, variables, expressions, conditional
statements, and loops. To program in MAGICAL, be aware of the main features described
in this section.

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 27

Chapter 1. MAGICAL Il Programming

Tokens

A token isacharacter or characters that is taken by the language as a single “thing” or
“unit.” There are five classes of tokensin MAGICAL: identifiers, reserved words,
constants, operators, and separators.

Identifiers

An identifier isthe name of a command, macro, parameter, or variable, and is a sequence
of letters, digits, and the characters _ $#. The underline _ counts as a letter. Upper and
lower case |etters are different. The first letter of identifiers, except temporary variable
identifiers, must be a letter. Temporary variable identifiers start with the dollar-sign

($) character. |dentifiers can be any length (but be reasonable). Examples of identifiers are
pcon, pw, Of Sheight.

Reserved Words

Theidentifierslisted in Table 1 are reserved words and may not be used otherwise.
Reserved words are recognized in both upper and lower caseformats (e.g., do not use either
and or AND except as areserved word).

Table 1. Reserved Wordsin MAGICAL.

abort else not trunc
abortoff elsaf or typeof
aborton endif repeat then
and endwhile return until
break if size while
do mod sart

Constants

Constants can be either floating or string.

® A floating constant consists of an integer part, a decimal point, afractional part, the
letter E (or e) and, optionally, asigned integer exponent. The integer and fraction parts
both consist of a sequence of digits. Either the integer part or the fraction part (but not
both) may be missing; similarly, either the decimal point, or the E (or e) and the
exponent may be missing. Some examples are 1.37E-3, 4€5, .2E2, 1.4, 5.

® A string constant is a sequence of characters surrounded by single-quote characters

('...") or by backward single-quote characters ("..."). ' This is a string' and
“This is a string areexamples of string constants.

To include a single-quote character in a string, place a backslash character (\) before
the single-quote character, for example:

'This string isn\'t permissible without the backslash'

To include a backslash character in the string, place another backslash before the
backslash, such as

'This string includes the backslash \\'

Alternatively, the two styles of single quote characters can be used. If backward single
guotes are used to delimit a string, then single quotes can be placed directly within the
string, for example:

"This isn't a problem”

28 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

1.2 Programming with MAGICAL

Or the single-quote styles can be exchanged, for example:
'This isn"t a problem'
The single quote style that initiates the string must also terminate the string.

Operators

Table 2 liststhe operators availablein MAGICAL . Each operator is placed in agroup, and
groups are shown in order of precedence, with the highest group precedence first. Within
each group, operator precedence in expressionsis from left to right, except for the logical
group, where the respective members are listed in order of precedence.

Table 2. Order of Operator Precedence (Highest First) in MAGICAL

Group Operation Description Example
special sqrt () square root a = sqgrt (b)
trunc () truncation $3 = trunc(3.6)
typeof () return argument type if typeof ('$1l') then...
size () return argument size rl = size('d2")
unary - negative a = -5
multiplicative — * multiplication a=2*c¢
/ division b=a/2
% remainder $1 = 4 % 3
mod modulo $3 = 7 mod 4
additive + addition a=x+ 4
- subtraction =y - sw
relational < less than if a < b then...
> greater than if a > b then...
<= less than or equal to if a <= b then...
>= greaterthanorequal to if a >= b then...
equality = equal to if a = b then...
<> not equal to if a <> b then...
logica not negation if not (a=b) then...
and logical and if rl and r2 then...
or logical inclusive or if (rl=2) or (r2=4)
then. ..
assignment = equal a =3

There are four “built-in" special operators:
® sqgrt returnsthe square root of areal number.
® trunc truncates real numbers.

® typeof returnsanidentifier (0, or 1) for the type (real, or string) of an argument. The
typeof operator will abort if the identifier does not exist.

® size returnsthe number of elementsin an arrayed parameter.
The unary, multiplicative, and additive operators apply only to real variables. The +

(addition) operator can also be used with string variables to concatenate two strings
together. The mathematical operators can not be used with mixed variable types.

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 29

Chapter 1. MAGICAL Il Programming

If the variable is an array, the mathematical operatorstry to do simple matrix arithmetic. If
two matrices of the same size are equated, added, subtracted, multiplied, divided, or one
matrix is taken as a modulus, each element of the first matrix is operated on with the
corresponding element of the second. If two matrices of the same size are compared with
an and operator, the resulting Boolean is the AND of each individual element. If two
matrices of the same size are ORed together, the resulting Boolean isthe OR of each
individua element. If the two matrices have unequal sizes, an error results.

An arrayed variable cannot be operated on (added, multiplied, etc.) by a single-valued
constant or variable. For example, if pw isan array of five values, pw=2*pw does not
double the value of each element of the array.

Comments

MAGICAL programming provides three waysto enter comments:

® Createacomment by putting characters between double quotation marks (..."), except
when the double quotation marks arein aliteral string, e.g.,
'The word “and” is a reserved word'
Comments based on double quotation marks can appear anywhere—at the beginning,
middle, or end of aline—but cannot span multiple lines. At the end of a comment,
place a second double quotation mark; otherwise, the comment is automatically
terminated when the end of aline occurs.

® Create asingle-line comment with two slash marks (//). The comment starts with the
/I and ends on the line,, e.g.,
// This is a comment
Aswith the double quotation marks, // in aliteral string does not signify a comment.
Thistype of comment is often used for a brief description of the preceding command,
eg.,
cde // clear drift correction

® Create asingle-line or multiple-lines comment with a slash and asterisk (/*), which
begins the comment, and an asterisk and aslash (*/), which ends the comment, e.g.,
/* The comment

can span
multiple lines
*/
Thistype of comment is useful for longer descriptions. It isalso useful for
“commenting out” sections of a macro for debugging purposes.
Again, if the/* or */ arein aliteral string, they do not serve as comment delimiters.
These comments do not nest; that is, the following construct will fail,
/*
/* Comment does not nest
This will cause an error
*/

*/
In this example, the first /* starts the comment. The second /* isignored becauseit is
part of the comment. The first */ terminates the comment, which causes the second
*/ to generate an error.

Separators

Blanks, tabs, new lines, and comments serve to separate tokens and are otherwise ignored.

30 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

1.2 Programming with MAGICAL

Variable Types

Aswith many programming languages, MAGICAL provides two classes of variables:

® Global variables (also called external) that retain their values on a permanent or semi-
permanent basis. These are present in parameter setsand ~/vnmrsys/global, for
example.
Global variablesin this section refer to variables that retain their val ues upon exiting a
macro and not specifically to the variables present in ~/vnmrsys/global.

® Local variables (also called temporary, dummy, or automatic) that are created for the
timeit takes to execute the macro in question, after which the variables no longer exist.

Global and local variables can be of two types: real and string. Global real variables are
stored as double-precision (64-bit) floating point numbers. The real (variable)
command creates ared variable without avalue, where variable isthe name of the
variable to be created and stored in the current parameter set.

Although global real variables have potential limitsfrom 1e308 to 1e-308, when such
variables are created, they are given default maximum and minimum values of 1e18 and
-1e18; these can subsequently be changed with the set1imit command. For example,
setlimit ('rl',1e99,-1e99,0) setsvariablerl tolimitsof 1e99 and -1e99.

Local real variables have limits slightly lessthan 1e18 (9.999999843067e17, to be
precise) and cannot be changed.

String variables can have any number of characters, including anull string that has no
characters. The command string (variable), where variable isthe name of the
variable to be created, creates a string variable without avalue, and is stored in the current
parameter set.

Both real and string variables can have either asingle value or aseriesof values (also called
an array).

Global and local variables have the following set of attributes associated with them:

name group array size
basictype display group enumeration
subtype max./min. values protection status
active step size

The variabl€'s attributes are used by programs when manipulating variables.

Global Variables

The most important global variables used in macros are the VnmrJ parameters themsel ves.
Thus parameterslike vs (vertical scale), nt (number of transients), at (acquisition time),
etc., canbeused inaMAGICAL macro. Likeany variable, they can beused on theleft side
of an equation (and hence their value changed), or they can be used on theright side of an
equation (as part of a calculation, perhapsto set another parameter).

Therea-value parametersr1, r2, r3, r4, r5, r6, and r7, and the string parametersn1,
n2, and n3 can be used by macros. These are experiment-based parameters. Setting these
parameters in one experiment, exp1 for example, and running a macro that changes
experiments, using the command jexp3 for example, causes anew set of such parameters
to appear. Similarly, recalling parameters or datawith the rt or rtp commands overwrites
the current values of these parameters, just as it overwrites the values of al other
parameters.

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 31

Chapter 1. MAGICAL Il Programming

32

Within a single experiment, and assuming that the rt and rtp commands are not used,
these parameters do act like global parametersin that all macros can read or write
information into these parameters, and hence information can be passed from one macro to
another. Thus they provide a useful place to store information that must be retained for
some time or must be accessed by more than one macro—nbe sure that some other macro
does not change the value of this variable in the meantime.

Variables stored in ~ /vnmrsys/global are not experiment-based and retain their
valuesevenwhen jexp (experiment number),rt<('file'<, 'nolog's) >,0r
rtp<('file') > areused.

Local Variables

Any number of local variables can be created within a macro. These temporary variables
begin with the dollar-sign ($) character, such as Snumber and Speakht. The type of
variable (real or string) is decided by thefirst usage—there isno variable declaration, asin
many languages. Therefore, setting, Snumber=5 and $select="'all"' establishes
$number asareal variableand $select asastring variable.

A special initializationisrequired in one situation. When thefirst use of astring variableis
as the return argument from a procedure, it must be initialized first by setting it to a null
string. For example, aline such as

input ('Input Your Name: ') :S$name

produces an error. Use instead
Sname="' ' input ('Input Your Name: ') :S$name.

By definition, local variablesarelost upon completion of the macro. Furthermore, they are
completely local, which means that each macro, even a macro that is being run by another
macro, has its own set of variables. If one macro sets $number=5 and then runs another
macro that sets $number=10, when the second macro completes operation and the
execution of commands returnsto the first macro, $number equals 5, not 10. If the first
macro isrun again at alater time, $number starts with an undefined value. It is good
practice to use local variables whenever possible.

Locad variables can also be created on the command input line. These variables are
automatically created but are not del eted, and hence thisis not arecommended practice; use
rl, r2, etc, instead.

Accessing avariable that does not exist displays the error message:
Variable “variable name” doesn’t exist.

Arrays

Both global and local variables, whether real or string, can be arrayed. Array elements are
referred to by square brackets ([...]), such aspw [1] . Indices for the array can be fixed
numbers (pw [31), global variables (pw [r1]), or local variables (pw [$1i]). Of course,
the index must not exceed the size of the array. Use the size operator to determine the
array size. For example, the statement ri=size ('d2') setsrl to number of elements
in variable d2. If the variable has only asingle value, size returnsal,; if thevariable
doesn't exist, it returns a 0.

Some arrays, such as a pulse width array, are user-created. Other arrays, suichas11frqg
and 11amp, are created by the software (in this case when alinelist is performed). In both
these cases, a macro can refer to any existing element of the array, pw [4] or 11frg (5],
for example.

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

1.2 Programming with MAGICAL

A MAGICAL macro can aso create local variables containing arrayed information by
itself. No dimensioning statement is required; the variable just expands as necessary. The
only constraint is that the array must be created in order: element 1 isfirst, element 2
second, and so on. The following example shows how an array might be created and all
valuesinitialized to O:
$i=1
repeat

Snewarray [$1i] =0

$i=$i+l
until $i>10

Arrays of String Variables

Arrays of string variables are identical in every way to arrays of real variables, except that
the values are strings. If, for example, auser has entered dm='nny ', 'yyy"', the
following macro plots each spectrum with the proper label:
$i=1
repeat
select (S1)
pl
write ('plotter', 0,wc2max-10, 'Decoupler mode: %s',dm[$1])
page
$i=%$i+1
until Sis>size('dm')

Arrays of Listed Elements

Arrays can be constructed by simply listing the elements, separated by commas. For
example,
pw=1l,2,3,4

creates a pw array with four elements. Select the initial array element when using thislist

mechanism by providing the index in square brackets. For example,
pw[3]=5,6

results in pw having elements 1,2,5,6. Extend arraysasin
pw[5]1=7,8,9

whichyieldsapw array or 1,2,5,6,7,8,9. Change existing values and extend the array, asin
pwl6l=6,7,8,9,10

whichyields apw array of 1,2,5,6,7,6,7,8,9,10

Comma separated lists can aso include expressions. For example,
d2=0,1/swl,2/swl,3/swl

The square brackets can also be used on the right-hand side of the equal sign in order to
construct arrays. The [] can enclose a single value or expression or an array of values or
expressions. Any mathematics applied to the [] element is applied individually to each
element withinthe[].

Some examples.

Enter Result

nt=[1] nt=1
nt=[1,2,3] nt=1,2,3
nt=[1,2,3]*10 nt=10,20,30

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 33

Chapter 1. MAGICAL Il Programming

Enter Result

nt=22*[2*3,r2+6,trunc (r3)]+2 nt=22*2*3+2,22*% (r2+6) +2,22*trunc (r3) +2
d2=[0,1,2,3]/swl d2=0/swl,1/swl,2/swl,3/swl

Use[] to give precedence to expressions, just like ().

Enter Result

nt=[2*[3+4]] nt=14

There are acouple of limitations if the [] element is used as part of a mathematical
expression. When used in expressions, only asingle[] elementisallowed. Also, when used
in expressions, the [] element cannot be mixed with the standard comma (,) arraying
element. For example, nt=[1,2] * [3, 4] isnot alowed and generates the error
message:

"No more than one [--.--1"

nt=1, [2,3,4]*10 isnot alowed and generates the error message:
"Cannot combine , with [--.--]"

These restrictions only occur if mathematical operators are used and the [] element itself
containsacomma. Simply listing multiple[] elements, or combining them with the comma
element is okay.

Enter Result
nt=[1,2],3 nt=1,2,3
nt=[1,2], [3,4] nt=1,2,3,4

Array Error Messages

Accessing an array element that does not exist displays the error message:
variable name ["index"] index out of bounds

Using a string as an index, rather than an integer, displaysthe error message:
Index for variable name['index'] must be numeric

or
Index must be numeric

Finally, using an array as an index displays the error message:
Index for variable name must be numeric scalar

or
Index must be numeric scalar.

Expressions

An expression is a combination of variables, constants, and operators. Parentheses can be
used to group together a combination of expressions. Multiple nesting of parenthesesis
allowed. In making expressions, combine only variables and constants of the same type:

® Real variables and constants only with other real variables and constants.
® String variables and constants only with other string variables and constants.

The type of alocal variable (a variable whose name begins with a $) is determined by the
context in which it isfirst used. The only ambiguity iswhen alocal variableisfirst used as

34 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

1.2 Programming with MAGICAL

areturn argument of acommand such as input, as discussed in the previous section on
locdl variables.

If anillegal combination is attempted, an error message is displayed:
Can't assign STRING value "value" to REAL variable \
"variable name"

or
Can't assign REAL value (value) to STRING variable \
"variable name"

Mathematical Expressions

Expressions can be classified as mathematical or Boolean. Mathematical expressions can
be used in place of simple numbers or parameters. Expressions can be used in parameter
assignments, such asinpw=0.6*pw90, oOr asinput arguments to commands or macros,
suchasinpa (-5+sc, 50+vp).

When parameters are changed as aresult of expressions, the normal checks and limits on
the entry of that particular parameter are followed. For example, if nt=7, the statement
nt=0.5*nt will end withnt=3, just asdirectly entering nt=3 . 5 would have resulted
in nt=3. Other examples of this include the round-off of £n entriesto powers of two,
limitation of various parametersto be positive only, etc.

Boolean Expressions

Boolean expressions have a value of either TRUE or FAL SE. Booleans are represented
internally as 0.0 for FAL SE and 1.0 for TRUE, although in a Boolean expression any
number other than zero is interpreted as TRUE. Boolean expressions can only compare
quantities of the same type—real numbers with real numbers, or stringswith strings. Some
examples of Boolean expressions include pw=10, sw>=10000, at/2<0.05, and
(pw<5) or (pw>10).

The explicit use of the words“TRUE” and “FALSE” isnot alowed. All Boolean
expressions are implicit—they are evaluated when used and given avaue of TRUE or
FALSE for the purpose of some decision.

Input Arguments

Arguments passed to a macro are referenced by $n, where n is the argument number. An
unlimited number of arguments ($1, $2, and so on) can be passed. The name of the macro
itself may be accessed using the special name $0. For example, if themacro test1is
running, $0 isgiventhevalue test1. A second special variable $# contains the number
of arguments passed and can be used for routines having a variable number of arguments.
S## isthe number of return valuesrequested by the calling macro. Arguments can be either
real or string types, as with all parameters.

An example of using an input argumentssuch as $1:

"vsmult (multiplier) "

"Multiply vertical scale (vs) by input argument"
vs=$1l*vs

Another example, which uses two input arguments:

"offset (argl,arg2)"

"Increment vertical position (vp) and horizontal position (sc)"
vp=$1+vp

sc=$2+sc

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 35

Chapter 1. MAGICAL Il Programming

36

The typeof operator returns a0 if the variableisreal. It returnsa 1 if the variable isa
string. It will abort if the variable does not exist. For example, in the conditional statement
if typeof ('$1') then ..., thethen partisexecuted only if $1 isastring.

Name Replacement

An identifier surrounded by curly braces ({...}) resultsin the identifier being replaced by
its value before the full expression is evaluated. If the name replacement is on the left side
of the equal sign, the new nameisassigned avalue. If the name replacement ison theright
side of the equal sign, the value of the new name is used. The following are examples of
name replacement:

$a = 'pw!' "variable $a is set to string 'pw'"
{sa} = 10.3 "pw is set to 10.3"

pw = 20.5 "pw is set to 20.5"

$b = {sa} "variable $b is set to 20.5"
{$a}[2]1=5 "pw[2] is set to 5.0"

$b = {sa}[2] "variable $b is set to 5.0"
Scmd="wft' "Scmd is set to the string 'wft'"
{$cmd} "execute wft command"

The use of curly braces for command execution is subject to a number of constraints. In
general, using the VNMR command exec for the purpose of executing an arbitrary
command string is recommended. In thislast example, thiswould be exec (Scmd) .

Conditional Statements

The following forms of conditional statements are allowed:

if booleanexpression then ... endif

if booleanexpression then ... else ... endif

if booleanexpression then ... {elseif boolianexpression then...
}[else...lendif

Theelseif subexpression in braces can be repeated any number of times. Theelse
subexpression in bracketsis optional.)

Any number of statements (including none) can be inserted in place of the ellipses (...). If
booleanexpression is TRUE, the then statements are executed; if
booleanexpression iSFALSE, the else statements (if any) are executed instead.
Notethat endi £ isrequired for both formsand that no other delimiters (such asBEGIN or
END) are used, even when multiple statements are inserted. Nesting of 1 £ statements (the
use of if statement as part of another 1 £ statement) is allowed, but be sure each if has
acorrespondingendif.Nestedif . . . endif statementstendto resultinlong, confusing
listsof endif keywords. Often, this can be avoided by usingtheelseif keyword. Any
number of elsei f statementscanbeincludedinan if. . .endif expression. Only one
of theif, elseif, or else clauseswill be executed.

The following example usesasimple i £ ... then conditional statement:

"error --- Check for error conditions"
if (pw>100) or (dl1>30) or ((tn='H1') and (dhp='y'))

then write('line3', 'Problem with acquisition parameters')
endif

This example adds an e1 se conditional statement:

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

1.2 Programming with MAGICAL

"checkpw --- Check pulse width against predefined limits"
if pw<l
then pw=1 write('line3', 'pw too small')
else if pw>100
then pw=100 write('line3', 'pw too large')
endif

endif
Thisexampleillustrates the use of elseif conditional statements:

if ($1='mon') then
echo ('Monday"')

elseif ($1 = 'tue') then
echo ('Tuesday')
elseif ($1 = 'wed') then

echo ('Wednesday')

elseif ($1 = 'thu') then
echo ('Thursday')

elseif ($1 = 'fri') then
echo ('Friday"')

else
echo ('Weekend')
endif

Loops

Two types of loops are available. The while loop has the form:
while booleanexpression do ... endwhile

Thistype of loop repeats the statements between do and endwhile, aslong as
booleanexpressioniSTRUE (if booleanexpression is FALSE from the start,
the statements are not executed).

The other type of loop isthe repeat loop, which has the form:
repeat ... until booleanexpression

Thisloop repeats statements between repeat anduntil, until booleanexpression
becomes TRUE (if booleanexpression isTRUE at the start, the statements are
executed once).

The essential difference between repeat and while loopsisthat the repeat type
always performsthe statementsat least once, whilethewhile type may never perform the
statements. The following macro is an example of using the repeat loop:
"maxpk (first,last) -- Find tallest peak in a series of spectra"
Sfirst=s1
repeat
select ($1) peak:S$Sht
if $1=Sfirst
then S$Smaxht=Sht
else if sht>$Smaxht then Smaxht=sht endif
endif
$1=%51+1
until $1>%2

Both types of loops are often preceded by $n=1, then have a statement like $n=3n+1
inside the loop to increment some looping condition. Beware of endless loops!

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 37

Chapter 1. MAGICAL Il Programming

Macro Length and Termination

Macros have no restriction on length. Execution of a macro is terminated when the
command return is encountered. Thisis usually inserted into the macro after testing
some condition, as shown in the example bel ow:

"plotif--Plot a spectrum if tallest peak less than 200 mm"
peak:Sht

if $ht>200 then return else pl endif

The syntax return (expressionl, expression2, ...) alowsthe macro to return
values to another calling macro, just as do commands. Thisinformation is captured by the
calling macro using the format : argumentl, argument?2, ... Hereisan example of
returning a value to the calling macro:

"abs (input) :output -- Take absolute value of input"

if $1>0 then return($l) else return(-$1) endif

In nested macros, return terminatesthe currently operating macro, but not the macro that
called the current macro.

To terminate the action of the calling macro (and all higher levels of nesting), the abort
command is provided. abort can be made to act like return at any particular level by
using the abortof £ command. Consider the following sequence:

abortoff macrol macro2

If macrol containsan abort command and it is executed, abort terminatesmacrol;
however, macro2 dtill will be executed. If the macro sequence did not contain the
abortof £ statement, however, execution of an abort commandinmacrol would have
prevented the operation of macro2. The aborton command nullifies the operation of
abortof £ and restores the normal functioning of abort.

Command and Macro Tracing

InVnmrJwe send the output to any terminal window. In theterminal window type'tty';
reply is /dev/pts/xx, where xx isanumber. Use this on the VnmrJ command line
jFunc (55, ' /dev/pts/xx") . Replace xx with the correct number.

The commands debug ('c') and debug ('C') turn on and off, respectively, VnmrJ
command and macro tracing. When tracing is on, alist of each executed command and
macro is displayed in the Terminal window from which VnmrJwas started. Nesting of the
calls is shown by indentation of the output. A return status of “returned” or “aborted” can
help track down which macro or command failed.

If VnmrJis started when the user logs in, the output goes to a Console window. If no
Consolewindow is present, the output goesinto afileinthe /var/tmp directory. Thislast
option is not recommended.

1.3 Relevant VnmrJ Commands
® “Spectral Analysis Tools,” page 39
® “Input/Output Tools,” page 40
® “Regression and Curve Fitting,” page 42
® “Mathematical Functions,” page 43
® “Creating, Modifying, and Displaying Macros,” page 44
® “Miscellaneous Tools,” page 46

38 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

1.3 Relevant VnmrJ Commands

Many VnmrJ commands are particularly well-suited for use with MAGICAL
programming. This section lists some of those commands with their syntax (if the
command uses arguments) and a short summary taken from the VnmrJ Command and
Parameter Reference. Refer to that publication for more information. (Remember that
string arguments must be enclosed in single quotes.)

Spectral Analysis Tools

dres

Syntax:

Description:

dsn

Syntax:

Description:

dsnmax

Syntax:

Description:

getll

Syntax:

Description:

getreg

Syntax:

Description:

integ

Syntax:

Description:

01-999379-00 A 0708

Measure linewidth and digital resolution

dres< (<frequency<, fractional height>>)> \
:linewidth, resolution

Analyzesline defined by current cursor position (cr) for linewidth and digital
resolution. frequency overrides cr asthe line frequency.
fractional height specifiesthe height at which linewidth is measured.

Measure signal-to-noise
dsn< (low field,high field)s>:signal to noise,noise

M easures signal-to-noise of the tallest peak in the displayed spectrum. Noise
region, in Hz, is specified by supplying low fieldandhigh field
frequencies or it is specified by the positions of the left and right cursors.

Calculate maximum signal-to-noise
dsnmax< (noise region) >

Finds best signal-to-noisein aregion. noise region,in Hz, can be
specified, or the cursor difference (delta) can be used by default.

Get line frequency and intensity from line list
getll (line number)<:height, frequencys>

Returns the height and frequency of the specified line number.

Get frequency limits of a specified region
getreg(region number) <:minimum, maximum>

Returns the minimum and maximum frequencies, in Hz, of the specified region
number.

Find largest integral in specified region
integ< (highfield, lowfield) ><:size,value>

Finds the largest absolute-value integral in the specified region or the total
integral if no reset points are present between the specified limits. The default
valuesfor highfield and lowfield are parameters sp and sp+wp,
respectively.

VnmrJ 2.2 Ml User Programming 39

Chapter 1. MAGICAL Il Programming

mark

Syntax:

Description:

nll

Syntax:

Description:

numreg

Syntax:

Description:

peak

Syntax:

Description:

select

Syntax:

Description:

Determine intensity of the spectrum at a point
mark< (£1 _position) >

mark< (left edge,region width) >

mark< (£1 _position, f2 position) >

mark< (£1_start,fl end, f2 start,f2 end) >
mark< ('trace', <options>) >

mark ('reset')

1D or 2D operations can be performed in the cursor or box mode for atotal of
four separate functions. In the cursor mode, the intensity at a particular point is
found. In the box mode, the integral over aregion iscalculated. For 2D
operations, thisisavolumeintegral. In addition, themark command in the box
mode finds the maximum intensity and the coordinate(s) of the maximum
intensity.

Find line frequencies and intensities
nll<('pos'<,noise mult))><:number lines>

Returnsthe number of linesusing the current threshold, but does not display or
print the line list.

Return the number of regions in a spectrum
numreg:number regions

Finds the number of regionsin a previously divided spectrum.

Find tallest peak in specified region
peak< (min_ frequency,max frequency) ><:height, freg>

Finds the height and frequency of the tallest peak in the selected region.
min frequency and max_frequency arethefrequency limits, in Hz, of
the region to be searched; default values are the parameters sp and sp+wp.

Select spectrum or 2D plane without displaying it
select<(<'f1£3'|'£2£3"'|'f1£f2'><, 'proj'> \
<'next'|'prev'|planes>)><:index>

Setsfuture actionsto apply to aparticular spectrum in an array or to aparticular
2D plane of a3D data set. index istheindex number of spectrum or 2D plane.

Input/Output Tools

apa

Description:

banner

Syntax:

Description:

40

VnmrJ 2.2 Ml User Programming

Plot parameters automatically
Selects the appropriate command on different devices to plot the parameter list.

Display message with large characters
banner (message<, color><, font>)

Displaysthe text given by message aslarge-size characters on the VNMR
graphics windows.

01-999379-00 A 0708

clear

Syntax:

Description:

echo

Syntax:

Description:

format

Syntax:

Description:

input

Syntax:

Description:

lookup

Syntax:

Description:

nrecords

Syntax:

Description:

psgset

Syntax:

Description:

01-999379-00 A 0708

1.3 Relevant VnmrJ Commands

Clear a window
clear< (window_number) >

Clearswindow given by window number. With no argument, clears the text
screen. Clear(2) clears the graphics screen.

Display strings and parameter values in text window
echo<(<'-n',>stringl,string2,....)>

Functionally similar tothe UNIX echo command. Argumentsto VNMR echo
can be strings or parameter values, such aspw. The '-n' option suppresses
advancing to the next line.

Format a real number or convert a string for output

format (real number,length,precision) :string var
format (string, 'upper'|'lower'|'isreal') :return var

Using first syntax, takesareal number and formatsit into a string with the given
length and precision. Using second syntax, converts a string variable into a
string of characters, all upper case or all lowercase, or teststhefirst argument to
verify that it satisfiesthe rules for areal number (1 isreturned if the first
argument isareal number, otherwise a zero is returned).

Receive input from keyboard
input< (<prompt><,delimiter>) >:varl,var2, ...

Receives characters from the keyboard and stores them into one or more string
variables. prompt isastring that is displayed on the command line. The
default delimiter isacomma

Look up and return words and lines from text file
lookup (options) :returnl, return2, ...,number returned

Searches atext filefor aword and returnsto the user subsequent words or lines.
options isoneor morekeywords ('file",

'seek', 'skip', 'read', 'readline', 'count', and
'delimiter') and other arguments.

Determine number of lines in a file
nrecords (file) : Snumber lines

Returns the number of “records,” or lines, in the given file.

Set up parameters for various pulse sequences
psgset (file, paraml, param2, ..., paramN)

Sets up parametersfor various pulse sequences using information in afile from
the user or system parlib.

VnmrJ 2.2 Ml User Programming 41

Chapter 1. MAGICAL Il Programming

write

Syntax:

Description:

Write output to various devices
write ('graphics'|'plotter'<,color|pen> \

<, 'reverse's>,x,y<,template>)<:height>
write('alpha'|'printer'|'line3'|'error', template)
write('reset'|'file', file<,template>)

Displays strings and parameter values on various output devices.

Regression and Curve Fitting

analyze

Syntax:

Description:

autoscale

Description:

expfit

Syntax:

Description:

expl
Syntax:

Description:

pexpl
Syntax:

Description:

polyo0
Description:

rinput

Description:

42

VnmrJ 2.2 Ml User Programming

Generalized curve fitting

(Curvefitting) analyze ('expfit',xarray<,options>)
(Regression) analyze ('expfit', 'regression'<,options>)

Provides an interface to the curve fitting program exp £ i t, supplying input
datain the form of thetext fileanalyze . inp inthe current experiment.

Resume autoscaling after limits set by scalelimits

Returnsto autoscaling in which the scale limits are determined by the expl
command such that all the dataiin the expl input file is displayed.

Least-squares fit to exponential or polynomial curve
expfit options <analyze.inp >analyze.list

A command that takes a least-squares curve fitting to the data supplied in the
fileanalyze.inp.

Display exponential or polynomial curves
expl< (<options,>linel,line2,...)>

Displays exponential curves resulting from T4, T, or Kinetic analyses. Also
displays polynomia curves from diffusion or other types of analysis.

Plot exponential or polynomial curves
pexpl< (<options><,linel,line2,...)>

Plotsexponential curvesfrom Ty, T,, or kineticsanalysis. Also plots polynomial
curves from diffusion or other types of analysis.

Display mean of the data in the file regression.inp
Calculates and displays the mean of datain thefile regression. inp.

Input data for a regression analysis

Formats data for regression analysis and placesit into the file
regression.inp.

01-999379-00 A 0708

scalelimits

Syntax:

Description:

1.3 Relevant VnmrJ Commands

Set limits for scales in regression
Scalelimits (x_start,x end,y start,y end)

Causes the command exp1 to use typed-in scale limits.

Mathematical Functions

abs

Syntax:

Description:

acos

Syntax:

Description:

asin

Syntax:

Description:

atan

Syntax:

Description:

atan2

Syntax:

Description:

averag

Syntax:

Description:

cos

Syntax:

Description:

exp

Syntax:

Description:

01-999379-00 A 0708

Find absolute value of a number
abs (number) <:value>

Finds absolute value of a number.

Find arc cosine of a number
acos (number) <:value>

Finds arc cosine of a number. The optional return value isin radians.

Find arc sine of a number
asin (number) <:value>

Finds arc sine of a number. The optional return value isin radians.

Find arc tangent of a number
atan (number) <:value>

Finds arc tangent of a number. The optional return value isin radians.

Find arc tangent of two numbers
atan2 (y,x) <:value>

Finds arc tangent of y/x. The optional return argument value isin radians.

Calculate average and standard deviation of input

averag (numl,num2,...) \
:average, sd, arguments, sum, sum_squares

Finds average, standard deviation, and other characteristics of a series of
numbers.

Find cosine value of an angle
cos (angle) <:value>

Finds cosine of an angle given in radians.
Find exponential value of a number

exp (number) <:value>

Finds exponential value (base e) of a number.

VnmrJ 2.2 Ml User Programming 43

Chapter 1. MAGICAL Il Programming

1n

Syntax:

Description:

sin

Syntax:

Description:

tan

Syntax:

Description:

Find natural logarithm of a number
1n (number) <:value>

Finds natural logarithm of a number. To convert to base 10, use
logigx = 0.43429 *1n(x).

Find sine value of an angle
sin (angle)<:value>

Finds sine an angle given in radians.

Find tangent value of an angle
tan (angle) <:value>

Finds tangent of an angle given in radians.

Creating, Modifying, and Displaying Macros

crcom

Syntax:

Description:

delcom

Syntax:

Description:

hidecommand

Syntax:

Description:

macrocat

Syntax:

Description:

macrocCcp

Syntax:

Description:

44 VnmrJ 2.2 Ml User Programming

Create a user macro without using a text editor
crcom(file,actions)

Creates a user macro filein the user's macro directory. The actions stringis
the contents of the new macro.

Delete a user macro
delcom(file)

Deletes a user macro filein the user's macro directory. The actions stringis
the contents of the new macro.

Execute macro instead of command with same name

hidecommand (command name) <:$new_name>
hidecommand('?"')

Renamesabuilt-in VNMR command so that a macro with the same name asthe
built-in command is executed instead of the built-in command.
command_name is the name of the command to be renamed. ' ? ' displaysa
list of renamed built-in commands.

Display a user macro on the text window
macrocat (filel<,file2><, ...>)

Displays one or more user macro files, wherefilel, file2, ... arenames

of macros in the user macro directory.
Copy a user macro file

macrocp (from file,to file)

Makes a copy of an existing user macro.

01-999379-00 A 0708

macrodir

Description:

macroedit

Syntax:

Description:

macrold

Syntax:

Description:

macrorm

Syntax:

Description:

macrosyscat

Syntax:

Description:

macrosyscp

Syntax:

Description:

macrosysdir

Description:

macrosysrm

Syntax:

Description:

macrovi

Syntax:

Description:

mstat

Syntax:

01-999379-00 A 0708

1.3 Relevant VnmrJ Commands

List user macros
Lists names of user macros.

Edit a user macro with user-selectable editor
macroedit (file)

Modifiesan existing user macro or createsanew macro. To edit asystem macro,
copy it to a personal macro directory first.

Load a macro into memory
macrold(file) <:dummys>

L oadsamacro, user or system, into memory. If macro already existsin memory,
it is overwritten by the new macro. Including areturn value suppresses the
message on line 3 that the macro is loaded.

Remove a user macro
macrorm(file)

Removes a user macro from the user macro directory.

Display a system macro on the text window
macrosyscat (filel<,file2><,...>)

Displays one or more system macro files, where filel, file2,..are

names of macros in the system macro directory.

Copy a system macro to become a user macro
macrosyscp (from file,to file)

Makes a copy of an existing system macro.

List system macros
Lists names of system macros.

Remove a system macro
macrosysrm(file)

Removes a system macro from the macro directory.

Edit a user macro with vi text editor
macrovi (file)

Modifiesan existing user macro or creates anew macro using thevi text editor.
To edit a system macro, copy it to a persona macro directory first.

Display memory usage statistics

mstat< (program_ id) >

VnmrJ 2.2 Ml User Programming 45

Chapter 1. MAGICAL Il Programming

Description:

purge
Syntax:

Description:

record

Syntax:

Description:

Displays memory usage statistics on macros loaded into memory.

Remove a macro from memory
purge< (file) >

Removes a macro from memory, freeing extra memory space. With no
argument, removes all macros loaded into memory by macrold.

Record keyboard entries as a macro
record< (file|'off"') >

Records keyboard entries and stores the entries as a macro filein the user’s
maclib directory.

Miscellaneous Tools

axis

Syntax:

Description:

beepoff
Description:

beepon

Description:

bootup

Syntax:

Description:

exec

Syntax:

Description:

exists

Syntax:

46

VnmrJ 2.2 Ml User Programming

Provide axis labels and scaling factors

axis('fn'|'fnl'|'fn2')<:S%axis label, \
Sfrequency scaling, $factors>

Returnsaxis|abels, the divisor to convert from Hz to unitsdefined by theaxis
parameter with any scaling, and a second scaling factor determined by any
scalesw typeof parameter. Theparameter 'fn' | '£nl' | ' £n2' describes
the Fourier number for the axis.

Turn beeper off
Turns beeper sound off. The default is beeper sound on.

Turn beeper on
Turns beeper sound on. The default is beeper sound on.

Macro executed automatically when VnmrJ is started
bootup< (foreground) >

Displaysamessage, runsauser Login macro (if it exists), startsAcgstat and
acqgi (spectrometer only), and displaysthe menu system. bootup and login
can be customized for each user (Login is preferred because bootup is
overridden when anew VNMR releaseisinstalled). foreground isO if
VNMR is being run in foreground, non-zero otherwise.

Execute a VnmrJ command
exec (command_string)

Takes as an argument a character string constructed from amacro and executes
the VNMR command given by command_string.

Determine if a parameter, file, or macro exists

exists (name, type) : Sexists

01-999379-00 A 0708

Description:

focus

Description:

gap

Syntax:

Description:

getfile

Syntax:

Description:

graphis

Syntax:

Description:

length

Syntax:

Description:

listenoff

Description:

listenon

Description:

1.3 Relevant VnmrJ Commands

Checks for the existence of a parameter, file, or macro with the given name.
typeis'parameter', 'file', 'maclib', 'ascii', 'directory’
or filename. Seethe Command and Parameter Reference manual for a
detailed description of the use of exists for Applications Directory usage.

Send keyboard focus to VNMR input window
Sends keyboard focus to the VNMR input window.

Find gap in the current spectrum
gap (gap, height) : found, position,width
Looksfor agap between lines of the currently displayed spectrum, where gap

isthe width of the desired gap and height isthe starting height. found is1
issearch is successful, or O if unsuccessful.

Get information about directories and files
getfile(directory,file index) :$file,$file extension
getfile(directory) : $number files

If file indexisspecified, thefirst return argument isthe name of thefilein
the directory with theindex £ile index, excluding any extension, and the
second return argument isthe extension. If £ile index isnot specified, the
return argument contains the number of filesin the directory (dot files are not
included in the count).

Return the current graphics display status

graphis (command) : $yes_no
graphis:$display command

Determines what command currently controls the graphics window. If no
argument is supplied, the name of the currently controlling command is
returned.

Determine length of a string
length(string) : $string length
Determines the length in characters of the given string.

Disable receipt of messages from send2Vnmr

Deletesfile $Svnmruser/ . talk, disdlowing UNIX command send2Vnmr
to send commands to VNMR.

Enable receipt of messages from send2Vnmr

Writesfileswith VNMR port number that UNIX command send2Vnmr needs
to talk to VNMR. The command then to send commandsto VNMR is
/vnmr/bin/send2Vnmr $vnmruser/.talk command

where command is any character string (commands, macros, or if statements)
normally typed into the VNMR input window.

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 47

Chapter 1. MAGICAL Il Programming

login

Description:

off
Syntax:

Description:

on

Syntax:

Description:

readlk
Syntax:

Description:

rtv

Syntax:

Description:

shell

Syntax:

solppm
Syntax:

User macro executed when VnmrJ activated

When VNMR starts, the bootup macro executes, and then, if the login
macro exists, bootup executes the 1ogin macro. By creating and
customizing the 1ogin macro, a VNMR session can be tailored for an
individual user. The 1ogin macro does not exist by default.

Make a parameter inactive
off (parameter|'n'<, tree>)

Makes a parameter inactive. tree is 'current', 'global’,
'processed',or 'systemglobal'.

Make a parameter active or test its state
on(parameter|'y'<,tree>)<:Sactives>

Makes a parameter active or tests the active flag of a parameter. tree is
'current', 'global', 'processed',Or 'systemglobal'

Read current lock level
readlk<:lock level>

Returnsthe same information as would be displayed on the digital lock display
using the manual shimming window. It cannot be used during acquisition or
manual shimming, but can be used to develop automatic shimming methods
such as shimming viagrid searching.

Retrieve individual parameters
rtv<(file,parl<,indexl<,par2,index2...>>)><:val>

Retrieves one or more parameters from a parameter file to the experiment’s
current tree. If areturn argument isadded, rtv instead returns values to macro
variables, which avoids creating additional parametersin the current tree. For
arrayed parameters, array index arguments can specify which elementsto return
to the macro. The default is the first element.

Start a UNIX shell
shell< (command) >:$varl, svar2, ...

If no argument is given, opens anormal UNIX shell. If aUNIX command is
entered as an argument, shel1l executes the command. Text lines usually
displayed as aresult of the UNIX command given in the argument can be
returned to $varl, Svar2, etc. shell calsinvolving pipes or input
redirection (<) require either an extra pair of parentheses or the addition of
; cat tothe shell command string, such as:
shell('ls -t|grep May; cat')

or
shell (' (ls -t|grep May))

Return ppm and peak width of solvent resonances

solppm:chemical shift,peak width

48 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Description:

substr

Syntax:

Description:

textis

Syntax:

Description:

unit

Syntax:

Description:

1.3 Relevant VnmrJ Commands

Returnsinformation about the chemical shift in ppm and peak spread of solvent
resonances in various solvents for either 'H or °C, depending on the observe
nucleus tn and the solvent parameter solvent. This macrois used
“internally” by other macros only.

Select a substring from a string

substr (string, word number) :substring
substr (string, index, length) : substring

Picks a substring out of a string. If two arguments are given, substring
returnsthe word number word in string. If three arguments, it returns a
substring from st ring where index isthe number of the character at which
to begin and Length isthelength of the substring.

Return the current text display status

textis (command) : $yes_no
textis:$display command

Determines what command currently controls the text window. If no argument
is supplied, the name of the current controlling command is returned.

Define conversion units

unit<(suffix,label,m<,tree><,'mult'|'div'>, \
b<,tree><,'add' | 'sub'>) >

Definesalinear relationship that can be used to enter parameterswith units. The
unitis applied as a suffix to the numerical value (e.g., 10k, 100p). suffix
identifies the name for the unit (e.g., 'k'). label isthe nameto be displayed
when the axis parameter is set to the value of the suffix (e.g., 'kHz'). m and
b are the slope and intercept, respectively, of the linear relationship. A
convenient place to put unit commandsfor all usersisin the bootup macro.
Put private unit commandsin auser’'s login macro.

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 49

Chapter 1. MAGICAL Il Programming

50 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

chapter 2. Pulse Sequence Programming

Sectionsin this chapter:
® 2.1*Application Type and Execpars Programming,” page 51
® 2.2*"Overview of Pulse Sequence Programming,” page 55
® 2.3*Spectrometer Control,” page 60
® 2.4*"Pulse Sequence Statements: Phase and Sequence Control,” page 76
® 25"Rea-Time AP Tables,” page 83
® 2.6 "Accessing Parameters,” page 89
® 2.7*"Using Interactive Parameter Adjustment,” page 98
® 2.8"Hardware Looping and Explicit Acquisition,” page 103
® 2.9 *"Pulse Sequence Synchronization,” page 108
® 2.10“Pulse Shaping,” page 108
® 2.11 “Shaped Pulses Using Attenuators,” page 116
® 2.12“Interna Hardware Delays,” page 119
® 2.13"Indirect Detection on Fixed-Frequency Channel,” page 122
® 2.14“Multidimensional NMR,” page 122
® 2.15*“Gradient Control for PFG and Imaging,” page 125
® 2.16 “Programming the Performa XY Z PFG Module,” page 127
® 2.17 “Imaging-Related Statements,” page 129
® 2.18 “User-Customized Pulse Sequence Generation,” page 132

2.1 Application Type and Execpars Programming

AnNMR protocol isaspecific set of parameters and methods used to acquire, process, plot,
and store NMR data. The parameters also specify the pulse sequence used to acquire the
data. NMR protocols can be grouped into classes or types of applications, which often share
many of the parameters and methods needed by individual protocols.

VnmrJuses protocol s and application types (appt ype) to systemati ze the devel opment of
new NMR protocols. The next section describes how protocols and application types are
programmed. The remainder of this chapter describes how to program pulse sequences
using the traditional C language. To use the SpinCAD interface for creating pulse
sequences, refer to the SHinCAD manual.

The application type concept provides preparation, prescan, processing, and plotting
customization based on the type of NMR data.

01-999379-00 A 0708 vnmrJ 2.2 M User Programming 51

Chapter 2. Pulse Sequence Programming

52

apptypes

Each apptype has a corresponding macro, which has the same name as the apptype. These
macros handle the customization required for that apptype.

Liquids apptypes

apptype representative protocols

std1d Proton, Carbon, Phosphorus, Presat, Apt, Dept

homo2d Cosy, Dqcosy, Geosy, Gdgcosy, Noesy

hetero2d Cigar, Cigar2j3j, Ghmbc, Ghmac, Ghmgctoxy, Ghsgce, Ghsgctoxy, Hmbe, Hmac,

Hmactoxy, Hsgc, Hsqctoxy

Imaging apptypes

apptype representative protocols
im1D pressisissteam

im1Dcsi presscsi steamcsi
im1Dglobal spuls

im2D angio gems mems sems semsdw
im2Dcsi csi2d

im2Dfse fsems

im3D ct3d, ge3d, ge3dangio, se3d
im3Dfse fse3d

imEPI epidw epimss epimssn
imFM fastestmap

execpar Parameters

Five execpar parameters control the execution of the apptype macros: execsetup,
execprep, execprescan, execprocess, and execplot. Thefollowing two
examples show how the execpar parameters are set for st1d and im2D apptypes.

std1d apptype im2D apptype

execsetup = “std1d('setup’)’ execsetup = 'im2D('prep’)’
execprep =" execprep = "im2D('prep’)’
execprescan = execprescan = "im2D(‘prescan’)’
execprocess = “std1d(‘process)’ execprocess = 'im2D(‘proc’)”
execplot = "std1d('plot’) execplot ="

These parameters should not be set to specific actions, such as'ni=256"' or 'pcon
page'. They should only call the apptype macro with appropriate arguments, which
avoids problemsif someone wants to change the behavior. Instead of fixing all the old
parameter sets, you only need to update one macro.

Files containing these execpar parameters are saved inthe /vnmr /execpars directory.
You can have private execpar parametersina /userdir/execpars directory. The
Configure EXEC parameters window (under the Utilities menu) allows you to create and
update these parameters. Behind the scenes, the execpars macro handles these
parameter files. It can read the execparsinto the current parameter set, save execpars, create
default execpars, or delete execpars.

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

2.1 Application Type and Execpars Programming

Standard macros execute the execpar strings. The rules for executing these strings, based
on the execpar parameters, are as follows. If the parameter does not exist, or is set to
inactive, the execpar string is not executed. Otherwise, the execpar string is executed. Some
macros include default behavior. In these cases, if the execpar is set to inactive, the default
behavior will occur. If the execpar is set to active and the valueis", no action, including no
default action will occur. An example might clarify this. The process macro provides
default NMR processing tools. At the beginning of this macro is the execpars handling.
on ('execprocess') :Se
if (Sse > 0.5) then

exec (execprocess)

return
endif

The on command tests whether the execprocess exists and is active. If it does not exist or
isinactive, the se will belessthan 0.5 and the exec command and return command
will not be executed. The rest of the process macro will be executed, giving default
behavior. If the parameter is active, the exec command will be executed. Now, if
execprocess="",the exec command will return without executing anything. Thisis
followed by return, which exits the process macro, avoiding any default processing.

When aprotocol is brought into awork space or study queue, the cgexp (for liquids) or
sgexp (for imaging) macro is called. These check if the execsetup parameter exists.
If it does not, it runsexecpars to read the execpars for that apptype. Using the rules
above, it might execute the execsetup string.

The execpars parameters are executed by severa other standard macros:

Macro execpar string executed, using above rules
acquire execprep

prep execprep

settime execprep

prescan _gain execprescan

process EXecprocess

plot execplot

As a consequence of the execpars scheme, the usergo and go_segf il macros are no
longer used. This customization should behhandled inthe ' setup' or 'prep' section of
the apptype macros.

The apptype macros should use the template shown in Listing 1. If thereisafirst argument,
itshouldbeprep, proc, prescan, orplot. Additiona argumentscanbeused (setup,
process, plot).

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 53

Chapter 2. Pulse Sequence Programming

Listing 1. apptype Macro Template

// * ok kk ok kk ok Parse input * ok kkok kK k
$action = 'prep'
$do = '
if ($# > 0) then

Saction = $1

if ($# > 1) then

Sdo = $2

endif

endif

isvnmrj:$v]j

// *kkkkkkk Setup *kkkkkkk
if (Saction = 'prep') then
// apptype preparatory customization
execseq('prep') // Execute any sequence specific preparation
// additional apptype preparatory customization

// *kkkkkkk processing & Display *kkkkkkk

elseif (Saction = 'proc') then
// apptype processing customization
execseq('proc') // Execute any sequence specific processing

// additional apptype processing customization

// *kkkkkkk Prescan *kkkkkkk
elseif (Saction = 'prescan') then
// apptype prescan customization
execseq('prescan') // Execute any sequence specific prescan
// additional apptype prescan customization

// *kkkkkkk Plot *kkkk kKK

elseif (Saction = 'plot') then
// apptype plot customization
execseq('plot') // Execute any sequence specific plot

// additional plot prescan customization
endif

The exec seq macro constructs a macro name as
Smacro = seqgfil + ' ' + $1

and will executeit if it exists. If no argument isgiven, it defaultsto ' prep'. Thisalows
for sequence specific behavior.

Protocol Programming

A protocol ismade by defining itsparametersand specifying itsapptype. The New Protocol
window (Utilities->Make a New Protocol) will save the current parameters for that
protocol, construct the necessary file so that the protocol is available from the L ocator and
the Experiment selector, and create a macro which can be used to setup that protocol. For
liquids, the macro calls the cgexp macro with the protocol name and apptype as the two
arguments. For example, the macro for the Proton protocol is

cgexp ('Proton', 'stdld")

54 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

2.2 Overview of Pulse Sequence Programming

Withthisinformation, the cgexp macro readsin the execparsfor the std1d apptype. It then
executes macro defined by the execsetup parameter. In this case,
execsetup="stdld('setup') ~.

The std1d macro gets called with the ' setup ' argument. Before calling the command
specified by the execsetup parameter, the cgexp macro set the parameter macro toits
first argument.

The first argument is the name of the specific protocol, so that, in this case,
macro="'Proton'. The apptype macros, (e.g., std1d) typicaly use the macro
parameter in order to decide which parameter set should be used.

2.2 Overview of Pulse Sequence Programming

® “Spectrometer Differences,” page 55

® “Pulse Sequence Generation Directory,” page 55

® “Compiling the New Pulse Sequence,” page 56

® “Troubleshooting the New Pulse Sequence,” page 57

® “Creating a Parameter Table for Pulse Sequence Object Code,” page 58
® “C Framework for Pulse Sequences,” page 58

® “Implicit Acquisition,” page 60

® “Acquisition Status Codes,” page 60

Pulse sequences can be written in C, a high-level programming language that allows
considerable sophistication in the way pulse sequences are created and executed. New

pul se sequences can be added to the software by writing and compiling ashort C procedure.
This processis simplified using the tools provided with VnmrJ.

Spectrometer Differences

Thismanua contains information on how to write pulse sequences for YNTYINOVA and
MERCURYplus/-Vx spectrometers. Each spectrometer has different capabilities, so not all
statements may be executed on all platforms.

For example, because MERCURYplug/-Vx hardware differs significantly from UNTINOVA
hardware, sectionsin this manual covering waveform generators and imaging are not
applicable to the MERCURYplus/-Vx even though the pul se sequence programming
language is the same. Pay careful attention to comments in the text regarding the system
applicability of the pulse sequence statement or technique.

Pulse Sequence Generation Directory

Pulse sequence generation (PSG) text files (like hom2dj . c in Listing 2) arestored in a
directory named psglib. The system (/vnmr/psglib) and each user haveapsglib
directory.

Theuser psglib isstored in the user’s private directory system (e.g., for user vamr1, in
vnmrsys/psglib). Some systemsuse /space and Linux uses /home. All pulse
sequencefilesstored in these directoriesare given the extension . ¢ toindicate that thefile
contains C language source code. For instance, a homonuclear-2D-J sequence that may
have written by a user (other than the system administrator) is automatically stored in the

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 55

Chapter 2. Pulse Sequence Programming

Listing 2. Simplified Text File for hom2dj.c Pulse Sequence Listing

#include <standard.h>
pulsesequence ()
{
initval (4.0,v9); divn(ct,v9,vs8);
status (A) ;
hsdelay (dl) ;
status (B) ;
add(zero,v8,vl); pulse(pw,vl);
delay(d2/2.0) ;
mod4 (ct,vl); add(vl,v8,vl); pulse(pl,vl);
delay(d2/2.0) ;
status (C) ;
mod2 (ct,oph) ; dbl (oph, oph); add(oph,v8,oph) ;

user’s private pulse sequence directory and has aname like home /user/vamrsys/
psglib/hom2dj.c

Numerous segquences are in the standard Varian-supplied directory /vnmr/psglib and
in the user library directory /vnmr/userlib/psglib, or aseguence can be written
using any of the standard text editors such asvi or textedit. Once a pulse sequence
exists, it can subsequently be modified as desired, again using one of a number of text
editors.

Compiling the New Pulse Sequence

After a pulse sequence is written, the source code is compiled by one of these methods:
® By entering seggen (file<.c>) ontheVnmrd command line.
® By entering seggen file<.c> fromaUNIX shell.

For example, entering seggen ('hom2dj ') compilesthe hom2dj . ¢ sequencein
VnmrJand entering seqgen hom2dj doesthe samein Linux. Notethat afull path, such
as (' /home/vnmrl/vnmrsys/psglib/hom2dj.c') or even

seggen ('hom2dj.c') isnot necessary or possible—the seggen command knows
where to look to find the source code file and knows that it will have a . ¢ extension.

During compilation, the system performs the following steps:

1. Iftheprogram dps_ps genispresentin /vamr/bin, extensions are added to
the pulse sequence to allow agraphical display of the sequence by entering the dps
command. Statements dps_of £, dps_on, dps_skip, and dps_show can be
inserted in the pul se sequence to control the dps display.

2. Thesource codeis passed through the Linux program 1int to check for variable
consistency, correct usage of functions, and other program details.

3. Thesource code is converted into object code.

4. If the conversion is successful, the object code is combined with the necessary
system psg object libraries (1ibparam.so and 1ibpsglib.so),ina
procedure called link loading, to produce the executable pulse sequence code. This
isactually done at run-time. If compilation of the pul se sequence with the dps
extensions fails, the pulse sequence is recompiled without the dps extensions.

56 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

2.2 Overview of Pulse Sequence Programming

If the executable pul se sequence code is successfully produced, it is stored in the user
seglib directory (e.g., /home/vnmrl/vnmrsys/seqlib). If the user does not
have aseqlib directory, it isautomatically created.

Likepsglib, different seqlib directoriesexist, including the system directory and each
user’s directory. The user's vnmrsys directory should have directories psglib and
seqglib. Whenever auser attemptsto run a pul se sequence, the softwarelooksfirst in the
user's personal directory for a pulse sequence by that name, then in the system directory.

A number of sequences are supplied in /vnmr/seglib, compiled and ready to use. The
source code for each of these sequencesisfound in /vnmr/psglib. To compile one of
these sequences, or to modify asequencein /vnmr/psglib, copy the sequenceintothe
user's psglib, make any desired modifications, then compile the sequence using
seqggen. (seggen will not compile sequencesdirectly in /vnmr/psglib). All
sequencesin /vnmr /psglib have an appropriate macro using them.

Troubleshooting the New Pulse Sequence

During the process of pulse sequence generation (PSG) with the segqgen command, the
user-written C procedureis passed through a utility to identify incorrect C syntax or to hint
at potentia coding problems. If an error occurs, a number of messages usually are
displayed. Somewhere among them are these statements:

Pulse Sequence did not compile.

The following errors can also be found in the

file /home/vnmrl/vnmrsys/psglib/name.errors:

Asarule of thumb, focus on thelinesin the name . errors text file that begin with the
name of the pul se sequence enclosed in double quotes followed by the line number and
those that begin with aline number in parentheses. In both cases, a brief description of the
problemisalso displayed. If theline of code looks correct, often the preceding line of code
isthe culprit. Note that alarge number of error messages can be generated from the same
coding error.

If awarning occurs, the following message appears:

Pulse Sequence did compile but may not function properly.
The following comments can also be found in the
file /home/vnmrl/vnmrsys/psglib/name.errors:

This message means that although the pulse sequence has some inconsistent C code that
may produce run-time errors, the pul se sequence did compile. Three warningsto watch for
are the following:

warning: conversion from long may lose accuracy

warning: parameter name may be used before set

warning: parameter name redefinition hides earlier one

The first warning may be generated by less than optimum usage of the ix variable:
conversion from long may lose accuracy

An example can be found in afew of the earlier pulse sequences implementing TPPI. The
following construct, which was taken from an older version of hmgc . ¢, generates the
warning:

if (iphase == 3)

{
tl counter = ((int) (ix - 1)) / (arraydim / ni);
initval ((double) (tl counter), vl14);

}

Changing these linesto

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 57

Chapter 2. Pulse Sequence Programming

58

if (iphase == 3)
initval ((double) ((int) ((ix - 1) / (arraydim / ni) \
+le-6)), v14);

avoids the warning and also provides for roundoff of the floating point expression to give
proper TPPI phase increments.

Even the above expression can fail under some circumstances. That construction will not
work for 3D and 4D experiments. With the availability of increment counterssuchas id2,
id3, and 1d4, and the predefined phasel variable, this example can be rewritten as
if (phasel == 3)

assign(id2,v14) ;

The second warning generally suggests an uninitialized variable:
parameter name may be used before set

This should be corrected; otherwise, unpredictable execution of the pulse sequenceis
likely. A common cause is the use of a user variable without first using agetval or
getstr statement on the variable.

The third warning generally suggests that a variable is defined within the pul se sequence
that has the same name as one of the standard PSG variables.
parameter name redefinition hides earlier one

Thiswarning is normally avoided by renaming the variable in the pulse sequence or, if the
variable corresponds to a standard PSG variable, by removing the variable definition and
initialization from the pulse sequence and just using the standard PSG variable. A list of the
standard PSG variable namesis given in “Accessing Parameters,” page 89.

Finally, if the pulse sequence program is syntactically correct, the following message is
displayed:

Done! Pulse sequence now ready to use.

Creating a Parameter Table for Pulse Sequence Object Code

The ability to modify or customize acquisition parameters to fit a given user-created pulse
sequenceis provided by a small number of commands. These commands make it possible
to perform the following operations on an existing parameter table:

® Create new parameters

® Control the display and enterability of parameters

® Control the limits of the parameter

® Create a parameter table for n-dimensional experiments

The commands that enable the creation and modification of parameters are discussed in
section 5.4 “Creating and Modifying Parameters,” page 288.

C Framework for Pulse Sequences

Each pulse sequence is built onto a framework written in the C programming language.
Look again at the hom2dj sequencein Listing 2. The absolutely essential elementsof this
framework are these:

#include <standard.h>

pulsesequence ()

{
}

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

2.2 Overview of Pulse Sequence Programming

Thisframework must beincluded exactly as shown. Between thetwo curly braces({ }) are
placed pulse sequence statements, each statement ending with a semicolon.

The majority of pulse sequence statements allow the user to control pulses, delays,
frequencies, and all functions necessary to generate pulse sequences. Most arein the
general form statement (argumentl, argument?2, ...), where statement isthe
name of the particular pulse sequence statement, and argument1, argument?2,...isthe
information needed by that statement in order to function.

Many of these arguments are listed as real number. Because of the flexibility of C, areal-
number argument can take three different forms: variable (e.g., d1), constant (e.g., 3 . 4,
20.0e-6),0r expression (eg., 2.0*pw, 1.0-d2).

Times, whether delays or pul ses, are determined by the type of acquisition controller board
used on the system:

® DataAcquisition Controller boards:
times can be specified in increments as small as 12.5 ns with a minimum of 100 ns.

® Qutput boards and the MERCURYplug/-Vx:

times can be specified in increments as small as 0.1 us. The smallest possible time
interval in all other casesis 0.2 us, or O.

Any pulsewidths or delayslessthan the minimum generate awarning message and are then
eliminated internally from the sequence. (Note that time constants within a pulse sequence
are always expressed in seconds.)

A series of internal, real-time variables named v1, v2, ..., v14 are provided to perform
calculationsin real-time (by the acquisition computer) while the pulse sequence is
executing. Real-time variables are discussed in detail later in this chapter. For now, note
that all of the phases, and a small number of the other arguments to the pul se sequence
statements discussed here, must be real-time variables. A real -time variable must appear as
asimpleargument (e.g., v1), and cannot bereplaced by anything else, including an integer,
areal number, a“regular” variable such as d1, or an expression such asvi+v2.

Any variables chosen for use in a pulse sequence must be declared. Most variables are of
type double, while integers are of type int, and strings, such as dmm, are of type char
with dimension MAXSTR. Table 3 lists the length of these basic types on the computer.
Many variables that refer to parameters used in an experiment are already declared (see
“Accessing Parameters,” page 89).

Table 3. Variable Typesin Pulse Sequences

Type Description Length (bits)
char character 8
short short integer 16
int integer 32
long long integer 32
float floating point 32
double double-precision floating point 64

A codeint isa 16 bit integer (as opposed to afloat or char). Real-time variables are of type
codeint and are 16 bit integers on YNTINOVA, MERCURYplus, and MERCURY-Vx. A
framework including variable declarations of the main types might look like this:
#include <standard.h>

pulsesequence ()

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 59

Chapter 2. Pulse Sequence Programming

{

double delta; /* declare delta as double */
char xpolar [MAXSTR] ; /* declare xpolar as char */

Implicit Acquisition

Thehom2d7j . ¢ pulse sequencelisting in Listing 2 on page 56 has one notable omission—
data acquisition. In most pul se sequences, the sequence of events consists of a series of
pulses and delays, followed at the very end by the acquisition of an FID; the entire process
is then repeated for the desired number of transients, and then again (for arrayed and nD
experiments) for subsequent elements of the arrayed or nD experiment.

In all these cases, pulse sequences use implicit acquisition, that is, following the pulse
sequence as written by the user, an FID is automatically (implicitly) acquired. This
acquisition is preceded by adelay that includes the parameter a1 fa with a delay based on
the type of filter and the filter bandwidth. In addition, the phase of all channels of the
spectrometer (except the receiver) is set to zero at this time.

Some pulse sequences are not described by this simple model; many solidsNM R sequences
arein this category, for example. These sequences use explicit acquisition, in which the
preacquisition and acquisition steps must be explicitly programmed by the user. This
method is described further in “Hardware Looping and Explicit Acquisition,” page 103.

Acquisition Status Codes

Whenever wbs, wnt, wexp, Of werr processing occurs, the acquisition condition that
initiated that processing is available from the parameter acgstatus. Thisacquisition
condition isrepresented by two numbers, a“done” codeand an“error” code. The done code
issetinacgstatus [1] and theerror codeissetin acgstatus [2]. Macros can take
different actions depending on the acquisition condition.

The done codes and error codes are listed in Table 44 and in thefileacq_errors in
/vnmr /manual. For example, awerr command could specify special processing if the
maximum number of transients is accumulated. The appropriate test would be the

following:

if (acgstatus[2] = 200) then

“do special processing, e.g. dp='y' au”
endif

2.3 Spectrometer Control

® “Creating a Time Delay,” page 61

® “Pulsing the Observe Transmitter,” page 62

® “Pulsing a Non-Observe Transmitter,” page 64

® “Pulsing Channels Simultaneously,” page 65

® “Setting Transmitter Quadrature Phase Shifts,” page 67

® “Setting Small-Angle Phase Shifts,” page 67

® “Controlling the Offset Frequency,” page 69

® “Controlling Observe and Decoupler Transmitter Power,” page 70

60 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

2.3 Spectrometer Control

® “Status and Gating,” page 73
® “Interfacing to External User Devices,” page 75

More than 200 pulse sequence statements are available for pulse sequence generation
(PSG). Thissection startsthe discussion of each statement by covering statementsintended
primarily for spectrometer control. For discussion purposes, the statements in this section
are divided into categories: delay-related, observe transmitter pulse-related, decoupler
transmitter pul se-related, simultaneous pulses, transmitter phase control, small-angle phase
shift, frequency control, power control, and gating control.

Creating a Time Delay

The statementsrelated to time delays are delay, hsdelay, idelay, vdelay,
initdelay, and incdelay. Table 4 summarizes these statements.

Table 4. Delay-Related Statements

delay (time) Delay specified time

hsdelay (time) Delay specified time with possible hs pulse
idelay (time, string) Delay specified time with IPA

incdelay (count, index) Set real-time incremental delay

initdelay (time_ increment, index) Initialize incremental delay

vdelay (timebase, count) Set delay with fixed timebase and real-time count

The main statement to create a delay in a pul se sequence for a specified time isthe
statement delay (time), where t ime isareal number (e.g., delay (d1)). The
hsdelay and idelay Statementsarevariations of delay:

® To add a possible homospoil pulse to the delay, use hsdelay (time). If the
homospoil parameter hs issetto 'y ', then at the beginning of the delay, hsdelay
inserts a shim coil '3 homospoil pulse of length hst seconds (refer to the description
of status).

® To causeinteractive parameter adjustment (I1PA) information to be generated when g £
orgo('acqi') isentered, useidelay (time, string), where string isthe
label used in acqgi. If goisentered, idelay isthesameasdelay. See “Using
Interactive Parameter Adjustment,” page 98, for detailson IPA. IPA and idelay are
not available on the MERCURYplus/-Vx.

To set adelay to the product of afixed timebase and areal-time count, use

vdelay (timebase, count), where t imebase iSNSEC (defined below), USEC
(microseconds), MSEC (milliseconds), or SEC (seconds) and count isoneof thereal-time
variables (v1 to v14). For predictable acquisition, the real-time variable should have a
value of 2 or more. If timebase is set to NSEC, the delay depends on the type of
acquisition controller board in the system:

® Systemswith a Data Acquisition Controller board:
Theminimum delay isacount of 0(50 ns), and acount of n correspondsto adelay
of (50 + (12.5*n)) ns.
® Thevdelay statement is not available on the MERCURYplus/-Vx.
Use initdelay(time increment, index) or incdelay (count, index) to
enable areal-time incremental delay. A maximum of five incremental delays (set by
index) can be defined in one pulse sequence. The following steps are required to set up

anincremental delay (initdelay and incdelay are not available on the
MERCURYplus/-Vx):

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 61

Chapter 2. Pulse Sequence Programming

1. Enterinitdelay (time_ increment, index) toinitializethetimeincrement
and delay.
Theargument t ime _increment isthetimeincrement that will be multiplied by
the count (areal-timevariable) for thedelay time, and index isone of theindices
DELAY1, DELAY2, ..., DELAYS (e.g.,, initdelay (1.0/sw,DELAY1) oOr
initdelay(1.0/swl,DELAY2)).

2. Settheincrement delay by specifying its index and the multiplier count using
incdelay (count, index) (e.g., forincdelay (v3,DELAY2),whenv3=0,
thedelay is0* (1/swl)).

Pulsing the Observe Transmitter

Statements related to pulsing the observe transmitter are rgpulse, irgpulse, pulse,
ipulse, obspulse, and iobspulse. Table 5 summarizes these statements.

Table 5. Observe Transmitter Pulse-Related Statements

iobspulse (string) Pulse observe transmitter with |PA
ipulse (width,phase, string) Pulse observe transmitter with |PA
irgpulse (width, phase,RG1,RG2,string) Pulse observe transmitter with IPA
obspulse () Pulse observe transmitter with amp. gating
pulse (width, phase) . Pulse observe transmitter with amp. gating
rgpulse (width, phase,RG1,RG2) Pulse observe transmitter with amp. gating

Note that observe transmitter does not refer to a specific physical channel, but to that
physical channel used for observe.

Use rgpulse (width, phase,RG1,RG2) asthemain statement to pulse the observe
transmitter in a sequence, where width isthe pulse width, phase (areal-time variable)
is the pulse phase, and RG1 and RG2 are defined as:

® RGL isthe delay during which any needed phase shift is performed and the linear
amplifier is gated on and then allowed to stabilize prior to executing the rf pulse, and
RG2 isthe delay after the pulse after gating off the amplifier. Thus, receiver gating is
amisnomer: RG1 and RG2 set amplifier gating, as shown in Figure 1. The receiver is
off during execution of the pulsesand is only gated onimmediately before acquisition.

On

Transmitter <

gating Width
Off

Amplifier On

gating —» RGl&— —P»RG2 |[¢—
off |

Figurel. Amplifier Gating

® Onthe MERCURYplus/-Vx, thereceiver and amplifiersaretied together such that when
theamplifier ison, thereceiver isautomatically turned off and when thereceiver ison,
the amplifier is off.

62 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

2.3 Spectrometer Control

Some further information about RG1 and RG2:
® Typicaly, RG1 isafew microseconds and RG2 is probe-dependant.

® The phase of the pulseis set at the beginning of RG1. The phase settling time is about:
0.2usec on UNTYINOVA.
0.2usec on MERCURYplus/-Vx.

® A transmitter gateis also switched during RG1. The switching timefor thisgateisless
than:

0.1usec on YNITYINOVA systems.

For systemswith linear amplifiers, an rf pulse can be unexpectedly curtailed if theamplifier
goes into thermal shutdown. Thermal shutdown can be brought about if the amplifier duty
cycle becomestoo large for the average power output.

The remaining statements for pulsing the observe transmitter are variations of rgpulse:

® To pulse the observe transmitter the same as rgpulse but with RG1 and RG2 set to
the parameters rof 1 and rof 2, respectively, usepulse (width, phase). Thus,
pulse (width, phase) and rgpulse (width,phase,rofl,rof2) are
exactly equivalent.

® To pulsethe observe transmitter the same aspulse but withwidth preset to pw and
phase preset to oph, useobspulse (). Thus, obspulse () isexactly equivaent
to rgpulse (pw, oph,rofl, rof2).

® To pulsethe observetransmitter with rgpulse, pulse, or obspulse, but generate
interactive parameter adjustment (IPA) information when gf or go ('acgi') is
entered, use irgpulse (width, phase,RG1,RG2, string),
ipulse (width, phase, string), or iobspulse (string), respectively.
The string argument isused asalabel in acqgi. If go isentered, the IPA
information is not generated. For details on IPA, see “Using Interactive Parameter
Adjustment,” page 98. IPA is not available on MERCURYplus/-Vx systems.

The ampmode parameter gives override capability over the default selection of amplifier
modes. Unless overridden, the observe channel is set to the pulse mode, other used channels
are set to the CW (continuous wave) mode, and any unused channels are set to the idle
mode. By using values of d, p, ¢, and i for the default, pulse, CW, and idle modes,
respectively, ampmode can override the default modes. For example, ampmode="'ddp'
selects default behavior for the first two amplifiers and forces the third channel amplifier
into the pulse mode.

The selection of rf channels can be independently controlled with the rf channel

parameter. Single-channel broadband systems do not need r £ channel to set up anormal
HMQC experiment (tn="'H1',dn="'C13"). The software recognizes that you cannot do
thisexperiment and swaps the two channel sautomatically to make the experiment possible.

The rfchannel parameter becomesimportant if, for example, if running an HMQC
experiment with the X-nucleus using channel 3 with athree-channel spectrometer is
required. Instead of rewriting the pulse sequence, create rf channel (by entering
create ('rfchannel', 'string')), and set rfchannel, in thisexample set,
rfchannel="'132". Channels2 and 3 are effectively swapped without changing the
sequence.

Similarly, to observe on channel 2, run S2PUL with rfchannel="'21".

The rfchannel mechanism only works for pulse sequencesthat eliminate al references
to the constants TODEV, DODEV, DO2DEV, and DO3DEV. To take advantage of
rfchannel, remove statements, such aspower and of £ set, that use these constants

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 63

Chapter 2. Pulse Sequence Programming

and replace them with the corresponding statements, such as obspower and
decoffset, that do not contain the constants.

Standard pul se sequences have been edited to take advantage of the rf channel
independence afforded by the rfchannel parameter. This parameter makes it asimple
matter to redirect, for example, the dn nucleus to use the third or fourth rf channel.

Appropriate changes to the cabling of the probe are usually required if rfchannel is

used.

The MERCURYplus/-Vx systems have two channels and the software automatically
determines which channel is observe or decouple based on tn and dn.

Pulsing a Non-Observe Transmitter

Statementsrelated to non-observe pulsing are decpul se, decrgpulse, idecpulse,

idecrgpulse, dec2rgpulse, and dec3rgpulse. Table 6 summarizesthese

Statements.

Table 6. Decoupler Transmitter Pulse-Related Statements

decpulse (width, phase)
decrgpulse (width, phase,RG1,RG2)

dec2rgpulse (width, phase,RG1, RG2)
dec3rgpulse (width, phase, RG1,RG2)
dec4rgpulse (width, phase, RG1,RG2)
idecpulse (width, phase, string)
idecrgpulse*

Pulse decoupler transmitter with amp. gating
Pulse first decoupler with amplifier gating

Pulse second decoupler with amplifier gating
Pulse third decoupler with amplifier gating

Pulse deuterium decoupler with amplifier gating
Pulse first decoupler transmitter with |PA

Pulse first decoupler with amplifier gating and | PA

* idecrgpulse (width, phase,RG1l,RG2, string)

64

Usedecpulse (width, phase) to pulsechannel 2in the pulse sequence at its current
power level. width isthe time of the pulse, in seconds, and phase isarea-time variable
for the phase of the pulse (e.g., decpulse (pp, v3)).

The amplifier is gated on during decoupler pulses asit isduring observe pulses. The
amplifier gating times (see RG1 and RG2 for decrgpulse below) areinternally set to
zero. The decoupler modulation mode parameter dmm should be ' ¢ ' during any period of
time in which decoupler pulses occur.

To pulse the decoupler at its current power level and have user-settable amplifier gating
times, usedecrgpulse (width, phase, RG1,RG2), wherewidth and phase are
the same as used with decpulse, and RG1 and RG2 are the same as used with the
rgpul se statement for observe transmitter pulses. In fact, decrgpulse issyntacticaly
equivalent to rgpulse and functionally equivalent with two exceptions:

® The decoupler is pulsed at its current power level (instead of the transmitter).

® |f homo="'n", theslow gate (100 ns switching time on YN, on the decoupler board is
always open and therefore need not be switched open during RG1. In contrast, if
homo="'y"', the slow gate on the decoupler board is normally closed and must
therefore be allowed sufficient time during RG1 to switch open (homo is not used on
the MERCURYplus/-VXx).

For systemswith linear amplifiers, RG1 for a decoupler pulseisimportant from the
standpoint of amplifier stabilization under either of the following conditions:

® When tn and dn both equal 3H, 1H, or 19F (high-band nuclei).

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

2.3 Spectrometer Control

® When tn and dn are less than or equal to 31P (low-band nuclei).

For these conditions, the “decoupler” amplifier module is placed in the pulse mode, in
which it remains blanked between pulses. In this mode, RG1 must be sufficiently long to
allow the amplifier to stabilize after blanking is removed: 5 usistypically right.

When the tn nucleus and the dn nucleus are in different bands, such as tn is 1H and dn
is 13C, the “ decoupler” amplifier moduleis placed in the continuous wave (CW) mode, in
which it is dways unblanked regardless of the state of the receiver. In this mode, RG1 is
unimportant with respect to amplifier stabilization prior to the decoupler pulse, but with
respect to phase setting, it must be set.

The remaining decoupler transmitter pulse-related statements are variationsof decpulse
and decrgpulse:

® To pulse the decoupler the same asdecpulse or decrgpulse, but generate
interactive parameter adjustment (1PA) information when gf or go ('acgi') is
entered, use idecpulse (width, phase, string) or
idecrgpulse (width, phase,RG1,RG2, string), respectively, where
stringisusedasalabel inacqi. If goisentered instead, the IPA information is not
generated. For detailson | PA, see“Using Interactive Parameter Adjustment,” page 98.
[PA is not available on MERCURYplus/-Vx systems.

® Usethefollowing to pulse the second decoupler (channel 2):
dec2rgpulse (width, phase,RG1,RG2).

® Usethefollowing to pulse the third decoupler (channel 4):
dec3rgpulse (width, phase,RG1,RG2).

® Usethefollowing to pulse YW INOVA systems with a deuterium decoupler installed
as the fifth channel, a fourth decoupler (channel 5):
dec4rgpulse (width, phase,RG1,RG2).

® Thewidth, phase, RG1, and RG2 arguments have the same meaning as used with
decrgpulse and rgpulse. The homo parameter has no effect on the gating on the
second decoupler board. On YNTYINOVA systems only, homo2 controls the
homodecoupler gating of the second decoupler, homo3 does the same on the third
decoupler, and homo4 does the same on the fourth decoupler when it isused asa
deuterium channel (on the MERCURYplus/-VX, dec2rgpulse, dec3rgpulse,
and dec4rgpulse have no meaning and homo is not used).

Pulsing Channels Simultaneously

Statementsfor controlling simultaneous, non-shaped pulsesare simpulse, sim3pulse,
and sim4pulse. Table 7 summarizes these statements. Simultaneous pul ses statements
using shaped pulses are covered in alater section.

Table 7. Simultaneous Pul ses Statements

simpulse* Pulse observe and decoupler channels simultaneously
sim3pulse* Pulse simultaneously on two or three rf channels
sim4pulse* Simultaneous pulse on four channels

* sim3pulse (pwl,pw2,pw3,phasel,phase2,phase3,RG1l,RG2)
sim3pulse (pwl,pw2,pw3,phasel,phase2, phase3,RG1l,RG2)
sim4pulse (pwl,pw2,pw3,pwd,phasel,phase2, phase3, phase4,RG1l,RG2)

Use simpulse (obswidth, decwidth, obsphase, decphase,RG1,RG2) t0
simultaneously pulsethe observe and first decoupler rf channelswith amplifier gating (e.g.,
simpulse (pw,pp,vl,v2,0.0,rof2)).

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 65

Chapter 2. Pulse Sequence Programming

Figure 2 illustrates the action of simpulse

Observe pulse > Decoupler pulse Decoupler pulse > Observe pulse

Transmitter obswidth Decoupler decwidth R

gating <« gating

decwidth obswidth
Decoupler +——> Transmitter G+
gating gating
RG1 RG2 Amplii RG1 RG2
Amplifier > > rr;%:er «—>

gating galing

66

Figure 2. Pulse Observe and Decoupler Channels Simultaneously

The shorter of the two pulses is centered on the longer pulse, while the amplifier gating
occurs before the start of the longer pulse (even if it isthe decoupler pulse) and after the
end of thelonger pulse. The absolute differencein the two pulse widths must be greater than
or equal to the following values:

® UNITYINOVA systems: 0.2 us
® onthe MERCURYplug/-Vx systems: 0.4 us

otherwise, atimed event of less than the following minimum values:
® UNTY]NOVA systems: 0.1 us
® MERCURYplus/-Vx systems: 0.2 us

would be produced. In such cases, a short time (0.2 usto 0.4 us) is added to the longer of
the two pulse widths to remedy the problem, or the pulses are made the same if the
differenceislessthan half the minimum (less than 0.05 ps on YNTINOVA, less than 0.2 us
on MERCURYplug/-Vx systems).

sim3pulse (pwl,pw2,pw3,phasel, phase2,phase3,RG1,RG2) performsa
simultaneous, three-pul se pulse on three independent rf channels, where pw1, pw2, and
pw3 are the pulse durations on the observe transmitter, first decoupler, and second
decoupler, respectively. phasel, phase2, and phase3 arereal-time variables for the
phases of the corresponding pulses, for example, sim3pulse (pw, pl,p2, oph,
v10,vl,rofl,rof2).

A simultaneous, two-pulse pulse on the observe transmitter and the second decoupler can
be achieved by setting the pulse length for the first decoupler to 0.0; for example,
sim3pulse (pw,0.0,p2,0ph,v10,vl,rofl, rof2).Thesim3pulse
statement has no meaning on MERCURYplus/-Vx.

Usesim4pulse (pwl,pw2,pw3, pwsd,phasel, phase2,phase3, phase4,
RG1,RG2) to perform simultaneous pulses on as many as four different rf channels.
Except for the added arguments pw4 and phase4 for athird decoupler, the argumentsin
sim4pulse are defined the sameas sim3pulse. If any pulseis set to 0.0, no pulseis

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

2.3 Spectrometer Control

executed on that channel. The sim4pulse statement has no meaning on MERCURYplus/
-VX.

Setting Transmitter Quadrature Phase Shifts

The statements txphase, decphase, dec2phase, dec3phase, dec4phase
control transmitter quadrature phase (multiple of 90°). Table 8 summarizes these
Statements.

Table 8. Transmitter Quadrature Phase Control Statements

decphase (phase) Set quadrature phase of first decoupler
dec2phase (phase) Set quadrature phase of second decoupler
dec3phase (phase) Set quadrature phase of third decoupler
dec4phase (phase) Set quadrature phase of fourth decoupler
txphase (phase) Set quadrature phase of observe transmitter

To set the transmitter phase, use t xphase (phase) ,wherephase isareal-timevariable
(v1itovi4, etc.) or areal-time constant (zero, one, etc.) that references the desired
phase. This enables changing the transmitter phase independently from a pul se.

For example, knowing that the transmitter phase takes a finite time to shift (about 1 s on
a MERCURYplus/-Vx, 200 ns for UNTYINOVA), “preset” the transmitter phase at the
beginning of adelay that precedes aparticular pulse. The “normal” pulse sequences use an
rof1 time preceding the pulse to change the transmitter phase, and it is not necessary to
“preset” the phase. The phase change will occur at the start of the next event in the pulse
sequence.

The other phase control statements are variations of txphase:

® To set the decoupler phase, use decphase (phase) . The decphase statement is
syntactically and functionally equivalent to txphase. decphase isuseful for a
decoupler pulsein all cases where txphase is useful for atransmitter pulse.

® To set the quadrature phase of the second decoupler rf or third decoupler rf, use
dec2phase (phase) or dec3phase (phase), respectively.

The hardware WALTZ decoupling lines are X ORed with the decoupler phase control. The
performance of the WALTZ decoupling should not be affected by the decoupler phase
setting.

When using pulse sequences with implicit acquisition, the decoupler phaseis controlled by
the relevant shapelib file used, e.g., WALTZ16. Set to 0 automatically (within the
test4acqg procedurein the module hwlooping.c in /vamr/psg), SO under most
circumstances no problems are seen. But if you are using explicit acquisition or if you are
trying to perform WALTZ decoupling during a period other than acquisition, you must use
adecphase (zero) statement in the pulse sequence before the relevant time period.

Setting Small-Angle Phase Shifts

Setting the small-angle phase of rf pulsesisimplemented by three different methods:
® Fixed 90° settings
® Direct synthesis hardware control
® Phase-pulse phase shifting

The statements related to these methods are summarized in Table 9.

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 67

Chapter 2. Pulse Sequence Programming

68

Table 9. Phase Shift Statements

deplrphase (multiplier) Set small-angle phase of first decoupler
deplr2phase (multiplier) Set smal-angle phase of second decoupler
deplr3phase (multiplier) Set small-angle phase of third decoupler
decstepsize (base) Set step size of first decoupler
dec2stepsize (base) Set step size of second decoupler
dec3stepsize (base) Set step size of third decoupler
obsstepsize (base) Set step size of observe transmitter
phaseshift* Set phase-pul se technique, rf type A or B
stepsize (base,device) Set small-angle phase step size
xmtrphase (multiplier) Set small-angle phase of observe transmitter, rf type C
* phaseshift (base,multiplier,device)

Fixed 90° Settings

The first method is the hardwired 90° (or quadrature) phase setting. Both the observe and
the decoupler transmitters invoke phases of 0°, 90°, 180°, and 270° instantaneously using
the obspulse, pulse, rgpulse, simpulse, decpulse, decrgpulse,
dec2rgpulse, dec3rgpulse, dec4rgpulse, txphase, decphase,
dec2phase, dec3phase, and dec4phase Statements.

Small-Angle Phase Shifts

A second method of small-angle phase selection isimplemented only on spectrometers
with direct synthesis. The hardware sets transmitter phase in the following increments:

e UNITYINOVA systems: 0.25°
® on MERCURYplus/-Vx systems: 1.41°

independently of the phase of the receiver. This method is an absolute technique (e.g., if a
phase of 60° isinvoked twice, the second phase selection does nothing).

Theobsstepsize (base) statement sets the step size of the small-angle phase
increment to base for the observe transmitter. Similarly, decstepsize (base),
dec2stepsize (base),anddec3stepsize (base) setthe step size of the
small-angle phase increment to base for the first decoupler, second decoupler, and third
decoupler, respectively (assuming that system isequipped with appropriate hardware). The
base argument isarea number or variable.

The base phase shift selected is active only for the xmt rphase statement if the
transmitter is the requested device, only for the dcplrphase statement if the decoupler
is the requested device, only for the dcplr2phase statement if the second decoupler is
the requested device, or only for the decplr3phase if thethird decoupler isthe required
device, that is, every transmitter hasits own “base” phase shift. Phase information into
pulse, rgpulse, decpulse, decrgpulse, dec2rgpulse, dec3rgpulse, and
simpulse isdtill expressed in units of 90°.

The statements xmt rphase (multiplier), dcplrphase (multiplier),
dcplr2phase (multiplier),anddcplr3phase (multiplier) setthephase of
transmitter, first decoupler, second decoupler, or third decoupler, respectively, in units set
by stepsize. If stepsize hasnot been used, the default step sizeis90°. The argument
multiplier isasmal-angle phaseshift multiplier. The small-angle phaseshift isa
product of the multiplier and the preset stepsize for the rf device (observe transmitter,
first decoupler, second decoupler, or third decoupler). multiplier must be areal-time
variable.

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

2.3 Spectrometer Control

Thedecstepsize, dec2stepsize,dec3stepsize, and obsstepsize
statements are similar to the stepsize statement but have the channel selection fixed.
Each of the following pairs of statements are functionally the same:

® obsstepsize (base) and stepsize (base, OBSch).

® decstepsize (base) and stepsize (base,DECch).

® dec2stepsize (base) and stepsize (base,DEC2ch).

® dec3stepsize (base) and stepsize (base,DEC3ch).
On systems with Output boards only, if the product of thebase andmultiplieris
greater than 90°, the sub-90° part is set by the xmt rphase, deplrphase,
decplr2phase, or deplr3phase statements. Carryoversthat are multiples of 90° are
automatically saved and added in at the time of the next 90° phase selection (e.g., at the
time of thenext pulse or decpulse). Thisistrueevenif stepsize hasnot been used

andbase isat itsdefault value of 90°. The following example may help you to understand
this question of “carryovers’:

obsstepsize (60.0) ; /* set 60° step size for obs. xmtr*/
initval(6.0,v1l); modn (ct,vl,v2); /* v2=012345012345 */
xmtrphase (v2) ; /* phase=0,60,120,180,240,300 */

/* small-angle part=0,60,30,0,60,30 */
/* carry-over=0,0,90,180,180,270 */

mod4 (ct,v3) ;pulse (pw,v3); /* specified phase=0,90,180,270 */
/* 90°phase shift actually used */
/* = 0,90,270,450,180,360 */
/* = specified + carry-over */

If xmtrphase, dcplrphase, dcplr2phase, or decplr3phase isused to set the
phase for some pulses in a pulse sequence, it is often necessary to use

xmtrphase (zero), dcplrphase (zero), dcplr2phase (zero), or
decplr3phase (zero) preceding other pulsesto ensure that the phase specified by a
previous xmt rphase, dcplrphase, dcplr2phase, of decplr3phase does not
carry over into an unwanted pulse or decpulse statement.

Phases specified in txphase, pulse, rgpulse, decphase, decpulse,
decrgpulse, dec2phase, dec2rgpulse, dec3rgpulse, and dec4rgpulse
statements change the 90° portion of the phase shift only. Thisfeature provides a separation
between the small-angle phase shift and the 90° phase shifts and facilitates programming
phase cycles or additional coherence transfer selective phase cycling “on top of” small-
angle phase shifts.

Be sure to distinguish xmt rphase from txphase. txphase isoptiona and needed if
the gating time RG1 is set to zero in pulse statements; xmt rphase isneeded any timethe
transmitter phase shift isto be set to avalue not amultiple of 90°. The same distinction can
bemadebetween dcplrphase and decphase, dcplr2phase anddec2phase, and
dcplr3phase and dec3phase.

Controlling the Offset Frequency

Statements for frequency control are decoffset, dec2offset, dec3offset,
dec4offset, obsoffset,offset, and ioffset. Table 10 summarizes these
statements.

The main statement to set the offset frequency of the observe transmitter (parameter tof),
first decoupler (do£), second decoupler (dof 2), or third decoupler (do£ 3) isthe statement
offset (frequency, device), where frequency isthe new vaue of the

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 69

Chapter 2. Pulse Sequence Programming

70

Table 10. Frequency Control Statements

decoffset (frequency) Change offset frequency of first decoupler
dec2offset (frequency) Change offset frequency of second decoupler
dec3offset (frequency) Change offset frequency of third decoupler
dec4offset (frequency) Change offset frequency of fourth decoupler
obsoffset (frequency) Change offset frequency of observe transmitter
offset (frequency, device) Change offset frequency of transmitter or decoupler
ioffset (frequency,device, string) Change offset frequency with |PA

appropriate parameter and device isOBSch (observe transmitter), DECch (first
decoupler), DEC2ch (second decoupler), or DEC3ch (third decoupler). However, for
clarity, use obsof fset, decoffset, etc. in actual coding. For example, use
offset (to2,0BSch) to set the observe transmitter offset frequency. DEC2ch can be
used only on systems with three rf channels. Likewise, DEC3ch is used only on systems
with four rf channels.

® For systemswith rf type D, the frequency shift timeis 14.95 us (latching with or
without over-range). No 100-us delay isinserted into the sequence by the of fset
statement. Offset frequencies are not returned automatically to their “normal” values
before acquisition; this must be done explicitly, as in the example below.

® The frequency shift timeis 4 us for YWTYINOVA systems.
® The setup timeis 86.4 us and the shift time is 1 us for MERCURYplus/-Vx systems.

Other frequency control statements are variations of of fset:

® To settheoffset frequency of the observetransmitter thesameasof £ set but generate
interactive parameter adjustment (IPA) information when gf or go ('acgi') is
entered, use ioffset (frequency,device, string), where stringisused
as alabel for theslider in acqi. If go isentered instead, the IPA information is not
generated. For detailson | PA, see“Using Interactive Parameter Adjustment,” page 98.
IPA is not available on MERCURYplug/-Vx systems.

® To set the offset frequency of the observe transmitter (parameter tof), use
obsoffset (frequency), which functions the same as
offset (frequency, OBSch) .

® To set the offset frequency of the first decoupler (parameter dof), use
decoffset (frequency), which functions the same as
offset (frequency,DECch) .

® To set the offset frequency of the second decoupler (parameter do£2), use
dec2offset (frequency), which functions the same as
offset (frequency,DEC2ch).

® To set the offset frequency of the third decoupler (parameter do£3), use
dec3offset (frequency), which functions the same as
offset (frequency, DEC3ch).

® To set the offset frequency of the fourth decoupler used asthefifth channel (parameter
dof4),use dec4offset (frequency), which functions the same as
offset (frequency,DEC4ch) .

Controlling Observe and Decoupler Transmitter Power

Statementsto control power by adjusting the coarse attenuators on linear amplifier systems
are power, obspower, decpower, dec2power, dec3power, and dec4power.

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

2.3 Spectrometer Control

Statements to control fine power are pwrf, pwrm, r1pwrm, obspwrf, decpwrf,
dec2pwrf, and dec3pwrt.Statements to control decoupler power level switching are
declvlon, declvloff, and decpwr. Table 11 summarizes these statements.

Table 11. Power Control Statements

declvloff () Return first decoupler back to “normal” power
declvlon() Turn on first decoupler to full power

decpower (value) Change first decoupler power, linear amplifier
dec2power (value) Change second decoupler power, linear amplifier
dec3power (value) Change third decoupler power, linear amplifier
dec4power (value) Change deuterium decoupler power, linear amplifier
decpwr (level) Set decoupler high-power level, class C amplifier
decpwrf (value) Set first decoupler fine power

dec2pwrf (value) Set second decoupler fine power

dec3pwrf (value) Set third decoupler fine power

obspower (value) Change observe transmitter power, linear amplifier
obspwrf (value) Set observe transmitter fine power

power (value,device) Change transmitter or decoupler power, linear amplifier
pwrf (value,device) Change transmitter or decoupler fine power
pwrm(value, device) Change transmitter or decoupler linear mod. power
rlpwrm(rlvalue,device) Set transmitter or decoupler linear mod. power

Coarse Attenuator Control

UNITYINOVA systems with linear amplifiers use the lower-level statement

power (value, device) to change transmitter or decoupler power by adjusting the
coarse attenuators from O (minimum power) to 63 (maximum power) on channels with a
63-dB attenuator, or from—16 (minimum power) to 63 (maximum power) on channelswith
a 79-dB attenuator.

® vValue must bestoredin areal-timevariable suchasv2 for thisform of control; the
actual value cannot be placed directly in the power statement. This alows the
attenuators to be changed in real-time or from pulse to pulse.

® device isOBSch to change the transmitter power, DECch to change the first
decoupler power, DEC2ch to change the second decoupler power, or DEC3ch to
change the third decoupler power (e.g., power (v2,0BSch)).

To avoid using areal-time variable, the fixed-channel statements obspower (value),
decpower (value), dec2power (value), and dec3power (value) should be
used in place of the power statement, for example, obspower (63 .0) . For all of these
statements, value iseither areal number or avariable. These statementsaretypically used
in most sequences.

Thesepower and associated fixed-channel statementsallow configurations such asthe use
of the transmitter at alow power level for presaturation followed by a higher power for
uniform excitation. The phase of the transmitter is specified as being constant to within 5°
over the whole range of transmitter power. Therefore, pulsing at low power with a certain
phase and | ater at high power with the same phase, the two phases are the “same” to within
5° (at any one power level, the phaseis constant to considerably better than 0.5°).Thetime
of the power change is specified in Table 33.

While no psg delay isassociated with the coarse power control, the deviceitself takes about
2 microsecondsto stabilize at the new value. Thiswill happen in parallel with the next psg
event in the program. This stabilization time is inconsequential except for back-to-back
power statements.

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 71

Chapter 2. Pulse Sequence Programming

72

On systems with an Output board only, the power and associated statements are preceded
internally by a 0.2 us delay by default (see the apovrride pulse statement for more
details).

CAUTION: Use caution when setting values of power, obspower, decpower,

dec2power, and dec3power greater than 49 (about 2 watts).
Performing continuous decoupling or long pulses at power levels
greater than this can result in damage to the probe. Set a safety
maximum for the tpwr, dpwr, dpwr2, and dpwr3 parameters in te
Utilities->System Settings window or use global variable
maxattnechl, maxattnech?2, ... to have psg (the go command)
check for power values in excess of defined limits.

Fine-Power Control

To change the fine power of atransmitter or decoupler by adjusting the optional linear fine
attenuators, use pwrf (value,device) or pwrm(value,device). Thevalue
argument is real-time variable, which meansit cannot be placed directly inthepwrf or
pwrm statement, and can range from 0 to 4095 (60 dB on UNTYINOVA, about 6 dB on other
systems). Thedevice isOBSch (for the observetransmitter), or DECch (first decoupler),
(on UNTYINOVA only), device can aso be DEC2ch (second decoupler), or DEC3ch (third
decoupler). MERCURYplus/-Vx systems do not support pwrf and pwrm with rea-time
parameters but support all other parameters.

The fixed-channel statements obspwrf (value), decpwrf (value),

dec2pwrf (value),anddec3pwrf, or rlpwrm(value, device) to avoid
arguments using real-time variables and are the preferred usage. These statements change
transmitter or decoupler power on systemswith linear amplifiersand value iseither areal
number or avariable and is stored in a C variable of type double.

The ipwrf (value,device, string) and ipwrm(value,device, string)
statement changes interactively the transmitter or decoupler fine power or linear
modulators by adjusting the optional fine attenuators. The value and device arguments
arethesameaspwrf. string canbeany string; thefirst six lettersareused in acqi.
Thisstatement will generate interactive parameter adjustment (IPA) information only when
thecommand gf or go ('acgi') istyped. When the command go istyped, this
statement isignored by the pul se sequence. Usethe pwr £ pulse statement for this purpose.
Do not execute pwr f and ipwrf in the same pulse sequence, as they cancel each other's
effect.

On systems with an Output board only, a0.2 us delay internally precedes the AP (analog
port) bus statements power, obspower, decpower, and dec2power. The
apovrride () statement preventsthis 0.2 usdelay from being inserted prior to the next
(and only the next) occurrence of one of the these AP bus statements.

Decoupler Power-Level Switching

On UNTYINOVA systems with class C or linear amplifiers, declvlon () and
declvloff () switchthe decoupler power level between the power level set by the high-
power parameter(s) to the full output of the decoupler. The statement declvlon () gives
full power on the decoupler channel; declvlof £ switchesthe decoupler to the power
level set by the appropriate parameters defined by the amplifier type: dhp for class C
amplifiersor dpwr for alinear amplifiers. If dhp="n", these statements do not have any
effect on systems with class C amplifiers, but still function for systemswith linear
amplifiers.

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

2.3 Spectrometer Control

If declvlon isused, make suredeclvloff isused prior to time periodsin which
normal, controllable power levels are desired, for example, prior to acquisition. Full
decoupler power should only be used for decoupler pulses or for solids applications.

MERCURYplus/-Vx systems do not use declvlon or declvloff.

Status and Gating

Statements to control decoupler and homospoil statusare status and setstatus.
Explicit transmitter and receiver gating control statementsare xmtrof £, xmtron,

decoff, decon, dec20off, dec2on, dec3off, dec3on, revroff, and rcvron.

Statements for amplifier blanking and unblanking are obsblank, obsunblank,
decblank, decunblank, dec2blank, dec2unblank, dec3blank,
dec3unblank, blankingoff, and blankingon. Finally, statements for user-
dedicated lines are sp#of £ and sp#on (#=1, 2, or 3). Table 12 summarizes these

statements.

Table 12. Gating Control Statements
blankingoff () Unblank amplifier channels and turn amplifiers on
blankingon () Blank amplifier channels and turn amplifiers off
decblank () Blank amplifier associated with the 1st decoupler
dec2blank () Blank amplifier associated with the 2nd decoupler
dec3blank () Blank amplifier associated with the 3rd decoupler
decoff () Turn off first decoupler
dec20ff () Turn off second decoupler
dec30ff () Turn off third decoupler
decon () Turn on first decoupler
dec2on () Turn on second decoupler
dec3on () Turn on third decoupler
decunblank () Unblank amplifier associated with the 1st decoupler
dec2unblank () Unblank amplifier associated with the 2nd decoupler
dec3unblank () Unblank amplifier associated with the 3rd decoupler

dhpflag=TRUE | FALSE
initparms sis ()

Switch decoupling between high- and low-power levels
Initialize parameters for spectroscopy imaging sequences

obsblank () Blank amplifier associated with observe transmitter
obsunblank () Explicitly enables the amplifier for the observe transmitter
rcvroff () Turn off receiver gate and amplifier blanking gate
rcvron () Turn on receiver gate and amplifier blanking gate
recoff () Turn off receiver gate only

recon () Turn on receiver gate only

setstatus¥*
status (state)

statusdelay (state, time)

xmtroff ()
xmtron ()

Set status of observe transmitter or decoupler transmitter
Change status of decoupler and homospoil

Execute status statement with given delay time

Turn off observe transmitter

Turn on observe transmitter

* setstatus (channel, on,mode, sync, mod freq)

Gating States

Usestatus (state) to control decoupler and homospoil gating in a pulse sequence,
where state iSAto Z (e0., status (A) or status (B)). Parameters controlled by
status are dm (first decoupler mode), dmm (first decoupler modulation mode), and hs

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 73

Chapter 2. Pulse Sequence Programming

(homospail). For systemswith athird or fourth rf channel, dm2 and dm3 (second and third
decoupler modes) and dmm2 and dmm3 (second and third decoupler modulation mode) are
also under status control. For systemswith adeuterium decoupler channel asthe fourth
decoupler, dm4 and dmm4 are under status control.

Each of these parameters can have multiple states: status (A) setseach parameter to the
state described by the first letter of itsvalue; status (B) uses the second letter, etc. If a
pul se sequence has more status statements than there are status modes for a particular
parameter, control reverts to the last letter of the parameter value. Thus, if dm="ny ',
status (C) will look for the third letter, find none, and then use the second letter (y) and
turn the decoupler on.

Use setstatus (channel, on, mode, sync,mod_freq) to control decoupler
gating as well as decoupler modulation modes (GARP, CW, WALTZ, etc.). channel is
0BSch, DECch, DEC2ch, or DEC3ch, on iSTRUE or FALSE, mode iSadecoupler mode
('c','g", 'p', €c.), sync iISTRUE or FALSE, and mod_ freq isthe modulation
frequency (e.g., setstatus (DECch, TRUE, 'w',FALSE, dmf). Thesetstatus
statement is not available on the MERCURYplus/-Vx.

setstatus providesaway to set transmittersindependent of the parameters, one channel
at atime. For example, setstatus (OBSch, TRUE, 'g', TRUE, obs_mf), turnsthe
observe transmitter (0OBSch) on (TRUE), using GARP modulation (g ') in synchronized
mode (TRUE) with amodul ation frequency of obs_mf. (Theobs mf parameter will need
to be calculated from a parameter set with an appropriate getval statement.)

Note: Besureto set the power to a safe level before calling setstatus.

Timing for setstatus isthe sameasfor status except that only one channel needsto
be taken into account. To ensure that the timing is constant for the status, use the
statusdelay statement (e.g., statusdelay (A,2.0e-5))

Homospoil gating is treated somewhat differently than decoupler gating. If a particular
homospoil code letter is 'y, delays coded ashsdelay that occur when the status
corresponds to that code letter will begin with a homospoil pulse, the duration of which is
determined by the parameter hst. Thusif hs="ny', al hsdelay delaysthat occur
during status (B) will begin with a homospoail pulse. The final status aways occurs
during acquisition, a which time a homospoil pulse isnot permitted. Thus, if a particular
pulse sequence uses status (A), status (B), and status (C), dm and other
decoupler parameters may have up to three letters, but hs will only have two, since
hs="y"' during status (C) would be meaningless and is ignored.

Transmitter Gating

On all systems, transmitter gating is handled as follows:

® Explicit transmitter gating in the pulse sequenceis provided by xmtroff () and
xmtron (). Transmitter gating is handled automatically by obspulse, pulse,
rgpulse, simpulse, sim3pulse, shaped pulse, simshaped pulse,
sim3shaped pulse, and spinlock. The obsprgon statement should
generally be enabled with an explicit xmt ron statement, followed by xmtrof£.

® Explicit gating of thefirst decoupler in the pulse sequence is provided by decof £ ()
and decon () . First decoupler gating is handled automaticaly by decpulse,
decrgpulse, declvlon,declvloff, simpulse, sim3pulse,
decshaped pulse, simshaped pulse, sim3shaped pulse, and
decspinlock. Thedecprgon function should generally be enabled with explicit
decon statement and followed by adecof £ cal.

74 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

2.3 Spectrometer Control

® Explicit gating of the second decoupler in the pulse sequenceisprovided by dec2of £
and dec2on. Second decoupler gating is handled automatically by dec2pulse,
dec2rgpulse, sim3pulse, dec2shaped pulse, sim3shaped pulse,
and dec2spinlock. The dec2prgon function should generally be enabled with
an explicit dec2con statement, followed by dec20of £.

® Likewise, explicit gating of the third decoupler in the pulse sequence is provided by
dec3off and dec3on. Third decoupler gating is handled automatically by
dec3pulse, dec3rgpulse, dec3shaped pulse,anddec3spinlock. The
dec3prgon function should generally be enabled with an explicit dec3con
statement, followed by dec3off.

Receiver Gating

Explicit receiver gating in the pulse sequence is provided by the revrof £ (),

rcvron (), recoff (),andrecon () statements. These statements control the receiver
gates except when pulsing the observe channel (in which casethereceiver is off) or during
acquisition (in which case the receiver ison). The recof £ and recon statements
(available only on YTYINOVA systems) affect the receiver gate only and do not affect the
amplifier blanking gate, which istherole of revrof £ and revron.

® Thereceiver ison only during acquisition, except for certain imaging pulse sequences
on UNTYINOVA, that have explicit acquires (such as SEMS, MEMS, and FLASH), and
forthe initparms_sis () statement that defaultsthe receiver gate to on.

® On MERCURYplus/-Vx, receiver gating istied to the amplifier blanking and is
normally controlled automatically by the pulse statements rgpulse, pulse,
obspulse, decrgpulse, decpulse, and dec2rgpulse.

Amplifier Channel Blanking and Unblanking

Amplifier channel blanking and unblanking methods depend on the system.

® Thereceiver and amplifiers are not linked on YN'TYINOVA. To explicitly blank and
unblank amplifiers, the following statements are provided:

For the amplifier associated with the observe transmitter:
obsblank () and obsunblank ().

For the amplifiers associated with thefirst, second, and third decouplers:
decblank () and decunblank (), dec2blank ()and dec2unblank (),
and dec3blank () and dec3unblank (), respectively.

These statementsreplace blankon and blankof £, no longer in VnmrJ.

® On MERCURYplus/-Vx, the receiver and amplifier arelinked. At the end of each pulse
statement, the receiver is automatically turned back on and the amplifier blanked.
Immediately prior to data acquisition, the receiver isimplicitly turned back on.

Interfacing to External User Devices

The sp#on and sp#of £ statements are used for interfacing with external user devices.

User-Dedicated Spare Lines

One or more user-dedicated spare lines are avail able for high-speed device control:

® UNITY]NOVA consoles have five spare lines in the Breakout panel on the rear of the left
cabinet. Each spare lineis a BNC connector. The sp#on () and sp#off ()
statements control specified SPARE lines (#= spareline 1, 2, 3, 4, or 5).

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 75

Chapter 2. Pulse Sequence Programming

User AP (Analog Port) Lines

UNITYINOVA consoles have two 24-pin user AP connectors, J8212 and J8213, in the
Breakout panel on the rear of theleft cabinet. Each connector has 16 user-controllablelines
coinciding with two 8-bit AP busregisters. All four of the AP bus registers are writeable
but only oneregister is readable.

Table 13 shows the mapping of the Table 13. Mapping of User AP Lines
user AP lines. On both connectors,

lines 17 to 25 are ground lines. Register ~ Connector Lines Function
User AE linesal Itow t?e sya/jnchrqnous 0 8213 9t016 output
access by usersto external services 1213 Lt08 output
while running a pul se sequence. The

statements 2 Jg212 9to16 output
setuserap (value, reg), 3 Jg212 1to8 input/output

vsetuserap (rtvar, reg),and
readuserap (rtvar) provide accessto theselines.

Thesetuserap and vsetuserap statements enablewriting 8-bit information to one of
four registers. Each write takes one AP bus cycle, which is 0.5 usfor the WTYINOVA. The
only difference between setuserap and vsetuserap isthat vsetuserap usesa
real-time variable to set the value.

The readuserap statement lets you read 8-bit information from the register into areal-
time variable. You can then act on this information using real-time math and real-time
control statementswhil e the pul se sequence is running; however, because the system hasto
wait for the data to be read before it can continue parsing and stuffing the FIFO, a
significant amount of overhead isinvolvedin servicing theread and refilling the FIFO. The
readuserap statement takes 500 us to execute. The readuserap statement putsin a
500 usdelay immediately after reading the user AP linesin order for the parser to parse and
stuff more words into the FIFO before it underflows. However, this time may not be long
enough and you may want to pad this time with adelay immediately following the
readuserap statement to avoid FIFO underflow. Depending on the actionsin the pulse
sequence, your delay may need to be a number of milliseconds. If thereisan error in the
read, a warning message is sent to the host and a—1 is returned to the real-time variable.

2.4 Pulse Sequence Statements: Phase and Sequence Control

76

® “Real-Time Variables and Constants,” page 77

® “Calculating in Rea-Time Using Integer Mathematics,” page 78
® “Controlling a Sequence Using Real-Time Variables,” page 79

® “Real-Timevs. Run-Time—When Do Things Happen?,” page 80
® “Manipulating Acquisition Variables,” page 80

® “Intertransient and Interincrement Delays,” page 81

® “Controlling Pulse Sequence Graphical Display,” page 82

A seriesof interna variables, named v1, v2, ..., v14, are provided to perform calculations
during “real-time” (while the pulse sequence is executing). All real-time variables are
pointersto particular memory locationsin the controller memory. A real-time variable does
not change, rather the value in the memory location to which that real-time variabl e points
is changed.

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

2.4 Pulse Sequence Statements: Phase and Sequence Control

For example, when we speak of v1 being set equal to 1, what we really mean isthat the
value in the memory location pointed to by the real-time variable v1 is 1. The actual value
of v1, apointer, isnot changed. Thetwo ideas are interchangeable aslong as we recognize
exactly what is happening at the level of the controller memory.

These internal, real-time variables can be used for a number of purposes, but the two most
important are control of the pulse sequence execution (for looping and conditional
execution, for example) and cal culation of phases. For each pulsein the sequence, the phase
is calculated dynamically (at the start of each transient) rather than entirely at the start of
this experiment. This allows phase cyclesto attain essentially unlimited length, because
only one number must be calcul ated for each phase during each transient. By contrast,
attempting to calculate in advance a phase cycle with acycle of 256 transients and different
phasesfor each of 5 different pulseswould require storing 256 x 5 or 1280 different phases.

Real-Time Variables and Constants

The following variables and constants can be used for real-time cal culations:

vltovid Real-timevariablesare used for calculations of loops, phases, etc. They
are at the complete disposal of the user. The variables point to 16-bit
integers, which can hold values of —32768 to +32767.

ct Completed transient counter, which pointsto a 32-bit integer that is
incremented after each transient, starting with avalue of 0 prior to the
first experiment. This pattern (0,1,2,3,4, ...) isthe basis for most
calculations. Steady-state transients, invoked by the ss parameter, do
not change ct.

bsctr Block size counter, which pointsto a 16-bit integer that is decremented
from bs to 1 during each block of transients. After completing the last
transient in the block, bsctr is set back to avalue of bs. Thusif
bs=8, bsctr hassuccessive vaues of 8,7,6,5,4,3,2,1,8,7, ...

oph Real-time variable that controls the phase of the receiver in 90°
increments (0=0°, 1=90°, 2=180°, and 3=270°). Prior to the execution
of the pulse sequence itself, oph isset to O if parameter cp isset to
'n', or to the successivevaues0,1,2,3,0,1,2,3,...if cpisset
to 'y '. Thevalue of oph can be changed explicitly in the pulse
sequence by any of thereal-time math statements described in the next
section (assign, add, etc.) and is aso changed by the
setreceiver statement.

zZero, one, Pointers to constants set to select constant phases of 0°, 90°, 180°, and
two, three 270°. They cannot be replaced by numbers0, 1, 2, and 3.

ssval, Real-time variables described in “ Manipulating Acquisition

ssctr, Variables,” page 80.

bsval

id2,id3,id4 Pointers (or indexes) to constantsidentifying the current increment in
multidimensional experiments. 1d2 isthe current d2 increment. Its
value ranges from O to the size of the d2 array minus 1, whichis
typically 0 to (ni-1). 1d3 corresponds to current index of the d3
array in a3D experiment. Itsrangeis0to
(ni2-1). id4 correspondsto the current index of the d4 array. Its
rangeis0to (ni3-1). Only MERCURYplus/-Vx support id2.

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 77

Chapter 2. Pulse Sequence Programming

78

Calculating in Real-Time Using Integer Mathematics

A series of special integer mathematical statements are provided that are fast enough to
executeinreal-time: add, assign,dbl,decr,divn, hlv, incr,mod2, mod4, modn,
mult, and sub. These statements are summarized in Table 14.

Table 14. Integer Mathematics Statements

add (vi,vj,vk) Add integer values: set vk equd to vi + vj
assign(vi,vj) Assign integer values: set vj equa tovi

dbl (vi,vj) Double an integer value: set vj equal to 2evi

decr (vi) Decrement an integer value: set vi equal to vi -1

divn (vi,vj,vk) Divide integer values: set vk equal to vi div vj
hlv(vi,vj) Find half the value of an integer: set vj to integer part of 0.5evi
incr (vi) Increment an integer value: set vi equa tovi +1

mod2 (vi, vj) Find integer value modulo 2: set vj equal to vi modulo 2
mod4 (vi, vj) Find integer value modul o 4: set v3j equa to vi modulo 4
modn (vi,vj,vk) Find integer value modulo n: set vk equal to vi modulo vj
mult (vi,vj,vk) Multiply integer values: set vk equd to vievj

sub (vi,vj,vk) Subtract integer values: set vk equal to vi —vj

Remember that integer mathematics does not include fractions. If afraction appearsin a
result, the value is truncated; thus, one-half of 3is 1, not 1.5.

Integer statements also use the modulo, which isthe number that remains after the modulo
number is divided into the origina number. For example, the value of 8 modulo 2 (often
abbreviated “8 mod 2") isfound by dividing 2 into 8, giving an answer of 4 with a
remainder of 0, so 8 mod 2is0. Similarly, 9mod 2is1, since 2 into 9 gives 4 with a
remainder of 1. The modulus of a negative number is not defined in VnmrJ software and
should not be used.

Each statement performs one calculation at atime. For example, hlv (ct,v1) takeshalf
the current value of ct and placesit in the variable v1. Before each transient, ct hasa
given value (e.g., 7), and after this calculation, v1 hasacertain value (e.g., 3if ct was7).

To visualize the action of a statement over the course of a number of transients, pulse
sequences typically document this action explicitly as part of their comments. The
commentvi=0,0,1,1, .. (orvli=001122...) meansthat v1 assumesavalue of O
during the first transient, 0 during the second, 1 during the third, etc.

The following series of examplesillustrates the action of integer mathematics statements
and how comments are typically used:

hlv(ct,vl); /* v1=0011223344... */
dbl (vl,vl); /* v1=0022446688... */
mod4 (vl,vl) ; /* v1=0022002200... */
mod2 (ct,v2) ; /* v2=010101... */
dbl (v2,v3); /* v3=020202... */
/* v1=00112233... */
hlv(vl,v2); /* v2=00001111.... */
dbl (v1l,vl); /* v1=00224466.... */
add (vl,v2,v3); /* v3=00225577.... */
mod4 (v3,oph) ; /* oph=00221133...,receiver phase cycle */

Note that the same variable can be used as the input and output of a particular statement
(eg.,dbl (v1,v1) isfinesoitisnot necessary to usedbl (v1,v2)). Notealso that

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

2.4 Pulse Sequence Statements: Phase and Sequence Control

athough the mod4 statement is used in several cases, it isnever necessary to includeit,
evenif appropriate, because an implicit modulo 4isaways performed on all phases (except
when setting small-angle phase shifts).

The division provided by the divn statement isinteger division, thus remainders are
ignored. vj in each case must be a real-time variable and not areal number (like 6.0) or
even aninteger constant (like 6). To perform, for example, amodulo 6 operation, something
like the following is required:

initval(6.0,v1) ;

modn (v2,vl,v7) ; /* v7 is v2 modulo 6 */

Controlling a Sequence Using Real-Time Variables

In addition to being used for phase cal culations, real-time variables can also be used for
pulse sequence control. Table 15 lists pulse sequence control statements.

Table 15. Pulse Sequence Control Statements

elsenz (vi) Execute succeeding statements if argument is nonzero
endif (vi) End ifzero statement

endloop (index) End loop

ifzero(vi) Execute succeeding statementsif argument is zero
initval (realnumber,vi) Initidlize area-time variable to specified vaue

loop (count, index) Start loop

By placing pul se sequence statements between a loop (count, index) statement and
an endloop (index) statement, the enclosed statements can be executed repeatedly.
The count argument used with 1oop isareal-time variable that specifies the number of
times to execute the enclosed statements. count can be any positive number, including
zero. index isarea-time variable used asatemporary counter to keep track of the number
of times through the enclosed statements and must not be altered by any of the statements.
An example of using 1oop and endloop isthe following:

mod4 (ct,v5) ; /* times through loop: v5=01230123... */
loop (v5,v3) ; /* v3 is a dummy to keep track of count */
delay (d3) ; /* variable delay depending on the ct */

endloop (v3) ;

Statements within the pul se sequence can be executed conditionally by being enclosed
within ifzero (vi), elsenz (vi),and endif (vi) statements.vi isareal-time
variable used asatest variable, to betested for either being zero or non-zero. Theelsenz
statement may be omitted if it is not desired. It is also not necessary for any statements to
appear betweenthe i fzero andtheelsenz ortheelsenz and the endif statements.
The following code is an example of a conditional construction:

mod2 (ct,vl) ; /* v1=010101... */

ifzero(vl) ; /* test if v1 is zero */
pulse (pw,v2) ; /* execute these statements */
delay (d3) ; /* 1f vl is zero */

elsenz (vl) ; /* test if v1 is non-zero */
pulse (2.0*pw,v2) ; /* execute these statements */
delay(d3/2.0) ; /* 1f vl is non-zero */

endif (v1) ;

If numbers other than those easily accessiblein integer math (suchasct, oph, three) are
needed, any variable can beinitiaized to avalue with the initval (number, vi)
statement (e.g., initval (4.0, v9). Therea number inputisrounded off and placed in
the variable vi. This statement, unlike the statements such as add and sub described

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 79

Chapter 2. Pulse Sequence Programming

80

above, is executed once and only once at the start of anon-arrayed 1D experiment or at the
start of each increment in a 2D experiment or an arrayed 1D experiment, not at the start of
each transient.

Real-Time vs. Run-Time—When Do Things Happen?

It may help to explain the pulse sequence execution process in more detail. When an
experiment begins, the go program is executed. This program looks up the various
parameters, finds the name of the current pulse sequence, and looksin seglib for afile
of that name. Thefilein seglib isacompiled C program, which was compiled with the
seggen command. This program, which is run by the go program, combines the
parameters supplied to it by go together with a series of instructions that form the pulse
sequence.

The output of the pulse sequence program in seglib istable of numbers, known as the
code table (generaly referred to as Acodes or Acquisition codes), which contains
instructions for executing a pulse sequence in a special language. The pulse sequence
program sends a message to the acquisition computer to begin operation, informing it
wherethe codetableis stored. Thiscodetable is downloaded into the acquisition computer
and processed by an interpreter, which is executing in the acquisition computer and which
controls operation during acquisition. If after entering go or su, etc., the message that PSG
aborted abnormally appears, run the psg macro to help identify the problem.

A pulse sequence can intermix statementsinvolving C, suchasd2=1.0/ (2.0*J), with
special statements, such ashlv (ct, v2). These two statements are fundamentally
different kinds of operations. Entering go causes the evaluation of all higher-level
expressionsoncefor eachincrement. Thusind2=1.0/ (2. 0*J), thevalueof Jislooked
up, d2 iscalculated asonedivided by 2*J, and the value of d2 isfixed. Statementsin this
category are called run-time, since they are executed when go isrun. The hlv statement,
however, is executed every transient. Before each transient, the system examines the
current value of ct, performstheinteger h1v operation, and setsthe variable v2 (used for
phases, etc.) to that value. On successive transients, v2 has values of 0,0,1,1,2,2, etc.
Statements like these are called real-time, because they execute during the rea -time
operation of the pulse sequence.

Run-time statements are statements that are evaluated and executed in the host computer
by the pulse sequence program in seqglib when go isentered. Real-time statements are
statements that are repeatedly (every transient) executed by the code program runin a
specific controller. Therefore, it is not possible to include a statement like
d2=1.0+0.33*ct. Thevariable ct isared-timevariable (it is actualy an integer
pointer variable), while “C-type” mathematics are a run-time operation. Only the special
real-time statements included in this section can be executed on a transient-by-transient
basis.

Manipulating Acquisition Variables

Certain acquisition parameters, such as s s (steady-state pulses) and bs (block size), cannot
be changed in a pulse sequence with a simple C statement. The reason is that by the time
thepulsesequence functionisexecuted, the values of thesevariablesare aready stored
in aregion of the host computer memory that will subsequently be part of the “low-core”
portion of the acquisition codein the acquisition computer. These memory locations can be
accessed and modified, however, by using real-time math functions with the appropriate
real-time variables.

Thevaue of ss inlow core is associated with real-time variables ssval and ssctr:

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

2.4 Pulse Sequence Statements: Phase and Sequence Control

® ssval isnever modified by the acquisition computer unless specifically instructed by
statements within the pulse sequence.

® ssctrisautomaticaly initiadlized to ssval.

For the first increment only, if ssval isgreater than zero, or else before every increment
inanarrayed 1D or 2D experiment, ssctr isdecremented after each steady-statetransient
until it reaches 0. When ssctr is0, all subsequent transients are collected as data

The vaue of bs inlow coreis associated with real-time variablesbsval and bsctr:

® bsval isnever modified by the acquisition computer unless specifically instructed by
statements within the pulse sequence.

® bsctrisautomaticaly initialized to bsval after each block of transients has been
compl eted.

During the acquisition of ablock of transients, bsctr is decremented after each transient.
If bsval isnon-zero, azero value for bsctr signasthat the block of transientsis
compl ete.

The ability within a pul se sequence to modify the values of these low core acquisition
variables can be used to add various capabilities to pul se sequences. As an example, the
following pulse sequenceillustrates the cycling of pulse and receiver phases during steady-
state pul ses:
#include <standard.h>
pulsesequence ()
{

/* Implement steady-state phase cycling */

sub (ct,ssctr,v10) ;

initval (16.0,v9) ;

add (v10,v9,v10) ;

/* Phase calculation statements follow,

using v10 in place of ct as the starting point */
/* Actual pulse sequence goes here *x/

Intertransient and Interincrement Delays

When running arrayed or multidimensional experiments (using ni, ni2, etc.), certain
operations are done preceding and following the pulse sequence for every array element
and every transient. These overhead operations take up time must be accounted for when
running a pulse sequence. This might be especially important if the repetition time of a
pul se sequence hasto be maintained across every element and every scan during an arrayed
or multidimensional experiment.

These overhead times between increments (array elements) and transients are deterministic
(i.e., both known and constant); however, the time between increments, which wewill call
%, islonger than the time between transients, which we will call y. Also, the time between
increments will change depending on the number of rf channels.

To maintain aconstant repetition time, aparameter called do (for d-zero) can be created so
that x=y+d0. Because the interincrement overhead time will differ with different system
configurations—and to keep the d0 delay consistent across systems—if 40 is set greater
than the overhead delay, the inter-FID delay x is padded such that y+d0=x+ (d0- (x-
y)) . Inother words, d0 isused to set astandard delay so theinterincrement delay and the
intertransient delay are the same when executing transient scans within an array element.
The delay isinserted at the beginning of each scan of aFID after the first scan has

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 81

Chapter 2. Pulse Sequence Programming

82

completed. The a0 delay can be set by the user or computed by PSG (if do issetto 'n').
When 40 does not exist, no delay is inserted.

Another factor to consider when keeping a consistent timing in the pulse sequence is the
status statement. The timing of this statement varies depending on the number of
channels and the type of decoupler modulation. To keep this timing constant, the pulse
sequence statement statusdelay alowsthe user to set a constant delay time for
changing the status. For thisto work, the delay time has to be longer than the time it takes
to set the status. For timing and more information, see the description of statusdelay
in Chapter 3.

The overhead operations preceding every transient are resetting the DTM (data-to-
memory) control information. The overhead operations following every transient are error
detection for number of points and data overflow; detection for blocksize, end of scan, and
stop acquisition; and resetting the decoupler status. A0 does not take these delays into
account.

The overhead operations preceding every array element are initializing the rf channel
settings (frequency, power, etc.), initializing the high-speed (HS) lines, initializing the
DTM, and if arrayed, setting the receiver gain. dO does not take into account arraying of
decoupler status shims, VT, or spinning speed.

Controlling Pulse Sequence Graphical Display

Thedps off,dps on,dps skip, and dps_show statements, summarized in Table
16, can be inserted into a pul se sequence to control the graphical display of the pulse
sequence statements by the dps command:

® |nsertdps_ off () into the sequenceto turn off dps display of statements. All pulse
sequences following dps_ of £ will not be shown.

® |nsertdps_on () into the sequence to turn on dps display of statements. All pulse
sequences following dps_on will be shown.

® |nsertdps_skip () intothesequenceto skip dps display of the next statement. The
next pulse sequence statement will not be displayed.

® |nsertdps_show (options) statementsinto the pulse sequenceto draw pulsesfor
dps display. The pulses will appear in the graphical display of the sequence.
Many optionsto dps_show are available. These options enable drawing aline to
represent a delay, drawing a pulse picture and displaying the channel name below the
picture, drawing shaped pulses with labels, drawing observe and decoupler pulses at
the same time, and much more. Refer to Chapter 3, “ Pulse Sequence Statement
Reference,” for afull description of dps_show, including examples.

Table 16. Statementsfor Controlling Graphical Display of a Sequence

dps_off () Turn off graphical display of statements
dps_on() Turn on graphical display of statements
dps show(options)* Draw delay or pulsesin asequence for graphical display
dps_skip() Skip graphical display of next statement

* dps_show hasmany options. See Chapter 3, “ Pulse Sequence Statement Reference,”
for the syntax and examples of use.

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

2.5 Real-Time AP Tables

2.5 Real-Time AP Tables

® “| oading AP Table Statements from Linux Text Files,” page 83
® “Table Names and Statements,” page 84
® “AP Table Notation,” page 84
® “Handling AP Tables,” page 85
® “Examples of Using AP Tables,” page 87
® “Using Internal Phase Tables,” page 87
Real-time acquisition phase (A P) tables can be created under pul se sequence control. These

tables can store phase cycles, an array of attenuator values, etc. In the pulse sequence, the
tables are associated with variables t 1, t2, ... t60.

Thefollowing pulse sequence statements accept the table variables t 1 to t 6 0 at any place
where asimple AP variable, such asv1, can be used:

pulse rgpulse decpulse
decrgpulse dec2rgpulse dec3rgpulse
simpulse txphase decphase
dec2phase dec3phase xmtrphase
dcplrphase dcplr2phase dcplr3phase
phaseshift spinlock decspinlock
dec2spinlock dec3spinlock shaped pulse
decshaped pulse dec2shaped pulse dec3shaped pulse
simshaped pulse sim3shaped pulse power

pwrf

For example, the statement rgpulse (pw, t1, rofl, rof2) performsan observe
transmitter pulse whose phase is specified by a particular statement in the real-time AP
table t1, whereas rgpulse (pw, vl, rofl, rof2) performsthe same pulse whose
phase is specified by the real-time variable v1. The real-time math functions add (),
assign (), etc. listed in Table 14 cannot be used with tables t 1 -t 6 0. The appropriate
functionsto use are given in Table 17.

Statements using a table can occur anywhere in a pulse sequence except in the statements
enclosed by an ifzero-endif pair.

Loading AP Table Statements from Linux Text Files

Table statements can be loaded from an externa Linux text file with the loadtable
statement or can be set directly within the pulse sequence with the settable statement.
The values stored must be integral and must lie within the 16-bit integer range of —32768
to 32767.

The AP table file must be placed in the user’s private directory tablib, which might be,
for example, /home /vnmrl/vnmrsys/tablib, or inthe system directory for table
files, /vnmr /tablib. The software looksfirst in the user's personal tablib directory
for atable of the specified name, then in the system directory. The format for the table file
is quite flexible, comments are allowed, and severa specia notations are available.

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 83

Chapter 2. Pulse Sequence Programming

84

Table Names and Statements

Entriesin thetablefile are referred to as table names. Each table name must come from the
sett1tot60 (eg., t14 isatable name). A table name may be used only once within the
tablefile. If atable nameis used twice within the table file, an error message is displayed
and pulse sequence generation (PSG) aborts.

Each table statement must be written as an integer number and separated from the next
statement by some form of “white” space, such as a blank space, tab, or carriage return.

The table name is separated from the table statements by an = or a+=sign (the +=sign is
explained on page 84), and there must be a space between the table name and either of these
two signs. For example, if atable file contains the table name t 1 with statements 0, 1, 2,
3,2,3,0,1,itwould bewrittenastl = 0 1 2 3 2 3 0 1.

Theindex into atable can range from Oto 1 less than the number of statementsin the table.
Note that an index of O will accessthefirst statement in the table. Unless the autoincrement
attribute (described on page 84) isimparted to the table, the index into the tableis given by
ct, the completed transient counter.

If the number of transients exceeds the length of the table, access to the table begins again
at the beginning of the table. Thus, given atable of length n with statements numbered

0 through n-1 (this numbering is strictly away to think about the numbering and does not
imply the statements are actually numbered), then when the transient number is ct, the
number of the statement of the table that will beused is ¢t mod nn (remember that ct starts
at 0 on thefirst transient, since ct represents the number of completed transients).

AP Table Notation

Special notation is available within the table file to simplify entering the table statements
and to impart specific attributes to any table within that file:

(...)# Indicates the table segment within the parenthesesisto bereplicated in its
entirety # times (where # ranges from 1 to 64) before preceding to any
succeeding statements or segments. Do not include any space after) ”.
Forexample: t1=(0 1 2)3 /* tl table=012012012 */.

[...1# Indicates each statement in the table segment within square bracketsisto
be replicated # times (where # ranges from 1 to 64) before going to the
next statement in that segment. Do not include any space after “1”. For
examplet1=[0 1 2]3 /* tl table=000111222 */.

{...}# Impartsthe“divn-return” attribute to the table and indicatesthat the actual
index into the table isto be the index divided by the number # (where #
ranges from 1 to 64). # is called the divn factor and can be explicitly set
within a sequence for any table (see setdivnfactor). Thisattribute
provides a #-fold level of table compaction to the acquisition processor.
The { } notation must enclose all of the table statementsfor agiven table.
This notation should not be used if this table will be subject to table
operationssuch as t tadd (see page 86)—inthiscaseuse [] #, whichis
equivalent except for table compression. In entering the { } # notation,
do not include any space after “ }”.

+= Indicates that the index into the table starts at O for each new FID in an
array or 2D experiment, isincremented after each access of the table and
istherefore independent of ct. Thisistheautoincrement attribute, which
can delimit the table name from the table statements. It can be explicitly
set within a pulse sequence for any table (see setautoincrement).

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

2.5 Real-Time AP Tables

The (...)#and [...]#notationsareexpanded by PSG at run-time and, therefore, offer
no degree of table compaction to the acquisition processor. Nestingof (...) and [...]
expressionsis not allowed. The autoincrement += attribute can be used in conjunction with
the divn-return attribute and withthe (.. .) and [...] notations.

Multiple { . . . } expressions within onetable are not allowed, but (...) and [...]

expressions can be placed withina { . . . } expression.

The following examples illustrate combining the notation:
t2 = [0 12 3]4 (002 2)4

/* t2 table = 00001111222233330022002200220022 */
t3 = {01 (0 2)2 02 [3 1]4}4

/* t3 table = 0102020233331111 with divn-factor = 4;

i.e., 00001111000022220000222200002222 ... */
t4a += {0 1 2 3}8
/* t4 table with autoincrement and divn-factor = 8

i.e., 00000000111111112222222233333333 with index
incremented at each reference to table, not at each ct */

Handling AP Tables

Table 17 lists statements for handling AP tables.
Table 17. Statements for Handling AP Tables

getelem(tablename,APindes, APdest) Retrieve an element from a AP table
loadtable (file) L oad AP table elementsfrom table text file
setautoincrement (tablename) Set autoincrement attribute for atable
setdivnfactor (tablename, divnfactor) Set divn-return attribute and divn-factor
setreceiver (tablename) Associate revr. phase cycle with AP table
settablex* Store array of integersin real-time AP table
tsadd (tablename, scalarval, moduloval) Add an integer to AP table elements
tsdiv (tablename, scalarval,moduloval) Divide atable into a second table
temult (tablename, scalarval,moduloval) Multiply aninteger with AP table elements
tssub (tablename, scalarval, moduloval) Subtract an integer from AP table elements
ttadd* Add atableto a second table
ttdiv* Divide atable into a second table
ttmult* Multiply atable by a second table
ttsub* Subtract a table from a second table
* gettable (tablename,numelements, intarray)

ttadd (tablenamedest, tablenamemod, moduloval)

ttdiv (tablenamedest, tablenamemod, moduloval)

ttmult (tablenamedest, tablenamemod, moduloval)

ttdiv (tablenamedest, tablenamemod, moduloval)

The loadtable (file) statement|loads APtable statementsfrom tabletext file. £ile
specifies the name of the table file (a UNIX text file) in the user's personal tablib
directory or in the VnmrJ system tablib directory. loadtable can be called multiple
times within a pulse sequence. Care should be taken to ensure that the same table name is
not used more than once by the pul se sequence.

Thesettable (tablename, numelements, intarray) Statement storesan array
of integersin areal-time APtable. tablename specifiesthe name of thetable (t1 to
t60). numelements specifiesthesizeof thetable. intarray isaC array that contains
the table elements. These elements can range from —32768 to 32767. The user must

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 85

Chapter 2. Pulse Sequence Programming

86

predefine and predimension this array in the pulse sequence using C language statements
prior to calling settable.

Thegetelem (tablename, APindex, APdest) statement retrievesan element from
atable. tablename specifiesthe name of the Table (t1 to t60). APindex isan AP
variable (v1 to v14, oph, ct, bsctr, or ssctr) that contains the index of the desired
table element. Note that the first element of atable hasan index of 0. APdest isalso an
APvariable (v1 tov14 and oph) into which the retrieved table element is placed. For
tables for which the autoincrement feature is set, APindex, the second argument to
getelem, isignored and can be set to any AP variable name; each element in such atable
is by definition always accessed sequentially.

Thesetautoincrement (tablename) statement setstheautoincrement attribute for
atable. tablename specifiesthe name of thetable (t1 to t60). Theindex into the table
isset to O at the start of an FID acquisition and is incremented after each accessinto the
table. Tables using the autoincrement feature cannot be accessed within a hardware [oop.

The setdivnfactor (tablename,divnfactor) staement setsthe divn-return
attribute and the divn-factor for atable. tablename specifies the name of the table (t 1
to £60). Theactual index into the table isnow set to (index/divnfactor). {0 1}2is
therefore translated by the acquisition processor, not by pul se sequence generation (PSG),
intoo 0 1 1.Thedivn-return attribute resultsin a divn-factor-fold compression of the
AP table at the level of the acquisition processor.

The setreceiver (tablename) statement assigns the ctth element of the AP table
tablename tothereceiver variable oph. If multiple set receiver statementsare used
in apulse sequence, or if thevalue of oph ischanged by real-time math statements such as
assign, add, etc., thelast value of oph prior to the acquisition of data determinesthe
value of the receiver phase.

To perform run-time scalar operations of an integer with AP table elements, use the
following statements:

tsadd (tablename, scalarval,moduloval)

tssub (tablename, scalarval,moduloval)

tsmult (tablename, scalarval,moduloval)

tsdiv (tablename, scalarval,moduloval)

where tablename specifiesthe nameof thetable(t1tote0) and scalarval isadded
to, subtracted from, multiplied with, or divided into each element of thetable. Theresult of
the operation is taken modulo moduloval (if moduloval isgreater than 0). tsdiv
requiresthat scalarval isnot equal to O; otherwise, an error is displayed and PSG
aborts.

To perform run-time vector operations of one AP table with a second table, use the
following table-to-table statements:

ttadd (tablenamedest, tablenamemod, moduloval)

ttsub (tablenamedest, tablenamemod, moduloval)

ttmult (tablenamedest, tablenamemod, moduloval)

ttdiv (tablenamedest, tablenamemod, moduloval)

wheretablenamedest and tablenamemod arethe namesof tables(t 1 to t 6 0). Each
element in tablenamedest ismodified by the corresponding element in
tablenamemod. Theresult, stored in tablenamedest, istaken modulo moduloval
(if moduloval isgreater than 0). The number of elementsin tablenamedest must be
greater than or equal to the number of elementsin tablenamemod. ttdiv requiresthat
no element in tablenamemod equal 0.

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

2.5 Real-Time AP Tables

Examples of Using AP Tables

This section contains a two-pulse sequence and a homonuclear J-resolved experiment as
examples of using AP tables.

Two-Pulse Sequence

Listing 3isthecontentsof thefiles /home /vnmrl/vnmrsys/psglib/t2pul.c and
/home/vnmrl/vnmrsys/tablib/t2pul associated with a hypothetical two-pulse
sequence T2PUL.

Listing 3. Two-Pulse Sequence t2pul.c with Phase Tables

#include <standard.h> tl =0
/* 0000 */
pulsesequence () t2 =021 3
{ /* 0213 */
loadtable ("t2pul") ; t3 =021 3
status (A) ; /* 0213 */
hsdelay (dl) ;
status (B) ;
pulse(pl,tl);
hsdelay (d2) ;
status (C) ;
pulse (pw, t2) ;
setreceiver (t3) ;
1

Noticethat t 2 and t 3 areidentical. The pulse sequence could have used just one phase for
both the observe pulse and the receiver, but using two separate phasesin thisway provides
more flexibility for allowing run-time modification of al phasesindependently (e.g., a
cancellation experiment can be run by changingline2inthe tablib filetot2 = 0 or by
changing line3to t3 = 0).

Homonuclear J-Resolved Experiment

Listing 4 listsfiles /home /vamr1l/vnmrsys/psglib/hom2djt.c and /home/
vnmrl/vnmrsys/tablib/hom2d;jt associated with a hypothetical homonuclear
Jresolved sequence HOM2DJT.

This sequence uses “ conventional” phase cycling, completely different than the pulse
cycling in the standard HOM 2DJ sequence found in psglib. The phase cycling,
contained herein t 4, isadded to the phases by the pulse sequence itself with the series of
three t tadd statements. Thiscan also be donein thetableitself, for example, by replacing
thet2 lineinthetablibfilewitht2 = 1 2 3 03 01223 01012 3,
which isthe completely “spelled out” phase cycle for the second pul se.

When using atable to be referenced with a t tadd statement, the table cannot be
compressed by using t4 = {0 2 1 3}4. Square brackets, which are exactly equivalent
to the curly brackets but without achieving table compression at the level of the acquisition
processor must be used.

Using Internal Phase Tables

Another use of tablesisto internally declarethem and convert themtot variables. Thishas
the advantage of giving internal documentation and having independence of external tables

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 87

Chapter 2. Pulse Sequence Programming

Listing 4. Homonuclear J-Resolved Sequence hom2djt.c with Phase Tables

#include <standard.h> tl = [0]16
pulsesequence () /*0000000000000000 */
{ t2 = (1L 2 3 0)4
loadtable ("hom2djt") ; /*1230123012301230 */
ttadd (tl,t4,4); t3 = (0 2)8
ttadd(t2,t4,4); /*0202020202020202 */
ttadd(t3,t4,4); t4 = [0 2 1 3]4
status (2) ; /* 0000222211113333 */
hsdelay (dl) ;
status (B) ;
pulse (pw,tl) ;
delay(d2/2) ;
pulse (pl,t2);
delay(d2/2) ;
status (C) ;
setreceiver (t3) ;
}

(which might have been modified). Listing 5 shows code for a generic phase-sensitive 2D
experiment that also illustrates the use of t sadd and handles the case of phase=2.

Listing 5. Example of Internal Phase Tables

/*name.c “name of sequence”

... 2D sequence using State-Haberkorn method for phase-sensitive datein F1 (set

phase=1, 2)...
*/
#include<standard.h>
static int phiil[2] = {3,1,3,1}, /*phase for pulse 1 */
phi2[4]={0,0,2,2}, /*phase for pulse 2 */
rec[4]={0,2,2,0}; /*receiver phase */

pulsesequence ()

{

/*psg statements */

settable(tl,4,phil); /*set t variables */
settable (t2,4,phi2) ;
settable (t3,4, rec) ;

if (phasel=2) tsadd(tl,1,4); /*for states-haberkorn */
rgpulse (pw,tl,rofl,rofl); /*phase increment for phase=2 */
delay (d2) ; /*2D evolution time */

/*psg statements */
rgpulse (pw,t2,rofl,rofl);

setreceiver (t3);

}

88 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

2.6 Accessing Parameters

2.6 Accessing Parameters

® “Categories of Parameters,” page 89
® “Looking Up Parameter Values,” page 96
® “Using Parametersin a Pulse Sequence,” page 96

Thegetval and getstr statement look up the value of parameters, providing accessto
parameters. Table 18 summarizes these statements.

Table 18. Parameter Value Lookup Statements

getstr (parametername, internalname) Look up vaue of string parameter
internalname=getval (parametername) Look up vaue of numeric parameter

Parameters are defined by the user in particular experiment files (exp1, exp2, etc.) in
which the operation is occurring. These parameters are not the same as the parameters that
are accessible to the pulse sequence during its execution, although they are at least
potentially the same.

Categories of Parameters

Parameters can be divided into three categories:

® Parametersused in apulse sequence exactly asin the parameter set; in other words, the
name of the parameter (d1, for example) isthe same in both places. Thus, a statement
likedelay (d1) islegitimate. Table 19 lists VnmrJ parameter names and
corresponding pul se sequence generation (PSG) variable names and types. Table 19 is
for quick reference only. For the most current listing, go to /vnmr/psg/
acgparms.h (“¥NOVA) or /vnmr/psg/acgparms?2 .h (Mercuryplus/'Vx).
Table 20 summarizes VnmrJ parameter names used primarily for imaging. Parameters
in this category do not need to be declared as specific types (e.g., char) or require
getval or getstr.

® Parameters used in the pulse sequence derived from those in the parameter set.

® Parameters unknown to the pulse sequence. This includes parameters created by the
user for aparticular pulse sequence (such asJ or mix) aswell asafew surprises, such
as at, the acquisition time (the pul se sequence does not know this). The statements
getval and getstr are provided for this category.

Table 19. Global PSG Parameters

Acquisition

extern char i1 [MAXSTR] interleaved acquisition parameter,'y ', 'n'
extern double inc2D t1 dwell timein a3D/4D experiment
extern double inec3D t2 dwell timein a3D/4D experiment
extern double sw spectral width

extern double nf Number of FIDsin pulse sequence
extern double np Number of data points to acquire (real)
extern double nt Number of transients

extern double sfrq Observe frequency MHz

extern double dfrg Decoupler frequency MHz

extern double dfrqg2 2nd decoupler frequency MHz

extern double dfrg3 3rd decoupler frequency MHz

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 89

Chapter 2. Pulse Sequence Programming

Table 19. Global PSG Parameters (continued)

extern double dfrg4 4th decoupler frequency MHz
extern double bs Block size
extern double tof Observe transmitter offset
extern double dof Decoupler offset
extern double dof2 2nd decoupler offset
extern double dof3 3rd decoupler offset
extern double dof4 4th decoupler offset
extern double gain Receiver gainvalue, or 'n' for autogain
extern double dlp Decoupler low power value
extern double tpwr Transmitter pulse power
extern double tpwrf Transmitter fine linear attenuator for pulse
extern double dpwr Decoupler pulse power
extern double dpwrf Decoupler fine linear attenuator for pulse
extern double dpwrf2 2nd decoupler fine linear attenuator
extern double dpwrf3 3rd decoupler fine linear attenuator
extern double dpwrf4 4th decoupler fine linear attenuator
extern double dpwr2 2nd decoupler power course attenuator
extern double dpwr3 3rd decoupler power course attenuator
extern double dpwr4 4th decoupler power course attenuator
extern double filter Pulse amp filter setting
extern double xmf Observe transmitter pulse width
extern double dmf Decoupler modulation frequency
extern double dmf2 Decoupler modulation frequency
dmf3
dmf 4
extern double fb Filter bandwidth
extern double vttemp VT temperature setting
extern double vtwait VT temperature time-out setting
extern double vtc VT temperature cooling gas setting
extern double cpflag Phase cycling; 1=no cycling, O=quad detect
extern double dhpflag Decoupler high power flag
Pulse Widths
extern double pw Transmitter modulation frequency
extern double pl A pulse width
extern double pw90 90° pulse width
extern double hst Time homospoil is active
Delays
extern double alfa Time after receiver is turned on that acquisition begins
extern double beta Audio filter time constant
extern double di Delay
extern double dz2 An auto incremental delay, used in 2D experiments
extern double as An auto incremental delay, used in 3D experiments
extern double d4 An auto incremental delay, used in 4D experiments
90 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

2.6 Accessing Parameters

Table 19. Global PSG Parameters (continued)

extern double pad Preacquisition delay

extern double padactive Preacquisition delay active parameter flag
extern double rofl Amplifier unblanking delay before pulse
extern double rof2 Amplifier blanking delay

2D/3D/4D

extern double totaltime Total timer events for an experiment duration estimate
extern int phasel Used for 2D acquisition

extern int phase2 Used for 3D acquisition

extern int phase3 Used for 4D acquisition

extern int d2_index d2 increment (from0toni-1)

extern int d3_index d3increment (from0toni2-1)

extern int d4_ index d4 increment (from 0toni3-1)

Programmable Decoupling Sequences

extern char xseq [MAXSTR]

extern char dseq [MAXSTR]

extern char dseg2 [MAXSTR]

extern char dseqg3 [MAXSTR]

extern char dseg4 [MAXSTR]

extern double xres Digit resolution prg dec

extern double dres Digit resolution prg dec

extern double dres2 Digit resolution prg dec

extern double dres3 Digit resolution prg dec

extern double dres4 Digit resolution prg dec

Satus Control

extern char xm [MAXSTR] Transmitter status control

extern char xmm [MAXSTR] Transmitter modulation type control
extern char dm [MAXSTR] 1st decoupler status control

extern char dmm [MAXSTR] 1st decoupler modulation type control
extern char dm2 [MAXSTR] 2nd decoupler status control

extern char dmm2 [MAXSTR] 2nd decoupler modul ation type control
extern char dm3 [MAXSTR] 3rd decoupler status control

extern char dmm3 [MAXSTR] 3rd decoupler modulation type control
extern char dm4 [MAXSTR] 4th decoupler status control

extern char dmm4 [MAXSTR] 4th decoupler modulation type control
extern char homo [MAXSTR] 1st decoupler homo mode control
extern char homo?2 [MAXSTR] 2nd decoupler homo mode control
extern char homo3 [MAXSTR] 3rd decoupler homo mode control
extern char homo4 [MAXSTR] 4th decoupler homo mode control
extern int xmsize Number of charactersin xm

extern int xmmsize Number of characters in xmm

extern int dmsize Number of charactersin dm

extern int dmmsize Number of charactersin dmm

01-999379-00 A 0708

VnmrJ 2.2 Ml User Programming

91

Chapter 2. Pulse Sequence Programming

Table 19. Global PSG Parameters (continued)

extern int dm2size Number of charactersin dm2

extern int dmm2size Number of charactersin dmm2

extern int dm3msize Number of charactersin dm3

extern int dmm3msize Number of charactersin dmm3

extern int dmdsize Number of charactersin dm4

extern int dmm4msize Number of charactersin dmm4

extern int homosize Number of charactersin homo

extern int homo2size Number of charactersin homo2

extern int homo3size Number of charactersin homo3

extern int homo4size Number of charactersin homo4

extern int hssize Number of charactersin hs
Table 20. Imaging and Other Variables

RF Pulses

extern double p2 Pulse length

extern double p3 Pulse length

extern double p4 Pulse length

extern double p5 Pulse length

extern double pi Inversion pulse length

extern double psat Saturation pulse length

extern double pmt M agnetization transfer pulse length

extern double pwx X-nucleus pulse length

extern double pwx2 X-nucleus pulse length

extern double psl Spin-lock pulse length

extern char pwpat [MAXSTR] Pattern for pw, tpwr

extern char pwlpat [MAXSTR] Pattern for pl, tpwrl

extern char pw2pat [MAXSTR] Pattern for p2, tpwr2

extern char pw3pat [MAXSTR] Pattern for pw3, tpwr3

extern char pwidpat [MAXSTR] Pattern for pw4, tpwr4

extern char pw5pat [MAXSTR] Pattern for pw5, tpwr5s

extern char pipat [MAXSTR] Pattern for pi, tpwri

extern char satpat [MAXSTR] Pattern for pw, tpwr

extern char mtpat [MAXSTR] Pattern for psat, satpat

extern char pslpat [MAXSTR] Pattern for spin-lock

extern double tpwrl Transmitter pulse power

extern double tpwr2 Transmitter pulse power

extern double tpwr3 Transmitter pulse power

extern double tpwr4 Transmitter pulse power

extern double tpwrs Transmitter pulse power

extern double tpwri Inversion pulse power

extern double satpwr Saturation pulse power

extern double mtpwr M agnetization transfer pul se power

92 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

extern
extern
extern

double
double
double

2.6 Accessing Parameters

Table 20. Imaging and Other Variables (continued)

pwxlvl
pwxlv12
tpwrsl

pwx pulselevel
pwx2 power level
Spin-lock power level

RF Decoupler Pulses

extern char decpat [MAXSTR] Pattern for decoupler pulse

extern char decpatl [MAXSTR] Pattern for decoupler pulse

extern char decpat2 [MAXSTR] Pattern for decoupler pulse

extern char decpat3 [MAXSTR] Pattern for decoupler pulse

extern char decpat4 [MAXSTR] Pattern for decoupler pulse

extern char decpat5 [MAXSTR] Pattern for decoupler pulse

extern char dpwrl Decoupler pulse power

extern char dpwr4 Decoupler pulse power

extern char dpwr5 Decoupler pulse power
Gradients

extern double gro, gro2, gro3 Readout gradient strength

extern double gpe, gpe2, gpe3 Phase encode for 2D, 3D, and 4D
extern double gss,gss2,gss3 Slice-select gradients

extern double gror Readout focus

extern double gssr Slice-select refocus

extern double grof Readout refocus fraction

extern double gsst Slice-select refocus fraction

extern double g0,9l,...g9 Numbered levels

extern double gx, gy, 9z X, Y, and Z levels

extern double gvoxl, gvox2, gvox3 Voxel selection

extern double gdiff Diffusion encode

extern double gflow Flow encode

extern double gspoil,gspoil2 Spoiler gradient levels

extern double gcrush, gcrush? Crusher gradient levels

extern double gtrim,gtrim2 Trim gradient levels

extern double gramp, gramp2 Ramp gradient levels

extern double gpemult Shaped phase encode multiplier
extern double gradstepsz Positive stepsin the gradient DAC
extern double gradunit Dimensional conversion factor
extern double gmax Maximum gradient value (G/cm)
extern double gxmax X maximum gradient value (G/cm)
extern double gymax Y maximum gradient value (G/cm)
extern double gzmax Z maximum gradient value (G/cm)
extern double gtotlimit Limit combined gradient values (G/cm)
extern double gxlimit Safety limit for X gradient (G/cm)
extern double gylimit Safety limit for Y gradient (G/cm)
extern double gzlimit Safety limit for Z gradient (G/cm)
extern double gxscale X scaling factor for gmax

extern double gyscale Y scaling factor for gmax

01-999379-00 A 0708

VnmrJ 2.2 Ml User Programming

93

Chapter 2. Pulse Sequence Programming

Table 20. Imaging and Other Variables (continued)

extern double gzscale Z scaling factor for gmax
extern char gpatup [MAXSTR] Gradient ramp-up pattern
extern char gpatdown [MAXSTR] Gradient ramp-down pattern
extern char gropat [MAXSTR] Readout gradient pattern
extern char gpepat [MAXSTR] Phase encode gradient pattern
extern char gsspat [MAXSTR] Slice gradient pattern

extern char gpat [MAXSTR] Genera gradient pattern
extern char gpatl [MAXSTR] Genera gradient pattern
extern char gpat2 [MAXSTR] Genera gradient pattern
extern char gpat3 [MAXSTR] Genera gradient pattern
extern char gpat4 [MAXSTR] Genera gradient pattern
extern char gpats [MAXSTR] Genera gradient pattern
Delays

extern double tr Repetition time per scan
extern double te Primary echo time

extern double ti Inversion time

extern double tm Mid-delay for STE

extern double at Acquisition time

extern double tpe, tpe2, tpe3 Phase encode durations for 2D to 4D
extern double tcrush Crusher gradient duration
extern double tdiff Diffusion encode duration
extern double tdelta Diffusion encode duration
extern double tDELTA Diffusion gradient separation
extern double tflow Flow encode duration

extern double tspoil Spoiler duration

extern double hold Physiological trigger hold off
extern double trise Gradient coil risetime: sec
extern double satdly Saturation time

extern double tau Genera use delay

extern double runtime User variable for total experiment time
Frequencies

extern double resto Reference frequency offset
extern double wsfrg Water suppression offset
extern double chessfrg Chemical shift selection offset
extern double satfrqg Saturation offset

extern double mtfrg M agnetization transfer offset

Physical Szesand Positions (for slices, voxels,

and FOV)

extern
extern
extern
extern
extern

94

double
double
double
double
double

pro
ppe, ppe2, ppe3
posl, pos2,pos3
pss [MAXSLICE]

1lro

VnmrJ 2.2 Ml User Programming

FOV position in readout

FOV position in phase encode
Voxel position

Slice position array

Readout FOV

01-999379-00 A 0708

2.6 Accessing Parameters

Table 20. Imaging and Other Variables (continued)

extern double lpe, lpe2, 1pe3 Phase encode FOV

extern double lss Dimension of multidice range

extern double voxl, vox2, vox3 Voxel size

extern double thk Slice or slab thickness

extern double lpe, lpe2, 1pe3 Phase encode FOV

extern double fovunit Dimensional conversion factor

extern double thkunit Dimensional conversion factor
Bandwidths

extern double swl, sw2, sw3 Phase encode bandwidths/ spectra widths

Counts and Flags

extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

double
double
double
double
double
double
double
char
char
char
char
char
char
char
char
char
char
char
char
char

nD

ns

ne
ni

nv, nv2, nv3

ssc

ticks

ir [MAXSTR]

ws [MAXSTR]

mt [MAXSTR]
pilot [MAXSTR]
seqgcon [MAXSTR]
petable [MAXSTR]
acqgtype [MAXSTR]
exptype [MAXSTR]
apptype [MAXSTR]
segfile [MAXSTR]
rfspoil [MAXSTR]
satmode [MAXSTR]
verbose [MAXSTR]

Experiment dimensionality

Number of slices

Number of echoes

Number of standard increments
Number phase encode views
Compressed ss transients

External trigger counter

Inversion recovery flag

Water suppression flag
Magnetization flag

Auto gradient balance flag
Acquisition loop control flag

Name for phase encode table
Example: “full” or “half” echo
Example: “se” or “fid” in CSI
Keyword for parameter init, e.g, “imaging”
Pulse sequence name

rf spoiling flag

Presentation mode

Verbose mode for sequences and psg

Miscellaneous

extern
extern
extern
extern
extern
extern
extern
extern

double
double
double
double
double
double
double
double

rfphase
BO
slcto
delto
tox
toy

toz

griserate

rf phase shift

Static magnetic field level
Slice selection offset
Slice spacing frequency
Transmitter offset
Transmitter offset
Transmitter offset
Gradient riserate

01-999379-00 A 0708

VnmrJ 2.2 Ml User Programming

95

Chapter 2. Pulse Sequence Programming

Looking Up Parameter Values

The statement internalname=getval (parametername) alowsthe pulse
sequence to look up the value of any numeric parameter that it otherwise does not know
(parametername) and introduce it into the pulse sequence in the variable
internalname. internalname can be any legitimate C variable name that has been
defined astype double at the beginning of the pulse sequence (eveniif it iscreated astype
integer). If parametername isnot found in the current experiment parameter list,
internalname iSset to zero, and PSG produces a warning message. For example,
double j;

j=getval ("j") ;
Or simply double j=getval (“j”);

Thegetstr (parametername, internalname) statement isused to look up the
value of the string parameter parametername in the current experiment parameter list
and introduce it into the pulse sequence in the variable internalname.
internalname can be any legitimate C variable name that has been defined as array of
type char with dimension MAXSTR at the beginning of the pulse sequence. If the string
parameter parametername isnot found in the current experiment parameter list,
internalname isset to the null string, and PSG produces a warning message. For
example:

char coil [MAXSTR] ;

getstr ("sysgcoil",coil) ;

Using Parameters in a Pulse Sequence

Asan example of using parametersin a pulse sequence, create anew pulse sequence with
new variable names and have it fully functiona from VnmrJ. Usually, the best way to
compose a hew pulse sequence isto start from a known good pulse sequence and from a
known good parameter set. For many pulse sequences, s2pul . cin /vnmr/psglib and
s2pul.parin /vaomr/parlib areagood placeto start.

Create anew pulse sequence similar to s2pul but with new variable names and using a
shaped pulse as follows:

1. Open ashell window.
Enter cd ~/vnmrsys/psglib.

2
3. Useatext editor such as vi to create the file newpul . ¢ shownin Listing 6.
4. Savethefilenewpul.c.

5

Enter seqgen newpul after newpul . c is created.

Thefollowing lines are displayed during pul se sequence generation:
Beginning Pulse Sequence Generation Process...
Adding DPS extensions to Pulse Sequence...
Lint Check of Sequence...

Compiling Sequence...

Link Loading...

Done! Pulse sequence newpul now ready to use.

6. To usethe pulse sequence in VnmrJ, add new parameters starting from a known
good parameter set (e.g. s2pul . par) by entering from the VnmrJ command line:

96 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

2.6 Accessing Parameters

Listing 6. Filenewpul . c for aNew Pulse Sequence

/* newpul.c - new pulse sequence */
#include <standard.h>

static int ph2[4] = {0,1,2,3};

pulsesequence ()

{
double dlnew, d2new, plnew, pwnew;
char patnew[MAXSTR] ;
dlnew = getval ("dlnew") ;
d2new = getval ("d2new") ;
plnew = getval ("plnew") ;
pwnew= getval ("pwnew") ;
getstr ("patnew",patnew) ;
assign(zero,vl) ;
settable (t2,4,ph2);
getelem(t2,ct,v2);

/* equilibrium period */
status (A) ;
hsdelay (dlnew) ;

/* --- tau delay --- */
status (B) ;

pulse (plnew,vl) ;
hsdelay (d2new) ;

/* --- observe period --- */
status (C) ;
shaped pulse (patnew,pwnew,v2,rofl,rof2);

s2pul
seqgfil="newpul'
create('dlnew', 'delay') dlnew=1l
create('d2new', 'delay') d2new=.001
create('plnew', 'pulse') plnew=0
create ('pwnew', 'pulse') pwnew=40
create('patnew', 'string') patnew='square'
7. Theparametersneed to be saved asnewpul . par inparlib sothey can beeasily
retrieve them the next time the pul se sequence is run. Enter:
cd
cd('vomrsys/parlib!')
svp ('newpul')
8. Create amacro by entering to access the new parameters and pulse sequence, for
example:
macrovi ('newpul')

9. Inthe pop-up editor window, enter the insert mode and add the line:
psgset('newpul', 'array', 'dg', 'dlnew', 'd2new', 'plnew', 'pwnew', 'patnew')

Save the macro and exit. Thismacro requiresthefilenewpul . par tobepresentin
parlib.

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 97

Chapter 2. Pulse Sequence Programming

Enter newpul in the VnmrJ command line any time the new pulse sequence is needed.
Most of the pulse sequencesin /vnmr /psglib areset upinasimilar fashion, and so are
easily accessible.

Thenewpul . ¢ pulse sequence also contains examples of phase cycling. There are two
basic ways to perform arbitrary user-defined phase cycling:

® Usethered-timevariablesv1-v14, oph, zero, one, two, and three, and
perform math integer operations on them using functionsin Table 14.

® Usetherea-time APtables t1-t60, which may be assigned either by static variable
declarationsand using settable (), or by loading in atable from tablib using
loadtable () (see Table 17).

An exampleof using thereal-timevariable vl isgiveninnewpul . c used by assign ()
and pulse (). Anexampleof using real-time AP tablesis given using ph2 and t 2. We
could also replace v2 with t2 inthe shaped pulse () statementinthisparticular pulse
sequence. In some cases, however, it is necessary to perform further integer math
operations on the phase cycle, which is easier to perform on real-time variables than on AP
tables, so we give the example using getelem () to assign thetable t2 to variable v2.
For other examples of phase cycling calculations, see the pulse sequencesin /vnmr/
psglib.

To add 2D parametersto the newpul . ¢ pulse sequence, make the following changes:
® |nstep 2, change d2new to d2.
® Instep 4, enter par2d set2d('newpul') plnew=40.

® Instep7,addpar2d set2d ('newpul') tothenewpul macro after thepsgset
line.

Also, seethe cosyps . c pulse sequence in /vnmr /psglib, section 2.14
“Multidimensional NMR,” page 122, and the chapter on Multidimensional NMR in the
NMR Spectroscopy, User Guide manual.

2.7 Using Interactive Parameter Adjustment

98

The section “ Spectrometer Control,” page 60 included statementsfor interactive parameter
adjustment (IPA). Such routines start with the letter 1 (e.g., idelay, irgpulse). For
users who need added flexibility in programming, this section explains IPA and these
routinesin more detail. IPA isavailable on all systems except MERCURYplus/-Vx.

General Routines

In addition to the statements previously described, PSG has four general routines:
® G_Pulse for generic pulse control
® G _Offset for adjustment of the offset frequency
® G _Delay for generic delay control
® G _Ppower for fine power control.

Each of these routinesis called with an argument list (see page 100) specified with
attribute-value pairs, terminated by a mandatory zero. The terminating zero is mandatory.
If the zero is left out, the results are unpredictable and can include a core dump of PSG.

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

2.7 Using Interactive Parameter Adjustment

Each attribute has a default value—a pulse can be specified simply asG_Pulse (0),
which would produce a transmitter pulse of size pw with rof1 and rof2 set the same as
the experiment parameters and phase cycled with the parameter oph.

Theattribute SLIDER LABEL determines whether output isgenerated for the Acquisition
window (opened by the acgi command). If no label is specified, no IPA information is
generated by the subroutine. The use of the SLIDER LABEL with the same value for
delays or pulses allows multiple delays or pulses to be controlled viaone dider. Thisis
covered later in this section.

Asan example of a pulse sequence using the general routines, Listing 7 shows the source
code of i2pul . c, which can be compiled and run like S2PUL, but whengo ('acgi ')
istyped, IPA information is generated in /vnmr/acgqueue/acgi . IPA.

Listing 7. Pulse Sequence Listing of File i2pul.c

/* I2PUL - interactive two-pulse sequence */
#include <standard.h>
static int phasecycle[4]={0,2,1,3};
pulsesequence ()
{
/* equilibrium period */
settable (tl,4,phasecycle);
status (A) ;
hsdelay (dl) ;
/* --- tau delay --- */
status (B) ;
ipulse (pl, zero, "pl") ;
/*

* This ipulse statement is equivalent to

* the following general pulse statement.

* G_Pulse (PULSE WIDTH, pl,

* PULSE_PHASE, zero,

* SLIDER_ LABEL, "pl",

* 0);

*/

G _Delay (DELAY TIME, dz,
SLIDER_LABEL, "dam,
SLIDER MAX, 10,

0);
/* --- observe period --- */
status (C) ;

ipulse (pw,t1, "pw") ;
setreceiver (tl) ;

The command acgi can be used to adjust the pulses and delays in the sequence. Note that
G_Pulse coversthe statements obspulse, pulse, decpulse, ec.

Macro definitions have been written to cover these:

#define obspulse() G Pulse(0)
#define decpulse (decpulse,phaseptr) \
G _Pulse (PULSE_DEVICE, DODEV, \
PULSE_WIDTH, decpulse, \
PULSE_ PHASE, phaseptr, \
PULSE_PRE_ROFF, 0.0, \

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 99

Chapter 2. Pulse Sequence Programming

PULSE POST ROFF, 0.0, \
0)

Seethefile /vnmr/psg/macros.h for acomplete list. Thisfile is automatically
included when the file standard. h isincluded in apul se sequence. Note & so that the
same pul se sequence can be used to execute go aswell asgo ('acgi ') ; however, IPA
information is only generated when go ('acgi ') isused.

Interactive adjustment of simultaneous pulsesis not supported. A limit of 10 has been set
on the number of calls with alabel. Thislimits the number of parameters that can be
adjusted within one pulse sequence. Note that a subroutine call within a hardware loop is
till only one label.

Parameters are adjusted at the end of a sweep. Since this takes a finite amount of time,
steady state may be affected. Of course, changing any parameter val ue also affects the
steady state, so this should be of little or no consequence.

Generic Pulse Routine

The G_Pulse generic pulse routine has the following syntax:

G Pulse(PULSE WIDTH, pw,
PULSE PRE ROFF, rofl,
PULSE POST ROFF, rof2,
PULSE DEVICE, TODEV,
SLIDER LABEL, NULL,
SLIDER SCALE, 1,
SLIDER MAX, 1000,
SLIDER MIN, 0,
SLIDER UNITS, le-6,
PULSE PHASE, oph,

0);

The following table describes the attributes used with G_Pulse:

Attribute Type Default Description

PULSE WIDTH double pw As specified in parameter set

PULSE PRE ROFF double rofl As specified in parameter se.

PULSE POST ROFF double rof2 As specified in parameter set

PULSE DEVICE int TODEV TODEV for observe channel or DODEV

for 1st decoupler. Also DO2DEV or
DO3DEV for 2nd/3rd decoupler

SLIDER LABEL char * NULL Label (1- 6 characters) for acgi or
NULL for no output to acqgi.

SLIDER SCALE int 1 Decimal places (0 to 3) on slider

SLIDER_ MAX int 100 Maximum value on the slider

SLIDER MIN int 0 Minimum value on the slider

SLIDER UNITS double 1le-6 Pulses arein us, scae factor

PULSE_ PHASE int oph Real-time variable

Examplesof using G_Pulse:
G_Pulse(0) ; /* equals obspulse(); */

G _Pulse (PULSE WIDTH, pw, /* equals pulse(pw,vl); */

100 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

PULSE PHASE,

0);

2.7 Using Interactive Parameter Adjustment

vl,

/* required terminating zero */

Frequency Offset Subroutine

TheG_0Offset routine adjusts the offset frequency. It has the following syntax:
G Offset (OFFSET DEVICE,

OFFSET FREQ,
SLIDER LABEL,
SLIDER SCALE,
SLIDER MAX,
SLIDER MIN,
SLIDER UNITS,

0);

TODEV,
tof,
NULL,
0,
1000,
-1000,
0,

The following table describes the attributes used with G_Of fset:

Attribute

Type

Default

Description

OFFSET DEVICE

OFFSET FREQ

SLIDER LABEL

SLIDER_ SCALE

SLIDER_MAX

SLIDER_MIN

SLIDER_UNITS

int

double

char *

int

int

int

double

none

NULL

1.0

Device (or rf channel) to receive frequency
offset. Thisisrequired! Thus,

G Offset (0) not allowed. TODEV for
transmitter channel or DODEV for first
decoupler channel. On UNITYplus, DO2DEV
for 2nd decoupler channel, or DO3DEV for 3rd
decoupler channel.

Offset frequency for selected channel. Default
is offset frequency parameter (tof, dof,
dof2, dof3) of associated channel.

If no dider label selected, offset cannot be
changed in acgi. Otherwise, becomes the
label (1-6 characters) inacqgi.

Number of decimal places displayed in acgi.
Default is 0 because default range is 2000 Hz,
so aresolution finer than 1 Hz is not necessary.
Maximum value on the slider. Default is 1000
Hz more than the offset frequency.

Minimum value on the slider. Default is 1000
Hz less than the offset frequency.

Frequencies arein Hz.

* Default value is described in the description column for this attribute.

Examplesof using G _Offset:
G Offset (OFFSET DEVICE,

OFFSET FREQ,

0);

G_Offset (OFFSET DEVICE,

OFFSET FREQ,
SLIDER LABEL,

0);

01-999379-00 A 0708

TODEV,

tof,

/* equivalent to */
/* offset (tof, TODEV); */

/* required terminating zero */

TODEV,

tof,

/* basic interactive */
/* offset statement */

“TOF”,/* for fine adjustment of */
/* transmitter frequency */

VnmrJ 2.2 Ml User Programming 101

Chapter 2. Pulse Sequence Programming

Generic Delay Routine

The G_Delay generic delay routine has the following syntax:

G Delay (DELAY TIME, di,
SLIDER LABEL, NULL,
SLIDER SCALE, 1,
SLIDER MAX, 60,
SLIDER MIN, 0,
SLIDER UNITS, 1.0,

0);

The following table describes the attributes used with G_Delay:

Attribute Type Default Description
DELAY TIME double di As specified in parameter set.
SLIDER LABEL char * NULL Label (1 to 6 characters) for acgi or
NULL for no output to acqi.
SLIDER SCALE int 1 Decimal places (0 to 3) displayed.
SLIDER MAX int 60 Maximum value on the slider.
SLIDER_MIN int 0 Minimum value on the dlider.
SLIDER UNITS double 1.0 Delays are in seconds.

Examplesof using G_Delay:

G_Delay(0) ; /* equals delay(dl); */
G Delay (DELAY TIME, dz, /* equals delay(d2); */
0); /* required terminating zero */

IPA allows one slider to control more than one delay or pulse. The maximum number of
delays or pulsesadlider can control is 32. This multiple control is obtained whenever
multiple callsto G_Pulse or G_Delay have the samevaluefor the SLIDER LABEL
attribute.

Thefirst cal to G_Pulse inapulse sequence sets theinitial value, the maximum and
minimum of the slider, and the scale. Later callsto G_Pulse within that pulse sequence
do not alter these. The SLIDER UNITS attribute are unique to each call to G_Pulse.
Thisallows changing the value seen by aparticul ar event by some multiplication factor. For
example, the following two statements create a single slider in the Acquisition window
(opened by the acgi command) labeled PW that will control two separate pulses.

G_Pulse (PULSE DEVICE, TODEV,
PULSE_WIDTH, oW,
SLIDER LABEL, "pW",
SLIDER SCALE, 1,
SLIDER MAX, 1000,
SLIDER MIN, 0,
SLIDER UNITS, 1.0e-6,
0);
G_Pulse (PULSE DEVICE, TODEV,
PULSE_WIDTH, pw*2.0,
SLIDER LABEL, "pW",
SLIDER UNITS, 2.0e-6,

0);

102 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

2.8 Hardware Looping and Explicit Acquisition

The width of the first pulse will initially be pw, as set by the PULSE_WIDTH attribute for
thefirst G_Pulse call. Thewidth of the second pulse will initially bepw*2 . 0, as set by

the PULSE_WIDTH attribute for the second G_Pulse call.

When the slider is changed in acgi, the amount that the actual pulse width changesis
determined by the product of the slider change and the respective multiplicative factors
specified by the attribute SLIDER UNITS. For example, if the slider increased by 3 units,
the first pulse width would by increased by 3 * 1.0e-6 seconds and the second pulse would
beincreased by 3 * 2.0e-6 seconds. In thisway, theinitial 1 to 2 ratio in pulse widthsis

maintained while the slider is changed.

Fine Power Subroutine

TheG _Power subroutineis used on systemswith the optional linear fine attenuators. It

has the following syntax:

G_Power (POWER_VALUE, tpwrf,
POWER DEVICE, TODEV,
SLIDER LABEL, NULL,
SLIDER SCALE, 1,
SLIDER MAX, 4095,
SLIDER MIN, 0,
SLIDER UNITS, 1.0,

0);

The following table describes the attributes used with G_Power:

Attribute Type Default Description
POWER_VALUE double tpwrf As specified in parameter set.
POWER_DEVICE int TODEV TODEV for transmitter channel or

DODEV for decoupler channel. On

UNITYplusalso DO2DEV and DO3DEV

for 2nd and 3rd decoupler channels.

SLIDER LABEL char * NULL Label (1to 6 characters) for acgi or

NULL for no output to acqi.
SLIDER SCALE int 1 Decimal places (0 to 3) on slider.
SLIDER_MAX int 4095 Maximum value on the slider.
SLIDER MIN int 0 Minimum value on the slider.
SLIDER UNITS double 1.0 Power in arbitrary units.

Examples of using G_Power:
G _Power (0) ;

G _Power (POWER_VALUE, dpwrf,
POWER_ DEVICE, DODEV,
0) ; /* required terminating zero */

2.8 Hardware Looping and Explicit Acquisition

® “Receiver Phase For Explicit Acquisitions,” page 107
® “Multiple FID Acquisition,” page 107

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming

103

Chapter 2. Pulse Sequence Programming

104

The 1oop and endloop statements described previously generate a soft loop, which
means that they force the acquisition computer to repeatedly place the information
contained within the loop into the pulse program buffer (a FIFO). If this loop must run
extremely fast, a condition may arise in which the acquisition computer is not able to
provideinput to the pulse program buffer asfast as the sequenceisrequired to operate, and
this technique does not work.

Because of this problem, a different mode of looping known as hardware looping is
supported in current systems. In this mode, the pulse program buffer provides its own
looping, and the speed can be at the maximum possible rate, with the only limitation being
the number of events that can occur during each repetition of the loop. Table 21 lists
statements related to hardware looping.

Table 21. Hardware Looping Related Statements

acquire (num_points, sampling interval Explicitly acquire data
clearapdatatable () Zero data in acquisition processor memory
endhardloop () End hardware loop

starthardloop (num_repetitions) Start hardware loop

Controlling Hardware Looping

Usethe starthardloop (numrepetitions) and endhardloop () statements
start and end a hardware loop. The numrepetitions argumentto starthardloop
must be a real-time integer variable, such as v2, and not aregular integer, areal number,
or avariable. The number of repetitions of the hardware loop must be two or more. If the
number of repetitionsis 1, the hardware looping feature itself is not activated. A hardware
loop with a count equal to 0 isnot permitted and will generate an error. Depending on the
pul se sequence, additional code may be needed to trap for this condition and skip the
starthardloop and endhardloop statementsif the count isO.

Only instructions that require no further intervention by the acquisition computer (pulses,
delays, acquires, and other scattered instructions) are allowed in ahard loop. Most notably,
no real-time math statements are allowed, thereby precluding any phase cycle cal culations.
Also, no AP table with the autoincrement feature set can be used within ahard loop.
The number of eventsincluded in the hard loop, including the total number of data points
if acquisition is performed, must be as follows:

2048 or less for the MERCURYplus/-Vx STM/Output board, or Data A cquisition

Controller board.

In all cases, the number of events must be greater than 1. No nesting of hard loopsis
allowed.

For MERCURYplus/-Vx STM/Output boards, Data Acquisition Controller boards, There
are no timing restrictions between multiple, back-to-back hard loops. Thereis one subtle
restriction placed on the actual duration of a hard loop if back-to-back hard loops are
encountered: the duration of theith hard loop must be N(i+1) * 0.4 ms, where N(i+1) isthe
number of events occurring in the (i+1)th hard loop.

Number of Events in Hardware Loops

An event isasingle activation of the timing circuitry. Pulses, delays, phase shifts, etc., set
or reset various gate lines to turn on and off pulses, phase shift lines, etc. but activate the
timing circuitry in the same way. Timing is accomplished as follows:

® The Data Acquisition Controller board uses one time base of 12.5 ns.

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

2.8 Hardware Looping and Explicit Acquisition

®* MERCURYplus/-Vx systems use two time bases: 0.1 usand 1 ms. As many events as
needed are used. Delays greater than 96 seconds use a hard loop.

Therefore, larger timer words may produce multiple events. The final point to understand
is that some things that look like one event may actually be more. Consider, for example,
the statement rgpulse (pw, vl, rofl, rof2). Doesthis generate asingle event? No,
it generates at least three (or more depending on the length of the events). That is because
we generate first atime of rof 1 with the amplifier unblanked but transmitter off, then a
time of pw with the transmitter on, and then atime rof 2 with the transmitter off but the
amplifier unblanked. Times that are zero generate no events, however. For example,
rgpulse (5.0e-6,v1,0.0,0.0) generatesonly asingle event.

Although pulses, delays, and data point acquisitions are the most common thingsto beina
hardware loop, other choices are possible. Table 22 lists the number of events that may be
generated by each statement.

On MERCURYplus/-Vx systems, any delay (pulse, delay, decrgpulse, €c.) is
limited to 96 seconds within a hardware loop. In practice, thisis not arestriction.

Explicit Acquisition

Closely related to hardware looping is the explicit acquisition feature—the acquisition of
one or more pairs of data points explicitly by the pulse sequence. This feature enables
interspersing of pulses and dataacquisition and allows coding pulse sequences that acquire
multiple FIDs during the course of a pulse sequence (such as COCONOSY). It also alows
pul se sequencesthat acquire asingle FID one or more pointsat atime (such as M REV-type
sequences).

Theacquire (number points, sampling interval) statement explicitly
acquires data points at the specified sampling interval, where the sequence of eventsis
acquire apair of pointsfor 200 ns, delay for sampling interval less 200 ns, then
repeat number points/2 times. For example, acquiring an FID would use
acquire (np,1.0/sw).

Both argumentsto the acquire statement must be real numbersor variables. The number
of complex points to be acquired must be a multiple of 2 for Data Acquisition Controller,
and STM/Output boards. Inside a hardware loop, Data Acquisition Controller and STM/
Output boards can accept a maximum of 2048 complex points, number points mustbe
amultiple of 2, because only pairs of points can be acquired.

NMR spectrometer systemsinclude small overhead delays before and after theacquire
statement. The pre-acquire delay takesinto account setting the receiver phase (oph) and
enabling data overflow detection. Disabling data overflow detection creates a post-
acquire delay. These overhead delays and associated functions are placed outside the
loop when acquire statements are within aloop, and before thefirst acquire and after
thelast acquire, when more than one acquire statement is used to acquirea FID.

Once an explicit acquisition is invoked, even if for one pair of data points, the standard
“implicit” acquisition isturned off, and the user isresponsiblefor acquiring the full number
of data points. Failure to acquire the correct number of data points before the end of the
pul se sequence generates an error. The total number of data points acquired before the end
of the sequence must equal the specified number (np). An example of the programming
necessary to program a simple explicit acquisition, analogous to the normal implicit
acquisition, would look like this:

rcvron () ;

txphase (zero) ;

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 105

Chapter 2. Pulse Sequence Programming

Table 22. Number of Events for Statementsin a Hardware Loop

Satement UNITYINOVA MERCURYplus/-Vx

acquire (Data Acq. Controller board) 1to 2048 —
acquire (Pulse Seq. Controller board) — —

acquire (Acg. — —
Controller board)

acquire (Output board) — —

dcplrphase, 1 6
dcplr2phase, dcplr3phase
declvlon, 1 —
declvloff
decphase, 0 0
dec2phase, dec3phase
decpulse 0 lor2
decrgpulse, 0 3to6
dec2rgpulse, dec3rgpulse
delay 1 1to5
hsdelay 1 1to5
1k hold, 1 3
1k sample
obspulse 3 3to6
offset 9 72
power, obspower, 1 3
decpower,
dec2power,
dec3power
pwrf, obspwrf, 1 —
decpwrf, dec2pwrf, dec3pwrf
pulse, rgpulse 3 3to6
simpulse 3to5 3to 15
sim3pulse 3to7 —
status Oto 5times 0to 12
number of
channels
txphase 0 0
xmtrphase 1 6

decphase (zero) ;
delay(alfa) ;
acquire(np,1.0/sw) ;

Although generally not needed, the clearapdatatable () statementisavailableto
zero the acquired data table at times other than at the start of the execution of a pulse
sequence, when the data table is automatically zeroed.

Thelimitation that multiple hardloops cannot be nested has consequencesfor the use of the
acquire statement inside ahardloop. Depending on its argumentsand how it isbuilt into

106 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

2.8 Hardware Looping and Explicit Acquisition

apulse sequence, the acquire statement may internally be done as a hardloop by itself.
However, aconstruct like the following does not work:
initval (np/2.0, v14);
starthardloop (v14) ;
acquire (2.0, 1.0/sw);
endhardloop () ;

A loop that consists of asingleacquire cal isnot permitted, but such constructs are not
needed because a single statement can be used instead:

acquire (np,1.0/sw) ;

This statement is not equivalent to the first construct because the acquire statement will

sample more than just two points (i.e., acomplex data point) per loop cycle, thusallowing
for np greater than 2.0 x (maximum number of loop cycles). Note that the loop uses a 16-
bit loop counter. Therefore, the maximum number of cyclesis 32767 (the largest possible
16-bit number).

On the other hand, a hardloop that contains acquire together with other pulse sequence
events works fine as long as the number of complex points to be acquired plus the number
of extra FIFO words per loop cycle does not exceed the total number of words in the loop
FIFO:
initval (np/2.0, v14);
loop (v14) ;

acquire (2.0, 1.0/sw - (rofl + pw + rof2));

rgpulse (pw, v1, rofl, rofr2);
endloop;

Explicit hardloops with acquire cals are astandard feature in multipul se solids
sequences.

Receiver Phase For Explicit Acquisitions

Receiver phase can be changed for explicit acquisitions, the same as for implicit
acquisitions, by changing oph or by using the setreceiver statement. The value of
oph at the time of the acquisition of the first data point is the value that determines the
receiver phase setting for the duration of that particular “ scan”—the receiver cannot be
changed after acquiring some data points and before acquiring the rest.

Multiple FID Acquisition

Explicit acquisition of data can also be used to acquire more than one FID per pulse
sequence (simultaneous COSY-NOESY for example). This can be done for 1D or 2D
experiments. The parameter nf, for number of FIDs, controlsthisif it is created and set.
To perform such an experiment, enter create ('nf', 'integer') tocreatenf and
then set nf equal to an integer such as 2 and a second new parameter c £ (current FID).

Once the data have been acquired c £ (current FID) isused to identify the FID to
manipulate. Setting c£=2, for example, recognizes the second FID in the COSY-NOESY
experiment (and producesaNOESY spectrum after Fourier transformation). Note that this
isdistinct from the standard array capability and iscompatible with the standard arrays. The
acquisition isan array of ten experiments, with each consisting of three FIDs that are
generated during each pulse sequence. To display the second FID of the seventh
experiment, for example, type c£=2 d£id (7).

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 107

Chapter 2. Pulse Sequence Programming

2.9 Pulse Sequence Synchronization

® “External Time Base,” page 108
® “Controlling Rotor Synchronization,” page 108

A pulse sequenceisjust aset of accurately timed delays that turn the hardware on and off.

External Time Base

An external timebase halts the pulse sequence until the number of external eventsin the
count field have occurred for purposes of synchronization. The source of events or ticks of
thisexternal timebase is up to the user. This featureis not available on MERCURYplus/-Vx
systems.

Controlling Rotor Synchronization

Statements for rotor control on NMR systems with solids rotor synchronization hardware
arerotorperiod, rotorsync, and xgate. Table 23 summarizes these statements.

Table 23. Rotor Synchronization Control Statements

rotorperiod (period) Obtain rotor period of high-speed rotor
rotorsync (rotations) Gated pul se sequence delay from MAS rotor position
xgate (events) Gate pulse sequence from an external event

® Userotorperiod (period) to obtain therotor period, where period isareal-
timevariableinto whichistherotor period isplaced (e.g., rotorperiod (v5)). The
period is placed into the referenced variable as an integer in units of 50 ns.

® Userotorsync (rotations) toinsert avariable-length delay, where
rotations isareal-timevariable that pointsto the number of rotationsto delay, for
example, rotorsync (v6). The delay alows synchronizing the execution of the
pulse sequence with a particular orientation of the sample rotor. When the
rotorsync statement isencountered, the pul se sequenceis stopped until the number
of rotor rotations has occurred as referenced by the real-time variable given.

® Usexgate (events) to halt the pulse sequence from an external event, where
events isadoublevariable (e.g., xgate (2.0)). When the number of external
events has occurred, the pul se sequence continues.

Both rotorsync and xgate can be used, but there is a very important distinction
between the two—rotorsync synchronizes to the exact position of the rotor, whereas
xgate synchronizesto the zero degree position of rotation. For example, if the rotor is at
90°, then for xgate (1.0), the pulse sequence will begin when therotor is a zero
degrees, arotation of 270°; however, for the equivalent rotorsynec, the pulse sequence
will begin when the rotor is at 90°, or 360° rotation.

2.10 Pulse Shaping

108

® “File Specifications,” page 109

® “Performing Shaped Pulses,” page 112

® “Programmable Transmitter Control,” page 114

® “Setting Spin Lock Waveform Control,” page 115

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

2.10 Pulse Shaping

® “Shaped Pulse Calibration,” page 115

RF pulse shapes can be executed on one or more rf channels, along with programmed
decoupling patterns, and gradient shapes for imaging applications. MERCURYplus/-V
shapes are Dante style pulses. Shaped decoupling is not possible on MERCURYpl us/-Vx
systems. For pulse shaping programming using Pbox, see the manual NMR Spectroscopy;,
User Guide. All VnmrS system waveforms must have 4usec resolution.

Pulse control of the waveform generators consists of two separate parts:
® A text file describing the shape of a waveform.
® A pulse sequence statement applying that waveform in an appropriate manner.

The power of rf shape or decoupler pattern is controlled by the standard power and fine
power control statementsfor that rf channel. For example, obspower and obspwr £ will
scale the overall power of a shape on the observe channel. MERCURYplus/-Vx uses only
coarse power.

File Specifications

The macro sh2pul sets up a shaped two-pulse (SH2PUL) experiment. This sequence
behaves like the standard two-pul se sequence S2PUL except that the normal hard pulses
are changed into shaped pul ses from the waveform generator.

To find pulse shape definitions, the pulse sequence generation (PSG) software looksin a
user'svnmrsys/shapelib directory and then in the system's shapelib. Each
shapelib directory containsfilesspecifying the defined shapesfor rf pulses, decoupling,
and gradient waveforms. To differentiatethefilesinashapelib directory, each type uses
adifferent suffix, Table 24:

Table 24. Shapelib File Suffix List

Pattern Type Suffix Example

rf pulses .RF gauss.RF
decoupling .DEC mlev16.DEC
gradient .GRD hard.GRD

Each pattern fileis a set of element specifications with one element per line. Therefore, a
67 element pattern contains 67 lines. Any blank lines and comments (characters after a#
sign on aline) in a specification are ignored.

Shapes can be created by macro, by programs, or by hand. The specifications for each kind
of pattern are listed in the following table (if afield is not specified, the default givenis
used). As an example, aslightly modified excerpt from afile in the system directory
shapelib isalso shown.

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 109

Chapter 2. Pulse Sequence Programming

RF Patterns

Table 25. RF Patterns

Column Description Limits Default

1 Phase angle (in degrees) 0.043° resolution Required
Phase limits No limit on magnitude

2 Amplitude 0 to scalable max max
Relative duration 0, or 1to 255 1

4 Transmitter gate 0,1 1 (gate on)

For example, the first 8 elements (after the comment lines) of thefile sinc . RF:

0.000 0.000 1.000000
0.000 8.000 1.000000
0.000 16.000 1.000000
0.000 24.000 1.000000
0.000 32.000 1.000000
0.000 40.000 1.000000
0.000 48.000 1.000000
0.000 56.000 1.000000

Inusing the . RF patterns, the actual valuesfor the amplitude are treated asrelative val ues,
not as absolute values. All of the amplitudesin the rf shape file are divided by the largest
amplitude in the shape file and then multiplied by 4095 . 0. The net result is that shapes

with values of the amplitudes between 0 to 10 . 0, or between 0 to 4095 . 0, or between 0
t0100000. 0, are effectively all the same shape.

To implement . RF patterns with absolute values for amplitudes, use a shape element with
0 duration to fix the scaling factor for the shape. Here is a simple example:

A shape with elements
0.00 10.0 1.0
0.00 100.0 1.0
0.00 20.0 1.0

will result in an actua shape of

0.00 4095.0%10.0/100.0 1.0 0.00 409.50
0.00 4095.0%¥100.0/100.0 1.0 or 0.00 4095.0
0.00 4095.0%20.0/100.0 1.0 0.00 819.00

PR
o o o

A shape with elements

0.00 4095.0 0.0
0.00 10.0 1.0
0.00 100.0 1.0
0.00 20.0 1.0

will result in an actua shape of

0.00 4095.0%10.0/4095.0 1.0 0.00 10.0 1.0
0.00 4095.0%100.0/4095.0 1.0 or 0.00 100.0 1.0
0.00 4095.0%20.0/4095.0 1.0 0.00 20.0 1.0

110 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

2.10 Pulse Shaping

Decoupler Patterns

Table 26. Decoupler Patterns

Column Description Limits Default

1 Tip angle per element (in degrees) 0° to 500°, 1° resolution Required
Phase limits No limit on magnitude

2 RF phase (in degrees) 0.043° resolution Required
Amplitude 0 to scalable max max

4 Transmitter gate 0,1 0 (gate off)

For example, the first 8 elements (after the comment lines) of the filewaltz16 .DEC:
270.0 180.0

360.0 0.0
180.0 180.0
270.0 0.0
90.0 180.0
180.0 0.0
360.0 180.0
180.0 0.0

In using the gate field in . DEC patterns, note the following:

® The waveform controller gate is ORed with the controller gate. This means that any
time the controller gate is on, the transmitter is on, irrespective of any waveform
generator gate.

® |f adecoupler pattern is activated under status control (using dmm="'p '), an implicit
controller gate statement is added. In this situation, any Os or 1sin the gate field of
the .DEC pattern are irrelevant because they are overridden (as indicated above).

® |f adecoupler pattern is activated by the decprgon statement, the “"v|NOVA
waveform generator gateisthe controlling factor. If thisgateis specified asOsor 1sin
the . DEC file, that gating will occur. If thereisno gatefield in the . DEC file, the
default occurs—the gate is set to 0 and the decoupler is off. An aternate is to follow
the decprgon statement with some kind of gate statement (e.g., decon) to turn on
the controller gate (overriding the default of the gate set to O from the controller) and
to proceed the decprgof £ statement with a statement to turn the gate off (for
example, decoff).

Gradient Patterns

Table 27. Gradient Patterns

Column Description Limits Default
1 Output amplitude —32767 to 32767, 1 unit resolution Required
2 Relative duration 1to 255 1

For example, the first 8 elements (after the comment lines) of the file trap . GRD:
1024 1

2048
3072
4096
5120

L

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 111

Chapter 2. Pulse Sequence Programming

112

6144 1
7168 1
8192 1

Performing Shaped Pulses
Statements to perform shaped pulses are listed in Table 28.
Table 28. Shaped Pulse Statements

decshaped pulse* Perform shaped pulse on first decoupler
dec2shaped pulse* Perform shaped pul se on second decoupler
dec3shaped pulse* Perform shaped pul se on third decoupler
shaped pulse* Perform shaped pul se on observe transmitter
simshaped pulse* Perform simultaneous two-pulse shaped pulse
sim3shaped pulse* Perform a simultaneous three-pul se shaped pulse

* decshaped pulse (shape,width, phase,RG1,RG2)
dec2shaped pulse(shape,width,phase,RG1,RG2
dec3shaped pulse(shape,width,phase,RG1,RG2)
simshaped pulse (obsshape,decshape, obswidth,decwidth,
obsphase, decphase,RG1,RG2)
sim3shaped pulse (obsshape, decshape,dec2shape, obswidth,
decwidth, dec2width, obsphase, decphase, dec2phase,RG1, RG2)

Shaped Pulse on Observe Transmitter or Decouplers

Use shaped pulse (shape,width, phase,RG1,RG2) to perform ashaped pulse
on the observetransmitter where shape isthenameof atext filein shapelib that stores
therf pattern (leave off the . RF fileextension), width istheduration of thepulse; phase
is the phase of the pulse (it must be areal-timevariable); RG1 isthe delay between
unblanking the amplifier and gating on the transmitter (the phase shift occurs at the
beginning of thisdelay); and RG2 is the delay between gating off the transmitter and
blanking the amplifier (e.g., shaped pulse ("gauss",pw,vl,rofl,rof2)).

The statements shaped pulse, decshaped pulse, and dec2shaped pulse
provide pulse shaping through the linear attenuator and the small-angle phase shifter on the
AP bus if arf channel does not have a waveform generator. AP tables for the attenuation
and phase values are created on the fly, and the real-time variablesv12 and v13 are used
to control the execution of the shape. This pulse shaping through the AP bus was
exclusively controlled by the statements apshaped pulse, apshaped decpulse,
and apshaped_dec2pulse on previousversionsof VNMR.

For shaped pulses, the minimum pulse length is:
® 0.2 uson YNTYINOVA waveform generator control.
The overhead at the beginning and end of the shaped pulseis:
® UNITYINOVA: startsat 0.95 psfalling to O at the end.
® Acquisition Controller board systems: starts at 10.75 usfaling to 4.3 us at the end.
® Qutput board systems: starts at 10.95 us falling to 4.5 us at the end.

If the length is less than 0.2 us on YNTYINOVA the pulseis not executed and thereisno
overhead.

The decshaped pulse, dec2shaped pulse, anddec3shaped pulse
statements allow a shaped pulse to be performed on the first, second, and third decoupler,

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

2.10 Pulse Shaping

respectively. The arguments and overhead used for each isthe same as shaped pulse,
except they apply to the decoupler controlled by the statement.

Simultaneous Two-Pulse Shaped Pulse

simshaped pulse (obsshape, decshape, obswidth, decwidth,
obsphase, decphase, RG1,RG2) performsasimultaneous, two-pulse shaped pulse
on the observe transmitter and the first decoupler under waveform generator control.
obsshape isthe name of the text file that contains the rf pattern to be executed on the
observe transmitter; decshape isthe name of the text file that contains the rf pattern to
be executed on the first decoupler; obswidth isthe duration of the pulse on the observe
transmitter; decwidth isthe duration of the pulse on the first decoupler; obsphase is
the phase of the pulse on the observe transmitter (it must be areal-time variable);
decphase isthe phase of the pulse on the first decoupler (it must be areal-timevariable);
RG1 isthe delay between unblanking the amplifier and gating on thefirst rf transmitter (al
phase shifts occur at the beginning of this delay); and RG2 isthe delay between gating off
the final rf transmitter and blanking the amplifier; for example:

simshaped pulse ("gauss", "hrml80",pw,pl,v2,v5,rofl,rof2)

The overhead at the beginning and end of the simultaneous two-pul se shaped pulse is:
e UNITYINOVA: startsat 1.45 psfalling to O at the end.
® Acquisition Controller board systems: starts at 21.5 usfalling to 8.6 us at the end.
® Qutput board systems: starts at 21.7 us falling to 8.8 us at the end.

These values hold regardless of the valuesfor obswidth and decwidth.

If either obswidth or decwidth is0.0, no pulse occurs on the corresponding channel.
If both obswidth and decwidth are non-zero and either obsshape or decshape is
set to the null string (' '), then a pulse occurs on the channel with the null shape name. If
either the pulse width is zero or the shape nameisthe null string, then awaveform generator
is not required on that channel.

Simultaneous Three-Pulse Shaped Pulse

The sim3shaped pulse statement performs asimultaneous, three-pulse shaped pulse
under waveform control on threeindependent rf channels. Theargumentsto sim3shaped
are the same as defined previously for simshaped pulse, except that dec2shape is
the name of the text filethat containsthe rf pattern to be executed on the second decoupler,
dec2width isthe duration of the pulse on the second decoupler, and dec2phase isthe
phase (areal-time variable) of the pulse on the second decoupler (e.g.,

sim3shaped pulse("gauss", "hrml80", "sinc",pw,pl,v2,v5,v6,
rofl,rof2)).

The overhead at the beginning and end of the simultaneous three-pul se shaped pulseis:
® UNITYINOVA: startsat 1.95 psfalling to O at the end.
® Acquisition Controller board systems: starts at 32.25 usfaling to 12.9 us at the end.
® Qutput board systems: starts at 32.45 psfalling to 13.1 us at the end.
Thesevaluesholdregardlessof thevaluesfor obswidth, decwidth, anddec2width.

Setting one of the pulse lengthsto the value 0.0, sim3shaped pulse aso performsa
simultaneous two-pul se shaped pulse on any combination of three rf channels. (e.g., to
perform simultaneous shaped pulses on the first decoupler and second decoupler, but not
the observe transmitter, set the obswidth argument to 0.0).

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 113

Chapter 2. Pulse Sequence Programming

114

If any of the shape names are set to the null string (' '), anormal rectangular pulse occurs
on the channel with the null shape name. If either the pulse width is zero or the shape name
is the null string, a waveform generator is not required on that channel.

Programmable Transmitter Control
Statements related to programmable transmitter control are listed in Table 29.
Table 29. Programmable Control Statements

decprgoff () End programmable decoupling on first decoupler
dec2prgoff () End programmable decoupling on second decoupler
dec3prgoff () End programmable decoupling on third decoupler
decprgon* Start programmable decoupling on first decoupler
dec2prgon* Start programmable decoupling on second decoupler
dec3prgon* Start programmable decoupling on third decoupler
obsprgoff () End programmable control of observe transmitter
obsprgon* Start programmable control of observe transmitter
* decprgon (name, 90 pulselength,tipangle resoln)
dec2prgon (name, 90 pulselength, tipangle resoln)
dec3prgon (name, 90 pulselength, tipangle resoln)
obsprgon (name, 90 pulselength, tipangle resoln)

Programmable Control of Observe Transmitter

Use obsprgon (name, 90 pulselength, tipangle resoln) to set
programmable phase and amplitude control of the observe transmitter. name is the name
of thefilein shapelib that stores the decoupling pattern, 90 _pulselengthisthe
pulse duration for a90° tip angle, and t ipangle resoln istheresolutionin tip-angle
degrees to which the decoupling pattern is stored in the waveform generator (e.g.,
obsprgon ("waltzl6",pw90,90.0)).

The obsprgon statement returns the number of 50-nsticks (as an integer value) in one
cycle of the decoupling pattern. Explicit gating of the observe transmitter with xmt ron
and xmtrof £ isgeneraly required.

To terminate any programmable phase and amplitude control on the observe transmitter
under waveform control, use obsprgoff ().

Programmable Control of Decouplers

Thedecprgon, dec2prgon, and dec3prgon statements set programming decoupling
on the first, second, and third decouplers, respectively. The arguments for each statement
arethesameasobsprgon, except they apply to the decoupler controlled by the statement.
Each statement returns the number of 50 nsticks (as an integer value) in one cycle of the
decoupling pattern. Similarly, explicit gating of the selected decoupler is generally
required, and termination of the control isdone by thedecprgoff (),dec2prgoff (),
and dec3prgoff () statements, respectively.

Argumentsto obsprgon, decprgon, dec2prgon, and dec3prgon can bevariables
(which need the appropriate getval and get str statements) to permit changes via
parameters.

The macro pwsadj (shape file,pulse parameter) adjuststhe pulseinterval
time so that the pulse interval for the shape specified by shape file (afilefrom
shapelib)isanintegra multiple of 100 ns. Thiseliminatesatime truncation error inthe

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

2.10 Pulse Shaping

execution of the shaped pulse by the programmable pul se modulators.
pulse parameter isastring containing the adjusted pulseinterval time.

Setting Spin Lock Waveform Control

Statements for spin lock control on systems with optional waveform generators are listed
in Table 30.

Table 30. Spin Lock Control Statements

decspinlock* Set spin lock waveform control on first decoupler
dec2spinlock* Set spin lock waveform control on second decoupler
dec3spinlock* Set spin lock waveform control on third decoupler
spinlock* Set spin lock waveform control on observe transmitter

* decspinlock (name, 90 pulselength, tipangle resoln,phase,ncycles)
decs2pinlock (name, 90 pulselength, tipangle resoln,phase,ncycles)
decs3pinlock (name, 90 pulselength, tipangle resoln,phase,ncycles)
spinlock (name, 90 pulselength,tipangle resoln,phase,ncycles)

Spin Lock Waveform Control on Observe Transmitter

To execute a waveform-controlled spin lock on the observe transmitter, use

spinlock (name, 90 pulselength, tipangle resoln,phase,ncycles),
name isthe name of thefilein shapelib that stores the decoupling pattern (leave off
the . DEC file extension); 90 pulselength isthe pulse duration for a 90° tip angle;
tipangle resolnistheresolutionintip-angledegreestowhich thedecoupling pattern
is stored in the waveform generator; phase isthe phase angle of the spin lock (it must be
areal-time variable); and ncycles isthe number of timesthat the spin-lock patternisto
be executed (e.g., spinlock ('mlevlé',pw90,90.0,v1,ncyc)).

Both rf gating and the mixing delay are handled within this statement.

Spin Lock Waveform Control on Decouplers

Thedecspinlock, dec2spinlock, and dec3spinlock set spin lock waveform
control on thefirst, second, and third decouplers, respectively. The arguments are the same
as used with spinlock, except that 90 pulselength isthe pulse duration for a90° tip
angle on the decoupler controlled by the statement.

Argumentsto spinlock,decspinlock,dec2spinlock,anddec3spinlock can
be variables (which would need the appropriate getval and get str statements) to
permit changes via parameters.

Shaped Pulse Calibration

Macrosbandinfo andpulseinfo canberuninteractively (without arguments) to give
atable with shaped pulse information for calibration. bandinfo takesthe name of any
legal shape and the bandwidth desired for the pulse and gives a table containing the
duration of that pulseand apredicted 90° pulse power setting. pulseinfo takesthe name
of the shape and the duration of the pulse and gives the bandwidth of that pulse and a
predicted 90° pul se power setting. Both macros can also be called from another macro. For
more information, refer to the Command and Parameter Reference.

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 115

Chapter 2. Pulse Sequence Programming

2.11 Shaped Pulses Using Attenuators

116

® “Controlling Shaped Pulses Using Attenuators,” page 117
® “Controlling Attenuation,” page 118

UNITYINOVA and MERCURYplus/-Vx systems are equipped with computer-controlled
attenuators (0 dB to 79 dB on YWTYINOVA, or 0 dB to 63 dB on MERCURYplug/-Vx) on the
observe and decouple channels, linear amplifiers, and T/R (transmit/receive) switch
preamplifiersthat allow low-level transmitter signalsto be generated and pass unperturbed
into the probe. The combination of these elements meansthat the capability for performing
shaped pulse experimentsisinherent in the systems and does not require the more
sophisticated waveform generation capability of the optional waveform generators.

Hardware differences must be considered between systems, with and without the waveform
generators. The attenuators have more limited dynamic range, slower switching time, and
fewer pulse programming steps available. Nonethel ess, the capability still allows
significant experiments using only attenuators.

Three issues affect all shaped pulses, but particularly attenuator-based pul ses:

® Number of steps— The more stepsused, the closer the shape approxi mates a continuous
shape. At what level does this become overkill? For the most common shape,
Gaussian, as few as 19 steps have been shown to be completely acceptable.

® Dynamic range — How much dynamic range is required within a shape for proper
results. For a Gaussian shapeit has been shown that 33 dB isauseful limit; little or no
improvement is achieved with more. With asingle 63-dB attenuator, then, a Gaussian
pulse with 33 dB dynamic range can be superimposed on alevel ranging from 0- to 30-
dB, more with a 79-dB attenuator.

® Overall power level of the shape — A Gaussian pulse has an effective power
approximately 8 dB lower than arectangular pulse with an identical peak power. This
meansthat given afull-power rectangular pulse of, say, 25 kHz, a Gaussian pulse with
the same peak power has approximately a 10 kHz strength. Using instead a Gaussian
pulse with only 33 dB dynamic range and apeak power 30 dB lower resultsin ashaped
pulse of approximately 312 Hz, which is useful for some applications, like exciting the
NH region of a spectrum, but too strong for others.

To increase the dynamic range (and decrease the strength of the shaped pulse) further, we
can use one of three approaches:

® Replace the 63-dB attenuator with a 79-dB unit. This adds 16 dB of dynamic range,
producing shaped pulses in the range of 50 Hz, suitable for multiplet excitation.

® Add an additional 63-dB attenuator in series with thefirst. If you use the entire 63 dB
of the second attenuator to control thelevel of the pulse and usethefirst attenuator only
for the shape, you still produce a pulse whose power is (for a Gaussian) 71 dB (63 + 8)
below that of the hard pulse. Thiswould produce a7 Hz pulse, about asweak a pulse
as one ever needs (and which could be reduced 30 dB further by only using 33 dB of
the first attenuator for the shape). It is possible to use this control to create shaped
pulses without a waveform generator.

® Useatime-sharing or “DANTE" approach, applying the shaped pulse in such away
that itisswitched on and off with a particular duty cycle during the course of the shape.
A 10% duty cycle, for example, reduces the power by afactor of ten.

Both the phase and linear attenuator on each transmitter can be controlled through pulse
sequence statements (see pwrf, obspwrf, decpwrf, dec2pwrf, dec3pwrf, pwrm,
rlpwrm, and dcplrphase) soitispossibleto create shaped pul ses without awaveform
generator.

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

2.11 Shaped Pulses Using Attenuators

AP Bus Delay Constants

Table 31 lists the most important AP bus delay “constants’ (C macros). Thelist is

incomplete, but a complete list can be found at the bottom of the text file

/vnmr/psg/apdelay.h.
The constants OFFSET DELAY and OFFSET LTCH DELAY are applicable only to

systems that use PTS synthesi zers with latching on the input. Although the constants are
identical, use only OFFSET DELAY on these systems.

Table 31. AP BusDelay Constants

Constant

ACQUIRE START DELAY*

ACQUIRE STOP DELAY*
DECMODFREQ DELAY
GRADIENT DELAY

OBLIQUEGRADIENT DELAY

OFFSET_ DELAY**

OFFSET_ LTCH DELAY***

POWER_DELAY
PRG_OFFSET_DELAY
PRG_START DELAY
PRG_STOP DELAY
PWRF_DELAY

SAPS DELAY

SETDECMOD_DELAY
SPNLCK_START DELAY
SPNLCK_STOP_DELAY
VAGRADIENT DELAY
WFG_OFFSET DELAY
WFG_START DELAY
WFG_STOP_DELAY
WFG2_ START DELAY
WFG2_STOP_ DELAY
WFG3_START DELAY
WFG3_STOP_ DELAY

Indicates Duration of

Overhead at start of acquisition

Overhead at end of acquisition

Overhead for setting modulator frequency

rgradient, zgradpulse (two times)

obligque gradient (applicable only to imaging)

decoffset,dec2offset, obsoffset, offset

decoffset,dec2offset, obsoffset, offset

decpower, dec2power, obspower, power, rlpower, elC.

Time shift of WFG output with obsprgon, etc.

decprgon, dec2prgon, obsprgon, etc.

decprgoff, dec2prgoff, obsprgoff, etc.

decpwrf, dec2pwrf, obspwrf, pwrf

dcplrphase, dcplr2phase, dcplr3phase,

xmtrphase

Overhead for setting modulator mode
Overhead at start of decspinlock, spinlock, €c.

Overhead at end of decspi
vagradpulse (two times)
Time shift of WFG output

Overhead at start of decshaped pulse, shaped pulse
Overhead at end of decshaped pulse, shaped pulse

nlock, spinlock, etc.

Overhead at start of simshaped pulse, efc.
Overhead at end of simshaped pulse, €ec.
Overhead at start of sim3shaped pulse, efc.
Overhead at end of sim3shaped pulse, €tc.

* On YNTYINOVA systems; on other systems, this constant is zero (no support for FSQ).
** Use OFFSET_DELAY only on UNTYINOVA systems.
*** Only on systems that use PTS synthesi zers with latching.

Controlling Shaped Pulses Using Attenuators

The statements power, obspower, decpower, dec2power, dec3power, and

(optionally) pwrf, obspwrf, decpwrf, dec2pwrf, dec3pwrf, pwrm, and r lpwrm

01-999379-00 A 0708

VnmrJ 2.2 Ml User Programming

117

Chapter 2. Pulse Sequence Programming

118

are used to change the attenuation (and hence the power level) of either the transmitter or
decouplers. A pulse sequence in which one of these statements is placed in aloop and
repeatedly executed with different values for the amount of attenuation therefore resultsin
ashaped pulse. Thiscan beaC loop or a“soft” loop (using the 1oop statement), but not a
“hard” loop. The successive values for the power may be calculated in real-time, read from
atable (assuming that only positive numbers are involved), or set up from a static C
variable. Although no standard pulse sequences exist that implement this feature, several
contributions to the user library provide excellent examples of how to do this.

The statements shaped pulse, decshaped pulse, and dec2shaped pulse
provide fine-grained “waveform generator-type” pulse shaping through the AP bus. If an
rf channel does not have a waveform generator configured, this is the same type of pulse
shaping that statements apshaped pulse, apshaped decpulse, and
apshaped dec2pulse provide, and is asimpler implementation.

Theapshaped pulse,apshaped decpulse,andapshaped dec2pulse pulse
statements use table variables to define the amplitude and phase tables, whereas the
standard shaped _pulse, decshaped pulse, and dec2shaped pulse
statements create and use these tables on the fly. Both types of AP buswaveshaping
statements use real-time variables v12 and v13 to control shape execution. Table 32
summarizes the statements described in this section.

Table 32. Statements for Pulse Shaping Through the AP Bus

apshaped decpulse* First decoupler pulse shaping viathe AP bus
apshaped dec2pulse* Second decoupler pulse shaping viathe AP bus
apshaped pulse* Observe transmitter pulse shaping viathe AP bus
decshaped pulse* Perform shaped pulse on first decoupler
dec2shaped pulse* Perform shaped pul se on second decoupler
shaped pulse* Perform shaped pul se on observe transmitter

* apshaped decpulse (shape,pulse width,pulse phase,

power table,phase table,RG1,RG2)

apshaped dec2pulse (shape,pulse width,pulse phase,
power table,phase table,RG1,RG2)

apshaped pulse (shape,pulse width,pulse phase,power table,
phase table,RG1,RG2)

decshaped pulse (shape,width,phase,RG1,RG2)

dec2shaped pulse (shape,width, phase,RG1,RG2)

dec3shaped pulse (shape,width, phase,RG1,RG2)

shaped pulse (shape,width, phase,RG1,RG2)

MERCURYplus/-Vx systems support the shaped pulse and decshaped pulse.
However, shapes are created using DANTE style pulses, not using a waveform generator.
Furthermore, the apshaped pulse issupported. However, only power level is
controlled, not phase, which makes gauss . RF the only usable shape.

Controlling Attenuation

On systemswith two attenuators, connect the two existing attenuatorsin series, leaving one
channel without computer-controlled attenuation. Thisis often acceptable in homonuclear
experiments, while in heteronuclear experiments and some homonuclear experiments it
may be desirable to insert a simple fixed attenuator in-line in the channel that isn’t being
shaped.

If you take this approach, the t pwr and dpwr parameters (or, equivalently, the
power (..,0BSch) and power (..., DECch) pulse seguence statements) control the two
attenuators. The simplest approach isto use one of the two attenuatorsto control the shape,

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

2.12 Internal Hardware Delays

while using the second to set the overall level of the pulse. Assuming that there are also
hard pulses in the pulse sequence, you’ll aso need to remember to write your pulse
sequence to return both attenuators to values suitable for the hard pulse.

2.12 Internal Hardware Delays

® “Delaysfrom Changing Attenuation,” page 119
® “Delaysfrom Changing Status,” page 120
® “Waveform Generator High-Speed Line Trigger,” page 121

Many pulse sequence statementsresult in “hidden” delays. These delays are notintrinsic to
pulse sequence generation (PSG) software but are rather internal to the hardware.

Each AP businstruction is considered a FIFO event and incurs the following delay, which
isthetimeit takesto set the hardware on the AP bus:

® OnUNTYINOVA, 0.5-us delay (except PFG, which has a 1.0-us delay).
® On MERCURYplus/-Vx, 1.2 us delay.

Delays from Changing Attenuation

The pulse sequence statement power, which is used to change the level of attenuation
produced by a 63-dB rf attenuator in the system, leads to the following values:

® OnUNTYINOVA, 1 AP businstruction, 0.5-us concomitant internal delay (WFG start
takes 1 AP businstructions at 0.5 us and extraboard delay of 0.75 us, total 1.25 us).

® On MERCURYplus/-Vx, 4 AP businstructions, 4.8-us concomitant internal delay.

Table 33 listsall pulse sequence statements that lead to an internal delay and the magnitude
of this delay. Similar information to the table is contained in the PSG header file
apdelay.h, which residesin the VnmrJ system PSG directory.

Table 33. AP Bus Overhead Delays

Internal Delay (us)
Pulse Sequence Satements UNTYINOVA MERCURYplus/-Vx Output Board

acquire 1.0 pre — —
0.5 post

xmtrphase 0.5 7.2 2.35
dcphase

dcplrphase

dcplr2phase

dcplr3phase

power, obspower 0.5 4.8 45
decpower
dec2power
dec3power

pwrf, obspwrf 0.5 — —
decpwrf

dec2pwrf

dec3pwrf

offset (S=standard 4.0 86.4 15.25S
L=latching) 21.7L

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 119

Chapter 2. Pulse Sequence Programming

120

Table 33. AP Bus Overhead Delays

Internal Delay (us)

Pulse Sequence Satements UNTYINOVA ~ MERCURYplus/-Vx Output Board
shaped pulse 1.25 pre — 15.45
decshaped pulse 0.5 post

dec2shaped pulse
dec3shaped pulse

simshaped pulse * — 30.50
sim3shaped pulse *x — 45,55
obsprgon 1.25 — 10.95
decprgon

dec2prgon

dec3prgon

obsprgoff 05 — 45
decprgoff

dec2prgoff

dec3prgoff

spinlock 1.25pre — 15.45
decspinlock 0.5 post

dec2spinlock

dec3spinlock

rgradient and 40 — Not an option

vgradient with

gradtype="p'

rgradient and 0.5 — Not an option
vgradient with

gradtype="'w'

zgradpulse delay — Not an option
gradtype="'p' +8.0
zgradpulse delay — Not an option
gradtype="'w' +1.0

* simshaped pulse: 1.75 pre, 0.5 post
** sim3shaped pulse: 2.25 pre, 0.5 post

On systems with the Output board, Table 33 indicates that the pulse sequence statement
power incursa4.5 usinternal delay, not a4.3 usdelay aspreviously stated. Of the 4.5 us
delay, 0.2 usisto alow any high-speed line, (for example, the transmitter gate control line)
that has been turned off in PSG at the end of the preceding delay to actually turn off in
hardware before the AP bus instructions have been issued from the FIFO. Otherwise, any
such high-speed line would not be turned off in hardware until the end of the series of AP
bus instructions. This extra 0.2 us delay can be avoided with the apovrride statement.

Delays from Changing Status

Other delays can be incurred with the status and setstatus statements. The first
occurrence of the status statement always incurs the full delay. On subsequent
occurrences of status, the delay depends on values of the parameters dmm, dmm2, and
dmm3. There are three parts that contribute to this delay:

® Modulation mode — If the modulation mode changes, 1.0 usis added to the delay, and
the first occurrenceof 's' inthe dm string (or dm2 or dm3) adds an extra 1.0 ps. On
systemswith apinterface=3, if and only if the modulation mode changes. Note
that the waveform generator (mode 'p ') needs CW modulation (mode 'c').

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

2.12 Internal Hardware Delays

® \Waveform generator — Starting a waveform generator adds 1.25 pus. Stopping a
waveform generator adds 1 us on YNTYINOVA and 4.3 pusec on other systems.
(The modulation modeisto or from ' p'.) The waveform generator also has an offset
or propagation delay, which is discussed on page 121.

® Modulation frequency — If the modulation frequency changes, 1 usisadded on
UNITYINOVA and 6.45 usec on other systems. Note that for the UNTYINOVA, thisis
different for a shaped pulse. The modulation frequency can change if the statement
setstatus iscaled with amodulation frequency different from the parameter
corresponding to the transmitter set, or if the modul ation mode changesto or from 'g'
and 'r'. If thechangeisto 'g' and 'r', the modulation frequency isinternally
scaled, changing the frequency.

Finally, these delays are added up for each channel, and this becomes the delay incurred for
status or setstatus. For example, if dm="'nnnss', dmm="'cpfwp', and
dm2="y"', then dmm2="'cccpc', Table 34 summarizes the internal intervals, assuming
status (2) istheinitia state.

Table 34. Example of AP Bus Overhead Delaysfor status Statement

Satement Delay (us) De_lay (1s) Reason
apinterface=3

status (B) 0 0 dmm from 'c' to 'p', WFG not started
becausedm='n"' inB

status (C) 1.0 4.3 dmm from 'p' to '£', no WFG to stop

status (D) 1.0+41.25 4.3+10.75 dmm from '£' to 'w', synchronize,
dmm2 from 'c' to 'p!

status (E) 1.75+0.5 15.05+4.3 dmmfrom'w'to'p' (='c') and
start WFG, dmm2 from 'p' to 'c ', only
stop WFG

To keep the status timing constant, use the statusdelay statement. This statement
allows the user to specify a defined period of time for the status statement to execute.
For example, if statusdelay ('B',2.0e-5) isused, aslong asthetimeit takesto
execute status for state B isless than 20 microseconds, the statement will always take
20 microseconds. If the time to execute state B is greater than 20 microseconds, the
statement still executes, but awarning message is generated.

Waveform Generator High-Speed Line Trigger

Along with the AP bus overhead delay, the waveform generator has an offset delay asa
result of high-speed line (WFG) propagation delay. Thisshiftstherf pattern beyond the AP
bus delay. Figure 3 illustrates the delay. The time overhead for the AP busis 1.25 us (this
includesa0.5-us AP busdelay and a0.75-usboard delay). The offset delay is an additional
0.45 us, for atotal delay of 1.70 us. The WFG a'so has a post pulse overhead delay.

Note that if the shaped pulseisfollowed by adelay, say d3, then the end of the delay is at
1.7+pshape+0.5+d3. Toobtainthe proper offset delay, availableinapdelay.h. are
mMacros WFG_OFFSET DELAY, WFG2 OFFSET DELAY, and WFG3 OFFSET DELAY.

At the end of data collection, 3.5 msisinserted to give the acquisition computer time to
check lock, temperature, spin, etc. The system has a 0.004-ms delay at the start of a
transient to initialize the data collection hardware, and a 2.006-ms delay at the end of a
transient for data collection error detection. For systems with gradients, the end of scan
delays do not include the times to turn off gradients, which is done at the end of every scan.

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 121

Chapter 2. Pulse Sequence Programming

1.25us +0.45 us
-
RF out RF

—» 4= 045us

XMTR —1.25 us - > HS line

WFG HS line

Figure 3. Waveform Generator Offset Delay

2.13 Indirect Detection on Fixed-Frequency Channel

2.14

122

Indirect detection experiments, in which the observe nucleus is 1H and the decouple
nucleus is alow-frequency nucleus, usually 13C, are easily done on systems with two
broadband channels. Systems with a fixed-frequency decoupler depend on the type of
system.

Fixed-Frequency Decoupler

A UNITYINOVA system with thelabel Typeof RF set to U+ H21 Only in the CONFIG window,
or any MERCURYplus/-Vx broadband system, can use the same parameter sets and pulse
sequences as a dual-broadband system (e.g., HMQC) as long as the pulse statementsin a
sequence do not use the channel identifiers TODEV, DODEV, DO2DEV, and DO3DEV. This
restriction is negligible because statements obspower, decpower, dec2power, and
dec3power are available that specify an rf channel without requiring the these channel
identifiers. Each of these statements require only the power level and can be remapped to
different rf channels. The rfchannel parameter enablesremapping rf channel selection.
Refer to the description of rfchannel inthe Command and Parameter Reference for
details.

MERCURYplus/-Vx support automatic channel swapping as well.

Multidimensional NMR

® “Hypercomplex 2D,” page 123
® “Real Mode Phased 2D: TPPI,” page 124

A standard feature of all pulse sequencesisthe ability to array acquisition parameters and
automatically acquire an array of the corresponding FIDs. For example, arraying the pw
parameter and viewing the resulting array of spectrais one way to estimate the 90-degree
pulsewidth. Thisexplicit array featureisautomatic, whenever aparameter is set to multiple
values, suchaspw=5,6,7,8,9, 10.

A separate type of arrayed variable isused for 2D, 3D, and 4D experiments. The
distinguishing feature of this type of data set is that the arrayed element has a uniform,
automatically cal culated increment between values. Theni parameter is set to the number

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

2.14 Multidimensional NMR

of increments desired in the first indirect dimension of a multidimensional data set. The
inverse of the parameter sw1 defines the increment in successive values of the implicitly
arrayed delay d2. For example, if ni=8, animplicit d2 array with valuesd2=0, 1 /swi,
2/swl,3/swl,4/swl,5/swl, 6/swl,7/swlisgenerated. Eight FIDs, eachusingthe
corresponding d2 delay, will be acquired.

For the second indirect dimension, the analogous parametersareni2, sw2, and d3. For
the third indirect dimension, the analogous parameters areni3, sw3, and d4.

When creating a new 2D pulse sequence in standard form, the pulse sequence should
contain ad2 delay. To create the appropriate parameters, use the par2d macro. Itis
usually convenient to call par2d from within the macro used to set up the pul se sequence
and to set the parameters to appropriate values with the set 2d macro. Examples of 2D
pulse sequences are given in the standard software in /vnmr/psglib and /vnmr/
maclib.

When creating a new 3D pulse sequence in standard form, the pulse sequence should
contain the delays d2 and d3, and parameters can be created with the par3d macro.
Similarly, a4D pulse sequence should contain the delays d2, d3, and d4, with parameters
created by the par4d macro.

Each indirect dimension of data can be acquired in a phase-sensitive mode. Examples of
thisinclude the hypercomplex method and the TPPI method (see the chapter on
multidimensional NMR in NMR Spectroscopy, User Guide manual for more details).

For each indirect dimension, a phase parameter sel ects the type of acquisition. For the first
indirect dimension, the corresponding phase parameter is phase. For the second indirect
dimension, the parameter isphase2. For the third indirect dimension, the parameter is
phase3. Thetotal number of FIDs in agiven multidimensional data set is stored in the
parameter arraydim. For a2D experiment, arraydim isequal to ni*(number of
elements of the phase parameter).

When programming the multidimensional pulse sequences, it is convenient to have access
to the current increment in a particular indirect dimension, and to know what the phase
element is. Table 35 lists these PSG variables (see Table 19 for the full list of Vnmr
parameters and their corresponding PSG variable names and types).

Some pulse sequences, such as heteronuclear 2D-J (HET2DJ), can be used “asis’ for
phase-sensitive 2D NMR; however, the hypercomplex and TPPI experiments require more
information compared to “normal” pul se sequences, see below.

Hypercomplex 2D

Hypercomplex 2D (States, Haberkorn, Ruben) requires only that a pulse sequence be run
using an arrayed parameter that generates the two required experiments. While this can be
any parameter, for consistency we recommend the use of a parameter phase, which can
be set by the user to O (to give a non-phase-sensitive experiment) or to an array (asin
phase=1, 2) to generate the two desired experiments. The parameter phase is
automatically made available to a pulse sequence asthe integer phasel. Typica code as
part of the pulse sequence might look like this:
pulsesequence ()
{

if (phasel==0)

{ /* Phase calculation for */
/* non-phase-sensitive experiment */

else if (phasel==1)

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 123

Chapter 2. Pulse Sequence Programming

Table 35. Multidimensional PSG Variables

124

PSG Variable PSG type VnmrJ parameter Description
d2_index int 0to (ni-1) Current index of the d2 array
id2 real-time 0to (ni-1) Current real-time index of thed2 array
inc2D double 1.0/swl Dwell time for first indirect dimension
phasel int phase Acquisition mode for first indirect dimension
d3_index int 0to (ni2-1) Current index of the d3 array
ids real-time 0to (ni2-1) Current real-time index of thed3 array
inc3D double 1.0/sw2 Dwell time for second indirect dimension
phase?2 int phase?2 Acquisition mode for second indirect dimension
d4 index int 0to (ni3-1) Current index of the d4 array
ida real-time 0to (ni3-1) Current real-time index of thed4 array
inc4D double 1.0/sw3 Dwell time for third indirect dimension
phase3 int phase3 Acquisition mode for third indirect dimension
ix int 1toarraydim Current element of an arrayed experiment

{ /* Phase calculation for */

. /* first of two arrays */

}

else if (phasel==2)

}

{

/* Phase calculation for */

/* second of two arrays */

This code usually can be condensed because the phases are obviously related in the three
experiments, and three separate phase cal cul ations are not needed. One possibility isto
write down the phase cycle for the entire experiment, interspersing the “real” and
“imaginary” experiments, then generate an “effective transient counter” asfollows:

if (phase==0) assign(ct,v10);

else

{if (phase==1) dbl (ct,v10);

else

incr (v10) ;

}

/* v10=01234... */
/* v10=02468... */
/* v10=13579... */

Now asingle phase cycle can bederived from v10 instead of from ct. If phase1=0, each
element of this phase cycle isselected. If phasel=1, only the odd elements are selected
(thefirgt, third, fifth, etc. transientsfor which ct=0, 2, 4,...). If phasel=2, theeven

elements only are selected (ct odd).

Real Mode Phased 2D: TPPI

For TPPI experiments, the increment index is typically needed at some point in the phase
calculation. The simplest way to obtain the index is to use the built-in real-time constant
id2. This can be used in aconstruction such as

if (phasel==3)

VnmrJ 2.2 Ml User Programming

01-999379-00 A 0708

add(v1ll,id2,v11) ;

2.15 Gradient Control for PFG and Imaging

which adds the increment value (which starts at 0) to the phase contained inv11.

2.15 Gradient Control for PFG and Imaging

“Setting the Gradient Current Amplifier Level,” page 126

“Generating a Gradient Pulse,” page 127

“Controlling Lock Field Correction Circuitry,” page 127

“Programming Microimaging Pulse Sequences,” page 127

Varian, Inc. NMR systems support gradient control for applications using the optional
pulsed field gradient (PFG) and imaging. The configuration parameter gradtype, Set by
the config program, specifiesthe presence of gradient hardware and its capabilities. The
available gradient control statements are listed in Table 36.

Table 36. Gradient Control Statements

1k _hold()
1k sample ()

obl gradient*

oblique gradient*

obl shapedgradient*
oblique shapedgradient*
pe gradient*

pe2 gradient*

pe3 gradient*

pe shapedgradient*

pe2 shapedgradient*

pe3 shapedgradient*
phase encode gradient¥*
phase encode3 gradient*
phase encode shapedgradient*

phase encode3 shapedgradient
*

rgradient (channel,value)
shapedgradient*
shaped2Dgradient*
shapedincgradient®*
shapedvgradient®*
vgradient*

vagradient*
vagradpulse*
vashapedgradient®*
vashapedgradpulse*
zgradpulse (value, delay)
zero_all gradients*

Set lock field correction circuitry to hold
Set lock field correction circuitry to sample

Execute an oblique gradient

Execute an oblique gradient

Execute a shaped oblique gradient
Execute a shaped oblique gradient
Oblique gradient with PE in 1 axis
Oblique gradient with PE in 2 axes
Oblique gradient with PE in 3 axes
Oblique shaped gradient with PE in 1 axis
Oblique shaped gradient with PE in 2 axes
Oblique shaped gradient with PE in 3 axes
Oblique gradient with PE in 1 axis
Oblique gradient with PE in 3 axes
Oblique shaped gradient with PE in 1 axis
Oblique shaped gradient with PE in 3 axes

Set gradient to specified level

Shaped gradient pulse

Arrayed shaped gradient function

Dynamic variable gradient function

Dynamic variable shaped gradient function

Set gradient to level determined by real-time math
Variable angle gradient

Pulse controlled variable angle gradient
Variable angle shaped gradient

Variable angle pul se controlled shaped gradient
Create a gradient pulse on the z channel

Set all gradientsto zero

* For the argument list, refer to the statement reference in Chapter 3

MERCURYplus/-Vx systems use rgradient and vagradient, andthe 1k _sample
and 1k_hold statements.

01-999379-00 A 0708

125

VnmrJ 2.2 Ml User Programming

Chapter 2. Pulse Sequence Programming

126

Table 37 lists delays for shaped gradient statements on systems with gradient waveform
generators (gradtype="'w' or gradtype="'q'). Thetimesfor the three-axis gradient

Table 37. Delays for Obliquing and Shaped Gradient Statements

Pulse Sequence Satements Delay (us)
shapedgradient 05
shapedvgradient 15
shapedincgradient 15
incgradient (gradtype='p', gradtype='qg') 4.0
incgradient (gradtype='w') 0.5
obl gradient, oblique gradient, pe gradient, 12.0
phase encode gradient (gradtype='p', gradtype='qg')

obl gradient, oblique gradient, pe gradient, 15
phase encode gradient (gradtype='w')

pe2 gradient, phase encode3 gradient (gradtype='p', 12.0
gradtype='q"')

pe2 gradient, phase encode3 gradient (gradtype='w') 15
obl shapedgradient, oblique shapedgradient 15
pe shapedgradient, phase encode shapedgradient 45
pe2 shapedgradient, pe3 shapedgradient, 45

phase encode3 shapedgradient

statements (obl gradient, oblique gradient,pe2 gradient,

phase encode3 gradient,etc.)withgradtype='w' orgradtype="'q"' arethe
overhead timesfor setting all three gradients. The gradients are always set in sequential
'x','y', 'z order.

Some gradient statements use DAC values to set the gradient levels and others use values
in gauss/cm. The lower level gradient statements (gradient, rgradient, zgradpulse,
shapedgradient, etc.) use DAC values, and the obliquing and variable-angle gradient
statements use gauss'cm. The gradient statements associated with DAC values are used in
single-axis PFG pul se sequences and microimaging pul se sequences, while the gradient
statements associated with gauss/cm are used in imaging pulse sequences and triple-axis
PFG pulse sequences.

Setting the Gradient Current Amplifier Level

To set the gradient current amplifier level, usergradient (channel, value), where
channelis'X', 'x','Y', 'y', 'Z',or 'z' (only 'Z' or 'z' issupported on
MERCURYplus/-VX) and value isarea number for the amplifier level

(eg, rgradient ('z',1327.0)). For the Performal PFG module, value must be
from 2048 to 2047; for Performall, I, or 1V, value must be from —32768.0 to 32767.0.

To set the gradient current amplifier level but determine the value instead by real-time
math, use vgradient (channel, intercept, slope, rtval), where channel
isused the same asin rgradient, and amplifier level is determined by intercept +
slope* rtval (eg., vgradient ('z',-5000.0,2500.0,v10). Thisstatement
not available on the Performal PFG module.

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

2.16 Programming the Performa XYZ PFG Module

Generating a Gradient Pulse

To create a gradient pulse on the z channel with given amplitude and duration, use
zgradpulse (value,delay), Wherevalue isusedthesameasin rgradient and
delay isany delay parameter (e.g., zgradpulse (1234.0,d2)).

shapedgradient (pattern,width, amp, channel, loops,wait) generatesa
shaped gradient, wherepatternisafilein shapelib, width isthepulselength, amp
isavaluethat scales the amplitude of the pulse, channel isthe same as used with
rgradient, loops isthe number of times (1 to 255) to loop the waveform, and wait
isWAIT or NOWAIT for whether or not adelay isinserted to wait until the gradient is
completed before executing the next statement.

Example:

shapedvgradient ("hsine",d3,amplitude, igpe,
v5,gphase,vl,NOWAIT, 1) ;

This statement is only available on the Perform 11, 111, or IV PFG module.

Controlling Lock Field Correction Circuitry

On Varian, Inc. NMR systems, 1k_sample () and1k_hold () areprovided to control
the lock field correction circuitry. If during the course of a pul se sequence the lock signal
is disturbed—for instance, with a gradient pulse or pulses at the 2H frequency—the lock
circuitry might not be able to hold on to the lock. When thisisthe case, the correction added
in the feedback loop that holds the lock can be held constant by calling 1k _hold (). At
some time after the disturbance has passed (how long depends on the type of disturbance),
the statement 1k_sample () should be called to allow the circuitry to correct for
disturbances external to the experiment.

Programming Microimaging Pulse Sequences

The proceduresfor programming microimaging pulse sequences are the same as those used
in the programming of spectroscopy sequences, with the exception that additional pulse
sequence statements have been added to define the amplitude and timing of the gradient
pulses and the shaped rf pulses. For example, in the statement

rgradient (name, value) toset agradient, theargument name iseither X, Y, or Z (or
aternatively with the connection through the parameter orient, gread, gphase, or
gslice) and value isthe desired gradient strength in DAC units at the time the
statement is to be implemented.

The basic imaging sequences included with the VnmrJ software are sequences for which
theimage data can be acquired, processed, and displayed with essentially the same software
toolsthat are used with 2D spectra. These sequences have been written in aform that
provides agreat deal of flexibility in adapting them to the different modes of imaging and
includes the capabilities of multislice and multiecho imaging. Many of the spectroscopic
preparation pulse sequences can be linked to the standard imaging sequences to limit the
spin population type that isimaged, to provide greater contrast in the image, or to remove
artifacts from the image.

2.16 Programming the Performa XYZ PFG Module

® “Creating Gradient Tables,” page 128
® “Pulse Sequence Programming,” page 128

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 127

Chapter 2. Pulse Sequence Programming

128

The Performa XY Z pulsed field gradient (PFG) module adds new capabilities to high-
resol ution liquids experimentson Varian spectrometers. The module appliesgradientsin B
along three distinct axes at different times during the course of the pulse sequence. These
gradients can perform many functions, including solvent suppression and coherence
pathway selection. This section describes pul se sequence programming of the module.

Creating Gradient Tables

In order for the software to have the necessary information on al three axes to convert
between gauss/cm and DAC values, the XY Z PFG probe and amplifier combination can be
calibrated using the creategtable macro and a gradient table madein
/vnmr/imaging/gradtables.

The macro first prompts the user to see if the gradient axes are set to the same gradient
strength (horizontal-bore imaging system) or if the axes have different gradient strengths
(vertical-bore PFG gradients). Next, the user is prompted for a name for the gradient coil,
and that nameisthen usedinthe gcoil and sysgcoil parametersin order to correctly
translate between DAC and gauss/cm values. Finally, the macro prompts the user for the
boresi ze of the magnet (51 mm), the gradient rise time (40 us), and the maximum gradient
strength obtainable for each axis. Note that the gradient strengths are not equal and the
amplifier does not limit the combined output.

If the parameter gcoil doesnot exist in a parameter set and must be created, set the
protection bit that causesthemacro gcoil to be executed must be set when the value for
gcoil ischanged. Set the protection bit using either of these procedures:

® Usethe macro updtgcoil, which will create the gcoil parameter if it does not

exist.

® Create gcoil with the following commands:
create('gcoil', 'string')
setprotect ('gcoil!', 'set',9)

In an experiment that uses gradient coils, the sysgcoil parameter can be set to the coil
name specified with the creategtable macro and then the updtgcoil macro can be
run to update thelocal gcoil parameter fromtheglobal sysgcoil parameter. When the
local gcoil parameter is updated, the local gxmax, gymax, gzmax, trise and
boresize parametersare also updated. Refer to the Command and Parameter Reference
and the VnmrJ Imaging, User Guide for additional information about creategtable.

Pulse Sequence Programming

Table 38 lists the pulse sequence statements related to the XY Z PFG module.The system
can be programmed by using the statements rgradient (channel, value) and
zgradpulse (value, delay). Pulse sequencesg2pul .c and profile.cin
/vnmr /psglib are examples of using the gradaxis parameter and the rgradient
Statement.

To produce a gradient at any angle by the combination of two or more gradients, the
vagradpulse (gradlvl,gradtime, theta,phi) statement can be used, and to
produce three equal and simultaneous gradients, such that an effective gradient is produced
at the magic angle, the magradpulse (gradlvl,gradtime) statementisavailable.
The statements vagradpul se and magradpulse are structured so that the software
does all of the calculations to produce the effective gradient desired. Both statements take
the argument for the gradient level (gradlvl) in gauss’em. Thisisdistinctly different

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

2.17 Imaging-Related Statements

Table 38. Performa XY Z PFG Module Statements

magradient (gradlvl) Simultaneous gradient at the magic angle
magradpulse (gradlvl,gradtime) Simultaneous gradient pulse a the magic angle
mashapedgradient* Simultaneous shaped gradient at the magic angle
mashapedgradpul se* Simultaneous shaped gradient pulse at the magic angle
rgradient (axis,value) Set gradient to specified level
vagradpulse?* Variable angle gradient pulse
vashapedgradient* Variable angle shaped gradient
vashapedgradpulse* Variable angle shaped gradient
zgradpul se (value,delay) Create a gradient pulse on the z channel
* mashapedgradient (pattern,gradlvl,gradtime, theta,phi, loops,wait)
mashapedgradpulse (pattern,gradlvl,gradtime, theta, phi)
vagradpulse (gradlvl,gradtime, theta, phi)
vashapedgradient (pattern, gradlvl,gradtime, theta,phi, loops,wait)
vashapedgradpulse (pattern,gradlvl,gradtime, theta, phi)

2.17

fromthe rgradient and zgradpulse statements, which take the argument for the
gradient level (value) in DAC.

With these statements, thegcoil and sysgcoil parametersarerequired for the software
to calculate the correct DAC value for each channel in order to produce the requested
effective gradient. After the gradients have each been calibrated and agradtable has
been constructed with the creategtable macro, as described above, then the
sysgcoil parameter can be set to that coil name used. The updtgcoil macro canthen
update the local gcoil parameter from the global sysgcoil parameter.

The vagradpulse statement usesthe theta and phi angles to produce an effective
gradient at any arbitrary angle. For example, using vagradpulse with theta=54.7
and phi=0. 0, an effective gradient is produced at the magic angle by the correct
combination of theZ gradient and the Y gradient. Wheress, if theta=54 .7 andphi=90,
an effective gradient is produced at the magic angle by the correct combination of the Z
gradient and the X gradient. Variations on the vagradpul se statement include the
capability of shaping the gradient waveform with the vashapedgradient and the
vashapedgradpulse statements. For more information about these statements, see
their descriptionsin Chapter 3.

In addition, the magradpulse statement produces equal and simultaneous gradients on
all three axesin order to produce an effective gradient at the magic angle. Variations on the
magradpul se statement include the capability of shaping the gradient waveform with
themashapedgradient andthemashapedgradpulse statements. Again, for more
information, refer to Chapter 3.

Imaging-Related Statements
® “Real-time Gradient Statements,” page 131
® “Oblique Gradient Statements,” page 131
® “Globa List and Position Statements,” page 131
® “| ooping Statements,” page 131
® “Waveform Initialization Statements,” page 132

The PSG statements related to imaging, summarized in Table 39, were developed to
support oblique imaging using standard units (gauss/cm) to set the gradient values and to

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 129

Chapter 2. Pulse Sequence Programming

130

Table 39. Imaging-Related Statements

create delay list*
create freq list*

create offset list¥*
endmsloop*/endpeloop*
getarray*
getorientation*
incgradient*

init rfpattern*

init gradpattern*

init vscan¥*

obl gradient*

oblique gradient¥*

obl shapedgradient*
oblique shapedgradient*
msloop* /peloop*

pe gradient*

pe2 gradient¥*

pe3 gradient¥*

pe shapedgradient¥*

pe2 shapedgradient*

pe3 shapedgradient*
phase encode gradient*
phase encode3 gradient*
phase encode shapedgradient*
phase encode3 shapedgradient*
poffset*/position offset*
poffset list¥*

position offset list*
shapedgradient*
shaped2Dgradient*
shapedincgradient*
shapedvgradient*

sli*

vagradient*
vagradpulse*
vashapedgradient*
vashapedgradpulse*
vdelay*

vdelay list*

vireg*

vgradient*

voffset*

vscan¥*

vsli*

zero_all gradients*

Create table of delays
Create table of frequencies

Create table of frequency offsets

Ends aloop started by the msloop/pel oop
Retrieves al values of arrayed parameter
Read image plane orientation

Dynamic variable gradient function

Create rf pattern file

Create gradient pattern file

Initialize real-time variable for vscan
Execute an oblique gradient

Execute an oblique gradient

Execute a shaped oblique gradient
Execute a shaped oblique gradient
Provides a sequence-switchable loop
Oblique gradient with PE in 1 axis
Oblique gradient with PE in 2 axes
Oblique gradient with PE in 3 axes
Oblique shaped gradient with PE in 1 axis
Oblique shaped gradient with PE in 2 axes
Oblique shaped gradient with PE in 3 axes
Oblique gradient with PE in 1 axis
Oblique gradient with PE in 3 axes
Oblique shaped gradient with PE in 1 axis
Oblique shaped gradient with PE in 3 axes
Set frequency based on position

Set frequency from position list

Set frequency from position list

Provide shaped gradient pulse

Arrayed shaped gradient function
Dynamic variable gradient function
Dynamic variable shaped gradient function
Set SLI lines

Variable angle gradient

Pulse controlled variable angle gradient

Variable angle shaped gradient

Variable angle pulse controlled shaped gradient
Select delay from table

Get delay value from delay list with real-time index
Select frequency from table

Dynamic variable gradient

Select frequency offset from table
Dynamic variable scan function

Set SLI lines from real-time variable
Sets all gradients to zero

* For the argument list, refer to the statement reference in Chapter 3

Thesliandvsli statementsare not supported on UNTYINOVA. UNTYINOVA support
for interfacing to an externa deviceisincluded in the AP User interface.

support the use of real-time variables and loops when constructing imaging sequences.
Using real-time variables and loops resulting in “compressed” acquisitions, instead of

VnmrJ 2.2 Ml User Programming

01-999379-00 A 0708

2.17 Imaging-Related Statements

standard acquisition arrays, reduces the number of acodes sets needed to run the
experiment, cutting down significantly on the start-up time of the experiment and removing
any inter-FID and intertransient overhead delays. Thisis not really a problem, because its
small overhead delays and 40 parameter make the inter-FID and intertransient delays
consistent, but may make a difference in some applications.All VnmrS system waveforms
must have 4usec resolution.

Real-time Gradient Statements

Real-time gradient statements consist of additions to the standard gradient and
shapedgradient statements, which provide real-time variable control for the gradient
amplitudes. Real-time statementsinclude shapedvgradient, which providesreal -time
control on one axisand incgradient and shapedincgradient, which support
real-time control over three axes. The vgradient statement also belongs to this group.

Oblique Gradient Statements

To support oblique imaging and the imaging interface, oblique gradient statementsinclude
oblique gradient,phase encode gradient,pe gradient andall of their
variations. The inputs to these statements are amplitudes and phases. Amplitudes are
expressed in gauss’'cm and correspond to the read-out, phase-encode, and slice-select axis
in the logical frame. Phase angles correspond to Euler anglespsi, phi, and theta and
describe the coordinate rotation applied to the input amplitudes. For more information on
use, see the manual VnmrJ Imaging, User Guide.

Global List and Position Statements

The global list statements support real-time selection of frequencies, offsets, and delays.
Global lists are different from AP tables in that the lists are sent down to the acquisition
console when the experiment starts up and remain accessible until the experiments
completes. The lists can be arrayed parameters (with a protection bit set to prevent an
arrayed acquisition) read into the pulse sequence using the getarray statement or
standard C language arrays cal culated within the pulsesequence. The lists are initialized
with the statements create freq list,create offset list,and

create delay list,andthen selected and set usingthe vEreq, voffset, and
vdelay list statements, which use areal-time parameter as an index into the list.

The position statements set the rf frequency from a given position or an array of positions.
These statements are pof fset, poffset list,position offset, and
position offset list.Thepositionlist statementsuseglobal lists, whichinitialize
the list and select and set the position in asingle statement.

When creating global list parameters, create them as acquisition parameters and set
protection bit 8 (value 256) or else PSG triesto array them as standard arrayed acquisitions.

Looping Statements

The looping statements ms 1oop and peloop define multislice and phase encode loops
when creating imaging pulse sequences. The looping statements also allow selection of a
standard “arrayed” acquisition or a*“compressed” acquisition using the segcon parameter.

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 131

Chapter 2. Pulse Sequence Programming

Waveform Initialization Statements

The waveforminitialization statementsinit rfpatternand init gradpattern
are availableto all configurations and allow the user to calculate and create gradient and rf
patternsin PSG.

2.18 User-Customized Pulse Sequence Generation

132

The complete pulse sequence generation (PSG) source code is supplied in the VnmrJ
system psg directory. This code enables users to create their own 1ibpsglib. so PSG
directory for link loading with the pulse sequence object file pul sesequence. o.

The shell script setuserpsg in the system directory creates the directory vnmrsys/
psg for auser, if it does not already exist, and initializes this user PSG directory with the
appropriate object libraries from the system PSG directory. The script setuserpsg
should only have to be run once by each separate user. setuserpsg places thefile
libpsglib.a intheuser'spsg directory.

The shell script psggen compilesfilesinthe user PSG object directory and placesthefiles
in the user PSG directory. When executed, seqggen looksfirst for the user PSG library ~/
vamrsys/psg in the user PSG directory, and then in the system library directory /
vnmr/lib.

Modifying a PSG source file and subsequently recompiling the user PSG object directory
is done asfollows:

1. Enter setuserpsg from ashell (done only once).

Typica output from this command is as follows:
Creating user PSG directory...
Copying User PSG library from system directory...

2. Copy the desired PSG source file(s) from $vnmrsystem/psg to
Svnmruser/psg.

3. Modify the PSG source files in the user PSG directory.

4. Enter psggen from ashell or from within vnmr.

Typica output from this command is as follows:
Creating additional source links...
Compiling PSG Library...

PSG Library Complete.

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

chapter 3. Pulse Sequence Statement Reference

This chapter isareference for the statements used in V nmrJ pul se sequence programming.

Top A B

abort message
acquire

add

apovrride
apshaped decpulse
apshaped dec2pulse
apshaped pulse
assign
blankingoff
blankingon
blankoff

blankon
clearapdatatable
create delay list
create freqg list
create offset list
dbl

dcplrphase
dcplr2phase
dcplr3phase
decblank
dec2blank
dec3blank
declvloff
declvlon

decoff

dec2off

dec3off

decoffset
dec2offset

01-999379-00 A 0708

cC D E G H

Il L M O P R S T V W X Z

Send an error to VnmrJ and abort the PSG process
Explicitly acquire data

Add integer values

Override internal software AP bus delay

First decoupler pulse shaping via AP bus

Second decoupler pulse shaping via AP bus
Observe transmitter pulse shaping via AP bus
Assign integer values

Unblank amplifier channels and turn amplifiers on
Blank amplifier channels and turn amplifiers off
Stop blanking observe or decoupler amplifier (obsolete)
Start blanking observe or decoupler amplifier (obsolete)
Zero al datain acquisition processor memory
Create table of delays

Create table of frequencies

Create table of frequency offsets

Double an integer value

Set small-angle phase of 1st decoupler,

Set small-angle phase of 2nd decoupler,

Set small-angle phase of 3rd decoupler,

Blank amplifier associated with first decoupler
Blank amplifier associated with second decoupler
Blank amplifier associated with third decoupler
Return first decoupler back to “normal” power
Turn on first decoupler to full power

Turn off first decoupler

Turn off second decoupler

Turn off third decoupler

Change offset frequency of first decoupler

Change offset frequency of second decoupler

VnmrJ 2.2 Ml User Programming

133

Chapter 3. Pulse Sequence Statement Reference

dec3offset
dec4offset
decon

dec2on
dec3on
decphase
dec2phase
dec3phase
dec4phase
decpower
dec2power
dec3power
dec4power
decprgoff
dec2prgoff
dec3prgoff
decprgon
dec2prgon
dec3prgon
decpulse
decpwr
decpwrt
dec2pwrf
dec3pwrf
decr
decrgpulse
dec2rgpulse
dec3rgpulse
dec4rgpulse
decshaped pulse
dec2shaped pulse
dec3shaped pulse
decspinlock
dec2spinlock
dec3spinlock
decstepsize
dec2stepsize
dec3stepsize
decunblank
dec2unblank
dec3unblank
delay
dhpflag

134

VnmrJ 2.2 Ml User Programming

Change offset frequency of third decoupler

Change offset frequency of fourth decoupler

Turn on first decoupler

Turn on second decoupler

Turn on third decoupler

Set quadrature phase of first decoupler

Set quadrature phase of second decoupler

Set quadrature phase of third decoupler

Set quadrature phase of fourth decoupler

Change first decoupler power level, linear amp. systems
Change second decoupler power level, linear amp. systems
Change third decoupler power level, linear amp. systems
Change fourth decoupler power level, linear amp. systems
End programmable decoupling on first decoupler

End programmable decoupling on second decoupler
End programmable decoupling on third decoupler
Start programmable decoupling on first decoupler
Start programmable decoupling on second decoupler
Start programmable decoupling on third decoupler
Pulse first decoupler transmitter with amplifier gating
Set first decoupler high-power level, class C amplifier
Set first decoupler fine power

Set second decoupler fine power

Set third decoupler fine power

Decrement an integer value

Pulse first decoupler with amplifier gating

Pulse second decoupler with amplifier gating

Pulse third decoupler with amplifier gating

Pulse fourth decoupler with amplifier gating

Perform shaped pulse on first decoupler

Perform shaped pulse on second decoupler

Perform shaped pulse on third decoupler

Set spin lock waveform control on first decoupler

Set spin lock waveform control on second decoupler
Set spin lock waveform control on third decoupler

Set step size for first decoupler

Set step size for second decoupler

Set step size for third decoupler

Unblank amplifier associated with first decoupler
Unblank amplifier associated with second decoupler
Unblank amplifier associated with third decoupler
Delay for a specified time

Switch decoupling from low-power to high-power

01-999379-00 A 0708

divn
dps_off
dps_on
dps_show
dps_skip
elsenz
endhardloop
endif
endloop
endmsloop
endpeloop
gate
getarray
getelem
getorientation
getstr
getval

G Delay

G Offset

G _Power

G Pulse
hdwshiminit
hlv
hsdelay
idecpulse
idecrgpulse
idelay
ifzero
incdelay
incgradient
incr

init rfpattern
init gradpattern
init vscan
initdelay
initparms_sis
initval
iobspulse
ioffset
ipulse
ipwrf

ipwrm

irgpulse

01-999379-00 A 0708

Divide integer values

Turn off graphical display of statements

Turn on graphical display of statements

Draw delay or pulsesin a sequence for graphical display
Skip graphical display of next statement

Execute succeeding statements if argument is nonzero
End hardware |oop

End execution started by ifzero or elsenz

End loop

End multislice loop

End phase-encode loop

Device gating (obsolete)

Get arrayed parameter values

Retrieve an element from atable

Read image plane orientation

Look up vaue of string parameter

Look up vaue of numeric parameter

Generic delay routine

Frequency offset routine

Fine power routine

Generic pulse routine

Initialize next delay for hardware shimming

Find half the value of an integer

Delay specified time with possible homospoil pulse
Pulse first decoupler transmitter with |PA

Pulse first decoupler with amplifier gating and | PA
Delay for a specified time with I1PA

Execute succeeding statements if argument is zero
Set real-time incremental delay

Generate dynamic variable gradient pulse

Increment an integer value

Create rf pattern file

Create gradient pattern file

Initialize real-time variable for vscan statement
Initialize incremental delay

Initialize parameters for spectroscopy imaging sequences
Initialize areal-time variable to specified value
Pulse observe transmitter with |PA

Change offset frequency with IPA

Pulse observe transmitter with |PA

Change transmitter or decoupler fine power with |PA
Change transmitter or decoupler lin. mod. power with |PA

Pul se observe transmitter with |PA

VnmrJ 2.2 Ml User Programming

135

Chapter 3. Pulse Sequence Statement Reference

1k _hold

lk sample
loadtable

loop

loop check
magradient
magradpulse
mashapedgradient
mashapedgradpulse
mod2

mod4

modn

msloop

mult

obl gradient
oblique gradient
obl shapedgradient
obl shaped3gradient
oblique shapedgradient
obsblank
obsoffset
obspower
obsprgoff
obsprgon

obspulse

obspwrf
obsstepsize
obsunblank

offset

pbox adl80

pbox mix
pboxHT F1

pboxHT Fle

pboxHT F1i

pboxHT Fls

pboxHT Flr

pe gradient

pe2 gradient

pe3 gradient

pe shapedgradient
pe2 shapedgradient
pe3 shapedgradient
pe3 shaped3gradient

136 VnmrJ 2.2 Ml User Programming

Set lock correction circuitry to hold correction

Set lock correction circuitry to sample lock signal

Load AP table elements from table text file

Start loop

Check that number of FIDs s consistent with number of dices, etc.
Simultaneous gradient at the magic angle

Gradient pulse at the magic angle

Simultaneous shaped gradient at the magic angle

Simultaneous shaped gradient pulse at the magic angle

Find integer value modulo 2

Find integer value modulo 4

Find integer value modulo n

Multislice loop

Multiply integer values

Execute an oblique gradient

Execute an oblique gradient

Execute a shaped oblique gradient

Execute a shaped oblique gradient

Execute a shaped oblique gradient

Blank amplifier associated with observe transmitter

Change offset frequency of observe transmitter

Change observe transmitter power level, lin. amp. systems

End programmable control of observe transmitter

Start programmable control of observe transmitter

Pulse observe transmitter with amplifier gating

Set observe transmitter fine power

Set step size for observe transmitter

Unblank amplifier associated with observe transmitter

Change offset frequency of transmitter or decoupler

Generate Hadamard encoded adiabatic 180 deg. shapes using Pbox
Generate Hadamard encoded mixing shapes using Pbox.
Generate arbitrary shapesin F1 using Pbox

Generate Hadamard encoded excitation shapesin F1 using Pbox
Generate Hadamard encoded inversion shapes in F1 using Pbox
Generate Hadamard encoded sequential inversion shapes
Generate Hadamard encoded refocusing shapes in F1 using Pbox
Oblique gradient with phase encode in one axis

Oblique gradient with phase encode in two axes

Oblique gradient with phase encode in three axes

Oblique shaped gradient with phase encode in one axis
Oblique shaped gradient with phase encode in two axes
Oblique shaped gradient with phase encode in three axes
Oblique shaped gradient with phase encode in three axis

01-999379-00 A 0708

peloop

phase encode gradient
phase encode3 gradient

phase encode shapedgra

dient

phase encode3 shapedgr

adient

phaseshift

poffset (Inova system)

poffset list

position offset

position offset list

power
psg_abort

pulse

putCmd

pwrf

pwrm

rcvroff

rcvron
readuserap
recoff

recon

rgpulse
rgradient
rlpower

rlpwrf

rlpwrm

rotate

rot angle
rotorperiod
rotorsync
setautoincrement
setdivnfactor
setreceiver
setstatus
settable
setuserap
shapedpulse
shaped pulse
shapedgradient
shaped2Dgradient

shapedincgradient

01-999379-00 A 0708

Phase-encode |oop

Oblique gradient with phase encode in one axis
Oblique gradient with phase encode in three axes
Oblique shaped gradient with PE in one axis

Oblique shaped gradient with PE in three axes

Set phase-pul se technique, rf type A or B

Set frequency based on position

Set frequency from position list

Set frequency based on position

Set frequency from position list

Change power level

Abort the PSG process

Pulse observe transmitter with amplifier gating

Send acommand to VnmrJ form a pulse sequence
Change transmitter or decoupler fine power

Change transmitter or decoupler linear modulator power
Turn off receiver gate and amplifier blanking gate
Turn on receiver gate and amplifier blanking gate
Read input from user AP register

Turn off receiver gate only

Turn on receiver gate only

Pulse observe transmitter with amplifier gating

Set gradient to specified level

Change power level

Set transmitter or decoupler fine power (obsolete)
Set transmitter or decoupler linear modul ator power
Sets the standard oblique rotation angles

Sets user defined oblique rotation angles

Obtain rotor period of MAS rotor

Gated pul se sequence delay from MAS rotor position
Set autoincrement attribute for a table

Set divn-return attribute and divn-factor for AP table
Associate the receiver phase cycle with atable

Set status of observe transmitter or decoupler transmitter
Store an array of integersin areal-time AP table

Set user AP register

Perform shaped pulse on observe transmitter
Perform shaped pulse on observe transmitter
Generate shaped gradient pulse

Generate arrayed shaped gradient pulse

Generate dynamic variable gradient pulse

VnmrJ 2.2 Ml User Programming

137

Chapter 3. Pulse Sequence Statement Reference

shapedvgradient Generate dynamic variable shaped gradient pulse
simpulse Pulse observe and decouple channels simultaneously
sim3pulse Pulse simultaneously on 2 or 3 rf channels
sim4pulse Simultaneous pulse on four channels

simshaped pulse

sim3shaped pulse

Perform simultaneous two-pul se shaped pulse

Perform a simultaneous three-pul se shaped pulse

sli Set SLI lines

sp#off Turn off specified spare line (Inova#=1to 5)
sp#on Turn on specified spareline (Inova#=1to 5)
spinlock Control spin lock on observe transmitter
starthardloop Start hardware [oop

status Change status of decoupler and homospoil
statusdelay Execute the status statement with a given delay time
stepsize Set small-angle phase step size,

sub Subtract integer values

text error

text message

Send atext error message to VnmrJ
Send amessage to VnmrJ

tsadd Add an integer to AP table elements
tediv Divide an integer into AP table elements
tsmult Multiply an integer with AP table elements
tssub Subtract an integer from AP table elements
ttadd Add atable to a second table

ttdiv Divide atable into a second table
ttmult Multiply atable by a second table
ttsub Subtract atable from a second table
txphase Set quadrature phase of observe transmitter
vagradient Variable angle gradient

vagradpulse Variable angle gradient pulse

var_active
vashapedgradient

vashapedgradpulse

Checks if the parameter is being used
Variable angle shaped gradient
Variable angle shaped gradient pulse

Set delay with fixed timebase and real-time count
Get delay value from delay list with real-time index

vdelay
vdelay list

vireq Select frequency from table

vgradient Set gradient to alevel determined by real-time math
voffset Select frequency offset from table

vscan Provide dynamic variable scan

vsetuserap Set user AP register using real-time variable
vsli Set SLI lines from real-time variable

warn message

Send awarning message to VnmrJ

xgate Gate pul se sequence from an external event
xmtrof f Turn off observe transmitter
xmtron Turn on observe transmitter
138 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

xmtrphase Set transmitter small-angle phase, rf type C, D
zero_all gradients Zero all gradients

zgradpulse Create a gradient pulse on the z channel

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 139

Chapter 3. Pulse Sequence Statement Reference

A
Top A B C D E G H | L Mm O P R S T V W X Z
abort message Send an error to VnmrJ and abort the PSG process
acquire Explicitly acquire data
add Add integer values
apovrride Override internal software AP bus delay
apshaped decpulse First decoupler pulse shaping via AP bus
apshaped dec2pulse Second decoupler pulse shaping via AP bus
apshaped pulse Observe transmitter pulse shaping via AP bus
assign Assign integer values

abort message Send an error to VnmrJ and abort the PSG process

Syntax:

Description:

acquire

Applicability:

abort message (char *format, ...)

abort message sendsthe specified error message to VnmrJand then aborts
the PSG process.

Explicitly acquire data
UNITY|NOVA

For UNTYINOVA systems, there are small overhead delays before and after the
acquire. The pre-acquire delay takesinto account setting thereceiver phase with
oph and enabling data overflow detection. The post-acquire delay isfor
disabling data overflow detection. When using acquire statements within a
hardware | oop these overhead delays and the functions associated with them are
placed outside the hardware loop. When using multiple acquire statements
outside ahardwareloop in apul se sequence setting, the phase and enabling data
overflow detection is done before the first acquire statement. Disabling
overflow detection is done after the last acquire, so thereis no overhead time
between acquire statements.

If an acquire statement occurs outside a hardware loop, the number of
complex pointsto be acquired must be amultiple of 2 on systemswith a Digital
Acquisition Controller board, an Acquisition Controller board, or a Pulse
Sequence Controller board, or must be a multiple of 32 on systemswith a
Output board (see page 140 for descriptions of each board).

Inside a hardware loop, systems with aDigital Acquisition Controller board or
a Pulse Sequence Controller board can accept a maximum of 2048 complex
points, systemswith an Acquisition Controller board can accept amaximum of
1024 complex points, and systemswith an Output board can accept a maximum
of 63 complex points.

Thefollowing list identifies the acquisition controller boards used on Varian
NMR spectrometer systems:

140 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Examples:

Related:

add

Syntax:

Description:
Arguments:
Examples:

Related:

apovrride

Applicability:
Applicability:

Syntax:

Description:

e Data Acquisition Controller boards, Part No. 01-902010-00. Started
shipping in mid-1995 with the introduction of the "NTYINOVA system.

® Pulse Sequence Controller boards, Part No. 00-992560-00. Started
shipping in early 1993 with the introduction of the UNITYplus system.

® Acquisition Controller boards, Part No. 00-969204-00 or 00-990640-00.
Started shipping 00-969204-00 in | ate 1988 as areplacement for the Output
boards. Part No. 00-990640-00 replaced 00-969204-00 in mid-1990.

® Qutput boards, Part No. 00-953520-0#, where# isan integer. Shipped with
systems prior to 1988.

acquire (np,1.0/sw) ;

endhardloop End hardware loop
starthardloop Start hardware loop

Add integer values

add (vi,vj,vk)

codeint vij; /* real-time variable vi for addend */
codeint vij; /* real-time variable vj for addend */
codeint vk; /* real-time variable vk for sum */

Sets vk equa to the sum of integer values of vi and v3.
vi,vj,and vk arereal-timevariables (v1 tov14, oph, etc.).
add (vl,v2,v3);

assign Assign integer values

dbl Double an integer value
decr Decrement an integer value
divn Divide integer values

hlv Half the value of an integer
incr Increment an integer value
mod?2 Find integer value modulo 2
mod4 Find integer value modulo 4
modn Find integer value modulo n
mult Multiply integer values
sub Subtract integer values

Override internal software AP bus delay
UNTYINOVA systems

Systems with the 63-step Output board (Part No. 00-953520-0#, where # is an
integer). This board shipped prior to 1988.

apovrride ()

Systemswith the 63-step Output board can use this statement to prevent adelay
of 0.2 usfrom being inserted prior to the next (and only the next) occurrence of
one of the AP (analog port) bus statements dcplrphase, deplr2phase,
dcplr3phase, decprgoff, dec2prgoff, dec3prgoff, decprgon,
dec2prgon, dec3prgon, decshaped pulse,dec2shaped pulse,
dec3shaped pulse, decspinlock, dec2spinlock,
dec3spinlock, obsprgoff, obsprgon, power, rlpower,

shaped pulse, simshaped pulse, sim3shaped pulse,
spinlock, and xmtrphase.

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 141

Chapter 3. Pulse Sequence Statement Reference

apshaped decpulseFirst decoupler pulse shaping via AP bus

Applicability:

Syntax:

Description:

Arguments:

Examples:
Related:

UNITYINOVA systems and MERCURYplug/-Vx.
MERCURYplus/-Vx only supports shapes with no phase shifts.

apshaped decpulse (shape,pulse width,pulse phase,
power table,phase table,RG1l,RG2)

char *shape; /* name of .RF shape file */

double pulse width; /* pulse width in sec */

codeint pulse phase; /* real-time phase of pulse */
codeint power_ table; /* table variable to store power */
codeint phase table; /* table variable to store phase */
double RG1; /* gating time before pulse in sec */
double RG2; /* gating time after pulse in sec */

Providesfirst decoupler fine-grained “ waveform generator-type” pul se shaping
through the AP bus. A pulse shape file for the waveform generator (/vnmr/
shapelib/*.RF)isused. This statement overrides any existing small-angle
phase shifting (i.e., apreceding dcplrphase) and step size setting on the first
decoupler channel. After apshaped decpulse, first decoupler channel
small-angle phase shifting isreset to zero and the step sizeis set to 0.25 degrees.

apshaped decpulse capability isnow integrated into the statement
decshaped pulse. Thedecshaped pulse statement calls
apshaped decpulse without table variablesif awaveform generator isnot
configured on the decoupler channel. decshaped pulse creates AP tables
on thefly for amplitude and phase, and does not use the AP tables allocated for
users. It still uses real-time variablesv12 and v13.

shape isashapefile (without the . RF extension) in /vnmr/shapelib or
in ~/vnmrsys/shapelib. The amplitude and phase fields of the shapefile
are used. Therelative duration field (field 3) should be left at the default value
of 1.0 or at least small numbers, and the gate field (field 4) is currently not used
because the transmitter is switched on throughout the shape. On
MERCURYplus/-Vx systems, no phase is changed or set.

pulse width isthetotal pulse width, in seconds, excluding the amplifier
gating delays around the pulse.

pulse phase isthe 90° phase shift of the pulse. For small-angle phase
shifting, notethat apshaped decpulse setsthe phase step size to the
minimum on the one channel that is used.

power table andphase table aretwotablevariables(t1 tote0) used
asintermediate storage addresses for the amplitude and phase tables,
respectively. If apshaped decpulse iscalled more than once, different
table names should be used in each call.

RG1 isthe amplifier gating time, in seconds, before the pulse.
RG2 isthe amplifier gating time, in seconds, after the pulse.
apshaped decpulse("gauss",pw,vl,rofl,rof2) ;

apshaped dec2pulse Second decoupler pulse shaping viathe AP bus

apshaped pulse Observe transmitter pulse shaping viathe AP bus
dcplrphase Set small-angle phase of first decoupler,
decshaped pulse Perform shaped pulse on first decoupler

apshaped dec2pulseSecond decoupler pulse shaping via AP bus

Applicability:

UNTYINOVA systems.

142 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Syntax: apshaped dec2pulse (shape,pulse width,pulse phase,
power table,phase table,RG1l,RG2)

char *shape; /* name of .RF shape file */

double pulse width; /* pulse width in sec */

codeint pulse phase; /* real-time phase of pulse */
codeint power_ table; /* table variable to store power */
codeint phase table; /* table variable to store phase */
double RG1; /* gating time before pulse in sec */
double RG2; /* gating time after pulse in sec */

Description: Provides second decoupler fine-grained “waveform generator-type” pulse
shaping through the AP bus. A pulse shape file for the waveform generator (/
vnmr/shapelib/*.RF) isused. Note that the real-time variables v12 and
v13 are used by thisstatement. apshaped dec2pulse overridesany
existing small-angle phase shifting (i.e., apreceding dcplr2phase) and step
size setting on the second decoupler channel.

After apshaped dec2pulse, second decoupler channel small-angle phase
shifting isreset to zero and the step size is set to 0.25 degrees.

apshaped dec2pulse capability isnow integrated into the statement
dec2shaped pulse. Thedec2shaped pulse statement cals
apshaped dec2pulse without table variablesif a waveform generator is
not configured on the decoupler channel. dec2shaped pulse creates AP
tables on the fly for amplitude and phase, and does not use the AP tables
allocated for users.It still uses real-time variablesv12 and v13.

Arguments: shape isashapefile (without the .RF extension) in /vaomr/shapelib or
in ~/vnmrsys/shapelib. The amplitude and phase fields of the shapefile
are used. Therelative duration field (field 3) should be left at the default value
of 1.0 or at least small numbers, and the gate field (field 4) is currently not used
because the transmitter is switched on throughout the shape.

pulse width isthetotal pulse width, in seconds, excluding the amplifier
gating delays around the pulse.

pulse phase isthe 90° phase shift of the pulse. For small-angle phase
shifting, notethat apshaped dec2pulse setsthe phase step size to the
minimum on the one channel that is used.

power table andphase table aretwotablevariables(t1tote0) used
asintermediate storage addresses for the amplitude and phase tables,
respectively. If apshaped dec2pulse iscaled more than once, different
table names should be used in each call.

RG1 isthe amplifier gating time, in seconds, before the pulse.
RG2 isthe amplifier gating time, in seconds, after the pulse.
Examples. apshaped dec2pulse ("gauss",pw,vl,t1l0,tll,rofl,rof2);

Related: apshaped decpulse First decoupler pulse shaping viathe AP bus
apshaped pulse Observe transmitter pulse shaping viathe AP bus
dcplr2phase Set small-angle phase of 2nd decoupler,
dec2shaped pulse Perform shaped pulse on second decoupler

apshaped pulseObserve transmitter pulse shaping via AP bus

Applicability: UNTYINOVA systems and MERCURYplug/-Vx.
MERCURYplus/-Vx only supports shapes with no phase shifts.

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 143

Chapter 3. Pulse Sequence Statement Reference

Syntax:

Description:

Arguments:

Examples:
Related:

assign

144

Syntax:

Description:

apshaped pulse (shape,pulse width,pulse phase,
power table,phase table,RG1l,RG2)

char *shape; /* name of .RF shape file */

double pulse width; /* pulse width in sec */

codeint pulse phase; /* real-time phase of pulse */
codeint power_ table; /* table variable to store power */
codeint phase table; /* table variable to store phase */
double RG1; /* gating time before pulse in sec */
double RG2; /* gating time after pulse in sec */

Provides observe transmitter fine-grained “ waveform generator-type” pulse
shaping through the AP bus. A pulse shape file for the waveform generator (/
vamr/shapelib/*.RF)isused. This statement overrides any existing
small-angle phase shifting (i.e., apreceding xmt rphase) and step size setting
on the observe transmitter channel. After apshaped pulse, observe
transmitter channel small-angle phase shifting is reset to zero and the step size
isset to 0.25 degrees.

apshaped pulse capability isnow integrated into the shaped pulse
statement. The shaped pulse statement callsapshaped pulse without
table variables if awaveform generator is not configured on the decoupler
channel. shaped_ pulse creates APtablesonthefly for amplitude and phase,
and does not usethe AP tablesallocated for users. It still usesreal-timevariables
v12 andvi3.

pattern isashapefile (without the . RF extension) in /vnmr/shapelib
orin ~/vnmrsys/shapelib. The amplitude and phase fields of the shape
file are used. The relative duration field (field 3) should be | eft at the default
value of 1.0 or at least small numbers, and the gatefield (field 4) iscurrently not
used because the transmitter is switched on throughout the shape. On
MERCURYplus/-Vx systems, no phase is changed or set.

pulse widthisthetota pulsewidth, in seconds, excluding amplifier gating
delays around the pul se.
pulse phase isthe 90° phase shift of the pulse. For small-angle phase

shifting, notethat apshaped pulse setsthe phase step size to the minimum
on the one channel that is used.

power table andphase table aretwotablevariables(t1totée0) used
asintermediate storage addresses for the amplitude and phase tables,
respectively. If apshaped pulse iscaled more than once, different table
names should be used in each call.

RG1 isthe amplifier gating time, in seconds, before the pulse.
RG2 isthe amplifier gating time, in seconds, after the pulse.
apshaped pulse("gauss",pw,vl,rofl,rof2) ;

apshaped decpulse First decoupler pulse shaping viathe AP bus
apshaped dec2pulse Second decoupler pulse shaping viathe AP bus
shaped pulse Perform shaped pulse on observe transmitter
xmtrphase Set small-angle phase of observe transmitter, rf C or D

Assign integer values

assign(vi,vj)
codeint vi; /* real-time variable for starting value */
codeint vij; /* real-time variable for assigned value */

Setsvj equd to theinteger value vi.

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Arguments. vi and vj arereal-time variables (v1 to v14, oph, €tc.).
Examples. assign(v3,v2);
Related: a2dd Add integer values
dbl Double an integer value
decr Decrement an integer value
divn Divide integer values
hlv Half the value of an integer
incr Increment an integer value
mod?2 Find integer value modulo 2
mod4 Find integer value modulo 4
modn Find integer value modulo n
mult Multiply integer values
sub Subtract integer values
Top A B C D E G H I L M OP R S T V W X Z
blankingoff Unblank amplifier channels and turn amplifierson
blankingon Blank amplifier channels and turn amplifiers off
blankoff Stop blanking observe or decoupler amplifier (obsolete)
blankon Start blanking observe or decoupler amplifier (obsolete)
blankingoff Unblank amplifier channels and turn amplifiers on
Applicability: MERCURYplus/-Vx systems only.
Syntax: blankingoff ()
Description: Unblanks, or enables, both amplifier channels.
Related: Dblankingon Blank amplifier channels and turn amplifiers off
blankingon Blank amplifier channels and turn amplifiers off
Applicability: MERCURYplus/-Vx systems only.
Syntax: blankingon ()
Description: Blanks, or disables, both amplifier channels.
Related: Dblankingoff Unblank amplifier channelsand turn amplifierson
blankoff Stop blanking observe or decoupler amplifier (obsolete)
Description: No longer in VnmrJ. Theblankof £ statement is replaced by the statements
obsunblank, decunblank, dec2unblank, and dec3unblank.
Related: decunblank Unblank amplifier associated with first decoupler
dec2unblank Unblank amplifier associated with second decoupler

01-999379-00 A 0708

145

VnmrJ 2.2 Ml User Programming

Chapter 3. Pulse Sequence Statement Reference

dec3unblank Unblank amplifier associated with third decoupler
obsunblank Unblank amplifier associated with observe transmitter

blankon Start blanking observe or decoupler amplifier (obsolete)
Description: No longer in VnmrJd. The blankon statement isreplaced by the statements
obsblank, decblank, dec2blank, and dec3blank.

Related: decblank Blank amplifier associated with first decoupler
dec2blank Blank amplifier associated with second decoupler
dec3blank Blank amplifier associated with third decoupler
obsblank Blank amplifier associated with observe transmitter

Top A B C D E G H | L Mm O P R S T V W X Z
clearapdatatable Zero al datain acquisition processor memory

create delay list Create table of delays

create freqg list Create table of frequencies

create offset list Create table of frequency offsets

clearapdatatableZero all data in acquisition processor memory
Applicability:

Syntax:

Description:

UNTYINOVA systems.
clearapdatatable ()

Zeroesthe acquired data table at times other than at the start of the execution of
a pulse sequence, when the datatable is automatically zeroed. This statement is
generally not needed.

create delay listCreate table of delays
Applicability:

146

Syntax:

Description:

UNITY|NOVA systems.

create delay list(list,nvals,list number)

double *list; /* pointer to list of delays */
int nvals; /* number of values in list */
int list number; /* number 0-255 for each list */

Stores global lists of delays that can be accessed with areal-time variable or
table element for dynamic setting in pulse sequences. The lists need to be
created in order starting from O using the 1ist number argument, or by
settingthe1ist number argument to —1, which makes the software allocate
and create the next freelist and give the list number as areturn value. Each list
must have a unique and sequential 1ist number. There can be a maximum
of 256 lists, depending on the size of the lists. The lists are stored in data
memory and compete for space with the acquisition datafor each array element.

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Arguments:

Examples:

Related:

If alistiscreated, the return value isthe number of thelist (0 to 255); if an error
occurs, the return value is negative.

create delay list createswhat iscalled aglobal list. Global listsare
different from APtablesin that thelistsare sent down to the acquisition console
when the experiment starts up and are accessible until the experiment
completes. In working with arrayed experiments, be careful when using a—1in
thelist number argument because alist will be created for each array
element. In this case, alist parameter can be created as an arrayed parameter
with protection bit 8 (256) set. To read in the values of this type of parameter,
usethegetarray statement. To ensurethat thelist isonly created once, check
theglobal array counter variable ix, and only call create delay listto
create thelist when it equals 1 (as shown in the example).

list isapointer to alist of delays.
nvals isthe number of valuesinthelist.
list number —1 or aunique number from O to 255 for each list.

pulsesequence ()
{
/* Declare static to save between calls */
static int 1listl, 1list2;
int i, n;
double delayl1[1024], delay2[1024];

n = 1024;
if (ix == 1) {
for (i=0; i<n; i++) {
/* Initialize delayl & delay2 arrays */
}

/* First, listl is set to 0 */

listl = create delay list(delayl,n,0);

/* This is list #1 */

create freq list (fregs,nfreqgs,OBSch,1);
/* This is list #2 */

create offset list (fregs,nfreqgs,OBSch,?2) ;
/* Next, list2 is set to 3 */

list2 = create delay list(delay2,n,-1);

}
vdelay list(list2,v5); /* Use v5 from list2 */
vireq(1l,v2) ; /* Use v2 from list #1 */
voffset (2,v1) ; /* Use v1 from list #2 */
vdelay list(listl,vl); /* Use vl from listl */

}

create freqg list Create table of frequencies

create offset list Createtableof frequency offsets

delay Delay for a specified time

getarray Retrieves all values of an arrayed parameter

vdelay Select delay from table

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 147

Chapter 3. Pulse Sequence Statement Reference

create freq listCreate table of frequencies
Applicability:

Syntax:

Description:

Arguments:

Examples:

Related:

UNTTYINOVA systems.

create freq list(list,nvals,device,list number)
double *list; /* pointer to list of frequencies */
int nvals; /* number of values in list */

int device; /* OBSch, DECch, DEC2ch, or DEC3ch */
int list number; /* number 0-255 for each list */

Stores global lists of frequenciesthat can be accessed with area-time variable
or table element for dynamic setting of frequencies. Frequency lists use
frequenciesin MHz (such asfrom sfrq, dfrq). Thelistsneed to be created in
order starting from O using the 1ist number argument, or by setting the
list number argument to —1, which makes the software allocate and create
the next freelist and give the list number as areturn value. Each list must have
aunigue and sequential 1ist number. There can be amaximum of 256 lists
depending on the size of the lists. The lists are stored in data memory and
compete for space with the acquisition datafor each array element. If alistis
created, the return value is the number of thelist (0 to 255); if an error occurs,
the return value is negative.

create freq list createswhat iscalled aglobal list. Global listsare
different from APtablesin that thelistsare sent down to the acquisition console
when the experiment starts up and are accessible until the experiment
completes. In working with arrayed experiments, be careful when using a—1in
thelist number argument because alist will be created for each array
element. In this case, alist parameter can be created as an arrayed parameter
with protection bit 8 (256) set. To read in the values of this type of parameter,
usethegetarray statement. To ensurethat thelist isonly created once, check
the global array counter variable ix, and only call create freqg listto
create thelist when it equals 1. An exampleis shown in the entry for the
create delay list statement.

list isapointer to alist of frequencies.
nvals isthe number of valuesinthelist.

device is OBSch (observe transmitter), DECch (first decoupler), DEC2ch
(second decoupler), or DEC3ch (third decoupler).

list number is—1 or aunique number from O to 255 for each list created.
Seetheexamplefor the create delay 1ist statement.

create _delay list Create table of delays

create offset list Create table of frequency offsets
getarray Retrieves al values of an arrayed parameter
delay Delay for a specified time

vireg Select frequency from table

create offset list Create table of frequency offsets
Applicability:

148

Syntax:

UNTYINOVA systems.

create offset list(list,nvals,device,list number)
double *1list; /* pointer to list of frequency offsets */
int nvals; /* number of values in list */

int device; /* OBSch, DECch, DEC2ch, or DEC3ch */
int list number; /* number 0-255 for each list */

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Description:

Arguments:

Examples:

Related:

Stores global lists of frequenciesthat can be accessed with area-time variable
or table element for dynamic setting of frequency offsets. Offset listsdefinelists
of frequency offsetsin Hz (such asfrom tof, dof). Imaging pulse sequences
typically use offset lists, not frequency lists. Thelistsneed to be created in order
starting from O using the 1ist number argument, or by setting the

list number argument to —1, which makes the software allocate and create
the next freelist and give the list number as areturn value. Each list must have
aunigue and sequential 1ist number. There can be amaximum of 256 lists
depending on the size of the lists. The lists are stored in data memory and
compete for space with the acquisition datafor each array element. If alistis
created, the return value is the number of thelist (0 to 255); if an error occurs,
the return value is negative.

create offset list createswhat iscalled aglobal list. Global lists are
different from APtablesin that thelistsare sent down to the acquisition console
when the experiment starts up and are accessible until the experiment
completes. In working with arrayed experiments, be careful when using a—1in
thelist number argument because alist will be created for each array
element. In this case, alist parameter can be created as an arrayed parameter
with protection bit 8 (256) set. To read in the values of this type of parameter,
usethegetarray statement. To ensurethat thelist isonly created once, check
the globa array counter variable ix, and only call create offset list
to create the list when it equals 1. An example is shown in the entry for the
create delay list statement.

list isapointer to alist of frequency offsets.
nvals isthe number of valuesinthelist.

device is OBSch (observe transmitter), DECch (first decoupler), DEC2ch
(second decoupler), or DEC3ch (third decoupler).

list number is—1 or aunique number from O to 255 for each list created.
Seetheexamplefor the create delay 1ist statement.

create delay list Create table of delays

create freqg list Create table of frequencies

getarray Retrieves all values of an arrayed parameter
delay Delay for a specified time

voffset Select frequency offset from table

A.B C D E G H I L M OWPR ST V W X Z

dcplrphase
dcplr2phase
dcplr3phase
decblank

Double an integer vaue

Set small-angle phase of 1st decoupler,
Set small-angle phase of 2nd decoupler,
Set small-angle phase of 3rd decoupler

Blank amplifier associated with first decoupler

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 149

Chapter 3. Pulse Sequence Statement Reference

dec2blank
dec3blank
declvloff
declvlon
decoff
dec2off
dec3off
decoffset
dec2offset
dec3offset
dec4offset
decon
dec2on
dec3on
decphase
dec2phase
dec3phase
dec4phase
decpower
dec2power
dec3power
dec4power
decprgoff
dec2prgoff
dec3prgoff
decprgon
dec2prgon
dec3prgon
decpulse
decpwr
decpwrt
dec2pwrf
dec3pwrf
decr
decrgpulse
dec2rgpulse
dec3rgpulse
dec4rgpulse
decshaped pulse
dec2shaped pulse
dec3shaped pulse
decspinlock

dec2spinlock

150

VnmrJ 2.2 Ml User Programming

Blank amplifier associated with second decoupler
Blank amplifier associated with third decoupler
Return first decoupler back to “normal” power

Turn on first decoupler to full power

Turn off first decoupler

Turn off second decoupler

Turn off third decoupler

Change offset frequency of first decoupler

Change offset frequency of second decoupler

Change offset frequency of third decoupler

Change offset frequency of fourth decoupler

Turn on first decoupler

Turn on second decoupler

Turn on third decoupler

Set quadrature phase of first decoupler

Set quadrature phase of second decoupler

Set quadrature phase of third decoupler

Set quadrature phase of fourth decoupler

Change first decoupler power level, linear amp. systems
Change second decoupler power level, linear amp. systems
Change third decoupler power level, linear amp. systems
Change fourth decoupler power level, linear amp. systems
End programmable decoupling on first decoupler

End programmabl e decoupling on second decoupler
End programmable decoupling on third decoupler
Start programmable decoupling on first decoupler
Start programmabl e decoupling on second decoupler
Start programmable decoupling on third decoupler
Pulse first decoupler transmitter with amplifier gating
Set first decoupler high-power level, class C amplifier
Set first decoupler fine power

Set second decoupler fine power

Set third decoupler fine power

Decrement an integer value

Pulse first decoupler with amplifier gating

Pulse second decoupler with amplifier gating

Pulse third decoupler with amplifier gating

Pulse fourth decoupler with amplifier gating

Perform shaped pulse on first decoupler

Perform shaped pul se on second decoupler

Perform shaped pulse on third decoupler

Set spin lock waveform control on first decoupler

Set spin lock waveform control on second decoupler

01-999379-00 A 0708

dec3spinlock
decstepsize
dec2stepsize
dec3stepsize
decunblank
dec2unblank
dec3unblank
delay
dhpflag

divn

dps_off
dps_on
dps_show
dps_skip

dbl
Syntax:

Description:
Arguments:
Examples:

Related:

dcplrphase
Applicability:

Syntax:

Description:

Set spin lock waveform control on third decoupler
Set step size for first decoupler

Set step size for second decoupler

Set step size for third decoupler

Unblank amplifier associated with first decoupler
Unblank amplifier associated with second decoupler
Unblank amplifier associated with third decoupler
Delay for a specified time

Switch decoupling from low-power to high-power
Divide integer values

Turn off graphical display of statements

Turn on graphical display of statements

Draw delay or pulsesin a sequence for graphical display
Skip graphical display of next statement

Double an integer value

dbl (vi,vj)
codeint vij; /* variable for starting value */
codeint vj; /* variable for twice starting value */

Setsvj equa to twice the integer value of vi.
vi and vj arereal-timevariables (vl tov14, oph, €c.).
dbl (v1,v2);

add Add integer values
assign Assign integer values
decr Decrement an integer value
divn Divide integer values

hlv Half the value of an integer
incr Increment an integer value
mod?2 Find integer value modulo 2
mod4 Find integer value modulo 4
modn Find integer value modulo n
mult Multiply integer values
sub Subtract integer values

Set small-angle phase of 1st decoupler

UNITYINOVA systems using afirst decoupler with rf type C or D, and
MERCURYplus/-Vx.

dcplrphase (multiplier)

codeint multiplier; /* real-time phase step multiplier */

Setsfirst decoupler phasein step size unitsset by the stepsize statement.
The small-angle phaseshift isaproduct of multiplier andthestep size. If

decstepsize hasnot been used, default step sizeis 90°.
If the product of the step size set by the decstepsize statement and

multiplier isgreater than 90°, the sub-90° partisset by dcplrphase.

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming

151

Chapter 3. Pulse Sequence Statement Reference

Arguments:

Examples:

Related:

dcplr2phase
Applicability:

152

Syntax:

Description:

Arguments:

Examples:

Related:

Only on systems with an Output board are carryovers that are multiples of 90°
automatically saved and added in at the time of the next 90° phase selection
(suchasat thetime of thenext pulse or decpulse). Onsystemswith aData
Acquisition Controller board, a Pulse Sequence Controller board, or an
Acquisition Controller board, thisisdoneby dcplrphase (seethedescription
section of the acquire statement for further information about these boards).

Unlike decphase, dcplrphase isneeded any time the first decoupler
phase shift isto be set to avalue not amultiple of 90°. decphase sets
quadrature phase shift only, which is rarely needed.

multiplier isasmall-anglephaseshift multiplier for thefirst decoupler. The
valuemust beareal-timevariable(vitovi4, oph, etc.)or real-timeconstant
(zero, one, ec.).

dcplrphase (zero) ;

dcplr2phase Set small-angle phase of second decoupler
dcplr3phase Set small-angle phase of third decoupler
decphase Set quadrature phase of first decoupler
decstepsize Set small-angle phase step size
xmtrphase Set small-angle phase of obs. transmitter

Set small-angle phase of 2nd decoupler
UNITYINOVA systems using afirst decoupler with rf type C or D.

dcplr2phase (multiplier)
codeint multiplier; /* real-time phase step multiplier */

Sets second decoupler phase in step size units set by the dec2stepsize
statement. The small-angle phaseshift isaproduct of multiplier and the
stepsize. If dec2stepsize hasnot been used, the default step sizeis 90°.

If the product of the step size set by the steps1ize statement and
multiplier isgreater than 90°, the sub-90° part isset by decplr2phase.

The following apply to UNTYINOVA systems with the specified hardware:

Output board:
carryoversthat are multiples of 90° are automatically saved and added in at the
time of the next 90° phase selection (such as at the time of the next pulse or
dec2pulse).

Data Acquisition Controller board:

a Pulse Sequence Controller board, or an Acquisition Controller board, thisis
done by deplr2phase (seethe description section of the acquire
statement for further information about these boards).

Unlikedec2phase, deplr2phase isneeded any time the second decoupler
phase shift isto be set to avalue that isnot amultiple of 90°. dec2phase sets
quadrature phase shift only, which is rarely need.

multiplier isasmall-angle phaseshift multiplier for the second decoupler.
The value must be areal-time variable (v1 to v14, oph, etc.) or rea-time
constant (zero, one, €c.).

decplr2phase (zero) ;

dcplrphase Set small-angle phase of first decoupler,
dec2phase Set quadrature phase of second decoupler

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

dcplr3phase

Applicability:
Syntax:

Description:

Arguments:

Examples:

Related:

decblank

Applicability:
Syntax:

Description:

Related:

dec2blank

Applicability:
Syntax:

Description:

Related:

dec2stepsize Set small-angle phase step size,
xmtrphase Set small-angle phase of obs. transmitter, rf type C

Set small-angle phase of 3rd decoupler
UNITYINOVA systems using a first decoupler with rf type C or D.

dcplr3phase (multiplier)
codeint multiplier; /* multiplies phase step */

Setsthe third decoupler phase in units set by the dec3stepsize statement.
If dec3stepsize hasnot been used, the default step sizeis 90°. The small-
angle phaseshiftisaproduct of multiplier andthepreset stepsize. The
full small-angle phase is set by deplr3phase.

Unlike dec3phase, deplr3phase isneeded any time the third decoupler
phase shift isto be set to avalue that isnot amultiple of 90°. dec3phase sets
quadrature phase shift only, which is rarely needed.

multiplier isasmall-angle phaseshift multiplier for the third decoupler.
The value must be areal-time variable (v1 tov14, oph, €tc.) or red-time
constant (zero, one, €c.).

dcplr2phase (zero) ;

dcplrphase Set small-angle phase of first decoupler,
dec3phase Set quadrature phase of third decoupler
dec3stepsize Setsmall-angle phase step size,

xmtrphase Set small-angle phase of obs. transmitter, rf type C

Blank amplifier associated with first decoupler
UNTYINOVA systems.
decblank ()

Disables the amplifier for the first decoupler. Thisis generally used after a call
to decunblank. Seeaso: “Amplifier Channel Blanking and Unblanking,”
page 75.

decunblank Unblank amplifier associated with first decoupler
obsblank Blank amplifier associated with observe transmitter
obsunblank Unblank amplifier associated with observe transmitter
rcvroff Turn off receiver

rcvron Turn on receiver

Blank amplifier associated with second decoupler
UNITYINOVA systems with linear amplifiers.
dec2blank ()

Disables the amplifier for the second decoupler. Thisis generally used after a
call to dec2unblank. See dso: “Amplifier Channel Blanking and
Unblanking,” page 75.

dec2unblank Unblank amplifier associated with second decoupler
rcvroff Turn off receiver
rcvron Turn on receiver

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 153

Chapter 3. Pulse Sequence Statement Reference

dec3blank

Applicability:
Syntax:

Description:

Related:

declvloff

Syntax:

Description:

Related:

declvlon

Syntax:

Description:

Related:

decoff

Syntax:

Description:

Related:

154

VnmrJ 2.2 Ml User Programming

Blank amplifier associated with third decoupler
UNITYINOVA systems using a third decoupler.
dec3blank ()

Disablesthe amplifier for the third decoupler. Thisisgenerally used after a call
to dec3unblank. See also: “Amplifier Channel Blanking and Unblanking,”
page 75.

dec3unblank Unblank amplifier associated with third decoupler
rcvroff Turn off receiver
rcvron Turn on receiver

Return first decoupler back to “normal” power
declvloff ()

Switches the decoupler power to the power level set by the appropriate
parameters defined by the amplifier type: dhp for class C amplifiers or dpwr
for linear amplifiers. If dhp='n"', declvloff hasno effect on systemswith
class C amplifiers but still functions for systemswith linear amplifiers.

declvlon Turn on first decoupler to full power

power Change transmitter or decoupler power, lin. amp. sys.
pwrf Change transmitter or decoupler fine power
rlpower Change transmitter or decoupler power, lin. amp. sys.
rlpwrf Set transmitter or decoupler fine power

Turn on first decoupler to full power
declvlon()

Switches the first decoupler power level between the power level set by the
high-power parameter(s) to the full output of the decoupler. If dhp="n",
declvloff hasno effect on systemswith class C amplifiersbut still functions
for systems with linear amplifiers.

If declvlon isused, makesuredeclvloff isused prior totime periodsin which
normal, controllable power levels are desired, such as prior to acquisition. Use
full decoupler power only for decoupler pulses or for solids applications.

declvloff Return first decoupler back to “normal” power
power Change transmitter or decoupler power, lin. amp. sys.
pwrf Change transmitter or decoupler fine power
rlpower Change transmitter or decoupler power, lin. amp. sys.
rlpwrf Set transmitter or decoupler fine power

Turn off first decoupler
decoff ()

Explicitly gates off thefirst decoupler in the pul se sequence. Amplifier blanking
state is unchanged. See also: “ Amplifier Channel Blanking and Unblanking,”
page 75.

decon Turn on first decoupler
dec2off Turn off second decoupler
dec3off Turn off third decoupler

01-999379-00 A 0708

dec2off
Applicability:
Syntax:

Description:
Related:

dec3off
Applicability:

Syntax:
Description:
Related:

decoffset

Syntax:
Description:

Arguments:
Examples:

Related:

dec2offset

Syntax:

Description:

Arguments:
Examples:

Related:

dec3offset

Syntax:

01-999379-00 A 0708

Turn off second decoupler
Systems with a second decoupler. Amplifier blanking state is unchanged.
dec2off ()

Explicitly gates off the second decoupler in the pulse sequence. See al so:
“Amplifier Channel Blanking and Unblanking,” page 75.

dec2on Turn on second decoupler

Turn off third decoupler

UNITYINOVA systems with a third decoupler. Amplifier blanking state is
unchanged.

dec3off ()

Explicitly gates off the third decoupler in the pul se sequence. See also:
“Amplifier Channel Blanking and Unblanking,” page 75.

dec3on Turn on third decoupler

Change offset frequency of first decoupler

decoffset (frequency)
double frequency; /* offset in Hz */

Changes the offset frequency of the first decoupler (parameter dof) . Itis
functionally the sameas of fset (frequency, DODEV) .

frequency isthe offset frequency desired, in hertz.
decoffset (dol) ;

dec2offset Change offset frequency of second decoupler
dec3offset Change offset frequency of third decoupler
obsoffset Change offset frequency of observe transmitter
offset Change offset frequency of transmitter or decoupler

Change offset frequency of second decoupler

dec2offset (frequency)
double frequency; /* offset frequency in Hz *x/

Changes the offset frequency of the second decoupler (parameter do£2). Itis

functionally the sasmeas of fset (frequency, DO2DEV).
frequency isthe offset frequency desired, in hertz.
dec2offset (do2) ;

decoffset Change offset frequency of first decoupler
dec3offset Change offset frequency of third decoupler
obsoffset Change offset frequency of observe transmitter
offset Change offset frequency of transmitter or decoupler

Change offset frequency of third decoupler

dec3offset (frequency)
double frequency; /* offset frequency in Hz */

VnmrJ 2.2 Ml User Programming

155

Chapter 3. Pulse Sequence Statement Reference

Description:

Arguments:
Examples:

Related:

dec4offset

Applicability:
Syntax:

Description:

Arguments:
Examples:

Related:

decon

Syntax:

Description:

Related:

dec2on

Applicability:
Syntax:

Description:

156

VnmrJ 2.2 Ml User Programming

Changes the offset frequency of the third decoupler (parameter do£3). Itis
functionally the sasmeas of fset (frequency, DO3DEV).

frequency isthe offset frequency desired, in hertz.
dec3offset (do3) ;

decoffset Change offset frequency of first decoupler
dec2offset Change offset frequency of second decoupler
obsoffset Change offset frequency of observe transmitter
offset Change offset frequency of transmitter or decoupler

Change offset frequency of fourth decoupler
UNITY|NOVA system with a deuterium decoupler channel as the fourth decoupler.

dec4offset (frequency)
double frequency; /* offset frequency in Hz */

Changes the offset frequency of the fourth decoupler (parameter dof4). Itis
functionally the sasmeas of fset (frequency, DO4DEV).

frequency isthe offset frequency desired, in hertz.
dec4offset (do4) ;

decoffset Change offset frequency of first decoupler
dec2offset Change offset frequency of second decoupler
obsoffset Change offset frequency of observe transmitter
offset Change offset frequency of transmitter or decoupler
rftype Type of rf generation

Turn on first decoupler
decon ()

Explicitly gates on the first decoupler in the pulse sequence. First decoupler
gating is handled automatically by the statements declvlioff, declvlon,
decpulse, decrgpulse, decshaped pulse,decspinlock
simpulse, sim3pulse, simshaped pulse, sim3shaped pulse.

decprgon generally needsto be enabled with an explicit decon statement
and followed by adecof £ call. Amplifier blanking state is unchanged. See
also: “Amplifier Channel Blanking and Unblanking,” page 75.

decoff Turn off first decoupler
dec2on Turn on second decoupler
dec3on Turn on third decoupler

Turn on second decoupler
UNITYINOVA system using a second decoupler.
dec2on()

Explicitly gates on the second decoupler in the pulse sequence. Second
decoupler gating is handled automatically by the statements dec2rgpulse,
dec2shaped pulse, dec2spinlock, sim3pulse, and
sim3shaped pulse.

01-999379-00 A 0708

Related:

dec3on
Applicability:
Syntax:

Description:

Related:

decphase

Syntax:

Description:

Arguments:
Examples:

Related:

dec2phase
Applicability:
Syntax:

Description:
Arguments:

Examples:

Related:

dec3phase
Applicability:

01-999379-00 A 0708

dec2prgon generally needs to be enabled with an explicit dec2on
statement and followed by adec2of £ call. Amplifier blanking state is
unchanged. See also: “Amplifier Channel Blanking and Unblanking,” page 75.

dec2off Turn off second decoupler
Turn on third decoupler

UNITYINOVA system using a third decoupler.
dec3on()

Explicitly gates on the third decoupler in the pulse sequence. Third decoupler
gating is handled automatically by the statements dec3rgpulse,
dec3shaped pulse,and dec3spinlock

dec3prgon generally needs to be enabled with an explicit dec3on
statement and followed by adec3of £ call. Amplifier blanking state is
unchanged. See also: “Amplifier Channel Blanking and Unblanking,” page 75.

dec3off Turn off third decoupler

Set quadrature phase of first decoupler

decphase (phase)

codeint phase; /* real-time variable for quad. phase */

Setsquadrature phase (multiple of 90°) for thefirst decoupler rf. decphaseis
syntactically and functionally equivalent to t xphase and isuseful for a
decoupler pulsein all caseswhere txphase isuseful for atransmitter pulse.

phase isthe quadrature phase for the first decoupler rf. The value must be a
real-time variable (v1 tov14, oph, ct, etc.).

decphase (v4) ;

deplrphase Set small-angle phase of first decoupler,
dec2phase Set quadrature phase of second decoupler
dec3phase Set quadrature phase of third decoupler
txphase Set quadrature phase of observe transmitter

Set quadrature phase of second decoupler
UNITYINOVA system using a second decoupler.

dec2phase (phase)

codeint phase; /* real-time variable for quad. phase */
Sets quadrature phase (multiple of 90°) for the second decoupler rf.

phase isthe quadrature phase for the second decoupler rf. The value must be
ared-timevariable (vl tov1l4, oph, ct, €tc.).

dec2phase (v9) ;

deplr2phase Set small-angle phase of second decoupler,

decphase Set quadrature phase of first decoupler

Set quadrature phase of third decoupler
UNITYINOVA system using a third decoupler.

157

VnmrJ 2.2 Ml User Programming

Chapter 3. Pulse Sequence Statement Reference

Syntax:

Description:
Arguments:

Examples:
Related:
dec4phase

Applicability:
Syntax:

Description:
Arguments:

Examples:

Related:

decpower
Applicability:
Syntax:

Description:

Arguments:

CAUTION:

Related:

dec2power
Applicability:
Syntax:

158

VnmrJ 2.2 Ml User Programming

dec3phase (phase)

codeint phase; /* real-time variable for quad. phase */

Sets quadrature phase (multiple of 90°) for the third decoupler rf.

phase isthe quadrature phase for the third decoupler rf. The value must be a
real-time variable (v1 tov14, oph, ct, etc.).

dec3phase (v9) ;

dcplr3phase Set small-angle phase of third decoupler,

decphase Set quadrature phase of first decoupler

Set quadrature phase of fourth decoupler
UNITY|NOVA system with a deuterium decoupler channel as the fourth decoupler.

dec4phase (phase)

codeint phase; /* real-time variable for quad. phase */

Sets quadrature phase (multiple of 90°) for the fourth decoupler rf.

phase isthe quadrature phase for the third decoupler rf. The value must be a
real-time variable (v1 tov14, oph, ct, etc.).

dec4phase (v9) ;

rftype Type of rf generation

decphase Set quadrature phase of first decoupler

Change first decoupler power level
UNITYINOVA systems with linear amplifiers.

decpower (power)

double power; /* new power level for DODEV */

Changes the first decoupler power. It isfunctionally the same as
rlpower (value, DODEV). Seealso: “Amplifier Channel Blanking and
Unblanking,” page 75.

power setsthe power level by assuming valuesfrom —16 (minimum power) to
79 (maximum power) on channels with a63-dB attenuator, or from —16
(minimum power) to 63 (maximum power) on channels with a 79-dB
attenuator.

Be careful, on systems with linear amplifiers, when using values of
decpower greater than 49 (about 2 watts). Performing continuous
decoupling or long pulses at power levels greater than this can result
in damage to the probe. Use config to set a safety maximum for
parameters tpwr, dpwr, dpwr2, and dpwr3.

dec2power Change second decoupler power
dec3power Change third decoupler power
obspower Change observe transmitter power
rlpower Change power level

Change second decoupler power level
UNITYINOVA system using a second decoupler.

dec2power (power)

01-999379-00 A 0708

Description:

Arguments:

Related:

dec3power

Applicability:
Syntax:

Description:

Arguments:

Related:

dec4power

Applicability:
Syntax:

Description:

Arguments:

Related:

decprgoff

Applicability:

01-999379-00 A 0708

double power; /* new power level for DO2DEV */

Changes the second decoupler power. It is functionally the same as
rlpower (value,DO2DEV) . Seealso: “Amplifier Channel Blanking and
Unblanking,” page 75.

power setsthe power level by assuming valuesfrom 0 (minimum power) to 63
(maximum power) on channelswith a63-dB attenuator, or from —16 (minimum
power) to 63 (maximum power) on channels with a 79-dB attenuator.

decpower Change first decoupler power
dec3power Change third decoupler power
obspower Change observe transmitter power
rlpower Change power level

Change third decoupler power level
UNITYINOVA system using a third decoupler.

dec3power (power)

double power; /* new power level for DO3DEV */

Changes the third decoupler power. It is functionally the same as
rlpower (value,DO3DEV) . Seealso: “Amplifier Channel Blanking and
Unblanking,” page 75.

power setsthe power level by assuming valuesfrom O (minimum power) to 63
(maximum power) on channelswith a63-dB attenuator, or from —16 (minimum
power) to 63 (maximum power) on channels with a 79-dB attenuator.

decpower Change first decoupler power
dec2power Change second decoupler power
obspower Change observe transmitter power
rlpower Change power level

Change fourth decoupler power level
UNITY|NOVA system with a deuterium decoupler channel as the fourth decoupler.

dec4power (power)

double power; /* new power level for DO4DEV */

Changes the third decoupler power. It is functionally the same as
rlpower (value,DO4DEV) . Seealso: “Amplifier Channel Blanking and
Unblanking,” page 75.

power setsthe power level by assuming valuesfrom —16 (minimum power) to
63 (maximum power).

decpower Change first decoupler power
dec2power Change second decoupler power
obspower Change observe transmitter power
rlpower Change power level

rftype Type of rf generation

End programmable decoupling on first decoupler

UNITYINOVA systems with awaveform generator on rf channel for the first
decoupler.

159

VnmrJ 2.2 Ml User Programming

Chapter 3. Pulse Sequence Statement Reference

Syntax:

Description:

Related:

dec2prgoff
Applicability:

Syntax:

Description:

Related:

dec3prgoff
Applicability:

Syntax:

Description:

Related:

decprgon

Applicability:

Syntax:

Description:

Arguments:

160

VnmrJ 2.2 Ml User Programming

decprgoff ()

Terminates any waveform-controlled programmable decoupling on the first
decoupler started by the decprgon statement. See also: “Amplifier Channel
Blanking and Unblanking,” page 75.

decprgon Start programmable decoupling on first decoupler
dec2prgoff End programmable decoupling on second decoupler
dec3prgoff End programmable decoupling on third decoupler

End programmable decoupling on second decoupler

UNITYINOVA systems with a waveform generator on rf channel for the second
decoupler.

dec2prgoff ()

Terminates any waveform-generator controlled programmable decoupling on
the second decoupler set by the dec2prgon statement. See also: “Amplifier
Channel Blanking and Unblanking,” page 75.

dec2prgon Start programmable decoupling on second decoupler

End programmable decoupling on third decoupler

UNITYINOVA systems with a waveform generator on rf channel with the third
decoupler.

dec3prgoff ()

Terminates any waveform-generator-controlled programmable decoupling on
the third decoupler set by the dec3prgon statement. See also: “Amplifier
Channel Blanking and Unblanking,” page 75.

dec3prgon Start programmabl e decoupling on third decoupler

Start programmable decoupling on first decoupler

UNITYINOVA systems with a waveform generator on rf channel for the first
decoupler.

decprgon (pattern, 90 pulselength,tipangle resoln)
char *pattern; /* name of .DEC file */

double 90 pulselength; /* 90-deg pulse length in sec */
double tipangle resoln; /* tip-angle resolution */

Executes programmable decoupling on the first decoupler under waveform
generator control, and returns the number of 12.5-nsticks (as an integer value)
inone cycleof the decoupling pattern. Explicit gating of thefirst decoupler with
decon and decof £ isgenerally required. Arguments can be variables (which
requiretheappropriate getval and get st r statements) to permit changes by
the parameters (see the second example). See also: “ Amplifier Channel
Blanking and Unblanking,” page 75.

patternisthenameof thetext fileinthe shapelib directory that storesthe
decoupling pattern (leave off the .DEC file extension).

90 pulselength isthe pulseduration, in seconds, for a90° tip angle on the
first decoupler.

01-999379-00 A 0708

Examples:

Related:

dec2prgon
Applicability:

Syntax:

Description:

Arguments:

Examples:

Related:

dec3prgon
Applicability:

Syntax:

Description:

tipangle resolnistheresolution, intip-angle degrees, of the decoupling
pattern stored in the waveform generator.

decprgon ("garpl",1l/dmf, 1.0);
decprgon (modtype, pwx90,dres) ;
ticks = decprgon("waltzlé",1/dmf,90.0) ;

decprgoff End programmable decoupling on first decoupler
dec2prgon Start programmabl e decoupling on second decoupler
dec3prgon Start programmable decoupling on third decoupler
obsprgon Start programmable control of obs. transmitter

Start programmable decoupling on second decoupler

UNITY|NOVA systems with a waveform generator on rf channel for the second
decoupler.

dec2prgon (pattern, 90 _pulselength, tipangle resoln)

char *pattern; /* name of .DEC text file */
double 90 pulselength; /* 90e0ccco-deg pulse length in sec
*/

double tipangle resoln; /* tip-angle resolution */

Executes programmable decoupling on second decoupler under waveform
generator control, and returns the number of 12.5-nsticks (as an integer vaue)
in one cycle of the decoupling pattern. Explicit gating of the second decoupler
withdec2on anddec2of £ isgenerally required. Arguments can bevariables
(which require the appropriate getval and get st r statements) to permit
changes by the parameters (see the second example). See also: “Amplifier
Channel Blanking and Unblanking,” page 75.

patternisthenameof thetext fileinthe shapelib directory that storesthe
decoupling pattern (leave off the .DEC file extension).

90 pulselength isthe pulseduration, in seconds, for a90° tip angle on the
second decoupler.

tipangle resoln istheresolution, intip-angle degrees, to which the
decoupling pattern is stored in the waveform.

(1) dec2prgon ("waltzle",1/dmf2,90.0) ;

(2) dec2prgon (modtype, pwx290,dres?2) ;
ticks=dec2prgon ("garpl",1l/dmf2,1.0) ;

decprgon Start programmable decoupling on first decoupler
dec3prgoff End programmable decoupling on third decoupler
obsprgon Start programmable control of obs. transmitter

Start programmable decoupling on third decoupler

UNITYINOVA systems with a waveform generator on rf channel for the third
decoupler.

dec3prgon (pattern, 90 pulselength, tipangle resoln)

char *pattern; /* name of .DEC text file */
double 90 pulselength; /* 90-deg pulse length in sec */
double tipangle resoln; /* tip-angle resolution */

Executes programmable decoupling on third decoupler under waveform
control. It returns the number of 12.5-nsticks (asan integer value) in one cycle

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 161

Chapter 3. Pulse Sequence Statement Reference

Arguments:

Examples:

Related:

decpulse

Syntax:

Description:

Arguments:

Examples:

Related:

decpwr

Applicability:

162

Syntax:

Description:

of the decoupling pattern. Explicit gating of the third decoupler with dec3on
anddec3of f isgenerally required. Argumentscan be variables (which require
the appropriate getval and getstr statements) to permit changes by
parameters (see second example). See also: “Amplifier Channel Blanking and
Unblanking,” page 75.

patternisthenameof thetext fileinthe shapelib directory that storesthe
decoupling pattern (leave off the .DEC file extension).

90 pulselength isthe pulseduration, in seconds, for a90° tip angle on the
third decoupler.

tipangle resoln istheresolution, intip-angle degrees, to which the
decoupling pattern is stored in the waveform.

(1) dec3prgon ("waltzl6",1/dmf3,90.0) ;

(2) dec3prgon (modtype, pwx390,dres3) ;
ticks = dec3prgon("garpl",1l/dmf3,1.0) ;

decprgon Start programmable decoupling on first decoupler
dec2prgoff End programmable decoupling on second decoupler
obsprgon Start programmable control of obs. transmitter

Pulse first decoupler transmitter with amplifier gating

decpulse (width, phase)
double width; /* width of pulse in sec */
codeint phase; /* real-time variable for phase of pulse */

Pulses thefirst decoupler at its current power level. The amplifier is gated off
during decoupler pulses as it is during observe pulses. The amplifier gating
times (see RG1 and RG2 for decrgpul se) areinternally set to zero for this
statement. dmm should be set to ' ¢ ' during any period of timein which
decoupler pulses occur. See aso: “Amplifier Channel Blanking and
Unblanking,” page 75.

width isthe duration of the pulse, in seconds.

phase isthe phase of the pulse. The value must be area-time variable (v1 to
v14, etc.) or area-time constant (zero, one, etc.).

decpulse (pp, v3) ;
decpulse (2.0*pp, zero) ;

decrgpulse Pulse decoupler transmitter with amplifier gating
rgpulse Pulse observe transmitter with amplifier gating
simpulse Pulse observe, decoupler channels simultaneously
sim3pulse Simultaneous pulse on 2 or 3 rf channels

Set first decoupler high-power level, class C amplifier
All systemswith class C amplifiers.

decpwr (level)

double level; /* new power level for DODEV channel */
Changesthe first decoupler high-power level to the value specified. To reset the
power back to the “standard” dhp level, use decpwr (dhp) .

Switching between low power decoupling (dhp="n") and high power
decoupling (dhp=x), as well as switching between different levels of low

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Arguments:

Examples:

decpwrf

Applicability:

Syntax:

Description:

Arguments:
Examples:

Related:

dec2pwrf
Applicability:
Syntax:

Description:
Arguments:
Examples:

Related:

dec3pwrf
Applicability:
Syntax:

Description:

01-999379-00 A 0708

power decoupling, uses relayswhose switching time isabout 10 ms and are not
provided for in the standard pul se sequence capability. Neither function should
prove necessary because extremely low level s of decoupling are provided for in
dhp mode by using very small (0 to 30) values of dhp.

level specifies the decoupler high-power level, from O (lowest) to 255 (full
power). These values in thisrange increase monotonically but are neither linear
nor logarithmic

decpwr (255.0) ;
decpwr (levell) ;

Set first decoupler fine power
UNITYINOVA systems with fine power control on the first decoupler.

decpwrf (power)

double power; /* new fine power value for DODEV */

Changesfirst decoupler fine power. It is functionally the same as
rlpwrf (value, DECch). Seealso: “Amplifier Channel Blanking and
Unblanking,” page 75.

power isthefine power desired.
decpwrf (4.0) ;

dec2pwrf Set second decoupler fine power
dec3pwrf Set third decoupler fine power
obspwrf Set observe transmitter fine power
rlpwrf Set transmitter or decoupler fine power

Set second decoupler fine power
UNITYINOVA systems with fine power control on the second decoupler.

dec2pwrf (power)

double power; /* new fine power value for DO2DEV */

Changes the second decoupler fine power. It is functionally the same as
rlpwrf (value,DEC2ch). Seealso: “Amplifier Channel Blanking and
Unblanking,” page 75.

power isthefine power desired.

dec2pwrf(4.0);

decpwrf Set first decoupler fine power
dec3pwrf Set third decoupler fine power
obspwrf Set observe transmitter fine power
rlpwrf Set transmitter or decoupler fine power

Set third decoupler fine power
UNITYINOVA systems with fine power control on the third decoupler.

dec3pwrf (power)

double power; /* new fine power value for DO3DEV */

Changes third decoupler fine power. It is functionally the same as
rlpwrf (value,DEC3ch). Seealso: “Amplifier Channel Blanking and
Unblanking,” page 75.

163

VnmrJ 2.2 Ml User Programming

Chapter 3. Pulse Sequence Statement Reference

Arguments:
Examples:

Related:

decr

Syntax:

Description:
Arguments:
Examples:

Related:

decrgpulse

164

Syntax:

Description:

power isthefine power desired.
dec3pwrf (4.0) ;

decpwrf Set first decoupler fine power
dec2pwrf Set second decoupler fine power
obspwrf Set observe transmitter fine power
rlpwrf Set transmitter or decoupler fine power

Decrement an integer value

decr (vi)
codeint vi; /* real-time variable for starting value */

Decrements integer valuevi by 1 (i.e, vi=vi-1).
viisarea-timevariable (vl tovl4, oph, etc.).

decr (v5) ;

add Add integer values
assign Assign integer values

dbl Double an integer value
divn Divide integer values

hlv Half the value of an integer
incr Increment an integer value
mod?2 Find integer value modulo 2
mod4 Find integer value modulo 4
modn Find integer value modulo n
mult Multiply integer values
sub Subtract integer values

Pulse first decoupler with amplifier gating
decrgpulse (width, phase,RG1,RG2)

double width; /* width of pulse in sec */

codeint phase; /* real-time variable for phase */
double RG1; /* gating delay before pulse in sec */
double RG2; /* gating delay after pulse in sec */

Syntactically equivalent to rgpul se statement and functionally equivalent to
rgpul se with two exceptions. First, the first decoupler (instead of the
transmitter) ispulsed at its current power level. Second, if homo="n", theslow
gate on thefirst decoupler board is always open and therefore need not be
switched open during RG1. In contrast, if homo="y ', theslow gate on thefirst
decoupler board is normally closed and must therefore be allowed sufficient
time during RGL1 to switch open.

For systemswith linear amplifiers, RG1 for adecoupler pulseisimportant from
the standpoint of amplifier stabilization under thefollowing conditions: tn, dn
equal {3H, 1H, 19F} (high-band nuclei, *H does not apply to MERCURYplus/-
Vx systems), or tn, dn less than or equal to 31P (low-band nuclei). For these
conditions, the “decoupler” amplifier moduleis placed in pulse mode, in which
it remains blanked aslong as the receiver is on. In thismode, RG1 must be

sufficiently long to allow the amplifier to stabilize after blanking is removed: 5
to 10 us(2 ustypica for MERCURYplug/-Vx) for high-band nuclei and 10 to 20
us (2 ustypical for MERCURYplus/-Vx) for low-band nuclei. Solids require at

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Arguments:

Examples:

Related:

dec2rgpulse
Applicability:
Syntax:

Description:
Arguments:

Examples:

least 1.5 pus. On 500-MHz systems that use the ENI-5100 class A amplifier for
low-band nuclei on the observe channel, RG1 should be 40-60 ps.

If the tn nucleus and the dn nucleus arein different bands (e.g., tn is 1H and
dn is13C), the“decoupler” amplifier moduleis placedin the cwmode, in which
it isalways unblanked regardless of the state of the receiver. In this mode RG1
is unimportant with respect to amplifier stabilization prior to the decoupler
pulse.

width isthe duration, in seconds, of the decoupler transmitter pulse.

phase isthephase of thepulse. It must beareal-timevariable(v1tovi4, etc.)
or area-time constant (zero, one, &c.).

RG1 isthetime, in seconds, before the start of the pulse that the amplifier is
gated off.

RG2 isthetime, in seconds, after the end of the pulsethat the amplifier is gated
on.

decrgpulse (pp,v3,rofl,rof2) ;
decrgpulse (pp, zero,1.0e-6,0.2e-6) ;

decpulse Pulse first decoupler with amplifier gating
dec2rgpulse Pulse second decoupler with amplifier gating
dec3rgpulse Pulsethird decoupler with amplifier gating
idecpulse Pulse first decoupler transmitter with |PA
idecrgpulse Pulsefirst decoupler with amplifier gating and IPA

irgpulse Pulse observe transmitter with |PA
rgpulse Pulse observe transmitter with amplifier gating
simpulse Pulse observe, decoupler channels simultaneously

sim3pulse Simultaneous pulse on 2 or 3 rf channels

Pulse second decoupler with amplifier gating
UNITYINOVA system with a second decoupler.
dec2rgpulse (width, phase,RG1,RG2)

double width; /* width of pulse in sec */

codeint phase; /* real-time variable for phase */
double RG1; /* gating delay before pulse in sec */
double RG2; /* gating delay after pulse in sec */

Performsan explicit amplifier-gated pul se on the second decoupler (DEC2ch).
width isthe duration, in seconds, of the pulse.

phase isthephase of thepulse. It must beareal-timevariable(v1tovi4, etc.)
or area-time constant (zero, one, ec.).

RG1 isthe delay, in seconds, between gating the amplifier on and gating the rf
transmitter on (the phaseshift occurs at the beginning of this delay). RG1 is
important for amplifier stabilization under the same conditions as described for
decrgpulse.

RG2 isthedelay, in seconds, between gating the rf transmitter off and gating the
amplifier off. homo has no effect on the gating on the second decoupler board.
homo2 controls gating of second decoupler rf.

dec2rgpulse (pl,v10,rofl,rof2) ;

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 165

Chapter 3. Pulse Sequence Statement Reference

Related:

dec3rgpulse
Applicability:

Syntax:

Description:
Arguments:

Examples:

Related:

dec4rgpulse
Applicability:

166

Syntax:

Description:
Arguments:

decpulse Pulse first decoupler with amplifier gating
decrgpulse Pulsefirst decoupler with amplifier gating
idecpulse Pulse first decoupler with IPA

rgpulse Pulse observe transmitter with amplifier gating
simpulse Pulse observe, decoupler channels smultaneously
sim3pulse Simultaneous pulse on 2 or 3 rf channels

Pulse third decoupler with amplifier gating
UNITYINOVA systems with a third decoupler.
dec3rgpulse (width, phase,RG1,RG2)

double width; /* width of pulse in sec */

codeint phase; /* real-time variable for phase */
double RG1; /* gating delay before pulse in sec */
double RG2; /* gating delay after pulse in sec */

Performs an explicit amplifier-gated pulse on the third decoupler (DEC3ch).
width isthe duration, in seconds, of the pulse.

phase isthephase of thepulse. It must beareal-timevariable(v1tovi14, etc.)
or area-time constant (zero, one, ec.).

RG1 isthe delay, in seconds, between gating the amplifier on and gating the rf
transmitter on (the phaseshift occurs at the beginning of this delay). RG1 is
important for amplifier stabilization under the same conditions as described for
decrgpulse.

RG2 isthedelay, in seconds, between gating the rf transmitter off and gating the
amplifier off. homo has no effect on the gating on the third decoupler board.
homo3 controls gating of third decoupler rf.

dec3rgpulse (pl,v10,rofl,rof2) ;

decpulse Pulse first decoupler with amplifier gating
decrgpulse Pulsefirst decoupler with amplifier gating
rgpulse Pulse observe transmitter with amplifier gating
simpulse Pulse observe, decoupler channels simultaneously

sim3pulse Simultaneous pulse on 2 or 3 rf channels

Pulse fourth decoupler with amplifier gating

UNITYINOVA systems with a deuterium decoupler channel as the fourth
decoupler.

dec4rgpulse (width, phase,RG1,RG2)

double width; /* width of pulse in sec */

codeint phase; /* real-time variable for phase */
double RG1; /* gating delay before pulse in sec */
double RG2; /* gating delay after pulse in sec */

Performs an explicit amplifier-gated pulse on the fourth decoupler (DEC4 ch).
width isthe duration, in seconds, of the pulse.

phase isthephase of thepulse. It must beareal-timevariable(v1tovi14, etc.)
or area-time constant (zero, one, ec.).

RG1 isthe delay, in seconds, between gating the amplifier on and gating the rf
transmitter on (the phaseshift occurs at the beginning of thisdelay). RG1 is

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Examples:

Related:

important for amplifier stabilization under the same conditions as described for
decrgpulse.

RG2 isthedelay, in seconds, between gating the rf transmitter off and gating the
amplifier off.

dec4rgpulse (pl,v10,rofl,rof2) ;

decpulse Pulse first decoupler with amplifier gating
decrgpulse Pulsefirst decoupler with amplifier gating
rgpulse Pulse observe transmitter with amplifier gating
simpulse Pulse observe, decoupler channels simultaneously

sim3pulse Simultaneous pulse on 2 or 3 rf channels

decshaped pulse Perform shaped pulse on first decoupler

Applicability:

Syntax:

Description:

Arguments:

UNITYINOVA systems with waveform generator on rf channel for the first
decoupler.

decshaped pulse (pattern,width, phase,RG1,RG2)

char *pattern; /* name of .RF text file */

double width; /* width of pulse in sec */

codeint phase; /* real-time variable for phase */
double RG1; /* gating delay before pulse in sec */
double RG2; /* gating delay after pulse in sec */

Performs a shaped pulse on the first decoupler. If awaveform generator is
configured on the channel, it is used; otherwise, the linear attenuator and the
small-angle phase shifter are used to effectively perform an

apshaped decpulse statement.

When using the waveform generator, the shapes are downloaded into the
waveshaper before the start of an experiment. When decshaped pulse is
called, the shape is addressed and started. The minimum pulse length and
stepsize is 50 ns. The overhead at the start and end of the shaped pulse varies:

® UNITY] s (start), O (end)
® System with Acquisition Controller board: 10.75 pus (start), 4.3 us (end)
® System with Output board: 10.95 us (start), 4.5 us (end)

INOVA: If the length isless than 50 ns, the pulse is not executed and thereis no
overhead.

When using the linear attenuator and the small-angle phase shifter to generate a
shaped pulse, the decshaped pulse statement creates AP tables on the fly
for amplitude and phase. It also uses the real-time variables v12 and v13 to
control the execution of the shape. It does not use AP tablevariables. For timing
and more information, see the description of apshaped decpulse. Note
that if using AP tables with shapes that have alarge number of points, the FIFO
can become overloaded with words generating the pulse shape and FIFO
Underf low errors can result.

pattern isthe name of atext filein the shapelib directory that storesthe
rf pattern (leave off the . RF file extension).

width isthe duration, in seconds, of the pulse.

phase isthephase of thepulse. It must beareal-timevariable(v1tovi14, etc.)
or areal-time constant (zero, one, €tc.)

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 167

Chapter 3. Pulse Sequence Statement Reference

Examples:

Related:

RG1 isthedelay, in seconds, between gating the amplifier on and gating thefirst
decoupler on (the phaseshift occurs at the beginning of this delay).

RG2 isthe delay, in seconds, between gating the first decoupler off and gating
the amplifier off.

decshaped pulse("sinc",pl,v5,rofl,rof2) ;

dec2shaped pulse Perform shaped pulse on second decoupler
dec3shaped pulse Perform shaped pulse on third decoupler
shaped pulse Perform shaped pulse on observe transmitter
simshaped pulse Simultaneous two-pul se shaped pulse
sim3shaped pulse Simultaneous three-pul se shaped pulse

dec2shaped pulsePerform shaped pulse on second decoupler
Applicability:

168

Syntax:

Description:

Arguments:

UNITYINOVA systems with waveform generator on rf channel for the second
decoupler.

dec2shaped pulse (pattern,width,phase,RG1l,RG2)

char *pattern; /* name of .RF text file */

double width; /* width of pulse in sec */

codeint phase; /* real-time variable for phase */
double RG1; /* gating delay before pulse in sec */
double RG2; /* gating delay after pulse in sec */

Performs a shaped pulse on the second decoupler. If awaveform generator is
configured on the channel, it is used; otherwise, the linear attenuator and the
small-angle phase shifter are used to effectively perform an

apshaped dec2pulse statement.

When using the waveform generator, the shapes are downloaded into the
waveshaper before the start of an experiment. When dec2shaped pulseis
called, the shape is addressed and started. The minimum pulse length and
stepsize is 50 ns. The overhead at the start and end of the shaped pulse varies:

® UNTYINOVA: 1 us (start), O (end)
® System with Acquisition Controller board: 10.75 pus (start), 4.3 us (end)
® System with Output board: 10.95 us (start), 4.5 us (end)
If the length islessthan 50 ns, the pulseis not executed and thereisno overhead.

When using the linear attenuator and the small-angle phase shifter to generate a
shaped pulse, thedec2shaped pulse statement creates AP tableson thefly
for amplitude and phase. It also uses the real-time variables v12 and v13 to
control the execution of the shape. It does not use AP tablevariables. For timing
and more information, see the description of apshaped dec2pulse. Note
that if using AP tables with shapes that have alarge number of points, the FIFO
can become overloaded with words generating the pulse shape and FIFO
Underf low errors can result.

pattern isthe name of atext filein the shapelib directory that stores the
rf pattern (leave off the .RF file extension).

width isthe duration, in seconds, of the pulse.

phase isthephaseof thepulse. It must beareal-timevariable(v1tovi14, etc.)
or areal-time constant (zero, one, €tc.)

RG1 isthe delay, in seconds, between gating the amplifier on and gating the
second decoupler on (the phaseshift occurs at the beginning of this delay).

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Examples:

Related:

RG2 isthe delay, in seconds, between gating the second decoupler off and
gating the amplifier off.

dec2shaped pulse("gauss",pl,v9,rofl,rof2);

decshaped pulse Perform shaped pulse on first decoupler
shaped pulse Perform shaped pulse on observe transmitter
sim3shaped pulse Simultaneous three-pulse shaped pulse

dec3shaped pulse Perform shaped pulse on third decoupler

Applicability:

Syntax:

Description:

Arguments:

Examples:

UNITYINOVA systems with waveform generator on rf channel for the third
decoupler.

dec3shaped pulse (pattern,width,phase,RG1l,RG2)

char *pattern; /* name of .RF text file */

double width; /* width of pulse in sec */

codeint phase; /* real-time variable for phase */
double RG1; /* gating delay before pulse in sec */
double RG2; /* gating delay after pulse in sec */

Performs a shaped pulse on the third decoupler. If awaveform generator is
configured on the channel, it is used; otherwise, the linear attenuator and the
small-angle phase shifter are used to effectively perform an

apshaped dec3pulse statement.

The shapes are downloaded into the controller before the start of an experiment.
Whendec3shaped pulseiscalled, the shapeisaddressed and started. The
minimum pulse length and stepsize is 50 ns. The overhead at the start and end
of the shaped pulse varies:

® UNTYINOVA: 1 us (start), O (end)
® System with Acquisition Controller board: 10.75 pus (start), 4.3 us (end)
® System with Output board: 10.95 us (start), 4.5 us (end)
If the length islessthan 50 ns, the pulseis not executed and thereisno overhead.

When using the linear attenuator and the small-angle phase shifter to generate a
shaped pulse, thedec3shaped pulse statement creates AP tableson thefly
for amplitude and phase. It also uses the real-time variables v12 and v13 to
control the execution of the shape. It does not use AP tablevariables. For timing
and more information, see the description of apshaped dec3pulse. Note
that if using AP tableswith shapes that have alarge number of points, the FIFO
can become overloaded with words generating the pulse shape and FIFO
Underf low errors can result.

pattern isthe name of atext filein the shapelib directory that stores the
rf pattern (leave off the .RF file extension).

width isthe duration, in seconds, of the pulse.

phase isthephase of thepulse. It must beareal-timevariable(v1tovi4, etc.)
or area-time constant (zero, one, &c.).

RG1 isthe delay, in seconds, between gating the amplifier on and gating the
third decoupler on (the phaseshift occurs at the beginning of this delay).

RG2 isthe delay, in seconds, between gating the third decoupler off and gating
the amplifier off.

dec3shaped pulse("gauss",pl,v9,rofl,rof2);

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 169

Chapter 3. Pulse Sequence Statement Reference

Related:

decspinlock

Applicability:

dec2spinlock

Syntax:

Description:

Arguments:

Examples:

Related:

Applicability:

170

Syntax:

Description:

Arguments:

decshaped pulse Perform shaped pulse on first decoupler
shaped pulse Perform shaped pulse on observe transmitter

Set spin lock waveform control on first decoupler

UNITYINOVA systems with waveform generator on rf channel for the first
decoupler.

decspinlock (pattern, 90 pulselength,tipangle resoln,
phase,ncycles)

char *pattern; /* name of .DEC text file */
double 90 pulselength; /* 90eco-deg pulse length in sec */
double tipangle resoln; /* resolution of tip angle */
codeint phase; /* phase of spin lock */

int ncylces; /* number of cycles to execute */

Executes awaveform-controlled spin lock on the first decoupler, handling both
rf gating and the mixing delay. Arguments can be variables (which require the
appropriate getval and getstr statements) to permit changesvia
parameters (see the second example).

patternisthenameof thetext fileinthe shapelib directory that storesthe
decoupling pattern (leave off the . DEC file extension).

90 pulselength isthe pulse duration, in seconds, for a 90° tip angle.

tipangle resoln istheresolution, intip-angle degrees, to which the
decoupling pattern is stored in the waveform generator.

phase isthe phase of the spinlock. It must be areal-time variable (v1 tovi4,
etc.) or ared-time constant (zero, one, €tc.).

ncycles isthe number of timesthe spin-lock pattern isto be executed.

decspinlock ("mlevlée",pl90,dres,vl,30) ;
decspinlock (spinlk, pp90,dres,vl,cycles) ;

dec2spinlock Set spin lock waveform control on second decoupler
dec3spinlock Set spin lock waveform control on third decoupler
spinlock Set spin lock waveform control on obs. transmitter

Set spin lock waveform control on second decoupler

UNITYINOVA systems with waveform generator on rf channel for the second
decoupler.

dec2spinlock (pattern, 90 pulselength,

tipangle resoln,phase,ncycles)
char *pattern; /* name of .DEC text file */
double 90 pulselength; /* 90-deg pulse length of channel */
double tipangle resoln; /* resolution of tip angle */
codeint phase; /* phase of spin lock */
int ncylces; /* number of cycles to execute */

Executes awaveform-controlled spin lock on the second decoupler. Both the rf
gating and the mixing delay are handled within this function. Arguments can be
variables (which require the appropriate cetval and get st r statements) to
permit changes via parameters (see the second example).

patternisthenameof thetext fileinthe shapelib directory that storesthe
decoupling pattern (leave off the . DEC file extension).

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

90 pulselength isthe pulse duration, in seconds, for a 90° tip angle.

tipangle resoln istheresolution, in tip-angle degrees, to which the
decoupling pattern is stored in the waveform generator.

phase isthe phase of the spinlock. It must be areal-timevariable (v1 tovi4,
etc.) or ared-time constant (zero, one, €tc.).

ncycles isthe number of timesthat the spin-lock pattern isto be executed.

Examples. (1) dec2spinlock ("mlevlé",p290,dres2,vl,42);
(2) dec2spinlock (lock2, pwx2,dres2,vl, cycles) ;

Related: decspinlock Setspinlock waveform control on first decoupler
spinlock Set spin lock waveform control on obs. transmitter

dec3spinlock Set spin lock waveform control on third decoupler

Applicability: UNTYINOVA systems with waveform generator on rf channel for the third
decoupler.

Syntax: dec3spinlock (pattern, 90 pulselength,
tipangle resoln,phase,ncycles)

char *pattern; /* name of .DEC text file */
double 90 pulselength; /* 90-deg pulse length of channel */
double tipangle resoln;/* resolution of tip angle */
codeint phase; /* phase of spin lock */
int ncylces; /* number of cycles to execute */

Description: Executes awaveform-controlled spin lock on the third decoupler. Both the rf
gating and the mixing delay are handled within this function. Arguments can be
variables (which would need the appropriate ge t val and ge t s t r statements)
to permit changes via parameters (see the second example).

Arguments. patternisthenameof thetextfileinthe shapelib directory that storesthe
decoupling pattern (leave off the . DEC file extension).

90 pulselength isthe pulse duration, in seconds, for a 90° tip angle.

tipangle resoln istheresolution in tip-angle degreesto which the
decoupling pattern is stored in the waveform generator.

phase isthe phase of the spinlock. It must be areal-time variable (v1 tovi4,
etc.) or ared-time constant (zero, one, €tc.).

ncycles isthe number of timesthat the spin-lock pattern isto be executed.

Examples: dec3spinlock("mlevlé",p390,dres3,vl,b42);
dec3spinlock (lock2, pwx2,dres3,vl,cycles) ;

Related: decspinlock Set spin lock waveform control on first decoupler
spinlock Set spin lock waveform control on observe transmitter

decstepsize Set step size for first decoupler

Syntax: decstepsize (step size)
double step size; /* phase step size */

Description: Setsthe step size of thefirst decoupler. It is functionally the same as
stepsize (base,DECch).

Arguments. step_ size isthe phase step size desired and isareal number or avariable.
Examples. decstepsize(30.0);

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 171

Chapter 3. Pulse Sequence Statement Reference

Related:

dec2stepsize
Applicability:
Syntax:

Description:

Arguments:
Examples:

Related:

dec3stepsize
Applicability:
Syntax:

Description:

Arguments:
Examples:

Related:

decunblank
Applicability:
Syntax:

Description:

Related:

dec2stepsize Set step size of second decoupler
dec3stepsize Set step size of third decoupler
obsstepsize Set step size of observe transmitter
stepsize Set small-angle phase step size,

Set step size for second decoupler
UNITYINOVA system with a second decoupler.

dec2stepsize (step size)
double step size; /* phase step size */

Setsthe step size of thefirst decoupler. This statement is functionally the same
ascstepsize (base,DEC2ch).

step_size isthe phase step size desired and isarea number or avariable.

dec2stepsize (30.0) ;

decstepsize Set step size of first decoupler
dec3stepsize Set step size of third decoupler
obsstepsize Set step size of observe transmitter
stepsize Set small-angle phase step size,

Set step size for third decoupler
UNITYINOVA system with a third decoupler.

dec3stepsize (step size)
double step size; /* phase step size */

Setsthe step size of the third decoupler. This statement isfunctionally the same
ascstepsize (base,DEC3ch).

step_size isthe phase step size desired and isarea number or avariable.

dec3stepsize (30.0) ;

decstepsize Set step size of first decoupler
dec2stepsize Set step size of second decoupler
obsstepsize Set step size of observe transmitter
stepsize Set small-angle phase step size,

Unblank amplifier associated with first decoupler
UNITYINOVA systems.
decunblank ()

Explicitly enables the amplifier for the first decoupler. This overwrites the
implicit blanking and unblanking of the amplifier before and after pul ses.
decunblank isgeneraly followed by acall to decblank.

decblank Blank amplifier associated with first decoupler
obsblank Blank amplifier associated with observe transmitter
obsunblank Unblank amplifier associated with observe transmitter
rcvroff Turn off receiver

rcvron Turn on receiver

172 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

dec2unblank
Applicability:
Syntax:

Description:

Related:

dec3unblank
Applicability:
Syntax:

Description:

Related:

delay
Applicability:
Syntax:

Description:
Arguments:

Examples:

Related:

dhpflag
Applicability:
Syntax:

Description:

Values:

Related:

Unblank amplifier associated with second decoupler
UNITYINOVA systems with a second decoupler.
dec2unblank ()

Explicitly enables the amplifier for the second decoupler. This overwrites the
implicit blanking and unblanking of the amplifier before and after pulses.
dec2unblank isgenerally followed by acall to dec2blank.

dec2blank Blank amplifier associated with second decoupler
rcvroff Turn off receiver
rcvron Turn on receiver

Unblank amplifier associated with third decoupler
UNITYINOVA systems with a third decoupler.
dec3unblank ()

Explicitly enables the amplifier for the third decoupler. This overwritesthe
implicit blanking and unblanking of the amplifier before and after pul ses.
dec3unblank isgenerally followed by acall to dec3blank.

dec3blank Blank amplifier associated with third decoupler
rcvroff Turn off receiver
rcvron Turn on receiver

Delay for a specified time
UNITYINOVA systems with class C amplifiers.

delay (time)
double time; /* delay in sec */

Setsadelay for a specified number of seconds.

time specifies the delay, in seconds (minimum of 50 ns, minimum increment
12.5 ns)

delay(dl) ;
delay(d2/2.0) ;

dps_show Draw delay or pulsesin a sequence for graphical display

hsdelay Delay specified time with possible homospoil pulse
incdelay Real time incremental delay

initdelay Initialize incrementa delay

vdelay Delay with fixed timebase and red time count

Switch decoupling from low-power to high-power
All systemswith class C amplifiers.
dhpflag

Switches the system from low-power to high-power decoupling; e.g.,
dhpflag=TRUE (correct use of upper and lower case letters is necessary).

TRUE ; switchesthe system to high-power decoupling.
FALSE; switchesthe system to low-power decoupling.

status Draw delay or pulsesin a sequence for graphical display

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 173

Chapter 3. Pulse Sequence Statement Reference

divn

Syntax:

Description:
Arguments:

Examples:

Related:

dps off
Syntax:

Examples:

Related:

dps _on

Syntax:

Description:

Related:

dps_ show
Syntax:

Syntax:

Syntax:

174

VnmrJ 2.2 Ml User Programming

Divide integer values

divn (vi,vj,vk)
codeint vi;
codeint vj;
codeint vk;

/* real-time variable for dividend */
/* real-time variable for divisor */
/* real-time variable for quotient */

Setsthe integer value vk equal tovi divided by vj. Any remainder isignored.

vi isthedividend, v isthe divisor, and vk isthe quotient. All three are real-
timevariables (vl tov14, oph, etc.).

divn (v2,v3,v4) ;

add Add integer values
assign Assign integer values

dbl Double an integer value
decr Decrement an integer value
hlv Half the value of an integer
incr Increment an integer value
mod?2 Find integer value modulo 2
mod4 Find integer value modulo 4
modn Find integer value modulo n
mult Multiply integer values
sub Subtract integer values

Turn off graphical display of statements
dps_off ()

Turns off dps display of statements. Pulse statementsfollowing dps_off are
not shown in the graphical display.

dps_on Turn on graphical display of statements
dps_show Draw delay or pulsesin a sequence for graphical display
dps_skip Skip graphical display of next statement

Turn on graphical display of statements
dps_on/()

Turnson dps display of statements. Pulse statementsfollowing dps_on are
shown in the graphical display.

dps_off Turn off graphical display of statements
dps_show Draw delay or pulsesin a sequence for graphical display
dps_skip Skip graphical display of next statement

Draw delay or pulses in a sequence for graphical display

(1) dps_show("delay", time)
double time; /* delay in sec */

(2) dps_show("pulse", channel, label,width)

/* "obs", "dec”, "dec2",or "dec3" */
/* text label selected by user */
/* pulse length in sec */

char *channel;
char *label;
double width;

(3) dps_show ("shaped pulse",channel, label,width)
char *channel; /* "obs", "dec”, "dec2",or "dec3" */

01-999379-00 A 0708

Syntax:

Syntax:

Syntax:

Syntax:

Syntax:

Syntax:

Syntax:

Syntax:

Syntax:

char *label;
double width;

/* text label selected by user
/* pulse length in sec */

(4) dps_show ("simpulse",label of obs,width of obs,
label of dec,width of dec)

char *label of obs;
double width of obs;
char *label of dec;
double width of dec;

/* text label selected by user
/* pulse length in sec */
/* text label selected by user
/* pulse length in sec */

(5) dps_show ("simshaped pulse",label of obs,
width of obs,label of dec,width of dec)

char *label of obs;
double width of obs;
char *label of dec;
double width of dec;

/* text label selected
/* pulse length in sec
/* text label selected
/* pulse length in sec

by user
*/
by user

*/

*/

*/
*/

*/
*/

(6) dps_show ("sim3pulse",label of obs,width of obs,
label of dec,width of dec,label of dec2,

width of dec2)
char *label of obs;
double width of obs;
char *label of dec;
double width of dec;
char *label of dec2;

double width of dec2;

(7) dps_show ("sim3shaped

text label selected
pulse length in sec
text label selected
pulse length in sec
text label selected
pulse length in sec

/*
/*
/*
/*
/*
/*

by user
*/
by
*/
by
*/

pulse",label of obs,

user

user

width_of_obs,label_of;dec,width_of_dec,
label of dec2,width of dec2)

char *label of obs;
double width of obs;
char *label of dec;
double width of dec;
char *label of dec2;

text label selected
pulse length in sec
text label selected
pulse length in sec
text label selected

/*
/*
/*
/*
/*

by user
*/
by
*/
by

user

user

double width of dec2; /*
(8) dps_show ("zgradpulse",value,delay)
double value;
double delay;

pulse length in sec

/* length of gradient in sec

(9) dps_show ("rgradient", channel, value)

*/

*/

char channel; /*
double value;

'X'l 'X'l 'Y'l 'Y'/ 'Z'l or 'z!'

(10) dps_show ("vgradient", channel, intercept,

slope,mult)
char channel;
int intercept;
int slope;
codeint mult;

/*
/*
/*
/*

gradient channel 'y 'z!
initial gradient level */
gradient increment */

real-time variable */

'x!', or

(11) dps_show ("shapedgradient",pattern,width, amp,
channel, loops,wait)

/*
/*
/*
/*
/*
/*

char *pattern;
double width;
double amp;
char channel;
int loops;

int wait;

name of shape text file */
length of pulse */
amplitude of pulse */
gradient channel
number of loops */
WAIT or NOWAIT */

'X'l 'Y'/ or 'z!'

*/
*/
*/

*/
*/
*/

/* amplitude of gradient on z channel */

*/

/* amplitude of gradient amplifier */

*/

*/

(12) dps_show ("shaped2Dgradient",pattern,width, amp,
channel, loops,wait, tag)

01-999379-00 A 0708

VnmrJ 2.2 Ml User Programming

175

Chapter 3. Pulse Sequence Statement Reference

176

Description:

Examples:

Related:

char *pattern; /* name of shape text file */

double width; /* length of pulse */

double amp; /* amplitude of pulses */

char channel; /* gradient channel 'x', 'y', or 'z' */
int loops; /* number of loops */

int wait; /* WAIT or NOWAIT */

int tag; /* unique number for gradient element */

Drawsfor dps graphical display the pulses, lines, and |abels related to the
statement (if it exists) given as the first argument.

® Syntax 1 drawsalineto represent a delay.
® Syntax 2 draws a pulse picture and display alabel underneath the picture.

® Syntax 3 draws the picture of a shaped pulse and displays a label
underneath the picture.

® Syntax 4 draws observe and decoupler pulses at the same time.

® Syntax 5 draws a shaped pulse for observe and decoupler channels at the
same time.

® Syntax 6 draws observe, decoupler, and second decoupler pulses at the
same time.

® Syntax 7 draws a shaped pulse for observe, decoupler, and the second
decoupler channels at the same time.

® Syntax 8 draws a pulse on the z channel.

® Syntax 9 draws a pulse on the specified channel.

® Syntax 10 draws a gradient picture.

® Syntax 11 draws a shaped pulse on a specified channel.

® Syntax 12 draws a shaped pulse on a specified channel. For an explanation
of the arguments (delay, shapedpulse, etc.), see the corresponding
entry in this reference.

dps_show ("delay",dl) ;

dps_show ("pulse", "obs", "obspulse",pl) ;

dps_show ("pulse", "dec", "pw", pw) ;

dps_show ("shaped pulse", "obs", "shaped",pl*2) ;

dps_show ("shaped pulse", "dec2", "gauss",pw) ;

dps_show ("simpulse", "obs pulse",pl, "dec pulse",p2) ;

dps_show ("simshaped pulse", "gauss",pl, "gauss",p2) ;

dps_show ("sim3pulse", "pl",pl, "p2",p2, "pl*2",pl*2) ;

dps_show ("zgradpulse",123.0,d1) ;

dps_show ("rgradient", 'x',1234.0) ;

dps_show ("vgradient", 'x',0,2000,v10) ;

dps_show ("shapedgradient", "sinc",1000.0,3000.0, \
'y',1,NOWAIT) ;

dps_show ("shaped2Dgradient", "square",1000.0, \
3000.0,'y"',0,NOWAIT, 1) ;

delay Delay for a specified time

dps_off Turn off graphical display of statements
dps_on Turn on graphical display of statements
dps_skip Skip graphical display of next statement
pulse Pulse observe transmitter with amplifier gating
rgradient Set gradient to specified level

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

shaped pulse Perform shaped pul se on observe transmitter

shapedgradient Generate shaped gradient pulse
shaped2Dgradient Generate arrayed shaped gradient pulse
simpulse Pulse observe and decoupl e channels simultaneously
sim3pulse Pulse simultaneously on 2 or 3 rf channels
simshaped pulse Perform simultaneous two-pulse shaped pulse
sim3shaped pulse Perform asimultaneous three-pulse shaped pulse
vgradient Set gradient to alevel determined by real-time math
zgradpulse Create a gradient pulse on the z channel
dps_skip Skip graphical display of next statement

Syntax: dps_skip ()

Description: Skips dps display of the next statement. The statement following dps_skip
isnot shown in the graphical display.

Related: dps off Turn off graphical display of statements
dps_on Turn on graphical display of statements
dps_show Draw delay or pulses for graphical display of a sequence

Top A B C D E G H | L Mm O P R S T V W X Z
elsenz Execute succeeding statements if argument is nonzero
endhardloop End hardware loop
endif End execution started by ifzero or elsenz
endloop End loop
endmsloop End multislice loop
endpeloop End phase-encode [oop
elsenz Execute succeeding statements if argument is nonzero

Syntax: elsenz (vi)
codeint vij; /* real-time variable tested as 0 or not */

Description: Placed between the i £ zero and end i £ statements to execute succeeding
statements if vi isnonzero. The elsenz statement can be omitted if it is not
desired. It isalso not necessary for any statements to appear between the
ifzeroandtheelsenz, or betweentheelsenz andtheendi £ statements.

Arguments: vi isareal-timevariable (v1tov14, oph, etc.) tested for either being zero or
non-zero.

nisthesamevalue (1, 2, or 3) asused in the corresponding i f zero statement.

Examples: elsenz (v2);
elsenz (1) ;

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 177

Chapter 3. Pulse Sequence Statement Reference

Related:

endhardloop

Applicability:

Syntax:

Description:

Related:

endif

Syntax:

Description:
Arguments:

Examples:

Related:

endloop

Syntax:

Description:
Arguments:

Examples:

Related:

endmsloop

Applicability:
Syntax:

Description:

178

VnmrJ 2.2 Ml User Programming

End ifzero statement
Execute succeeding statements if argument is zero

endif
ifzero

End hardware loop

UNITY]NOVA and MERCURYplus/-Vx
excluding MERCURYplus/-Vx with output boards have part numbers 00-
953529-0# where # isfrom 0 to 4.

endhardloop ()
Ends a hardware loop that was started by the starthardloop statement.

Explicitly acquire data
Start hardware loop

acquire
starthardloop

End execution started by ifzero or elsenz

endif (vi)

codeint vi; /* real-time variable to test if 0 or not */
Ends conditional execution started by the i fzero and e 1 senz statements.

viisarea-timevariable (vl tovl4, oph, etc.) that is tested for either being
ZEro or non-zero.

nisthesamevalue (1, 2, or 3) asused in the corresponding i f zero statement.

endif (v4) ;

endif (2) ;

elsenz Execute succeeding statements if argument is nonzero
ifzero Execute succeeding statements if argument is zero
End loop

endloop (index)

codeint index; /* real-time variable */
Ends aloop that was started by a 1 oop statement.

index isareal-time variable used as atemporary counter to keep track of the
number of times through the loop. It must not be altered by any statements
within the loop.

n isthe same value (1, 2, or 3) as used in the corresponding 1 cop statement.

endloop (v2) ;
endloop(2) ;

loop Start loop

End multislice loop
UNTTYINOVA systems.

endmsloop (state, apv2)
char state; /* compressed or standard */
codeint apv2; /* current counter value */

Ends aloop that was started by ams 1 oop statement.

01-999379-00 A 0708

Arguments. state iseither 'c¢' to designate the compressed mode, or ' s ' to designate
the standard arrayed mode. It should be the same value that wasinthe state
argument in the ms1oop loop that it is ending.
apv?2 isareal-time variable that holds the current counter value. Thisvariable
should be the same variable that wasin the apv2 counter variable in the
msloop loop that it is ending.

Examples: endmsloop (seqgcon([1],v12) ;

Related: msloop Multislice loop
endloop End loop
endpeloop End phase-encode |oop

endpeloop End phase-encode loop
Applicability: UNTYINOVA systems.

Syntax: endpeloop (state,apv2)
char state; /* compressed or standard */
codeint apv2; /* current counter value */

Description: Ends aloop that was started by apeloop statement.

Arguments. state iseither 'c¢' to designate the compressed mode, or ' s ' to designate
the standard arrayed mode. It should be the same value that wasinthe state
argument in the pe1oop loop that it is ending.
apv?2 isareal-time variable that holds the current counter value. Thisvariable
should be the same variable that wasin the apv2 counter variable in the
peloop loop that it is ending.

Examples. endpeloop (seqcon([1],v12);
Related: peloop Phase-encode loop

endloop End loop

endmsloop End multi-slice loop
Top A B C D E G H I L M OP R S T V W X Z
gate Device gating (obsolete)
getarray Get arrayed parameter values
getelem Retrieve an element from atable
getorientation Read image plane orientation
getstr Look up value of string parameter
getval Look up value of numeric parameter
G Delay Generic delay routine
G _Offset Frequency offset routine

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 179

Chapter 3. Pulse Sequence Statement Reference

G _Power

G Pulse

gate

Description:

getarray

Applicability:
Syntax:

Description:

Arguments:

Examples:

Related:

getelem

180

Syntax:

Fine power routine
Generic pulse routine

Device gating (obsolete)

Not supported. Replace gate statements as follows:

gate (DECUPLR, TRUE) by adecon () statement.
gate (DECUPLR, FALSE) by adecoff () statement.
gate (DECUPLR2, TRUE) by adec2on () statement.
gate (DECUPLR2, FALSE) by adec20off () statement.
gate (RXOFF, TRUE) by arcvroff () statement.
gate (RXOFF, FALSE) by arcvron () statement.
gate (TXON, FALSE) by axmtroff () statement.
gate (TXON, TRUE) by axmtron () statement.

Get arrayed parameter values
UNITY|NOVA systems.

number=getarray (parname, array)
char *parname; /* parameter name */
double arrayl]; /* starting address of array */

Retrievesall values of an arrayed parameter from the parameter set. It performs
asizeof onthearray addressto check for the maximum number of statements
that the array can hold. The number of statementsin the arrayed parameter
parname isdetermined and returned by getarray asaninteger. This
statement is very useful when reading in parameter values for aglobal list of
PSG statementssuch aspoffset list andposition offset list.

When creating an acquisition parameter array that will be treated as lists,
protection bit 8 (256) is set if the parameter is not to be treated as an arrayed
acquisition parameter. An example of the pss parameter when compressing
dlice select portion of the acquisitioniscreate (pss, real)
setprotect (pss,on, 256)

number isan integer return argument that holds the number of valuesin
parname.

parname iSanumeric parameter, either arrayed or single value.
array isthe starting address of an array of doubles.

double upss[256]; /* declare array upss */
int uns;
uns = getarray (upss,upss); /* get values from upss */

poffset list (upss,gss,uns,vl2);

create _delay list Create table of delays

create freqg list Create table of frequencies
create offset list Create table of offsets
poffset list Set frequency from position list

position offset list Setfrequency from position list

Retrieve an element from a table

getelem(table, index,dest)

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Description:
Arguments:

Examples:

Related:

codeint table; /* table variable */
codeint index; /* variable for index to element */
codeint dest; /* variable for destination */

Gets an element from atable. The element is identified by an index.
table specifiesthe name of thetable (t1 to t60).

indexisavariable(v1tov14, oph, ct,bsctr,or ssctr)that containsthe
index of the desired table element. Note that the first element of atable has an
index of 0. For tables for which the autoincrement feature is set, the index
argument isignored and can be set to any variable name; each element in such
atableis by definition always accessed sequentially.

dest isanvariable (vl tov14 and oph) into whichtheretrieved table element
isplaced.

getelem(t25,ct,vl) ;

loadtable L oad AP table elements from table text file
setautoincrement Set autoincrement attribute for atable
setdivnfactor Set divn-return attribute and divn-factor for AP table
setreceiver Associate the receiver phase cycle with atable
settable Store an array of integersin areal-time AP table

getorientationRead image plane orientation

Applicability:
Syntax:

Description:

Arguments:

UNITYINOVA systems with PFG modules.

<error return => getorientation (&charl,

&char2, &char3, search string)
char *charl, *char2, *char3; /* program variable pointers */
char *search string; /* pointer to search string */

Readsin and processes the val ue of a string parameter used typically for control
of magnetic field gradients. The source of the string value istypically a user-
created parameter available in the current parameters of the experiment used to
initiate acquisition.

error_return can contain the following values:

® error_ returnissettozeroif getorientation wassuccessful in
finding the parameter givenin search string andreadinginthevalue
of that parameter.

® error returnissetto-1if search string wasnot empty but it
did not contain the correct characters.

® error_ return isset toavaluegreater than zeroif the procedure failed
or if the string value is made up of characters other than n, x, y, and z.

charl, char2, and char3 are user-created program variables of type char
(single characters). The address operator (&) is used with these argumentsto
pass the address, rather than the values of these variables, to
getorientation.

search stringisalitera stringthat getorientation will searchforin
the VnmrJ parameter set, i.e., the parameter name. For example, if

search string="orient", thevalue of parameter orient will be
accessed. The value of the parameter should not exceed three characters and
should only be made up of characters from the set n, X, y, and z.

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 181

Chapter 3. Pulse Sequence Statement Reference

Examples:

Related:

getstr

Syntax:

Description:

Arguments:

Examples:

Related:

getval

182

Syntax:

Description:

Arguments:

Themessage can’t find variable in tree aborts
getorientation. Thismeansthereis no string associated with
search_string or the parameter name cannot be found.

(1) pulsesequence ()

{

char phase,read,slice;

getorientation (&read, &phase, &slice, "orient") ;

1
(2) pulsesequence ()

{

char rd, ph, sl;
int error;

error=getorientation (&rd, &ph, &sl,”ort”) ;

shapedvgradient Dynamic variable shaped gradient function
rgradient Set gradient to specified level
vgradient Dynamic variable gradient function

Look up value of string parameter

getstr (parameter name,internal name)
char *parameter name; /* name of parameter */
char *internal name; /* parameter value buffer name */

Looks up the value of the string parameter parameter name in the current
experiment parameter list and introduces it into the pulse sequence in the
variableinternal name. If parameter name isnotfound in the current
experiment parameter list, internal name isset to the null string and PSG
produces a warning message.

parameter name isastring parameter.

internal name isany legitimate C variable name defined at the beginning
of the pulse sequence as an array of type char with dimension MAXSTR.

getstr ("xpol",xpol) ;
getval Look up value of numeric parameter

Look up value of numeric parameter

internal name = getval (parameter name)
char *parameter name; /* name of parameter */

L ooksup thevalue of the numeric parameter parameter name inthecurrent
experiment parameter list and introduces it into the pulse sequence in the
variableinternal name. If parameter name isnotfound in the current
experiment parameter list, internal name issetto zero and PSG produces
awarning message.

parameter name iSanumeric parameter.

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Examples:

Related:

G Delay

Applicability:
Syntax:

Description:

G Offset

Applicability:
Syntax:

Description:

G _Power

Applicability:
Syntax:

Description:

G Pulse

Applicability:
Syntax:

internal name canbeany legitimate C variable namethat hasbeen defined

at the beginning of the pul se sequence as type double.

J=getval ("J") ;
acqgtime=getval ("at") ;
delay (getval ("mix")) ;

getstr Look up value of string parameter

Generic delay routine
UNTYINOVA systems.

G_Delay(DELAY_TIME, di,
SLIDER LABEL, NULL,
SLIDER SCALE, 1,
SLIDER MAX, 60,
SLIDER MIN, 0,
SLIDER UNITS, 1.0,
0);

See the section “Generic Pulse Routine,” page 100.

Frequency offset routine
UNTYINOVA systems.
G Offset (OFFSET _DEVICE, TODEV,

OFFSET FREQ, tof,
SLIDER LABEL, NULL,
SLIDER SCALE, 0,
SLIDER MAX, 1000,
SLIDER MIN, -1000,
SLIDER UNITS, 0,
0);

See the section “Frequency Offset Subroutine,” page 101.

Fine power routine
UNITY|NOVA systems.

G_Power(POWER_VALUE, tpwrf,
POWER_DEVICE, TODEV,
SLIDER_LABEL, NULL,
SLIDER_SCALE, 1,
SLIDER_MAX, 4095,

SLIDER_MIN, 0,
SLIDER UNITS, 1.0,
0);

See the section “Fine Power Subroutine,” page 103.

Generic pulse routine
UNTYINOVA systems.

G _Pulse (PULSE WIDTH, pw,
PULSE PRE ROFF, rofl,
PULSE POST ROFF, rof2,

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming

183

Chapter 3. Pulse Sequence Statement Reference

Description:

PULSE DEVICE, TODEV,
SLIDER LABEL, NULL,
SLIDER SCALE, 1,
SLIDER MAX, 1000,
SLIDER MIN, 0,
SLIDER UNITS, le-6,
PULSE PHASE, oph,
0);

See “Generic Pulse Routing,” page 100.

Top A B C D E G H | L M O P R S T V W X Z

hdwshiminit
hlv
hsdelay

hdwshiminit

Applicability:
Syntax:

Description:

Examples:

Related:

hlv

Syntax:

Description:
Arguments:

Examples:

Initialize next delay for hardware shimming
Find half the value of an integer
Delay specified time with possible homospoil pulse

Initialize next delay for hardware shimming
UNTYINOVA systems.
hdwshiminit ()

Enables hardware shimming during the following delay or during the following
presaturation pulse, defined as a power level change followed by pulse.
hdwshiminit isnot necessary for thefirst delay or presaturation pulsein a
pulse sequence, which is automatically enabled for hardware shimming.

hdwshiminit () ;
delay (d2) ;
/*hardware shim during d2 if hdwshim='y'*/
hdwshiminit () ;
obspower (satpwr) ;
rgpulse (satdly,v5, rofl, rof2);
/*hardware shim during satdly if hdwshim='p'*/

delay Delay for a specified time

Find half the value of an integer

hlv(vi,vj)
codeint vi; /* real-time variable for starting value */
codeint vj; /* real-time variable for 1/2 starting value */

Setsvj equd to the integer part of one-half of vi.

v1i isthe starting value, and vj isthe integer part of one-half of the starting
value. Both arguments much be real-time variables (v1 to v14, oph, etc.).

hlv(v2,v5) ;

184 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Related: add
assign
dbl
decr
divn
incr
mod2
mod4
modn
mult
sub

hsdelay

Add integer values

Assign integer values
Double an integer value
Decrement an integer value
Divide integer values
Increment an integer value
Find integer value modulo 2
Find integer value modulo 4
Find integer value modulo n
Multiply integer values
Subtract integer values

Delay specified time with possible homospoil pulse

Syntax: hsdelay (time)

double time;

/* delay in sec */

Description: Setsadelay for aspecified number of seconds. If the homospoil parameter hs

is set appropriately (see the definition of status), hsdelay insertsa

homospoil pulse of length hst sec at the beginning of the delay.

Arguments. time specifiesthe length of the delay, in seconds.

Examples: hsdelay (d1) ;
hsdelay (1.5e-3);

Related: delay

incdelay
initdelay

vdelay

Delay for a specified time

Real time incremental delay

Initialize incrementa delay

Delay with fixed timebase and red time count

Top A B C D E G H

idecpulse
idecrgpulse
idelay

ifzero
incdelay
incgradient
incr

indirect

init rfpattern
init gradpattern
init vscan
initdelay

initparms_sis

01-999379-00 A 0708

I L M O P

Pulse first decoupler transmitter with | PA

Pulse first decoupler with amplifier gating and 1PA
Delay for a specified time with |PA

Execute succeeding statements if argument is zero
Set real-time incremental delay

Generate dynamic variable gradient pulse
Increment an integer value

Set indirect detection

Create rf pattern file

Create gradient pattern file

Initialize real-time variable for vscan statement
Initialize incrementa delay

Initialize parameters for spectroscopy imaging sequences

VnmrJ 2.2 Ml User Programming

R s T v W X Z

185

Chapter 3. Pulse Sequence Statement Reference

initval

iobspulse

ioffset

ipulse

ipwrf

ipwrm

irgpulse

idecpulse

Applicability:
Syntax:

Description:

Arguments:

Examples:

Related:

idecrgpulse

Applicability:
Syntax:

186

Description:

Arguments:

Initialize areal-time variable to specified value

Pulse observe transmitter with | PA

Change offset frequency with |PA

Pulse observe transmitter with | PA

Change transmitter or decoupler fine power with IPA
Change transmitter or decoupler lin. mod. power with IPA

Pulse observe transmitter with |PA

Pulse first decoupler transmitter with IPA
UNTYINOVA systems
idecpulse (width, phase, label)

double width; /* pulse width in sec */
codeint phase; /* real-time variable for phase */
char *label; /* slider label in acqgi */

Functions the same asthe decpulse statement but generates interactive
parameter adjustment (I1PA) information when gf orgo ('acgi') istyped.
idecpulse isthesameas decpulse if go istyped.

width isthe duration, in seconds, of the pulse.

phase isthe phase of the pulse. It must be area-time variable (v1 tov14,
oph, etc.) or ared-time constant (zero, one, €tc.).

label isthe short character string to be given to the slider when displayed in
the Acquisition window (acgi program).

idecpulse (pp,Vvl, "decpul") ;
idecpulse (pp,Vv2, "pp") ;

decpulse Pulse the decoupler transmitter

Pulse first decoupler with amplifier gating and IPA
UNTYINOVA systems
idecrgpulse (width, phase,RG1,RG2, label)

double width; /* pulse width in sec */

codeint phase; /* real-time variable for phase */
double RG1; /* gating delay before pulse in sec */
double RG2; /* gating delay after pulse in sec */
char *label; /* slider label in acqgi */

Works similar to the decrgpul se statement but generates interactive
parameter adjustment (I1PA) information when gf orgo ('acgi') istyped.
idecrgpulse isthesameasdecrgpul se if go istyped.

width isthe duration, in seconds, of the decoupler transmitter pulse.

phase sets the decoupler transmitter phase. The value must be areal-time
variable.

RG1 isthetime, in seconds, that the amplifier is gated on prior to the start of the
pulse.

RG2 isthetime, in seconds, that the amplifier is gated off after the end of the
pulse.

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Examples:

Related:

idelay
Applicability:
Syntax:

Description:

Arguments:

Examples:

Related:

ifzero

Syntax:

Description:

Arguments:

Examples:

Related:

label isthe short character string to be given to the slider when displayed in
the Acquisition window (acgi program).

idecrgpulse (pp,Vv5,rofl, rof2, "decpul") ;

idecrgpulse (pp,v4,rofl, rof2, "pp") ;

decrgpulse Pulsedecoupler transmitter with amplifier gating

Delay for a specified time with IPA
UNTYINOVA systems

idelay (time, label)

double time; /* delay in sec */

char *label; /* slider label in acqgi */

Works similar to the de 12y statement but generates interactive parameter
adjustment (1PA) information when gf or go ('acqgi') isentered. idelay
isthesameasdelay if go isentered.

time isthe length of the delay, in seconds.

label isthe short character string to be given to the slider when displayed in
the Acquisition window (acgi program).

idelay(dl, "delay") ;

idelay (d1,"d1i") ;

delay Delay for a specified time

Execute succeeding statements if argument is zero

ifzero(vi)

codeint vij; /* real-time variable to check for zero */
Executes succeeding statementsif vi iszero. If viisnon-zeroandanelsenz
statement exits before the next endi £ statement, execution moves to the
elsenz statement. Conditional execution ends when the endi £ statement is
reached. It is not necessary for any statements to appear between the i fzero
andtheelsenz or betweenthe el senz and the endi £ statements.

viisarea-timevariable (vl tovl4, oph, etc.) that is tested for being either
ZEro or non-zero.

nisthesamevaue(1, 2, or 3) asused inthe corresponding e 1 senz or endi f
statements.

mod2 (ct,vl) ; /* v1=010101... */

ifzero(vl) ; /* test if vl is zero */
pulse (pw, v2) ; /* execute if vl is zero */
delay (d3) ; /* execute if vl is zero */

elsenz (vl) ; /* test if vl is non-zero */
pulse (2.0*pw,v2); /* execute if vl is non-zero */
delay(d3/2.0) ; /* execute if vl is non-zero */

endif (v1) ; /* end conditional execution */

elsenz Execute succeeding statements if argument is nonzero

endif End ifzero statement

initval Initialize real-time variable to specified value

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 187

Chapter 3. Pulse Sequence Statement Reference

inc

delay

Applicability:

inc

Syntax:

Description:

Arguments:

Examples:

Related:

gradient

Applicability:

188

Syntax:

Description:

Set real-time incremental delay
UNTYINOVA systems.

incdelay (count, index)
codeint count; /* real-time variable */
int index; /* time increment: DELAY1l, DELAY2, etc. */

Enables real-time incremental delays. Before incdelay can be used to set a
delay, an associated initdelay statement must be executed to initialize the
time increment and delay index.

count isarea-timevariable (ct, v1 tov14, etc.) that multiplies the
time increment (initializedbytheinitdelay statement)to setthedelay
time.

index iISDELAY1, DELAY2, DELAY3, DELAY4, or DELAYS. It identifies
which timeincrement is being multiplied by count to equal the delay.

incdelay (ct,DELAY1) ;
incdelay (v3,DELAY2) ;

delay Delay for a specified time

hsdelay Delay with possible homospoil pulse
initdelay Initialize incrementa delay

vdelay Delay with fixed timebase and red time count

Generate dynamic variable gradient pulse
UNTYINOVA systems.

incgradient (channel,base, incl,inc2, inc3,multl, mult2, mult3)

char channel; /* gradient 'x', 'y', or 'z' */
int base; /* base value */
int incl,inc2, inc3; /* increments */
codeint multl,mult2,mult3; /* multipliers */

Provides a dynamic variable gradient pulse controlled using the AP math
functions. It drives the chosen gradient to the level defined by the formula:

level=base+incl*multl+inc2*mult2+inc3*mult3
withincrements inc1, inc2, inc3 and multipliersmultl, mult2, mult3.

Therange of the gradient level is—32767 to +32767. If the requested level lies
outsidethelegal range, itisclipped at the appropriate boundary value. Notethat,
while each variablein the 1evel formulamust fit in a 16-bit integer, partial
sums and products in the calculation are done with double-precision 32-bit
integers.

The action of the gradient after the use of the incgradient statement is
controlled by the gradient power supply and optional gradient compensation
boards. The gradient level isramped at the maximum slew rate to the value
requested by incgradient. Thisfact becomesa concern when using the
incgradient statement in aloop with adelay statement to produce a
modul ated gradient. The delay statement should be sufficiently long so asto
allow the gradient to reach the assigned value, that is,
[new level —old level|
full_scale

The following error messages are possible:

delay > X risetime

® Bad gradient specified: channel iscaused by the channel
character evaluating to other than 'x ', 'y, or 'z'; or by being a string.

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Arguments:

Examples:

Related:

incr

Syntax:

Description:
Arguments:

Examples:

Related:

indirect
Applicability:
Syntax:

Description:

® mult[i] illegal RT variable: multiplier i iscausedby
multl, mult2, ormult3 having avalue other than a AP math variable,
vl1tovl4.

channel isan expression that evaluatesto the character 'x', 'y',or 'z'.
(donot confusecharacters 'x ', 'y' and ' z' withstrings"x", "y"and "z".)
base and inc1l, inc2, inc3 are the base value and increments used in the
formulafor determining the gradient level.

multl, mult2, mult3 arethemultipliersused in the gradient level formula
These arguments should be math variables, v1 tov14. Notethat tables(t1 to
t60) are not allowed in this statement.

See the program inctst.c

getorientation Read image plane orientation

rgradient Set gradient to specified level
shapedgradient Provide shaped gradient pulse to gradient channel
shaped2Dgradient Generate arrayed shaped gradient pulse
shapedvgradient Generate dynamic variable shaped gradient pulse
vgradient Generate dynamic variable gradient pulse

Increment an integer value

incr (vi)
codeint vij; /* real-time variable to increment */

Increments by 1 the integer value given by vi (i.e, vi=vi+1).

vi istheinteger to be incremented, It must be areal-time variable (v1 tovi14,
oph, etc.).

incr (v4) ;

add Add integer values
assign Assign integer values

dbl Double an integer value
decr Decrement an integer value
divn Divide integer values

hlv Half the value of an integer
mod?2 Find integer value modulo 2
mod4 Find integer value modulo 4
modn Find integer value modulo n
mult Multiply integer values
sub Subtract integer values

Set indirect detection
No longer useful to any system using VNMR 5.2 or |ater.
indirect ()

Starting with VNMR 5.2, if tnis 'H1' anddnisnot 'H1', the software
automatically uses the decoupler as the observe channel and the broadband
channel as the decoupler channel.

init rfpattern Create rf pattern file

Applicability:

UNTYINOVA systems.

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 189

Chapter 3. Pulse Sequence Statement Reference

Syntax:

char *pattern;
RFpattern *rfpat struct;
int nsteps;

init rfpattern(pattern,rfpat struct,nsteps)

/* name of .RF text file */
/* pointer to struct RFpattern */
/* number of steps in pattern */

typedef struct RFpattern ({

double
double
double

phase;
amp ;
time:

/* phase of pattern step */
/* amplitude of pattern step */
/* length of pattern step in sec */

190

Description:

Arguments:

Examples:

Related:

VnmrJ 2.2 Ml User Programming

} RFpattern

Creates and defines rf patterns within a pulse sequence. The patterns can be
created by any algorithm as long as each pattern step is correctly put into the
rfpat struct argument. The number of stepsin the pattern also hasto be
furnished asan argument. init rfpattern savesthe created pattern asa
pattern file (with the suffix . RF appended to the name) in the user’s
shapelib directory. This statement does not have any return value.

pattern isthe name of the pattern file (without the . RF suffix).
rfpat_struct istherf structure that contains the pattern.
nsteps isthe number of stepsin the pattern.

#include "standard.h"
pulsesequence ()

{

int nsteps;
RFpattern pulsel[512],
Gpattern gshape[512];

pulse2[512];

nsteps = 0;

for (j=0; j<256; j++) {
pulsel[j] .phase = (double)j*0.5;
pulsel[j] .amp = (double)j*2;
pulsel[j].time = 1.0;
nsteps = nsteps +1;

}

init rfpattern(plpat,pulsel,nsteps) ;

nsteps = 512;

for (j=0; j<nsteps;
gshape [j] .amp =
gshape[j] .time =

j++) |
32767.0*sin((double)j/50.
1.0;

}

init gradpattern("gpat",gshape,nsteps) ;
shaped pulse (plpat,pl,vl,rofl,rofl);
shapedgradient ("gpat", .01, 16000.0, 'z', 1, WAIT);

init gradpattern Creategradient patternfile

Pulse observe transmitter with amplifier gating
Perform shaped pul se on observe transmitter
Provide shaped gradient pulse to gradient channel
Pulse observe and decoupl e channels simultaneously

Perform simultaneous two-pul se shaped pulse

pulse

shaped pulse
shapedgradient
simpulse

simshaped pulse

01-999379-00 A 0708

init gradpattern Create gradient pattern file

Applicability:

Syntax:

Description:

Arguments:

Examples:

Related:

initdelay

Applicability:

Syntax:

Description:

Arguments:

Examples:

Related:

UNTYINOVA systems.

init gradpattern(pattern name,gradpat struct,nsteps)

char *pattern; /* name of .GID pattern file */
Gpattern *gradpat struct; /* pointer to struct Gpattern */
int nsteps; /* number of steps in pattern */
typedef struct Gpattern{
double amp; /* amplitude of pattern step */
double time; /* pattern step length in sec */

} Gpattern

Creates and defines gradient patterns within a pulse sequence. The patterns can
be created by any algorithm as long as each pattern step is correctly put into the
gradpat_struct argument. The number of stepsin the pattern also hasto
befurnished asan argument. init gradpattern savesthe created pattern
as apattern file (with a . GRD suffix is appended to the name) in the user’s
shapelib directory. This statement has no return value.

pattern isthe name of the pattern file (without the . GRD suffix).
gradpat_struct isthe gradient structure that contains the pattern.
nsteps isthe number of stepsin the pattern.

Seethe examplefor the init rfpattern Statement.

pulse Pulse observe transmitter with amplifier gating
shaped pulse Perform shaped pulse on observe transmitter
simpulse Pulse observe and decouple channels simultaneously

simshaped pulse Perform simultaneous two-pulse shaped pulse

Initialize incremental delay
UNTYINOVA systems

initdelay (time increment, index)
double time increment; /* time increment in sec */
int index; /* time increment: DELAY1l, etc. */

Initializes atimeincrement delay and its associated delay index. This statement
must be executed beforean incdelay statement can set anincremental delay.
A maximum of five incremental delays (set by the index argument) can be
defined in one pulse sequence.

time increment isthetimeincrement, in seconds, that ismultiplied by the
count argument (set inthe incdelay statement) for the delay time.

index iISDELAY1, DELAY2, DELAY3, DELAY4, of DELAYS, and identifies
which time increment is being initialized.

initdelay(1.0/sw,DELAY1) ;
initdelay(1.0/swl,DELAY2) ;

delay Delay for a specified time

hsdelay Delay with possible homospoil pulse
incdelay Real time incremental delay

vdelay Delay with fixed timebase and red time count

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 191

Chapter 3. Pulse Sequence Statement Reference

initparms_sis Initialize parameters for spectroscopy imaging sequences
Applicability:

Syntax:

Description:

Examples:

initval

Syntax:

Description:

Arguments:

Examples:

Related:

iobspulse

Applicability:

192

Syntax:

Imaging systems; however, this statement will be obsoleted in future versions
of VnmrJ.

void initparms sis ()

Sets the default state of the receiver to ON so that the receiver is enabled for
explicit acquisitions. The original purpose of initparms sis wasto

initialize the standard imaging parameters in imaging sequences, but starting
with VNMR 5.3, initialization of these parameters has been folded into PSG.

/* To upgrade older SIS sequences for Vnmr 5.1+: */
/* insert initparms sis() after the variable */
/* declarations and update ‘griserate’ variable. */

/* EXTERNAL TRIGGER */

double rcvry,hold;

initparms_sis () ;

griserate = trise/gradstepsz;

/**[3.2] PARAMETER READ IN FROM EXPERIMENT ***%%%% /

Initialize a real-time variable to specified value

initval (number,vi)
double number; /* value to use for initialization */
codeint vi; /* variable to be initialized */

Initializes areal- time variable with areal number. The real number input is
rounded off and placed inthevariable vi. Unlikeadd, sub, etc., initvalis
executed once and only once at the start of a non-arrayed 1D experiment or at
the start of each increment in an n-dimensional or an arrayed experiment, not at
the start of each transient; this must be taken into account in pulse sequence
programming, as shown in the example.

number istherea number, from —32768.0 to 32767.0, to be placed in the real -
time variable. Entering avalue lessthan —32768.0 (after rounding off) resultsin
using —32768, and entering a value greater than 32767.0 (after rounding off)
resultsin using 32767.

vi istherea-timevariable (v1 to v14, etc.).to beinitialized
(1) initval (nt,v8) ;

(2) ifzero(ct) ;
assign(v8,v7) ;
elsenz(ct) ;

decr (v7) ;
endif (ct) ;
elsenz Execute succeeding statements if argument is nonzero
ifzero Execute succeeding statements if argument is zero
loop Start loop

Pulse observe transmitter with IPA
UNTYINOVA systems

iobspulse (label)
char *label; /* slider label in acgi */

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Description:

Arguments:

Examples:

Related:

ioffset

Applicability:
Syntax:

Description:

Arguments:

Examples:

Related:

ipulse

Applicability:
Syntax:

Description:

Arguments:

Examples:

Related:

01-999379-00 A 0708

Functions the same as obspulse except iobspulse generates interactive
parameter adjustment (IPA) information when gf orgo ('acgi') isentered.
If go isentered, iobspulse isthesameasobspul se.

label isthe short character string to be given to the slider when displayed in
the Acquisition window (acgi program).

iobspulse ("pulse") ;

iobspulse ("pw") ;

obspulse Pulse observe transmitter with amplifier gating

Change offset frequency with IPA
UNITY|NOVA systems

ioffset (frequency,device, label)

double frequency; /* offset frequency */

int device; /* OBSch, DECch, DEC2ch, or DEC3ch */
char *label; /* slider label in acgi */

Functionsthe sameas of £ set except that iof fset generatesinteractive
parameter adjustment (IPA) information when gf orgo ('acgi') isentered.
If goisentered, ioffset isthesameasof fset.

frequency isthe new offset frequency of the device specified.

device isOBSch (observe transmitter) or DECch (first decoupler). device
can also be DEC2ch (second decoupler) or DEC3 ch (third decoupler).

label isthe short character string to be given to the slider when displayed in
the Acquisition window (acgi program).
ioffset (tof,OBSch, "tof") ;

offset Change offset frequency of transmitter or decoupler

Pulse observe transmitter with IPA
UNTYINOVA systems

ipulse (width, phase, label)

double width; /* pulse length in sec */

codeint phase; /* real-time variable for phrase */
char *label; /* slider label in acqgi */

Functionsthesameas pulse (width, phase) statement except that
ipulse generatesinteractive parameter adjustment (IPA) information when
gf orgo('acqgi') isentered. If go isentered, ipulse isthe same as
pulse.

width specifies the duration, in seconds, of the pulse.

phase setsthe phase of the pulse. The value must be areal-time variable (v1
tov14, oph, €tc.).

label isthe short character string to be given to the slider when displayed in
the Acquisition window (acgi program).

ipulse (pw,Vv4, "pulse") ;

ipulse (pw, V5, "pw") ;

pulse Pulse observe transmitter with amplifier gating

193

VnmrJ 2.2 Ml User Programming

Chapter 3. Pulse Sequence Statement Reference

ipwrf

Applicability:
Syntax:

Description:

Arguments:

Examples:

Related:

ipwrm

Applicability:
Syntax:

Description:

Arguments:

Examples:

Related:

irgpulse

Applicability:
Syntax:

194

Change transmitter or decoupler fine power with IPA
UNTYINOVA systems

ipwrf (power,device, label)

double power; /* new fine power level */
int device; /* OBSch, DECch, DEC2ch, DEC3ch */
char *label; /* slider label in acqgi */

Functions the same as r 1 pwr £ statement except that ipwr £ generates
interactive parameter adjustment (1PA) informationwhengf orgo ('acgi')
isentered. If go isentered, ipwrf isignored by the pulse sequence; use
r1pwrf for thispurpose. Do not execute r 1 pwr £ and ipwrf together
because they cancel each other's effect.

power isthe new fine power level. It can range from 0.0 to 4095.0 (60 dBon
UNITYINOVA, about 6 dB on other systems).

device iSOBSch (observe transmitter) or DECch (first decoupler). For the
UNITYINOVA onlydevice canalso be DEC2ch (second decoupler) or DEC3ch
(third decoupler).

label isthe short character string to be given to the slider when displayed in
the Acquisition window (acgi program).

ipwrf (powr, OBSch, "fpower") ;
ipwrf (2000.0,DECch, "dpwrf") ;

rlpwrf Set transmitter or decoupler fine power

Change transmitter or decoupler lin. mod. power with IPA
UNTYINOVA systems

ipwrm(value,device, label)

double value; /* new linear modulator power level */
int device; /* OBSch, DECch, DEC2ch, or DEC3ch */
char *label; /* slider label in acqgi */

Functions the same as r 1 pwrm statement except that ipwrm generates
interactive parameter adjustment (1PA) informationwhengf orgo ('acgi')
isentered. If go isentered, ipwrm isignored by the pul se sequence; use
r1pwrmfor thispurpose. Do not execute r 1 pwrm and i pwrm together asthey
cancel each other's effect.

value isthe new linear modulator power level. It can range from 0.0 to
4095.0(60 dB on UN'TYINOVA, about 6 dB on other systems).

device iSOBSch (observe transmitter) or DECch (first decoupler). On the
UNITYINOVA only device can aso be DEC2ch (second decoupler) or DEC3ch
(third decoupler).

label isthe short character string to be given to the slider when displayed in
the Acquisition window (acgi program).

ipwrm (power, OBSch, "fpower") ;
ipwrm (2000.0,DECch, "dpwrm") ;

rlpwrm Set transmitter or decoupler linear modulator power

Pulse observe transmitter with IPA
UNITY|NOVA systems
irgpulse (width, phase,RG1,RG2, label)

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Description:

Arguments:

Examples:

Related:

double width; /* pulse length in sec */

codeint phase; /* real-time variable for phase */
double RG1; /* gating delay before pulse in sec */
double RG2; /* gating delay after pulse in sec */
char *label; /* slider label in acqgi */

Functions the same asthe rgpul se statement except that irgpulse
generates interactive parameter adjustment (IPA) information when gf or
go('acgi') isentered. If go isentered, irgpulse isthe same as
rgpulse.

width specifies the duration, in seconds, of the observe transmitter pulse.
phase setsthe observe transmitter phase. It must be a real-time variable.

RG1 isthetime, in seconds, the amplifier is gated on prior to the start of the
pulse.

RG2 isthetime, in seconds, the amplifier is gated off after the end of the pulse.

label isthe short character string to be given to the slider when displayed in
the Acquisition window (acgi program).

irgpulse (pw,v3,rofl, rof2, "rgpul") ;
irgpulse (pw,v7,rofl, rof2, "pw") ;

rgpulse Pulse observe transmitter with amplifier gating

Top A B C D E G H | L M O P R S T V W X Z

1k _hold

lk sample
loadtable
loop

loop check

1k_hold
Syntax:

Description:

lk sample
Syntax:

Set lock correction circuitry to hold correction

Set lock correction circuitry to sample lock signal

L oad table elements from table text file

Start loop

Check that number of FIDsis consistent with number of slices, etc.

Set lock correction circuitry to hold correction
1k_hold ()

Makes the lock correction circuitry hold the correction to the zO constant,
thereby ignoring any influence on the lock signal such as gradient or pulses at
°H frequency. The correction remainsin effect until thestatement 1k sample
iscalled or until the end of an experiment. If an acquisition is aborted, the lock
correction circuitry will be reset to sample the lock signal.

Set lock correction circuitry to sample lock signal

1k _sample ()

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 195

Chapter 3. Pulse Sequence Statement Reference

Description: Makes the lock correction circuitry continuously sample the lock signal and
correct z0 with the time constant as set by the parameter lockacgtc. The
correction remains in effect until the statement 1k hold iscalled.

loadtable Load table elements from table text file
Syntax: loadtable (file)
char *file; /* name of table file */

Description: Loadstable elementsfrom atablefile (a UNIX text file). It can be called
multiple times within a pulse sequence but make sure that the same table name
is not used more than once within all the table files accessed by the sequence.
Table values can be greater than, equal to, or less than zero.

Arguments. file isthe name of atablefilein auser’'s private tablib or in the system
tablib.

Examples: loadtable ("tabletest") ;

Related: getelem Retrieve an element from atable
setautoincrement Set autoincrement attribute for atable
setdivnfactor Set divn-return attribute and divn-factor for AP table
setreceiver Associate the receiver phase cycle with atable
settable Store an array of integersin areal-time AP table

loop Start loop

Syntax: loop (count, index)
codeint count /* number of times to loop */
codeint index /* real-time variable to use during loop */

Description: Startsaloop to execute statementswithin the pul se sequence. Theloop isended
by the endloop statement.

Arguments. count isaread-time variable used to specify the number of times through the
loop. count can be any positive number, including zero.

index isareal-time variable used as atemporary counter to keep track of the
number of times through the loop. The value must not be altered by any
statements within the loop.

n isthe same value (1, 2, or 3) as used in the corresponding endloop

statement.

Examples. (1) initval(5.0,v1); /* set first loop count */
loop (vl,v10) ;
dbl (ct,v2) ; /* set second loop count */

loop (v2,v9) ;
rgpulse (pl,v1,0.0,0.0);
endloop (v9) ;
delay(d2) ;
endloop (v10) ;

(2) loop(2,5.0,v9) ;

Related: initval Initialize real-time variable to specified value
endloop End loop
msloop Multislice loop

196 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

loop check Check that number of FIDs is consistent with number of slices, etc.
Syntax: loop_check
Description: Checks that the number of FIDs in a compressed acquisition (nf) is consistent
with the number of slices (ns), number of echoes (ne), number of phase
encoding steps in the various dimensions (nv, nv2, nv3), and segcon.
Top A B C D E G H I L M OP R S T V W X Z
magradient Simultaneous gradient at the magic angle
magradpulse Gradient pulse at the magic angle
mashapedgradient Simultaneous shaped gradient at the magic angle
mashapedgradpulse Simultaneous shaped gradient pulse at the magic angle
mod?2 Find integer value modulo 2
mod4 Find integer value modulo 4
modn Find integer value modulo n
msloop Multislice loop
mult Multiply integer values
magradient Simultaneous gradient at the magic angle
Applicability: UNTYINOVA systems.
Syntax: magradient (gradlvl)
double gradlvl; /* gradient amplitude in G/cm */
Description: Appliesasimultaneous gradient onthex, y, and z axes at the magic angleto B,
Information from agradient tableis used to scale and set values correctly. The
gradients are left at the given levels until they are turned off. To turn off the
gradients, add another magradient statement with gradlvl set to zero or
insert the statement zero all gradients.
Arguments. gradlvl isthe gradient amplitude, in gauss/cm.
Examples: magradient (3.0) ;
pulse (pw, oph) ;
delay (0.001 - pw);
zero_all gradients() ;

Related: magradpulse Simultaneous gradient pulse at the magic angle
mashapedgradient Simultaneous shaped gradient at the magic angle
mashapedgradpulse Simultaneous shaped gradient pulse at the magic angle
vagradient Variable angle gradient
vagradpulse Variable angle gradient pulse
vashapedgradient Variable angle shaped gradient

vashapedgradpulse Variable angle shaped gradient pulse
zero all gradients Zerodl gradients

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 197

Chapter 3. Pulse Sequence Statement Reference

magradpulse

Applicability:

Syntax:

Description:

Arguments:

Examples:

Related:

Gradient pulse at the magic angle
UNTYINOVA systems.

magradpulse (gradlvl,gradtime)
double gradlvl; /* gradient amplitude in G/cm */
double gradtime; /* gradient time in sec */

Appliesasimultaneous gradient pulse on the x, y, and z axes at the magic angle
to Bg. Information from agradient table isused to scale and set val ues correctly.

magradpulse differsfrommagradient inthat the gradients areturned off
after gradt ime seconds. Use magradpulse if there are no other actions
while the gradients are on. magradient isused if there are actions to be
performed while the gradients are on.

gradlvl isthe gradient pulse amplitude, in gauss/cm.
gradtime isthetime, in seconds, to apply the gradient.

magradpulse(3.0,0.001) ;

magradient Simultaneous gradient at the magic angle
mashapedgradient Simultaneous shaped gradient at the magic angle
mashapedgradpulse Simultaneous shaped gradient pulse at the magic angle
vagradient Variable angle gradient

vagradpulse Variable angle gradient pulse

vashapedgradient Variable angle shaped gradient

vashapedgradpulse Variable angle shaped gradient pulse
zero all gradients Zerodl gradients

mashapedgradient Simultaneous shaped gradient at the magic angle
Applicability:

198

Syntax:

Description:

Arguments:

UNTYINOVA systems.

mashapedgradient (pattern,gradlvl,gradtime, loops,wait)

char *pattern; /* name of gradient shape text file */
double gradlvl; /* gradient amplitude in G/cm */
double gradtime; /* gradient time in seconds */

int loops; /* number of waveform loops */

int wait; /* WAIT or NOWAIT*/

Applies a simultaneous gradient with shape pattern and amplitude
gradlvl onthex,y, and z axes at the magic angle to B. Information is used
from a gradient table to scale and set the values correctly.
mashapedgradient |leavesthe gradients at the given levels until they are
turned off. To turn off the gradients, add another mashapedgradient
statement with gradlvl setto zero or includethe zexro all gradients
Statement.

mashapedgradpul se differsfrom mashapedgradient inthat the
gradients are turned off after gradt ime seconds. mashapedgradient is
used if there are actions to be performed while the gradients are on.
mashapedgradpul se isbest when there are no other actions required while
the gradients are on.

pattern isthe name of atext file describing the shape of the gradient. The
text fileislocated in Svnmrsystem/shapelib or inthe user directory
Svnmruser/shapelib.

gradlvl isthe gradient amplitude, in gauss’cm.
gradtime isthe gradient application time, in seconds.

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

loops isavaue from 0 to 255 to loop the selected waveform. Gradient
waveforms do not use thisfield, and 1oops isset to 0.

wait isakeyword, either WAIT or NOWAIT, that selectswhether or not adelay
isinserted to wait until the gradient is completed before executing the next
Statement.

Examples: mashapedgradient ("ramp hold",3.0,trise, 0,NOWAIT) ;
pulse (pw, oph) ;
delay (0.001-pw-2*trise) ;
mashapedgradient ("ramp down",3.0,trise, 0,NOWAIT) ;

Related: magradient Simultaneous gradient at the magic angle
magradpulse Simultaneous gradient pulse at the magic angle
mashapedgradpulse Simultaneous shaped gradient pulse at the magic angle
vagradient Variable angle gradient
vagradpulse Variable angle gradient pulse
vashapedgradient Variable angle shaped gradient
vashapedgradpulse Variable angle shaped gradient pulse
zero all gradients Zerodl gradients

mashapedgradpulse Simultaneous shaped gradient pulse at the magic angle
Applicability: UNTYINOVA systems.

Syntax: mashapedgradpulse (pattern,gradlvl,gradtime, theta, ph)
char *pattern; /* name of gradient shape text file */
double gradlvl; /* gradient amplitude in G/cm */
double gradtime; /* gradient time in sec */

Description: Applies a simultaneous gradient with shape pattern and amplitude
gradlvl onthex,y, and zaxes at the magic angle to B,
mashapedgradpulse assumesthat the gradient pattern zeroesthe gradients
at its end and so it does not explicitly zero the gradients. Information from a
gradient table is used to scale and set values correctly.
mashapedgradpulse isusedif thereareno other actionsrequired when the
gradientsareon. mashapedgradient isused if there are actions to be
performed while the gradients are on.

Arguments. pattern isthe name of atext file describing the shape of the gradient. The
text fileislocated in Svnmrsystem/shapelib or inthe user directory
Svnmruser/shapelib.
gradlvl isthe gradient amplitude, in gauss’cm.
gradtime isthe gradient application time, in seconds.

Examples: mashapedgradpulse ("hsine",3.0, 0.001);

Related: magradient Simultaneous gradient at the magic angle
magradpulse Simultaneous gradient pulse at the magic angle
mashapedgradient Simultaneous shaped gradient at the magic angle
vagradient Variable angle gradient
vagradpulse Variable angle gradient pulse
vashapedgradient Variable angle shaped gradient

vashapedgradpulse Variable angle shaped gradient pulse
zero all gradients Zerodl gradients

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 199

Chapter 3. Pulse Sequence Statement Reference

mod2

Syntax:

Description:
Arguments:

Examples:

Related:

mod4

Syntax:

Description:
Arguments:

Examples:

modn

Syntax:

Description:
Arguments:

Examples:

msloop

Applicability:
Syntax:

200

VnmrJ 2.2 Ml User Programming

Find integer value modulo 2

mod2 (vi,vj)
codeint vi;
codeint vj;

/* variable for starting value */
/* variable for result */

Setsthe value of vj equal to vi modulo 2.

vi isthe starting integer value and v isthe value of vi modulo 2 (the
remainder after vi isdivided by 2). Both arguments must bereal-time variables
(vitovid4,etc).

mod2 (v3,v5) ;

add Add integer values
assign Assign integer values

dbl Double an integer value
decr Decrement an integer value
divn Divide integer values

hlv Half the value of an integer
incr Increment an integer value
mod4 Find integer value modulo 4
modn Find integer value modulo n
mult Multiply integer values
sub Subtract integer values

Find integer value modulo 4

mod4 (vi,vj)
codeint vi;
codeint vj;

/* variable for starting value */
/* variable for result */

Setsthe value of vj equal to vi modulo 4.

vi isthe starting integer value and v isthe value of vi modulo 4 (the
remainder after vi isdivided by 4). Both arguments must bereal-time variables
(vitovidg,etc).

mod4 (v3,v5) ;

Find integer value modulo n

modn (vi,vj,vk)
codeint vi;
codeint vj;
codeint vk;

/* real-time variable for starting value */
/* real-time variable for modulo number */
/* real-time variable for result */

Setsthe value of vk equal to vi modulo v7.

vi isthe starting integer value, vj isthe modulo value, and vk isvi modulo
vj (the remainder after vi isdivided by v3j). All arguments must be real-time
variables (v1 tovi4, etc.).

modn (v3,v5,v4) ;

Multislice loop
UNTYINOVA systems.

msloop (state,max count,apvl,apv2)
char state; /* compressed or standard */
double max_count; /* initializes apvl */

01-999379-00 A 0708

Description:

Arguments:

Examples:

Related:

mult

Syntax:

Description:
Arguments:

Examples:

Related:

codeint apvl; /* maximum count */
codeint apv2; /* current counter value */

Provides a sequence-switchable loop that can usereal-time variablesin what is
known as a compressed loop or it can use the standard arrayed features of PSG.
Inimaging sequences, ms1oop usesthe second character of the segcon string
parameter (segcon [1]) for the state argument. msloop isusedin
conjunction with endmsloop.

state isether ' c' to designate the compressed mode, or ' s ' to designate
the standard arrayed mode.

max_count initializesapvl. If stateis 'c¢', thisvaue should equal the
number of dices. If stateis's"', thisvalue should be 1.0.

apvl isreal-time variable that holds the maximum count.

apv?2 isareal-timevariable that holds the current counter value. If state is
'c', apv2 countsfrom 0 tomax_count-1.If stateis's', apv2 isset
to zero.

msloop (seqcon[l] ,ns,v1l,v12) ;
poffset list (pss,gss,ns,v12);
acquire (np,1.0/sw) ;

endmsloop (seqcon[1],v12) ;

endmsloop End multislice loop
loop Start loop
peloop Phase-encode loop

Multiply integer values

mult (vi,vj,vk)

codeint vij; /* real-time variable for first factor */
codeint vij; /* real-time variable for second factor */
codeint vk; /* real-time variable for product */

Setsthe value of vk equal to the product of the integer valuesvi and vj.

vi isaninteger value, v3j isanother integer value, and vk isthe product of vi
and vij. All arguments must be real-time variables (v1 to v14 etc.).

mult (v3,v5,v4) ;

add Add integer values
assign Assign integer values

dbl Double an integer value
decr Decrement an integer value
divn Divide integer values

hlv Half the value of an integer
incr Increment an integer value
mod?2 Find integer value modulo 2
mod4 Find integer value modulo 4
modn Find integer value modulo n
sub Subtract integer values

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 201

Chapter 3. Pulse Sequence Statement Reference

O

Top A B

obl gradient

oblique gradient

obl shapedgradient

obl shaped3gradient
oblique shapedgradient

obsblank
obsoffset
obspower
obsprgoff
obsprgon
obspulse
obspwrt
obsstepsize
obsunblank
offset
offsetlist

offsetglist

obl gradient
Applicability:
Syntax:

Description:

Arguments:
Examples:

oblique gradient

Applicability:
Syntax:

202

C D E G H I L

VnmrJ 2.2 Ml User Programming

M O P R S T V W X Z

Execute an oblique gradient

Execute an oblique gradient

Execute a shaped oblique gradient

Execute a shaped oblique gradient

Execute a shaped oblique gradient

Blank amplifier associated with observe transmitter
Change offset frequency of observe transmitter
Change observe transmitter power level, lin. amp. systems
End programmable control of observe transmitter
Start programmable control of observe transmitter
Pulse observe transmitter with amplifier gating

Set observe transmitter fine power

Set step size for observe transmitter

Unblank amplifier associated with observe transmitter
Change offset frequency of transmitter or decoupler

Calculate list of frequency offsets for observe channel from
position array and gradient value

Calculate list of frequency offsets for observe channel from
position array and gradient value array

Execute an oblique gradient
UNTYINOVA systems.

obl gradient (levell,level2,level3)
double levell,level2,level3; /* gradient values in G/cm */

Defines an oblique gradient with respect to the magnet reference frame. This
statement isbasically the sameasthestatement obligue gradient except
that obl gradient usesthe parameterspsi, phi, and theta inthe
parameter set rather than setting them directly. It has no return value.

The pulse sequence generation abortsif the DACs on a particular gradient are
overrun after the angles and amplitude have been resolved.

levell, level2, level3 are gradient values, in gauss’cm.

obl gradient(0.0,0.0,gss);
obl gradient (gro,0.0,0.0);

Execute an oblique gradient
UNTYINOVA systems.

oblique gradient (levell, level2, level3,psi,phi,theta)
double levell,level2,level3; /* gradient values in G/cm */

01-999379-00 A 0708

Description:

Arguments:

Examples:

double psi,phi,theta; /* Euler angles in degrees */

Defines an oblique gradient with respect to the magnet reference frame. It has
no return value. The gradient amplitudes (levell, level2, level3) are
put through a coordinate transformation matrix using psi, phi, and thetato
determine the actual x, y, and z gradient levels. These are then converted into
DAC values and set with their corresponding gradient statements. For more
coordinate system information, refer to the manual VnmrJ Imaging, User
Guide.

The pulse sequence generation abortsif the DACs on a particular gradient are
overrun after the angles and amplitude have been resolved.

levell, level2, level3 are gradient values, in gauss’cm.
psi isan Euler angle, in degrees, with arange of —90 to +90.
phi isan Euler angle, in degrees, with the range of —180 to +180.
theta isan Euler angle, in degrees, with the range —90 to +90.

oblique gradient (gvoxl,0,0,vpsi,vphi, vtheta) ;

obl shapedgradient Execute a shaped oblique gradient

Applicability:
Syntax:

Description:

Arguments:

Examples:

UNTYINOVA systems.

UNTYINOVA Systems
obl shapedgradient (patl,pat2,pat3,
width,1v1l1l,1v12,1v13,loops,wait)

char *patl,*pat2,*pat3; /* names of gradient shapes */
double width; /* gradient length in sec */
double 1vll,1v12,1vl1l3; /* gradient values in G/cm */
int loops; /* times to loop waveform */
int wait; /* WAIT or NOWAIT */

Defines a shaped oblique gradient with respect to the magnet reference frame.

The pulse sequence generation abortsif the DACs on a particular gradient are
overrun after the angles and amplitude have been resolved.

pat, patl, pat2, andpat3 are namesof gradient shapes.
width isthelength of the gradient, in seconds.

levell, level2, level3 are gradient values, in gauss’cm.
loops isthe number of times, from 1 to 255, to |oop the waveform.

wait isakeyword, either WAIT or NOWAIT, that selects whether or not a
delay isinserted to stop until the gradient has completed before executing the
next statement.

UNTYINOVA systems

obl shapedgradient ("ramp hold","","",
trise,gro,0.0,0.0,1,NOWAIT) ;

oblique shapedgradient Execute ashaped oblique gradient

Applicability:
Syntax:

UNTYINOVA systems.

oblique shapedgradient (patl,pat2,pat3,width,1vll,
1v12,1v13,psi,phi, theta, loops,wait)

char *patl,*pat2,*pat3; /* names of gradient shapes */

double width; /* gradient length in sec */

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 203

Chapter 3. Pulse Sequence Statement Reference

204

Description:

Arguments:

Examples:

double 1vll,1v12,1vl1l3; /* gradient values in G/cm */
double psi,phi,theta; /* Euler angles in degrees */
int loops; /* times to loop waveform */
int wait; /* WAIT or NOWAIT */

Defines a shaped oblique gradient with respect to the magnet reference frame.
The gradient patterns (pat 1, pat2, pat3) and the gradient amplitudes
(1vli, 1v12, 1v13)areput throughacoordinate transformation matrix using
psi, phi, and theta to determine the actual X, y, and z gradient levels.

patl and 1v11 correspond to the logical read-out axis.
pat2 and 1v12 correspond to the logical phase-encode axis.
pat3 and 1v13 correspond to the logical slice-select axis.

Patternsare read in; scaled according to their respective amplitudes; rotated into
X, Yy, and z patterns; rescaled; converted to DAC values; and written out to
temporary files shapedgradient x, shapedgradient y, and
shapedgradient zintheuser's shapelib directory; and set with their
corresponding shapedgradient statements. If an axis does not have a
pattern, use empty quotes (") to indicate anull pattern. The patterns must have
the same number of points, or an integral multiple number of points.

The pulse sequence generation abortsif the DACs on a particular gradient are
overrun after the angles and amplitude have been resolved.

patl, pat2, pat3 arenames of gradient shapes.

width isthelength of the gradient, in seconds.

1v11, 1v12, 1v13 aregradient values, in gauss/cm.

psi isan Euler angle, in degrees, with arange of —90 to +90.

phi isan Euler angle, in degrees, with the range —180 to +180.
theta isan Euler angle, in degrees, with the range —90 to +90.
loops isthe number of times, from 1 to 255, to |oop the waveform.

wait isakeyword, either WAIT or NOWAIT, that selects whether or not a
delay isinserted to stop until the gradient has completed before executing the
next statement.

WAIT or NOWAIT adds extra pulse sequence programming flexibility for
imaging experiments. It alows performing other pul se sequence events during
thegradient pulse. Becauseoblique shapedgradient “talks’ tothex,y,
and z gradient axes, NOWAIT cannot be used to produce simultaneous oblique
gradient pulses, even if they are orthogonal . In the following example,

oblique shapedgradient (patx,tdelta,gdiff,
0.0,0.0, 0.0,0.0,0.0, 1,NOWAIT);

oblique shapedgradient (paty,tdelta 0.0,gdiff,
0.0,0.0,0.0,0.0, 1,NOWAIT);

oblique shapedgradient (patz,tdelta,0.0,0.0,gdiff,
0.0,0.0,0.0, 1,WAIT);

the first two function calls set up al three gradients. In both cases, after a few
microseconds, the gradient hardwareisreset by the third function call, whichis
the only call fully executed. Even though the third call is executed, expect
negative side-effects from the first two suppressed calls.

oblique shapedgradient ("ramp hold","","",trise,gvoxl,
0,0,vpsi,vphi,vtheta,1l,NOWAIT) ;

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

obsblank

Syntax:

Description:

Related:

obsoffset

Syntax:

Description:

Arguments:
Examples:

Related:

obspower

Applicability:
Syntax:

Description:

Arguments:

01-999379-00 A 0708

Blank amplifier associated with observe transmitter
obsblank ()

Disablesthe amplifier for the observe transmitter. This statement is generally
used after acall to obsunblank.

decunblank Unblank amplifier associated with first decoupler
obsunblank Unblank amplifier associated with observe transmitter
rcvroff Turn off receiver

rcvron Turn on receiver

Change offset frequency of observe transmitter

obsoffset (frequency)

double frequency; /* offset frequency */

Changesthe offset frequency, in Hz, of the observetransmitter (parameter tof).
Itisfunctionally thesameasof fset (frequency, OBSch).

® Systemswith rf types A or B: the frequency typically changes between 10
to 30 us, but 100 usisautomatically inserted into the sequence by the
of fset statement so that thetime duration of of £ set isconstant and not
frequency-dependent.

® Systems with rf type C: which necessarily have PTS frequency
synthesizers, the frequency shift timeis15.05 usfor standard, non-latching
synthesizers and 21.5 us for the latching synthesizers with the overrange/
under-range option.

® UNTYINOVA, the frequency shift timeis4 us.

®* MERCURYplug/-Vx, this statement inserts a 86.4-us delay, although the
actual switching of the frequency takes 1 us.

® Systems with an Output board (and only those systems): all offset
statements by default are preceded internally by a 0.2-us delay (see the
apovrride statement for more details).

frequency isthe offset frequency desired for the observe channel.
obsoffset (to) ;

decoffset Change offset frequency of first decoupler
dec2offset Change offset frequency of second decoupler
dec3offset Change offset frequency of third decoupler
offset Change offset frequency of transmitter or decoupler

Change observe transmitter power level
UNITYINOVA systems with linear amplifiers.

obspower (power)

double power; /* new coarse power level */

Changes observe transmitter power. This statement is functionally the same as
rlpower (value, OBSch).

power setsthe power level by assuming valuesfrom O (minimum power) to 63
(maximum power) on channelswith a 63-dB attenuator or from —16 (minimum
power) to 63 (maximum power) on channels with a 79-dB attenuator.

205

VnmrJ 2.2 Ml User Programming

Chapter 3. Pulse Sequence Statement Reference

CAUTION:

Related:

obsprgoff
Applicability:

Syntax:
Description:
obsprgon

Applicability:

Syntax:

Description:

Arguments:

Examples:

Related:

obspulse

Syntax:

Description:

Be careful when using values of obspower greater than 49 (about 2
watts). Performing continuous decoupling or long pulses at power
levels greater than this can result in damage to the probe. Use config
to set a safety maximum for the tpwr, dpwr, dpwr2, and dpwr3
parameters.

decpower Change first decoupler power
dec2power Change second decoupler power
dec3power Change third decoupler power
rlpower Change power level

End programmable control of observe transmitter

UNITYINOVA systems with a waveform generator on the observe transmitter
channel.

obsprgoff ()

Terminates any programmabl e phase and amplitude control on the observe
transmitter started by the obsprgon statement under waveform control.

Start programmable control of observe transmitter

UNITYINOVA systems with a waveform generator on the observe transmitter
channel.

obsprgon (pattern, 90 pulselength,tipangle resoln)
char *pattern; /* name of .DEC text file */
double 90 pulselength; /* 90-deg pulse length, in sec */
double tipangle resoln; /* tip-angle resolution */

Executes programmabl e phase and amplitude control on the observe transmitter
under waveform control. It returns the number of 12.5-ns ticks (as an integer
value) in one cycle of the decoupling pattern. Explicit gating of the observe
transmitter with xmt ron and xmtrof £ isgenerally required. Arguments can
be variables (which requires appropriate getval and get st r statements) to
permit changes via parameters (see second example).

pattern isthename of the text file (without the . DEC file suffix) in the
shapelib directory that stores the decoupling pattern.

90 pulselength isthe pulseduration, in seconds, for a90° tip angle on the
observe transmitter.

tipangle resoln istheresolution in tip-angle degreesto which the
decoupling pattern is stored in the waveform generator.

obsprgon ("waltzlée",pw90,90.0) ;
obsprgon ("modulation",pp90,dres) ;
ticks=obsprgon ("waltzl6e",pw90,90.0) ;

decprgon Start programmable decoupling on first decoupler
dec2prgon Start programmable decoupling on second decoupler
obsprgoff End programmable control of observe transmitter

Pulse observe transmitter with amplifier gating
obspulse ()

A special case of the rgpulse (width, phase, RG1,RG2) statement, in
which width is preset to pw and phase ispreset to oph. Thus, obspulse

206 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Related:

obspwrf
Applicability:
Syntax:

Description:

Arguments:
Examples:

Related:

obsstepsize

Syntax:

Description:

Arguments:
Examples:

Related:

obsunblank

Syntax:

Description:

Related:

01-999379-00 A 0708

isexactly equivalentto rgpulse (pw, oph, rof 1, rof2). Note that
obspulse has nothing whatsoever to do with data acquisition, despiteits
name. Except in special cases, data acquisition begins at the end of the pulse
sequence.

Pulse observe transmitter with amplifier gating
Pulse observe transmitter with amplifier gating
Pulse observe, decoupler channels smultaneously
Simultaneous pulse on 2 or 3 rf channels

pulse
rgpulse
simpulse
sim3pulse

Set observe transmitter fine power
UNITY|NOVA systems.

obspwrf (power)

double power; /* new fine power level for OBSch */

Changesobserve transmitter fine power. This statement isfunctionally the same
asrlpwrf (value,OBSch).

value isthefine power desired.
obspwrf (4.0) ;

decpwrf Set first decoupler fine power
dec2pwrf Set second decoupler fine power
dec3pwrf Set third decoupler fine power
rlpwrf Set transmitter or decoupler fine power

Set step size for observe transmitter

obsstepsize (step _size)
double step size; /* small-angle phase step size */

Setsthe step size of the observe transmitter. This statement is functionally the
sameasstepsize (base,OBSch) .

step_size isthe phase step size desired and isarea number or avariable.

obsstepsize (30.0) ;

Set step size of first decoupler
Set step size of second decoupler
Set step size of third decoupler
Set small-angle phase step size,

decstepsize
dec2stepsize
dec3stepsize
stepsize

Unblank amplifier associated with observe transmitter
obsunblank ()

Explicitly enables the amplifier for the observe transmitter. obsunblank is
generaly followed by acall to obsblank.

decblank Blank amplifier associated with first decoupler
decunblank Unblank amplifier associated with first decoupler
obsblank Blank amplifier associated with observe transmitter
rcvroff Turn off receiver

rcvron Turn on receiver

207

VnmrJ 2.2 Ml User Programming

Chapter 3. Pulse Sequence Statement Reference

offset

Change offset frequency of transmitter or decoupler

Useobsoffset,decoffset,dec2offset, or dec3offset, asappropriate, in

place of this statement.
Applicability:
Syntax: offset (frequency,device)
double frequency; /* frequency offset */
int device; /* OBSch, DECch, DEC2ch, or DEC3ch */
Description: Changes the offset frequency of the observe transmitter (parameter tof), first
decoupler (dof), second decoupler (do£2), or third decoupler (dof3).
Arguments. fregquency isthe offset frequency desired.

device isOBSch (observe transmitter) or DECch (first decoupler). device
can also be DEC2ch (second decoupler) or DEC3 ch (third decoupler).

Examples: offset (do2,DECch) ;
offset (to2,0BSch) ;
delay(d2) ;
offset (tof,OBSch) ;

Related: decoffset Change offset frequency of first decoupler
dec2offset Change offset frequency of second decoupler
dec3offset Change offset frequency of third decoupler
obsoffset Change offset frequency of observe transmitter
ioffset Change offset frequency with |PA
Top A B C D E G H | L Mm O P R S T V W X Z
pbox adl80 Generate adiabatic 180 deg. shapes using Pbox

pbox mix
pboxHT F1
pboxHT Fle
pboxHT F1i
pboxHT Fls
pboxHT Flr

pe_gradient

pe2 gradient

pe3 gradient

pe_shapedgradient

pe2 shapedgradient

pe3 shapedgradient

peloop

phase encode gradient

208

VnmrJ 2.2 Ml User Programming

Generate mixing shapes using Pbox.

Generate arbitrary Hadamard encoded shapesin F1 using Pbox
Generate Hadamard encoded excitation shapes in F1 using Pbox
Generate Hadamard encoded inversion shapesin F1 using Pbox
Generate Hadamard encoded sequential inversion shapes
Generate Hadamard encoded refocusing shapesin F1 using Pbox
Oblique gradient with phase encode in one axis

Oblique gradient with phase encode in two axes

Oblique gradient with phase encode in three axes

Oblique shaped gradient with phase encode in one axis

Oblique shaped gradient with phase encode in two axes
Oblique shaped gradient with phase encode in three axes
Phase-encode loop

Oblique gradient with phase encode in one axis

01-999379-00 A 0708

phase encode3 gradient
phase encode shapedgradient
phase encode3 shapedgradient
poffset (Inova system)
poffset list

position offset

position offset list

power

psg_abort

pulse

putCmd

pwrf

pwrm

Oblique gradient with phase encode in three axes
Oblique shaped gradient with PE in one axis
Oblique shaped gradient with PE in three axes
Set frequency based on position

Set frequency from position list

Set frequency based on position

Set frequency from position list

Change power level

Abort the PSG process

Pulse observe transmitter with amplifier gating
Send acommand to VnmrJ from a pul se sequence
Change transmitter or decoupler fine power

Change transmitter or decoupler linear modulator power

pbox adls8o0 Generate adiabatic 180 deg. shapes using Pbox

Applicability: UNTYINOVA systems.

Syntax: pbox adl80 (waveform, ref pw90, ref pwr)

char *waveform;

double ref pw90;

int ref pwr;

Description: Generates adiabatic 180 degree pulses for Pbox experiments.

Arguments. The pulse shape is defined by the argument waveform containing the
waveform name as defined by the cawurst inversion pulse. Theref pwr isthe
reference power level in dB and ref pw90 isthe reference 90 degree pulse

duration in microseconds.

Examples: static shape adl8o0;
adl80 = pbox adl80("adl80", pwx, pwxlvl);

pbox mix Generate mixing shapes using Pbox.

Applicability: UNTYINOVA systems.

Syntax: pbox mix (mix_pattern, waveform, mix pwr,

ref pwr)

char *mix pattern, *waveform;

double ref pw90;

int mix pwr, ref pwr;

Description: Generates decoupling mixing pulses for Pbox experiments.

Arguments. The pulse shape is defined by the argument waveform containing the
waveform name as defined in the wavelib/mixing directory by the
mix pattern parameter. Themix pwr parameter isthe mixing pattern
power level indB. Theref pwr parameter isthereference power level in dB
and ref pw90 isthe reference 90 degree pulse duration in us.

Examples: static shape hhmix;

ref pw9o0,

hhmix = pbox mix ("HHmix", "DIPSI2", mixpwr, pw*compH,

tpwr);

01-999379-00 A 0708

VnmrJ 2.2 Ml User Programming

209

Chapter 3. Pulse Sequence Statement Reference

pboxHT F1

Applicability:
Syntax:

Description:

Arguments:

Examples:

Related:

pboxHT Fle

Applicability:

Syntax:

Description:

Arguments:

Examples:

Related:

pboxHT F1i

Applicability:

Syntax:

210

VnmrJ 2.2 Ml User Programming

Generate arbitrary Hadamard encoded shapes in F1 using Pbox
UNTYINOVA systems.

pboxHT F1 (waveform, ref pw90,
char *waveform, type;

double ref pw90;

int ref pwr;

ref pwr, type)

Generates arbitrary pulses for Hadamard experiments according to the
Hadamard matrix size defined by ni.

The pulse shape is defined by the argument waveform containing the waveform
name as defined in the appropriate wavelib/ directory. Theref pwristhe
reference power level in dB and ref pw90 isthe reference 90 degree pulse
duration in ps. Parameter type defines the shape type and can take values of
'e' (excitation pulses), 'i' (inversion pulses), 'r ' (refocusing pulses) and
's' (sequential inversion pulses).
pboxHT F1 (“rsnob”, pwH*compH, pwHlvl, 'r');
pboxHT Fle
pboxHT Fls

Generate Hadamard encoded excitation shapes in F1 using Pbox

Generate Hadamard encoded sequential inversion shapesin F1
using Pbox

Generate Hadamard encoded refocusing shapes in F1 using Pbox
Generate Hadamard encoded inversion shapes in F1 using Pbox

pboxHT Flr
pboxHT F1i

Generate Hadamard encoded excitation shapes in F1 using Pbox

UNITY|NOVA systems.

pboxHT Fle (waveform,
char *waveform;
double ref pw90;

int ref pwr;

ref pw90, ref pwr)

Generates excitation pulses for Hadamard experiments according to the
Hadamard matrix size defined by ni. The pulse element is applied with zero
phase if the Hadamard matrix element is‘+' and with 180-degree phase if the
Hadamard matrix element is‘—'.

The pulse shape is defined by the argument waveform containing the
waveform name asdefined inwavelib. Theref pwr isthereference power
level indB and ref pw90 isthe reference 90 degree pulse duration in ps.

pboxHT Fle (“esnob”, pwH*compH, pwHlvl) ;

pboxHT F1i
pboxHT Fls

Generate Hadamard encoded inversion shapes in F1 using Pbox

Generate Hadamard encoded sequential inversion shapesin F1
using Pbox

Generate Hadamard encoded refocusing shapes in F1 using Pbox
Generate Hadamard encoded arbitrary shapesin F1 using Pbox

pboxHT Flr
pboxHT F1

Generate Hadamard encoded inversion shapes in F1 using Pbox

UNTYINOVA systems.

pboxHT F1li (waveform, ref pw90, ref pwr)
char *waveform; double ref pw90;
int ref pwr;

01-999379-00 A 0708

Description:

Arguments:

Examples:

Related:

pboxHT Fls

Applicability:

Syntax:

Description:

Arguments:

Examples:

Related:

pboxHT Flr

Applicability:

Syntax:

Description:

Generates inversion pulses for Hadamard experiments according to the
Hadamard matrix size defined by ni. The pulses elements are encoded
according to the ‘on/off’ principle, where the pulse element is applied if the
Hadamard matrix element is‘+' and is not applied if the Hadamard matrix
elementis‘—.

The pulse shape is defined by the argument waveform containing the waveform
name as defined in wavelib. The ref pwr isthe reference power level in dB
and ref pw90 isthe reference 90 degree pulse duration in ps.

pboxHT F1i(“gausl80”, pwC*compC, pwClvl) ;

pboxHT Fle Generate Hadamard encoded excitation shapes in F1 using Pbox
PboxHT Fls Generate Hadamard encoded sequentia inversion shapesin F1

using Pbox
pboxHT Flr Generate Hadamard encoded refocusing shapes in F1 using Pbox
PboxHT F1 Generate Hadamard encoded arbitrary shapesin F1 using Pbox

Generate Hadamard encoded sequential inversion shapes

UNTYINOVA systems.

pboxHT Fls (waveform, ref pw90, ref pwr)
char *waveform;

double ref pw90;

int ref pwr;

Generates inversion pulses for Hadamard experiments according to the
Hadamard matrix size defined by ni. The pulse elements are encoded
sequentially (inversion of individual sitesis carried out sequentially rather than
simultaneously) according to the ‘on/off’ principle, where the pulse element is
applied if the Hadamard matrix element is‘+' and is not applied if the
Hadamard matrix element is‘—'.

The pulse shape is defined by the argument waveform containing the waveform
name as defined in wavelib. Theref pwr isthe reference power level in
dB and ref pw90 isthe reference 90 degree pulse duration in ps.

pboxHT Fls (“gausl80”, pwC*compC, pwClvl) ;

pboxHT Fle Generate Hadamard encoded excitation shapes in F1 using Pbox
PboxHT F1i Generate Hadamard encoded inversion shapes in F1 using Pbox
pboxHT Flr Generate Hadamard encoded refocusing shapes in F1 using Pbox
PboxHT F1 Generate Hadamard encoded arbitrary shapesin F1 using Pbox

Generate Hadamard encoded refocusing shapes in F1 using Pbox

UNTYINOVA systems.

pboxHT Flr (waveform, ref pw90, ref pwr)
char *waveform;

double ref pw90;

int ref pwr;

Generates refocusing pulses for Hadamard experiments according to the
Hadamard matrix size defined by ni. The pulse element is applied with zero
phase if the Hadamard matrix element is‘+' and with 90-degree phase if the
Hadamard matrix element is‘—'.

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 211

Chapter 3. Pulse Sequence Statement Reference

The pulse shape is defined by the argument waveform containing the waveform name as
defined inwavelib/refocusing directory. The ref pwr isthe reference power
level indB and ref pw90 isthe reference 90 degree pulse duration in ps.

Examples:

Related:

pe gradient
Applicability:
Syntax:

Description:

Arguments:

Examples:

Related:

pe2 gradient
Applicability:
Syntax:

Description:

Arguments:

212

VnmrJ 2.2 Ml User Programming

pboxHT Flr (“rsnob”, pwH*compH, pwHlvl) ;

pboxHT Fle Generate Hadamard encoded excitation shapes in F1 using Pbox

PboxHT F1i Generate Hadamard encoded inversion shapes in F1 using Pbox

PboxHT Fls Generate Hadamard encoded sequential inversion shapesin F1
using Pbox

pPboxHT F1 Generate Hadamard encoded arbitrary shapesin F1 using Pbox

Obligue gradient with phase encode in one axis
NOVA systems.

pe gradient (statl,stat2,stat3,step2,vmult2)

double statl,stat2,stat3; /* static gradient components */
double step2; /* variable gradient stepsize */
codeint vmult2; /* real-time math variable */

Oblique gradient levels with one phase encode. The phase encode gradient is
associated with the second axis of the logical frame. This corresponds to the
convention read, phase, slice for the functions of the logical frame axes.

On WTYINOVA systemspe gradient issame asthe statement

phase encode gradient exceptthe Euler anglesareread from the
default set for imaging. 1 im2 is automatically set to half the nv (number of
views) where nv is usually the number of phase encode steps.

Pulse sequence generation aborts if the DACs on a particular gradient are
overrun after the angles and amplitude have been resolved.

statl, stat2, stat3 arevalues, in gauss/cm, of the components for the
static portion of the gradient in the logical reference frame.

step2 isthe vaue, in gauss/cm, of the component for the step size changein
the variable portion of the gradient.

vmult2 isarea-timemath varisble (vl tovi4, ct, zero, one, two,
three) or referenceto tables (t 1 to t60), whose associated values vary
dynamically in amanner controlled by the user.

pe _gradient (0.0, -sgpe*nv/2.0,gss, sgpe,v6) ;
phase encode gradient Oblique gradient with phase encodein 1 axis

Obligue gradient with phase encode in two axes
UNTYINOVA systems.

pe2 gradient (statl,stat2,stat3,step2,step3,vmult2, vmult3)
double statl,stat2,stat3; /* static gradient components */
double step2, step3; /* variable gradient stepsize */
codeint vmult2,vmult /* real-time math variables */

Sets only two oblique phase encode gradients.

Pulse sequence generation aborts if the DACs on a particular gradient are
overrun after the angles and amplitude have been resolved.

statl, stat2, stat3 arevalues, in gauss/cm, of the components for the
static portion of the gradient in the logical reference frame.

01-999379-00 A 0708

Examples:

Related:

pe3 gradient
Applicability:
Syntax:

Description:

Arguments:

Examples:

step2, step3 arevalues, in gauss'cm, of the components for the step size
change in the variable portion of the gradient.

vmult2, vimult3 arereal-time math variables (v1 tovi14, ct, zero, one,
two, three) or referencesto tables(t 1 to t 6 0), whose associated valuesvary
dynamically in amanner controlled by the user.

pe2 gradient (gro, sgpe*nv/2.0, sgpe2*nv2/2.0,
sgpe, sgpe2,v6,v8) ;

pe3 gradient Oblique gradient with phase encode in 3 axes

Obligue gradient with phase encode in three axes
UNTYINOVA systems.

pe3 gradient (statl,stat2,stat3,stepl, step2,step3,
vmultl,vmult2, vmult3)

double statl,stat2,stat3; /* static gradient components */

double stepl,step2,step3; /* gradient step sizes */

codeint vmultl,vmult2,vmult3; /* real-time variables */

Three oblique phase encode gradients.

pe_gradient issameasphase encode3 gradient except the Euler
angles are read from the default set for imaging. 1im1, 1im2, and 1im3 are
settonv/2,nv2/2,andnv3 /2, respectively.

Pulse sequence generation aborts if the DACs on a particular gradient are
overrun after the angles and amplitude have been resolved.

statl, stat2, stat3 arevalues, in gauss/cm, of the components for the
static portion of the gradient in the logical reference frame.

stepl, step2, step3 arevalues, ingauss'cm, of the componentsfor the step
size change in the variable portion of the gradient.

vmultl, vimult2, vmult3 arerea-time math variables (v1tovi4, ct,
zero, one, two, three) or referencesto AP tables (t 1 to t 60) whose
associated values vary dynamically in a manner controlled by the user.

pe3 gradient (gro, sgpe*nv/2.0,sgpe2*nv2/2.0,0.0, \
sgpe, sgpe2, zero,Vv6,Vv8) ;

pe_shapedgradient Oblique shaped gradient with phase encode in one axis

Applicability:
Syntax:

Description:

UNTYINOVA systems.

UNTYINOVA systems

pe shapedgradient (pattern,width,
statl,stat2,stat3,step2,vmult2,wait, tag)

char *pattern; /* name of gradient shape file */

double width; /* width of gradient in sec */

double statl,stat2,stat3; /* static gradient components */

double step2; /* variable gradient step size */

codeint vmult2; /* real-time math variable */

int wait; /* WAIT or NOWAIT */

int tag; /* tag to a gradient element */

Static oblique shaped gradient one phase encode shaped gradient.

Pulse sequence generation aborts if the DACs on a particular gradient are
overrun after the angles and amplitude have been resolved.

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 213

Chapter 3. Pulse Sequence Statement Reference

Arguments:

On WTYINOVA systemspe _shapedgradient issameas

phase encode shapedgradient exceptinpe shapedgradient
the Euler angles are read from the default set for imaging. 1im2 is
automatically set to nv/2, where nv isusually the number of phase encode
steps.

pattern isthe name of agradient shapefile.
width isthelength, in seconds, of the gradient.

statl, stat2, stat3 arevalues, in gauss/cm, of the components for the
static portion of the gradient in the logical reference frame.

step2 isthe vaue, in gauss/cm, of the component for the step size changein
the variable portion of the gradient.

vmult2 isarea-timemath varisble (vl tov14, ct, zero, one, two,
three) or referenceto tables (t 1 to t 60) whose associated values vary
dynamically in amanner controlled by the user.

wait isakeyword, either WAIT or NOWAIT, that selects whether or not a
delay isinserted to wait until the gradient has completed before executing the
next statement.

tagisauniqueinteger that “tags’ the gradient element from any other gradient
elements used in the sequence. These tags are used for variable amplitude
pul ses.

pe2 shapedgradient Oblique shaped gradient with phase encode in two axes
Applicability:

214

Syntax:

Description:

Arguments:

Related:

UNTYINOVA systems.

pe2 shapedgradient (pattern,width, statl, stat2,stat3,
step2, step3,vmult2, vmult3)

char *pattern; /* name of gradient shape file */
double width; /* length of gradient in sec */
double statl,stat2,stat3; /* static gradient components */
double step2,step3; /* variable gradient step size */
codeint vmult2,vmult3; /* real-time math variables */

Setstwo oblique phase encode shaped gradients; otherwise, thisstatement isthe
sameaspe3 shapedgradient.

Pulse sequence generation aborts if the DACs on a particular gradient are
overrun after the angles and amplitude have been resolved.

pattern isthe name of agradient shapefile.
width isthelength, in seconds, of the gradient.

statl, stat2, stat3 arevalues, in gauss/cm, of the components for the
static portion of the gradient in the logical reference frame.

step2, step3 arevalues, in gauss'cm, of the components for the step size
change in the variable portion of the gradient.

vmult2, vmult3 arereal-time math variables (v1 tovi4, ct, zero,
one, two, three) or references to tables (t 1 to t 60) whose associated
values vary dynamically in amanner controlled by the user.

pe3 shapedgradient Oblique shaped gradient with phase encode in 3 axes

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

pe3 shapedgradient Oblique shaped gradient with phase encode in three axes

Applicability:
Syntax:

Description:

Arguments:

peloop
Applicability:
Syntax:

Description:

Arguments:

UNTYINOVA systems.

pe3 shapedgradient (pattern,width, statl, stat2, stat3,
stepl, step2,step3,vmultl, vmult2, vmult3)

char *pattern; /* name of gradient shape file */
double width; /* width of gradient in sec */
double statl,stat2,stat3; /* static gradient components */
double stepl,step2,step3; /* var. gradient components */
codeint vmultl,vmult2,vmult3; /* real-time variables */

On WTYINOVA systemspe3 shapedgradient issameas

phase encode3 shapedgradient except the Euler anglesareread
from the default set for imaging. The 1im1, 1im2, and 1im3 argumentsin
phase encode3 shapedgradient aresetto

nv/2,nv2/2,and nv3/2, respectively.

Pulse sequence generation aborts if the DACs on a particular gradient are
overrun after the angles and amplitude have been resolved.

pattern isthe name of agradient shapefile.
width isthelength, in seconds, of the gradient.

statl, stat2, stat3 arevalues, in gauss/cm, of the components for the
static portion of the gradient in the logical reference frame.

stepl, step2, step3 arevalues, ingauss'cm, of the componentsfor the step
size change in the variable portion of the gradient.

vmultl, vimult2, vimult3 arerea-time math variables (vi tovi4, ct,
zero, one, two, three) or referencesto tables (t1 to t60) whose
associated vaues vary dynamically in a manner controlled by the user.

wait isakeyword, either WAIT or NOWAIT, that selects whether or not a
delay isinserted to wait until the gradient has completed before executing the
next statement.

Phase-encode loop
UNTYINOVA systems.

peloop (state,max count,apvl,apv2)

char state; /* compressed or standard */
double max_count; /* initializes apvl */
codeint apvl; /* maximum count */

codeint apv2; /* current counter value */

Provides a sequence-switchable loop that can usereal-time variablesin what is
known asa compressed loop, or it can use the standard arrayed features of PSG.
In the imaging sequences it uses the third character of the segcon string
parameter segcon [2] for the state argument. The statement is used in
conjunction with the endpeloop statement.

peloop differsfrom ms1oop in how it setsthe apv2 variable in standard
arrayed mode (stateis 's'). In standard arrayed mode, apv2 isset to
nth2D-1 if max count isgreater than zero. nth2D isa PSG internal
counting variable for the second dimension. When in the compressed mode,
apv2 counts from zero tomax_count-1.

state isether ' c' to designate the compressed mode, or ' s' to designate
the standard arrayed mode.

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 215

Chapter 3. Pulse Sequence Statement Reference

Examples:

Related:

apvl isareal-time variable that holds the maximum count.

apv?2 isareal-timevariable that holds the current counter value. If state is
's' and max_count isgreater than zero, apv2 issettonth2D-1;
otherwise, it is set to zero.

peloop (seqgcon[2] ,nv,v5,v6) ;
msloop (seqgcon[l] ,nv,v1l,v12) ;

poffset list (pss,gss,ns,vl12):
pe gradient (gror, -0.5*sgpe*nv,gssr, sgpe,v6) ;
acquire (np,1.0/sw) ;

endmsloop (seqcon[1],v12) ;
endpeloop (seqcon{2},v6;

endpeloop End phase-encode |oop
loop Start loop
msloop Multislice loop

phase encode gradient Oblique gradient with phase encode in one axis
Applicability:

216

Syntax:

Description:

Arguments:

UNTYINOVA systems.

phase encode gradient (statl,stat2,stat3,step2,
vmult2,1lim2,angl, ang2, ang3l)
double statl,stat2,stat3; /* static gradient components */

double step2; /* variable gradient stepsize */
codeint vmult2; /* real-time math variable */
double 1lim2; /* max. gradient value step */
double angl,ang2,ang3; /* Euler angles in degrees */

Sets static oblique gradient levels plus one oblique phase encode gradient. The
phase encode gradient is associated with the second axis of the logical frame.
This corresponds to the convention: read, phase, slice for the functions of the
logical frame axes. It has no return value.

Pulse sequence generation aborts if the DACs on a particular gradient are
overrun after the angles and amplitude have been resolved.

statl, stat2, stat3 arevalues, in gauss/cm, of the components for the
static portion of the gradient in the logical reference frame.

step2 isthe vaue, in gauss'cm, of the component for the step size changein
the variable portion of the gradient.

vmult2 isarea-timemathvariable(v1l-v14, ct, zero,one, two, three)
or referenceto tables (t 1 to t 60), whose associated values vary dynamically
in amanner controlled by the user.

1im2 isavalue representing the dynamic step that will generate the maximum
gradient value for each component. This provides error checking in pulse
sequence generation and is normally nv /2.

angl isEuler angle psi, in degrees, with the range —90 to +90.
ang?2 isEuler angle phi, in degrees, with the range —180 to +180.
ang3 isEuler angle theta, in degrees, with the range —90 to +90.

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Related:

oblique gradient Execute an oblique gradient
oblique shapedgradient Execute a shaped oblique gradient
pe_gradient Oblique gradient with PE on 1 axis
phase encode shapedgradient Oblique sh. gradient with PE on 1 axis
phase encode3 gradient Oblique gradient with PE on 3 axes

phase encode3 shapedgradient Oblique sh. gradient with PE on 3 axes

phase encode3 gradient Oblique gradient with phase encode in three axes

Applicability:
Syntax:

Description:

Arguments:

Examples:

Related:

phase encode_

Applicability:
Syntax:

UNITY|NOVA systems.

phase encode3 gradient (statl,stat2,stat3,
stepl,step2,step3,vmultl,vmult2,vmult3,
liml,1lim2,1im3,angl, ang2,ang3)

double statl,stat2,stat3; /* static gradient components */

double stepl, step2, step3; /* var. gradient stepsize */
codeint vmultl,vmult2,vmult3; /* real-time variables */
double 1iml,lim2,1im3; /* max. gradient value steps */
double angl,ang2,ang3; /* Euler angles in degrees */

Sets three oblique phase encode gradients. It has no return value.

Pulse sequence generation aborts if the DACs on a particular gradient are
overrun after the angles and amplitude have been resolved.

statl, stat2, stat3 arevalues, in gauss/cm, of the components for the
static portion of the gradient in the logical reference frame.

stepl, step2, step3 arevalues, ingauss'cm, of the componentsfor the step
size change in the variable portion of the gradient.

vmultl, vimult2, vmult3 arerea-time math variables (v1tovi4, ct,
zero, one, two, three) or referencestotables(t 1 to t 6 0) whoseassociated
values vary dynamically in a manner controlled by the user.

liml, 1im2, 1im3 arevaluesrepresenting the dynamic step that will generate
the maximum gradient value for each component. This provides error checking
in pulse sequence generation and isnormally nv /2.

angl isEuler angle psi, in degrees, with the range —90 to +90.
ang?2 isEuler angle phi, in degrees, with the range —180 to +180.
ang3 isEuler angle theta, in degrees, with the range —90 to +90.

phase encode3 gradient(0,0,0,0,0,2.0*gcrush/ne, \
zero,zero,v12,0,0,0,psi,phi, theta) ;

pe3 gradient Oblique gradient with PE in 3 axes
phase encode shapedgradient Oblique sh. gradient with PE on 1 axis
phase encode3 shapedgradient Oblique sh. gradient with PE on 3 axes

shapedgradient Oblique shaped gradient with PE in one axis
UNTYINOVA systems.

phase encode shapedgradient (pattern,width,statl,stat2,stat3,step2,
vmult2,1im2,angl, ang2, ang3,vlioops,wait, tag)

char *pattern; /* name of gradient shape file */
double width; /* width of gradient in sec */
double statl,stat2,stat3; /* static gradient components */
double step2; /* var. gradient step size */

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 217

Chapter 3. Pulse Sequence Statement Reference

codeint vmult2; /* real-time math variable */
double 1lim2; /* max. gradient value steps */
double angl,ang2,ang3; /* Euler angles in degrees */
codeint vloops; /* number of loops */

int wait; /* WAIT or NOWAIT */

int tag; /* tag to a gradient element */

Description: Sets static oblique shaped gradients plus one oblique phase encode shaped
gradient. The phase encode gradient is associated with the second axis of the
logical frame. This corresponds to the convention: read, phase, slice for the
functions of thelogical frame axes. One gradient shapeisused for al three axes.
It has no return value.

Pulse sequence generation aborts if the DACs on a particular gradient are
overrun after the angles and amplitude have been resolved.

Arguments. pattern isthe name of agradient shapefile.
width isthelength, in seconds, of the gradient.

statl, stat2, stat3 arevalues, in gauss/cm, of the components for the
static portion of the gradient in the logical reference frame.

step2 isthe vaue, in gauss'cm, of the component for the step size changein
the variable portion of the gradient.

vmult2 isarea-timemath varisble (vl tov14, ct, zero, one, two,
three) or referenceto tables (t 1 to t 60) whose associated values vary
dynamically in amanner controlled by the user.

1im2 isthe value representing the dynamic step that will generate the
maximum gradient value for the component. This provides error checking in
pul se sequence generation and is normally nv /2.

angl isthe Euler angle psi, in degrees, with the range of —90 to +90.
ang?2 isthe Euler angle phi, in degrees, with the range of —180 to +180.
ang3 isthe Euler angle theta, in degrees, with the range of —90 to +90.

v1loops isarea-timemath variable (vl tov14, ct, zero, one, two,
three) or referencesto tables (t1 to t60) that dynamically sets the number
of times to loop the waveform.

wait isakeyword, either WAIT or NOWAIT, that selects whether or not a
delay isinserted to wait until the gradient has completed before executing the
next statement.

tag isaunique integer that “tags” the gradient element from any other
gradient elements used in the sequence. These tags are used for variable
amplitude pulses.

Related: oblique gradient Execute an oblique gradient
oblique shapedgradient Execute a shaped oblique gradient
pe_shapedgradient Oblique sh. gradient with PE in 1 axis

phase encode3 shapedgradient Oblique sh. gradient with PE on 3 axes

phase encode3 shapedgradient Oblique shaped gradient with PE in three axes
Applicability: UNTYINOVA systems.

&/ntax: phase encode3 shapedgradient (pattern,width,statl,stat2,stat3s,
stepl,step2,step3,vmultl,vmult2,vmult3,
1liml,1lim2,1im3,angl, ang2,ang3,loops,wait)

218 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Description:

Arguments:

Related:

phaseshift
Applicability:
Syntax:

Description:
Arguments:

char *pattern; /* name of gradient shape file */

double width; /* width of gradient in sec */
double statl,stat2,stat3; /* static gradient components */
double stepl,step2,step3; /* var. gradient step sizes */
codeint vmultl,vmult2,vmult3; /* real-time variables */
double 1liml,lim2,1im3; /* max. gradient value steps */
double angl,ang2,ang3; /* Euler angles in degrees */
int loops; /* number of times to loop */
int wait; /* WAIT or NOWAIT */

Setsthree oblique phase encode shaped gradient. Note that this statement has a
loops argument that is an integer, as opposed to the v1oops argument in
phase encode shapedgradient. |t hasno returnvalue.

Pulse sequence generation aborts if the DACs on a particular gradient are
overrun after the angles and amplitude have been resolved.

pattern isthe name of the gradient shapefile.
width isthelength, in seconds, of the gradient.

statl, stat2, stat3 arevalues, in gauss/cm, of the components for the
static portion of the gradient in the logical reference frame.

stepl, step2, step3 arevalues, ingauss'cm, of the componentsfor the step
size change in the variable portion of the gradient.

vmultl, vimult2, vmult3 arerea-time math variables (v1tovi4, ct,
zero,one, two, three) or referencestotables(t 1 to t 6 0) whoseassociated
values vary dynamically in a manner controlled by the user.

liml, 1im2, 1im3 arevaluesrepresenting the dynamic step that will generate
the maximum gradient value for each component. This provides error checking
in pulse sequence generation and isnormally nv /2.

angl isthe Euler angle psi, in degrees, with the range of —90 to +90.
ang?2 isthe Euler angle phi, in degrees, with the range of —180 to +180.
ang3 isthe Euler angle theta, in degrees, with the range of —90 to +90.

loops isnon-real-time integer value, from 1 to 255, that sets the number of
times to loop the waveform.

wait isakeyword, either WATT or NOWAIT, that selects whether or not a
delay isinserted to wait until the gradient has completed before executing
the next statement.

pe3 shapedgradient Oblique sh. gradient with PE in 3 axes
phase encode shapedgradient Oblique sh. gradient with PE on 1 axis
phase encode3 gradient Oblique gradient with PE in 3 axes

Set phase-pulse technique, rf type A or B
Systems with rf type A or B (MERCURYplus/-Vx systems are rf type E or F).

phaseshift (base,multiplier,device)

double base; /* base small-angle phase shift */
codeint multiplier; /* real-time variable */
int device; /* channel, TODEV or DODEV */

Implements the “phase-pulse” technique.

base isareal number, expression, or variable representing the base phase shift
in degrees. Any value is acceptable.

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 219

Chapter 3. Pulse Sequence Statement Reference

Examples:

poffset
Applicability:
Syntax:

Description:

Arguments:

Examples:
Related:

poffset list
Applicability:
Syntax:

Description:

Arguments:

Examples:

Related:

position offset

Syntax:

220

VnmrJ 2.2 Ml User Programming

multiplierisared-timevariable(vltov1l4, ct,etc.). Thevalue must be
positive. The actual phase shiftis ((base*multiplier)mod360).

device iSTODEV (observe transmitter) or DODEV (first decoupler).

phaseshift (60.0,ct, TODEV) ;
phaseshift (-30.0,v1,DODEV) ;

Set frequency based on position
UNTYINOVA systems.

poffset (position, level)
double position; /* slice position in cm */
double level; /* gradient level in G/cm */

Setstherf frequency from position and conjugate gradient values. pof fset is
functionally thesameasposition offset exceptthat poffset takesthe
valueof resfrqg fromtheresto parameter and always assumesthedeviceis
the observe transmitter.

position isthedlice position, in cm.
level isthe gradient level, in gauss/cm, used in the slice selection process.
poffset (pss[0],gss);

Set frequency based on position

position offset

Set frequency from position list
UNTYINOVA systems.

poffset list (posarray,grad,nslices,apvl)

double position arrayl[]; /* position values in cm */
double level; /* gradient level in G/cm */
double nslices; /* number of slices */
codeint vi; /* variable or table */

Setstherf frequency from aposition list, conjugate gradient value, and dynamic
math selector. poffset 1list isfunctionally the sameas

position offset list exceptthat poffset 1ist takesthe valueof
resfrqg fromthe resto parameter, assumes the device is the observe
transmitter device OBSch, and assumes that the list number is zero.

position array isalist of position vaues, in cm.

level isthe gradient level, in gauss/cm, used in the slice selection process.
nslices isthe number of slices or position values.

viisadynamic real-time variable (vl tov14) or table (t1 to t60).
poffset list (pss,gss,ns,v8);

Retrieves all values of an arrayed parameter
Set frequency from position list

getarray
position offset list

Set frequency based on position

position offset (pos,grad,resfrq,device)

double pos; /* slice position in cm */
double grad; /* gradient level in G/cm */
double resfrq; /* resonance offset in Hz */

01-999379-00 A 0708

int device; /* OBSch, DECch, DEC2ch, or DEC3ch */

Description: Setsthe rf frequency from position and conjugate gradient values. It has no
return value.

Arguments. pos isthe slice position, in cm.
grad isthe gradient level, in gauss/cm, used in the slice selection process.
resfrq isthe resonance offset value, in Hz, for the nucleus of interest.

device isOBSch (observe transmitter) or DECch (first decoupler). device
can also be DEC2ch (second decoupler) or DEC3 ch (third decoupler).

Examples. position offset (posl,gvoxl,resto,0BSch) ;

Related: poffset Set frequency based on position
position offset list Setfrequency from position list

position offset list Set frequency from position list
Applicability: UN'TYINOVA systems.

Syntax: position offset list (posarray,grad,nslices, \
resfrqg,device,list number,apvl)

double posarrayl]; /* position values in cm */

double level; /* gradient level in G/cm */

double nslices; /* number of slices */

double resfrq; /* resonance offset in Hz */

int device; /* OBSch, DECch, DEC2ch, or DEC3ch */
int list number; /* number for global list */
codeint vi; /* real-time variable or table */

Description: Setstherf frequency from aposition list, conjugate gradient value, and dynamic
math selector. The dynamic math selector (apv1) holdsthe index for required
dlice offset value as stored in the array. The arrays provided to this statement
must count zero up; that is, array [0] must have the first slice position and
array [ns-1] thelast. It hasno return value.

Arguments. position array isalist of position values, in cm.
level isthe gradient level, in gauss/cm, used in the slice selection process.
nslices isthe number of slices or position values.
resfrq isthe resonance offset, in Hz, for the nucleus of interest.

device isOBSch (observe transmitter) or DECch (first decoupler). device
can also be DEC2ch (second decoupler) or DEC3 ch (third decoupler).

list number isavaueforidentifying aglobal list. Thefirst global list must
begin at zero and each created list must be incremented by one.

viisadynamic real-timevariable (v1 tov14) or table (t1 to t60).

Related: getarray Retrieves all values of an arrayed parameter
poffset list Set frequency from position list
position offset Set frequency based on position

power Change power level

Applicability: Systemswith linear amplifiers. Use the statements obspower, decpower,
dec2power, Of dec3power, asappropriate, in preference to power.

Syntax: power (power,device)

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 221

Chapter 3. Pulse Sequence Statement Reference

Description:

Arguments:

CAUTION:

Examples:

Related:

psg _abort

Syntax:

Description:

pulse

222

Syntax:

Description:

int power; /* new value for coarse power control */
int device; /* OBSch, DECch, DEC2ch, or DEC3ch */

Changes transmitter or decoupler power by assuming values of O (minimum
power) to 63 (maximum power) on channels with a 63-dB attenuator or —16
(minimum power) to 63 (maximum power) on channels with a 79-dB
attenuator. On systems with an Output board, by default, power statementsare
preceded internally by a0.2-usdelay (seethe apovrride statement for more
details).

power isthe power desired. It must be stored in areal-timevariable (v1-v14,
etc.), which means it cannot be placed directly in the power statement. This
allows the power to be changed in real-time or from pulse to pulse. Setting the
power argument ismost commonly done using initval (seethe example).
To avoid consuming areal-time variable, use the r 1 power statement instead
of the power statement.

device isOBSch (observe transmitter) or DECch (first decoupler). device
can also be DEC2ch (second decoupler) or DEC3 ch (third decoupler).

On systems with linear amplifiers, be careful when using values of
power greater than 49 (about 2 watts). Performing continuous
decoupling or long pulses at power levels greater than this can result
in damage to the probe. Use config to set a safety maximum for the
tpwr, dpwr, dpwr2, and dpwr3 parameters.

pulsesequence ()

{

double newpwr;
newpwr=getval ("newpwr") ;
initval (newpwr,v2) ;
power (v2,0BSch) ;

o

decpower Change first decoupler power
dec2power Change second decoupler power
dec3power Change third decoupler power

initval Initialize areal-time variable to a specified value
obspower Change observe transmitter power

pwrf Change transmitter or decoupler fine power

rlpower Change transmitter or decoupler power, linear amplifier
rlpwrf Set transmitter or decoupler fine power

Abort the PSG process
psg_abort (int_error)

psg_abort aborts the PSG process. The acquisition will not start. the error
argument istypicaly 1.

Pulse observe transmitter with amplifier gating

pulse (width, phase)
double width; /* pulse length in sec */
codeint phase; /* real-time variable for phase */

Turnson apulse the same asthe rgpulse (width, phase,RG1,RG2)
statement, but with RG1 and RG2 set to the parameters rof 1 and rof2,

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Arguments:

Examples:

Related:

putCmd
Applicability:
Syntax:

Description:

respectively. Thus, pulse isaspecia case of rgpulse wherethe “hidden”
parameters rof1 and ro£2 remain “hidden.”

width specifies the width of the observe transmitter pulse.
phase setsthe phase and must be areal-time variable.

pulse (pw,Vv2) ;

dps_show Draw delay or pulsesin a sequence for graphical display

obspulse Pulse observe transmitter with |PA

irgpulse Pulse observe transmitter with |PA

obspulse Pulse observe transmitter with amplifier gating
rgpulse Pulse observe transmitter with amplifier gating
simpulse Pulse observe, decoupler channels simultaneously

sim3pulse Simultaneous pulse on 2 or 3 rf channels

Send a command to VnmrJ from a pulse sequence
UNTYINOVA systems.
putCmd (char *format, ...)

The putcmd function alows execution of any Magical expression from apulse
sequence. For example,

putCmd ("setvalue('dl', %g, 'processed')",dl) ;

updates the d1 parameter in the experiment processed parameter tree. The
argumentsto put Cmd are analogous to those for print £. Thefirst argument
toputCmdisliketheprintf format string.

Thego (' check') command will execute the pul se sequence and any
putCmd statements. It will not, however, start an acquisition.

Using put Cmd to update aparameter used as part on an acquisition requiresthe
use of setvalue to changethe parameter in the processed tree and also in the
current tree.

For example:

putCmd ("setvalue ('dl', %g, 'processed')
setvalue('dl', %g, 'current')",dl,dl),

Theinteger checkflag indicateswhether go (' check ') wascalled, or not.
If theputCmdisonly usedwhengo (' check ') isused, thenitisokay to use
something like:

if (checkflag)
putCmd ("dl=%g",dl) ;

Some parameters are defined as subtype pulse. Examples are pw, p1, etc. A
conseguence of thisisthat the values entered in VnmrJ are multiplied by 1e-6
in PSG. Entering pw? from the VnmrJcommand line might return 6.4. In PSG,
the value of pw will be 6.4e-6. Therefore, the appropriate put Cmd in this case
is:

putCmd ("pw=%g", pw*leé6)

Theinternal PSG variableis converted back to microseconds for use with
putCmd. If an arrayed experiment is done, the put Cmd function isonly active
for thefirst increment. Any Magical expression can be used in putCmd. For
example:

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 223

Chapter 3. Pulse Sequence Statement Reference

pwrf

Applicability:

Syntax:

Description:

Arguments:

Examples:

Related:

pwrm

224

Syntax:

Description:

Arguments:

Examples:

Related:

putCmd ("banner ('acquisition started')");
putCmd ("dps") ;

Change transmitter or decoupler fine power
UNITY|NOVA systems
Use obspwrt, decpwrf, declpwrf, of dec3pwrf.

pwrf (power, device)
int power; /* new value for fine power control */
int device; /* OBSch, DECch, DEC2ch, or DEC3ch */

Changes the fine power of the device specified by adjusting the optional fine
attenuators. Do not execute pwr £ and i pwr £ together because they will cancel
each other's effect.

power isthefine power desired. It must be areal-time variable (v1 tovi4,
etc.), which means it cannot be placed directly in the pwrf statement. It can
range from O to 4095 (60 dB on YNTYINOVA, about 6 dB on other systems).

device iSOBSch (observe transmitter) or DECch (first decoupler). On the
UNITYINOVA only, device canalso be DEC2ch (second decoupler) or DEC3ch
(third decoupler).

pwrf (vl,0BSch) ;

ipwrf Change transmitter or decoupler fine power
power Change transmitter or decoupler power, linear amp. system
rlpwrf Set transmitter or decoupler fine power

Change transmitter or decoupler linear modulator power

UNITYINOVA systems only. Use of statements obspwr £, decpwrf,
dec2pwrf, or dec3pwrf, asappropriate, is preferred.

pwrm (power,device)
int power; /* new value for fine power control */
int device; /* OBSch, DECch, DEC2ch, or DEC3ch */

Changes the linear modulator power of the device specified by adjusting the
optiona fine attenuators. Do not execute pwrm and i pwrm together because
they will cancel each other's effect.

power isthe linear modulator power desired. It must be areal-time variable
(v1towv14, etc.), which meansthe power level as an integer cannot be placed
directly in the pwrm statement. power can range from 0 to 4095 (60 dB on
UNITYINOVA).

device isOBSch (observe transmitter) or DECch (first decoupler). device
can also be DEC2ch (second decoupler) or DEC3 ch (third decoupler).

pwrm(vl,OBSch) ;

decpwrf Set first decoupler fine power

dec2pwrf Set second decoupler fine power

dec3pwrf Set third decoupler fine power

ipwrf Change transmitter or decoupler fine power with IPA
ipwrm Change transmitter or decoupler linear modul ator power
obspwrf Set observe transmitter fine power

rlpwrm Set transmitter or decoupler linear modulator power

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Top A B C

rcvroff
rcvron
readuserap
recoff
recon
rgpulse
rgradient
rlpower
rlpwrf
rlpwrm
rotate

rot angle
rot angle list
rotorperiod

rotorsync

rcvroff

Syntax:

Description:

Related:

rcvron

Syntax:

Description:

01-999379-00

b E GH I L M OWP R S T V W X Z

Turn off receiver gate and amplifier blanking gate
Turn on receiver gate and amplifier blanking gate
Read input from user AP register

Turn off receiver gate only

Turn on receiver gate only

Pulse observe transmitter with amplifier gating

Set gradient to specified level

Change power level

Set transmitter or decoupler fine power (obsolete)
Set transmitter or decoupler linear modul ator power
Sets the standard oblique rotation angles

Sets user defined oblique rotation angles

Set user defined oblique rotation angles from a previously defined list
Obtain rotor period of MAS rotor

Gated pulse sequence delay from MAS rotor position

Turn off receiver gate and amplifier blanking gate
rcvroff ()

Thereceiver is normally off during the pulse sequence and iis turned on only
during acquisition. The rcvrof £ statement also unblanks, or enables, the
observe transmitter.

Receiver gating is normally controlled automatically by decpulse,
decrgpulse, dec2rgpulse, dec3rgpulse, obspulse, pulse, and
rgpul se. Attheend of each of these statements, the receiver isautomatically
turned back on if and only if the receiver has not been previously turned off
explicitly byarcvrof £ statement. Inall cases, thereceiver isimplicitly turned
back on immediately prior to data acquisition.

rcvron Turn on receiver gate and amplifier blanking gate
recoff Turn off receiver only
recon Turn on receiver only

Turn on receiver gate and amplifier blanking gate
rcvron ()

Thereceiver isnormally off during the pulse sequence. It isturned on only
during acquisition. On other systems, rcvron providesexplicit receiver gating
in the pulse sequence. The rcvron statement also blanks, or disables, the
observe transmitter

A 0708 VnmrJ 2.2 MI User Programming 225

Chapter 3. Pulse Sequence Statement Reference

Related:

readuserap
Applicability:
Syntax:

Description:

Arguments:

Examples:

Receiver gating is normally controlled automatically by obspulse, pulse,
and rgpulse, decpulse, decrgpulse, dec2rgpulse, and
dec3rgpul se. At the end of each of these statements, the receiver is
automatically turned back on if and only if the receiver has not been previously
turned off explicitly by a revrof £ statement. In al cases, the receiver is
implicitly turned back on immediately prior to data acquisition.

The rcvron statement automatically executesa delay of ro£ 3 beforeturning
on thereceiver. If ro£3 isnot defined then adelay of 2.0 usisused. Usually
the delay protects the receiver from being turned on immediately after an
rgpulse statement but ro£ 3 can be set to zero in other circumstances where it
does not immediately follow a pulse.

rcvroff Turn off receiver gate and amplifier blanking gate
recoff Turn off receiver gate only
recon Turn on receiver gate only

Read input from user AP register
UNTYINOVA systems

readuserap (vi)
codeint vi; /* index to value read in user AP register */

Reads input from user AP bus register 3 to areal-time variable. The user can
then act on this information using real-time math and real time control
statements while the pul se sequence is running. Register 3islines 1to 8 of the
USER AP connector J8212 on the Breakout panel on the rear of theleft console
cabinet. Thisregister interfacesto abidirectional TTL-compatible 8-bit buffer,
which has a 100-ohm series resistor for circuit protection.

readuserap Stops parsing acodes (acquisition codes) until the linesin the
buffer have been read and the val ue placed into the specified real-timevariable.
In order for the parser to parse and stuff more words into the FIFO before
underflowing, the readuserap statement putsin a500 ps delay after reading
the input. However, depending on what isto be done after reading the lines, a
longer delay may be needed to avoid FIFO underflow.

If an error occursin reading, awarning message is sent to the host and a value
of —1 isreturned to the real-time variable.

vi isareal-timevariable (v1 to v14, etc.) that indexes a signed or unsigned
number read from user AP register 3.

/* Check a value read in from input register and */
/* execute a pulse if it is the expected value. */
double testval;
testval=getval (testval) /* set value to check */
initval (testval,v2) ;
loop (two,vl) ; /* reset below makes loop go */
readuserap (vl); /* until expected value reads in */
delay(d2) ;
sub (vl,v2,v3);
ifzero(v3) ;
pulse (pw, oph) ;
assign(one,vl) ;
elsenz (v3)
assign(zero,vl) ; /*reset counter*/

226 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Related:

recoff

Applicability:
Syntax:

Description:

Related:

recon

Applicability:
Syntax:

Description:

Related:

rgpulse

Syntax:

Description:

endif (v3) ;
endloop (vl1) ;

setuserap Set user AP register
vesetuserap Setuser AP register using real-time variable

Turn off receiver gate only
UNTYINOVA systems.
recoff ()

Receiver gating has been decoupled from amplifier blanking. The recof £
statement issimilar tothe rcvrof £ statement in that it defaultsthereceiver off
throughout the pulse sequence; however, unlike rcvrof £, therecof £
statement only affects the receiver gate and does not affect the amplifier
blanking gate. In al cases, the receiver isturned off when applying pulses and
turned on during acquisition. The default state of the receiver is off (except for
whole body systems and for imaging pulses sequences that have the
initparms sis statement at the beginning).

initparms sis Initidlize parametersfor spectroscopy imaging sequences

rcvroff Turn off receiver gate and amplifier blanking gate
rcvron Turn on receiver gate and amplifier blanking gate
recon Turn on receiver gate only

Turn on receiver gate only
UNITYINOVA systems.
recon ()

Receiver gating has been decoupled from amplifier blanking. The recof £
statement is similar to the rcvron statement in that it defaults the receiver on
throughout the pulse sequence; however, unlike rcvron, the recon statement
only affects the receiver gate and does not affect the amplifier blanking gate. In
all cases, the receiver is turned off when applying pulses and turned on during
acquisition. The default state of the receiver is off (except for whole body
systems and for imaging pulses sequences that havethe initparms sis
statement at the beginning).

initparms sis Initidlize parametersfor spectroscopy imaging sequences

rcvroff Turn off receiver gate and amplifier blanking gate
rcvron Turn on recelver gate and amplifier blanking gate
recoff Turn off receiver gate only

Pulse observe transmitter with amplifier gating
rgpulse (width, phase, RG1l,RG2)

double width; /* length of pulse in sec */
codeint phase; /* real-time variable for phase */
double RG1; /* gate delay before pulse in sec */
double RG2; /* gate delay after pulse in sec */

Pulses the observe transmitter with amplifier gating. The amplifier is gated on
prior to the start of the pulse by RG1 sec and gated off RG2 sec after the end of
the pulse. Thetotal length of thisevent is therefore not simply width, but
width+RG1+RG2.

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 227

Chapter 3. Pulse Sequence Statement Reference

Arguments:

Examples:

Related:

rgradient

Applicability:
Syntax:

Description:

Arguments:

Examples:

Related:

rlpower

Applicability:

Syntax:

The amplifier gating times RG1 and RG2 may be specified explicitly. The
parameters rof 1 and rof2 are often used for these times. These parameters
are normally “hidden” parameters, not displayed on the screen and entered by
the user. Their values can be interrogated by entering the name of the parameter
followed by a question mark (e.g., rof1?).

width specifies the duration, in seconds, of the observe transmitter pulse.
phase sets the observe transmitter phase and must be areal-time variable.

RG1 isthetime, in seconds, the amplifier is gated on prior to the start of the
pulse (typically 10 usfor 1H/19F, 40 psfor other nuclei, and 2 psfor the
MERCURYplus/-Vx).

RG2 isthetime, in seconds, before the amplifier is gated off after the end of the
pulse (typicaly 10 us on the MERCURYplus/-Vx, and about 5 pus on other
systems).

rgpulse (pw,vl,rofl,rof2) ;
rgpulse (2.0*pw,v2,1.0e-6,0.2e-6) ;

obspulse Pulse observe transmitter with amplifier gating
pulse Pulse observe transmitter with amplifier gating
simpulse Pulse observe, decoupler channels simultaneously

sim3pulse Simultaneous pulse on 2 or 3 rf channels

Set gradient to specified level
Systems with imaging or PFG modules.

rgradient (channel, value)

char channel; /* gradient 'x', 'y', or 'z' */

double value; /* amplitude of gradient amplifier */
Setsthe gradient current amplifier to specified value. Inimaging, rgradient
setsagradient to a specified level in DAC units.

channel specifiesthe gradient to set. It uses one of the characters 'x', 'x ',
'Y','y','z'or 'z'.Inimaging, channel canbe 'gread', 'gphase'’,
or 'gslice'.

value specifiesthegradient level by areal number (a DAC setting inimaging)

from —4096.0 to 4095.0 for the Performa | PFG module, and from —32768.0 to
32767.0 for the Performa |l PFG module.

rgradient ('z',1327.0) ;

dps_show Draw delay or pulsesin a sequence for graphical display
getorientation Read image plane orientation

shapedgradient Generate shaped gradient

vgradient Set gradient to alevel determined by real-time math
zgradpulse Create a gradient pulse on the z channel

Change power level

Systems with linear amplifiers. This statement is due to be eliminated in future
versions of VnmrJsoftware. Althoughitisstill functional, you should not write
pulse sequences using it and should replace it in existing sequences with Use
obspower,decpower,dec2powery0rdechowerjﬁapMDpHae

rlpower (power,device)

228 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Description:

Arguments:

CAUTION:

Examples:

Related:

rlpwrf
Description:
Description:

Related:

rlpwrm

Applicability:

double power; /* new level for coarse power */
int device; /* OBSch, DECch, DEC2ch, or DEC3ch */

Changes transmitter or decoupler power the same as the power statement but
avoidsconsuming areal-timevariablefor thevalue. On systemswith the Output
board (and only on these systems), by default, rlpower statementsare
preceded internally by a0.2-usdelay (seethe apovrride statement for more
details).

power setsthe power level by assuming values of O (minimum power) to 63
(maximum power) on channels with a 63-dB attenuator or —16 (minimum
power) to 63 (maximum power) on channels with a 79-dB attenuator.

device isOBSch (observe transmitter) or DECch (first decoupler). device
can also be DEC2ch (second decoupler) or DEC3 ch (third decoupler).

On systems with linear amplifiers, be careful when using values of
rlpower greater than 49 (about 2 watts). Performing continuous
decoupling or long pulses at power levels greater than this can result
in damage to the probe. Use config to set a safety maximum for the
tpwr, dpwr, dpwr2, and dpwr3 parameters.

(1) pulsesequence ()

{

double satpwr;
satpwr=getval ("satpwr") ;

rlpower (satpwr, OBSch) ;

o

(2) rlpower (63.0,0BSch) ;

decpower Change first decoupler power
dec2power Change second decoupler power
dec3power Change third decoupler power

obspower Change observe transmitter power
power Change transmitter or decoupler power, linear amp. sys.
rlpwrf Set transmitter or decoupler fine power

Set transmitter or decoupler fine power (obsolete)
Useobspwrf,decpwrf,dechwrf,OrdeCBpwrf,asapMDpHme

Do not write any new pulse sequences using this statement and should replace
it in existing sequences. Changes transmitter or decoupler fine power the same
asthe pwr statement, except r1pwrf uses areal-number variable for the
power level desired instead of consuming areal-time variable for the level.

decpwrf Set first decoupler fine power

dec2pwrf Set second decoupler fine power

dec3pwrf Set third decoupler fine power

ipwrf Change transmitter or decoupler fine power with IPA
obspwrf Set observe transmitter fine power

power Change transmitter or decoupler power, lin. amp. sys.
pwrf Change transmitter or decoupler fine power

Set transmitter or decoupler linear modulator power
UNTYINOVA systems.

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 229

Chapter 3. Pulse Sequence Statement Reference

Syntax:

Description:

Arguments:

Examples:

Related:

rotate

Description:

Syntax:

Examples:

rot_angle

Description:

Syntax:

Arguments:

Examples:

rotorperiod

Applicability:
Description:

Syntax:

Arguments:

Examples:

Related:

rotorsync

Applicability:
Syntax:

230

VnmrJ 2.2 Ml User Programming

rlpwrm (power,device)
double power; /* new level for lin. mod. power */
int device; /* OBSch, DECch, DEC2ch, or DEC3ch */

Changestransmitter or decoupler linear modulator power the same asthe pwrm
statement, but to avoid using real-time variables, r1pwrm uses a C variable of
type double as the argument for the amount of change.

power isthelinear modulation (fine) power desired.

device iSOBSch (observe transmitter), DECch (first decoupler), DEC2ch
(second decoupler), or DEC3ch (third decoupler).

rlpwrm(4.0,0BSch) ;

Change transmitter or decoupler lin. mod. power with |PA
Change transmitter or decoupler linear modul ator power

ipwrm
pwrm

Sets the standard oblique rotation angles
Setsthe standard obliquerotation angles psi, phi, and thetafor gradient rotation.
rotate()

rotate();

Sets user defined oblique rotation angles

Sets user defined oblique rotation Euler angles ang1, ang2, and ang3 for
gradient rotation.

rot angle(angl, ang2, ang3)

angl, ang?2, and ang3 are the user defined oblique rotation Euler anglesin
degrees.

rot angle (angl, ang2, ang3) ;

Obtain rotor period of MAS rotor
Systems with MAS (magic-angle spinning) rotor synchronization hardware.
Obtains the rotor period.

rotorperiod (period)

codeint period; /* variable to hold rotor period */

period isareal-timevariable into whichis placed the rotor period as an
integer in units of 100 ns. For example, for rotorperiod (v4), if v4
contains the value 1700, the rotor period is 170 us and the rotor speed is 1E+7
/ 1700 = 5882 Hz.

rotorperiod (v4) ;

Gated pulse sequence delay from MAS rotor position
Gate pulse sequence from an external event

rotorsync
xgate

Gated pulse sequence delay from MAS rotor position
Systems with MAS (magic-angle spinning) rotor synchronization hardware.

rotorsync (rotations)

codeint rotations; /* variable for turns to wait */

01-999379-00 A 0708

Description: Inserts avariable-length delay that allows synchronizing the execution of the

pulse sequence with a particular orientation of the sample rotor. When the

rotorsync statement is encountered, the pulse sequence is stopped until the
number of rotor rotations has occurred.

Arguments. rotations isareal-timevariablethat specifiesthe number of rotor rotations
to occur before restarting the pul se sequence.

Examples. rotorsync (v6) ;

Related: rotorperiod Obtan rotor period of MAS rotor

xgate

Gate pulse sequence from an external event

Top A B C D E G H

setautoincrement
setdivnfactor
setreceiver
setstatus
settable
setuserap
shapedpulse
shaped pulse
shapedgradient
shaped2Dgradient
shapedincgradient
shapedvgradient
simpulse
sim3pulse
sim4pulse
simshaped pulse
sim3shaped pulse
sli

spH#off

sp#on

spinlock
starthardloop
status
statusdelay
stepsize

sub

01-999379-00 A 0708

I L M O P R S T V W X Z

Set autoincrement attribute for atable

Set divn-return attribute and divn-factor for AP table

Associate the receiver phase cycle with atable

Set status of observe transmitter or decoupler transmitter

Store an array of integersin areal-time AP table

Set user AP register

Perform shaped pul se on observe transmitter

Perform shaped pul se on observe transmitter
Generate shaped gradient pulse

Generate arrayed shaped gradient pulse

Generate dynamic variable gradient pulse

Generate dynamic variable shaped gradient pulse

Pulse observe and decoupl e channels simultaneously

Pulse simultaneously on 2 or 3 rf channels

Simultaneous pulse on four channels

Perform simultaneous two-pulse shaped pulse

Perform a simultaneous three-pul se shaped pulse

Set SLI lines

Turn off specified spare line (Inova#=1to 5)

Turn on specified spare line (Inova#=1 to 5)

Control spin lock on observe transmitter

Start hardware loop

Change status of decoupler and homospoil

Execute the status statement with a given delay time

Set small-angle phase step size

Subtract integer values

VnmrJ 2.2 Ml User Programming

231

Chapter 3. Pulse Sequence Statement Reference

setautoincrementSet autoincrement attribute for a table

Syntax:

Description:

Arguments:
Examples:

Related:

setdivnfactor

Syntax:

Description:

Arguments:

Examples:

Related:

setreceiver

Syntax:

Description:

Arguments:
Examples:

setautoincrement (table)

codeint table; /* real-time table variable */

Setsthe autoincrement attribute in atable. Theindex into thetableisset to O at
the start of an FID acquisition and is incremented after each accessinto the
table. Tables using the autoincrement feature cannot be accessed within a
hardware loop.

table isthe name of thetable (t1 to t60).

setautoincrement (t9) ;

getelem Retrieve an element from atable

loadtable L oad table elements from table text file
setdivnfactor Set divn-return attribute and divn-factor for table
setreceiver Associate the recelver phase cycle with atable
settable Store an array of integersin areal-time table

Set divn-return attribute and divn-factor for table

setdivnfactor (table,divn factor)

codeint table; /* real-time table variable */

int divn_factor; /* number to compress by */

Setsthe divn-return attribute and divn-factor for a table. The actual index into
thetableis now set to (index/divn-factor). {0 1} 2 is therefore translated by the
controller, not by PSG (pulse sequence generation), into 00 1 1. Thedivn-return
attribute results in a divn-factor-fold compression of the table.

table specifiesthe name of thetable (t1 to t60).
divn_factor specifies the divn-factor for the table.
setdivnfactor(t7,4);

getelem Retrieve an element from atable
loadtable Load table elements from table text file
setautoincrement Set autoincrement attribute for atable
setreceiver Associate the receiver phase cycle with atable
settable Store an array of integersin areal-timetable

Associate the receiver phase cycle with a table

setreceiver (table)
codeint table; /* real-time table variable */

Assigns the ctth element of atable to thereceiver variable oph. If multiple
setreceiver statementsare used in apulse sequence, or if the value of oph
is changed by real-time math statements such as assign, add, etc., the last
valueof oph prior to the acquisition of datadeterminesthevalue of thereceiver
phase.

table specifiesthe name of thetable (t1 to t60).

setreceiver (tl8) ;

232 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Related:

setstatus
Applicability:
Syntax:

Description:

Arguments:

Examples:

Related:

settable

Syntax:

getelem Retrieve an element from atable

loadtable L oad table elements from tabl e text file
setautoincrement Set autoincrement attribute for atable
setdivnfactor Set divn-return attribute and divn-factor for table
settable Store an array of integersin areal-time table

Set status of observe transmitter or decoupler transmitter
UNITY|NOVA systems.

setstatus (channel, on,mode, sync, mod_freq)

int channel; /* OBSch, DECch, DEC2ch, or DEC3ch */
int on; /* TRUE (=on) or FALSE (=off) */

char mode; /* 'e', 'w', 'g', etc. */

int sync; /* TRUE (=synchronous) or FALSE */
double mod freq; /* modulation frequency */

Sets the status of a transmitter independent of the st atus statement, thus
overriding decoupler parameters such as dm and dmm. Sincethe setstatus

statement is part of the pulse sequence, it has no effect when only an su
command is executed. It is the only way the observe transmitter can be

modulated. Seealso: “Amplifier Channel Blanking and Unblanking,” page 75

channel iSOBSch (observe transmitter), DECch (first decoupler), DEC2ch

(second decoupler), or DEC3ch (third decoupler).
on IS TRUE (turn on decoupler) or FALSE (turn off decoupler).
mode isone of the following values for a decoupler mode (for further

information on decoupler modes, refer to the description of the dmm parameter

in the manual Command and Parameter Reference):
® ' ¢ sets continuous wave (CW) modulation.
® ' £ setsfm-fm modulation (swept-square wave).
® g sets GARP modulation.
® 'm' sets MLEV-16 modulation.
® 'p' sets programmable pulse modulation (i.e., waveform).
® 'y sets square wave modulation.

® 'u' (UTYINOVA only) sets user-supplied modulation from external
hardware.

® 1y sets WALTZ-16 modulation.
® 1y sets XY 32 modulation.

sync iS TRUE (decoupler is synchronous) or FALSE (decoupler is
asynchronous).

mod_fregq isthe modulation frequency.

setstatus (DECch, TRUE, 'w', FALSE, dmf) ;
setstatus (DEC2ch, FALSE, 'c',FALSE,dmf2);

status Change status of decoupler and homospoil
Store an array of integers in a real-time table

settable (tablename, numelements, intarray)
codeint tablename; /* real-time table variable */

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming

233

Chapter 3. Pulse Sequence Statement Reference

Description:

Arguments:

Examples:
Related:

setuserap
Applicability:
Syntax:

Description:

Arguments:

Examples:
Related:

shapedpulse
Applicability:

shaped pulse
Applicability:

int numelements; /* number in array */
int *intarray; /* pointer to array of elements */

Stores an integer array in areal-time table. The autoincrement or divn-return
attributes can be subsequently associated with atable defined by settable by
using setautoincrement and setdivnfactor

table isthe name of thetable (t1 to t60).
number elements isthe size of thetable.

intarray isaC array that containsthe table elements, which can range from
—327681t0 32767. Beforecalling set table, thisarray must be predefined and
predimensioned in the pul se sequence using C statements.

settable(tl,10,int array);

getelem Retrieve an element from atable

loadtable L oad AP table elements from table text file
setautoincrement Set autoincrement attribute for atable
setdivnfactor Set divn-return attribute and divn-factor for table
setreceiver Associate the receiver phase cycle with atable

Set user AP register
UNTYINOVA systems

setuserap (value, register)
real value; /* value sent to user AP register */
int register; /* AP bus register number: 0, 1, 2, or 3 */

Setsavaluein one of the four 8-bit AP bus registers that provide an output
interface to user devices. The outputs of these registers go to the USER

AP connectors J8212 and J38213, located on the back of theleft consol e cabinet.
These outputs have a 100-ohm series resistor for circuit protection.

value isasigned or unsigned number (rea or integer) to output to the
specified user AP register. The number istruncated to an 8-bit byte.

register isthe AP register number, mapped to output lines as follows:
® Register 0isJ8213, lines9 to 16.
® Register 1isJ8213, lines 1 to 8.
® Register 2isJ8212, lines 9 to 16.
® Register 3isJ8212, lines1to 8.
setuserap(127.0,0) ;

readuserap Readinput from user AP register
vesetuserap Setuser AP register using real-time variable

Perform shaped pulse on observe transmitter

This statement is due to be eliminated in future versions of VnmrJ software.
Although it is still functional, you should not write any new pul se sequences
using it and should replace it in existing sequences with shaped pulse,
which functions exactly the same as shapedpulse.

Perform shaped pulse on observe transmitter

UNITYINOVA systems with a waveform generator on the observe transmitter
channel.

234 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Syntax: shaped pulse (pattern,width, phase,RG1,RG2)

char *pattern; /* name of .RF text file */

double width; /* width of pulse in sec */

codeint phase; /* real-time variable for phase */
double RG1; /* gating delay before pulse in sec */
double RG2; /* gating delay after pulse in sec */

Description: Performs a shaped pulse on the observe transmitter.

When using the waveform, the shapes are downl oaded into the controller before
the start of an experiment. The minimum pulse length is and stepsize is 50 ns.
If the length isless than 50 ns, the pulseis not executed.

UNTYINOVA Systems:

These systems use the waveform generator if it is configured on the channel.
Systems without awaveform generator on the channel use the linear attenuator
and the small-angle phase shifter are used to effectively perform an
apshaped pulse statement.

UNITYINOVA Systems address and start the shape when shaped _pulse is
called. The overhead at the start and end of the shaped pulse varies with the
system:

® UNTYINOVA: 1 us (start), O (end)
® System with Acquisition Controller board: 10.75 pus (start), 4.3 us (end)
® System with Output board: 10.95 us (start), 4.5 us (end)

UNITYINOVA Systems, using the linear attenuator and the small-angle phase
shifter to generate a shaped pulse, create AP tables for amplitude and phase on
the fly when the shaped pulse statement is called. It also usesthe real-
timevariablesv12 and v13 to control the execution of the shape. It does
not use APtablevariables. For timing and moreinformation, seethe description
of apshaped pulse. Notethat if using AP tables with shapes that have a
large number of points, the FIFO can become overloaded with words generating
the pulse shape and FIFO Underflow errors can result.

Arguments: file isthe name of atext fileinthe shapelib directory that storesthe rf
pattern (leave off the . RF file extension).

width isthe duration, in seconds, of the pulse on the observe transmitter.
phase isthe phase of the pulse and must be areal-time variable.

RG1 isthe delay, in seconds, between gating the amplifier on and gating the
observe transmitter on (the phase shift occurs at the beginning of this delay).

RG2 isthe delay, in seconds, between gating the observe transmitter off and
gating the amplifier off.

Examples. shaped pulse ("gauss",pw,vl,rofl,rof2);

Related: decshaped pulse Shaped pulse on first decoupler
dec2shaped pulse Shaped pul se on second decouple r
simshaped pulse Simultaneous two-pulse shaped pulse

sim3shaped pulse Simultaneous three-pul se shaped pulse

shapedgradient Generate shaped gradient pulse
Applicability: Systems with waveform generation on imaging or PFG module.

Syntax: shapedgradient (pattern,width, amp, channel, loops,wait)
char *pattern; /* name of shape text file */

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 235

Chapter 3. Pulse Sequence Statement Reference

236

Description:

Arguments:

Examples:

double width; /* length of pulse */

double amp; /* amplitude of pulse */

char channel; /* gradient channel 'x', 'y', or 'z' */
int loops; /* number of loops */

int wait; /* WAIT or NOWAIT */

Operates the selected gradient channel to provide a gradient pulse to the
selected set of gradient coils. The pulse has a pul se shape determined by the
arguments name, width, amp, and 1oops. Unlike the shaped rf pulses, the
shaped gradient |eaves the gradients at the last value in the gradient pattern
when the pulse compl etes.

pattern isthe name of atext file without a.GRD extension to describe the
shape of the pulse. The text file with a.GRD extension should be located in
$vnmrsystem/shapelib orintheusersdirectory $vnmruser/
shapelib.

width isthe requested length of the pulsein seconds. The pulse length is
affected by two factors: (1) the minimum time of every element in the shape
file must be at least 10 uslong, and (2) the time for every element must be a
multiple of 50 ns. If thewidth of the pulseislessthan 10 pustimesthe number
of stepsin the shape, awarning message is generated. The shaped gradient
software rounds each element to a multiple of 50 ns. If the requested width
differsfrom the actual width by more than 2%, awarning message is displayed.

amp isavaue that scales the amplitude of the pulse. Only the integer portion
of the value isused and it ranges from 32767 to —32767; where 32767 is full
scale and —32767 is negative full scale.

channel selects the gradient coil channel desired and should evaluate to the
characters 'x', 'y',or ' z'. (Besurenot to confusethecharacters 'x ', 'y ',
or 'z' withthestrings "x", "y",or "z".)

loops isavaue, from 1 to 255, that allows the user to loop the selected

waveform. Note that the given valueis the number of loops to be executed and
that the values 0 and 1 cause the pattern to execute once.

wait isakeyword, either WAIT or NOWAIT, that selectswhether or not adelay
isinserted to wait until the gradient is completed before executing the next
statement. Thetotal timeit will wait iswidth*loops. If loopsissupplied as
0, it will be counted as 1 when determining its total time.

Theline:
#define POVR 1l.2e-5 /* shaped pulse overhead=12 us */
isrequired for UNTYINOVA systems.

UNITYINOVA:
shapedgradient ("hsine",0.02,32767,'y"',1,NOWAIT) ;

#include "standard.h"
#define POVR 1l.2e-5 /* shaped pulse overhead=12 us */
pulsesequence ()

{

for (i=-32000; 1<=32000; 1+16000)

{

shapedgradient ("hsine",pw+d3+rxl+rx2,1, 'x', \
1,NOWAIT) ;

shapedpulse ("sinc",pw, oph, rxl, rx2) ;

delay (d3) ;

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Related:

}

/* This step sets a square gradient from a low value */
/* to a high value while executing a shaped pulse */
/* and a delay during each gradient value. */

}

dps_show Draw delay or pulsesin a sequence for graphical display
rgradient Set gradient to a specified level

shapedgradient Provide shaped gradient pulse to gradient channel
shaped2Dgradient Arrayed shaped gradient function

vgradient Set gradient to alevel determined by real-time math

shaped2Dgradient Generate arrayed shaped gradient pulse

Applicability:
Syntax:

Description:

Arguments:

Systems with imaging or PFG module.

shaped2Dgradient (pattern,width, amp, channel, \
loops,wait, tag)

char *pattern; /* name of pulse shape text file */
double width; /* length of pulse */

double amp; /* amplitude of pulse */

char channel; /* gradient channel 'x', 'y', or 'z' */
int loops; /* number of loops */

int wait; /* WAIT or NOWAIT */

int tag; /* unique number for gradient element */

Operates the selected gradient channel to provide a gradient pulse to the
selected set of gradient coils. This statement is basically the same as the
shapedgradient statement except that shaped2Dgradient istalored
to be used in pulse sequences where the amplitude is arrayed (imaging
sequences).

pattern isthe name of atext filewithout a. GRD extension that describesthe
shape of the pulse. The text file with a.GRD extension should be located in
$vnmrsystem/shapelib orintheusersdirectory $vnmruser/
shapelib.

width isthe requested length of the pulse in seconds. The width of the pulse
isaffected by: (1) (“N™I NOVA only) the minimum time of every element in the
shape filemust beat least 200 nslong, and (2) (“N™I NOVA) thetimefor every
element must be a multiple of 50 ns. If the width of the pulseislessthan 10

ustimesthe number of stepsin the shape, awarning message is generated. The
shaped gradient software will round each element to a multiple of 50 ns. If the
requested width differs from the actual width by more than 2%, a warning

message is displayed.

amp isavalue that scales the amplitude of the pulse. Only the integer portion
of the value is used and it ranges from 32767 to —32767; where 32767 is full
scale and —32767 is negative full scale.

channel selectsthe gradient coil channel desired and should evaluate to the
characters 'x', 'y',or ' z'. (Besurenot to confusethecharacters 'x ', 'y ',
or 'z' withthestrings "x", "y",or "z".)

loops isavaue, from 1 to 255, that allows the user to loop the selected
waveform. Note that the given valueis the number of loops to be executed and
that the values 0 and 1 cause the pattern to execute once.

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 237

Chapter 3. Pulse Sequence Statement Reference

UNITYINOVA only: A digital hardware bug affecting looping requires that all
patterns be carefully constructed to achieve the desired results.

wait isakeyword, either WAIT or NOWAIT, that selectswhether or not adelay
isinserted to wait until the gradient is completed before executing the next
element. The total time it will wait iswidth*1loops.

tagisauniqueinteger that “tags’ the gradient element from any other gradient
elements used in the sequence.

Examples: #include "standard.h"

pulsesequence ()
{
shaped2Dgradient ("hsine",d3,0.0-gpe, 'x',0,NOWAIT, 1) ;
delay (d3) ;
shaped2Dgradient ("hsine",d4,gpe, 'y', 0,NOWAIT, 2) ;
}

Related: dps show Draw delay or pulsesin a sequence for graphical display
rgradient Set gradient to a specified level
shapedgradient Provide shaped gradient pulse to gradient channel
vgradient Set gradient to alevel determined by real-time math

shapedincgradient Generate dynamic variable gradient pulse
Applicability: Systems with imaging or PFG module.

Syntax: shapedincgradient (channel,pattern,width, \
al0,al,a2,a3,x1,x2,x3,loops,wait)
char channel; /* gradient channel 'x', 'y', or 'z' */
char *pattern; /* name of pulse shape text file */
double width; /* length of pulse */
double a0,al,a2,al3; /* coefficients to determine level */
codeint x1,x2,x3; /* variables to determine level */
int loops; /* number of loops */
int wait; /* WAIT or NOWAIT */

Description: Provides adynamic, variable shaped gradient pulse controlled using the real-

238

time math functions. The statement drives the chosen gradient with the
specified pattern, scaled to the level defined by the formula:

level = a0 + al*xl + a2*x2 + a3*x3

The pulse has a pulse shape determined by thepattern, width, and loops
arguments, as well asthe calculation of level.

Unlike the shaped rf pulses, the shapedincgradient will leavethe
gradients at the last value in the gradient pattern when the pulse completes. The
range of the gradient level is—32767 to +32767. If the requested level lies
outsidethelegal range, itisclipped at the appropriate boundary value. Notethat,
while each variable in the calcul ation of level must fit in a 16-bit integer,
intermediate sums and products in the calculation are done with double
precision, 32-bit integers.

Thefollowing error messages are displayed if the requested shape cannot be
found or if awidth of zero is specified.:

shapedincgradient: x[i] illegal RT variable: xi or
shapedincgradient: no match!

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Arguments:

Related:

channel selectsthe gradient coil channel desired and should evaluate to the
characters 'x', 'y',or 'z'. (Becareful not to confuse the characters 'x ',
'y',or 'z'" withthestrings "x", "y",or "z".)

pattern isthe name of atext file without a.GRD extension to describe the
shape of the pulse. The text file with a.GRD extension should be located in
$vnmrsystem/shapelib orintheusersdirectory $vnmruser/
shapelib.

width isthe requested length of the pulse in seconds. The width of the pulse
is affected by two factors: (1) the minimum time of every element in the shape
filemust be at least 10 us, and (2) thetimefor every element must be amultiple
of 50 ns. If the width of the pulse islessthan 10 ustimes the number of stepsin
the shape), awarning message is generated. The shapedincgradient
software will round each element to a multiple of 50 ns. If the requested width
differsfrom the actual width by more than 2%, awarning message is displayed.

a0, al, a2, a3, x1, x2, x3 arevaues used in the calculation of “level.”

loops isavaue, from 1 to 255, that allows the user to loop the selected
waveform. Note that the given valueis the number of loops to be executed and
that the values 0 and 1 cause the pattern to execute once.

UNITYINOVA only: A digital hardware bug affecting looping requires that all
patterns be carefully constructed to achieve the desired results.

wait isakeyword, either WAIT or NOWAIT, that selects whether or not a
delay isinserted towait until the gradient is compl eted before executing the next
element. Thetotal timeit will waitiswidth*loops. If loops issupplied as
0, it will be counted as 1 when determining its total time.

getorientation Read image plane orientation

rgradient Set gradient to a specified level
shapedgradient Provide shaped gradient pulse to gradient channel
shaped2Dgradient Generate arrayed shaped gradient pulse
vgradient Set gradient to alevel determined by real-time math

shapedvgradient Generate dynamic variable shaped gradient pulse

Applicability:
Syntax:

Description:

Systems with imaging or PFG module.

shapedvgradient (pattern,width,amp const, \
amp_incr,amp_ vmult, channel,vloops,wait,tag)

char *pattern; /* name of pulse shape text file */

double width; /* length of pulse */

double amp const; /* sets amplitude of pulse */

double amp incr; /* sets amplitude of pulse */

codeint amp vmult; /* sets amplitude of pulse *x/

char channel; /* gradient channel 'x', 'y', or 'z' */

codeint vloops; /* variable for number of loops */

int wait; /* WAIT or NOWAIT */

int tag; /* unique number for gradient element */

Operates the sel ected gradient channel to provide a shaped gradient pulseto the
selected set of gradient coils. This statement is tailored to provide a dynamic
variable shaped gradient level controlled using the system real -time math
functions and real-timelooping. The statement drivesthe chosen gradient shape
to the level defined by the formula:

amplitude = amp const + amp incr*amp vmult

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 239

Chapter 3. Pulse Sequence Statement Reference

240

Arguments:

Examples:

Therange of the gradient amplitude is-32767 to +32767, where 32767 is full
scale and —32767 is negative full scale.

If the requested level lies outside this range, it is truncated to the appropriate
boundary value. Note that the v1oops argument is also controlled by areal-
time AP math variable. Unlike the shaped rf pulses, the shaped gradient leaves
the gradients at the last value in the gradient pattern when the pul se compl etes.

name isthe name of atext filewithout a. GRD extension to describe the shape
of the pulse. The text file with a.GRD extension should be located in
$vnmrsystem/shapelib orintheuser'sdirectory $vnmruser/
shapelib.

width isthe requested length of the pulse in seconds. The width of the pulse
is affected by two factors: (1) the minimum time of every element in the shape
filemust be at least 10 us, and (2) thetimefor every element must be amultiple
of 50 ns. If width islessthan 10 us times the number of stepsin the shape, a
warning message is generated. The shaped gradient software will round each
element to amultiple of 50 ns. If the requested width differs from the actual
width by more than 2%, awarning message is displayed.

amp_const, amp_incr, and amp_vmult scae the amplitude of the pulse
according to theformulaabove. amp const andamp_incr canbevalues of
type double or integer. amp_vmult must be areal-time AP math variable (v1
tov14) or atable pointer (t1 to t60). The amplitude ranges are also given
above.

channel selectsthe gradient coil channel desired and should evaluate to the
characters 'x ', 'y’ ,or 'z'. (Becareful not to confuse the characters 'x ',
'y',or 'z'" withthestrings "x", "y",or "z".)

v1oops alowsthe user toloop the selected waveform. Vaues range from 1 to
255. This aso must be areal-time math variable (v1 to v14) or atable pointer
(t1tot60). DonotuseOfor vioops, because this may causeinconsistencies

when WAIT isselected for thewait 4 me argument.

UNITYINOVA only: A digital hardware bug affecting looping requires that all
patterns be carefully constructed to achieve the desired results.

wait isakeyword, either WAIT or NOWAIT, that selects whether or not a
delay isinserted towait until the gradient is compl eted before executing the next
element. Thetotal timeit will waitiswidth*vloops.|tusestheincdelay
statement when waiting for the gradient pulse to compl ete.

tag isaunique integer that “tags’ this gradient statement from any other
gradient statement used in the sequence.

#include "standard.h"
pulsesequence ()

{
char gphase, gread, gslice;

amplitude=(int) (0.5*ni*gpe) ;
stat=getorientation (&gread, &gphase, &gslice, "orient")

I

initval(1.0,v1);
initval (nf,v9) ;
loop (v9,v5) ;

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Related:

simpulse

Syntax:

Description:

Arguments:

Examples:

Related:

shapedvgradient ("hsine",d3,amplitude, igpe, \
v5,gphase,vl,NOWAIT, 1) ;

endloop (v5) ;

}
incdelay Set real-time incremental delay
rgradient Set gradient to specified level

shapedgradient Generate shaped gradient pulse
shaped2Dgradient Generate arrayed shaped gradient pulse
vgradient Generate dynamic variable gradient pulse

Pulse observe and decouple channels simultaneously

simpulse (obswidth,decwidth, obsphase,decphase, \
RG1,RG2)

double obswidth, decwidth; /* pulse lengths in sec */

codeint obsphase,decphase; /* variables for phase */

double RG1; /* gating delay before pulse */

double RG2; /* gating delay after pulse */

Gates the observe and decoupler channels. The shorter of the two pulsesis
centered on the longer pulse, while the amplifier gating occurs before the start
of the longer pulse (even if it isthe decoupler pulse) and after the end of the
longer pulse.

The absolute difference in the two pulse widths must be greater than or equal to
0.1 us; otherwise, atimed event of lessthan the minimum va ue (0.05 us) would
be produced:

® if thedifferenceislessthan 0.1 us, the pulses are made equally long.
® |f the differenceisfrom 0.1 to 0.2 us, the difference ismade 0.2 us.

® |f the differenceislarger than 0.2 us, the difference is made as close as the
timing resolution allows (0.0125 us).

Excluding UNTYINOVA systems: the minimum timeis 0.2 us; thus, thetimes are
doubled (the difference must be 0.4 us, resolution is 0.025 us).

obswidthand decwidth aretheduration, in sec, of the pulse on the observe
transmitter and first decoupler, respectively.

obsphase and decphase are the phase of the pulse on the observe
transmitter and the first decoupler, respectively. Each must be a real-time
variable.

RG1 isthedelay, in seconds, between gating the amplifier on and gating thefirst
rf transmitter on (all phase shifts occur at the beginning of this delay).

RG2 isthe delay, in seconds, between gating the final rf transmitter off and
gating the amplifier off.
simpulse (pw,pp,vl,v2,0.0,ro0f2) ;

decpulse Pulse the decoupler transmitter

decrgpulse Pulsedecoupler transmitter with amplifier gating
dps_show Draw delay or pulsesin a sequence for graphical display
rgpulse Pulse observe transmitter with amplifier gating

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 241

Chapter 3. Pulse Sequence Statement Reference

sim3pulse

Applicability:

Syntax:

Description:

Arguments:

Examples:

Related:

sim4pulse

Applicability:

242

Syntax:

Description:

Arguments:

sim3pulse Simultaneous pulse on 2 or 3 rf channels
sim4pulse Simultaneous pulse on four channels

Pulse simultaneously on 2 or 3 rf channels
UNITYINOVA systems with two or more independent rf channels.
sim3pulse (pwl, pw2,pw3,phasel,phase2,phase3,RG1l,RG2)

double pwl,pw2,pw3; /* pulse lengths in sec */
codeint phasel,phase2,phase3; /* variables for phases */
double RG1; /* gating delay before pulse */
double RG2; /* gating delay after pulse */

Performsa simultaneous, three-pul se pul se on three independent rf channels. A
simultaneous, two-pul se pul se on the observe transmitter and second decoupler
can also be performed by setting the pulse length for the first decoupler to 0.0
(see the second example for how thisis done).

Timing limitations connected with the difference in pulse widths are covered in
the description of simpulse.

pwl, pw2, and pw3 are the pulse length, in seconds, of channels OBSch,
DECch, and DEC2ch, respectively.

phasel, phase?2, and phase3 are the phases of the corresponding pul ses.
These must be real-time variables (v1 tov14, oph, etc.).

RG1 isthedelay, in seconds, between gating the amplifier on and gating thefirst
rf transmitter on (all phase shifts occur at the beginning of this delay).

RG2 isthe delay, in seconds, between gating the final rf transmitter off and
gating the amplifier off.

sim3pulse (pw,pl,p2,0ph,v10,vl, rofl,rof2) ;
sim3pulse (pw,0.0,p2,0ph,v10,vl,rofl,rof2);

decpulse Pulse the decoupler transmitter

decrgpulse Pulse decoupler transmitter with amplifier gating
dps_show Draw delay or pulsesin a sequence for graphical display
rgpulse Pulse observe transmitter with amplifier gating
simpulse Pulse observe, decoupler channels simultaneously
sim4pulse Simultaneous pulse on four channels

Simultaneous pulse on four channels
UNITYINOVA systems with two or more independent rf channels.

sim4pulse (pwl,pw2,pw3, pw4,phasel,phase2, \
phase3, phase4,RG1,RG2)

double pwl,pw2,pw3,pw4; /* pulse length in sec */
codeint phasel,phase2; /* variables for phase */
codeint phase3,phase4; /* variables for phase */
double RG1; /* gating delay before pulse */
double RG2; /* gating delay after pulse */

Allows for simultaneous pulses on up to four different channels. If any of the
pulses are set to 0.0, no pulse is executed on that channel.

Timing limitations connected with the difference in pulse widthsis covered in
the description of simpulse.

pwl, pw2, pw3, and pw4 are the pulse length, in seconds, of channels OB Sch,
DECch, DEC2ch, and DEC3ch, respectively.

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Examples:

Related:

phasel,phase2,phase3, andphase4 arethe phasesof the corresponding
pulses. Each must be real-time variable (v1-v14, oph, €tc.)

RG1 isthedelay, in seconds, between gating on the amplifier and turning on the
first transmitter (all phases set at beginning of RG1, even if pwn is0.0).

RG2 isthe delay, in seconds, between the fina transmitter off and gating the
amplifier off.

sim4pulse (pw, 2*pw,pl, 2*pl, oph,v3, ZERO, TWO, tofl, rofl) ;
sim4pulse (pw,0.0,0.0,2*pl, oph, ZERO, ZERO, TWO,rofl,rofl) ;

rgpulse Pulse observe channel with amplifier gating
simpulse Pulse observe and decoupler channel simultaneously
sim3pulse Pulse simultaneously on 2 or 3 channels

simshaped pulse Perform simultaneous two-pulse shaped pulse

Applicability:
Syntax:

Description:

Arguments:

UNITYINOVA Systems with a waveform generator on two or more rf channels.

simshaped pulse (obsshape,decshape, obswidth, \
decwidth, obsphase, decphase,RG1,RG2)

char *obsshape, *decshape; /* names of .RF shape files */

double obswidth, decwidth; /* pulse lengths in sec */

codeint obsphase,decphase; /* variables for phase */

double RG1; /* gating delay before pulse */

double RG2; /* gating delay after pulse */

Performsasimultaneous, two-pulse shaped pulse on the observe transmitter and
the first decoupler under waveform control.

If either obswidthor decwidthis0.0, no pulseoccursonthe corresponding
channel. If both obswidth and decwidth are non-zero and either
obsshape or decshape issettothenull string (' '), then arectangular pulse
occurs on the channel with the null shape name. If either the pulse width is zero
or the shape name is the null string, then awaveform is not required on that
channel.

UNITYI NOVA:

The overhead at the start and end of the two-pulse shaped pulse varies with the
system:

® UNTYINOVA: 1.45 us (start), O (end).
® Systemswith an Acquisition Controller board: 21.5 us, 8.6 us.
® Systems with an Output board: 21.7 us, 8.8 us.

These values hold regardless of the values for the arguments obswidth and
decwidth.

obsshape isthenameof thetext fileinthe shapelib directory that contains
the rf pattern to be executed on the observe transmitter.

decshape isthenameof thetext fileinthe shapelib directory that contains
the rf pattern to be executed on the first decoupler.

obswidth isthelength of the pulse, in seconds, on the observe transmitter.
decwidth isthelength of the pulse, in seconds, on the first decoupler.

obsphase isthe phase of the pulse on the observe transmitter. The value must
be areal-time variable (v1 tov14, oph, €c.).

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 243

Chapter 3. Pulse Sequence Statement Reference

Examples:

Related:

decphase isthe phase of the pulse on thefirst decoupler. The value must be
ared-timevariable (v1 tov1l4, oph, etc.).

RG1 isthedelay, in seconds, between gating the amplifier on and gating thefirst
rf transmitter on (all phase shifts occur at the beginning of this delay).

RG2 isthe delay, in seconds, between gating the final rf transmitter off and
gating the amplifier off.

simshaped pulse("gauss", "hrml80",pw,pl,v2,v5, \
rofl, rof2) ;

decshaped pulse Shaped pulse on first decoupler
dec2shaped pulse Shaped pulse on second decoupler
shaped pulse Shaped pulse on observe transmitter
sim3shaped pulse Simultaneous three-pul se shaped pulse

sim3shaped pulsePerform a simultaneous three-pulse shaped pulse
Applicability:

244

Syntax:

Description:

Arguments:

UNITYINOVA systems with a waveform generator on three or more rf channels.

sim3shaped pulse (obsshape,decshape,dec2shape, \
obswidth,decwidth,dec2width, obsphase, \
decphase, dec2phase,RG1,RG2)

char *obsshape; /* name of obs .RF file */

char *decshape; /* name of dec .RF file */

char *dec2shape; /* name of dec2 .RF file */

double obswidth; /* obs pulse length in sec */

double decwidth; /* dec pulse length in sec */

double dec2width; /* dec2 pulse length in sec */
codeint obsphase; /* obs real-time var. for phase */
codeint decphase; /* dec real-time var. for phase */
codeint dec2phase; /* dec2 real-time var for phase */
double RG1; /* gating delay before pulse in sec */
double RG2; /* gating delay after pulse in sec */

Performs a simultaneous, three-pul se shaped pulse under waveform control on
three independent rf channels.

sim3shaped pulse can aso be used to perform a simultaneous two-pulse
shaped pulse on any combination of three rf channels. This can be achieved by
setting one of the pulse lengths to the value 0.0 (see the second example for an
illustration of how thisis done).

If any of the shape names are set tothenull string (' '), then arectangular pulse
occurs on the channel with the null shape name. If either the pulse width is zero
or the shape name is the null string, then awaveform is not required on that
channel.

UNITY] NOVA:

The overhead at the start and end of the shaped pulse varies:
® UNTYINOVA: 1.95 us (start), O (end).
® Systems with an Acquisition Controller board: 32.25 us, 12.9 us.
® Systems with an Output board: 32.45 us, 13.1 us.

These values hold regardless of the values of the arguments obswidth,
decwidth, and dec2width.

obsshape isthenameof thetext fileinthe shapelib directory that contains
the rf pattern to be executed on the observe transmitter.

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Examples:

Related:

sli
Applicability:
Syntax:

Description:

decshape isthenameof thetext fileinthe shapelib directory that contains
the rf pattern to be executed on the first decoupler.

dec2shape isthe name of thetext filein the shapelib directory that
contains the rf pattern to be executed on the second decoupler.

obswidth isthelength of the pulse, in seconds, on the observe transmitter.
decwidth isthelength of the pulse, in seconds, on the first decoupler.
dec2width isthelength of the pulse, in seconds, on the second decoupler.

obsphase isthephaseof thepulseonthe observetransmitter. The value must
be areal-time variable (v1 tov14, oph, €c.).

decphase isthe phase of the pulse on thefirst decoupler. The value must be
ared-timevariable (v1 tov1l4, oph, etc.).

dec2phase isthe phase of the pulse on the second decoupler. The value must
be areal-time variable (v1 tov14, oph, €c.).

RG1 isthedelay, in seconds, between gating the amplifier on and gating thefirst
rf transmitter on (all phase shifts occur at the beginning of this delay).

RG2 isthe delay, in seconds, between gating the final rf transmitter off and
gating the amplifier off.

sim3shaped pulse("gauss", "hrml80", "sinc",pw,pl,p2, \
v2,v5,v6,rofl,rof2) ;

sim3shaped pulse ("dumy", "hrml80","sinc",0.0,pl,p2, \
v2,v5,v6,rofl,rof2) ;

decshaped pulse Shaped pulse on first decoupler
dec2shaped pulse Shaped pulse on second decoupler
shaped pulse Shaped pulse on observe transmitter
simshaped pulse Simultaneous two-pulse shaped pulse
Set SLI lines

UNTYINOVA systems.

sli (address, mode,value)

int address; /* SLI board address */
int mode; /* SLI_SET, SLI OR, SLI AND, SLI XOR */
unsigned value; /* bit pattern */

Setslineson the SLI board. It has no return value. Systems with imaging
capability and the Synchronous Line Interface (SLI) board, an option that
provides an interface to custom user equipment.The board contains 32 TTL-
compatible logic signals that can be set by these functions. Each line has an
LED indicator and a 100-ohm seriesresistor for circuit protection. Thelinesare
accessible through the 50-pin ribbon connector J4 on the front edge of the SL |
board. The pin assignments are as follows:

® Pinsland49 area +5V supply through 100-ohm seriesresistor (enabled
by installing jumper J3L)

® Pins3to 10 control bitsOto 7

Pins 12 to 19 control bits 8 to 15

® Pins 21 to 28 control bits 16 to 23

® Pins41 to 48 control bits 24 to 31

® Pins2, 11, 20, 29, 40, and 50 are ground

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 245

Chapter 3. Pulse Sequence Statement Reference

Arguments:

Examples:

sp#off

Related:

Applicability:

246

Syntax:

s11i hasapre-execution delay of 10.950 us but no post-execution delay. The
delay is composed of a 200-ns startup delay.

UNITYINOVA: with 5 AP bus cycles (1 AP bus cycle = 2.150 us).

Thelogic levelson the SLI lines are not all set simultaneously. The four bytes
of the 32 bit word are set consecutively, the low-order byte first. The delay
between setting of consecutive bytesis 1 AP bus cycle 100 ns. (This 100-ns
timing jitter is non-cumulative.)

Theerror messageIllegal mode: niscaused by themode argument not
beingoneof SLI_SET, SLI OR, SLI_ XOR, Of SLI_AND.

address isthe address of the SLI board in the system. It must match the
address specified by jumper J7R on the board. Note that the jumpers 19-20
through -2 specify bits 2 through 11, respectively. Bits0 and 1 are always zero.
Aninstaled jumper signifiesa“one” bit, and a missing jumper a“zero”. The
standard addresses for the SL1 in the VME card cage:

® Digital (left) sideis C90 (hex) = 3216
® Analog (right) side is 990 (hex) = 2448

mode determineshow to combine the specified value with the current output of
the SLI to produce the new output. The four possible modes:

® SLI_SET istoload the new valuedirectly into the SLI
® SLI ORistologicaly OR the new value with the old
® SLI AND isto logicaly AND the new value with the old
® SLI XOR istologicaly XOR the new value with the old

value (as modified by the mode argument) specifies the bit pattern to be set
inthe SLI board. This should be a non-negative number, between 0 (al lines
low) and 23%-1 (all lines high).

pulsesequence ()

{

int SLIaddr; /* Address of SLI board */

unsigned SLIbits; /* 32 bits of SLI line settings */
SLIbits
SLIaddr

getval("sli");
getval ("address") ;

sli(SLIaddr, SLI_ SET, SLIbits);

Notethat s1i and address are not standard parameters, but need to be
created by the user if they are mentioned in a user pulse sequence (for
details, see the description of the create command).

sp#on Turn on specified spare line
spHoff Turn off specified spare line
vsli Set SLI lines from real-time variable

Turn off specified spare line (Inova #=1 to 5)
UNTYINOVA systems.
sploff () tosp3o0ff ()

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Description:

Examples:

sp#on
Applicability:
Syntax:

Description:

Examples:

spinlock

Applicability:

Syntax:

Description:

Arguments:

Examples:

Related:

Turns off the specified user-dedicated spare line connector (splof £ for
SPARE 1, sp2of £ for SPARE 2, etc.) for high-speed device control.

® UNTYINOVA has five spare lines available from the Breakout panel on the
back of the left console cabinet.

sploff () ;
sp3off () ;

Turn on specified spare line (Inova #=1to 5)
UNTYINOVA systems.
splon () to sp3on ()

Turns on the specified user-dedicated spare line connector (splon for SPARE
1, sp2on for SPARE 2, etc.) for high-speed device control. Each spare line
changes from low to high when turned on.

® UNTYINOVA has five spare lines available from the Breakout panel on the
back of the left console cabinet.

splon();
sp3on () ;

Control spin lock on observe transmitter

UNITYINOVA Systems with a waveform generator on the observe transmitter
channel.

spinlock (pattern, 90 pulselength, tipangle resoln, \
phase,ncycles)

char *pattern; /* name of .DEC text file */

double 90 pulselength; /* 90-deg pulse length of channel */

double tipangle resoln;/* resolution of tip angle */

codeint phase; /* phase of spin lock */

int ncylces; /* number of cycles to execute */

Executes a waveform-controlled spin lock on the observe transmitter. Both the
rf gating and the mixing delay are handled within this function. Arguments can
be variables (which require the appropriate getval and get st r statements)
to permit changes via parameters (see the second example).

patternisthenameof thetext fileinthe shapelib directory that storesthe
decoupling pattern (leave off the .DEC file extension).

90 pulselength isthe pulse duration for a90° tip angle on the observe
transmitter.

tipangle resoln istheresolution in tip-angle degreesto which the
decoupling pattern is stored in the waveform generator.

phase isthe phase angle of the spin lock. It must be area-time variable (v1
tov14, oph, €tc.).

ncycles isthe number of timesthat the spin-lock pattern isto be executed.

spinlock ("mlevlé",pw90,90.0,v1,50) ;
spinlock (locktype, pw, resol,vl,cycles) ;

decspinlock First decoupler spin lock waveform control
dec2spinlock Second decoupler spin lock waveform control
dec3spinlock Third decoupler spin lock waveform control

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 247

Chapter 3. Pulse Sequence Statement Reference

starthardloop Start hardware loop

Syntax:

Description:

Arguments:

Examples:

status

Applicability:

248

Related:

Syntax:

starthardloop (vloop)
codeint vloop; /* real-time variable for loop count */

Starts a hardware loop. The number of repetitions of the hardware loop must be
two or more. If the number of repetitionsis 1, the hardware looping feature is
not activated. A hardware loop with a count equal to 0 is not permitted and
generates an error. Depending on the pul se sequence, additional code may be
needed to trap for this condition and skip the starthardloop and
endhardloop statementsif the count is 0.

Only instructions that require no further intervention by the acquisition
computer (pulses, delays, acquires, and other scattered instructions) are allowed
inahard loop. Most notably, no real-time math statements are allowed, thereby
precluding any phase cycle calculations. The number of eventsincluded in the
hard loop, including the total number of datapointsif acquisition is performed,
is subject to the following limitations:

® 2048 or less for the Data Acquisition Controller board, Pulse Sequence
Controller board, or MERCURYplus/-Vx STM/Output board.

® 1024 or less for the Acquisition Controller board.

® 63 or lessfor the Output board (seethe description section of theacquire
statement for further information about these boards).

In all cases, the number of events must be greater than one. No nesting of hard
loops is allowed.

For the Output board, a hardware loop must be preceded by some timed event
other than an explicit acquisition or another hardware loop. If two hardware
loops must follow one another, it will therefore be necessary to insert a
statement like delay (0.2e-6) between thefirst endhardloop and the
second starthardloop. Withonly asingle hardwareloop, thereisnotiming
limitation on the length of a single cycle of the loop. With two hardware loops
(such as aloop of pulses and delays followed by an implicit acquisition), the
first hardware loop must have aminimum cycle length of approximately 80 us.
With three or more hardware loops, |oops that are not the first or last must have
aminimum cycle length of about 100 us.

For the Data Acquisition Controller, Pulse Sequence Controller, Acquisition
Controller, and MERCURYplus/-Vx STM/Output boards, there are no timing
restrictions between multiple, back-to-back hard loops. Thereis one subtle
restriction placed on the actual duration of ahard loop if back-to-back hard
loops are encountered: the duration of theith hard loop must be N(i+1) * 0.4 us,
where N(i+1) is the number of events occurring in the (i+21)th hard loop.

v1oop isthe number of hardware loop repetitions. It must be areal-time
variable (v1 tov14, ct, etc.) and not an integer, area number, or aregular
variable.

starthardloop (v2) ;

acquire Explicitly acquire data
endhardloop End hardware |oop

Change status of decoupler and homospoil (z-shim coil)
UNTYINOVA systems.

status (state)
int state; /* index: A, B, C, ..., Z */

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Description:

Arguments:
Examples:

Related:

statusdelay

Applicability:

Syntax:

Description:

Controls decoupler and homospoil gating. Parameters controlled by status
are dm (first decoupler mode), dmm (first decoupler modulation mode), dm2
(second decoupler mode), dm3 (third decoupler mode), dmm2 (second
decoupler modulation mode), and dmm3 (third decoupler modulation mode).

Each of these parameters can have multiple states: status (2) setseach
parameter to the state described by the first letter of itsvalue, status (B) uses
the second letter, etc. If apulse sequence has more status statements than there
are status modes for a particular parameter, control reverts to the last |etter of
the parameter value. Thusif dm="ny', status (C) will look for the third
letter, find none, and then use the second letter (y) and turn the decoupler on
(actualy, leave the decoupler on).

The states do not have to increase monotonically during a pulse sequence. It is
perfectly possible to write a pulse sequence that startswith status (2), goes
later to status (B), then goesback to status (&), thento status (C),
etc.

Homospoil is treated slightly differently than the decoupler. If a particular
homospoil code letter is ' v ', delays coded as hsde 1 ay that occur during the
timethe status corresponds to that code letter will begin with a homospoil
pulse, the duration of which is determined by the parameter hst. Thusif
hs="ny', dl hsdelay delaysthat occur during status (B) will begin with
ahomospoil pulse. The final status always occurs during acquisition, at which
time a homospoil pulse isnot permitted. Thus, if a particular pulse sequence
uses status (A), status (B), and status (C), dm and other decoupler
parameters can have up to three letters, but hs has only two, because having
hs="y"' during status (C) ismeaninglessand isconsequently ignored. See
also: “Amplifier Channel Blanking and Unblanking,” page 75

UNITYINOVA Systems and all systemswith class C amplifiersto switch from low-
power to high-power decoupling, insert dhpf 1ag=TRUE; Or
dhpflag=FALSE; inapulse sequencejust before a status statement.

state setsthe status modeto A, B, C, ...,or Z.

status (4) ;
hsdelay Delay specified time with possible homospoil pulse
setstatus Set status of observe transmitter or a decoupler transmitter

statusdelay Execute the status statement with a given delay time

Execute the status statement with a given delay time
UNTTYINOVA systems.

statusdelay (state, time)

int state; /* index: A, B, C, ..., Z */

double time; /* delay time, in sec. */

Executes the status statement and delays for the time provided as an
argument. statusdelay alows the user to specify a defined period of time
for the status statement to execute.

UNITYINOVA:

The current status statement takes a variable amount of time to execute,
which depends on the number of rf channels configured in the system, the
previous status state of each decoupler channel, and the new status state of each
decoupler channel. Thistime issmall (on the order of afew microseconds

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 249

Chapter 3. Pulse Sequence Statement Reference

Arguments:

Examples:

Related:

stepsize

Applicability:

250

Syntax:

Description:

Arguments:

Examples:

Related:

without programmabl e decoupling to tens of microseconds with programmable
decoupling) but can be significant in certain experiments.

If theamount of time given as an argument is not long enough to account for the
overhead delays of status; the pulse sequence will still run, but awarning
message will be generated to let the user know of the discrepancy.

The following table lists the maximum amount of time per channel for the
status statement to execute is 2.5 microseconds.

Without programmable With programmable
decoupling (u.s) decoupling (us)
25 25

state specifiesthe statusmode asA,B,C,...,.Z.
time specifiesthe delay time, in seconds.

statusdelay (A,dl) ;
statusdelay (B,0.000010) ;

status Change status of decoupler and homospoil

Set small-angle phase step size

UNITY|NOVA systemswith rf type C or D and MERCURYplug/-Vx. This statement
isdueto be eliminated in future versions of VnmrJ software. Although it is still
functional, you should not write any pul se sequences using it and should replace
it in existing sequenceswith Use obsstepsize, decstepsize,
dec2stepsize,Ordec3stepsize, asappropriate.

stepsize (step size,device)
double step size; /* step size of phase shifter */
int device; /* OBSch, DECch, DEC2ch, or DEC3ch */

Setsthe step size of the small-angle phaseincrement for aparticular device. The
phase information into statements decpulse, decrgpulse,
dec2rgpulse, dec3rgpulse, pulse, rgpulse,and simpulse isstill

expressed in units of 90°.
step_ size isarea number or avariable for the phase step size desired.

device isOBSch (observe transmitter) or DECch (first decoupler). device
can also be DEC2ch (second decoupler) or DEC3 ch (third decoupler). The
step_size phaseshift selected isactive only for the xmt rphase statement
if device isOBSch, only for the dcplrphase statement if device is
DECch, only forthedcplr2phase statementif device iSDEC2ch, or only
forthe dcplr3phase statement if the deviceisDEC3ch.

stepsize (30.0,0BSch) ;
stepsize (step,DEC2ch) ;

dcplrphase Set small-angle phase of first decoupler,
dcplr2phase Set small-angle phase of second decoupler,
dcplr3phase Set small-angle phase of third decoupler,
decstepsize Set step size of first decoupler

dec2stepsize Set step size of second decoupler

dec3stepsize Set step size of third decoupler

obsstepsize Set step size of observe transmitter

xmtrphase Set small-angle phase of observe transmitter, rf type C

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

sub Subtract integer values
Syntax: sub (vi,vj,vk)
codeint vij; /* real-time variable for minuend */
codeint vij; /* real-time variable for subtrahend */
codeint vk; /* real-time variable for difference */

Description: Setsthe value of vk egqual tovi-vj.

Arguments. vi istheinteger value of the minuend, v istheinteger value of the subtrahend,
and vk isthe difference of vi and vj. Each argument must be area-time
variable (v1tovl4, oph, etc).

Examples. sub (v2,v5,vé) ;
Related: add Add integer values
assign Assign integer values
dbl Double an integer value
decr Decrement an integer value
divn Divide integer values
hlv Half the value of an integer
incr Increment an integer value
mod?2 Find integer value modulo 2
mod4 Find integer value modulo 4
modn Find integer value modulo n
mult Multiply integer values
Top A B C D E G H | L Mm O P R S T V W X Z

text error
text message
tsadd
tsdiv
tsmult
tssub
ttadd
ttdiv
ttmult
ttsub
txphase

text error

Syntax:

Send atext error message to VnmrJ

Send a message to VnmrJ

Add an integer to AP table elements
Divide an integer into AP table elements
Multiply an integer with AP table elements
Subtract an integer from AP table elements
Add atable to a second table

Divide atable into a second table

Multiply atable by a second table

Subtract atable from a second table

Set quadrature phase of observe transmitter

Send a text error message to VnmrJ

text error(char *format, ...)

01-999379-00 A 0708

VnmrJ 2.2 Ml User Programming

251

Chapter 3. Pulse Sequence Statement Reference

Description:

text message

Syntax:

Description:

tsadd
Syntax:

Description:
Arguments:

Examples:

Related:

tsdiv

Syntax:

Description:
Arguments:

Examples:

Related:

tsmult

Syntax:

252

VnmrJ 2.2 Ml User Programming

Sends an error message to VnmrJ and writes the message into the file
userdir+'/psg.error'.

Send a message to VnmrJ

text message (char *format, ...)

Sends amessage to VnmrJ. text_messageis like warn message, except it does

not cause the beep to occur.

Add an integer to table elements

tsadd (table, scalarval, moduloval)

codeint table; /* real-time table variable */
int scalarval; /* integer added */

int moduloval; /* modulo value of result */

A run-time scalar operation that adds an integer to elements of atable.
table specifiesthe name of thetable (t1 to t60).
scalarval isaninteger to be added to each element of the table.

moduloval isthe modulo value taken on the result of the operation if
moduloval isgreater than O.

tsadd(t31,4,4);

tsdiv Divide an integer into table elements
tsmult Multiply an integer with table elements
tssub Subtract an integer from table elements

Divide an integer into table elements

tsdiv (table, scalarval, moduloval)

codeint table; /* real-time table variable */
int scalarval; /* integer divisor */

int moduloval; /* modulo value of result */

A run-time scalar operation that divides an integer into the elements of an table.

table specifiesthe name of thetable (t1 to t60).
scalarval isaninteger to be divided into each element of the table.

scalarval must not equal O; otherwise, an error isdisplayed and PSG aborts.

moduloval isthe modulo value taken on the result of the operation if
moduloval isgreater than 0.

tsdiv(t31,4,4);

tsadd Add an integer to table elements
tsmult Multiply an integer with table elements
tssub Subtract an integer from table elements

Multiply an integer with table elements

tsmult (table, scalarval, moduloval)

codeint table; /* real-time table variable */
int scalarval; /* integer multiplier */

int moduloval; /* modulo value of result */

01-999379-00 A 0708

Description:

Arguments:

Examples:

Related:

tssub

Syntax:

Description:

Arguments:

Examples:

Related:

ttadd

Syntax:

Description:
Arguments:

Examples:

Related:

A run-time scalar operation that multiplies an integer with the elements of a
table.

table specifiesthe name of thetable (t1 to £60).
scalarval isaninteger to be multiplied with each element of the table.

moduloval isthe modulo value taken on the result of the operation if
moduloval isgreater than O.

tsmult (t31,4,4);

tsadd Add an integer to table elements
tsdiv Divide an integer into table elements
tssub Subtract an integer from table elements

Subtract an integer from table elements

tssub (table, scalarval, moduloval)

codeint table; /* real-time table variable */
int scalarval; /* integer subtracted */
int moduloval; /* modulo value of result */

A run-time scalar operation that subtracts an integer from the elements of a
table.

table specifies the name of thetable (t1 to t60).
scalarval isaninteger to be subtracted from each element of the table.

moduloval isthe modulo value taken on the result of the operation if
moduloval isgreater than 0.

tssub (t31,4,4);

tsadd Add an integer to table elements
tsdiv Divide an integer into table elements
tsmult Multiply an integer with table elements

Add atable to a second table
ttadd(table dest,table mod,moduloval)

codeint table dest; /* real-time table variable */
codeint table mod; /* real-time table variable */
int moduloval; /* modulo value of result */

A run-time vector operation that adds one table to a second table.
tablenamedest isthe name of the destination table (t1 to t60).

table mod isthenameof thetable(t1 tot60)that modifiestable dest.
Each elementin table dest ismodified by the corresponding element in
table modandtheresultisstoredintable dest. Thenumber of elements
intable dest must be greater than or equal to the number of elementsin
table mod.

moduloval isthe modulo value taken on the result of the operation if
moduloval isgreater than 0.

ttadd(t28,t42,6) ;

ttdiv Divide atable into a second table

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 253

Chapter 3. Pulse Sequence Statement Reference

ttdiv

D

Arguments:

ttmul

D

Arguments:

ttsub

254

Syntax:

escription:

Examples:

Related:

t

Syntax:

escription:

Examples:

Related:

Syntax:

ttmult Multiply atable by a second table
ttsub Subtract atable from a second table

Divide a table into a second table
ttdiv(table dest,table mod,moduloval)

codeint table dest; /* real-time table variable */
codeint table mod; /* real-time table variable */
int moduloval; /* modulo value of result */

A run-time vector operation that divides one table into a second table.
table dest isthe name of the destination table (t1 to t60).

table mod isthenameof thetable(t1 to t60) that modifiestable dest.
Each elementin table dest ismodified by the corresponding element in
table modandtheresultisstoredintable dest. Thenumber of elements
intable dest must be greater than or equal to the number of elementsin
table mod. Noelementin table mod canequal O.

moduloval isthe modulo value taken on the result of the operation if
moduloval isgreater than 0.

ttdiv(t28,t42,6) ;

ttadd Add atable to asecond table
ttmult Multiply atable by a second table
ttsub Subtract atable from a second table

Multiply a table by a second table
ttmult (table dest,table mod,moduloval)

codeint table dest; /* real-time table variable */
codeint table mod; /* real-time table variable */
int moduloval; /* modulo value of result */

A run-time vector operation that multiplies one table by a second table.
table dest isthe name of the destination table (t1 to t60).

table mod isthenameof thetable(t1 tot60) that modifiestable dest.
Each elementin table dest ismodified by the corresponding element in
table modandtheresultisstoredintable dest. Thenumber of elements
intable dest must be greater than or equal to the number of elementsin
table mod.

moduloval isthe modulo value taken on the result of the operation if
moduloval isgreater than 0.

ttmult (t28,t42,6) ;

ttadd Add atable to asecond table
ttdiv Divide atable into a second table
ttsub Subtract atable from a second table

Subtract atable from a second table
ttsub(table dest, table mod,moduloval)

codeint table dest; /* real-time table variable */
codeint table mod; /* real-time table variable */
int moduloval; /* modulo value of result */

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Description:
Arguments:

Examples:

Related:

txphase

Syntax:

Description:

Arguments:
Examples:

Related:

A run-time vector operation that subtracts one table from a second table.
table dest isthe name of the destination table (t1 to t60).

table mod isthenameof thetable(t1 tot60) that modifiestable dest.
Each elementin table dest ismodified by the corresponding element in
table modandtheresultisstoredintable dest. Thenumber of elements
intable dest must be greater than or equal to the number of elementsin
table mod.

moduloval isthe modulo value taken on the result of the operation if
moduloval isgreater than 0.

ttsub(t28,t42,6) ;

ttadd Add atable to asecond table
ttdiv Divide atable into a second table
ttmult Multiply atable by a second table

Set quadrature phase of observe transmitter

txphase (phase)
codeint phase; /* variable for quadrature phase */

Sets the observe transmitter quadrature phase to the vaue referenced by the
real-time variable so that the transmitter phase is changed independently from a
pulse. Thismay be useful to “preset” the transmitter phase at the beginning of a
delay that precedes a particular pulse. For example, in the sequence

txphase (v2) ; delay (d2) ; pulse (pw,v2) ;,thetransmitter phaseis
changed at the start of the d2 delay. In a“normal” sequence, an rof1 time
precedes the pulse in which the transmitter phase is changed.

phase isthequadrature phasefor the observe transmitter. It must be areal-time
variable (v1tov14, oph, ct, etc.).

txphase (v3) ;

decphase Set quadrature phase of first decoupler
dec2phase Set quadrature phase of second decoupler
dec3phase Set quadrature phase of third decoupler

V

Top A B C D E G H I L M OWP R S T V W X Z

vagradient
vagradpulse

var_active

Variable angle gradient
Variable angle gradient pulse
Checksif the parameter is being used

vashapedgradient Variable angle shaped gradient
vashapedgradpulse Variable angle shaped gradient pulse
vdelay Set delay with fixed timebase and real-time count

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 255

Chapter 3. Pulse Sequence Statement Reference

vdelay list
vireqg
vgradient
voffset

vsetuserap

vagradient

Syntax:

Description:

Arguments:

Examples:

Related:

vagradpulse

Applicability:
Syntax:

Get delay value from delay list with real-time index
Select frequency from table

Set gradient to alevel determined by real-time math
Select frequency offset from table

Set user AP register using real-time variable

Variable angle gradient

vagradient (gradlvl, theta, phi)

double gradlvl; /* gradient amplitude in G/cm */
double theta; /* angle from z axis in degrees */
double phi; /* angle of rotation in degrees */

Appliesagradient of amplitude gradlvl at an angle theta from the z axis
and rotated about the xy plane at an angle phi. Information from a gradient
table is used to scale and set the values correctly.The values applied to each
gradient axis are as follows:

X

Yy
Z

gradlvl * (sin(phi)*sin(theta))
gradlvl * (cos(phi)*sin(theta))
gradlvl * (cos(theta))

vagradient leavesthe gradients at the given levels until they are turned off.
To turn off the gradients, add avagradient statement with gradlvl setto
zero or includethe zero_all gradients statement.

vagradient isused if there are actions to be performed while the gradients
areon. vagradpulse issimpler to useif there are no other actions performed
while the gradients are on.

gradlvl isthe gradient amplitude, in gauss’cm.
theta definesthe angle, in degrees, from the z axis.
phi definesthe angle of rotation, in degrees, about the xy plane.

vagradient (3.0, 54.7, 0.0);
pulse (pw, oph) ;

delay (0.001 - pw);

zero_all gradients() ;

magradient Simultaneous gradient at the magic angle
magradpulse Simultaneous gradient pulse at the magic angle
mashapedgradient Simultaneous shaped gradient at the magic angle
mashapedgradpulse Simultaneous shaped gradient pulse at the magic angle
vagradpulse Variable angle gradient pulse

vashapedgradient Variable angle shaped gradient
vashapedgradpulse Variable angle shaped gradient pulse

zero _all gradients Zero all gradients

Variable angle gradient pulse
UNTYINOVA systems.
vagradpulse (gradlvl,gradtime, theta, phi)

double gradlvl; /* gradient amplitude in G/cm */
double gradtime; /* gradient time in sec */
double theta; /* angle from z axis in degrees */

256 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

double phi; /* angle of rotation in degrees */

Description: Appliesagradient pulse of amplitude gradlvl at anangle theta fromthez
axisand rotated about the xy plane at an angle ph1i. Information from agradient
table is used to scale and set the values correctly. The values applied to each
gradient axis are as follows:

X

Yy
Z

gradlvl * (sin(phi)*sin(theta))
gradlvl * (cos(phi)*sin(theta))
gradlvl * (cos(theta))

The gradients are turned off after gradt ime seconds.

vagradpulse issimpler to useif there are no other actions while the
gradientsareon. vagradient isused if there are actions to be performed
while the gradients are on.

Arguments. gradlvl isthe gradient amplitude, in gauss/cm.
gradtime isthetime, in seconds, to apply the gradient.
theta isthe angle, in degrees, from the z axis
phi isthe angle of rotation, in degrees, about the xy plane.

Examples. vagradpulse(3.0,0.001,54.7,0.0);

Related: magradient Simultaneous gradient at the magic angle
magradpulse Simultaneous gradient pulse at the magic angle
mashapedgradient Simultaneous shaped gradient at the magic angle
mashapedgradpulse Simultaneous shaped gradient pulse at the magic angle
vagradient Variable angle gradient
vashapedgradient Variable angle shaped gradient

vashapedgradpulse Variable angle gradient pulse
zero all gradients Zeroall gradients

var_active Checks if the parameter is being used
Syntax: var active

Description: Checksif the parameter is active (returns 1) or inactive (returns 0). Appliesto
numbers, not strings. “ Inactive” means that the parameter is not being used. If
the parameter isanumber, it can be set to 'n' to makeit “inactive.” For example,
setting fn=256 or fn="n". If the parameter does not exist, var activeis
0.

vashapedgradientVariable angle shaped gradient
Applicability: UNTYINOVA systems.

Syntax: vashapedgradient (pattern,gradlvl,gradtime, theta, \
phi, loops,wait)

char* pattern; /* name of gradient shape text file */
double gradlvl; /* gradient amplitude in G/cm */
double gradtime; /* time to apply gradient in sec */
double theta; /* angle from z axis in degrees */
double phi; /* angle of rotation in degrees */
int loops; /* number of waveform loops */

int wait; /* WAIT or NOWAIT */

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 257

Chapter 3. Pulse Sequence Statement Reference

Description:

Arguments:

Examples:

Related:

Appliesagradient shape pattern with an amplitude gradlvl at an angle
theta from the z axis and rotated about the xy plane at an angle phi.
Information from a gradient table is used to scale and set the values correctly.
The amplitudes applied to each gradient axis are as follows:

X

Yy
Z

gradlvl * (sin(phi)*sin(theta))
gradlvl * (cos(phi)*sin(theta))
gradlvl * (cos(theta))

vashapedgradient |leavesthe gradients at the given levels until they are
turned off. To turn off the gradients, add another vashapedgradient
statement with gradlvl setto zero orinsertazero all gradients
statement. Note that vashapedgradient assumes the gradient pattern
zeroes the gradients at its end, and it does not explicitly zero the gradients.

vashapedgradient isused if there are actions to be performed while the
gradientsare on,

pattern isatext filethat describes the shape of the gradient. The text fileis
located in Svnmrsystem/shapelib or inthe usersdirectory
Svnmruser/shapelib.

gradlvl isthe gradient amplitude, in gauss'cm.
gradtime isthetime, in seconds, to apply the gradient.
theta isthe angle, in degrees, from the z axis.

phi isthe angle of rotation, in degrees, about the xy plane.

loops isavaue from 0 to 255 to |oop the selected waveform. Gradient
waveforms do not use this field and it should be set to 0.

wait isakeyword, either WAIT or NOWAIT, that selectswhether or not adelay
isinserted to wait until the gradient is completed before executing the next
Statement.

vashapedgradient ("ramp hold",3.0,trise,54.7, \
0.0,0,NOWAIT) ;

pulse (pw, oph) ;

delay (0.001-pw-2*trise) ;

vashapedgradient ("ramp down",3.0,trise,54.7, \
0.0,0,NOWAIT) ;

magradient Simultaneous gradient at the magic angle
magradpulse Simultaneous gradient pulse at the magic angle
mashapedgradient Simultaneous shaped gradient at the magic angle
mashapedgradpulse Simultaneous shaped gradient pulse at the magic angle
vagradient Variable angle gradient

vagradpulse Variable angle gradient pulse

vashapedgradpulse Variable angle shaped gradient pulse
zero all gradients Zeroall gradients

vashapedgradpulse Variable angle shaped gradient pulse
Applicability:

258

Syntax:

UNTYINOVA systems.
vashapedgradpulse (pattern,gradlvl,gradtime, \

theta, phi)
char *pattern; /* gradient shape text file */
double gradlvl; /* gradient amplitude in G/cm */
double gradtime; /* gradient time in seconds */

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Description:

Arguments:

Examples:

Related:

vdelay
Applicability:
Syntax:

Description:

Arguments:

double theta; /* angle from z axis in degrees */
double phi; /* angle of rotation in degrees */

Appliesagradient shape pattern with an amplitude gradlvl at an angle
theta from the z axis and rotated about the xy plane at an angle phi.
Information from a gradient table is used to scale and set the values correctly.
The amplitudes applied to each gradient axis are as follows:

X

Yy
Z

gradlvl * (sin(phi)*sin(theta))
gradlvl * (cos(phi)*sin(theta))
gradlvl * (cos(theta))

The gradient are turned off after gradtime seconds. Note that
vashapedgradpulse assumesthat the gradient pattern zeroesthe gradients
at its end and does not explicitly zero the gradients.

vashapedgradpulse issimpler to usethenthe vashapedgradient
statement if there are no other actions while the gradients are on.
vashapedgradient isused when there are actions to be performed while
the gradients are on.

pattern isatext filethat describes the shape of the gradient. The text fileis
located in $vnmrsystem/shapelib orintheuser directory $vnmruser/
shapelib.

gradlvl isthe gradient amplitude, in gauss'cm.

gradtime isthetime, in seconds, to apply the gradient.

theta isthe angle, in degrees, from the z axis.

phi isthe angle of rotation, in degrees, about the xy plane.
vashapedgradpulse ("hsine",3.0,0.001,54.7,0.0) ;

magradient Simultaneous gradient at the magic angle
magradpulse Simultaneous gradient pulse at the magic angle
mashapedgradient Simultaneous shaped gradient at the magic angle
mashapedgradpulse Simultaneous shaped gradient pulse at the magic angle
vagradient Variable angle gradient

vagradpulse Variable angle gradient pulse

vashapedgradient Variable angle shaped gradient

zero all gradients Zeroall gradients

Set delay with fixed timebase and real-time count
UNTYINOVA systems.

vdelay (timebase, count)
int timebase; /* NSEC, USEC, MSEC, or SEC */
codeint count; /* real-time variable for count */

Setsadelay for atime period equal to the product of the specified t imebase
and the count.

timebase isone of the four defined time bases: NSEC (described below),
USEC (microseconds), MSEC (milliseconds), or SEC (seconds).

count isareal-timevariable (v1 tov14). For predictable acquisition, thereal -
time variable should have a value of 2 or more.

If timebase issettoNSEC, the delay depends on which acquisition controller
board is used on the system (see the description section of the acquire
statement for further information about these boards.):

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 259

Chapter 3. Pulse Sequence Statement Reference

Examples:

Related:

vdelay list
Applicability:

260

Syntax:

Description:

Arguments:

Examples:

® Systems with a Data Acquisition Controller board:

Theminimum delay isacount of 0(100 ns), and acount of n corresponds
to adelay of (100 + (12.5*n)) ns. For example, vdelay (NSEC, v1), when
v1=4, givesadeay of (100 + (12.5*4)) nsor 150 ns.

® Systems with a Pulse Sequence Controller board or an Acquisition
Controller board:

The minimum delay isacount of 2 (200 ns). A count greater than 2 isthe
minimum delay plus the resolution (25 ns) of the board. For example,
vdelay (NSEC, v1),whenvl=4,givesadelay of (200 + 25) nsor 225 ns.

® Systems with Output boards

The minimum delay isacount of 2 (200 ns). A count greater than 2 isthe
minimum delay plus the resolution (100 ns) of the board. For example,
vdelay (NSEC,v1),whenv1=4, givesadelay of (200 + 100) nsor 300
ns.

vdelay (USEC,v3) ;

create delay list Create table of delays

delay Delay for a specified time

hsdelay Delay specified time with possible homospoil pulse
incdelay Red time incrementa delay

initdelay Initialize incremental delay

vireg Select frequency from table

voffset Select frequency offset from table

vdelay list Get delay vaue from delay list with real-time index

Get delay value from delay list with real-time index
UNTYINOVA systems.

vdelay list(list number,vindex)
int list_number; /* same index as create_delay list */
codeint vindex; /* real time variable */

Provides a means of indexing into previously created delay lists using areal -
time variable or atable. The indexing into thelist isfrom 0 to N-1, where N is
the number of itemsin thelist. The delay table hasto have been created with the
create delay 1ist statement. It has no return value.

tlist number isthe number between O and 255 for each list. This number
must match the 1ist number used when creating the table.

vindex isarea-timevariable (vl tov14) or atable (t1 to t60).

pulsesequence ()

{

int noffset, ndelay, listnum;
double offsetsl[256],0ffsets2[256],delay[256];

/* initialize offset and delay lists */
create offset list (offsetsl,noffset,0BSch,0);
create delay list (delay,ndelay,1);

create offset list (offsets2,noffset,DECch,?2);

voffset(0,v4); /* get v4 from observe offsget list */

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Related:

vireq

Applicability:
Syntax:

Description:

Arguments:

Examples:

Related:

vgradient

Applicability:
Syntax:

Description:

vdelay list(1,v5); /* get v5 from delay list */

voffset(2,v4); /* get v4 from decouple offset list */
}

create _delay list Create table of delays

delay Delay for a specified time

hsdelay Delay specified time with possible homospoil pulse
incdelay Red time incrementa delay

initdelay Initialize incremental delay

vireg Select frequency from table

voffset Select frequency offset from table

vdelay Set delay with fixed timebase and real-time count

Select frequency from table
UNTYINOVA systems.

vfreqg(list number,vindex)
int list_ number; /* same index as for create freg list */
codeint vindex; /* real-time variable */

Provides a means of indexing into previously created frequency lists using a
real-time variable or atable. The indexing into the list isfrom 0 to N-1, where
N isthe number of itemsin thelist. The frequency table must have been created
withthe create freg 1ist statement. It hasno return value.

list number isthe number between 0 and 255 for each list. This number
must match the 1ist number used when creating the table.

vindex isarea-timevariable (vl tov14) or atable(t1 to t60).
See the example for the vde 12y statement.

create freqg list Create table of frequencies
vdelay Select delay from table
voffset Select frequency offset from table

Set gradient to a level determined by real-time math
UNITYINOVA systems with PFG modules. Not applicable to MERCURYplug/-Vx.

vgradient (channel, intercept, slope,mult)

char channel; /* gradient channel 'x', 'y' or 'z' */
int intercept; /* initial gradient level */

int slope; /* gradient increment */

codeint mult; /* real-time variable */

Provides a dynamic variable gradient controlled using the real-time math
functions. It has no return value. The statement drives the chosen gradient to the
level defined by the formula

level = intercept + slope*mult.

The gradient level ranges from —2047 to +2047 for systemswith 12-bit DACs,
or from —32767 to +32767 for gradients using the waveform, which have 16- bit
DAC:s. If the requested level lies outside this range, it is rounded to the
appropriate boundary value.

After vgradient, the action of the gradient is controlled by the gradient
power supply. The gradient level isramped at the preset slew rate (2047 DAC

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 261

Chapter 3. Pulse Sequence Statement Reference

units per millisecond) to the value requested by vgradient. Thisfact
becomes a concern when using vgradient inaloop with adelay element, in
order to produce amodulated gradient. The delay element should be sufficiently

long so asto allow the gradient to reach the assigned val ue:
[new level —old level

2047

delay > X risetime

Arguments: channel specifiesthe gradient to be set and is one of the characters 'X ',
'x', 'Y, vyt rzor Pz Inimaging, channel canalsobe 'gread!’,
'gphase',0r 'gslice'
intercept and slope areintegers. Inimaging, intercept istheinitia
gradient DAC setting and slope isthe gradient DAC increment.

mult isarea-timevariable (vl tov14, etc.). Inimaging, mult isset so that
intercept+slope*mult isthe output.

Examples: (1) mod2 (ct,v10) ; /* v10 is 0,1,0,1,0,1,... */
vgradient ('z',0,2000,v10) ;

/* z gradient is 0,2000,0,2000,... */
delay(d2) ; /* delay for duration d2 */
rgradient ('z',0.0) ; /* gradient turned off */
(2) mod4 (ct,v10) ;

/* v10 is 0,1,2,3,4,0,1,2,3,4,... */
vgradient ('z',-5000.0,2500.0,v10) ;
/* z is -5000,-2500,0,2500 */

(3) pulsesequence ()

{

char gphase, gread, gslice;
int amplitude, igpe, stat;
double gpe;

gpe = getval ("gpe") ;

amplitude = (int) (0.5*ni*gpe) ;
igpe = (int)gpe;
stat =

getorientation (&gread, &gphase, &gslice, "orient") ;

initval (nf,v9) ;
loop (v9,Vv5) ;

vgradient (gphase,amplitude, igpe, Vv5) ;

endloop (v5) ;

}

Related: dps show Draw delay or pulsesin a sequence for graphical display
getorientation Read image plane orientation
rgradient Set gradient to specified level
shapedgradient Provide shaped gradient pulse to gradient channel
shaped2Dgradient Generate arrayed shaped gradient pulse
shapedvgradient Generate dynamic variable shaped gradient pulse
zgradpulse Create a gradient pulse on the z channel

262 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

voffset

Applicability:

Syntax:

Description:

Arguments:

Examples:

Related:

vsetuserap
Applicability:
Syntax:

Description:

Arguments:

Examples:
Related:

Select frequency offset from table
UNTYINOVA systems.

voffset (list number,vindex)
int list number; /* number of list */
codeint vindex; /* real-time or table variable */

Provides a means of indexing into previously created frequency offset lists
using areal-time variable or atable. Theindexing into thelist isfrom 0 to N-1,
where N is the number of itemsin thelist. The offset table has to have been
created withthe create offset 1list statement. It hasno return vaue.

list number isthe number between 0 and 255 for each list. This number
must match the 1ist number used when creating the table.

vindex isarea-timevariable (vl tov14) or atable(t1 to t60).
See the example for the vde 12y statement.

Create table of frequency offsets
Select delay from table
Select frequency from table

create offset list
vdelay
vireq

Set user AP register using real-time variable
UNTYINOVA systems.

vsetuserap (vi, register)
/* variable output to AP bus register */
/* AP bus register: 0, 1, 2, or 3 */

codeint vi;
int register;

Sets one of the four 8-bit AP bus registers that provide an output interface to
custom user equipment. The outputs of these registers go the USER AP
connectors J8212 and J8213, located on the back of theleft console cabinet. The
outputs have a 100-ohm series resistor for circuit protection.

vi isanindex to area-time variable that contains a signed or unsigned real
number or integer to output to the specified user AP register.

register isthe AP register number, mapped to output lines as follows:
® Register 0isJ8213, lines9 to 16.
® Register 1isJ8213, lines 1 to 8.
® Register 2isJ8212, lines9 to 16.
® Register 3isJ8212, lines1to 8.
vsetuserap (vl, 1) ;

readuserap

Read input from user AP register
Set user AP register

setuserap

Top A B

01-999379-00 A 0708

C D E

G HI L M OWP R S T V W X Z

263

VnmrJ 2.2 Ml User Programming

Chapter 3. Pulse Sequence Statement Reference

warn message

Send awarning message to VnmrJ

warn_message Send awarning message to VnmrJ

Syntax: warn message (char *format, ...)
Description: Sends an warning message to VnmrJ and causes a beep.
Top A B C D E G H I L M OP R S T V W X Z
xgate Gate pulse sequence from an external event
xmtroff Turn off observe transmitter
xmtron Turn on observe transmitter
xmtrphase Set transmitter small-angle phase
xgate Gate pulse sequence from an external event
Applicability: UNTYINOVA systems.
Syntax: xgate (events)
double events; /* number of external events */
Description: Halts the pulse sequence. When the number of external events have occurred,
the pul se sequence continues.
Arguments. events isthe number of externa events.
Examples. xgate(2.0) ;
xgate (events) ;
Related: rotorperiod Obtan rotor period of MAS rotor
rotorsync Gated pulse sequence delay from MAS rotor position
xmtroff Turn off observe transmitter
Syntax: xmtroff ()
Description: Explicitly gates off the observe transmitter in the pul se sequence.
Related: xmtron Turn on observe transmitter
xmtron Turn on observe transmitter
Syntax: xmtron ()
264 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Description:

Related:

xmtrphase

Syntax:

Description:

Arguments:

Examples:

Related:

Explicitly gates on the observe transmitter in the pulse sequence. Transmitter
gating is handled automatically by the statements cbspulse, pulse,
rgpulse, shaped pulse, simpulse, sim3pulse,

simshaped pulse, sim3shaped pulse, and spinlock.

The obsprgon statement generally needs to be enabled with an explicit
xmtron statement and followed by a xmtrof £ cal.

xmtroff Turn on observe transmitter

Set transmitter small-angle phase

xmtrphase (multiplier)
codeint multiplier; /* real-time AP variable */

Setsthe phase of transmitter in units set by the obsstepsize statement. The
small-angle phaseshiftisaproduct of mult iplier andthe preset step sizefor
the transmitter. If stepsize hasnot been used, the default step sizeis 90°.

If the product of the step size set by the stepsize statement and
multiplier isgreater than 90°, the sub-90° part is set by xmt rphase.
Carryoversthat are multiples of 90° are automatically saved and added in at the
time of the next 90° phase selection (such as at the time of the next pulse or
decpulse).

xmtrphase should be distinguished from t xphase. xmt rphase isneeded
any time the transmitter phase shift isto be set to a value that is not amultiple
of 90°. txphase isoptional and rarely is needed.

multiplier isasmall-angle phaseshift multiplier and must be an real-time
variable.

xmtrphase (vl1) ;

deplrphase Set small-angle phase of first decoupler
deplr2phase Set small-angle phase of second decoupler
deplr3phase Set small-angle phase of third decoupler
stepsize Set small-angle phase step size

Top A B C D E G H I L M OUP R S T V W X Z

zero_all gradients Zero all gradients

zgradpulse

Create agradient pulse on the z channel

zero_all gradients Zero all gradients

Syntax:

Description:

zero_all gradients()

Setsthe gradientsin the x, y, and z axes to zero.

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 265

Chapter 3. Pulse Sequence Statement Reference

Examples:

Related:

zgradpulse
Applicability:

266

Syntax:

Description:

Arguments:

Examples:

Related:

vagradient (3.0, 54.7, 0.0);
delay (0.001) ;
zero_all gradients();

vagradient Variable angle gradient
vagradpulse Variable angle gradient pulse
vashapedgradient Variable angle shaped gradient
vashapedgradpulse Variable angle shaped gradient pulse

Create a gradient pulse on the z channel
UNITYINOVA systems with PFG module.

zgradpulse (value, delay)
double value; /* amplitude of gradient on z channel */
double delay; /* length of gradient in sec */

Creates a gradient pulse on the z channel with amplitude and duration given by
the arguments. At the end of the pulse, the gradient is set to O.

value isthe amplitude of the pulse. It isareal number between —32768 and
32767.

delay isany delay parameter, such asd2.
zgradpulse (1234.0,d2) ;

dps_show Draw delay or pulses for graphical display of a sequence
rgradient Set gradient to specified level
vgradient Set gradient to level determined by real-time math

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

chapter 4. Linux Level Programming

Sectionsin this chapter:
® 4.1*"Linux and VnmrJ,” this page
® 4.2*"Linux Reference Guide,” page 267
® 4.3*"Linux Commands Accessible from VnmrJ,” page 270
® 4.4*"Background VNMR,” page 270
4.5 “ Shell Programming,” page 272

Hundreds of books written on every aspect and level of UNIX and much of it also applies
to Linux, the open-source version of UNIX. This manual does not replace that material.

4.1 Linux and VnmrJ

The VnmrJ software is a complete NMR work environment and VnmrJ users do not need
to work directly with the operating system aside from login, logout, and starting VV nmrJ.
The operating system runs the workstation at all times. The user starts VnmrJ by clicking
on the VnmrJicon after completing the login procedure. Operators assigned to a Walkup
account remain within the VnmrJ environment and use the VnmrJ switch operator function
and login screen.

Linux provides “tools’ to perform almost anything short of complex mathematical
manipulations, search through your files, sort line lists, report who is on the system, run a
program unattended, and more. Use the on line help provided with Linux and other
published third party references to learn about these toals.

4.2 Linux Reference Guide

® “Command Entry,” page 268

® “FileNames,” page 268

® “FileHandling Commands,” page 268

® “Directory Names,” page 268

® “Directory Handling Commands,” page 268
® “Text Commands,” page 269

® “Other Commands,” page 269

® “Specia Characters,” page 269

Thisisabrief overview of the operating system and its associated commands.

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 267

Chapter 4. Linux Level Programming

268

Command Entry

Single command entry
Command names

Multiple command separator
Arguments

File Names

Typical (shorthand names usually used)
Level separator

Individua filenames

Charactersin filenames

First character in filename

File Handling Commands

Delete (unlink) afile(s)
Copy afile

Rename afile
Make an dlias (link)
Sort files

Tape backup

Package files

Directory Names

Home directory for each user
Working directory

Shorthand for current directory
Shorthand for parent directory
Shorthand for home directory
Root directory

Directory Handling Commands

Create (or make) a directory
Rename a directory

Remove an empty directory
Delete directory and all filesin it
List filesin adirectory, short list
List filesin adirectory, long list
Copy file(s) into adirectory
Move file(s) into adirectory

VnmrJ 2.2 Ml User Programming

commandname
Generally lowercase, case-sensitive
; (semicolon) or new line

commandname argl arg2

/vnmr/fidlib/fidid

/ (forward slash)

Any number of characters (256 unique)
Underline, period often used

First character unrestricted

rm filenames

cp filename newfilename
mv filename newfilename
In target linkname

sort filenames

tar

Zip

Directory assigned by administrator
Current directory user isin
. (single period)
.. (two periods)
~ (tilde character)
/ (forward slash)

mkdir directoryname

mv dirname newdirname
rmdir directoryname

rm -r directoryname

ls directoryname

ls -1 directoryname

cp filenames directoryname

mv filenames directoryname

01-999379-00 A 0708

Show current directory
Change current directory

Text Commands

Edit atext fileusing vi editor
Edit atext file using ed editor
Edit atext fileusing textedit editor
Display first part of afile
Display last part of afile
Concatenate and display files
Compare two files
Compare two files deferentially
Print file(s) on line printer
Search file(s) for a pattern

Find spelling errors

Other Commands

Pattern scanning and processing
Change file protection mode
Display current date and time
Summarize disk usage

Report free disk space

Kill a background process

Sign onto system

Send mail to other users

Print out UNIX manual entry
Process status

Convert quantities to another scale
Who is on the system

System identification

Special Characters

Send output into named file
Append output into named file
Take input from named file

4.2 Linux Reference Guide

pwd

cd newdirectoryname

vi filename

ed filename

textedit filename

head filename

tail filename

cat filenames

cmp filenamel filename?2
diff filenamel filename2
lp filenames

grep expression filenames

spell filename

awk pattern filename
chmod newmode filename
date

du -k

df -k filesystem
kill process-id
login username

mail

man commandname

ps

units

w

uname -a

> filename
>> filename

< filename

Send output from first command to input of second command (pipe) | (vertical bar)
Wildcard character for a single character in filename operations ?

Wildcard character for multiple characters in filename operations *

Run program in background &

Abort the current process Control-C
Logout or end of file Control-D

01-999379-00 A 0708

VnmrJ 2.2 Ml User Programming 269

Chapter 4. Linux Level Programming

4.3 Linux Commands Accessible from VnmrJ

® “Opening a Text Editor from VnmrJ,” page 270
® “Opening a Shell from VnmrJ,” page 270

Several commands are accessible directly from VnmrJ, including the vi, edit, shell,
shelli, and w commands.

Opening a Text Editor from VnmrJ

Entering vi (file) oredit (£ile) from VnmrJopensatext editor screen for editing
the name of thefile given intheargument (e.g., vi ('myfile')). Exiting from the editor
closes the editing window.

A useful Linux and UNIX editing program isvi. The UINIX text editors, ed and
textedit, andtheLinux gedit that are easier to learn than vi, but vi isthe most
widely used Linux and UNIX text editors because of its many features. A text editor is
necessary to prepare or edit text files, such as macros, menus, and pul se sequences (short
text files such as those used to annotate spectra are usually edited in simpler ways).

Opening a Shell from VnmrJ

Entering the she11 command from VnmrJ without any argument opens a normal Linux
or UNIX shell. Entering shell with the syntax:

shell (command) <:Svarl, Svar2, ...>

executes the operating system command given, displays any text lines generated, and
returns control to VnmrJwhen finished. Theresults of the command line are returned to the
variables $varil, $var2,... if return arguments are present. Each variable receives a
single display line.

shell calsinvolving pipes () or input redirection (<) require either an extra pair of
parentheses or the addition of ; cat to the shell command string, for example:

shell (' (ls -t|grep May)') :$list
shell('ls -t|grep May; cat'):$list

To display information about who is on to the operating system, enter the w command from
VnmrJ.

4.4 Background VNMR

270

® “Running VNMR Command as aLinux Background Task,” page 270
® “Running VNMR Processing in the Background,” page 271

Running VNMR commands and processing as a Linux or UNIX background task are
possible using vbg commands from Linux or UNIX.

Running VNMR Command as a Linux Background Task

VNMR commands can be executed as a Linux background task by using the command
Vnmr -mback <-n#> command string <é&>

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

4.4 Background VNMR

where -mback isakeyword (entered exactly as shown), -n# setsthat processing will
occur in experiment # (e.g., -n2 setsexperiment 2), and command_stringisaVNMR
command or macro. If —n# isomitted, processing occursin experiment 1. If more than one
command is to be executed, place double quote marks around the command string, e.g.,
"printon dg printoff"

Linux background operation (&) ispossible, asin vomr -mback wft2da & Usualy
it isagood ideato use redirection (> or >>) with background processing:
Vnmr -mback -n3 wft2da > vnmroutput &

The vbg shell script is also available to run VNMR processing in the background.

All text output, both normal text window output and the typical two-letter prompts that
appear in the upper right (“FT”, “PH", etc.), are directed to the UNIX output window.

Note the following characteristics of the vnmr command:

® Full multiuser protection isimplemented. If user vnmr1 islogged in and using
experiment 1, and another person logsin as vamr1 from another terminal and triesto
use the background V nmr, the second vamr1 receives the message “experiment
1 locked” if that person triesto use experiment 1. The second user can use other
experiments, however.

® Pressing Control-C does not work: typing the command shown cannot be abort it with
Control-C.
® Operation within VNMR is possible using the shel11l command, e.g.,
shell ('Vonmr -mback -n2 wftda')
® Plotting ispossible; e.g.,
Vnmr -mback -n3 "pl pscale pap page"
® Printing is possible; e.g.,
Vnmr -mback "printon dg printoff"

Running VNMR Processing in the Background

Thevbg shell script runsVNMR processing in the background. Themain requirementsare
that viog must be run from within a shell and that no foreground or other background
processes can be active in the designated experiment. Open a terminal window and start
vbg in the following form:

vbg # command string <prefix>

where # is the number of an experiment (from 1 to 9) in the user's directory in which the
background processing is to take place, command_stringisoneor more VNMR
commands and macros to be executed in the background (double quotes surrounding the
string are mandatory), and pre £ i x isthe name of thelog file, making thefull log file name
prefix bgf.log (eg., toperform background plotting from experiment 3, enter vbg
3 "vsadj pl pscale pap page" plotlog).

The default log filenameis#_ bgf . 1og, where # isthe experiment number. The log file
is placed in the experiment in which the background processing takes place. Refer to the
Command and Parameter Reference for more information on vbg.

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 271

Chapter 4. Linux Level Programming

4.5 Shell Programming

272

® “Shell Variables and Control Formats,” page 272
® “Shell Scripts,” page 272

The shell executes commands given either from aterminal or contained in afile. Files
containing commands and control flow notation, called shell scripts, can be created,
allowing users to build their own commands. This section provides a very short overview
of such programming; refer to the Linux and UNIX literature for more information.

Shell Variables and Control Formats

Asaprogramming language, the shell provides string-valued variables: $1, $2,.... The
number of variablesis available as $# and the file being executed is available as $0.
Control flow is provided by special notation, including 1 £, case, while, and for. The
following format is used:

if command-list (not Boolean) while command-list
then command-list do command-list
else command-list done
fi
case word in for name (in wl w2)
pattern) command-list;; do command-list
C. done
esac

Shell Scripts

The following shell scripts show two ways a shell script might be written for the same
command. In both scripts, the command name 1ower is selected by the user and the intent
of the command is to convert afile to lower case, but the scripts differ in features.

Thefirst script:

: lower --- command to convert a file to lower case
: usage lower filename

: output filename.lower

tr '[A-Z]' '[a-z]' < $1 > S$1.lower

The second script:
: lower --- a command to convert a file to lower case
: usage lower filename or lower inputfile outputfile
: output filename.lower or output file
case S$# in

1) tr '[A-Z]' '[a-z]' <$1 > S$1.lower;;

2) tr '[A-Z]"' '[a-z]' <S$1 > $2;;

*) echo "Usage: lower filename or lower \

inputfile outputfile";;

esac

In the first script, only one form of input is allowed, but in the second script, not only isa
second form of input allowed but aprompt explaining how to use 1ower appearsif the user
enters 1ower without any arguments. Notice that in both scriptsa colon isused to identify
lines containing comments (and that each script is carefully commented).

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

chapter 5. Parameters and Data

Sectionsin this chapter:

5.1*VnmrJ DataFiles,” this page

5.2 *FDF (Flexible Data Format) Files,” page 280

5.3 *Reformatting Data for Processing,” page 285

5.4 " Creating and Modifying Parameters,” page 288

5.5 *Modifying Parameter Displaysin VNMR,” page 294
5.6 “User-Written Weighting Functions,” page 297

5.7 *User-Written FID Files,” page 300

5.1 VnmrJ Data Files

“Binary Data Files,” page 273

“Data File Structures,” page 275

“VnmrJ Use of Binary Data Files,” page 278
“Storing Multiple Traces,” page 279
“Header and DataDisplay,” page 280

VnmrJ data files use only two basic formats:

Binary format — Stores FIDs and transformed spectra. Binary files consist of afile
header describing the details of the data stored in thefile followed by the spectral data
in integer or floating point format.

Text format — Stores all other forms of data, such aslinelists, parameters, and al forms
of reduced data obtained by analyzing NMR spectra. The advantage of storing datain
text format is that it can be easily inspected and modified with a text editor and can be
copied from one computer to another with no major problems. Thetext on Sun systems
use the ASCII format in which each letter is stored in one byte.

Binary Data Files

Binary datafilesare used in the VnmrJfile system to store FIDs and the transformed
spectra. FIDs and their associated parameters are stored as £ilename . £id files. A
filename. f£id fileisalwaysadirectory file containing the following individual files:

® filename.fid/fid isabinary file containing the FIDs.

® filename.fid/procpar isatext file with parameters used to obtain the FIDs.

® filename.fid/text isatextfile

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 273

Chapter 5. Parameters and Data

274

In experiments, binary files store FIDs and spectra. In non-automation experiments, the
FID is stored within the experiment regardless of what the parameter £ile issetto. The
path ~username/vnmrsys/expn/acqgfil/£id isthefull UNIX path to that file.
FIDs are stored as either 16- or 32-bit integer binary datafiles, depending on whether the
data acquisition was performed with dp="n"' or dp="vy ', respectively.

After an Fourier transform, the experiment file expn/datdir/data contains the
transformed spectra stored in 32-bit floating point format. This file aways contains
complex numbers (pairs of floating point numbers) except if pmode="" was selected in
processing 2D experiments. To speed up the display, VnmrJ stores also the phased spectral
information in expn/datdir/phasefile, whereit isavailable only after the first
display of the data. In arrayed or 2D experiments, phasefile containsonly those traces
that have been displayed at least once after the last FT or phase change. Therefore, a user
program to access that file can only be called after a complete display of the data.

The directory file expn for current experiment n contains the following files:
® expn/curpar isatext file containing the current parameters.
® expn/procpar isatext file containing the last used parameters.
® expn/text isatextfile.
® expn/acqgfil/fidisabinary filethat storesthe FIDs.
® expn/datdir/data isabinary file with transformed complex spectrum.
® expn/datdir/phasefile isabinary file with transformed phased spectrum.
® expn/snissaved display number n.

To access information from one of the experiment files of the current experiment, the user
must be surethat each of thesefiles hasbeen writtento the disk. The problem arises because
VnmrJtries to keep individual blocks of the binary filesin the internal buffers aslong as
possible to minimize disk accesses. This buffering in memory is not the same as the disk
cache buffering that the UNIX operating system performs. The command £1ush can be
used in VnmrJto write all data buffersinto disk files (or at least into the disk cache, where
it isalso available for other processes). The command £ save can be used in VnmrJto
write al parameter buffersinto disk files.

The default directory for the 3D spectral datais curexp/datadir3d. The output
directory for the extracted 2D planesisthe same asthat for the 3D spectral data, except that
2D usesthe /extr subdirectory and 3D usesthe /data subdirectory. Within the 3D data
subdirectory /data are the following files and further subdirectories:

® dataltodata# aretheactual binary 3D spectral datafiles. If theoptionnfilesis
not entered, the number of datafiles depends upon the size of thelargest 2D plane and
the value for the UNIX environmental parameter memsize.

® infoisadirectory that storesthe 3D coefficient text file (coef) , the binary
informationfile (procdat), the 3D parameter set (procpar3d), and the automation
file (auto). Thefirst threefiles are created by the set 3dproc () command within
VnmrJ. Thelast fileis created by the ££3d program.

® logisadirectory that storesthelog files produced by the £t 3d program. Thefile £3
contains al the log output for the f, transform. For thef, and f, transforms, there are
two log file for each datafile, one for thef, transform (£2 . #) and one for the f,
(£1.4#). Thefile master contains the log output produced by the master £t3d
program.

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

5.1 VnmrJ Data Files

Data File Structures

A datafile header of 32 bytesis placed at the beginning of aVnmrJ datafile. The header
contains information about the number of blocks and their size. It is followed by one or
more data blocks. At the beginning of each block, a data block header is stored, which
contains information about the data within the individual block. A typical 1D datafile,
therefore, has the following form:

data file header

header for block 1

data of block 1

header for block 2

data of block 2

The data headers allow for 2D hypercomplex data that may be phased in both the f1 and f>
directions. To accomplish this, the data block header has a second part for the 2D
hypercomplex data. Also, the data file header, the data block header, and the data block
header used with all data have been slightly revised. The new format allows processing of
FIDs obtained with earlier versions of VnmrJ.The 2D hypercomplex datafiles with
datafilehead.nbheaders=2 have the following structure:

data file header

header for block 1

second header for block 1

data of block 1

header for block 2

second header for block 2

data of block 2

All datain thisfileis contiguous. The byte following the 32nd byte in the file is expected
to be the first byte of the first data block header. If more than one block is stored in afile,
the first byte following the last byte of datais expected to be the first byte of the second
data block header. Note that these data blocks are not disk blocks; rather, they are a
compl ete data group, such as an individual trace in a experiment. For non-arrayed 1D
experiments, only one block will be present in the file.

Details of the data structures and constants involved can be found in thefile data . h,
which is provided as part of the VnmrJ source code license. The C specification of thefile
header isthe following:

struct datafilehead

/* Used at start of each data file (FIDs, spectra, 2D) */

{

long nblocks; /* number of blocks in file */

long ntraces; /* number of traces per block */

long np; /* number of elements per trace */

long ebytes; /* number of bytes per element */

long tbytes; /* number of bytes per trace */

long bbytes; /* number of bytes per block */

short vers id; /* software version, file id status bits */
short status; /* status of whole file */

long nbheaders; /* number of block headers per block */
}i
Thevariablesin datafilehead structure are set as follows:

® nblocks isthe number of data blocks present in thefile.

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 275

Chapter 5. Parameters and Data

® ntraces isthe number of tracesin each block.

® np isthe number of simple elements (16-bit integers, 32-bit integers, or 32-bit floating
point numbers) in one trace. It is equal to twice the number of complex data points.

® ebytes isthe number of bytesin one element, either 2 (for 16-bit integersin single
precision FIDs) or 4 (for all others).

® tbytesissetto(np*ebytes).

® bbytesissetto(ntraces*tbytes + nbheaders*sizeof (struct
datablockhead)). Thesize of thedatablockhead structureis 28 bytes.

® vers_idistheversion identification of present VnmrJ.
® nbheaders isthe number of block headers per data block.

® status isbits as defined below with their hexadecimal values.
All other bits must be zero.

Bits 0-6: file header and block header status bits (bit 6 is unused):

0 S DATA Ox1 0 =no data, 1 = data

1 S SPEC 0x2 0=FID, 1= spectrum

2 S 32 Ox4 *

3 S_FLOAT 0x8 0 = integer, 1 = floating point
4 S _COMPLEX 0x10 0=real, 1 =complex

5 S _HYPERCOMPLEX 0x20 1 = hypercomplex

*I1f S_FLOAT=0, S_32=0 for 16-bit integer, or s_32=1 for 32-bit integer.
If S FLOAT=1, S 32 isignored.
Bits 7-14: file header status bits (bits 10 and 15 are unused):

7 S ACQPAR 0x80 0 = not Acgpar, 1 = Acgpar
S_SECND 0x100 0 =first FT, 1 = second FT
9 S_TRANSF 0x200 0 =regular, 1 = transposed
1 S NP 0x800 1 =np dimension is active
12 S _NF 0x1000 1 =nf dimension is active
13 S NI 0x2000 1=ni dimensionisactive
14 S NI2 0x4000 1=ni2 dimensionisactive

Block headers are defined by the following C specifications:
struct datablockhead
/* Each file block contains the following header */

{

short scale; /* scaling factor */

short status; /* status of data in block */

short index; /* block index */

short mode; /* mode of data in block */

long ctcount; /* ct value for FID */

float 1lpval; /* f£2 (2D-f1) left phase in phasefile */
float rpval; /* £2 (2D-f1) right phase in phasefile */
float 1vl; /* level drift correction */

float tlt; /* tilt drift correction */

Vi

276 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

5.1 VnmrJ Data Files

status isbits 0-6 defined the same asfor file header status. Bits 7—11 are defined
below (all other bits must be zero):

7 MORE_BLOCKS 0x80 0 = absent, 1 = present
NP _CMPLX 0x100 O0=real, 1 =complex
9 NF_CMPLX 0x200 O0=rea, 1 =complex
10 NI CMPLX 0x400 0=real, 1 =complex
1 NI2 CMPLX 0x800 0=real, 1 =complex

Additional data block header for hypercomplex 2D data:
struct hypercmplxbhead

{

short s_sparel; /* short word: spare */
short status; /* status word for block header */
short s_spare2; /* short word: spare */
short s_spare3; /* short word: spare */
long 1 sparel; /* long word: spare */
float 1lpvall; /* 2D-f2 left phase */
float rpvall; /* 2D-f2 right phase */
float £ sparel; /* float word: spare */
float £ spare2; /* float word: spare */

Vi
Main data block header mode bits 0-15:
Bits 0-3: bit 3is currently unused

0 NP_PHMODE Ox1 1 = ph mode
1 NP_AVMODE 0x2 1=av mode
2 NP_PWRMODE O0x4 1 = pwr mode

Bits4—7: bit 7 is currently unused

4 NF_PHMODE 0x10 1 = ph mode
5 NF_AVMODE 0x20 1=av mode
6 NF_PWRMODE 0x40 1 = pwr mode

Bits 8-11: bit 11 is currently unused

8 NI PHMODE 0x100 1 = ph mode
9 NI AVMODE 0x200 1=av mode
10 NI PWRMODE 0x400 1 = pwr mode

Bits 12—15: bit 15 is currently unused

12 NI2 PHMODE 0x8 1 = ph mode
13 NI2 AVMODE 0x100 1=av mode
14 NI2 PWRMODE 0x2000 1 = pwr mode

Usage bits for additional block headers (hypercmplxbhead. status)

U _HYPERCOMPLEX 0x2 1 = hypercomplex block structure

Theactua FID dataistypically stored as pairs floating-point numbers. Thefirst represents
the real part of acomplex pair and the second represents the imaginary component. In
phase-sensitive 2D experiments, “X” and “Y” experiments are similarly interleaved. The

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 277

Chapter 5. Parameters and Data

format of the data points and the organization as complex pairs must be specified inthe data
file header.

VnmrJ Use of Binary Data Files

The following example of asimple Fourier transform (performed with the command £t)
followed by the display of the spectrum illustrates how VnmrJ uses individual binary data
files.

1. Copy processing parameters from curpar into procpar.

2. IfaFIDisnotinthe £id filebuffer, openthe £id file(if not already open) and load
it into buffer.

Initialize the data file with the proper size (using parameter £n).

Store the FID in the data file buffer.

3
4
5. Apply dc drift correction and first point correction.
6. Apply weighting function, if requested.

7

Zero fill data, if required.
8. Fourier transform datain data file buffer.

The datafile buffer now contains the complex spectrum. Unless other FTs are done, which
use up more memory space than assigned to the datafile buffer, the dataisnot automatically
writtentothefileexpn/datdir/data atthistime. Joining adifferent experiment or the
command £1ush would perform such awrite operation.

The ds command takes the following stepsin displaying the spectrum:

1. Ifdataisnotinphasefile buffer or if the phase parameters have changed, ds
tries to open the phasefile (if not already open) and load datainto the buffer (if itis
there). If ds is unsuccessful, the data must be phased:

a If thedataisnot in the datafile buffer, ds opens the datafile (if not already
open) and loads it into the buffer.

b. dsinitializesthe phasefile buffer with the proper size (using the same
parameter £n asused for last FT).

C. ds cdculates the phased (or absolute value) spectrum and storesit in the
phasefile buffer.

2. ds calculatesthe display and displays the spectrum.

Thephasefile buffer now contains the phased spectrum. Unless other displays are
done, which use up more memory space than assigned to thephasef i le buffer, the data
is not automatically writtento thefileexpn/datdir/phasefile at thistime. Joining
adifferent experiment or entering the command £1ush would perform such awrite
operation.

Depending on the nature of the data processing, thetwo filesdata and phasefile will
contain different information, after each of the following processes:

® 1D FT—data containsacomplex spectrum, which can be used for phased or absolute
value displays.

® 1Ddisplay—phasefile containseither phased or absolute value data, depending on
which type of display had been selected.

278 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

5.1 VnmrJ Data Files

® 2D FID display — data contains the complex FIDs, floated and normalized for
different scaling during the 2D acquisition. phasefile contains the absolute value
or phased equivalent of this FID data.

® Thefirst FTina 2D experiment — data contains the once-transformed spectra. This
is equivalent to the interferograms, if the data is properly reorganized (see f1 and fo
tracesin “Storing Multiple Traces,” page 279). If adisplay isdonenow, phasefile
contains phased (or absolute value) half-transformed spectra or interferograms.

® Thesecond FTina2D experiment —data containsthe fully transformed spectra, and
after adisplay, phasef i le containsthe equivalent phased or absol ute-value spectra

Storing Multiple Traces

Arrayed experiments are handled in VnmrJ by storing the multiple traces of arrayed
experimentsin onefile. To allow this, thefileisdivided into several blocks, each containing
onetrace. Therefore, in an arrayed experiment, thefiles£id, data, and phasefile
typically contain the same number of blocks. The number of tracesin an arrayed
experiment isidentical to the parameter arraydim. Theonly complication when working
with such datafilesin arrayed experiments might be that there are “holes” in such files. The
holes occur if not all FIDs are transformed or displayed. They do not present a problem as
long as a user program just uses a“ seek” operation to position the file pointer at the right
point in the file and does not try to read traces that have never been calculated.

A 2D experiment resembles a special case of an arrayed experiment that is complicated by
the fact that the data often has to be transposed. The directly acquired arrayed FIDs are
Fourier transformed creating an array of spectrathat are transposed and become the FIDs
used for the second dimension Fourier transform. After the second FT, the user might want
towork ontracesin either thef4 or fo direction. Furthermore, sometypesof symmetrization
and baseline correction algorithms may have to work on traces in both directions at the
sametime. The situation is complicated by the fact that the “in place” matrix transposition
of large data setsis a very complex operation, requiring many disk accesses and can
therefore not be used in a system that has to transform large non-symmetric data setsin a
short time.

“Out of place” transpositions are not acceptable for large data sets because they double the
disk space requirements of the large 2D experiments. Therefore, VnmrJ software uses a
storage format in the 2D data file that all ows access to both rows and columns at the same
time. Because of the proprietary nature and complexity of the algorithm involved, it is not
presented here. The storage format isused only indatdir/data.

2D FIDs are stored the same way as 1D FIDs. Transformed 2D datais stored in data in
large blocks of typically 256K bytes.This means that multiple traces are combined to form
ablock. Within one block, the dataiis not stored as individual traces but is scrambled to
make access to rows and columns as fast as possible.

Phased 2D dataisstoredinphasefile inthesamelargeblocksasindata, but thetraces
within each block are stored sequentially in their natural order. Both traces along f1 and fo
are stored in the same file. The first block(s) contain traces number 1 to £n aong the f1
axis; the next block(s) contains traces number 1 to £n1 aong the fo axis. Note again, that
phasefile will only contain dataif the corresponding display operation has been
performed. Therefore, in most typical situations, where only adisplay along one of the two
2D axesisdone, phasefile will contain only the block(s) for the tracesalong f1 or a
'hole' followed by the block(s) for the traces along fo. Furthermore, in large

2D experiments, where multiple blocks must be used to store the whole data, only a‘full’
display will ensure that all blocks were actually calculated.

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 279

Chapter 5. Parameters and Data

Header and Data Display

The VnmrJ commands ddf, ddf £, and ddfp display file headers and data. dd £ displays
the datafilein the current experiment. Without arguments, only thefile header isdisplayed.
Usingddf< (block number, trace number,first number) >, ddf displaysa
block header and part of the data of that block isdisplayed. block number isthe block
number, default 1. trace number isthe trace number within the block, default 1.
first isthefirst data element number within the trace, default 1.

The ddf £ command displays the FID file in the current experiment and the ddfp
command displays the phase file in the current experiment. Without any arguments, both
display only the file header. Using the same arguments as the ddf command, ddf £ and
ddfp display ablock header and part of the data of that block is displayed. Themstat
command displays statistics of memory usage by VnmrJ commands.

5.2 FDF (Flexible Data Format) Files

280

® “File Structures and Naming Conventions,” page 280

® “FileFormat,” page 281

® “Header Parameters,” page 282

® “Transformations,” page 284

® “Creating FDF Files,” page 284

® “Splitting FDF Files,” page 285
The FDF file format was devel oped to support the ImageBrowser, chemical shift imaging
(CSl), and single-voxel spectroscopy (SV'S) applications. When these applications were

under development, the current VnmrJfile formats for image data were not easily usable
for the following reasons:

® The data and parameters describing the data were separated into two files. If thefiles
were ever separated, there would be no way to use or understand the data.

® The datafile had embedded headers that were not needed and provided no useful
purpose.

® There was no support or structure for saving multislice data sets or a portion of a
multislice data set asimage files.

FDF was developed to make it similar to VnmrJ formats, with parameters in an easy-to-
manipulate ASCII format and a data header that is not fixed so that parameters can be
added. This format makes it easy for users and different applications to manipulate the
headers and add needed parameters without affecting other applications.

File Structures and Naming Conventions

Severd file structure and naming conventions have been developed for more ease in using
and interpreting files. Applications should not assume certain names for certain file;
however, specific applications may assume default names when outputting files.

Directories

The directory-naming conventionis <name > . dat. Thedirectory can contain a parameter
file and any number of FDF files. The name of the parameter fileis procpar, astandard
VnmrJ name.

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

5.2 FDF (Flexible Data Format) Files

File Names

Each type of file has adifferent name in order to make the file more recognizable to the
user. For image files, the nameis image [nnnn] . £d£f, wherennnn isanumeric string
from 0000 to 9999. For volumes, the nameisvolume [nnnn] . £df, wherennnn isaso
anumeric string from 0000 to 9999. Programs that read FDF files should not depend on
these names because they are conventions and not definitions.

Compressed Files

Although not implemented at thistime, compression will be supported for the data
portion of thefile. Theheader swill not becompressed. A field will beput in theheader
to definethe compression method or to identify the command to uncompressthe data.

File Format

The format of an FDF file consists of a header and data:

® |isting 8isan example of an FDF header. The header isin ASCI| text and itsfieldsare
defined by adata definition language. Using ASCII text makesit easy to decipher the
image content and add new fields, and is compatible with the ASCII format of the
procpar file. Thefieldsin the data header can be in any order except for the magic
number string, which are the first characters in the header, and the end of header
character <null>, which must immediately precede the data. The fields have a C-style
syntax. A correct header can be compiled by the C compiler and should not result in
any errors.

® The data portion is binary data described by fieldsin the header. It is separated from
the header by anull character.

Listing 8. Example of an FDF Header

#!/usr/local/fdf/startup

int rank=2;

char *spatial_rank="2dfov";

char *storage="float";

int bits=32;

char *type="absval";

int matrix([]={256,256};

char *abscissal]l= "cm","cm"};

char *ordinate[]={"intensity"};

float span[]={-10.000000,-15.000000};

float origin[]={5.000000,6.911132};

char *nucleus[]=("H1", "H1"};

float nucfreqg[]={200.067000,200.067000};

float location[]={0.000000,-0.588868,0.000000};
float roi[]={10.000000,15.000000,0.208557};
float orientation[]={0.000000,0.000000,1.000000,-1.000000,
0.000000,0.000000,0.000000,1.000000,0.000000};
checksum=0787271376;

<Zero>

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 281

Chapter 5. Parameters and Data

Header Parameters
The fields in the data header are defined in this section.

Magic Number

The magic number isan ASCII string that identifies the file as a FDF file. The first two
charactersinthefilemust be # !, followed by theidentification string. Currently, the string
is#!/usr/local/fdf/startup.

Data Set Dimensionality or Rank Fields

These entries specify the data organization in the binary portion of thefile.
® rankisapositiveinteger value (1, 2, 3, 4,...) giving the number of dimensionsin the
datafile(e.g., int rank=2;).
® matrixisasetof rank integersgiving the number of data pointsin each dimension
(eg., for rank=2, float matrix[]={256,256};)

® spatial rankisastring("none","voxel","1dfov","2dfov", "3dfov")
for the type of data (e.g., char *spatial rank="2dfov";).

Data Content Fields

The following entries define the data type and size.

® storageisastring("integer", "float")that definesthe datatype(e.g., char
*storage="float";).

® bitsisaninteger (8, 16, 32, or 64) that definesthe size of the data (e.g.,
float bits=32;).

® typeisastring("real", "imag", "absval", "complex") that definesthe
numerical datatype (e.g., char *type="absval";).

Data Location and Orientation Fields

The following entries define the user coordinate system and specify the size and position
of the region from which the datawas obtained. Figure 4 illustrates the coordinate system.
Vectors that correspond to header parameters are shown in boldface.

® orientation specifiesthe orientation of the user reference frame (X, y, 2) with
respect to the magnet frame (X, Y, Z). orientation isgiven asaset of nine
direction cosines, in the order:

digs dips digs dogs dyp, Oz, dyps gy, dag

where:

X = d X +d,Y +d;5Z

Yy = dyy X +dyY +dyZ

Z = dgy X +dg,Y +dysZ

and

X = dyx+dyy+dyz

Y = dppx+dyy +dgz

Z = dygx+dyy +dgez

Thevalueiswritten as nine floating point values grouped asthreetriads(e.g., £1oat
orientation(]={0.0,0.0,1.0,-1.0,0.0,0.0,0.0,1.0,0.0};).

282 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

5.2 FDF (Flexible Data Format) Files

First voxel in data set
(always displayed at
upper-left of screen)
origin

—span
) 2
location

Data Slice

Origin of user
oordinate system
((on the midplane

of slice)

Center of
X slice

User reference frameN\
X, Y, 2) z

Magnet reference fram
(X,%(, 7) €d12 d13 d11

Direction Cosines
for x axis

(orientation)

Figure4. Magnet Coordinates as Related to User Coordinates.

® location isthe position of the center of the acquired data volume relative to the
center of the magnet, in the user’s coordinate system. The position is given in
centimeters as atriple (three floating point values) of x, y, z distances
(eg., float location[]={10.0,15.0,0.208};).

® roi isthesize of the acquired data volume (three floating point values), in
centimeters, in the user’s coordinate frame, not the magnet frame (e.g.,
float roi[l={10.0,15.0,0.208};).Donotconfusethisroi with ROIsthat
might be specified inside the data set.

Data Axes

The dataaxes entries specify the user coordinates of datapoints. These axes do not tell how
to orient the display of the data, but only what to call the coordinates of a given datum.
Thereareno standard header entriesto specify the orientation of the datadisplay. Currently,
datais always displayed or plotted in the same order that it is stored. The fastest data
dimension is plotted horizontally from left to right; the next dimension is plotted vertically
from top to bottom.

® originisaset of rank floating point values giving the user coordinates of the first
point in the data set (e.g., float origin[l={5.0,6.91};).

® spanisaset of rank floating point valuesfor the signed length of each axis, in user
units. A positive value means the value of the particular coordinate increases going
away from thefirst point (e.g., float span[]={-10.000,-15.000};).

® abscissaisasetof rank strings("hz", "s", "cm", "cm/s", "cm/s2",
"deg", "ppml", "ppm2", "ppm3 ") that identifies the units that apply to each
dimension (e.g., char *abscissall={"cm", "cm"};).

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 283

Chapter 5. Parameters and Data

® ordinateisastring ("intensity", "s", "deg") that givesthe unitsthat apply
to the numbersin the binary part of thefile (e.g.,
char *ordinate[]={"intensity"};).

Nuclear Data Fields

Data fields may contain data generated by interactions between more than one nucleus
(e.0., a2D chemical shift correlation map between protons and carbon). Such datarequires
interpreting the term “ppm” for the specific nucleus, if ppm to frequency conversions are
necessary, and properly labeling axes arising from different nuclei. To properly interpret
ppm and label axes, the identity of the nucleus in question and the corresponding nuclear
resonance frequency are needed. Thesefields are related to the abscissa vaues
"ppml", "ppm2",and "ppm3 " inthat the 1, 2, and 3 areindicesinto thenucleus and
nucfreq fields. That is, the nucleus for the axiswith abscissa string "ppm1" isthe
first entry inthe nucleus field.

® nucleusisoneentry ("H1", "F19", same asVnmrJ tn parameter) for each rf
channel (eg., char *nucleus[]={"H1", "H1"};).

® nucfreq isthe nuclear frequency (floating point) used for each rf channel (e.g.,
float nucfreq[]={200.067,200.067};).

Miscellaneous Fields

® checksum isthe checksum of the data. Changes to the header do not affect the
checksum. The checksum is a 32-hit integer, calculated by the gluer program (e.g.,
int checksum=0787271376;).

® compressionisastringwith either the command needed to uncompress the data or
atag giving the compression method. Thisfield isnot currently implemented.

End of Header

A character specifiesthe end of the header. If there is data, it immediately follows this
character. The data should be aligned according to its data type. For single precision
floating point data, the data is aligned on word boundaries. Currently, the end of header
character is <zero> (an ASCII “NUL").

Transformations

By editing some of the header values, it is possible to make a program that reads FDF data
files to perform simple transformations. For example, to flip data | eft-to-right, set:

Sp?'?'o}SP?n_o
origin'g=origing—span'g

Creating FDF Files

To generatefilesin the FDF format, the following macros are available to write out single
or multislice images:

® For the current imaging software—including sequences sems, mems, and flash—use
the macro svib (directory<, 'f'|'m'|'i'|'o'>),wheredirectoryis
the directory name desired (. dat is appended to the name), ' £ ' outputs datain
floating point format (thisisthe default), 'm' or 'i' outputs data as 12-bit integer
valuesin 16-bit words, and 'b ' outputs datain 8-bit integer bytes.

284 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

5.3 Reformatting Data for Processing

® For older style SIS imaging sequences and microimaging sequences, use the macro
svsis(directory<,'f'|'m'>),wheredirectory, '£',and 'm' are
defined the same as svib.

Raw data from the FID file of the current experiment can be saved as an FDF file with the
svfdf (directory) macro, where directory isthe name of the directory in which
to store thefiles (. dat isappended to the name). Datais saved in multiplefiles, with one
trace per file. Thefilesare named £1d0001.£fdf, £id0002. £df, etc. Theprocpar
file from the current experiment is a so saved in the same directory.

Another way to create the FDF filesisto edit or create a header defining a set of datawith
no headers and attach it to the data file with the £dfgluer program. Use the syntax
fdfgluer header file <data_ file <output file>> (from UNIX only).
Thisprogram takesaheader file andadata_ file and putsthem together to form
an FDFfile. It also cal culates achecksum and insertsit into the header. If thedata file
argument isnot present, fdfgluer assumesthe dataisinput from the standard input, and
if theoutput file nameisnot present, fdfgluer putsthe FDF file to the standard
output.

Splitting FDF Files

The £dfsplit command takesan FDFfileand splitsit into itsdataand header parts. The
syntaxisfdfsplit fdf file data file header file (from UNIX only). If
the header still has a checksum vaue, that value should be removed.

5.3 Reformatting Data for Processing

® “Standard and Compressed Formats,” page 286
® “Compress or Decompress Data,” page 287

® “Move and Reverse Data,” page 287

® “Table Convert Data,” page 287

® “Reformatting Spectra,” page 287

Sometimes, data acquired in an experiment has to be reformatted for processing. Thisis
especialy truefor in-vivo imaging experiments where timeis critical in getting the data so
experiments are designed to acquire data quickly but not necessarily in the most desirable
format for processing. Reformatting data can also occur in other applications because of a
particular experimental procedure.

The VnmrJ processing applications £t2d and £t 3d can accept datain standard,
compressed, or compressed-compressed (3D) data formats. There are anumber of routines
that allow usersto reformat their data into these formats for processing. The reformatting
routines allow users to compress or uncompresstheir data (£ 1ashc), move data around
between experiments and into almost any format (mf, mfblk, mfdata, mftrace),
reversedatawhilemovingit (rfblk, rfdata, rftrace), or useatableof values, inthis
case atable stored in tablib, to sort and reformat scans of data (tabc, tcapply).

In this section, standard and compressed data are defined, reformatting options are
described, and several examples are presented. Table 40 summarizes the reformatting
commands described in this section. Note that the commands rsapply, tcapply,
tcclose, and tcopen arefor 2D spectrum data; the remaining commands in the table
arefor FID data.

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 285

Chapter 5. Parameters and Data

Table 40. Commands for Reformatting Data

Commands
flashc* Convert compressed 2D datato standard 2D format
mf (<from exp, >to_exp) Move FIDs between experiments
mfblk* Move FID block
mfclose Close memory map FID
mfdata* Move FID data
mfopen (<src_expno, >dest_expno) Memory map open FID file
mftrace* Move FID trace
rfblk* Reverse FID block
rfdata* Reverse FID data
rftracex Reverse FID trace
rsapply Reverse data in a spectrum
tabc< (dimension) > Convert datain table order to linear order
tcapply< (file) > Apply table conversion reformatting to data
tcclose Close table conversion file
tcopen< (file) > Open table conversion file
* flashc<('ms'|'mi'|'rare'<,traces><,echoes>)
mfblk (<src_expno, >src_blk no,dest_expno,dest_blk no)
mfdata (<src_expno,>,src_blk no,src_start loc,dest _expno, \

dest blk no,dest start loc,num points)

mftrace (<src_expno, >src_blk no,src_trace no,dest expno
dest blk no,dest trace no)

rfblk (<src_expno, >src_blk no,dest expno,dest blk no)

rfdata (<src_expno, >src_blk no,src_start loc,dest _expno, \
dest blk no,dest start loc,num points)
rftrace (<src_expno, >src_blk no,src_trace no,dest _expno, \

dest blk no,dest trace no)

286

Standard and Compressed Formats

The terms standard and compressed data formats have the following meaning:

® standard — the data was acquired using the arrayed parametersni and ni2, which
specify the number of increments in the second and third dimensions.

® compressed — the datawas acquired using parameter nf to specify theincrementsin
the second dimension.

For multislice imaging, standard means using ni to specify the phase-encode increments
and nf to specify the number of slices and compressed means using nf to specify the
phase-encode increments while arraying the slices.

® Compressed-compressed — usesn f to specify the phase-encodeincrementsand slices
for 2D or to specify the phase-encode incrementsin the second and third dimensions
for 3D. In compressed-compressed data sets, nf can be set to nv*ns or nv*nv2,
where nv isthe number of phase-encode incrementsin the second dimension, nv2 is
the number of phase-encode incrementsin the third dimension, and ns is the number
of slices.

To give another view of data formats, which will help when using the “move FID”
commands, each ni increment or array element is stored as a data block in aFID fileand
each nf FID is stored as atrace within adata block in aFID file.

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

5.3 Reformatting Data for Processing

Compress or Decompress Data

The most common form of reformatting for imaging hasbeen to usethe £1ashc command
to convert compressed data setsto standard data setsin order torun £t2d on the data. With
theimplementation of £t2d ('nf', <index>), £lashc isnolonger necessary.
However, use of £1lashc isstill necessary for converting compressed-compressed data to
compressed or standard formats.

Move and Reverse Data

Thecommandsmf, mfblk, mfdata, and mftrace areavailableto movedataaroundin
aFID file or to move data from one experiment FID file to another experiment FID file.
These commands give users more control in reformatting their data by allowing them to
move entire FID files, individual blocks within aFID file, individual traces within a block
of aFID file, or sections of data within a block of aFID file.

To illustrate the use of the“move FID” commands, Listing 9is an example with code from
amacro that movesa 3D dataset from an arrayed 3D dataset to another experiment that runs
ft3d onthedata The $index variableisthe array index. It works on both compressed-
compressed and compressed 3D data.

The “reverse FID” commands rfblk, rftrace, and rfdata are similar to their
respectivemfblk, mftrace, and mfdata commands, except that rfblk, rftrace,
and rfdata asoreversethe order of the data. The rfblk, rftrace, and rfdata
commandswereimplemented to support EPI (Echo Planar Imaging) processing. Listing 10
is an example of using these commandsto reverse every other FID echo for EPI data. Note
that the mfopen and mf close commands can significantly speed up the data
reformatting by opening and closing the data files once, instead of every time the datais
moved. Therfblk, rftrace, and rfdata commands can also be used with the “move
FID” commands.

CAUTION: For speed reasons, the “move FID” and “reverse FID” commands work
directly on the FID and follow data links. These commands can modify
data returned to an experiment with the rt command. To avoid
modification, enter the following sequence of VnmrJ commands
before manipulating the FID data:
cp (curexp+'/acqgfil/fid',curexp+'/acqgfil/fidtmp"')
rm(curexp+'/acqgfil/£fid")

mv (curexp+'/acqgfil/fidtmp',curexp+'/acqgfil/£fid"')

Table Convert Data

V nmrJsupports reconstructing aproperly ordered raw dataset from any arbitrarily ordered
data set acquired under control of an external AP table. The data must have been acquired
according to atablein the tablib directory. The command for table conversionis tabe.

Reformatting Spectra

The commands rsapply, to reverse a spectrum, and tcapply, to reformat a 2D set of
spectra using atable, support reformatting of spectra within a 2D dataset. The types of
reformatting are the reversing of datawithin a spectrum and the reformatting of arbitrarily
ordered 2D spectrum by using a table. These commands do not change the original FID
data, and they may provide some speed improvement over the similar commands that
operate on FID data. For 2D data, an £t1d command should be applied to the data,

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 287

Chapter 5. Parameters and Data

followed by the desired reformatting, and then an £t2d command to complete the
processing.
Listing 9. Code from a“Move FID” Macro

if ($segcon[3] = 'c') and ($seqcon[4] = 'c') then
"***x%* Compressed-compressed 3d ****"
Sarraydim = arraydim
if ($index > S$arraydim) then
write('error', 'Index greater than arraydim.')
abort
endif
mfblk ($index, sworkexp, 1)
jexp ($Sworkexp)
setvalue('arraydim', 1, 'processed')
setvalue('arraydim', 1, 'current')

setvalue('array','', 'processed')
setvalue('array','', 'current')
ft3d
jexp ($Scexpn)
else if ($seqgcon[3] = 'c¢') and ($seqcon[4] = 's') then

"kxkk*x Compressed 3d *rkxn
if (ni < 1.5) then
write('error', 'seqcon, ni mismatch check parameters.')
abort
endif
Sarraydim = arraydim/ni
if ($index > S$arraydim) then
write('error', 'Index greater than arraydim.')
abort
endif
Si =1
Sk = Sindex
while ($i <= ni) do
mfblk ($k, sworkexp, $1i)
Sk = sk + Sarraydim
Si = $i + 1
endwhile
jexp ($Sworkexp)
setvalue('arraydim',ni, 'processed')
setvalue('arraydim',ni, 'current')

setvalue('array','', 'processed')
setvalue('array','', 'current')
ft3d

jexp (Scexpn)

5.4 Creating and Modifying Parameters
® “Parameter Types and Trees,” page 289
® “Toolsfor Working with Parameter Trees,” page 289
® “Format of a Stored Parameter,” page 292

VnmrJparametersand their attributesare created and modified with the commands covered
in this section. The parameter trees used by these commands are Linux files containing the
attributes of a parameter as formatted text.

288 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

5.4 Creating and Modifying Parameters

Listing 10. Example of Command Reversing Data Order

LU R R R R R R R R

" epirf (<blkno>) - macro to reverse every other FID

" Dblock & trace indicies start at 1 for rfblk,rftrace,rfdata **

LR S R R RS RS RS R E R RS R RS SRR R SRS R SR SR RS R R R SRR R SRR R SRR R SR EEEEEESEEESEE]

mfopen

Si=2

while ($i <= nv) do
rftrace($1,$1)
Si = $i + 2

endwhile

mfclose

Parameter Types and Trees

The types of parametersthat can be created are 'real', 'string', 'delay’,
'frequency', 'flag’', 'pulse',and 'integer (defaultis'real').Inbrief, the
meaning of these types are as follows (for more detail, refer to the description of the
create command in the VhmrJ Command and Parameter Reference):

'real' any positive or negative value, and can be positive or negative.

'string' composed of characters, and can be limited to selected words by
enumerating the possible values with the command
setenumeral.

'delay!' avalue between 0 and 8190, in units of seconds.

'frequency' positive real number values.

'flag' composed of characters, similar tothe ' string' type, but can be

limited to selected characters by enumerating the possible val ues with
the command setenumeral.

If enumerated values are not set, the

'string' and 'flag’' typesareidentical.

'pulse’ value between 0 and 8190, in units of microseconds.
'integer' composed of integers (0, 1, 2, 3,...),

The four parameter treetypesare ' current ', 'global', 'processed’', and
'systemglobal' (thedefaultis 'current'):

'current' containsthe parameters that are adjusted to set up an experiment. The
parameters are from the file curpar in the current experiment.

'global' contains user-specific parameters from thefileglobal in the
vnmrsys directory of the present UNIX user.

'processed!’' contains the parameters with which the data was obtained. These
parameters are from the fileprocpar in the current experiment.

'systemglobal' containsinstrument-specific parameters from the text file

/vnmr/conpar. The conf ig program is used to define most of these parameters.
All users have the same systemglobal tree.

Tools for Working with Parameter Trees
Table 41 lists commands for creating, modifying, and deleting parameters.

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 289

Chapter 5. Parameters and Data

Table41. Commands for Working with Parameter Trees

Commands
create (parameter<, type<, tree>>) Create anew parameter in parameter tree
destroy (parameter<, tree>) Destroy a parameter
destroygroup (group<, tree>) Destroy parameters of agroup in atree
display (parameter|'*'|'**'<, tree>) Display parameters and their attributes
fread(file<, tree<, 'reset'|'value'>>) Read in parameters from afileinto atree
fsave (file<, tree>) Save parameters from atree to afile
getvalue (parameter<, index><, tree>) Get value of parameter in atree
groupcopy (from tree,to tree,group) Copy group parameters from tree to tree
paramvi (parameter<, trees>) Edit parameter and its attributes using vi
prune (file) Prune extra parametersfrom current tree
setdgroup (parameter, dgroup<, tree>) Set the Dgroup of a parameter in atree
setenumeral* Set values of a string parameter in atree
setgroup (parameter, group<, tree>) Set group of aparameter in atree
setlimit* Set limits of a parameter in atree
setprotect* Set protection mode of a parameter
settype (parameter, type<, tree>) Change type of a parameter
setvalue* Set value of any parameter in atree
* getenumeral (parameter,N,enuml,enum2, ...enumnN<, tree>)

setlimit (parameter,maximum, minimum, step size<,tree>) or

setlimit (parameter, index<, tree>)
setprotect (parameter, 'set'|'on'|'off',value<,tree>)
setvalue (parameter,value<, index><, tree>)

290

To Create a New Parameter

Usecreate (parameter<, type<, tree>>) to create anew parameter in a
parameter tree with the name specified by parameter. For example, entering
create('a', 'real', 'global') createsanew red-type parameter ain the global
tree. type canbe 'real', 'string', 'delay’',' frequency','flag’,
'pulse’, or 'integer'. If the type argument is not entered, the default is ' real'.
treecanbe 'current', 'global', 'processed',or 'systemglobal' . If the
tree argument isnot entered, the default is ' current '. See the section above for a
description of parameter types and trees. Note that these same arguments are used with all
the commands appearing in this section.

To Get the Value of a Parameter

The value of most parameters can be accessed simply by using their namein an expression;
for example, sw? or r1=np accesses the value of sw and np, respectively. However,
parameters in the processed tree cannot be accessed thisway. Use

getvalue (parameter<, index><, tree>) to get the value of any parameter,
including the value of aparameter in a processed tree. To make thiseasier, the default value
of treeis'processed'. Theindex argument isthe number of asingle elementin an
arrayed parameter (the default is 1).

To Edit or Set Parameter Attributes

Useparamvi (parameter<, tree>) toopenthefilefor a parameter in the vi text
editor to edit the attributes. To open a parameter file with an editor other than vi, use
paramedit (parameter<, tree>) . Refer to entry for paramedit inthe VnmrJ

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

5.4 Creating and Modifying Parameters

Command and Parameter Reference for information on how to select a text editor other
than vi. The format of a stored parameter is described in the next section.

Several parameter attributes can be set by the following commands:

® setlimit (parameter,maximum, minimum, step size<,tree>) Sets
the maximum and minimum limits and stepsize of a parameter.

® setlimit (parameter, index<, tree>) setsthe maximum and minimum
limits and the stepsize, but obtains the values from the index-th entry of atablein
conpar.

® setprotect (parameter, 'set'|'on'|'off',bit vals<,tree>)
sets the protection bits associated with a parameter. The keyword ' set ' causesthe
current protection bits to be replaced with the set specified by bit vals (listedin
the VnmrJ Command and Parameter Reference). 'on' causes the bits specified in
bit vals tobeturned on without affecting other protection bits. ' of £ ' causesthe
bitsspecifiedinbit vals to beturned off without affecting other protection bits.

® settype (parameter, type<,tree>) changesthe type of an existing
parameter. A string parameter can be changed into a string or flag type, or areal
parameter can be changed into areal, delay, frequency, pulse, or integer type.

® setvalue (parameter,value<, index><, tree>) setsthe vaueof any
parameter in atree. setvalue bypasses normal range checking for parameter entry.
It also bypasses any action that would be invoked by the parameter's protection bits.

® setenumeral (parameter,N, enuml, enum?2, ..., enumN<, tree>) Sets
possible values of a string-type or flag-type parameter in a parameter tree.

® setgroup (parameter, group<, tree>) Setsthegroup (also called the
Ggroup) of a parameter in atree. The group argument canbe 'all', 'sample’,
'acquisition', 'processing', 'display',0r 'spin'.

® setdgroup (parameter,dgroup<, tree>) setsthe Dgroup of aparameter in
atree. The dgroup argument is an integer. The usage of setdgroup isset by the
application. Only the experimental user interface uses this command currently.

To Display a Parameter

Usedisplay (parameter|'*'|'**'<, tree>)todisplay one or more parameters
and their attributes from a parameter tree. The first argument can be one of the following
three options: aparameter name (to display the attributes of that parameter, ' = ' (to display
the name and value of all parametersin atree), or ' x* ' (to display the attributes of all
parameters in atree. The results are displayed in the Process tab, Text Output.

To Move Parameters

Usegroupcopy (from _tree, to tree,group) tocopy aset of parameters of a
group from one parameter tree to another (it cannot be the same tree). group isthe same
keywords as used with setgroup.

The fread (file<, tree<, 'reset'|'value'>>) command readsin parameters
from afileand loadsthem into atree. Thekeyword ' reset ' causesthetreeto be cleared
before the new fileisread; 'value' causesonly the valuesof the parametersin the file
to beloaded. The fsave (file<, tree>) command writes parameters from a
parameter tree to a file for which the user has write permission. It overwrites any file that
exists.

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 291

Chapter 5. Parameters and Data

To Destroy a Parameter

Thedestroy (parameter<, tree>) command removes a parameter from a
parameter tree whilethe destroygroup (group<, tree>) command removes
parameters of agroup from aparameter tree. The group argument usesthe samekeywords
asused withthe setgroup command. If the destroyed parameter wasan array, thearray
parameter is automatically updated.

To removeleftover parameters from previousexperimental setups, use prune instead. The
prune (file) command destroys parametersin the current parameter tree that are not
also defined in the parameter file specified.

Format of a Stored Parameter

To usethe create command to create a new parameter, or to use the paramvi and
paramedit commands to edit a parameter and its attributes, requires knowledge of the
format of astored parameter. If an error in the format is made, the parameter may not load.
This section describes the format in detail.

The stored format of a parameter is made up of three or more lines:

® Line 1 containsthe attributes of the parameter and has the following fields (given in
same order as they appear in the file):

name the parameter name, which can be any valid string.

subtype an integer vaue for the parameter type: 0 (undefined), 1 (real), 2
(string), 3 (delay), 4 (flag), 5 (frequency), 6 (pulse), 7 (integer).

basictype an integer value: 0 (undefined), 1 (real), 2 (string).

maxvalue areal number for the maximum value that the parameter can contain, or

an index to a maximum value in the parameter parmax (foundin /
vnmr /conpar). Appliesto both string and real types of parameters.

minvalue areal number for the minimum value that the parameter can contain or
an index to aminimum vauein the parameter parmin (foundin /
vnmr/conpar). Appliesto rea types of parameters only.

stepsizei areal number for the step size in which parameters can be entered or
index to astep sizein the parameter parstep (found in /vnmr/
conpar). If stepsizeisO, itisignored. Appliesto real typesonly.

Ggroup an integer value: 0 (ALL), 1 (SAMPLE), 2 (ACQUISITION), 3
(PROCESSING), 4 (DISPLAY), 5 (SPIN).

Dgroup an integer value. The specific application determines the usage of this
integer.

protection a32-bit word made up of thefollowing bit masks, which are summed to
form the full mask:

Bit Value Description

0 1 Cannot array the parameter

1 2 Cannot change active/not active status

2 4 Cannot change the parameter value

3 8 Causes parameter macro to be executed (e.g., if parameter
isnamed sw, themacro _sw is executed when sw is changed)

4 16 Avoids automatic redisplay

5 32 Cannot delete parameter

292 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

5.4 Creating and Modifying Parameters

Bit Value Description

6 64 System parameter for spectrometer or data station

7 128 Cannot copy parameter from tree to tree

8 256 Cannot set array parameter

9 512 Cannot set parameter enumeral values

10 1024 Cannot change the parameter's group

1 2048 Cannot change protection bits

12 4096 Cannot changethe display group

13 8192 Takemax, min, step from /vnmr/conpar parameters

parmax, parmin, parstep.

active isaninteger value: O (not active), 1 (active).
intptrisnot used (generally set to 64).

Line 2, or the group of lines starting with line 2, list the values of the parameter. The
first field on line 2 isthe number of values the parameter is set to. The format of the
rest of the fields on line 2 and subsequent lines, if any, depends on the val ue of
basictype setonline 1 and the value entered in thefirst field on line 2:

If basictype isl (real) andfirst value on line 2 isany number, all parameter values
are listed on line 2, starting in the second field. Each value is separated by a space.

If basictypeis2(string) and first valueonline 2is 1, the single string value of the
parameter is listed in the second field of line 2, inside double quotes.

If basictype is?2 (string) and first value on line 2 is greater than 1, the first array
element islisted in the second field on line 2 and each additional element is listed on
subsequent lines, one value per line. Strings are surrounded by double quotes.

Last line of a parameter file lists the enumerable values of a string or flag parameter.

This specifies the possible values the string parameter can be set to. The first field is

the number of enumerable values. If thisnumber is greater than 1, all of thevaluesare
listed on thisline, starting in the second field.

For example, hereishow atypical real parameter file, named a, isinterpreted (the numbers
in parentheses are not part of the file but are line references in the interpretation):

(1) 2 31 1e+30 -1e+30 0 0 1 0 1 64

(2) 24.126400

®

0

Thisfileis made up of the following lines:

1

2.
3.

The parameter has the name a, subtypeis 3 (delay), basictypeis 1 (real), maximum
sizeis 1e+30, minimum sizeis—1e+30, stepsizeis0, Ggroup is0 (ALL), Dgroup is
1 (ACQUISITION), protection is 0 (cannot array the parameter), activeis 1 (ON),
and intptr is 64 (not used).

Parameter a has 1 value, the real number 24.126400.

Parameter a has 0 enumerable values.

Asanother example, here are the valuesin afile for the parameter tof:
(1) tof 51 7 7 7 2 1 8202 1 64

(2) 1 1160

@3) o

The tof fileis made up of the following lines:

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 293

Chapter 5. Parameters and Data

1. Theparameter hasthename tof, subtypeis5 (frequency), and basictypeis 1 (real).
To read the next 3 values, we must jump to the protection field. Because the
protection word value is 8202, which is 8192 + 8 + 2, then bit 13 (8192), hit 3 (8),
and bit 1 (2) bitmasks are set. Because bit 13 is set, the maximum size, minimum
size, and stepsize values (each is 7) are indices into the 7th array value in the
parameters parmax, parmin, and parstep, respectively, in thefile conpar.
Because bit 3 is set, this causes amacro to be executed. The bit 1 bitmask (2) isalso
set, which meansthe active/not active status of the parameter cannot be changed. For
theremaining fields, Ggroup is 2 (ACQUISITION), Dgroupis1 (ACQUISITION),
activeis 1 (ON), and intptr is 64 (not used).

2. Parameter tof has 1 vaue, the rea number 1160.
3. Parameter tof has0 enumerable values.

The following file is an example of amulti element array character parameter, beatles:
(1) beatles 2 2 8 0 0 2 1 0 1 64
(2) 4 john
(3) paul
george
ringo
4 o

Thebeatles fileismade up of thefollowing lines:

1. Theparameter hasthe name of beatles, subtypeis 2 (string), basictypeis 2
(string), 80 0ismax min step (not really used for strings), Ggroup is 2 (acquisition),
Dgroupis1 (ALL), protectionisO, activeis 1 (ON), 64 isaterminating number.

2. Therearefour elementsto this variable; therefore, it is arrayed. john isthe first
element in the array.

3. paul, george, and ringo are the other three elementsin the array.

4. 0 (zero) isthe terminating line.

5.5 Modifying Parameter Displays in VNMR

294

® “Display Template,” page 294
® “Conditional and Arrayed Displays,” page 296
® “Qutput Format,” page 297

The VNMR plotting commands and macros— ap , pap—are controlled by template
parameters specifying the content and form of the information plotted. The template
parameters have the same name asthe respective command or macro; for example, the plot
created by the ap command is controlled by the parameter ap in the experiment’s current
parameter set.

Enter paramvi ('ap') tousethevi text editor to modify an existing template
parameter, such as ap, or enter paramedit ('ap') to usethetext editor set by the
environmental variable vomreditor.

Display Template

A plot template can have asingle string or multiple strings. Thefirst number on the second
line of a stored parameter indicates the number of string templates. If the number is 1, the
display template is asingle string; otherwise, avalue greater than 1 indicates the template

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

5.5 Modifying Parameter Displays in VNMR

is multiple strings. Figure 5 shows an exampl e of a single-string display template (actually
the parameter ap) and the resulting plot.

ap22102300416164

1

“1:SAMPLE:date,solvent,file;1: ACQUISITION:sw:1,at:3,np:0,fb:0,bs(bs):0,s5(ss):0,

d1:3,d2(d2):6,nt:0,ct:0;1: TRANSMITTER:tn,sfrq:3,tof : 1,tpwr:0,pw:3,p1(pl):3;1:DE

COUPLER:dn,dof:1,dm,dmm,dpwr:0,dmf:0;2: SPECIAL :temp:1,gain:0,spin:0,hst:3,p
w90:3,alfa:3;2:FLAGS:il,in,dp,hs;2:PROCESSING:Ib(Ib):2,sb(sh): 3,sbs(sh): 3,gf (of):

3.,0fs(gf):3,awc(awc):3,Isfid(Isfid):0,Isfrg(Isfrg): 1,phfid(phfid): 1,fn:0;2: DI SPLAY:sp:

Lwp:1,rfl:1,rfp:1,rp:1,Ip:1;2:PLOT:wc:0,sc:0,vs.0,th:0,aig* ,dcg* ,dmg*;”

0

Figure5. Single-String Display Template with Output

Inasingle-string template, the string always starts with adoubl e quote and then repeatsthe
following information for each column in the plot:

® Column number (e.g., 2)

® Conditionfor plot of column (optional, e.g., “4 (ni)”, see” Conditional and Arrayed
Displays,” page 296).

® Colon

® Columntitle (e.g., 2D ACQUISITION)

® Colon

® Parametersto appear in column, separated by commas (for notation, see “ Conditional
and Arrayed Displays,” page 296)

® Semicolon

At the end of the string is another double quote. Spaces cannot appear anywhere in the
string template except as part of a column title.

Column titles are often in upper case, but need not be, and are limited to 19 characters.
More than one title can appear in the same column (such as shown above, SAMPLE and
DECOUPLING are both in column 2).

Parameterslistedin“plain” form (e.g., tn, date, math) are printed either asstringsor in
aform in which the number of decimal places plotted varies depending on the value of the
parameter.

To plot a specific number of digits past the decimal place, the desired number is placed
followingacolon (e.g., sfrg:3,at:3, sw: 0). Extracommas can be inserted to skip
rowswithin acolumn (e.g., math, ,werr, wexp,) .

The maximum number of columnsis4; each column can have 17 lines of output. Sincethis
includes the title(s), fewer than 17 parameters can be displayed in any one column. The
entire template is limited to 1024 characters or less.

Asan dternative to a single-string template, which tends to be difficult to read, atemplate
can written as multiple strings, each enclosed in double quotes. The first number indicates
the number of strings that follow. Each string must start with a column number. Figure 6
contains the plot template for the parameter dg2, which isatypical example of amultiple-
string template

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 295

Chapter 5. Parameters and Data

6 "l:1st DECOUPLING:dfrg:3.dn.dpwr:O.dof:l. dm.dmm.dmf:0, dseq.dres:l, homo:"
"2inumrfohr2) 12nd DECOUPLING:dfrg2 3. dnZ. dpwr2: 0. dof2: 1, dm2 . dmmz . dmf2: 0, dseg2. dr
esZ:1l,. homoZ;: "

"2inumrfch>3) :3rd DECOUPLING:dfrg3: 3. dn3.dpwr3:0.dof3: 1, dseqg3. dres3: 1, homo3: "
"3(niZy 30 ACOUISITION:d3:3,swZrl . niZ:0, phasez: 0"

"3{ni2»:30 DISPLAY:rp2:1,.1p2:1;:"

"4{ni2): 30 PROCESSING: lbZ2:3.sh2:3,.sbs2(sb2) 13, 2f2: 3, 2fs2(gFf2) 13 auc2: 3. wtfilez. p
roc2. fn2:0: "

Figure 6. Multiple-String Display Template

The conditional statement in thisexample (eg., “(numrfch >2)")iscoveredin
“Conditional and Arrayed Displays,” page 296.

Thetitlefield can contain astring variable besides aliteral. If thevariableisareal variable,
or not present, or equal to the null string, the variable itself is used as the title (e.g.,
mystrvar [1]='Example Col 1'andmystrvar [2]='Example Col 2').

Conditional and Arrayed Displays

Use of parentheses allows the conditional display of an entire column and/or individual
parameters. If the real parameter within parentheses is not present, or is equal to 0 or to
'n ', then the associated parameter or section is not displayed. In the case of string
parameters, if the real number isnot present, or isequal to the NULL string or the character
'n ', then the associated parameter or section is not displayed. The following examples
from the dg template above demonstrate this format:

® pl(pl) :1 meansdisplay parameter p1 only whenp1l isnon-zero.

® sbs(sb) :3 meansdisplay sbs only when sb is active (not equal to ‘n’).

® 4 (ni):2D PROCESSING: meansdisplay entire“2D PROCESSING” section only

when parameter n1i is active and non-zero.

Note that if a parameter is arrayed, the display status is derived from the first value of the
array. Thus, if p1 isarrayed and thefirst valueis 0, p1 will not appear; if thefirst valueis
non-zero, p1 will appear, with “arrayed” asits parameter value.

Similarly, amultiple variable expression can also be placed within the parentheses for
conditional plot of parameters. Each expression must be avalid MAGICAL Il expression
(see " Programming with MAGICAL,” page 27) and must be written so there is no space
between the last character of the expression and the closing parenthesis “)”.

In summary, if asingle variable expression is placed in the parentheses, it is FALSE under
the following conditions:

® Variable does not exist.
® Variableisreal and equals O or is marked inactive.
® Variableisastring variable equal to the NULL string or equal to the character 'n'.

Multiple variable expressions are evaluated the same asin MAGICAL Il. If avariable does
not exist, it is considered an error.

Examples of multiple parameter expressions include the following:

® 2 (numrfch>2) :2nd DECOUPLING: meansdisplay entire*2nd DECOUPLING”
section only when numr £ ch (number of rf channels) is greater than 2.

296 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

5.6 User-Written Weighting Functions

® 3((myflag <> 'n') or ((myni > ni) and (mysw < sw))) :My
Section: meansdisplay entire“My Section” section only whenmyflag isnot
equal to 'n' or when myni isgreater than ni and mysw islessthan sw.

The asterisk (...*) isa“special parameter” designator that allows the value of a series of
string parameters to be displayed in asingle row without names. This is more commonly
used with the parameters aig, deg, and dmg, for example:

aig*,dcg*,dmg*

For tabular output of arrayed parameters, square brackets ([...]) are used. For example:
1:Sample Table Output: [pw,pl,dl,d2];

Notice that all parametersin the column must be in the brackets; thus, the following is
illegal:

1:Sample Table Output: [pw,pl,dl],d2;

Since arrayed variables are normally displayed with da, thisformat is rarely needed.

Thefield width and digit field options can be used to clean up the display. Thefirst number
after the colon is the field width. The next colon is the digit field. For example:
1l:Sample Table Output: [pw:6:2,pl:6:2,d1:10:6,d2:10:6] ;

Here, the parameters pw and p1 are plotted in 6 columns with 2 places after the decimal
point, while d1 and d2 are displayed in 10 columns with 6 places after the decimal point.

Output Format

For plot, each parameter and value occupies 20 characters of space:

® Characters1to 8 are the name of the parameter. Parameters with names longer than 8
characters are permitted within VnmrJitself but cannot be printed with pap.

® Character 9isalways blank.

® Characters 10 to 18 are used for the parameter value. Any parameter val ue exceeding
9 characters (afile name is a common example) is continued on the next line; in this
case, character 19 isatilde“~", which is used to show continuation.

® Character 20 is always blank.

For printing with the pap command, which usesthe ap parameter template, a“da” listing
isprinted starting in column 3, so that the template will typically specify only two columns
of output. ap can specify morethan two columns, but if any parameter isarrayed, thelisting
of that parameter will overwrite the third column. For printing, the maximum number of
linesin each column is 64.

5.6 User-Written Weighting Functions
® “Writing aWeighting Function,” page 298
® “Compiling the Weighting Function,” page 299
The parameter wt £11e can be set to the name of the file containing a user-written
weighting function. If the parameter wefile (or wtfilel or wt£ile2) does not exist,
it can be created with the commands
create('wtfile','flag")

setgroup ('wtfile', 'processing')
setlimit ('wtfile',15,0,0).

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 297

Chapter 5. Parameters and Data

298

Ifwtfile existsbutwtfile="" (two single quotes), VnmrJdoes not look for thefile:
wtf£1ile isinactive. To enable user-written weighting functions, set
wtfile=filename, where £ilename isthe name of the executable weighting
function (enclosed in single quotes) that was created by compiling the weighting function
source code with the shell script wtgen (a process described in the next section).

VnmrJfirst checksif £ilename existsin wt1ib subdirectory of the user’s private
directory. If the file exists there, VnmrJ then checks if thefile £i1ename . wtp, which
may contain the values for up to ten internal weighting parameters, exists in the current
experiment directory. If £ilename . wtp does not exist in the current experiment
directory, the ten internal weighting parameters are set to 1.

VnmrJ executes the £ i Lename program, using the optional filefilename .wtp asthe
source for parameter input. The output of the program is the binary file filename . wtf
in the current experiment directory. Thisbinary file contains the weighting vector that will
beread in by VnmrJ. The total weighting vector used by VnmrJis avector-vector product
of thisexternal, weighting vector and the internal VnmrJweighting vector, the latter being
calculated from the parameters 1b, gf, gfs, sb, sbs, and awc. The parameter awc still
provides an overall additive contribution to the total weighting vector. Although the
external weighting vector cannot be modified with wt i, the total weighting vector can be
modified with wti by modifying the internal VnmrJ weighting vector. Note that only a
single weighting vector is provided for both halves of the complex data set—real and
imaginary data points of the complex pair are aways weighted by the same factor.

If the £1i1ename program does not exist in auser'swt 1ib subdirectory, VnmrJlooksfor
atext filein the current experiment directory with the name £ i 1ename. Thisfile contains
the valuesfor the external weighting function in floating point format (for example, 0.025,
but not 2.5e-2) with one value per line. If the number of weighting function valuesin this
fileisless than the number of complex FID data points (that is, np/2), the user-weighting
function is padded out to np/2 points using the last valuein the £ ilename text file.

Writing a Weighting Function

Weighting functions must follow thisformat, similar to pulse sequence programs:
#include "weight.h"
wtcalc (wtpntr, npoints, delta t)

int npoints; /* number of complex data points */
float *wtpntr, /* pointer to weighting vector */
delta t; /* dwell time */

{

/* user-written part */

The variable wtpntr isapointer and must be dealt with differently than an ordinary
varisblesuch asdelta_t.wtpntr containsthe addressin memory of thefirst element
of the user-calculated weighting vector; *wtpntr isthe value of that first element. The
statement *wtpntr++=ximpliesthat *wtpntr isset equal tox and the pointer wtpntr
is subsequently incremented to the address of the next element in the weighting vector.

The following examples show the £ilename program set by wtfile=filename
® Sourcefilefilename.cinauser’'svamrsys/wtlib directory:
#include "weight.h"
wtcalc (wtpntr, npoints, delta t)
int npoints; /* number of complex data points */

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

5.6 User-Written Weighting Functions

float *wtpntr, /* pointer to weighting vector */
delta t; /* dwell time */
{
int 1i;
for (i = 0; i < npoints; i++)
*wtpntr++ = (float) (exp(-(delta t*i*wtconst[0]))) ;

/* wtconst [0] to wtconst[9] are 10 internal weighting */
/* parameters with default values of 1 and type float. */

}

® Optional parameter file £ilename . wtp in the current experiment directory:
0.35 /* value placed in wtconst[0] */
-2.4 /* value placed in wtconst[1l] */

/* etc. */
® Textfile £ilename in the current experiment directory:

0.9879 /* value of first weighting vector element */
0.8876 /* value of second weighting vector element */
-0.2109 /* value of third weighting vector element */
0.4567 /* value of fourth weighting vector element */
.. /* etc. */

0.1234 /* value of last weighting vector element */

Compiling the Weighting Function

Themacro/shellscript wtgen isused to compile £ i lename asset by parameter wtfile
into an executable program. The sourcefileisfilename. ¢ storedinauser’'svnmrsys/
wt 11ib directory. The executablefileisin the same directory and hasthe same name asthe
source file but with no file extension. The syntax isfor wtgen iswtgen (file<.c>)
fromVnmrJor wtgen file<.c> fromashel.

The wtgen macro alows the compilation of a user-written weighting function that
subseguently can be executed from within VnmrJ. The shellscript wtgen can be run from
within ashell by typing the name of the shellscript file name, where the . ¢ file extension
isoptional. wtgen can aso be run from within VnmrJby executing the macro wt gen with
the file name in single quotes.

The following functions are performed by wtgen:

1. Checksfor the existence of thebin subdirectory inthe VnmrJsystem directory and
abortsif the directory is not found.

2. Checksfor filesusrwt .o andweight .h inthebin subdirectory and abortsif
either of these two files cannot be found there.

3. Checksfor the existence of the user's directory and creates this directory if it does
not already exist.

4. Establishesinthewt1ib directory soft linkstousrwt .o andweight.hinthe
directory /vnmr/bin.

5. Compilesthe user-written weighting function, which is stored in thewt 1ib
directory, link loadsit with usrwt . o, and places the executable program in the

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 299

Chapter 5. Parameters and Data

same directory. Any compilation and/or link loading errors are placed in the file
name.errors inwtlib.

6. Removesthe soft linkstousrwt .o andweight.h inthebin subdirectory of
the VnmrJ system directory.

The name of the executable program is the same as that for the source file without afile
extension. For example, testwt . ¢ isthe source file for the executable file testwt.

5.7 User-Written FID Files

300

User the command makefid (input file <,element number, formats>) to
introduce computed data in the experiment. The required input file argument isthe
name of afile containing numeric values, two per line. Thefirst valueis assigned to the X
(or real) channel; the second value on the line isassigned to the Y (or imaginary) channel.
Arguments specifying the element number and the format are optional and may be entered
in either order.

The argument element number isany integer larger than O. If this element already
existsin your FID file, the program will overwrite the old data. If not entered, the default
isthefirst element or FID. format isacharacter string with the precision of the resulting
FID file and can be specified by one of the following:

'dp=n' single precision (16-bit) data
'dp=y"' double precision (32-bit) data
"16-bit! single precision (16-bit) data
'32-bit! double precision (32-bit) data

If an FID file already exists, format isthe precision of datain that file. Otherwise, the
default for format is32 bits.

The number of points comes from the number of numeric values read from the file.
Remember it reads only two values per line.

If the current experiment aready contains aFID, the format and the number of pointsfrom
that present in the FID file can not be changed. Use the command rm (curexp+'/
acqgfil/fid') toremovetheFID.

Themakefid command does not look at parameter values when establishing the format
of the data or the number of pointsin an element. Thus, if the FID fileis not present, it is
possiblefor makef id towriteaFID filewith aheader that does not match the value of dp
or np. Usethe setvalue command if any changes are needed since the active valueisin
the processed tree.

Themakefid command can modify datareturned to an experiment by the rt command.
To avoid this, enter the following sequence of VnmrJ commands on the saved data before
running makefid:

cp (curexp+'/acqfil/fid', curexp+'/acqgfil/fidtmp"')

rm (curexp+'/acqgfil/fid")

mv (curexp+'/acqgfil/fidtmp', curexp+'/acgfil/fid")

Thecommandwritefid (textfile<, element number>) writesatextfileusing
data from the selected FID element The default element number is 1. The program writes
two values per line—thefirst isthe value from the X (or real) channel, and the second is
the value from the Y (or imaginary) channel.

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

chapter 6. Panels, Toolbars, and Menus

Sectionsin this chapter:
® 6.1 "Parameter Panel Features,” page 301
® 6.2 “Using the Panel Editor,” page 301
® 6.3 "Panel Elements,” page 307
® 6.4"Creating aNew Panel,” page 323
® 6.5"Graphical Toolbar Menus,” page 327

6.1 Parameter Panel Features

The parameter panelsin VnmrJare built using xml files. The panel items may display
strings, expressions, and parameter values. Some parameter panels are general and are
shared with all pulse sequences and some are customized to meet the requirements of
individual pulse sequences.

The liquids and solids interfaces use panelsin the Start, Acquire, and Processfolders. The
imaging interface has an additiona folder labeled Image. The LC-NMR interface has an
additional folder labeled LC/M S. Panels are selected by clicking on the tab at the top of the
window. Each panel contains a number of pages, and the pages are selected by clicking on
the page tab at the left.

Panels in the experimental, walkup, and L C-NMR interfaces use the name of the pulse
sequence, seqgfil. Imaging interface panels utilize the parameter 1ayout to select
which panels are displayed. The imaging gems protocol sets layout = 'gems'. The
parameter can besetto layout = segfil. Using the layout parameter facilitates
sequence development since a panel does not have to be created because a sequenceis
recompiled under a different name.

6.2 Using the Panel Editor

® “Starting the Panel Editor,” page 301

® “Editing Existing Panel Elements,” page 303

® “Adding and Removing Panel Elements,” page 304
® “Saving Panel Changes,” page 305

® “Exiting the Panel Editor,” page 307

Starting the Panel Editor

1. Click on Edit on the main menu.

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 301

Chapter 6. Panels, Toolbars, and Menus

2. Select Parameter Pages... to display the panel editor window, see Figure 7.

Edit Start for s2pul

Type |group | Style |PlainText ¥ || Edit Styles

File /fhome/mrmiller/ynmrsys/templates/layout/s2pul/Standard.xml

Label of lterm: Standard

Vnmr Variables:
Show Condition:
Vnmr Command on Show:

Vnmr Command on Hide:

Type: ' Major O Minor O Convenience @ Basic

Number of Layers: |
Edit Layer: ‘
Background Color: -

Tab to this Group: ®yes no

Owerride Panel Enabled: Ciyes @ no

Crid Size 10| % [o | ¥ [o |wlszo |H 193 |
| oad || save |Pagel[standard | Dir s2pul |~ | Type [sample I~|[cear |
‘ Edita H Undo H Clase H Abandon H Help ‘

Figure7. Panel Editor Window

The current page is displayed in the edit mode with agrid, see Figure 8.
Click on Tools.

4. SelecttoLocator to display the locator panel, Figure 8, and the basic elements used

to build a panel.
Start | Acquire | Progess| | seup dariwar] showTime | STEINN | o
Ferte | | insert | mear | ﬁ
ek I o | Gradient Shim
Solvent cDCI3 =] i
Comment Lock Find Resonanced|
STANDARD 1H OBSERVE When: Mot used -
Lock Shim on Lock
Status: off When: Mot used P
Level: Shim method: 2122 o
Page tab of selected panel Panel pages are
Folder tab of selected folder displayed with a
default grid size of 10

——— Panel grouping of parameters

Iel=] outlined in blue
[P e Current locator
sif 2 s sorting statement
al type = | element a |filename ¥ |
basic elermeants button |~
basic elements check =
basic elements comboboxbu
basic elements entry
basic elements group
basic elements label
basic elements menu))
basic elements parameter Locator dlsplays basic panel elements
basic glaments popup
basic elements radio
basic elements scroll
basic elernents selmenu
basic clements slider
basic elerments spinner
basic elaments textmessage
basic 2lements toggle
acquisition pages
acquisition groups 1804 z

Figure 8. Panel and Locator when Panel Editor is Open

302 vamm 2.2 MI User Programming 01-999379-00 A 0708

6.2 Using the Panel Editor

Editing Existing Panel Elements
® “Selecting a Panel Element,” page 303
® “Viewing or Changing a Panel Element Attribute,” page 303
® “Changing the Grid Size,” page 304
® “Editing Styles,” page 304
® “Saving Element or Group Changes,” page 305

Selecting a Panel Element
Select a panel element as follows:

1. Double-click on an element (button, toggle, group, etc.) to select it.
The selected element is highlighted in yellow and is ready for editing.

2. Double-click on an empty area within the group to select a group.
3. Double-click on an empty area within the page to select a page.

4. Double-click on an empty area outside a page to select afolder.

Expand the panel display areauntil itislarger than the pageif thereisno areaoutside
the page.

Viewing or Changing a Panel Element Attribute

The panel editor displays the attributes of a selected element. A list of elements and their
attributesis given in 6.3 “Panel Elements,” page 307. The panel editor can also set the
following attributes:

Style —The Style drop-down
menu sets the font, style, size, Stvle B

and color of the element. —Jarrayfar
FequiredPar

OutputTextPar
On

[(|

[nT»

Interactive
F.eadhy

Ll

Background color — The
Background Color drop-down
menu setsthe background color
of the element.

Location — Move an element to a new location using one of the following methods:
1. Drag the element to the desired location with the mouse.
2. Usethe arrow keysto move the element to the new location.

3. Enter the position in the entry boxes X (horizontal) and Y (vertical) in pixels. The
top left corner is X=0, Y=0.

Size — Resize an element using one of the following methods:
1. Drag the edges of the element with the mouse.

2. Hold the control key down and resize the element using the arrow keys.

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 303

Chapter 6. Panels, Toolbars, and Menus

3. Enter thesizein the entry boxes W (Width) and W (Height) in pixels.

Changing the Grid Size
The default grid sizeis 10. The grid size can be changed as follows:
1. Enter anew valueinthefield next to Grid Size, see Figure 7.

2. PressEnter.

Editing Styles
Clicking on the Edit Styles button opens the Display Options editor.

Opens the display options editor.

The editor isused for setting the styles of panel elements. Changing the font, style, size, or
color in Display Options changes all elements in the interface of that style.

Adding and Removing Panel Elements
® “Selecting an Element from the L ocator,” page 304
® “Copying an Element to Another Location on the Same Page,” page 304
® “Copying an Element Between Pages Within a Folder,” page 304
® “Creating a New Page from the L ocator,” page 304
® “Removing Panel Items,” page 305

Selecting an Element from the Locator
1. Select an element in the Locator.
2. Drag the element from the locator to the desired position on the page.

Copying an Element to Another Location on the Same Page

1. Select an existing element or group of elements by double-clicking it (make surethe
borders are highlighted).

2. Hold the control key down and drag it to the new location—a new element is
automatically created.

Copying an Element Between Pages Within a Folder

1. Select an existing element or group of elements on a page by double-clicking it
(make sure that the borders are highlighted).

2. Holdthe control key down and drag it to alocation outside the page. Use the arrow
keysto move the copy outside the pageif the area outside the page cannot be viewed.

Select anew page to the left in the page tab list.
4. Move the copied element within the new page.

Creating a New Page from the Locator
1. Select Show all elementsin the Locator.
2. Find the page element in the L ocator.

304 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

6.2 Using the Panel Editor

3. Drag the page element into the parameter panel or into the tab list to the left of the
parameter panel in the appropriate folder.

New Page appears as the tab on the | eft.

4. Change the position and size of the page using one of the following methods:

® Usethe mouse buttonsto click on an edge or corner and drag the page to a new
size.

® Usethe ctrl-arrow keysto resize the page.
® Typeinvaluesfor width (W) and height (H) in the template editor.

Copying an Existing Page from the Locator
1. Set the columns of the locator to show type, directory, and filename.
2. Findthe desired page in the L ocator.

3. Dragthedesired page into thetab list to the left of the panelsin the appropriate
folder.

The page will appear asanew tab in thelist.

Removing Panel Items
1. Select the panel element, group, page, or folder to remove by double-clicking on it.
2. Click the Clear button at the lower right corner of the template editor.

Removes all items from the page or folder, or del etes the selected item or group

=8| (highlighted with yellow border).

The item can aso be dragged to the trash.

Saving Panel Changes
® “Saving Element or Group Changes,” page 305
® “Saving Page Changes,” page 306
® “Saving Folder Changes,” page 306

Saving Element or Group Changes

1. Double-click on an element or group.

The Save button isfollowed by the element type, an entry field for specifying the
name of the saved element, and is grayed out until anameis specified.

2. Enter aname and press Enter.
The group, including all elements within the group, is saved when saving a group.
3. Select achoice from the Type menu to set the element type.

The element type may be used for searching for all elements of thistypein the
L ocator. It does not impose any restrictions on the use of the element.

4. Pressthe Save button to save the element or group.

—_— Saves the element or group under the name in the panelitems directory.
- The page then has areference to the named item within it.

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 305

Chapter 6. Panels, Toolbars, and Menus

5.

To reload an element or group from disk, press the Load button.

I:\Load L oads the element or group using the file name in the element or group

entry field.

Note: A panel item may be saved in one folder using this method and copied into another

folder by dragging it from the L ocator.

Saving Page Changes

1

Double-click on an empty space within apage, or click on atab on the left to select
apage.

The Save button isfollowed by Page, an entry field for specifying the page name,
and is grayed out if no name is specified.

Enter aname and press Enter.

Select a choice from the Dir menu, Figure 9, for the .
. . Dir sems| b
directory to save the page in.
. 58IMs
Selecting a pul se sequence name or layout saves the |
: . default
page in adirectory for the pulse sequence or layout. :
Saving to a default directory makes it available to all Figure9. Dir Menu

sequences.

Thedefaultdirectoryisdefault name if thefileDEFAULT existsinthedirectory
and contains set default default name. Otherwise, the default directory
will bedefault. Thedirectory for many 2D liquids sequencesisdefault2d.

Select a choice from the Type menu, Figure 10, to set the

Type acquisition| |v
pagetype' acguisition
The page type is used for searching for all pages of this advanced
typeinthe Locator. It does not impose any restrictions on pasle
display
the use of the page. ! .
imaging
Press the Save button to save the page in the layout plotting
. processing
directory. sarmple
Press the L oad button to reload a page from disk. Figure 10. TypeMenu

Saving Folder Changes

1

Double-click on the area outside a page. Expand the panel display area until larger
than the page if no areais available.

The Save button isfollowed by Folder and an entry field for specifying the folder
name. The folder name must be one of the system types: sample, acq, proc, or
aip if Imaging.

Select adirectory to save the folder in from the Dir menu.

Thefolder issaved in adirectory for the pulse sequence or layout if apulse sequence
name or layout is selected. Select default to saveit in the default directory available
to all sequences.

Thedefaultdirectoryisdefault name if thefileDEFAULT existsin thedirectory
and has contents set default default name. Otherwise, the default
directory will bedefault.

Select a choice from the Type menu to set the folder type.

306 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

6.3 Panel Elements

The folder type may be used for searching for all folders of thistype in the Locator.
It does not impose any restrictions on the use of the folder.

4. Pressthe Save button to save the folder specifying the order of pagesin it.
5. PresstheLoad button to reload a folder from disk.

Exiting the Panel Editor

Use one of the following optionsto exit the panel editor:
® Exit and temporarily save changes as follows:
Click the Close button.

Closes the panel editor; unsaved changes retained only for the current

|ﬂ VnmrJ session. Changes are not saved when VnmrJis exited.

Changesare saved and retained only for the current VnmrJsession. Changesarelost
when VnmrJis exited.

® Exit, apply the changes to the current VnmrJ session, save the changes for the next
VnmrJ session, or abandon the changes as follows:

1. Double-click on an element or group.

The Save button isfollowed by the element type and an entry field for specifying the
name of the saved element. The Save button is grayed out until anameis specified.

2. Enter aname and press Enter.
The group, including all elements within the group, is saved when saving a group.
3. Select achoice from the Type menu to set the element type.

The element type may be used for searching for all elements of thistypein the
L ocator. It does not impose any restrictions on the use of the element.

4. Do one of the following:
® Press the Save button to save the element or group.

Saves the element or group under the mane in the panel items

Save
‘ | directory. The page is referenced to the named item within it.

® Exit and make no changes:
Click the Abandon button to exit and make no changes.

Exits the panel editor, discards unsaved changes, and

| Abandon | eioads previously saved pages,

5. Pressthe Load button to reload an element or group from disk.

II\ L oads the element or group using the file name in the element or group
g8 entry field.

6. Click the Close button to exit the panel editor.

6.3 Panel Elements

® “Element Style,” page 308
® “Panel Element Attributes,” page 308

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 307

Chapter 6. Panels, Toolbars, and Menus

® “Panel Elements,” page 309

® “Advanced Panel Elements,” page 319

Element Style

The font style (plain, bold, italic, bold-italic), size, font, and color that is selected in the
Syle section at the top of the panel editor window determines the appearance of the text
associ ated with the element. The specifics of an element style can be modified by clicking
Edit Stylesin the panel editor window or by selecting Display Options... from the top

menu Edit.

Changing the appearance of agiven stylewill immediately affect any existing elementsthat

use that style.

Panel Element Attributes

Commonly used panel element attributes are listed in Table 42.

Table 42. Common Attributes of Panel Elements

Attribute Description
Label of item Text label of item.
Icon of item Icon of item. Thisisused only for some elements (button, label).

Label justification
Vnmr variables

Vaue of item

Decimal Places

Vnmr command

Vnmr command?2

Enable condition

L abel of choices
Value of choices
Status parameter

Show condition

Justification of label of item. Choices are Left, Right, Center.

VNMR parameters that can change the Va ue of item, Enable condition, or
Show condition of the item.

The value of the item. This string isaMAGICAL expression that sets the
vaue of SVALUE. The value of some items (checkbox, radio, toggle) can
be either true (1) or false (0). Other items (comboboxbutton, menu,
selmenu) match a value from the Value of choices. For till other items
(entry, textmessage) it is anumber or string to display.

The number of decimal places to truncate to in areal expression in Value of
item.

The command sent when the item is executed or selected. Thisstringisa
MAGICAL expression that can use $VALUE, which isread from the value
entered in or set by the item.

The command sent when the item is deselected. Thisis used only by some
items (checkbox, radio, toggle).

The expression that determines whether an item is active or not. This string
isaMAGICAL expression that sets SENABLE or $VALUE, which can
evaluate to either active (1), inactive (0), or disabled (-1). A disabled item
does not allow the item to change the parameter value, while an inactive
item simply changes the background color but still alows parameter entry.

Text labels used in a menu or comboboxbutton.
Vauesin amenu or comboboxbutton used to set the Vnmr command.

Parameter from the acquisition or hardware status. A status parameter can
change the item or value of the item to display. Status parameters cannot be
used in combination with MAGICAL expressions. They are mutually
exclusive from Vnmr variables.The status parameter is any of the names
listed by the command Infostat.

The expression which determines whether a group is shown or not. This
string isaMAGICAL expression that sets the value of $SHOW or
SVALUE, which evauates to show (1) or hide (0).

308 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

6.3 Panel Elements

Table 42. Common Attributes of Panel Elements

Attribute Description

Vnmr command In a group, the command sent when the group is shown. This string isa
on show MAGICAL expression.

Vnmr command The command sent when the group is hidden. This stringisaMAGICAL
on hide expression.

Editable Sets whether or not text may be entered in the item (yes or no).

Panel Elements

® “Basic Panel Elements,” page 309

® “Advanced Panel Elements,” page 319

Basic Panel Elements

® “Button,” page 309 ® “Comboboxbutton,” page 310
® “Check,” page 310 ® “Entry field,” page 311

® “Group,” page 311 ® “Label,” page 313

® “Menu,” page 313 ® “Parameter,” page 314

® “Radio button,” page 315 ® “Scroll,” page 316

® “Selmenu,” page 316 ® “Slider,” page 316

® “Spinner,” page 317 ® “Textmessage,” page 318

® “Toggle button,” page 318

Button

! Acquire .

A button causes an action to occur in VnmrJ. The command behind a button is anything
that can be written in amacro or entered on the command line.

The button attributes are:

Example:

Label of item Icon of item

Enable condition Vnmr command

Background color

Vnmr variables— en-/disable a button based on the parameter value.

Status parameter—en-/disable a button based on the status parameter value.
Enable status values— list of status parameter values that enable the button.

the Acquire Profile button in the sems layout is a button.
Attribute Value

Label of item Acquire Profile
Icon of item

Vnmr variables

Enable condition

Vnmr command au
Status variables

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming

309

Chapter 6. Panels, Toolbars, and Menus

Attribute Value

Label of item Acquire Profile

Enable status values

Background color transparent
Check [¥] Save FID at each block

The check box element selects and de-sel ects some mode or state, often as ayes or no
selection. It is presented as a small square box to the left of alabel.
The attributes of a check box are:

Value of element — the check box is checked if Enable condition
SVALUE evaluates to a positive integer.

Vnmr command Vnmr command2

Inversion Recovery is a check box example:

Label of Item Inversion Recovery

Vnmr variables: ir

Value of element: SVALUE = (ir='y"')
Vnmr command: ir='y'

Vnmr command2: ir='n'

The commands in the Vnmr command and Vnmr command2 fields are executed when
the check box is selected or deselected. The parameter ir isset toy when the box is
selected, and when the box is deselected, ir isset to n.

The Value of element field determines, based on the current value of i r, whether the check
box isshown as selected or deselected. Thus, thiselement needsto "listento" the parameter
ir, whichrequires ir to beinthe Vnmr variableslist.

Vnmr command and the Value of element must be consistent.

Comboboxbutton

The comboboxbutton button provides a number of choices using a drop-down menu.
Selecting an option from the menu sets the menu item. Clicking on the button executes the
Vnmr command specified in the menu.

The attributes of a comboboxbutton are

Label of item Vnmr variables
Value of item Enable condition
Vnmr command Label of Choices
Value of Choices Editable

An example is acomboboxbutton that displays the number of complex transform points
fr/2:

Attribute Value

Vnmr variables fn

Value of item SVALUE = fn/2
Enable condition on('fn') : SENABLE
Vnmrcommand fn = SVALUE * 2

310 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

6.3 Panel Elements

Label of Choices "64"™ "128" "256" "512" "1024" "2048"
Value of Choices "64" "128" "256" "512" "1024" "2048"
Editable Yes

Entry field o
Use the entry element to directly enter values for VnmrJ parameters.

The entry field attributes are:

Vnmr Variables Value of item
Enable condition Vnmr Command
Decimal places Disable style
Status parameter

The number of transients or averages, nt, isan example:

Attribute Value

Vnmr Variables: nt

Value of item: SVALUE = nt
Enable condition

Vnmr Command: nt = SVALUE '
Decimal places:

Disable style:

Status parameter:

The entry field created in the above example functions as follows after exiting the editor:
Enter avaueinto the entry field, e.g., 4.
Enter alist of valuesinto an entry field a parameter that can be arrayed
(nt=1,1,1,1,1). Thevalueis displayed asthe string array.

String parameters require enclosing the SVALUE with quotes: n1="'$VALUE. All math
functions must be done to avalue prior to assigning it to a VnmrJ parameter, for example
te in theimaging interface:

Vnmr Command: te = $VALUE/1000

Entering alist of valuesfor te inthis case, e.g., 10, 20, 30, 40, resultsin dividing only the
last value by 1000 and te array ends up with the values 10, 20, 30, 0.04. Enclose $VALUE
in square brackets, [] to force the math to be applied to all entered values.

Vnmr Command: te = [SVALUE] /1000
The value is correctly divided by 1000 for all entered values.

Thisisonly an issue for entry fieldswhich allow arbitrary values. The options for the
entered val ue are predefined for menus, checkboxes, etc.

Group

Transform size; 32k >

Line Broadening [Hz] hd

Groups are used to delineate a collection of basic elements that are connected. There are
three types of groups: Major, Minor, and Convenience.

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 311

Chapter 6. Panels, Toolbars, and Menus

312

Group attributes are:

Label of item Vnmr variables

Show condition Vnmr Command on Show
Vnmr Command on Hide Type

Number of Layers Edit Layer

Background Color Tab to this Group Disabled

Override Panel Enabled

Major groups are outlined with a visible border and can have a label associated at the top
of the group. The major group width isrestricted to a multiple of 70 pixels, and the group
has an automatic margin of 5 pixelsinside all edges. Major groups cannot contain major
groups.

Minor groups only appear inside major groups, cannot be nested, or contain major groups.
The left alignment and width snaps to the grid size. A label given to a minor group is not

displayed.

Convenience groups are simply used to make editing pages easi er and have no visible effect
on the page. They can be used anywhere and have no restrictions on alignment. They are
independent of the hierarchical restrictions placed on other types of groups.

Major and minor groups may also be mutable. Their contents can change depending on
other parameters. Multiple layers are available. Set the number of layers greater than one
to enabl e this property. Use the editor to select the current active for editing. Mutable
groups have a distinctive look.

Populate a group by first placing the group on the page, sizing it to hold all the elementsto
be added to it, and placing the individual elements inside the group.

A group cannot be created around existing elements. Placing a new (empty) group on top
of existing elements gives the appearance of placing those elements in the group but none
of the elements can be selected because they are behind the group. A group cannot be
resized to encompass neighboring elements. Place elements inside a group by moving the
elementsinto the group one by one.

An element within agroup cannot be resized so that the element extends beyond the group.
An element that extends beyond the group is no longer considered part of the group and it
cannot be selected from within the group. The element must reside inside the group. The

group cannot be moved or resized to cover the element.

Groups can be hidden using Show Condition false. False is anegative integer or O; true is
apositive integer. For example, a group might only be suitable for display if the parameter
relaxissetto 'y'.Inthiscase, the value of the Show Condition can be calculated by a
MAGICAL expression, for example:

"if relax='y' then $SHOW=1 else S$SHOW=0 endif"
aternatively
"S$SHOW= (relax='y"')"

For this attribute, $SHOW is equivalent to SVALUE, and either may be used.

The same space on the page can be used for different groups having a functionality
determined by the value of aparameter. Editing thistype of group is best done by separating
the groups on the page and at the end of the editing process repositioning the groups on top
of one another. It isimportant, in this case, that the groups not fit within each other.
Convenience groups can be nested and "hidden" within each other, if desired.

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

6.3 Panel Elements

Groups can have multiple layers, hidden or shown, depending on the show condition for a
particular layer. Number of Layer s setsthe number of layersin agroup. Edit Layer isthe
number of the layer being edited between 1 and the number of layers.

Label

Transform size;

The label element is a non-interactive label with a pre-defined text. Labels are typically
used to give atitle, or adescription of some other field.

Example: Transform sizein front of an entry field for entering the number of transformed
points.

The attributes of alabel are:

Label of item Icon of item
Vnmr variables Used for setting the Enable condition
Enable condition Changes label’s appearance, but can not make it

invisible. Put the label in a group and set the show
condition on the group to make the label invisible.

Label justification

Anexampleis:

Attribute Value
Label of item Transform size
Icon of item

Vnmr variables
Enable condition
Label justification Left

Menu g = I

The menu element gives a number of choicesin a drop-down menu. Selecting an option
from the menu executes the specified Vnmr command, and displaysthelast selected option
in the menu.

The attributes of a menu are:

Value of element Enable condition
Vnmr command Label of choices
Value of choices Editable

The menu for np where the value displayed is the number of complex pairs, i.e.,, np/2 is
an example:

Attribute Value

Vnmr variables np

Vaue of element SVALUE = np/2

Vnmr command np = $VALUE*2

Label of choices "3 mE4Mm w128M M25EM "5I2NM n1(024"
Value of choices "3 mE4M w128M NM25EM "5I2NM n1(024"

The menu displays and returns the number of complex pairsand the value of np is adjusted
through multiplying and dividing by 2. Toillustrate that the "L abel of choices" and "Value

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 313

Chapter 6. Panels, Toolbars, and Menus

314

of choices" do not need to beidentical, an aternative implementation would beto have the
menu return the number of data points but display the number of complex pairs:

Attribute

Value of element
Vnmr command

Label of choices
Value of choices

Value

$VALUE =np

np = $VALUE

"32" "64" "128" "256" "512" "1024"
"64" "128" "256" "512" "1024" "2048"

A valuenot included inthelist of choices can betyped inif the menuis editable.The typed-
in value is added to the list of label choices and to the list of value choices.

Parameter

Spin [] 120 Hz

The parameter element offers a combination of alabel, a checkbox, an entry field, and a
menu (typically used for selecting the units of the parameter in question). Each of these sub-
elementsisoptional. The elements within a parameter are:

Parameter element function Description

Label Style permits changing font and units.

Check box Enables or disables selected conditions.

Entry field Enter avaue with optional decimal places

Units Label for parameter units. Selected from amenu is

optional.

Entry Sizeand Unit Size establish the size of thelabel box, and Units L abel addsthedesired
units description at the end of the box.

The label and menu have the same font.

The following example uses fixed units. Type L abel.

Attribute Value

Parameter Name: temp

Label of item: Temperature

Enable Condition: vomrinfo ('get', 'tempExpControl') :$tc=0

then $SENABLE=-1 else on
('"temp') : SENABLE endif

Vnmr variables: temp tin

Checkbox Enable vnmrinfo ('get','tempExpControl') :$tc
Condition: SENABLE=S$tc*2-1
Checkbox Value: on('temp') : SVALUE
Checkbox Vnmr on('temp') tin=Y
Command:

Checkbox Vnmr off ('temp') tin='n"
Command2:

Entry value: $VALUE=temp

Entry size: 80

Entry Vnmr Command: temp=$VALUE tin=Y
Entry Decimal Places: 1

Entry Disable Styles: Grayed out

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

6.3 Panel Elements

Units Enable: Label
Units size: 30
Units Label: C
Units vaue:

Units Vnmr Command:
Menu Choice Labdl:
Menu Choice Value:

Menu units are included in the following parameter example:

Attribute Value

Parameter Name: di

Label of item: Relaxation Delay
Enable Condition: $SHOW=1

Vnmr variables: di

Checkbox Enable Condition

Checkbox Value:

Checkbox Vnmr Command:
Checkbox Vnmr Command?2:

Entry value: vnmrunits ('get','dl') : SVALUE
Entry size: 50

Entry Vnmr Command: vamrunits('set', 'dl', $VALUE)
Entry Decimal Places: 2

Entry Disable Styles: Grayed out

Units Enable: Menu

Unitssize: 10

Units Label:

Units value: parunits('get', 'dl') : SVALUE
Units Vnmr Command: parunits('set','dl', 'SVALUE')
Menu Choice Label: 's''ms''us'

Menu Choice Value: 'sec''ms''us'

Radio button) Full @ Partial) Off

Radio buttons are used when afew mutually exclusive choices are available for aparticular
state. Whenever one option is selected, the others are deselected. If there are more than 3-
4 choices, amenu is a better element to use.

A collection of radio buttonsrelated to a particular parameter must be within asingle group
to separate them from other sets of radio buttons, even if the groups of radio buttons use
different parameters. The radio buttons must be explicitly programmed to be mutually
exclusive.

The attributes of aradio button are:

Label of item Vnmr variables
Value of element Enable condition
Vnmr command Vnmr command?2

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 315

Chapter 6. Panels, Toolbars, and Menus

An example of two radio buttons is the selection of either chess or wet water suppression
method in the steam protocol. The chess and wet buttons have the following attributes:

Attribute Chess WET

Vnmr variables wss wss

Vadueof element $VALUE= (wss='chess') SVALUE= (wss="'wet"')
Enable condition $VALUE= (ws='y"') SVALUE= (ws="'y"')
Vnmr command wss="'chess' wss="'wet'

Vnmr command?2 isnot used.

This example a so shows an example of using the Enable condition to gray out the radio
button if water suppression (ws) is turned off altogether (ws = 'n’).

Scroll ST

The scroll element adjusts a parameter with increment and decrement buttons (typically up
and down arrow scroll buttons respectively). The parameter’s current value is displayed to
theleft of the scroll buttons. Each click of the left mouse button on an arrow selects a new
value for the parameter in the direction implied by the button to the current parameter.
Changes in the parameter, from value to value, do not have to be equally spaced. The
parameter value can be anumber or a string. The “ Spinner,” page 317, is similar and does
require a defined step size.

The attributes of a scroll are:
Vnmr variables Value of element
Enable condition Vnmr command
Value of choices

An example s the selection of a decoupling modulation mode from a defined list:

Attribute Value

Vnmr variables dmm

Value of element SVALUE = dmm

Enable condition

Vnmr command dmm = 'SVALUE'

Value of choices "cce" "ccw" "ccg"
Selmenu Make a selection LI

The selmenu (select menu) element is similar to a menu and gives a number of choicesin
adrop-down menu. The difference between a menu and a selmenu is that the selmenu
always displays the same text (the "Label"), regardless of what was last selected. The
exception to thisisif the selmenu is "Editable", in which case it displays the last selected
option.

The attributes of a selmenu are the same as for a menu.

Sider Iﬁl , P

The dlider element adjusts a parameter with a slider. The current value of the parameter is
displayedtotheleft of the slider. The valueisincremented by clicking theleft mouse button

316 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

6.3 Panel Elements

or decremented by clicking the right mouse button in the scale or dragging the slider to the
right (increase) or to the | eft (decrease). The value can also be set by entering it in the entry
box to the left of the slider.

The attributes of a slider are:

Vnmr variables Value of element

Enable condition Vnmr command

Status parameter Limits parameter

Min displayed value Max displayed value

Coarse adjustment value Fine adjustment value

Number of digitsto display Ms between updates while dragging

The limits parameter isa Vnmr parameter name used to control the range of the slider.

The Min/Max displayed value entries control the range of the slider. These entries are
inactive when there is an entry in the status parameter box and the limits box.

The Coarse/Fine adjustment val ues establish how much the value changes when the slider
is moved by clicking the right or left mouse button in the scale.

Ms between updates while dragging establishes the delay in reacting to the slider.
Example:
Attribute Value

Vnmr variables
Value of element
Enable condition

Vnmr command setshim ('Z0', SVALUE)
Status parameter Z0
Limits parameter Z0
Min displayed value
Max displayed vaue
Coarse adjustment value 10
Fine adjustment value 1
Number of digitsto display 6
Ms between updates while 0
dragging

Spinner |EE:

The spinner element applies a defined step size change to the value of a parameter using
increment and decrement buttons (typically up and down arrow buttons). The range of
valuesis set by the minimum and maximum displayed value attributes. The “ Scroll,” page
316, issimilar but does not require a defined step size.

The attributes of a spinner are:

Vnmr variables Value of item
Enable condition Vnmr command
Status parameter Limits parameter
Min displayed value Max displayed value

Mouse click adjustment vaue

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 317

Chapter 6. Panels, Toolbars, and Menus

Example:
Attribute

Vnmr variables

Value of item

Enable condition

Vnmr command

Status parameter

Limits parameter

Min displayed value

Max displayed vaue

Mouse click adjustment vaue

Textmessage Acquired Points 1024

Value

vtairflow
SVALUE = vtairflow

SSHOW = (vtairflow>6)

7.0
250
1.0

The textmessage element displays a non-interactive label that displays an expression and
the current value of the expression. The display is updated if the expression’svalue
changes. The expression can not be changed using this element.

The attributes of atextmessage are:
Status parameter to display
Enable condition
Number of digits

Example
Attribute

Status parameter to display
Vnmr Variables

Enable condition

Vnmr expression to display
Number of digits

Toggle button Vi s

Vnmr Variables
Vnmr expression to display

Value

np

$VALUE = np/2
0

318

A togglebutton is used to execute one action when the button is sel ected and another action
when the button is de-selected. Clicking the toggle button runs an action, and the button
changesto appear pressed in. Clicking the button again runsthe other action, and the button
isreleased. An example of such atoggle button is FID shimming, which starts FID shim
acquisition until the button is clicked a second time to abort acquisition.

A different use for atoggle button is in switching between two mutually exclusive states,
such asinserting or ejecting asample. To thisusage, two or more toggle buttons are placed
within a group.
The attributes of atoggle button are:
Label of item
Value of item

Vnmr variables
Enable condition
Vnmr command (executed when the button is selected)
Vnmr command2 (executed when the button is desel ected)

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Status variables
Enabling status values
Example:

Label of item

Vnmr variables

Value of item

Enable condition
Vnmr command
Vnmr command2
Status variables
Selecting status va ues
Enabling status values

Advanced Panel Elements
® “Dial,” page 319
® “Page,” page 320
® “Selfilemenu,” page 321
® “Statusbutton,” page 322

The advanced panel elements are described here and are accessed using the Locator.

Dial

6.3 Panel Elements

Selecting status values

Button 1 Button 2
Insert Eject

ar ar
insert gect
gject insert

® “Filemenu,” page 320
® “Shimbutton,” page 321
® “Shimset,” page 322

® “Textfile,” page 323

typically used to display the FID area while shimming or setting the

: i ' A dial isanon-interactive display of the value of any parameter. Itis

lock. A parameter can not be set using the dial.

L]

The attributes of adia are:
Vnmr variables
Enable condition
Min value
Max value elastic
Digital readout
Max marker color
Show color bars

Example:
Attribute

Vnmr variables
Value of item
Enable condition
Status variable
Min value

Max value

01-999379-00 A 0708

Value of item
Status variable
Max value
Number of hands
Show max value
Show pic dice

Value

fidarea
SVALUE = fidarea

0.0
1000.0

VnmrJ 2.2 Ml User Programming

319

Chapter 6. Panels, Toolbars, and Menus

Max value elastic no

Number of hands 2

Digita readout yes

Show maximum value yes

Max marker color GraphForeground
Show pie dice yes

Show color bars yes

Filemenu

A filemenu is used when the choices and val ues associated with amenu are given in afile.
Thisisuseful for having a dynamic menu, where entries may be added or removed
(typicaly by macros) during a session. The filemenu contains pairs of strings on multiple
lines. Spaces in strings are contained within double quotes.

The attributes of afilemenu are:
Label of item
Content variables

Selection variables
Value of item

Enable condition Vnmr command
Menu source

Show dot files

Menu type

An example of afilemenu isthe orientation menu in Plan page in the Imaging interface,
where the orientation of previously acquired datais dynamically added to the orientation
menu during a study:

Attribute Value

Label of item
Selection variables orient planValue

Content variables sgqdir studyid

Value of item SVALUE = planValue

Enable condition

Vnmr command iplanType = 0 planValue='S$VALUE'
setgplan ('S$VALUE')

Menu source SVALUE=sqgdir+'/plans'

Menu type file

Show dot files yes

Page

The page element has the same attributes as a group element, with asize of awhole page
and "Tab to this Group" enabled. The page size may be changed for particular use. The
position of the page should always be X=0 Y =0. See the description of the group element
for further details.

Page attributes are:

L abel of item Vnmr variables
Show condition Vnmr Command on Show
Type Vnmr Command on Hide

Number of Layers Edit Layer

320 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Background Color

Override Panel Enabled

S filemenu

6.3 Panel Elements

Tab to this Group Enabled

The selfilemenu element is similar to afilemenu and gives a number of choicesin a drop-
down menu. However, the difference between a filemenu and a selfilemenu is that the
selfilemenu always displays the same text (the Label), regardless of what was|ast selected.
The exception to thisis if the selfilemenu is "Editable", in which case it displays the last
selected option.

The attributes of a selfilemenu are the same as for a filemenu.

Shimbutton Z1
155

+10

Thisbutton istypically used to adjust the shims. It can be used for any numerical Vnmr or
status parameter.

A shimbutton displays atext (the "Label"), the current value of the parameter, and a step
size. The parameter value is adjusted in steps by clicking the mouse buttons: left and right
mouse button to increase and decrease the parameter val ue, respectively. The value can be
entered directly by holding the shift key while clicking on the value with the left mouse
button. The step size can be changed by clicking the middle mouse button (goes through 3
values), or anew step size can be entered by holding the shift key while clicking the middle
mouse button.

The attributes of a shimbutton are:

Example:

Vnmr variables
Label

Status variable

Min alowed value
Pointy style

Arrow feedback
Values wrap around

Attribute

Vnmr variables
Value of item

Label

Vnmr command
Status parameter
Limits parameter
Min alowed value
Max allowed vaue
Pointy style
Rocker style
Arrow feedback
Arrow color
Values wrap around

01-999379-00 A 0708

Value of item
Vnmr command
Limits parameter
Max allowed value
Rocker style
Arrow color

Value

Z0
setshim ('Z0', SVALUE)
Z0
Z0

False

True

True
GraphForeground
False

VnmrJ 2.2 Ml User Programming

321

Chapter 6. Panels, Toolbars, and Menus

Shimset
oseo e e e B e e
24 B P P w e 8

53 i)éZ " 1‘)522 11‘ 52)(2\’2 il‘ 53)(2‘(2 o 54)(2‘1'2 o
24 2 |72 42X 4y A | 2000
S LR R sl R i
T)RR DR 25 4y 23 (3 4

The shimset element brings up an entire set of shimbuttons, corresponding to the shim
hardware.

I~

L]
I+
=

fll]

The attributes of a shimset are:

Border type Freeze layout

Vnmr shim set parameter Vnmr shim set value
Shim setting command Status parameter for shim
Vnmr variables for shim Vnmr expression for shim

Satusbutton Temp |

A status button brings up a popup window that shows the temporal changein agiven

parameter.
| Temp _:

0.0
I‘I’emp

The attributes of a statusbutton are:

Status Title Chart Window Title

Status Color Chart Max Points

Status Variable Display Vaue

Vnmr variables Min value

Value of item Max value

Vnmr command Chart Show Range

Vnmr command2 Chart Background Color
Chart Foreground Color

Example of the FID shim button.

Attribute Value

Status Title FID Shim

Status Color fg

Status Variable

Vnmr variables fidarea

Vaue of item SVALUE=fidarea

Vnmr command fid scan

Vnmr command2 aa('exit FID shim')

322 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

6.4 Creating a New Panel

Chart Window Title FID Shim area

Chart Max Points 200

Display Value no

Min vaue 0

Max vaue 1000

Chart Show Range True

Chart Background Color StdPar

Chart Foreground Color StdPar

Textfile
index Tregl{ppm) intensity

- F53:843 15.134
2 134.517 40.582
G T2 294 38.5841
4 125.545 3891135
5 123.834 35.3087
(=3 77.435 55.9474
i 77.0099 59.4785
8 75.5847 53.5
| 48.75258 41.5758
10 32.3261 41.537
171 24,4583 9041871
12 11.5114 33:1997

The textfile window displays the text file corresponding to the file path value. Thefile
contents can change and the display updates whenever a file name variable updates. For
example, if n1 islisted as afile name variable, settingnl = ni will update the display.

The attributes of atextfile are:

File name variables Value of file path
Vnmr command Enable condition
Editable Wrap lines

6.4 Creating a New Panel

® “Writing Commands,” page 323

® “Creating a New Panel Layout,” page 324

® “Creating a New Page,” page 324

® “Defining and Populating a Page,” page 325

® “Saving and Retrieving a Panel Element,” page 325
® “Files Associated with Panels,” page 326

Writing Commands

The panel editor usesthe MAGICAL command syntax and a special variable, $VALUE,
that isalocal variable for each attribute associated with apanel element.

Thevariable, sVALUE, holdsthe value of the entry in an entry field. Thevaluein the entry
field may be areal or string value, the output evaluation of aboolean expression (1, or 0),
or theresult from the evaluation of an expression. A string variable, in an expression, is set
in single quotes, for example: plpat = 'SVALUE'. Other local panel variablesare
$SHOW and $ENABLE, see Table 42, page 308.

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 323

Chapter 6. Panels, Toolbars, and Menus

324

Creating a New Panel Layout

A new layout iscreated using either a blank panel or an existing layout that is similar to the
desired new panel. Use an existing layout (existing user layouts are located in ~/
vaomrsys/templates/layout) by copyingan existing user layout and giving it anew
name or by copying an existing system layout to the user directory and renaming the copied
layout. An example:

cp -r /vnmr/imaging/templates/layout/gems ~/vnmrsys/
templates/layout/mygems
1. Loadtheprotocol, pulse sequence, and or parameter set that will use the new layout.
2. Setsegfil or layout='mygems'.
The current panels are edited if segfil or layout isnot set to the new name.

3. Open the panel editor:

a Click on Edit on the main menu.
b. Select Parameter Pages.

4. Modify any page.

5. Double click within apage or select the tab to the left.
The selected page border is highlighted in yellow.

6. Click the Save button and save the page.
Save the entire folder if new pages were created:

a. Select the folder by double-clicking in the area outside the page grid.

Nothing is high-lighted in yellow and at the bottom of the panel editor
window the button Save is followed by the word Folder and an entry field.

b. Click on the Save button.

Thefolders (threefor liquidsand four for imaging) must be named: Start, Acquire, Process,
Image (imaging only), and LC/MS (LC-NMR only and usesthefile LcMs.xml). Arbitrary
names cannot be used. The name of the file that governs the Start folder is always
sample.xml, the Acquire folder acq.xml, the Process folder proc.xml, and for the fourth
folder in the imaging interface aip.xml (advanced imaging processing).
Varian standard imaging pages use the following convention:

® Pagesin the Start folder start with samp

® Pagesin the Acquire folder with acq

® Pagesin the Process folder with proc

® Pagesin the Image folder with aip

Press the Clear button outside the current page to delete all pagesin the current folder.
Click the Abandon button to rel oad the folder and pages from disk before clicking the Save
button if the Clear button is clicked by error. See 6.2 “Using the Panel Editor,” page 301
for details.

Creating a New Page
1. Select Show all elementsin the Locator.
2. Find the page element.

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

6.4 Creating a New Panel

Drag the page element into the tab list to the left of the panelsin the appropriate
folder.

The New Page appears as the tab on the | eft.

Change the size of the page by using one of the following:
® Themouse buttons and clicking on acorner and dragging the page to anew size.
® Usethe ctrl-arrow keysto resize the page.
® Typeinvaluesfor size W(idth) and H(eight).

Defining and Populating a Page

1

Save the page.

Select the entire page by double-clicking somewhere within the page frame, but not
on any of the elements within the page. The entire page frame is highlighted in
yellow. At the bottom of the panel editor window, the name of the pageis shown in
an entry field to the right of the Save button.

Click the Save button and save the page.

The keyword Page appears between the Save button and the entry field. Use either
the original name (aready shown) or enter anew name. The page Typeis provided
for refining a search of pages for future use.

Type

Type acquiﬂﬂon| |'

acquisition
adwvanced
basic
dizsplay
imaging
plotting
processing
sample

Undo any changes made sincethe most recent save by clicking on the L oad button to reload
thefilethat is saved on disk.

The Clear button deletesthe current pageinthefolder. Click the Abandon buttonto reload
the page from the disk before clicking the Save button or closing the editor if the Clear
button is clicked on by mistake.

Saving and Retrieving a Panel Element

Save and retrieve a panel element for use in a different panel asfollows:

1

Double-click on an element.

The Save button isfollowed by the element type and an entry field for specifying the
name of the saved element.

Enter aname and press Enter.
Saving a group saves the group and all elements within the group.

Set the element type from the menu (acquisition, advanced, basic, display, imaging,
plotting, processing, and sample) for easy Locator search.

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 325

Chapter 6. Panels, Toolbars, and Menus

4. Toretrieve asaved element, use the Locator to find the element (try sorting
alphabetically by name or by type) and drag it on to the desired page.

5. Savinganindividual element ismerely atool to save and retrieve an element for use
in adifferent panel.

Files Associated with Panels
See Table 43 for panels and locations.

Table 43. Panels and Locations

Panel owner Panel Location Comment
vVnmrJd Experimental /vnmr/templates/ Named according to the pulse
layout sequence name and used by all
interfaces.
Walkup /vnmr/walkup/ Walkup panels not shared with the

templates/layout experimental interface.

User user defined ~user/vnmrsys/ User panels named according to the
templates/layout pulse sequence name or layout.

The panel search path is defined in Applications dialog in the Edit menu, in directories
allowed by the VnmrJ administrator under appdir. The default isin the user's home
directory invnmrsys/templates/layout, then optionally an application-dependent
directory (e.g. /vnmr/imaging/templates/layout), andfinaly /vnmr/
templates/layout.

Panels arefirst searched for in the pul se sequence directory, then in the default directory. If
the file DEFAULT existsin the pulse sequence or layout directory and has contents set
default default name, anadditional default directory of default name will be
searched.

Search path example:

COSY panelsin the walkup interface, with a DEFAULT fileof set default
default2d.

~/vnmrsys/templates/layout/COSY
/vnmr/walkup/templates/layout/COSY
/vnmr/templates/layout/COSY
~/vnmrsys/templates/layout/default2d
/vnmr/walkup/templates/layout/default2d
/vnmr/templates/layout/default2d

~/vnmrsys/templates/layout/default

© N o g~ w Db P

/vnmr/walkup/templates/layout/default
9. /vnmr/templates/layout/default

Panel elementsand groups are saved in templates/vnmrj/panelitems in either
vnmrsys or /vnmr.

326 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

6.5 Graphical Toolbar Menus

Sizing Panels

The panel sizeis determined by the number of pixels on the page when the pageis created.
Scroll bars appear automatically if the panel sizeisreduced and all the elementsin the panel
cannot be displayed. Scroll bars also appear automatically when the text is too long to be
displayed in elements that support scroll bars. The Textfile element is an example. Some

elementsthat contain text do not support scroll bars and display a portion of the text with
an ... to indicate that not all the text is displayed.

The default environment variable setting for VnmrJis squish=1. 0 to maintain the size
of the font when vnmrj isresized. Set VnmrJ to automatically resize the fonts as follows:

1. Login asthe system administrator, typically vnmrl.
Open aterminal window.

2

3. Entefecd /vnmr/bin

4. Enter cp vonmrj vnmrj.backup
5

Edit the /vnmr /bin/vnmrj script and set the parameter squish=0.5 to
automatically resize the fonts. Use vi or any ASCI| text editor provided with the
operating system.

6. Savethe change and exit the editor.

7. Restart VnmrJto make VnmrJread the new value of the parameter.

6.5 Graphical Toolbar Menus

® “Editing the Toolbar Menu,” page 327

® “Graphics Toolbar Parameters,” page 328

® “|cons,” page 328

® “Menu File Description Example, dconi,” page 328

Editing the Toolbar Menu

The graphicstoolbar menu is invoked with the command menu (£ilename) and
filename isthe name of afilein the directory menuj1lib that existsin any of the
following locations:

® /vnmr
® SHOME/vnmrsys
® any appdir accessible path.

Menus and toolbars are a special form of macro containing other macros. The definitions
are plain text files and can be edited using vi or any ASCII text editor supplied with the
operating system.

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 327

Chapter 6. Panels, Toolbars, and Menus

328

Graphics Toolbar Parameters

Each button displayed in the graphics toolbar menu is specified by three attributes that are
set by theindex of three arrayed global parameters: micon, mlabel, andmstring. The
following global parameters are associated with the Graphic Toolbar menus:

Parameter Description

micon Savesthe name of the GIF file associated with thebuttoninmicon [i] . This
parameter istypically arrayed with one icon for each button and is set when a
menu iscalled. A noicon.gif isusedif anicon does not exist.

mlabel Stores the tooltip for a menu button. This parameter istypically arrayed
with one tooltip for each button in the menu. This parameter is set
whenever amenu is caled.

mlabel [i] containsthetooltip for the ith button.

mstring Stores command or macro strings to be executed when aVnmrJ menu
buttonisclicked. Usualy themst ring parameter isarrayed, with one
string for each button in the menu. The string can be any string of
commands that can otherwise appear in amacro or on the command
line. This parameter is set whenever amenu is called.

The following rules apply:
— No new lines (that is, carriage returns) in the text string.

— Single quotes in the text string must be replaced by reverse single quotes
("...") or by the escape sequence back slash with single quote (\'...).

— Thelength for the text string is subject to a maximum. A menu string can
simply contain the name of a macro.

Ilcons
VnmrJicons availableto all usersare . gif fileslocated in: /vnmr/iconlib

Size all button iconsto 24x24 pixels. Use any graphics editor that can createa . gif file.

Menu File Description Example, dconi
Thefollowing isaline by line description of the dconi menufile.

The line numbers in the listing for the dconi menu file are for reference only and are not
part of the file.

The header contains comments and file history. It is not required but it is good practice to
provide this or similar information when creating new or editing existing menu files.

Line listhefirst line of the menu and checks the graphics mode display.
Lines 2 through 9 establish the conditions for displaying the dconi menu.

Lines 10 through 12 initializethemlabel, micon, and mstring to null stringsto clear
any traces of a previous menu.

Button 1

Lines 14 through 22 establish thefirst button ($vjm=1) asatoggle between the cursor and
box modes (crmode="b"). The temporary parameter $vjm isused as button index.

Line 16 setsthe label for the button to Cursor (mlabel [$Svjim] ='Cursor') and the
iconto2Dlcur.gif (micon [$vjm]='2Dlcur.gif')whenthecursor operationis
in the box mode (crmode='"b").

VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

6.5 Graphical Toolbar Menus

Clicking on the button changesthe button to Box (mlabel [$vjm] ='Box ') andtheicon
to2D2cur.gif (micon [$vim] ='2D2cur.gif’) whentheitisin the cursor mode

Line 22 specifies the command to toggle dconi between modes:
mstring[$vim]='dconi ('toggle!')"’

Button 2

Line 24 through 28 establish the next button ($vjm=3vjm+1) and themlabel, micon,
and mstring strings are set to define the name, icon, and vnmrj command string.

Buttons 3 through 7

Line 29 through 53 increment the index to the next buttons ($vjm=$vjm+1) and the
mlabel, micon, andmstring strings are set to define the name, icon, and command
string.

Button 8

The button (lines 54 through 57) is similar to buttons 2 through 7 with the inclusion of
conditional statement in the parameter mstring on line 56.

Buttons 9 through 11
The buttons (lines 59 through 72) are similar to buttons 2 through 8.
Buttons 12 and 13

Line74istheif partofan if then else endif condition that readsthe value of
the parameter appmode.

Lines 75 through 84 arethe then partof the if then else endif statement.

Lines 76 through 83 specify button attributes for display scaling if the statement in line 74
istrue.

Line85istheelse patofan if then else endif statement.

Lines 86 through 95 specify button attributes for display scaling if the statement in line 74
isfalse.

Line96isendif patofan if then else endif condition.
Button 14
This button (lines 98 through 101) is similar to buttons 2 through 7.
Button 15

This button (lines 103 through 108) is optional displayed depending upon the value of the
parameter appmode. The construct is similar to Button 12 without the e1 se statement.

Button 16

The return button action (lines 103 through 108) isdetermined by the conditionsset in lines
113, 116, and 119 as part of anested set of if then else endif statements.

Line 122 isthe endi £ statement associated with theinitial if then else onlines?2
through 9.

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 329

Chapter 6. Panels, Toolbars, and Menus

330

Line
number

© 00 N O 0o~ W NP

W W W W W W WWWNRNRNNRNNLNRNRNRNDNERER R B B 2P R e
® N R ONRPO©ONO0 Al ONRLROO©®NOO O MNP O

"@(#)dconi 5.9 03/08/07 Copyright (c) 1991-2007

Varian, Inc. All Rights Reserved."
n PR E R R R E RS EEEEE RS EEEEEEEEEEEEEEEEE] n

" okx*x* M E N U DCONTI *%x*%x%x 0

" khkkhkkhkkhkkhkkhkhkhkhkhkdhkhkdhkhkddrhkdhrdrdrdkhxkk n

graphis: $vimgd
if (($vjmgd <> ’‘dconi’) and ($Svjmgd <> ‘dpcon’)

and ($vjmgd <> ’‘dcon’) and ($vjmgd <> ‘ds2d’)) then

if (lastmenu<>’’) then
menu (lastmenu) lastmenu='"'
else
menu (' display 2D')
endif
else
mlabel=""
mstring="'"

micon=""

Svim=1
if (crmode = ’'b’) then
mlabel [$vjm] ='Cursor’
micon[$vjm]='2Dlcur.gif’
else
mlabel [$vjm]='Box’
micon[$vjm] ='2D2cur.gif’
endif

mstring[$vjm] ='dconi (‘toggle‘) ’

Svijm=$vim+1
mlabel [$vjm]='Show Full Spectrum’
micon[$vjm]='2Dfull.gif’

mstring[$vim] ='mfaction (\’'mfzoom\’,0)’

Svijm=$vim+1
mlabel [$vjm]='Zoom in’
micon[$vjm]='1Dexpand.gif’

mstring[$vim] ='mfaction (\’'mfzoom\’, 1)’

Svijm=$vim+1
mlabel [$vjm] ='Zoom out’
micon[$vjm]='1Dzoomout.gif’

mstring[$vjm] ='mfaction (\’'mfzoom\’,-1)"

VnmrJ 2.2 MI User Programming 01-999379-00

A 0708

39
40
41
42
43

45
46
47
48
49
50
51
52
53
54
55
56

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

72
73
74
75
76
77
78
79
80
81
82

Svijm=$vim+1
mlabel [$vjm] ='Zoom mode’
mstring[$vjm] =’ setButtonMode (2) '

micon[$vim]='ZoomMode.gif"

Svijm=$vim+1

mlabel [$vijm]='Pan & Stretch Mode’
mstring[$vjm] =’ setButtonMode (3)’
micon[$vjm]='1Dspwp.gif’

Svijm=$vim+1
mlabel [$vjm]='Trace’
mstring[$vjm]='dconi (‘trace‘)’

micon[$vjm]='2Dtrace.gif’

Svijm=$vim+1

mlabel [$vjm] =’ Show/Hide Axis’

6.5 Graphical Toolbar Menus

mstring[$vjm]='1if (mfShowAxis=1) then mfShowAxis=0 else

mfShowAxis=1 endif repaint’

micon[$vjm]='1Dscale.gif’

Svijm=$vim+1

mlabel [$vjm]='Projections’

mstring[$vjm] =’ newmenu(‘dconi proj‘') dconi (‘restart')’

micon[$vjm]='2Dvhproj.gif’

Svijm=$vim+1
mlabel [$vjm] ='Redraw’
mstring[$vjm] ='dconi (‘again')’

micon[$vjm]='recycle.gif’

Svijm=$vim+1

mlabel [$vjm]='Rotate’

mstring[$vim]="1f trace='f2' then trace=‘fl' else

trace='f2' endif dconi(‘again‘)’

micon[$vjm]='2Drotate.gif’

if appmode='imaging’ then

Svijm=$vim+1

mlabel [$vijm] = ’‘Scale +7%'
mstring[$vim] = ‘vs2d=vs2d*1.07 dconi (‘redisplay"‘)’

micon[$vjm]='2Dvs+20.gif’

Svijm=$vim+1

mlabel [$vijm] = ’‘Scale -7%'
mstring[Svijm] = ’'vs2d=vs2d/1.07 dconi (‘redisplay‘)’

01-999379-00 A 0708

VnmrJ 2.2 Ml User Programming 331

Chapter 6. Panels, Toolbars, and Menus

83 micon[$vjm]='2Dvs-20.gif’

84

85 else

86

87 Svjm=$vim+1

88 mlabel [$vjm] = ’Scale +20%’

89 mstring[$Svjm] = ‘vs2d=vs2d*1.2 dconi (‘again‘)’
90 micon[$vjm]='2Dvs+20.gif’

91 Svijm=$vjm+1

92 mlabel [$vjm] = ’Scale -20%'

93 mstring[$vjm] = ‘vs2d=vs2d/1.2 dconi (‘again‘)’
94 micon[$vjm]='2Dvs-20.gif’

95

96 endif

97

98 Svjm=$vim+1

99 mlabel [Svjm] ='Phase2D’

100 mstring[$vjm] ='newmenu (‘dconi phase') dconi(‘trace‘)’
101 micon[$vjm]='1Dphase.gif’

102

103 if appmode<>’imaging’ then

104 Svijm=$vim+1

105 mlabel [Svjm] ='Peak Picking’

106 mstring[$vjm] ='newmenu('112d') dconi (‘restart‘')’
107 micon[$vjm] =’ 2Dpeakmainmenu.gif’

108 endif

109

110 Svijm=$vjm+1

111 mlabel [$vjm] ='Return’

112 micon[$vjm]='return.gif’

113 if (lastmenu<>'’) then

114 mstring[$vim] ='menu (lastmenu) lastmenu=‘"‘’
115 else

116 if appmode='imaging’ then

117 mstring[$vjm] ='menu (‘main‘) "’

118 else

119 mstring[$vim] ="menu (‘display 2D')’

120 endif

121 endif

122 endif

332 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Appendix A. Status Codes

Codes marked with an asterisk (*) are not used on MERCURYplus/-Vx systems. Codes
marked with adouble asterisk (**) apply only to Whole Body Imaging systems.

Table 44. Acquisition Status Codes

Done 11. FID complete

codes: 12. Block size complete (error code indicates bs number completed)
13. Soft error
14. Warning
15. Hard error

16. Experiment aborted
17. Setup completed (error code indicates type of setup completed)
101. Experiment complete
102. Experiment started

Error Warnings

codes: 101. Low-noise signal
102. High-noise signal
103. ADC overflow occurred
104. Receiver overflow occurred*
Soft errors
200. Maximum transient completed for single precision data
201. Lost lock during experiment (LOCKLOST)
300. Spinner errors:
301. Samplefailsto spin after 3 attempts to reposition (BUMPFAIL)
302. Spinner did not regulate in the allowed time period (RSPINFAIL)*
303. Spinner went out of regulation during experiment (SPINOUT)*
395. Unknown spinner device specified (SPINUNKNOWN)*
396. Spinner device is not powered up (SPINNOPOWER)*
397. RS-232 cable not connected from console to spinner (SPINRS232)*
398. Spinner does not acknowledge commands (SPINTIMEOUT)*
400. VT (variable temperature) errors:
400. VT did not regulate in the given time vt t ime after being set
401. VT went out of regulation during the experiment (VTOUT)
402. VT in manua mode after auto command (see Oxford manual)*
403. VT safety sensor has reached limit (see Oxford manual)*
404. VT cannot turn on cooling gas (see Oxford manual)*
405. VT main sensor on bottom limit (see Oxford manual)*

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 333

334

406.
407.
408.
495.
496.

Table 44. Acquisition Status Codes (continued)

VT main sensor on top limit (see Oxford manual)*
VT sc/ss error (see Oxford manual)*

VT oc/ss error (see Oxford manual)*

Unknown VT device specified (VTUNKNOWN)*
VT device not powered up (VTNOPOWER)*

497. RS-232 cable not connected between console and VT (VTRS232)*

498.
500.
501.
502.
503.
504.
505.
506.
507.
508.
509.
510.
511.
512.
513.
514.
515.
525.
526.
527.
528.
529.
530.
531.
532.
533.
534.
535.
593.
594.
595.
596.
597.
598.
600.
601.
602.
604.

VnmrJ 2.2 Ml User Programming

VT does not acknowledge commands (VTTIMEOUT)
Sample changer errors:

Sample changer has no sampleto retrieve

Sample changer arm unable to move up during retrieve

Sample changer arm unable to move down during retrieve
Sample changer arm unable to move sideways during retrieve

Invalid sample number during retrieve

Invalid temperature during retrieve

Gripper abort during retrieve

Sample out of range during automatic retrieve
lllegal command character during retrieve*

Robot arm failed to find home position during retrieve*
Sample tray sizeis not cons stent*

Sample changer power failure during retrieve*
lllegal sample changer command during retrieve*
Gripper failed to open during retrieve*

Air supply to sample changer failed during retrieve*
Tried to insert invalid sample number*

Invalid temperature during sampl e changer insert*
Gripper abort during insert*

Sample out of range during automatic insert

lllegal command character during insert*

Robot arm failed to find home position during insert*
Sample tray sizeis not consistent*

Sample changer power failure during insert*

lllegal sample changer command during insert*
Gripper failed to open during insert*

Air supply to sample changer failed during insert*
Failed to remove sample from magnet*

Sample failed to spin after automatic insert
Sample failed to insert properly

Sample changer not turned on

Sample changer not connected to RS-232 interface
Sample changer not responding*

Shimming errors:

Shimming user aborted*

Lost lock while shimming*

Lock saturation while shimming*

01-999379-00

A 0708

Table 44. Acquisition Status Codes (continued)

608. A shim coil DAC limit hit while shimming*

700. Autolock errors:

701. User aborted (ALKABORT)*

702. Autolock failure in finding resonance of sample (ALKRESFAIL)
703. Autolock failure in lock power adjustment (ALKPOWERFAIL)*
704. Autolock failure in lock phase adjustment (ALK PHASFAIL)*
705. Autolock failure, lost in final gain adjustment (ALKGAINFAIL)*
800. Autogain errors.

801. Autogain failure, gain driven to O, reduce pw (AGAINFAIL)
Hard errors

901. Incorrect PSG version for acquisition

902. Sum-to-memory error, number of points acquired not equal to np
903. FIFO underflow error (a delay too small?)*

904. Requested number of data points (np) too large for acquisition*
905. Acquisition bus trap (experiment may be lost)*

1000. SCSI errors:

1001. Recoverable SCSI read transfer from console*

1002. Recoverable SCSI write transfer from console* *

1003. Unrecoverable SCSI read transfer error*

1004. Unrecoverable SCS| write transfer error*

1100. Host disk errors:

1101. Error opening disk file (probably a UNIX permission problem)*
1102. Error on closing disk file*

1103. Error on reading from disk file*

1104. Error on writing to disk file*

1400-1500. RF Monitor errors:

1400. An RF monitor trip occurred but the error statusis OK **

1401. Reserved RF monitor trip A occurred **

1402. Reserved RF monitor trip B occurred **

1404. Excessive reflected power at quad hybrid **

1405. STOP button pressed at operator station **

1406. Power for RF Monitor board (RFM) failed **

1407. Attenuator control or read back failed **

1408. Quad reflected power monitor bypassed **

1409. Power supply monitor for RF Monitor board (RFM) bypassed **
1410. Ran out of memory to report RF monitor errors **

1411. No communication with RF monitor system **

1431. Reserved RF monitor trip A1 occurred on observe channel **
1432. Reserved RF monitor trip B1 occurred on observe channel **
1433. Reserved RF monitor trip C1 occurred on observe channel **
1434. RF Monitor board (PALI/TUSUPI) missing on observe channel **
1435. Excessive reflected power on observe channel **

1436. RF amplifier gating disconnected on observe channel **

1437. Excessive power detected by PALI on observe channel **

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 335

1438.
1439.
1440.
1441.
1442.
1443.
1444,
1445.
1446.
1447.
1448.
1449.
1451.
1452.
1453.
1454.
1455.
1456.
1457.
1458.
1459.
1460.
1461.
1462.
1463.
1464.
1465.
1466.
1467.
1468.
1469.
1501.
1502.
1503.
1504.
1505.
1506.
1507.
1508.
1509.
1510.
1511
1512.
1513.

Table 44. Acquisition Status Codes (continued)

RF Monitor system (TUSUPI) heartbeat stopped on observe channel **
Power supply for PALI/TUSUPI failed on observe channel **

PALI asserted REQ_ERROR on observe channel (should never occur) **
Excessive power detected by TUSUPI on observe channel **

RF power amp: overdrive on observe channel **

RF power amp: excessive pulse width on observe channel **

RF power amp: maximum duty cycle exceeded on observe channel **
RF power amp: overheated on observe channel **

RF power amp: power supply failed on observe channel **

RF power monitoring disabled on observe channel **

Reflected power monitoring disabled on observe channel **

RF power amp monitoring disabled on observe channel **

Reserved RF monitor trip A2 occurred on decouple channel **
Reserved RF monitor trip B2 occurred on decouple channel **
Reserved RF monitor trip C2 occurred on decouple channel **

RF Monitor board (PALI/TUSUP!) missing on decouple channel **
Excessive reflected power on decouple channel **

RF amplifier gating disconnected on decouple channel **

Excessive power detected by PALI on decouple channel **

RF Monitor system (TUSUPI) heartbeat stopped on decouple channel **
Power supply for PALI/TUSUPI failed on decouple channel **

PALI asserted REQ_ERROR on decouple channel (should never occur) **
Excessive power detected by TUSUPI on decouple channel **

RF power amp: overdrive on decouple channel **

RF power amp: excessive pulse width on decouple channel **

RF power amp: maximum duty cycle exceeded on decouple channel **
RF power amp: overheated on decouple channel **

RF power amp: power supply failed on decouple channel **

RF power monitoring disabled on decouple channel **

Reflected power monitoring disabled on decouple channel **

RF power amp monitoring disabled on decouple channel **

Quad reflected power too high **

RF Power Monitor board not responding **

STOP button pressed on operator’s station **

Cable to Operator’s Station disconnected **

Main gradient coil over temperature limit **

Main gradient coil water is off **

Head gradient coil over temperature limit **

RF limit read back error **

RF Power Monitor Board watchdog error **

RF Power Monitor Board self test failed **

RF Power Monitor Board power supply failed **

RF Power Monitor Board CPU failed **

ILI Board power failed **

336 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

1514.
1515.
1516.
1517.
1518.
1519.
1520.
1531.
1532.
1533.
1534.
1535.
1536.
1537.
1538.
1539.
1540.
1551.
1552.
1553.
1554.
1555.
1556.
1557.
1558.
1559.
1560.

01-999379-00 A 0708

Table 44. Acquisition Status Codes (continued)

SDAC duty cycletoo high **
ILI Spare#1 trip **
ILI Spare#2 trip **

Quad hybrid reflected power monitor BY PASSED **

SDAC duty cyclelimit BY PASSED **

Head Gradient Coil errors BY PASSED **

Main Gradient Coil errors BY PASSED **
Channel 1 RF power exceeds 10s SAR limit **
Channel 1 RF power exceeds 5min SAR limit **
Channel 1 peak RF power exceeds limit **
Channel 1 RF Amp control cable error **
Channel 1 RF Amp reflected power too high **
Channel 1 RF Amp duty cycle limit exceeded **
Channel 1 RF Amp temperature limit exceeded **
Channel 1 RF Amp pulse width limit exceeded **
Channel 1 RF Power Monitoring BY PASSED **
Channel 1 RF Amp errors BY PASSED **
Channel 2 RF power exceeds 10s SAR limit **
Channel 2 RF power exceeds 5 min SAR limit **
Channel 2 peak RF power exceeds limit **
Channel 2 RF Amp control cable error **
Channel 2 RF Amp reflected power too high **
Channel 2 RF Amp duty cycle limit exceeded **
Channel 2 RF Amp temperature limit exceeded **
Channel 2 RF Amp pulse width limit exceeded **
Channel 2 RF Power Monitoring BY PASSED **
Channel 2 RF Amp errors BY PASSED **

VnmrJ 2.2 Ml User Programming

337

338 vamr 2.2 MI User Programming 01-999379-00 A 0708

Index

Symbols

"..." (double quotes) notation, 24, 30

notation (pulse shaping file), 109

$ (dollar sign) notation, 28, 32

$# special input argument, 35

$0 special input argument, 35

$1, $2,... input arguments, 35
$VALUE, 323

& (ampersand) notation (UNIX), 269
"..." (single quotes) notation, 25, 28

(-..) (parentheses) notation, 34

(...)# notation (AP tablefile), 84

* (asterisk) notation (display template), 297
+ (addition) operator, 29

+= notation (AP tablefile), 84

. (single period) notation (UNIX), 268
.. (double period) notation (UNIX), 268
.cfile extension, 55

fdf file extension, 281

fid file extension, 273

/ notation (UNIX), 268

: (colon) notation, 26

; (semicolon) notation, 59

; (semicolon) notation (UNIX), 268

< notation (UNIX), 269

<..> (angled brackets) notation, 25

> notation (UNIX), 269

>> potation (UNIX), 269

? (question mark) notation (UNIX), 269
[...] notation (display template file), 297
[...] notation (square brackets), 32

[...]# notation (AP tablefile), 84

\ (backslash) notation, 28

\'... (backslash single quote) notation, 328
_ X macro name, 25

"...” (reverse single quotes) notation, 328
{...} (curly braces) notation, 36, 59
{..}#notation (AP tablefile), 84

| (vertical bar) notation (UNIX), 269

~ (tilde) notation (UNIX), 268

Numerics

1D datafile, 275

1D display, 278

1D Fourier transform, 278

2D datafile, 279

2D FID display, 279

2D FID storage, 279

2D hypercomplex data, 275

2D phased data storage, 279

2D plane of a 3D data set, 40

2D plane selection without display, 40

2D pulse sequence in standard form, creating, 123
2D, 3D, and 4D data sets, 122

3D coefficient text file, 274

3D parameter set, 274

3D pulse sequence in standard form, creating, 123
3D spectra data default directory, 274

4D pulse sequence in standard form, creating, 123
63-dB attenuator, 71, 116

79-dB attenuator, 71, 116

01-999379-00 A 0708

A

abort command, 38

abort current process (UNIX), 269
abortoff command, 38

aborton command, 38

abs command, 43

abs macro, 38

A-codes, 80

acos command, 43
acq_errorsfile, 60

acqgi command, 46, 99, 102
Acqgstat command, 46

acqstatus parameter, 60

acquire data explicitly, 140
acquire data points, 105

acquire statement, 105, 106, 119
acquisition bus trap, 335
Acquisition codes, 80

Acquisition Controller boards, 141
acquisition CPU, 121

Index

acquisition phase (AP) tables. See AP table

acquisition processor memory, 146
acquisition statements, 60
acquisition status codes, 60
acquisition time, 89

Acquisition window, 99, 102
active parameter test, 48

ADC overflow warning, 333

add AP table to second AP table, 253

add integer to AP table, 252
add integer values, 141
add statement, 78, 141
alfaparameter, 60
alias (UNIX), 268
ampersand (&) character, 269
amplifier blanking gate, 225
amplifier modes, 63
amplifiers

blanking channels, 145

duty cycle, 63

gating, 62

turn off, 145

turnon, 145
ampmode parameter, 63
analyze command, 42
andyze.np file, 42
and operator, 30

angled brackets (< or >) notation, 21, 25

AP bus commands, 72
AP busdday, 121, 141
AP bus delay constants, 117
AP businstruction, 119
AP bus pulse shaping, 142, 143
AP busregisters, 76, 226, 234, 263
ap command, 294
ap parameter, 294, 297
AP table, 83
add integer to elements, 252
add to another table, 253

autoincrement attribute, 86, 232

divide by second AP table, 254

divide integer into elements, 252

divn-factor, 86
file location, 83

VnmrJ 2.2 Ml User Programming

339

Index

load from file, 85 awc parameter, 293

loading statements, 83 awk command (UNIX), 269
multiply by a second AP table, 254 axis command, 46

multiply integer with elements, 252 axislabels, 46

receiver phase cycle, 232 axis parameter, 46

receiver variable, 86
retrieve e ement, 86
scalar operations, 86 B

et divn—refturn and8(jrivn-factor, 232 back slash single quote (\'...) notation, 328
statement format, background process (UNIX), 269

store integer array, 85, 233 ocS
subtract from second AP table, 254 E:tgf;ng)przgf: 9282 E

subtract integer from elements, 253
table handling statements, 85
vector operations, 86
apa command, 40
apdelay.hfile, 119, 121
apovrride statement, 72, 120, 141
applicability of statements, 55
apshaped_dec2pulse statement, 143
apshaped_decpul se statement, 142
apshaped_pul se statement, 144

backward single-quote ("..."), 28
bandinfo macro, 115

banner command, 40

beeper sound, 46

beepoff command, 46

beepon command, 46

binary files, 273

binary information file, 274

blanking amplifiers, 75, 145, 153, 205
blankingoff statement, 145

arc cosine of anumber, 43 blankingon statement, 145
arc sine of anumber, 43 blankoff statement, 75, 145
arc tangent of anumber, 43 blankon statement, 75, 146

arc tangent of two numbers, 43

argument number, 35

arguments passed to commands and macros, 25
array defined, 31

arraydim parameter, 123, 279

arrayed experiment, 279

arrayed parameter values, 180

block size complete, 333
block size counter, 77
block size variable, 80
Boolean expressions, 35
Boolean operations, 30
bootup macro, 25, 46, 48
box mode, 40

arrayed shaped gradient generation, 237 Breakout panel, 75, 76, 226
arrayed string varizbles, 33 bs parameter, 77, 80, 81, 333
array_ed Va“a*?'% 30, 32 bsctr real-time variable, 77, 81
arraying acquisition parameters, 122 bsval real-time variable, 77, 81

ASCII format, 273 buffering in memory, 274

asin command, 43 button labels, 328
assign integer values, 144

assign statement, 78, 144

asterisk (*) character, 269, 297 C
asynchronous decoupling, 233
at parameter, 89 Cloop, 118
atan command, 43 C programming language, 55
atan2 command, 43 C programming language framework, 58
attenuators-based shaped pulses, 116 cat command (UNIX), 269
attributes of parameter, 292 cd command (UNIX), 269
attributes of variables, 31 cf parameter, 107
auto file, 274 change bar, 21 _
Autogain, see automatic gain change current directory, 269
autoincrement attribute, 84, 86, 232 channel control, 122
Autolock, see automatic lock channel identifiers, 122
automatic execution of macros, 292 channel selection, 63
automatic gain char-type variables, 59

errors, 335 checkpw macro, 37
automatic lock checksum of FDF file data, 284

errors, 335 chemical shift, 49
automatic macro execution, 26 chmod command (UNIX), 269
automatic variables, 31 clear command, 41
automation file, 274 clearapdatatable statement, 106, 146
autoscale command, 42 clearing awindow, 41
autoscaling, 42 cmp command (UNIX), 269
average command, 43 coarse attenuators, 71
average value of input, 43 codetable, 80

coef file, 274

340 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

coherence transfer selective phase cycling, 69

colon (:) notation, 26
command entry, 268
command interpreter, 24
command output to variables, 26
command tracing, 38
comments, 30

in macros, 24
comparing two files (UNIX), 269
compilation error messages, 57
compiling source code, 56
completed transient counter, 77
complex pair of FID data, 277
compressed acquisitions, 130
compressed data format, 286
compressed files, 281
compressed loop, 201, 215
Compressed-compressed data format, 286
concatenate and display files (UNIX), 269
concatenate strings, 29
conditional execution, 178, 187
conditional statements, 24, 36
config command, 289
conpar file, 289, 292

constant delay time for changing the status, 82

constant phases, 77

constant strings, 25

constants, 28

continuous decoupling caution, 72

continuous wave (CW) modulation, 65, 233

conventions used in manual, 21
conversion units, 49
copying files (UNIX), 268
copying macros, 44
cos command, 43
cosine value of an angle, 43
COSY-NOESY sequence, 107
course power control, 71
cp command (UNIX), 268
cp parameter, 77
cr parameter, 39
crcom command, 44
create command, 290, 292
create delay list statement, 131, 146
create freq list statement, 131, 148
create offset list statement, 131, 148
creategtable macro, 128
creating
directories (UNIX), 269
FDF files, 284
new parameter, 290
dider in Acquisition window, 102
user macros, 44
variable without value, 31
ct variable, 77, 84
curly braces ({....}) notation, 36, 59
curpar file, 274, 278, 289
current experiment files, 274
current parameter tree, 289
current parameters text file, 274
current-type parameter tree, 289
cursor mode, 40
cursor position, 39
curve fitting, 42

01-999379-00 A 0708

Index

D

dO parameter, 81

d2 parameter, 77, 123

d3 parameter, 77, 123

d4 parameter, 77, 123

DANTE sequence, 116, 118

Data Acquisition Controller boards, 59, 141
data acquisition statements, 60
datablock, 275

data block header, 275

data buffers, 274

data directory, 274

datafile, 274, 278, 279

datafile header, 275

datafilein current experiment, 280
data point acquisition, 105

data portion of FDF file, 281

data transposition, 279

data.h file, 275

datablockhead structure, 276

datadir3d directory, 274

datafilehead structure, 275

date command (UNIX), 269

dbl statement, 78, 151

dc drift correction, 278

dcphase statement, 119

dcplr2phase statement, 68, 106, 119, 152
dcplr3phase statement, 68, 106, 119, 153
dcplrphase statement, 68, 106, 119, 151
ddf command, 280

ddff command, 280

ddfp command, 280

debug command, 38

DEC file suffix, 109

dec2blank statement, 75, 153

dec2off statement, 75, 155

dec2offset statement, 70, 155

dec2on statement, 75, 156

dec2phase statement, 106, 157
dec2power statement, 71, 106, 119, 158
dec2prgoff statement, 114, 120, 160
dec2prgon statement, 75, 114, 120, 161
dec2pwrf statement, 72, 106, 119, 163
dec2rgpulse statement, 65, 106, 165

dec2shaped_pulse statement, 112, 118, 120, 168

dec2spinlock statement, 115, 120, 170
dec2stepsize statement, 69, 172
dec2unblank statement, 75, 173
dec3blank statement, 75, 154

dec3off statement, 75, 155

dec3offset statement, 70, 155

dec3on statement, 75, 157

dec3phase statement, 67, 106, 158
dec3power power, 119

dec3power statement, 71, 106, 159
dec3prgoff statement, 114, 120, 160
dec3prgon program, 114

dec3prgon statement, 75, 120, 161
dec3pwrf statement, 106, 119, 163
dec3rgpulse statement, 65, 106, 166
dec3shaped_pulse statement, 112, 120, 169
dec3spinlock statement, 115, 120, 171
dec3stepsize statement, 69, 172
dec3unblank statement, 75, 173

VnmrJ 2.2 Ml User Programming

Index

dec4offset statement, 156
decdphase statement, 158
dec4power statement, 159
dec4rgpul se statement, 166
decblank statement, 75, 153
DECch, DEC2ch, DEC3ch devices, 148, 149
declaring variables, 32, 59
declvloff statement, 72, 106, 154
declvlon statement, 72, 106, 154
decoff statement, 74, 154
decoffset statement, 70, 155
decon statement, 74, 156
decoupler
blank associated amplifier, 75, 153
fine power, 163, 224, 229
fine power adjustment, 72
fine power with IPA, 194
full power, 154
gate channel, 241
gating, 73, 74, 249
high-power level, 162
linear modulator power, 224, 229
linear modulator power with IPA, 194
modes, 74
modulation mode, 74
normal power, 154
offset frequency, 69, 70, 155, 208
pattern type, 109
phase, 67
phase control, 68
power adjustment, 71
power level, 72, 158, 222, 229
power level switching, 71
programmabl e decoupling, 159, 160
pulse shaping via AP bus, 142
pulse with IPA, 186
pulse with receiver gating, 162, 164
quadrature phase, 157
set status, 233
shaped pulse, 167
simultaneous pulses, 65
small-angle phase, 151
small-angle phase step size, 250
spin lock waveform control, 170
status, 248
step size, 171
turn off, 154
turn on, 156
two-pulse shaped pulse, 113
unblank amplifier, 172
WALTZ decoupling, 67
waveforms, 111
decoupler mode, 233
decoupling, switching, 173
decphase statement, 67, 106, 157
decpower statement, 71, 106, 119, 158
decprgoff statement, 111, 114, 120, 160
decprgon statement, 74, 111, 114, 120, 160
decpul se statement, 64, 106, 162
decpwr statement, 162
decpwrf statement, 72, 106, 119, 163
decr statement, 78, 164
decrement integer value, 164
decrgpul se statement, 64, 106, 164

342 VnmrJ 2.2 Ml User Programming

decshaped_pulse statement, 112, 118, 120, 167
decspinlock statement, 115, 120, 170
decstepsi ze statement, 69, 171
decunblank statement, 75, 172
delay
create delaystable, 146
for synchronizing sample rotor, 231
initialize, 191
interincrement, 81
intertransient, 81
parameter type, 289
real-time incremental, 188
routine, 183
specified time, 173
specified time with IPA, 187
timebase fixed and real -time count, 259
with possible homospoil pulse, 185
delay statement, 61, 102, 106, 173
delay-related statements, 61
delays
initializing next for hardware shimming, 184
delcom command, 44
deleting files (UNIX), 268
deleting user macros, 44
destroy command, 292
destroygroup command, 292
device gating, 180
dg2 parameter, 295
Dgroup field, 292
Dgroup of a parameter, 291
dhp parameter, 72, 154
diff command (UNIX), 269
differentialy compare files (UNIX), 269
diffusion analysis, 42
digital resolution measurement, 39
dimensioning statement, 33
directory information, 47
disk blocks, 275
disk cache buffering, 274
disk file errors, 335
display command, 291
displaying
controlling pul se sequence graphical display, 82
date and time (UNIX), 269
FID file, 280
file headers, 280
macros, 44
memory usage, 280
part of file (UNIX), 269
pulse sequences, 82
dividing an AP table into a second AP table, 254
dividing an integer into AP table elements, 252
dividing integer values, 174
divn factor, 84, 86, 232
divn statement, 174
divn-return attribute, 84, 86, 232
dll command, 26
dm parameter, 73
dm2 parameter, 74
dm3 parameter, 74
dmm parameter, 64, 73, 120, 121, 233
dmm?2 parameter, 74, 120
dmm3 parameter, 74, 120
DODEV, DO2DEV, DO3DEV constants, 63

01-999379-00 A 0708

dof parameter, 69

dof2 parameter, 69

dof 3 parameter, 69

dollar-sign (?) notation, 28, 32
done codes, 60, 333

double integer value, 151

double quotation marks ("...") notation, 30
double-precision, 31

double-type variables, 59

dp parameter, 274

dps command, 56, 82, 174

dps_off statement, 82, 174

dps_on statement, 82, 174
dps_ps_gen command, 56
dps_show statement, 174

dps_skip statement, 177

dpwr parameter, 72, 118, 154
dpwr2 parameter, 72

dpwr3 parameter, 72

draw pulses for graphical display, 174
dres command, 39

ds command, 278

dsn command, 39

dsnmax command, 39

du command (UNIX), 269

duty cycle, 63

dynamic range of shaped pulse, 116

dynamic variablegradient pulsegeneration, 188, 238
dynamic variable shaped gradient pulse generation,

239

E

echo command, 41
echo command (UNIX), 41
ed command (UNIX), 269, 270
edit command, 270
editing

macros, 26, 45

parameter attributes, 290

text files, 269
effective transient counter, 124
elsenz statement, 79, 177
Emacs editor, 27
end hardware loop, 178
end ifzero statement, 178
end loop started by loop, 178
end of file (UNIX), 269
endhardloop statement, 104, 178
endif statement, 79, 83, 178
endloop statement, 79, 104, 178, 179
endmsloop statement, 178
endpel oop statement, 179
enumeral values of a parameter, 293
env command (UNIX), 27
error codes, 60, 333
error during acquisition, 333
error macro, 36
Euler angles, 131, 230
event in a hardware loop, 104
exec command, 36, 46
executable pulse sequence code, 56
execute statements conditionally, 79
execute statements repeatedly, 79

01-999379-00 A 0708

execute succeeding statements

if argument nonzero, 177

if argument zero, 187
executing a VNMR command, 46
execution of macros and commands, 25
exists command, 46
exp command, 43
experiment files, 89
experiment increment pointers, 77
experiment-based parameters, 31
expfit command (UNIX), 42
expl command, 42
explicit acquisition, 60, 105, 140
expn directory file, 274
exponential curves, 42
exponential value of a number, 43
expressions, 34
external device interface, 130
external event gating, 264
external timebase, 108
external variables, 31
extr directory, 274
extracted 2D planes, 274

=

f3file, 274
FAL SE Boolean value, 35
FDF files
attach header to datafile, 285
creating, 284
directory naming convention, 280
format, 281
header format, 281
magic number, 282
splitting data and header parts, 285
transformations of data, 284
why developed, 280
fdf files, 281
fdfgluer command, 285
fdfsplit command, 285
FID complete, 333
FID data, 277
fid file, 274, 278
fid file extension, 273
FID files, 273, 280, 300
FIFO underflow error, 335
file
binary format, 273
existence test, 46
header of binary file, 273
information, 47
protection mode (UNIX), 269
text format, 273
fine attenuators, 72
fine power, 194, 224, 229
control, 71
decoupler, 163
transmitter, 207
fine power routine, 103, 183
fine-grained pulse shaping, 118
first point correction, 278
fixpar macro, 26
flag of a parameter test, 48

VnmrJ 2.2 Ml User Programming

Index

343

Index

flag-type parameter, 289
FLASH pulse sequence, 75
flashc command, 287
flexible data format files. See FDF files
floating constant, 28
floating point, 31
float-type variables, 59
flush command, 274, 278
fm-fm modulation, 233
fn parameter, 278
focus command, 47
format command, 41
format of weighting function, 298
formatting for output, 41
forward dlash notation (UNIX), 268
Fourier transform process, 278
fourth decoupler
offset frequency, 156
power level, 159
pulse with receiver gating, 166
quadrature phase, 158
fractionsin integer mathematics, 78
framework for pulse sequences, 58
fread command, 291
frequency
control, 69
create frequenciestable, 148
offsets table, 148
set based on position, 220
set from position list, 220, 221
set on position, 220
tableindexing, 261
frequency and intensity from linelist, 39
frequency limits of region, 39
frequency lists, 148
frequency offset lists, 263
frequency offset routine, 101, 183
frequency-type parameter, 289
fsave command, 274, 291
ft command, 278
ft3d command, 274

G

G_Delay general routine, 98, 102, 183
G_Offset genera routine, 98, 101, 183
G_Power generd routine, 98, 103, 183

G_Pulse general routine, 98, 99, 100, 102, 183

gap command, 47
GARP modulation, 233

gate pulse sequence from an external event, 264

gate statement, 180

gating control statements, 73
Gaussian pulse, 116

gcoil parameter, 128

gedit, 270

generic delay routine, 102, 183
generic pulse routine, 100, 183
getarray statement, 131, 180
getelem statement, 86, 180
getfile command, 47

getll command, 39
getorientation statement, 181
getreg command, 39

344 VnmrJ 2.2 Ml User Programming

getstr statement, 58, 96, 182

getva statement, 58, 96, 182

getvalue command, 290

Ggroup, 291, 292

global file, 289

global list, 148, 149
statements, 131

global PSG parameters, 89

global variables, 31

global-type parameter tree, 289

go command, 80

gradaxis parameter, 128

gradient
control, 125
set to specified level, 228
simultaneous shaped, 198
variable angle, 256
variable angle gradient pulse, 256
variable angle shaped gradient, 257

variable angle shaped gradient pulse, 258

waveforms, 109, 111

zero all gradients, 265
gradient function, 188
gradient level set by real-time math, 261
gradient pattern file, 191
gradient pulse, 127

generation, 238

on z channel, 266

simultaneous shaped, 199
gradient statement, 131
gradtables directory, 128
gradtype parameter, 120, 125
graphical display of a sequence, 56
graphical display of pulse sequences, 82
graphical display of statements, 174
graphics display status, 47
graphis command, 47
GRD file suffix, 109
grep command (UNIX), 269
gripper abort, 334
group of parameters, 291
groupcopy command, 291

H

half value of integer, 184
half-transformed spectra, 279
hardloop nesting, 106
hardware loop, 104, 178

end of loop, 178

start of loop, 248
hardware phase control, 638
hardware shimming

iniitializing next delay, 184
hardware WAL TZ decoupling, 67
hardwired 90° phase, 68
head command (UNIX), 269
header of FDF file, 281
HET2DJ pulse sequence, 123
hidden delay, 119
hidecommand command, 44
high-band nuclei, 64
high-noise signal, 333
high-speed device control, 75

01-999379-00 A 0708

high-speed line propagation delay, 121
hlv statement, 78, 80, 184

HMQC experiment, 63

hom2dj.c sequence listing, 56
HOM2DJT pul se sequence, 87

home directory for user (UNIX), 268
homo parameter, 64, 65

homo2 parameter, 65

homo3 parameter, 65

homodecoupler gating, 65
homonuclear J-resolved pul se sequence, 87
homonuclear-2D-J pul se sequence, 55
homospoil gating, 73, 74, 248
homospoil pulse, 61, 185

host disk errors, 335

hs parameter, 61, 73

hsdelay statement, 61, 74, 106, 185
hst parameter, 61, 74

hwlooping.c module, 67
hypercmplxbhead structure, 277
hypercomplex 2D, 123

i2pul .c pulse sequence, 99

id2 pointer, 58, 77, 124

id3 pointer, 58, 77

id4 pointer, 58, 77

idecpulse statement, 65, 186
idecrgpulse statement, 65, 186
idelay statement, 61, 187
identifier, 28, 36

if, then, else, endif conditional form, 36
ifzero statement, 79, 83, 187
image file names, 281

image plane orientation, 181
imaginary component of FID data, 277
imaging module, 125

imaging-rel ated statements, 129
implicit acquisition, 60

implicit expressions, 35

implicitly arrayed delay, 123
inactive parameter, 48

incdelay statement, 61, 188
incgradient statement, 131, 188
incr statement, 78, 189

increment an integer value, 189
increment counts, 58

increment index, 124

incremental delay, 61, 188, 191
incrementing aloop, 37

index out of bounds, 34

indices of an array, 32

indirect detection, 189

indirect detection experiments, 122
indirect statement, 189

info directory, 274
init_gradpattern statement, 132, 191
init_rfpattern statement, 132, 190
initdelay statement, 61, 191
initialize incremental delay, 191

initialize parameters for imaging sequences, 192

initialize real-time variable, 192
initialize string variable, 32

01-999379-00 A 0708

Index

initparms_sis statement, 75
initval statement, 79, 192
input arguments, 35
input command, 41
input tools, 40
integ command, 39
integer array stored in AP table, 233
integer mathematical statements, 78
integer values
add, 141
assign, 144
decrement, 164
divide, 174
double, 151
half vaue, 184
increment, 189
modulo 2, 200
modulo 4, 200
modulo n, 200
multiply, 201
subtract, 251
integer-type parameter, 289
intensity of spectrum at a point, 40
interactive parameter adjustment (IPA), 98
change fine power, 194
change linear modulator power, 194
change offset frequency, 193
delay specified time, 61, 187
fine power control, 72
pulse decoupler, 65, 186
pulse transmitter, 63, 192, 193, 194
interferograms, 279
interincrement delays, 81
interna hardware delays, 119
interna variables, 76
intertransient delays, 81
int-type variables, 59
iobspul se statement, 63, 192
joffset statement, 70, 193

IPA, See interactive parameter adjustment (1PA)

ipulse statement, 63, 193
ipwrf statement, 72, 194
ipwrm statement, 72, 194
irgpulse statement, 63, 194
ix variable, 57

J

jexp command, 31

K

keyboard entries recording, 46

keyboard focusto VNMR input window, 47
keyboard input, 41

kill command (UNIX), 269

kinetic analyses, 42

L

largest integral in region, 39
last used parameters text file, 274
latching, on PTS synthesizers, 117

VnmrJ 2.2 Ml User Programming

Index

length command, 47
length of macros, 38
lib directory, 132
libparam.a object library, 56
libpsglib.a directory, 56, 132
library directory, 132
line frequencies and intensities, 40
linelist, 32, 39
linear amplifier systems
power control, 70
power level, 221, 228
stabilization, 64
linear attenuator used for pulse shaping, 112
linear modulator power, 229
linear modulators, 72
linesin afile, 41
linewidth measurement, 39
link loading, 56
lint command (UNIX), 56
Linux
shell, 270
tools, 267
list filesin adirectory (UNIX), 268
listenoff command, 47
listenon command, 47
listing names of macros, 45
lists
frequency, 148
global, 148, 149
offset, 149
Ik_hold statement, 106, 127, 195
Ik_sample statement, 106, 127, 195, 197
|lamp parameter, 32
|Ifrq parameter, 32
In command, 44, 268
loading AP table elements from file, 85, 196
loading AP table statements, 83
loading macros into memory, 26, 45
|oadtable statement, 83, 85, 196
local variables, 31, 32, 34
lock correction circuitry, 127
set to hold, 195
set to sample, 195
lock feedback loop, 127
lock level, 48
log directory, 274
log files, 271, 274
logarithm of a number, 44
logical frame, 131
login command, 48
login command (UNIX), 269
login macro, 25, 26, 46
login procedure, 267
logout (UNIX), 269
long-type variables, 59
lookup command, 41
loop
end, 178
multisliceend, 178
multisice start, 200
phase-encode end, 179
phase-encode start, 215
start, 196
statements, 131

346 VnmrJ 2.2 Ml User Programming

types, 37
loop statement, 79, 104, 118, 196
low-band nuclei, 65
low-core acquisition variables, 80
lower shell script, 272
low-noise signal, 333
Ip command (UNIX), 269
Is command (UNIX), 268

M

maclib directory, 25
maclibpath parameter, 25
macro
automatic execution, 26, 292
calling amacroin aloop, 27
clear system macro, 27
concept, 23
defined, 23
directory, 25
editing, 26
execution, 25
existence test, 46
faster execution, 26
files, 25
loading into memory, 26
output to variables, 26
parsing, 26
passing information, 32
remove from memory, 27
VNMR activation, 48
macro namelist, 45
macro parameter, 26
macro tracing, 38
macrocat command, 44, 45
macrocp command, 44
macrodir command, 45
macroedit macro, 26, 45
macrold command, 26, 27, 45
macrorm command, 45
macros.h file, 100
macrosyscat command, 45
macrosyscp command, 45
macrosysdir command, 45
macrosysrm command, 45
macrovi command, 26, 45
magic number, 282
MAGICAL language defined, 23
MAGICAL language features, 27
magradient statement, 197
magradpul se statement, 128, 129, 198
mail command (UNIX), 269
makefid command, 300
man command (UNIX), 269
manua directory, 60
manua entry (UNIX), 269
mark command, 40
MAS rotor, 230
mashapedgradient statement, 129, 198
mashapedgradpul se statement, 199
mathematical expression, 35
mathematical functions, 43
matrix arithmetic, 30
matrix transposition, 279

01-999379-00 A 0708

maximum value of parameter, 292

maxpk macro, 37

MAXSTR dimension, 59

mean of datain regression.inp, 42
memory usage by VNMR commands, 280
memory usage statistics, 45

MEMS pulse sequence, 75

memsi ze parameter (UNIX), 274

menu files, 327

message display with large characters, 40
mf command, 287

mfblk command, 287

mfdata command, 287

mftrace command, 287

micon, 328

microimaging pulse sequences, 127
minimum val ue of parameter, 292

mixing shapes, 209

mkdir command (UNIX), 268

mlabel, 328

MLEV-16 modulation, 233

mod2 statement, 78, 200

mod4 statement, 78, 200

modn statement, 78, 200

modulation frequency, 233

modulation frequency change delay, 121
modulation mode change delays, 120
modulo 2 integer value, 200

modulo 4 integer value, 200

modulo ninteger value, 200

modulo number, 78

move datain FID file, 287

move FID commands, 287

moving filesinto adirectory, 268

MREV -type sequences, 105

msl oop statement, 131, 200

mstat command, 45, 280

mstring, 328

mult statement, 78, 201

multidimensional NMR, 122

multi ple command separator (UNIX), 268
multiple FID acquisition, 107

multiple trace or arrayed experiments, 279
multiply AP table by second AP table, 254
multiply integer values, 201

multiply integer with AP table elements, 252
multislice loops, 131, 200

multiuser protection, 271

mv command (UNIX), 268

N

nl-n3 parameters, 31

name replacement, 36
name.errors text file, 57
natura logarithm of a number, 44
nested macros, 38

nested multiple hardloops, 106
nf parameter, 107

ni parameter, 77

ni2 parameter, 77

ni3 parameter, 77

nll command, 40

NMR algorithms, 23

01-999379-00 A 0708

Index

NMR language, 23

non-observe pulse, 64

notational conventions, 21

np parameter, 335

nrecords command, 41

nth2D variable, 215

null string, 31, 32

number of arguments, 35

numeric parameter value lookup, 96, 182
numreg command, 40

O

object code, 56

object file, 132

object libraries, 56

obl_gradient statement, 202

obl_shapedgradient statement, 203

oblique gradient, 202

oblique gradient statements, 131

oblique gradient with phase encode in 1 axis, 212,
216

oblique gradient with phase encode in 2 axes, 212

oblique gradient with phase encode in 3 axes, 213,
217

oblique shaped gradient with phase encodein 1 axis,
136, 213, 217

oblique shaped gradient with phase encodein 2 axes,
214

oblique shaped gradient with phase encodein 3 axes,
215, 218

oblique_gradient statement, 131, 202

oblique_shapedgradient statement, 203

obs mf parameter, 74

obsblank statement, 205

OBSch device, 148, 149

observe channel gating, 241

observe transmitter modulation, 233

observe transmitter power, 205

observe transmitter pulse, 62

obsoffset statement, 70, 205

obspower statement, 71, 106, 205

obsprgoff statement, 120, 206

obsprgon statement, 74, 114, 120, 206

obspulse statement, 63, 100, 106, 206

obspwrf statement, 72, 106, 119, 207

obsstepsi ze statement, 68, 69, 207

obsunblank statement, 207

off command, 48

offset frequency, 155, 193, 205

offset lists, 149

offset macro, 35

offset statement, 69, 101, 106, 119, 208

offset table, 263

on command, 48

one pointer, 77

operating system, 267

operators, 29

ophvariable, 77, 107

order of precedence, 29

orientation of image plane, 181

Output boards, 59, 141

output from commands and macros, 26

output to various devices, 42

VnmrJ 2.2 Ml User Programming 347

Index

output tools, 40

overhead delays, 131

overhead operations, 82

override internal software AP bus delay, 141

P

package files, 268
page
creating new, 324
defining, 325
panel
creating anew layout, 324
editor, 323
saving and retrieving elements, 325
search path, 326
size, 327
pap command, 297
par2d macro, 123
par3d macro, 123
par4d macro, 123
paramedit command, 290, 294
parameter
attributes, 292
create new parameter, 290
enumerable values, 293
maximum vaue, 292
minimum vaue, 292
table, 58
template, 294
trees, 288
typica parameter file, 293
values, 293
parameters
accessing the value, 290
arrayed parameter values, 180
as global variables, 31
asvariables, 24
categories, 89
change type, 291
conditional display, 296
display field width, 297
display formats, 297
display valuesin text window, 41
editing attributes, 290
existence test, 46
get value, 290
global PSG parameters, 89
look up value, 96
plotting automatically, 40
protection bit, 25
protection bits, 291
set up for pulse sequence, 41
spectroscopy imaging sequences, 192
step size, 292
types, 289
user created, 89
parameters retrieved from a parameter file, 48
paramvi command, 290, 292, 294
parent directory (UNIX), 268
parentheses (...) notation, 34
parlib directory, 41
parmax parameter, 292
parmin parameter, 292

348 VnmrJ 2.2 Ml User Programming

parsing macros, 26
parstep parameter, 292
pattern scanning and processing (UNIX), 269
Pbox, 109

mixing shapes, 209
Pbox experiments, 209
pe_gradient statement, 131, 212
pe_shapedgradient statement, 213
pe2_gradient statement, 212
pe2_shapedgradient statement, 214
pe3_gradient statement, 213
pe3_shapedgradient statement, 215
peak command, 24, 26, 40
peak width of solvent resonances, 48
peloop statement, 131, 215
Performa XY Z PFG module, 128
pexpl command, 42
PFG (pulsed field gradient), 128
phase angle, 110
phase calculation, 77
phase carryover, 69
phase control, 77
phase cycle storage, 83
phase cycling, 87
phase encode loops, 131
phase file in the current experiment, 280
phase parameter, 123
phase step size, 250
phase_encode_gradient statement, 131, 216
phase_encode_shapedgradient statement, 217
phase_encode3_gradient statement, 217
phase_encode3_shapedgradient statement, 218
phasel integer, 123
phasel variable, 58
phase2 parameter, 123
phase3 parameter, 123
phased 2D data storage, 279
phased spectral information, 274
phased spectrum, 278
phase-encode loop, 179, 215
phasefilefile, 274, 278, 279
phase-pul se technique, 219
phase-related statements, 67
phase-sensitive 2D NMR, 123, 277
phaseshift statement, 219
phi angle, 129
phi parameter, 131
pipe, 269
plotif macro, 38
plotting curves, 42
pmode parameter, 274
poffset statement, 131, 220
poffset_list statement, 131, 220
pointer to memory, 76
pointers to constants, 77
poly0 command, 42
polynomial curves, 42
position list, 220, 221
position statements, 131
position_offset statement, 131, 220
position_offset_list statement, 131, 221
position-based frequency, 220
power control statements, 70
power level of shaped pulse, 116

01-999379-00 A 0708

power statement, 71, 72, 106, 117, 118, 119, 221
power statements, back-to-back, 71
ppm of solvent resonances, 48
preacquisition and acquisition steps, 60
precedence of operators, 29
presaturation, 71
print files (UNIX), 269
probe damage caution, 72
procdat file, 274
process status (UNIX), 269
processed-type parameter tree, 289
procpar file, 274, 278, 280, 281, 289
procpar3d file, 274
program execution, 24
programmabl e control of transmitter, 206
programmabl e control statements, 114
programmabl e decoupling
ending, 159
starting, 160
programmabl e phase and amplitude control, 114
programmabl e pulse modulation, 233
programming
imaging pulse sequences, 127
Performa XY Z PFG module, 127
prompt for user input, 41
propagation delay, 121
protection bits, 25, 291, 292
prune command, 292
ps command (UNIX), 269
psg delay, 71
psg directory, 132
psg macro, 80
psggen shell script, 132
psglib directory, 55
psgset command, 41
psi parameter, 131
PTS synthesizers with latching, 117
pulse
non-observe, 64
pulse channels smultaneoudly, 241, 242
pulse control, 109
pulse decoupler, 162
pulse decoupler with IPA, 186
pul se decoupler with receiver gating, 164
pulse four channels simultaneously, 242
pulseinterval time, 114
pulse observe transmitter, 62
pulse program buffer, 104
pulseroutine, 183
pul se sequence control statements, 79
Pulse Sequence Controller board, 141
pul se sequence gated from external event, 264
pul se sequence generation (PSG), 57
directory, 55
statement categories, 61
pul se sequences
compiling, 56
execution control, 77
files, 55
general form, 59
graphical display, 56, 82
imaging, 127
internal hardware delays, 119
object code, 58

01-999379-00 A 0708

object file, 132
parameter set up, 41
programming, 55
synchronization, 108
pulse shape definitions, 109
pulse shaping programming, 109
pulse shaping through AP bus, 112
pulse shaping viaAP bus, 118, 142, 143
pulse statement, 63, 100, 106, 222
pulse transmitter with IPA, 192, 193, 194

Index

pulse transmitter with receiver gating, 206, 222, 227

pulse width array, 32

Pulsed Field Gradient module, 125
pulsed field gradient module, 128
pulseinfo macro, 115

pulsesequence function, 58, 80
pulsesequence.o file, 132
pulse-type parameter, 289

pulsing channels simultaneously, 65
pulsing the decoupler transmitter, 64
purge command, 27, 46

pw parameter, 63, 335

pwd command, 269

pwrf statement, 72, 106, 117, 119, 224
pwrm statement, 72, 117, 224
pwsadj macro, 114

Q

quadrature phase, 68

quadrature phase of decoupler, 157, 158
quadrature phase of transmitter, 255
quadrature phase shift, 67

question mark (?) character, 269
quotation mark ("...") notation, 24

R

rl, r2, ... r7 parameters, 31, 32
revroff statement, 75, 225
rcvron statement, 75, 225
read parameters from afile, 291
readlk command, 48
readuserap statement, 76
real command, 31
real component of FID data, 277
real number formatting for output, 41
real parameters, 31
real-number arguments, 59
real-time gradient statements, 131
real-time incrementd delay, 61, 188
real-time statements, 80
real-time variables, 59, 76, 77, 79, 192
real-type parameter, 289, 291
real-type variables, 31
receiver
default state, 192
gating, 62, 75, 206, 222, 227
phase control, 77
phase cycle, 232
turn off, 227
turn on, 225
receiver gate, 225, 227
receiver overflow warning, 333

VnmrJ 2.2 Ml User Programming

349

Index

recoff statement, 227

recon statement, 227

record macro, 46

recordsin file, 41

rectangular pulse, 116

recursive calls, 25

redefinition warning, 58

reference to statements, 133
reformatting data for processing, 285
reformatting spectra, 287

regions in spectrum, 40

regression analysis, 42, 43
regression.inp file, 42

removing an empty directory (UNIX), 268
removing macros, 45

removing macros from memory, 46
renaming a directory (UNIX), 268
renaming afile (UNIX), 268
repeat, until loop, 37

reserved words, 28

resto parameter, 220

retrieve e ement from AP table, 86, 180
retrieving individual parameters, 48
return command, 38

Return key, 21

returning avalue, 38
reverse a spectrum, 287

reverse FID commands, 287
reverse order of data, 287

reverse single quotes ("...") notation, 328
rf channels control, 122

RF file suffix, 109

RF monitor errors, 335

rf pattern file, 189

rf pulse shapes, 109

rf pulses waveforms, 109, 110

rf shapefile, 110

rfblk command, 287

rfchannel parameter, 63, 122
rfdata command, 287

rftrace command, 287

RG1 and RG2 delays, 62, 64
rgpulse statement, 62, 83, 105, 106, 227
rgradient statement, 120, 126, 127, 128, 228
rinput command, 42

rlpower statement, 228

rlpwrm statement, 72, 117, 230

rm command (UNIX), 268

rmdir command (UNIX), 268

rof1 parameter, 63

rof2 parameter, 63

root directory (UNIX), 268
rot_angle, 230

rotor control statements, 103

rotor period, 108, 230

rotor position, 230

rotorperiod statement, 108, 230
rotorsync statement, 108, 230
RS-232 cable, 333

rsapply command, 287

rt command, 26, 31, 300

rtp command, 26, 31

rtv command, 26, 48

run program in background, 269

350 VnmrJ 2.2 Ml User Programming

run-time statements, 80

S

sample changer
errors, 334
saved display file, 274
scalelimits macro, 42, 43
scalesw parameter, 46
scaling factors for axis, 46
SCSI errors, 335
searching atext file, 41
searching files for a pattern (UNIX), 269
second decoupler
blank associated amplifier, 153
fine power, 163
fine power adjustment, 72
gating, 75
homodecoupler gating, 65
offset frequency, 69, 70, 155
phase control, 68
power adjustment, 71
power level, 158
programmable decoupling, 160, 161
pulse shaping via AP bus, 142
pulse with receiver gating, 165
quadrature phase, 157
shaped pulse, 168
simultaneous pulses, 66
small-angle phase, 152
spin lock waveform control, 170
step size, 172
turn off, 155
turn on, 156
unblank decoupler, 173
select command, 40
semicolon (;) notation, 59
semicolon (;) notation (UNIX), 268
SEMS pulse sequence, 75
send mail to other users (UNIX), 269
send2V nmr command (UNIX), 47
separators, 30
seqcon parameter, 131, 201
seqgen command, 56, 57, 80
seqgen command (UNIX), 56
seqlib directory, 57, 80
set2d macro, 123
set3dproc command, 274
setautoincrement statement, 86, 232
setdgroup command, 291
setdivnfactor statement, 86, 232
setenumeral command, 289, 291
setgroup command, 291
setlimit command, 31, 291
setprotect command, 291
setreceiver statement, 77, 86, 107, 232
setstatus statement, 74, 120, 121, 233
settable statement, 83, 85, 233
settype command, 291
setuserap statement, 76
setuserpsg shell script, 132
setvalue command, 291, 300
sh2pul macro, 109
shaped gradient, 258

01-999379-00 A 0708

pulse generation, 235, 237, 239

variable angle, 257
shaped oblique gradient, 203
shaped pulse

decoupler, 167

delays, 121

information, 115

on transmitter, 234

simultaneous three-pulse, 244

simultaneous two-pulse, 243

time truncation error, 115

using attenuators, 116

waveform generator control, 112
shaped two-pul se experiment, 109
shaped_pulse statement, 112, 118, 120, 235
shaped2Dgradient statement, 237
shapedgradient statement, 127, 131, 235
shapedincgradient statement, 131, 238
shapedvgradient statement, 131, 239
shapelib directory, 109, 142, 235
shell command, 48, 270, 271
shell programming, Linux and Unix, 272
shell scripts, 272
shimming

errors, 334
short-type variables, 59
signal-to-noise measurement, 39
sim3pulse statement, 66, 106, 242
sim3shaped_pulse statement, 113, 120, 244
sim4pul se statement, 66, 242
simpul se statement, 65, 106, 241
simshaped_pulse statement, 120, 243
simultaneous gradient, 197
simultaneous pulses, 65, 66
simultaneous shaped gradient, 198
simultaneous shaped gradient pulse, 199
sin command, 44
sinevalue of angle, 44
single period notation (UNIX), 268
single quotes ('...") notation, 25, 28
size operator, 29, 32
SLI| board, 245
SLI lines

setting lines, 245
di statement, 130, 245
dider action, 103
SLIDER_LABEL attribute, 99, 102
small-angle phase increment, 63
small-angle phase of decoupler, 151, 152, 153
small-angle phase of transmitter, 265
small-angle phase shifts, 67
small-angle phase step size, 250
snfile, 274
soft loop, 104, 118
solppm command, 48
solvent resonances, 48
sort command (UNIX), 268
sort files (UNIX), 268
source code, 55, 132
sp#off statement, 75, 246
sptton statement, 75, 247
SPARE 1 connector, 75
spare line gating, 246, 247
sparelines, 75

01-999379-00 A 0708

Index

spectra analysistools, 39
spectrometer control statements, 61
spectrometer differences, 55
spectroscopy imaging sequences, 192
spectrum gap, 47
spectrum intensity at a point, 40
spectrum sel ection without display, 40
spell command (UNIX), 269
spelling errors check (UNIX), 269
spin lock control on transmitter, 247
spin lock control statements, 115
spin lock waveform control on decoupler, 170
spinlock statement, 115, 120, 247
spinner errors, 333
sgrt operator, 29
square brackets ([...]) notation, 32
square brackets notation, 297
square root, 29
square wave modulation, 233
squish, 327
ss parameter, 77, 80
ssctr real-time variable, 77, 80
ssval red-time variable, 77, 80
standard data format, 286
standard deviation of input, 43
standard PSG variables, 58
standard.h file, 58, 100
start loop, 196
starthardloop statement, 104, 248
status of transmitter or decoupler, 233
status statement, 73, 82, 106, 120, 121, 248
statusdelay statement, 74, 82
steady-state phase cycling, 81
steady-state pulses, 80
step size

decoupler, 171

parameters, 292

transmitter, 207
steps in shaped pulse, 116
stepsize statement, 151, 250
store array in AP table, 85
stored format of a parameter, 292
storing multiple traces, 279
string command, 31
string constant, 28
string formatting for output, 41
string length, 47
string parameter vaue lookup, 96, 182
string parameters, 31
string template, 294
string variables, 31
strings displayed in text window, 41
string-type parameter, 289, 291
sub statement, 78, 251
substr command, 49
substring from a string, 49
subtract AP table from second AP table, 254
subtract integer from AP table elements, 253
subtract integer values, 251
sum of integer values, 141
sum-to-memory error, 335
svfdf macro, 285
svib macro, 284
svsis macro, 285

VnmrJ 2.2 Ml User Programming

351

Index

swapping rf channels, 63

swept-square wave modulation, 233
synchronization of a pulse sequence, 108
synchronous decoupling, 233

Synchronous Line Interface (SLI) board, 245

sysgcoil parameter, 128
sysmaclibpath parameter, 25

system identification, 269

system macro, 45

system macro library, 25
systemglobal-type parameter tree, 289

T

T, analyses, 42

t1-t60 table names, 84

T, analyses, 42

T2PUL pulse sequence, 87

tabc command, 287

table names, 84

table of delays, 146

table of frequencies, 148

table of frequency offsets, 148

tablib directory, 83

tail command (UNIX), 269

tallest peak in region, 40

tan command, 44

tangent value of angle, 44

tape backup (UNIX), 268

tar command (UNIX), 268

tcapply command, 287

template parameters, 294

temporary variables, 24, 28, 31, 32

terminating a calling macro, 38

terminating zero, 98

testdacq procedure, 67

text display status, 49

text file, 274

text file lookup, 41

text format files, 273

textedit command (UNIX), 269, 270

textis command, 49

thermal shutdown, 63

thetaangle, 129

theta parameter, 131

third decoupler
blank associated amplifier, 154
fine power, 163
fine power adjustment, 72
gating, 75
homodecoupler gating, 65
offset frequency, 69, 70, 155
phase control, 68
power adjustment, 71
power level, 159
programmabl e decoupling, 160, 161
pulse with receiver gating, 166
quadrature phase, 157
shaped pulse, 169
simultaneous pulses, 66
small-angle phase, 153
spin lock waveform control, 171
step size, 172
turn off, 155

352 VnmrJ 2.2 Ml User Programming

turnon, 157
unblank amplifier, 173
three pointer, 77
three-pulse pulse, 66
three-pulse shaped pulse, 113, 244
tilde character notation (display templates), 297
tilde character notation (UNIX), 268
time increments, 59
time-sharing pulse shaping, 116
timing in a pul se sequence, 82
tipangle, 111
TODEV constant, 63
tof parameter, 69
token defined, 28
toolbar, editing, 327
total weighting vector, 298
TPPI experiments, 124
TPPI phase increments, 58
tpwr parameter, 72, 118
transformations of FDF datafiles, 284
transformed complex spectrum storage file, 274
transformed phased spectrum storage file, 274
transformed spectra storage files, 273
transient blocks, 77
transmitter
blanking, 205
fine power, 207, 224, 229
fine power adjustment, 72
fine power with IPA, 194
gating, 74, 111, 264
hardware control of phase, 638
linear modulator power, 224, 229
linear modulator power with IPA, 194
offset frequency, 69, 205, 2038
phase control, 67, 68
power adjustment, 71
power level, 205, 222, 229
programmable control, 114, 206
pulse shaping via AP bus, 143
pulse with IPA, 192, 193, 194
pulse with receiver gating, 206, 222, 227
pulse-related statements, 62
quadrature phase, 255
set status, 233
shaped pulse, 112, 234
simultaneous pulses, 65
small-angle phase, 265
small-angle phase step size, 250
spin lock control, 115, 247
step size, 207
unblank, 207
troubleshooting
acquisition status codes, 60
troubleshooting a new sequence, 57
TRUE Boolean value, 35
trunc operator, 29
truncate real number, 29
tsadd statement, 86, 252
tsdiv statement, 86, 252
tsmult statement, 86, 252
tssub statement, 86, 253
ttadd statement, 86, 87, 253
ttdiv statement, 86, 254
ttmult statement, 86, 254

01-999379-00 A 0708

ttsub statement, 86, 254

two attenuators system, 118

two periods notation (UNIX), 268

two pointer, 77

two-pulse pulse, 66

two-pulse sequence T2PUL, 87
two-pulse shaped pulse, 113, 243, 244
txphase statement, 67, 69, 106, 255, 257
type of parameter, 291

typeof operator, 29, 36

types of parameters, 289, 292

U

U+ H1 Only label, 122
uname command (UNIX), 269
unblank amplifier, 75, 172
underline prefix, 25
uniform excitation, 71
uninitialized variable, 58
unit command, 49
units command (UNIX), 269
UNIX

commands, 267

file names, 2638

shell, 270

shell startup, 48

text commands, 269
updtgcoil macro, 128
user APlines, 76
user AP register, 226, 234, 263
user library, 56, 118
user macro, 44
user macro directory, 25
user-created parameters, 89
user-customized pulse sequence generation, 132
user-written weighting function, 297

\%

vl, v2, ... vl4 real-time variables, 59, 77
vagradient statement, 256

vagradpul se statement, 128, 129, 256
values of a parameter, 293

variable angle gradient, 256

variable angle gradient pulse, 256
variable angle shaped gradient, 257
variable angle shaped gradient pulse, 258
variable declaration, 32, 59

variable gradient pulse generation, 238
variable shaped gradient pulse generation, 239
variable types, 31

variables using parameters, 24
vashapedgradient statement, 129, 257
vashapedgradpul se statement, 129, 258
vbg shell script (UNIX), 271

vdelay statement, 61, 259

vdelay_list statement, 131, 260

vertical bar notation (UNIX), 269

vfreq statement, 131, 261

vgradient statement, 120, 126, 131, 261
vi command (Linux and UNIX), 270

vi command (UNIX), 269

vi command (VNMR), 270

01-999379-00 A 0708

Index

vi text editor, 290

VNMR
macros executed at startup, 46, 48
source code license, 275

Vnmr command (UNIX), 270

VNM R Command and Parameter Reference manual,

24

vnmreditor variable (UNIX), 27
VnmrJ

background processing, 271
vnmrsys directory, 25, 57
voffset statement, 131, 263
vsadj macro, 24
vsetuserap statement, 76
vsli statement, 130
vsmult macro, 35
VT errors, 333
vttime parameter, 333

W

w command, 270

w command (UNIX), 269

WALTZ decoupling, 67

WALTZ-16 modulation, 233

warning error codes, 333

warning messages, 57

waveform generation, 233

waveform generator control, 112, 115
waveform generator delays, 121
waveform generator gate, 111
waveform initiaization statements, 132
waveform resolution, VnmrS systems, 109, 131
wbs command, 60

weighting function, 278, 297, 298
werr command, 60

wexp command, 60
WFG_OFFSET_DELAY macro, 121
WFG2 OFFSET_DELAY macro, 121
WFG3 _OFFSET_DELAY macro, 121
which macro, 25

while, do, endwhile loop, 37

who ison the system (UNIX), 269
wildcard character (UNIX), 269

wnt command, 60

working directory (UNIX), 268

write command, 42

writing parameter buffersinto disk files, 274
wtcalc function, 298

witf file extension, 298

witfile parameter, 297, 299

witfilel parameter, 297

witfile2 parameter, 297

wtgen shell script, 298, 299

wti command, 298

wtlib directory, 298, 299

wtp file extension, 298

X

Xgate statement, 108, 264
xmtroff statement, 74, 264
xmtron statement, 74, 264
xmtrphase statement, 68, 69, 106, 119, 265

VnmrJ 2.2 Ml User Programming 353

Index

XY 32 modulation, 233

Y4

z channel gradient pulse, 266

zero acquired datatable, 106

zero all gradients, 265

zero data in acquisition processor memory, 146
zero fill data, 278

zero pointer, 77

zero_all_gradients statement, 265

zgradpul se statement, 120, 127, 128, 266

Zip, 268

354 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

	Online Menu

	Overview of Contents
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Chapter 1. MAGICAL II Programming
	1.1 Working with Macros
	1.2 Programming with MAGICAL
	1.3 Relevant VnmrJ Commands

	Chapter 2. Pulse Sequence Programming
	2.1 Application Type and Execpars Programming
	2.2 Overview of Pulse Sequence Programming
	2.3 Spectrometer Control
	2.4 Pulse Sequence Statements: Phase and Sequence Control
	2.5 Real-Time AP Tables
	2.6 Accessing Parameters
	2.7 Using Interactive Parameter Adjustment
	2.8 Hardware Looping and Explicit Acquisition
	2.9 Pulse Sequence Synchronization
	2.10 Pulse Shaping
	2.11 Shaped Pulses Using Attenuators
	2.12 Internal Hardware Delays
	2.13 Indirect Detection on Fixed-Frequency Channel
	2.14 Multidimensional NMR
	2.15 Gradient Control for PFG and Imaging
	2.16 Programming the Performa XYZ PFG Module
	2.17 Imaging-Related Statements
	2.18 User-Customized Pulse Sequence Generation

	Chapter 3. Pulse Sequence Statement Reference
	A
	B
	C
	D
	E
	G
	H
	I
	L
	M
	O
	P
	R
	S
	T
	V
	W
	X
	Z

	Chapter 4. Linux Level Programming
	4.1 Linux and VnmrJ
	4.2 Linux Reference Guide
	4.3 Linux Commands Accessible from VnmrJ
	4.4 Background VNMR
	4.5 Shell Programming

	Chapter 5. Parameters and Data
	5.1 VnmrJ Data Files
	5.2 FDF (Flexible Data Format) Files
	5.3 Reformatting Data for Processing
	5.4 Creating and Modifying Parameters
	5.5 Modifying Parameter Displays in VNMR
	5.6 User-Written Weighting Functions
	5.7 User-Written FID Files

	Chapter 6. Panels, Toolbars, and Menus
	6.1 Parameter Panel Features
	6.2 Using the Panel Editor
	6.3 Panel Elements
	6.4 Creating a New Panel
	6.5 Graphical Toolbar Menus

	Appendix A. Status Codes
	Index

