
VnmrJ User
Programming

Varian, Inc. Inova and MercuryPlus NMR Systems
With VnmrJ 2.2MI Software

Pub. No. 01-999379-00, Rev. A 0708

cc
Temp Agilent



VnmrJ User
Programming

Varian, Inc. Inova and MercuryPlus NMR Systems
With VnmrJ 2.2MI Software

Pub. No. 01-999379-00, Rev. A 0708



VnmrJ User Programming 
Varian, Inc. Inova and MercuryPlus NMR Systems
With VnmrJ 2.2MI Software 
Pub. No. 01-999379-00, Rev. A 0708

Revision history
A Draft A 051908 Initial release for VnmrJ 2.2MI

Applicability of manual:
Varian, Inc. Inova and Mercury-vx and Mercury-plus NMR spectrometer systems with 
VnmrJ 2.2MI software installed.

Technical contributors: Dan Iverson, Boban John, Frits Vosman, Hung Lin, Debbie 
Mattiello, George Gray.

Technical writer and editor: Everett Schreiber

Copyright ©2008 by Varian, Inc.
3120 Hansen Way, Palo Alto, California 94304
www.varianinc.com
1-800-356-4437
All rights reserved. Printed in the United States.

The information in this document has been carefully checked and is believed to be 
entirely reliable. However, no responsibility is assumed for inaccuracies. Statements in 
this document are not intended to create any warranty, expressed or implied. 
Specifications and performance characteristics of the software described in this manual 
may be changed at any time without notice. Varian reserves the right to make changes in 
any products herein to improve reliability, function, or design. Varian does not assume 
any liability arising out of the application or use of any product or circuit described 
herein; neither does it convey any license under its patent rights nor the rights of others. 
Inclusion in this document does not imply that any particular feature is standard on the 
instrument.

UNITYINOVA, MERCURY-VX, MERCURY-PLUS, MERCURY, Varian, Inc. NMR 
Spectrometer Systems, VnmrJ, VNMR, MAGICAL II, Magnex, AutoLock, AutoShim, 
AutoPhase, limNET, ASM, and SMS are registered trademarks or trademarks of Varian, 
Inc.
Dell, the Dell logo, OptiPlex, Precision, Dimension, Inspiron and Axim are registered 
trademarks or trademarks of Dell Computer Corporation. Red Hat is a registered 
trademark of Red Hat, Inc. Linux is a registered trademark of Linus Torvalds in the 
United States and in other countries. Ethernet is a registered trademark of Xerox 
Corporation. VxWORKS and VxWORKS POWERED are registered trademarks of 
WindRiver Inc. Other product names in this document are registered trademarks or 
trademarks of their respective holders.

http://www.varianinc.com
http://www.varianinc.com


01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 3

Overview of Contents

Introduction ...................................................................................................... 21

Chapter 1. MAGICAL II Programming............................................................. 23

Chapter 2. Pulse Sequence Programming..................................................... 51

Chapter 3. Pulse Sequence Statement Reference....................................... 133

Chapter 4. Linux Level Programming........................................................... 267

Chapter 5. Parameters and Data ................................................................... 273

Chapter 6. Panels, Toolbars, and Menus ..................................................... 301

Index ................................................................................................................ 339



4 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 5

Table of Contents

Introduction 21

Chapter 1. MAGICAL II Programming............................................................. 23

1.1 Working with Macros ................................................................................................ 23
Writing a Macro .................................................................................................  24
Executing a Macro .............................................................................................  24
Transferring Macro Output ................................................................................  26
Loading Macros into Memory ...........................................................................  26

1.2 Programming with MAGICAL .................................................................................. 27
Tokens ................................................................................................................  28
Variable Types ...................................................................................................  31
Arrays ................................................................................................................  32
Expressions ........................................................................................................  34
Input Arguments ................................................................................................  35
Name Replacement ............................................................................................  36
Conditional Statements ......................................................................................  36
Loops .................................................................................................................  37
Macro Length and Termination .........................................................................  38
Command and Macro Tracing ...........................................................................  38

1.3 Relevant VnmrJ Commands ...................................................................................... 38
Spectral Analysis Tools .....................................................................................  39
dres Measure linewidth and digital resolution ...................   39
dsn Measure signal-to-noise .............................................   39
dsnmax Calculate maximum signal-to-noise ...........................   39
getll Get line frequency and intensity from line list ...........   39
getreg Get frequency limits of a specified region .................   39
integ Find largest integral in specified region .....................   39
mark Determine intensity of the spectrum at a point ...........   40
nll Find line frequencies and intensities ..........................   40
numreg Return the number of regions in a spectrum ..............   40
peak Find tallest peak in specified region ...........................   40
select Select spectrum or 2D plane without displaying it .....   40

Input/Output Tools .............................................................................................  40
apa Plot parameters automatically ....................................   40
banner Display message with large characters .......................   40
clear Clear a window ...........................................................   41
echo Display strings and parameter values in text window   41
format Format a real number or convert a string for output ..   41
input Receive input from keyboard .....................................   41
lookup Look up and return words and lines from text file .....   41
nrecords Determine number of lines in a file ............................   41
psgset Set up parameters for various pulse sequences ..........   41
write Write output to various devices ..................................   42

Regression and Curve Fitting ............................................................................  42



6 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

analyze Generalized curve fitting ............................................   42
autoscale Resume autoscaling after limits set by scalelimits .....   42
expfit Least-squares fit to exponential or polynomial curve   42
expl Display exponential or polynomial curves .................   42
pexpl Plot exponential or polynomial curves .......................   42
poly0 Display mean of the data in the file regression.inp ....   42
rinput Input data for a regression analysis ............................   42
scalelimits Set limits for scales in regression ...............................   43

Mathematical Functions ....................................................................................  43
abs Find absolute value of a number ................................   43
acos Find arc cosine of a number .......................................   43
asin Find arc sine of a number ...........................................   43
atan Find arc tangent of a number ......................................   43
atan2 Find arc tangent of two numbers ................................   43
averag Calculate average and standard deviation of input .....   43
cos Find cosine value of an angle .....................................   43
exp Find exponential value of a number ...........................   43
ln Find natural logarithm of a number ............................   44
sin Find sine value of an angle .........................................   44
tan Find tangent value of an angle ...................................   44

Creating, Modifying, and Displaying Macros ...................................................  44
crcom Create a user macro without using a text editor .........   44
delcom Delete a user macro ....................................................   44
hidecommand Execute macro instead of command with same name   44
macrocat Display a user macro on the text window ..................   44
macrocp Copy a user macro file ................................................   44
macrodir List user macros ..........................................................   45
macroedit Edit a user macro with user-selectable editor .............   45
macrold Load a macro into memory ........................................   45
macrorm Remove a user macro .................................................   45
macrosyscat Display a system macro on the text window ..............   45
macrosyscp Copy a system macro to become a user macro ..........   45
macrosysdir List system macros .....................................................   45
macrosysrm Remove a system macro .............................................   45
macrovi Edit a user macro with vi text editor ..........................   45
mstat Display memory usage statistics ................................   45
purge Remove a macro from memory ..................................   46
record Record keyboard entries as a macro ...........................   46

Miscellaneous Tools ..........................................................................................  46
axis Provide axis labels and scaling factors .......................   46
beepoff Turn beeper off ...........................................................   46
beepon Turn beeper on ............................................................   46
bootup Macro executed automatically when VnmrJ is started   46
exec Execute a VnmrJ command ........................................   46
exists Determine if a parameter, file, or macro exists ..........   46
focus Send keyboard focus to VNMR input window ..........   47
gap Find gap in the current spectrum ................................   47
getfile Get information about directories and files ................   47
graphis Return the current graphics display status ..................   47
length Determine length of a string .......................................   47
listenoff Disable receipt of messages from send2Vnmr ...........   47
listenon Enable receipt of messages from send2Vnmr ............   47
login User macro executed when VnmrJ activated .............   48



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 7

off Make a parameter inactive .........................................   48
on Make a parameter active or test its state .....................   48
readlk Read current lock level ...............................................   48
rtv Retrieve individual parameters ...................................   48
shell Start a UNIX shell ......................................................   48
solppm Return ppm and peak width of solvent resonances ....   48
substr Select a substring from a string ..................................   49
textis Return the current text display status .........................   49
unit Define conversion units ..............................................   49

Chapter 2. Pulse Sequence Programming..................................................... 51

2.1 Application Type and Execpars Programming .......................................................... 51
apptypes .............................................................................................................  52
execpar Parameters ............................................................................................  52
Protocol Programming .......................................................................................  54

2.2 Overview of Pulse Sequence Programming .............................................................. 55
Spectrometer Differences ..................................................................................  55
Pulse Sequence Generation Directory ...............................................................  55
Compiling the New Pulse Sequence ..................................................................  56
Troubleshooting the New Pulse Sequence ........................................................  57
Creating a Parameter Table for Pulse Sequence Object Code ...........................  58
C Framework for Pulse Sequences ....................................................................  58
Implicit Acquisition ...........................................................................................  60
Acquisition Status Codes ...................................................................................  60

2.3 Spectrometer Control ................................................................................................. 60
Creating a Time Delay .......................................................................................  61
Pulsing the Observe Transmitter .......................................................................  62
Pulsing a Non-Observe Transmitter ..................................................................  64
Pulsing Channels Simultaneously .....................................................................  65
Setting Transmitter Quadrature Phase Shifts .....................................................  67
Setting Small-Angle Phase Shifts ......................................................................  67
Controlling the Offset Frequency ......................................................................  69
Controlling Observe and Decoupler Transmitter Power ...................................  70
Status and Gating ...............................................................................................  73
Interfacing to External User Devices ................................................................  75

2.4 Pulse Sequence Statements: Phase and Sequence Control ........................................ 76
Real-Time Variables and Constants ...................................................................  77
Calculating in Real-Time Using Integer Mathematics ......................................  78
Controlling a Sequence Using Real-Time Variables .........................................  79
Real-Time vs. Run-Time—When Do Things Happen? ....................................  80
Manipulating Acquisition Variables ..................................................................  80
Intertransient and Interincrement Delays ..........................................................  81
Controlling Pulse Sequence Graphical Display ................................................  82

2.5 Real-Time AP Tables ................................................................................................. 83
Loading AP Table Statements from Linux Text Files .......................................  83
Table Names and Statements .............................................................................  84
AP Table Notation .............................................................................................  84
Handling AP Tables ...........................................................................................  85



8 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Examples of Using AP Tables ...........................................................................  87
Using Internal Phase Tables ..............................................................................  87

2.6 Accessing Parameters ................................................................................................ 89
Categories of Parameters ...................................................................................  89
Looking Up Parameter Values ...........................................................................  96
Using Parameters in a Pulse Sequence ..............................................................  96

2.7 Using Interactive Parameter Adjustment ................................................................... 98
General Routines ...............................................................................................  98
Generic Pulse Routine .....................................................................................  100
Frequency Offset Subroutine ...........................................................................  101
Generic Delay Routine ....................................................................................  102
Fine Power Subroutine ....................................................................................  103

2.8 Hardware Looping and Explicit Acquisition ........................................................... 103
Controlling Hardware Looping .......................................................................  104
Number of Events in Hardware Loops ............................................................  104
Explicit Acquisition .........................................................................................  105
Receiver Phase For Explicit Acquisitions .......................................................  107
Multiple FID Acquisition ................................................................................  107

2.9 Pulse Sequence Synchronization ............................................................................. 108
External Time Base .........................................................................................  108
Controlling Rotor Synchronization .................................................................  108

2.10 Pulse Shaping ......................................................................................................... 108
File Specifications ...........................................................................................  109
Performing Shaped Pulses ...............................................................................  112
Programmable Transmitter Control .................................................................  114
Setting Spin Lock Waveform Control .............................................................  115
Shaped Pulse Calibration .................................................................................  115

2.11 Shaped Pulses Using Attenuators .......................................................................... 116
AP Bus Delay Constants .................................................................................  117
Controlling Shaped Pulses Using Attenuators ................................................  117
Controlling Attenuation ...................................................................................  118

2.12 Internal Hardware Delays ...................................................................................... 119
Delays from Changing Attenuation .................................................................  119
Delays from Changing Status ..........................................................................  120
Waveform Generator High-Speed Line Trigger ..............................................  121

2.13 Indirect Detection on Fixed-Frequency Channel ................................................... 122
Fixed-Frequency Decoupler ............................................................................  122

2.14 Multidimensional NMR ......................................................................................... 122
Hypercomplex 2D ...........................................................................................  123
Real Mode Phased 2D: TPPI ...........................................................................  124

2.15 Gradient Control for PFG and Imaging ................................................................. 125
Setting the Gradient Current Amplifier Level .................................................  126
Generating a Gradient Pulse ............................................................................  127
Controlling Lock Field Correction Circuitry ...................................................  127
Programming Microimaging Pulse Sequences ................................................  127



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 9

2.16 Programming the Performa XYZ PFG Module ..................................................... 127
Creating Gradient Tables .................................................................................  128
Pulse Sequence Programming .........................................................................  128

2.17 Imaging-Related Statements .................................................................................. 129
Real-time Gradient Statements ........................................................................  131
Oblique Gradient Statements ...........................................................................  131
Global List and Position Statements ................................................................  131
Looping Statements .........................................................................................  131
Waveform Initialization Statements ................................................................  132

2.18 User-Customized Pulse Sequence Generation ....................................................... 132

Chapter 3. Pulse Sequence Statement Reference....................................... 133
abort_message Send an error to VnmrJ and abort the PSG process ............ 140
acquire Explicitly acquire data ........................................................ 140
add Add integer values .............................................................. 141
apovrride Override internal software AP bus delay ............................ 141
apshaped_decpulse First decoupler pulse shaping via AP bus ........................... 142
apshaped_dec2pulse Second decoupler pulse shaping via AP bus ....................... 142
apshaped_pulse Observe transmitter pulse shaping via AP bus .................... 143
assign Assign integer values .......................................................... 144
blankingoff Unblank amplifier channels and turn amplifiers on ............ 145
blankingon Blank amplifier channels and turn amplifiers off ............... 145
blankoff Stop blanking observe or decoupler amplifier (obsolete) ... 145
blankon Start blanking observe or decoupler amplifier (obsolete) ... 146
clearapdatatable Zero all data in acquisition processor memory ................... 146
create_delay_list Create table of delays .......................................................... 146
create_freq_list Create table of frequencies .................................................. 148
create_offset_list Create table of frequency offsets ......................................... 148
dbl Double an integer value ...................................................... 151
dcplrphase Set small-angle phase of 1st decoupler ............................... 151
dcplr2phase Set small-angle phase of 2nd decoupler .............................. 152
dcplr3phase Set small-angle phase of 3rd decoupler .............................. 153
decblank Blank amplifier associated with first decoupler .................. 153
dec2blank Blank amplifier associated with second decoupler ............. 153
dec3blank Blank amplifier associated with third decoupler ................. 154
declvloff Return first decoupler back to “normal” power .................. 154
declvlon Turn on first decoupler to full power .................................. 154
decoff Turn off first decoupler ....................................................... 154
dec2off Turn off second decoupler ................................................... 155
dec3off Turn off third decoupler ...................................................... 155
decoffset Change offset frequency of first decoupler ......................... 155
dec2offset Change offset frequency of second decoupler .................... 155
dec3offset Change offset frequency of third decoupler ........................ 155
dec4offset Change offset frequency of fourth decoupler ...................... 156
decon Turn on first decoupler ........................................................ 156
dec2on Turn on second decoupler ................................................... 156
dec3on Turn on third decoupler ....................................................... 157
decphase Set quadrature phase of first decoupler ............................... 157
dec2phase Set quadrature phase of second decoupler .......................... 157
dec3phase Set quadrature phase of third decoupler .............................. 157
dec4phase Set quadrature phase of fourth decoupler ........................... 158
decpower Change first decoupler power level .................................... 158



10 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

dec2power Change second decoupler power level ................................ 158
dec3power Change third decoupler power level ................................... 159
dec4power Change fourth decoupler power level ................................. 159
decprgoff End programmable decoupling on first decoupler .............. 159
dec2prgoff End programmable decoupling on second decoupler ......... 160
dec3prgoff End programmable decoupling on third decoupler ............. 160
decprgon Start programmable decoupling on first decoupler ............. 160
dec2prgon Start programmable decoupling on second decoupler ........ 161
dec3prgon Start programmable decoupling on third decoupler ............ 161
decpulse Pulse first decoupler transmitter with amplifier gating ....... 162
decpwr Set first decoupler high-power level, class C amplifier ...... 162
decpwrf Set first decoupler fine power ............................................. 163
dec2pwrf Set second decoupler fine power ........................................ 163
dec3pwrf Set third decoupler fine power ............................................ 163
decr Decrement an integer value ................................................. 164
decrgpulse Pulse first decoupler with amplifier gating ......................... 164
dec2rgpulse Pulse second decoupler with amplifier gating .................... 165
dec3rgpulse Pulse third decoupler with amplifier gating ........................ 166
dec4rgpulse Pulse fourth decoupler with amplifier gating ...................... 166
decshaped_pulse Perform shaped pulse on first decoupler ............................. 167
dec2shaped_pulse Perform shaped pulse on second decoupler ........................ 168
dec3shaped_pulse Perform shaped pulse on third decoupler ............................ 169
decspinlock Set spin lock waveform control on first decoupler ............. 170
dec2spinlock Set spin lock waveform control on second decoupler ......... 170
dec3spinlock Set spin lock waveform control on third decoupler ............ 171
decstepsize Set step size for first decoupler ........................................... 171
dec2stepsize Set step size for second decoupler ...................................... 172
dec3stepsize Set step size for third decoupler .......................................... 172
decunblank Unblank amplifier associated with first decoupler ............. 172
dec2unblank Unblank amplifier associated with second decoupler ......... 173
dec3unblank Unblank amplifier associated with third decoupler ............ 173
delay Delay for a specified time ................................................... 173
dhpflag Switch decoupling from low-power to high-power ............ 173
divn Divide integer values .......................................................... 174
dps_off Turn off graphical display of statements ............................. 174
dps_on Turn on graphical display of statements ............................. 174
dps_show Draw delay or pulses in a sequence for graphical display .. 174
dps_skip Skip graphical display of next statement ............................ 177
elsenz Execute succeeding statements if argument is nonzero ...... 177
endhardloop End hardware loop .............................................................. 178
endif End execution started by ifzero or elsenz ........................... 178
endloop End loop .............................................................................. 178
endmsloop End multislice loop ............................................................. 178
endpeloop End phase-encode loop ....................................................... 179
gate Device gating (obsolete) ..................................................... 180
getarray Get arrayed parameter values .............................................. 180
getelem Retrieve an element from a table ........................................ 180
getorientation Read image plane orientation .............................................. 181
getstr Look up value of string parameter ...................................... 182
getval Look up value of numeric parameter .................................. 182
G_Delay Generic delay routine .......................................................... 183
G_Offset Frequency offset routine ..................................................... 183
G_Power Fine power routine .............................................................. 183
G_Pulse Generic pulse routine .......................................................... 183



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 11

hdwshiminit Initialize next delay for hardware shimming ...................... 184
hlv Find half the value of an integer ......................................... 184
hsdelay Delay specified time with possible homospoil pulse .......... 185
idecpulse Pulse first decoupler transmitter with IPA .......................... 186
idecrgpulse Pulse first decoupler with amplifier gating and IPA ........... 186
idelay Delay for a specified time with IPA .................................... 187
ifzero Execute succeeding statements if argument is zero  ........... 187
incdelay Set real-time incremental delay ........................................... 188
incgradient Generate dynamic variable gradient pulse .......................... 188
incr Increment an integer value .................................................. 189
indirect Set indirect detection ........................................................... 189
init_rfpattern Create rf pattern file ............................................................ 189
init_gradpattern Create gradient pattern file .................................................. 191
initdelay Initialize incremental delay ................................................. 191
initparms_sis Initialize parameters for spectroscopy imaging sequences . 192
initval Initialize a real-time variable to specified value ................. 192
iobspulse Pulse observe transmitter with IPA ..................................... 192
ioffset Change offset frequency with IPA ...................................... 193
ipulse Pulse observe transmitter with IPA ..................................... 193
ipwrf Change transmitter or decoupler fine power with IPA ........ 194
ipwrm Change transmitter or decoupler lin. mod. power with IPA 194
irgpulse Pulse observe transmitter with IPA ..................................... 194
lk_hold Set lock correction circuitry to hold correction .................. 195
lk_sample Set lock correction circuitry to sample lock signal ............. 195
loadtable Load table elements from table text file .............................. 196
loop Start loop ............................................................................. 196
loop_check Check that number of FIDs is consistent with number of slices, 

etc. 197
magradient Simultaneous gradient at the magic angle ........................... 197
magradpulse Gradient pulse at the magic angle ....................................... 198
mashapedgradient Simultaneous shaped gradient at the magic angle .............. 198
mashapedgradpulse Simultaneous shaped gradient pulse at the magic angle ..... 199
mod2 Find integer value modulo 2 ............................................... 200
mod4 Find integer value modulo 4 ............................................... 200
modn Find integer value modulo n ............................................... 200
msloop Multislice loop .................................................................... 200
mult Multiply integer values ....................................................... 201
obl_gradient Execute an oblique gradient ................................................ 202
oblique_gradient Execute an oblique gradient ................................................ 202
obl_shapedgradient Execute a shaped oblique gradient ...................................... 203
oblique_shapedgradient Execute a shaped oblique gradient ...................................... 203
obsblank Blank amplifier associated with observe transmitter .......... 205
obsoffset Change offset frequency of observe transmitter ................. 205
obspower Change observe transmitter power level ............................. 205
obsprgoff End programmable control of observe transmitter ............. 206
obsprgon Start programmable control of observe transmitter ............ 206
obspulse Pulse observe transmitter with amplifier gating ................. 206
obspwrf Set observe transmitter fine power ...................................... 207
obsstepsize Set step size for observe transmitter ................................... 207
obsunblank Unblank amplifier associated with observe transmitter ...... 207
offset Change offset frequency of transmitter or decoupler .......... 208
pbox_ad180 Generate adiabatic 180 deg. shapes using Pbox ................. 209
pbox_mix Generate mixing shapes using Pbox. .................................. 209



12 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

pboxHT_F1 Generate arbitrary Hadamard encoded shapes in F1 using Pbox 
210

pboxHT_F1e Generate Hadamard encoded excitation shapes in F1 using 
Pbox 210

pboxHT_F1i Generate Hadamard encoded inversion shapes in F1 using Pbox 
210

pboxHT_F1s Generate Hadamard encoded sequential inversion shapes . 211
pboxHT_F1r Generate Hadamard encoded refocusing shapes in F1 using 

Pbox 211
pe_gradient Oblique gradient with phase encode in one axis ................. 212
pe2_gradient Oblique gradient with phase encode in two axes ................ 212
pe3_gradient Oblique gradient with phase encode in three axes .............. 213
pe_shapedgradient Oblique shaped gradient with phase encode in one axis ..... 213
pe2_shapedgradient Oblique shaped gradient with phase encode in two axes .... 214
pe3_shapedgradient Oblique shaped gradient with phase encode in three axes .. 215
peloop Phase-encode loop ............................................................... 215
phase_encode_gradient Oblique gradient with phase encode in one axis ................. 216
phase_encode3_gradient Oblique gradient with phase encode in three axes .............. 217
phase_encode_shapedgradientOblique shaped gradient with PE in one axis .............. 217
phase_encode3_shapedgradientOblique shaped gradient with PE in three axes ......... 218
phaseshift Set phase-pulse technique, rf type A or B ........................... 219
poffset Set frequency based on position .......................................... 220
poffset_list Set frequency from position list .......................................... 220
position_offset Set frequency based on position .......................................... 220
position_offset_list Set frequency from position list .......................................... 221
power Change power level ............................................................. 221
psg_abort Abort the PSG process ........................................................ 222
pulse Pulse observe transmitter with amplifier gating ................. 222
putCmd Send a command to VnmrJ from a pulse sequence ............ 223
pwrf Change transmitter or decoupler fine power ....................... 224
pwrm Change transmitter or decoupler linear modulator power .. 224
rcvroff Turn off receiver gate and amplifier blanking gate ............. 225
rcvron Turn on receiver gate and amplifier blanking gate ............. 225
readuserap Read input from user AP register ........................................ 226
recoff Turn off receiver gate only .................................................. 227
recon Turn on receiver gate only .................................................. 227
rgpulse Pulse observe transmitter with amplifier gating ................. 227
rgradient Set gradient to specified level ............................................. 228
rlpower Change power level ............................................................. 228
rlpwrf Set transmitter or decoupler fine power (obsolete) ............. 229
rlpwrm Set transmitter or decoupler linear modulator power .......... 229
rotate Sets the standard oblique rotation angles ............................ 230
rot_angle Sets user defined oblique rotation angles ............................ 230
rotorperiod Obtain rotor period of MAS rotor ....................................... 230
rotorsync Gated pulse sequence delay from MAS rotor position ....... 230
setautoincrement Set autoincrement attribute for a table ................................ 232
setdivnfactor Set divn-return attribute and divn-factor for table .............. 232
setreceiver Associate the receiver phase cycle with a table .................. 232
setstatus Set status of observe transmitter or decoupler transmitter .. 233
settable Store an array of integers in a real-time table ..................... 233
setuserap Set user AP register ............................................................. 234
shapedpulse Perform shaped pulse on observe transmitter ..................... 234
shaped_pulse Perform shaped pulse on observe transmitter ..................... 234
shapedgradient Generate shaped gradient pulse ........................................... 235



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 13

shaped2Dgradient Generate arrayed shaped gradient pulse .............................. 237
shapedincgradient Generate dynamic variable gradient pulse .......................... 238
shapedvgradient Generate dynamic variable shaped gradient pulse .............. 239
simpulse Pulse observe and decouple channels simultaneously ........ 241
sim3pulse Pulse simultaneously on 2 or 3 rf channels ......................... 242
sim4pulse Simultaneous pulse on four channels .................................. 242
simshaped_pulse Perform simultaneous two-pulse shaped pulse ................... 243
sim3shaped_pulse Perform a simultaneous three-pulse shaped pulse .............. 244
sli Set SLI lines ........................................................................ 245
sp#off Turn off specified spare line (Inova #=1 to 5) .................... 246
sp#on Turn on specified spare line (Inova #=1 to 5) ..................... 247
spinlock Control spin lock on observe transmitter ............................ 247
starthardloop Start hardware loop ............................................................. 248
status Change status of decoupler and homospoil (z-shim coil) ... 248
statusdelay Execute the status statement with a given delay time ......... 249
stepsize Set small-angle phase step size ........................................... 250
sub Subtract integer values ........................................................ 251
text_error Send a text error message to VnmrJ .................................... 251
text_message Send a message to VnmrJ ................................................... 252
tsadd Add an integer to table elements ......................................... 252
tsdiv Divide an integer into table elements .................................. 252
tsmult Multiply an integer with table elements .............................. 252
tssub Subtract an integer from table elements .............................. 253
ttadd Add a table to a second table .............................................. 253
ttdiv Divide a table into a second table ....................................... 254
ttmult Multiply a table by a second table ...................................... 254
ttsub Subtract a table from a second table ................................... 254
txphase Set quadrature phase of observe transmitter ....................... 255
vagradient Variable angle gradient ........................................................ 256
vagradpulse Variable angle gradient pulse .............................................. 256
var_active Checks if the parameter is being used ................................. 257
vashapedgradient Variable angle shaped gradient ........................................... 257
vashapedgradpulse Variable angle shaped gradient pulse .................................. 258
vdelay Set delay with fixed timebase and real-time count ............. 259
vdelay_list Get delay value from delay list with real-time index .......... 260
vfreq Select frequency from table ................................................ 261
vgradient Set gradient to a level determined by real-time math ......... 261
voffset Select frequency offset from table ...................................... 263
vsetuserap Set user AP register using real-time variable ...................... 263
warn_message Send a warning message to VnmrJ ..................................... 264
xgate Gate pulse sequence from an external event ....................... 264
xmtroff Turn off observe transmitter ................................................ 264
xmtron Turn on observe transmitter ................................................ 264
xmtrphase Set transmitter small-angle phase ....................................... 265
zero_all_gradients Zero all gradients ................................................................ 265
zgradpulse Create a gradient pulse on the z channel ............................. 266

Chapter 4. Linux Level Programming........................................................... 267

4.1 Linux and VnmrJ ..................................................................................................... 267

4.2 Linux Reference Guide ............................................................................................ 267
Command Entry ...............................................................................................  268
File Names ......................................................................................................  268



14 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

File Handling Commands ................................................................................  268
Directory Names .............................................................................................  268
Directory Handling Commands .......................................................................  268
Text Commands ...............................................................................................  269
Other Commands ............................................................................................  269
Special Characters ...........................................................................................  269

4.3 Linux Commands Accessible from VnmrJ .............................................................. 270
Opening a Text Editor from VnmrJ .................................................................  270
Opening a Shell from VnmrJ ...........................................................................  270

4.4 Background VNMR ................................................................................................. 270
Running VNMR Command as a Linux Background Task ..............................  270
Running VNMR Processing in the Background .............................................  271

4.5 Shell Programming .................................................................................................. 272
Shell Variables and Control Formats ...............................................................  272
Shell Scripts .....................................................................................................  272

Chapter 5. Parameters and Data ................................................................... 273

5.1 VnmrJ Data Files ..................................................................................................... 273
Binary Data Files .............................................................................................  273
Data File Structures .........................................................................................  275
VnmrJ Use of Binary Data Files .....................................................................  278
Storing Multiple Traces ...................................................................................  279
Header and Data Display .................................................................................  280

5.2 FDF (Flexible Data Format) Files ........................................................................... 280
File Structures and Naming Conventions ........................................................  280
File Format ......................................................................................................  281
Header Parameters ...........................................................................................  282
Transformations ...............................................................................................  284
Creating FDF Files ..........................................................................................  284
Splitting FDF Files ..........................................................................................  285

5.3 Reformatting Data for Processing ............................................................................ 285
Standard and Compressed Formats .................................................................  286
Compress or Decompress Data .......................................................................  287
Move and Reverse Data ...................................................................................  287
Table Convert Data ..........................................................................................  287
Reformatting Spectra .......................................................................................  287

5.4 Creating and Modifying Parameters ........................................................................ 288
Parameter Types and Trees ..............................................................................  289
Tools for Working with Parameter Trees .........................................................  289
Format of a Stored Parameter ..........................................................................  292

5.5 Modifying Parameter Displays in VNMR ............................................................... 294
Display Template .............................................................................................  294
Conditional and Arrayed Displays ..................................................................  296
Output Format .................................................................................................  297

5.6 User-Written Weighting Functions .......................................................................... 297
Writing a Weighting Function .........................................................................  298



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 15

Compiling the Weighting Function .................................................................  299

5.7 User-Written FID Files ............................................................................................ 300

Chapter 6. Panels, Toolbars, and Menus ..................................................... 301

6.1 Parameter Panel Features ......................................................................................... 301

6.2 Using the Panel Editor ............................................................................................. 301
Starting the Panel Editor ..................................................................................  301
Editing Existing Panel Elements .....................................................................  303
Adding and Removing Panel Elements ...........................................................  304
Saving Panel Changes .....................................................................................  305
Exiting the Panel Editor ...................................................................................  307

6.3 Panel Elements ......................................................................................................... 307
Element Style ...................................................................................................  308
Panel Element Attributes .................................................................................  308
Panel Elements ................................................................................................  309

6.4 Creating a New Panel .............................................................................................. 323
Writing Commands ..........................................................................................  323
Creating a New Panel Layout ..........................................................................  324
Creating a New Page .......................................................................................  324
Defining and Populating a Page ......................................................................  325
Saving and Retrieving a Panel Element ..........................................................  325
Files Associated with Panels ...........................................................................  326
Sizing Panels ...................................................................................................  327

6.5 Graphical Toolbar Menus ........................................................................................ 327
Editing the Toolbar Menu ................................................................................  327
Graphics Toolbar Parameters ..........................................................................  328
Icons ................................................................................................................  328
Menu File Description Example, dconi ...........................................................  328

Index 339



16 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 17

List of Figures

Figure 1. Amplifier Gating ............................................................................................................  62

Figure 2. Pulse Observe and Decoupler Channels Simultaneously ...............................................  66

Figure 3. Waveform Generator Offset Delay ...............................................................................  122

Figure 4. Magnet Coordinates as Related to User Coordinates. ..................................................  283

Figure 5. Single-String Display Template with Output ...............................................................  295

Figure 6. Multiple-String Display Template ................................................................................  296

Figure 7. Panel Editor Window ...................................................................................................  302

Figure 8. Panel and Locator when Panel Editor is Open .............................................................  302

Figure 9. Dir Menu ......................................................................................................................  306

Figure 10. Type Menu ..................................................................................................................  306



18 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708



19 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

List of Tables

Table 1. Reserved Words in MAGICAL. ......................................................................................  28

Table 2. Order of Operator Precedence (Highest First) in MAGICAL .........................................  29

Table 3. Variable Types in Pulse Sequences ..................................................................................  59

Table 4. Delay-Related Statements ................................................................................................  61

Table 5. Observe Transmitter Pulse-Related Statements ...............................................................  62

Table 6. Decoupler Transmitter Pulse-Related Statements ............................................................  64

Table 7. Simultaneous Pulses Statements ......................................................................................  65

Table 8. Transmitter Quadrature Phase Control Statements ..........................................................  67

Table 9. Phase Shift Statements .....................................................................................................  68

Table 10. Frequency Control Statements .......................................................................................  70

Table 11. Power Control Statements ..............................................................................................  71

Table 12. Gating Control Statements .............................................................................................  73

Table 13. Mapping of User AP Lines ............................................................................................  76

Table 14. Integer Mathematics Statements ....................................................................................  78

Table 15. Pulse Sequence Control Statements ...............................................................................  79

Table 16. Statements for Controlling Graphical Display of a Sequence .......................................  82

Table 17. Statements for Handling AP Tables ...............................................................................  85

Table 18. Parameter Value Lookup Statements .............................................................................  89

Table 19. Global PSG Parameters .................................................................................................  89

Table 20. Imaging and Other Variables .........................................................................................  92

Table 21. Hardware Looping Related Statements .......................................................................  104

Table 22. Number of Events for Statements in a Hardware Loop ...............................................  106

Table 23. Rotor Synchronization Control Statements .................................................................  108

Table 24. Shapelib File Suffix List ..............................................................................................  109

Table 25. RF Patterns ...................................................................................................................  110

Table 26. Decoupler Patterns ........................................................................................................ 111

Table 27. Gradient Patterns ........................................................................................................... 111

Table 28. Shaped Pulse Statements ..............................................................................................  112

Table 29. Programmable Control Statements ..............................................................................  114

Table 30. Spin Lock Control Statements .....................................................................................  115

Table 31. AP Bus Delay Constants  .............................................................................................  117

Table 32. Statements for Pulse Shaping Through the AP Bus .....................................................  118

Table 33. AP Bus Overhead Delays ............................................................................................  119

Table 34. Example of AP Bus Overhead Delays for status Statement ...................................  121

Table 35. Multidimensional PSG Variables .................................................................................  124

Table 36. Gradient Control Statements ........................................................................................  125

Table 37. Delays for Obliquing and Shaped Gradient Statements ..............................................  126

Table 38. Performa XYZ PFG Module Statements .....................................................................  129

Table 39. Imaging-Related Statements ........................................................................................  130

Table 40. Commands for Reformatting Data ...............................................................................  286

Table 41. Commands for Working with Parameter Trees ............................................................  290

Table 42. Common Attributes of Panel Elements .......................................................................  308

Table 43. Panels and Locations ...................................................................................................  326



20 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Table 44. Acquisition Status Codes .............................................................................................  333



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 21

Introduction

VnmrJ software provides NMR users with a programming environment for customizing the 
system software and the operator interface. This manual covers MAGICAL programming, 
pulse sequence programming, and manipulating parameters and data.

Overview of this Manual

This manual explains how to use these capabilities:

• Chapter 1, “MAGICAL II Programming,” describes MAGICAL II (MAGnetics 
Instrument Control and Analysis Language), a powerful software application that 
enables full automation of spectrometer operation and data analysis using macros.

• Chapter 2, “Pulse Sequence Programming,” covers pulse sequence programming 
using Varian’s powerful and extensive set of pulse sequence statements.

• Chapter 3, “Pulse Sequence Statement Reference,”  is an alphabetical reference to each 
pulse sequence statement in VnmrJ. 

• Chapter 4, “Linux Level Programming,” is an overview of the operating system. 

• Chapter 5, “Parameters and Data,” covers manipulating parameters, using data files, 
modifying parameter displays, and writing user-defined weighting functions

Notational Conventions

The following notational conventions are used throughout all VnmrJ manuals:

• Typewriter-like characters identify VnmrJ and UNIX commands, 
parameters, directories, and file names in the text of the manual. For example:

The shutdown command is in the /etc directory.

• Typewriter-like characters also show text displayed on the screen, 
including the text echoed on the screen as commands are entered. For example:

Self test completed successfully.

• Text shown between angled brackets (<...>) in a syntax entry is optional. For example, 
if the syntax is seqgen s2pul<.c>, entering the “.c” suffix is optional, and typing 
seqgen s2pul.c or seqgen s2pul is functionally the same. 

• Lines of text containing command syntax, examples of statements, source code, and 
similar material are often too long to fit the width of the page. To show that a line of 
text had to be broken to fit into the manual, the line is cut at a convenient point (such 
as at a comma near the right edge of the column), a backslash (\) is inserted at the cut, 
and the line is continued as the next line of text. This notation will be familiar to C 
programmers. Note that the backslash is not part of the line and, except for C source 
code, should not be typed when entering the line. 

• Because pressing the Return key is required at the end of almost every command or 
line of text typed on the keyboard, use of the Return key is mentioned only in cases 
where it is not used. This convention avoids repeating the instruction “press the Return 
key” throughout most of this manual. 

• Text with a change bar (like this paragraph) identifies new VnmrJ material.



22 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 23

Chapter 1. MAGICAL II Programming

Sections in this chapter:

• 1.1 “Working with Macros,” this page 

• 1.2 “Programming with MAGICAL,” page 27 

• 1.3 “Relevant VnmrJ Commands,” page 38 

Many of the actions performed on an NMR spectrometer are performed many times a day. 
VnmrJ software incorporates a high-level macro programming language designed for 
NMR called “NMR” language, MAGICAL II™ (MAGnetics Instrument Control and 
Analysis Language, version II—usually just called MAGICAL in this chapter) to make 
these actions easier. Many commands used in VnmrJ are macros (see /vnmr/maclib).

1.1 Working with Macros 
• “Writing a Macro,” page 24

• “Executing a Macro,” page 24

• “Transferring Macro Output,” page 26

• “Loading Macros into Memory,” page 26

A macro is a user-defined command containing a long series of commands and parameter 
changes that are enter one by one. A spectrum is plotted with a scale under the spectrum, 
and parameters on the page using the following sequence of commands:
pl

pscale

hpa

page

A macro, called plot, containing these commands can be written. A macro called 
plot_2d using certain parameters to routinely plot 2D spectra can be written:
wc=160

sc=20

wc2=160

sc2=20

pcon(10,1.4)

page

MAGICAL provides an entire series of programming tools, such as if statements and 
loops, that can be used as part of macros. MAGICAL also provides other NMR-related 
tools which give access to NMR information like peak heights, integrals, and spectral 
regions. Using these two sets of tools, “NMR algorithms” are easily implemented with 
MAGICAL.



Chapter 1. MAGICAL II Programming

24 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Writing a Macro

Consider the following problem: find the largest peak in a spectrum in which the peaks may 
be positive or negative (such as an APT spectrum) and adjust the vertical scale of the 
spectrum so that the tallest peak is 180 mm high. The following macro (or MAGICAL 
program) that we call vsadj illustrates how the MAGICAL tools can be used to quickly 
and simply find a solution:

As written, the macro vsadj has four lines:

• The material in double-quotation marks (the first line and parts of other lines) are 
comments. MAGICAL permits comments, and as is good programming practice, this 
example is filled with comments to explain what is happening. 

• The second line of the macro (“peak:$height,...”) illustrates the ability of 
MAGICAL to extract spectral information. The peak command looks through the 
spectrum and returns to the user the height and frequency of the tallest peak in the 
spectrum, which are then stored (in this example) in temporary variables named 
$height and $frequency.

• The third line of the macro (“if $height<0...”) illustrates that MAGICAL is a 
high-level programming language, with conditional statements (e.g., if... 
then...), loops, etc. This particular line ensures that the peak height we measure is 
always a positive value, which is necessary for the calculation in the next line.

• The last line (“vs=180*vs...”) illustrates the use of NMR parameters (like vs, 
which sets the vertical scale) as simple variables in our macro. This line accomplishes 
the task of calculating a new value of vs that will make the height of the tallest peak 
equal to 180 mm.

Part of the power of the MAGICAL macro language is its ability to build on itself. For 
example, we can create first-level macros out of existing commands, second-level macros 
out of first-level macros and commands, and so on. Suppose we created a macro plot, for 
example, we might also create a macro setuph, another macro acquireh, and yet 
another macro processh. Now we might create a “higher-level” macro, H1, which is 
equivalent to setuph acquireh processh plot. Perhaps we have created two more 
similar macros, C13 and APT. Now we might create yet another higher-level macro 
HCAPT, equivalent to H1 C13 APT. At every step of the way, the power of the macro 
increases, but without increasing the complexity.

Many macros are part of the standard VnmrJ software. These macros are discussed in the 
relevant chapters of the manual Getting Started—processing macros are discussed along 
with processing commands, acquisition setup macros along with acquisition setup 
commands, etc. Refer to the VnmrJ Command and Parameter Reference for a concise 
description of standard macros. The examples used here are instructive examples and do 
not necessarily represent standard Varian software.

Executing a Macro

When any program is executed, the command interpreter first checks to see if it is a 
standard VnmrJ command. If the program is not a command, the command interpreter then 

“vsadj --- Adjust scale of spectrum"

peak:$height,$frequency "Find largest peak"

if $height<0 then $height=-$height endif "If negative, make 
positive"

vs=180*vs/$height "Adjust the vertical 
scale"



1.1 Working with Macros

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 25

attempts to find a macro with the program name. Unlike a built-in VnmrJ command, which 
is a built-in procedure containing code that normally cannot be changed by users, the code 
inside a macro is text that is accessible and can be changed by users as needed. 

If a VnmrJ command and a macro have the same name, the VnmrJ command always takes 
precedence over a macro. For example, there is a built-in VnmrJ command named wft. If 
someone happens to write a macro also named wft, the macro wft will never get executed 
because the VnmrJ command wft takes precedence. To get around this restriction, the 
hidecommand command can rename a command so that a macro with the same name as 
a command is executed instead of the built-in command. If the user who wrote the wft 
macro enters hidecommand('wft'), the command is renamed to Wft (first letter made 
upper case) and the macro wft is now executable directly. The new wft macro can access 
the hidden wft built-in command by calling it with the name Wft. To go back to executing 
the command wft first, enter hidecommand('Wft'). 

Macro files can reside in four separate locations:

1. In the user’s maclib directory. 

2. In the directory pointed to by the maclibpath parameter (if maclibpath is 
defined in the user's global parameter file).

3. In the directory pointed to by the sysmaclibpath parameter (if defined).

4. In the system maclib directory.

When macros are executed, the four locations are searched in this order. The first location 
found is the one that is used. For example, rt is a standard VNMR macro in the system 
maclib. If a user puts a macro named rt in the user’s maclib, the user’s rt macro takes 
precedence over the system rt macro.

The which macro can search these locations and display the information it finds about 
which location contains a macro. For example, entering which('rt') determines the 
location of the macro rt.

The system macro directory /vnmr/maclib can be changed by the system operator only, 
but changes to it are available to all users. Each user also has their own private macro 
directory maclib in the user’s vnmrsys directory. These macros take precedence over 
the system macros if a macro of the same name is in both directories. Thus, users can 
modify a macro to their own needs without affecting the operation of other users. If the 
command interpreter does not find the macro, it displays an error message to the user.

Macros are executed in exactly the same way as normal system commands, including the 
possibility of accepting optional arguments (shown by angled brackets “<...>”):
macroname<(argument1<,argument2,...>)>

Arguments passed to commands and macros can be constants (examples are 5.0 and 
'apt'), parameters and variables (pw and $ht), or expressions (2*pw+5.0). Recursive 
calls to procedures are allowed. Single quotes must be used around constant strings.

Macros can also be executed three other ways:

• When the VnmrJ program is first run, a system macro bootup is run. This macro in 
turn runs a user macro named login in the user’s local maclib directory if such a 
macro exists.

• When any parameter x is entered, if that parameter has a certain “protection bit” set 
(see “Format of a Stored Parameter,” page 292), a macro by the name _x (that is, the 
same name as the parameter with an underline as a prefix) is executed. For example, 
changing the value of sw executes the macro _sw.



Chapter 1. MAGICAL II Programming

26 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

• Whenever parameters are retrieved with the rt, rtp, or rtv commands, a macro 
named fixpar is executed.

If the macro needs to know what macro invoked it, that information is stored by the string 
parameter macro available in each parameter set.

Transferring Macro Output

Output from many commands and macros, in addition to being displayed on the screen or 
placed in a file, can also be transferred into any parameter or variable of the same type. To 
receive the output of a program of this type, the program name (and arguments, if any) are 
followed by a colon (:) and one or more names of variables and parameters that are to take 
the output: 
macroname<(arg1<,arg2,...>)>:variable1,variable2,...

For example, the command peak (described on page 40) finds the height and frequency of 
the tallest peak. Entering the command:
peak:r1,r2 

results in r1 containing the height of the tallest peak and r2 its frequency. Therefore, 
entering the command
peak:$ht,cr 

would set $ht equal to the height of the tallest peak and set the cursor (parameter cr) equal 
to its frequency, and thus would be the equivalent of a “tallest line” command (similar to 
but different than the command nl to position the cursor at the nearest line).

It is not necessary to receive all of the information. For example, entering
peak:$peakht 

puts the height of the tallest peak into the variable $peakht, and does not save the 
information about the peak frequency. 

The command that displays a line list, dll, also produces one output—the number of lines. 
Entering
dll:$n 

reads the number of lines into variable $n. dll alone is perfectly acceptable although the 
information about the number of lines is then “lost.”

Loading Macros into Memory

Every time a macro is used, it is “parsed” before it is executed. This parsing takes time. If 
a macro is used many times or if faster execution speed is desirable, the parsed form of the 
macro, user or system, can be loaded into memory by the macrold command. When that 
macro is executed, it runs substantially faster. One or more macros can be “pre-loaded” to 
run automatically when VnmrJ is started by inserting some macrold commands into your 
login macro.

Macros are also loaded into memory by the macrovi or macroedit commands to edit 
the macro. The only argument in each is the name of the macro file; for example, enter 
macrovi('pa') or macroedit('pa') if the macro name is pa. The choice depends 
on the type of macro and the text editor required:

• For a user macro, use macrovi a vi based editor.

• For a user macro from an editor, select macroedit.

• To edit a system macro, copy the macro to your personal macro directory and edit it 
there with macrovi or macroedit.



1.2 Programming with MAGICAL

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 27

To select the editor for macroedit, set the operating systems (OS) variable 
vnmreditor to its name (vnmreditor is set through the OS env command). A script 
for the editor in the bin subdirectory of the VnmrJ system directory must also exist. For 
example, to select Emacs, set vnmreditor=emacs and have a script vnmr_emacs. 

Several minor problems need to be considered in loading macros into memory:

• These macros consume a small amount of memory. In memory-critical situations, 
remove one or more macros from memory using the purge<(file)> command, 
where file is the name of a macro file to be removed from memory. Entering purge 
with no arguments removes all macros loaded into memory. 

CAUTION: The purge command with no arguments should never be called from 
a macro, because it will remove all macros from memory, including the 
macro containing purge. Furthermore, purge, where the argument is 
the name of the macro containing the purge command, should never 
be called.

• A macro loaded in memory and modified from a separate terminal window leaves the 
copy in memory is unchanged. Executing the causes VNMR to execute the old copy 
in memory. Use macrovi or macroedit to edit the macro, or if the macro has been 
edited in another window use macrold to replace the macro loaded in memory with 
the new version.

A personal macro created with the same name as a system macro already in memory 
requires the use of purge to clear the system macro from memory so the personal version 
in maclib directory is subsequently be executed.

Performance is improved if a macro called inside a macro loop is called before entering the 
loop and executing the loop. Remove the called macro from memory with the purge 
command after exiting the loop.

1.2 Programming with MAGICAL
• “Tokens,” page 28

• “Variable Types,” page 31

• “Arrays,” page 32

• “Expressions,” page 34

• “Input Arguments,” page 35

• “Name Replacement,” page 36

• “Conditional Statements,” page 36

• “Loops,” page 37

• “Macro Length and Termination,” page 38

• “Command and Macro Tracing,” page 38

MAGICAL has many features, including tokens, variables, expressions, conditional 
statements, and loops. To program in MAGICAL, be aware of the main features described 
in this section.



Chapter 1. MAGICAL II Programming

28 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Tokens

A token is a character or characters that is taken by the language as a single “thing” or 
“unit.” There are five classes of tokens in MAGICAL: identifiers, reserved words, 
constants, operators, and separators.

Identifiers

An identifier is the name of a command, macro, parameter, or variable, and is a sequence 
of letters, digits, and the characters _ $ #. The underline _ counts as a letter. Upper and 
lower case letters are different. The first letter of identifiers, except temporary variable 
identifiers, must be a letter. Temporary variable identifiers start with the dollar-sign 
($) character. Identifiers can be any length (but be reasonable). Examples of identifiers are 
pcon, _pw, or $height.

Reserved Words

The identifiers listed in Table 1 are reserved words and may not be used otherwise. 
Reserved words are recognized in both upper and lower case formats (e.g., do not use either 
and or AND except as a reserved word).

Constants

Constants can be either floating or string.

• A floating constant consists of an integer part, a decimal point, a fractional part, the 
letter E (or e) and, optionally, a signed integer exponent. The integer and fraction parts 
both consist of a sequence of digits. Either the integer part or the fraction part (but not 
both) may be missing; similarly, either the decimal point, or the E (or e) and the 
exponent may be missing. Some examples are 1.37E–3, 4e5, .2E2, 1.4, 5.

• A string constant is a sequence of characters surrounded by single-quote characters 
('...') or by backward single-quote characters (`...`). 'This is a string' and 
`This is a string` are examples of string constants. 

To include a single-quote character in a string, place a backslash character (\) before 
the single-quote character, for example:

'This string isn\'t permissible without the backslash' 

To include a backslash character in the string, place another backslash before the 
backslash, such as

'This string includes the backslash \\' 

Alternatively, the two styles of single quote characters can be used. If backward single 
quotes are used to delimit a string, then single quotes can be placed directly within the 
string, for example:

`This isn't a problem`

Table 1. Reserved Words in MAGICAL.

abort else not trunc

abortoff elseif or typeof

aborton endif repeat then

and endwhile return until

break if size while

do mod sqrt



1.2 Programming with MAGICAL

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 29

Or the single-quote styles can be exchanged, for example:

'This isn`t a problem'

The single quote style that initiates the string must also terminate the string.

Operators

Table 2 lists the operators available in MAGICAL. Each operator is placed in a group, and 
groups are shown in order of precedence, with the highest group precedence first. Within 
each group, operator precedence in expressions is from left to right, except for the logical 
group, where the respective members are listed in order of precedence.

There are four “built-in” special operators:

• sqrt returns the square root of a real number.

• trunc truncates real numbers.

• typeof returns an identifier (0, or 1) for the type (real, or string) of an argument. The 
typeof operator will abort if the identifier does not exist.

• size returns the number of elements in an arrayed parameter. 

The unary, multiplicative, and additive operators apply only to real variables. The + 
(addition) operator can also be used with string variables to concatenate two strings 
together. The mathematical operators can not be used with mixed variable types.

Table 2. Order of Operator Precedence (Highest First) in MAGICAL

Group Operation Description Example

special sqrt() square root a = sqrt(b)

trunc() truncation $3 = trunc(3.6)

typeof() return argument type if typeof('$1') then...

size() return argument size r1 = size('d2')

unary – negative a = –5

multiplicative * multiplication a = 2 * c

/ division b = a / 2

% remainder $1 = 4 % 3

mod modulo $3 = 7 mod 4

additive + addition a = x + 4

– subtraction b = y – sw

relational < less than if a < b then...

> greater than if a > b then...

<= less than or equal to if a <= b then...

>= greater than or equal to if a >= b then...

equality = equal to if a = b then...

<> not equal to if a <> b then...

logical not negation if not (a=b) then...

and logical and if r1 and r2 then...

or logical inclusive or if (r1=2) or (r2=4) 
then...

assignment = equal a = 3



Chapter 1. MAGICAL II Programming

30 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

If the variable is an array, the mathematical operators try to do simple matrix arithmetic. If 
two matrices of the same size are equated, added, subtracted, multiplied, divided, or one 
matrix is taken as a modulus, each element of the first matrix is operated on with the 
corresponding element of the second. If two matrices of the same size are compared with 
an and operator, the resulting Boolean is the AND of each individual element. If two 
matrices of the same size are ORed together, the resulting Boolean is the OR of each 
individual element. If the two matrices have unequal sizes, an error results. 

An arrayed variable cannot be operated on (added, multiplied, etc.) by a single-valued 
constant or variable. For example, if pw is an array of five values, pw=2*pw does not 
double the value of each element of the array.

Comments

MAGICAL programming provides three ways to enter comments:

• Create a comment by putting characters between double quotation marks ("..."), except 
when the double quotation marks are in a literal string, e.g.,

'The word “and” is a reserved word'

Comments based on double quotation marks can appear anywhere—at the beginning, 
middle, or end of a line—but cannot span multiple lines. At the end of a comment, 
place a second double quotation mark; otherwise, the comment is automatically 
terminated when the end of a line occurs.

• Create a single-line comment with two slash marks (//). The comment starts with the
// and ends on the line., e.g.,

// This is a comment

As with the double quotation marks, // in a literal string does not signify a comment. 
This type of comment is often used for a brief description of the preceding command, 
e.g., 

cdc // clear drift correction

• Create a single-line or multiple-lines comment with a slash and asterisk (/*), which 
begins the comment, and an asterisk and a slash (*/), which ends the comment, e.g., 

/* The comment
can span
multiple lines

*/

This type of comment is useful for longer descriptions. It is also useful for 
“commenting out” sections of a macro for debugging purposes.

Again, if the /* or */ are in a literal string, they do not serve as comment delimiters. 
These comments do not nest; that is, the following construct will fail,

/* 
/* Comment does not nest

This will cause an error
*/ 

*/ 

In this example, the first /* starts the comment. The second /* is ignored because it is 
part of the comment. The first */ terminates the comment, which causes the second 
*/ to generate an error. 

Separators

Blanks, tabs, new lines, and comments serve to separate tokens and are otherwise ignored. 



1.2 Programming with MAGICAL

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 31

Variable Types

As with many programming languages, MAGICAL provides two classes of variables:

• Global variables (also called external) that retain their values on a permanent or semi-
permanent basis. These are present in parameter sets and ~/vnmrsys/global, for 
example.

Global variables in this section refer to variables that retain their values upon exiting a 
macro and not specifically to the variables present in ~/vnmrsys/global.

• Local variables (also called temporary, dummy, or automatic) that are created for the 
time it takes to execute the macro in question, after which the variables no longer exist.

Global and local variables can be of two types: real and string. Global real variables are 
stored as double-precision (64-bit) floating point numbers. The real(variable) 
command creates a real variable without a value, where variable is the name of the 
variable to be created and stored in the current parameter set. 

Although global real variables have potential limits from 1e308 to 1e–308, when such 
variables are created, they are given default maximum and minimum values of 1e18 and 
–1e18; these can subsequently be changed with the setlimit command. For example, 
setlimit('r1',1e99,–1e99,0) sets variable r1 to limits of 1e99 and –1e99. 
Local real variables have limits slightly less than 1e18 (9.999999843067e17, to be 
precise) and cannot be changed.

String variables can have any number of characters, including a null string that has no 
characters. The command string(variable), where variable is the name of the 
variable to be created, creates a string variable without a value, and is stored in the current 
parameter set.

Both real and string variables can have either a single value or a series of values (also called 
an array).

Global and local variables have the following set of attributes associated with them:

The variable's attributes are used by programs when manipulating variables.

Global Variables

The most important global variables used in macros are the VnmrJ parameters themselves. 
Thus parameters like vs (vertical scale), nt (number of transients), at (acquisition time), 
etc., can be used in a MAGICAL macro. Like any variable, they can be used on the left side 
of an equation (and hence their value changed), or they can be used on the right side of an 
equation (as part of a calculation, perhaps to set another parameter).

The real-value parameters r1, r2, r3, r4, r5, r6, and r7, and the string parameters n1, 
n2, and n3 can be used by macros. These are experiment-based parameters. Setting these 
parameters in one experiment, exp1 for example, and running a macro that changes 
experiments, using the command jexp3 for example, causes a new set of such parameters 
to appear. Similarly, recalling parameters or data with the rt or rtp commands overwrites 
the current values of these parameters, just as it overwrites the values of all other 
parameters.

name group array size

basictype display group enumeration

subtype max./min. values protection status

active step size



Chapter 1. MAGICAL II Programming

32 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Within a single experiment, and assuming that the rt and rtp commands are not used, 
these parameters do act like global parameters in that all macros can read or write 
information into these parameters, and hence information can be passed from one macro to 
another. Thus they provide a useful place to store information that must be retained for 
some time or must be accessed by more than one macro—be sure that some other macro 
does not change the value of this variable in the meantime.

Variables stored in ~/vnmrsys/global are not experiment-based and retain their 
values even when jexp(experiment_number), rt<('file'<,'nolog'>)>, or 
rtp<('file')> are used.

Local Variables

Any number of local variables can be created within a macro. These temporary variables 
begin with the dollar-sign ($) character, such as $number and $peakht. The type of 
variable (real or string) is decided by the first usage—there is no variable declaration, as in 
many languages. Therefore, setting, $number=5 and $select='all' establishes 
$number as a real variable and $select as a string variable. 

A special initialization is required in one situation. When the first use of a string variable is 
as the return argument from a procedure, it must be initialized first by setting it to a null 
string. For example, a line such as
input('Input Your Name: '):$name 

produces an error. Use instead
$name=' ' input('Input Your Name: '):$name.

By definition, local variables are lost upon completion of the macro. Furthermore, they are 
completely local, which means that each macro, even a macro that is being run by another 
macro, has its own set of variables. If one macro sets $number=5 and then runs another 
macro that sets $number=10, when the second macro completes operation and the 
execution of commands returns to the first macro, $number equals 5, not 10. If the first 
macro is run again at a later time, $number starts with an undefined value. It is good 
practice to use local variables whenever possible.

Local variables can also be created on the command input line. These variables are 
automatically created but are not deleted, and hence this is not a recommended practice; use 
r1, r2, etc., instead.

Accessing a variable that does not exist displays the error message:
Variable “variable_name” doesn’t exist.

Arrays

Both global and local variables, whether real or string, can be arrayed. Array elements are 
referred to by square brackets ([...]), such as pw[1]. Indices for the array can be fixed 
numbers (pw[3]), global variables (pw[r1]), or local variables (pw[$i]). Of course, 
the index must not exceed the size of the array. Use the size operator to determine the 
array size. For example, the statement r1=size('d2') sets r1 to number of elements 
in variable d2. If the variable has only a single value, size returns a 1; if the variable 
doesn't exist, it returns a 0.

Some arrays, such as a pulse width array, are user-created. Other arrays, such as llfrq 
and llamp, are created by the software (in this case when a line list is performed). In both 
these cases, a macro can refer to any existing element of the array, pw[4] or llfrq[5], 
for example. 



1.2 Programming with MAGICAL

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 33

A MAGICAL macro can also create local variables containing arrayed information by 
itself. No dimensioning statement is required; the variable just expands as necessary. The 
only constraint is that the array must be created in order: element 1 is first, element 2 
second, and so on. The following example shows how an array might be created and all 
values initialized to 0:
$i=1

repeat

$newarray[$i]=0

$i=$i+1

until $i>10

Arrays of String Variables

Arrays of string variables are identical in every way to arrays of real variables, except that 
the values are strings. If, for example, a user has entered dm='nny','yyy', the 
following macro plots each spectrum with the proper label:
$i=1

repeat

select($i)

pl

write('plotter',0,wc2max-10,'Decoupler mode: %s',dm[$i])

page

$i=$i+1

until $i>size('dm')

Arrays of Listed Elements

Arrays can be constructed by simply listing the elements, separated by commas. For 
example,
pw=1,2,3,4

creates a pw array with four elements. Select the initial array element when using this list 
mechanism by providing the index in square brackets. For example,
pw[3]=5,6

results in pw having elements 1,2,5,6. Extend arrays as in
pw[5]=7,8,9

which yields a pw array or 1,2,5,6,7,8,9. Change existing values and extend the array, as in
pw[6]=6,7,8,9,10

which yields a pw array of 1,2,5,6,7,6,7,8,9,10

Comma separated lists can also include expressions. For example,
d2=0,1/sw1,2/sw1,3/sw1

The square brackets can also be used on the right-hand side of the equal sign in order to 
construct arrays. The [ ] can enclose a single value or expression or an array of values or 
expressions. Any mathematics applied to the [ ] element is applied individually to each 
element within the [ ].

Some examples.

Enter Result

nt=[1] nt=1

nt=[1,2,3] nt=1,2,3

nt=[1,2,3]*10 nt=10,20,30



Chapter 1. MAGICAL II Programming

34 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Use [ ] to give precedence to expressions, just like ( ).

There are a couple of limitations if the [ ] element is used as part of a mathematical 
expression. When used in expressions, only a single [ ] element is allowed. Also, when used 
in expressions, the [ ] element cannot be mixed with the standard comma (,) arraying 
element. For example, nt=[1,2]*[3,4] is not allowed and generates the error 
message:
   "No more than one [--.--]"

nt=1,[2,3,4]*10 is not allowed and generates the error message:
   "Cannot combine , with [--.--]"

These restrictions only occur if mathematical operators are used and the [ ] element itself 
contains a comma. Simply listing multiple [ ] elements, or combining them with the comma 
element is okay.

Array Error Messages

Accessing an array element that does not exist displays the error message:
variable_name["index"] index out of bounds

Using a string as an index, rather than an integer, displays the error message:
Index for variable_name['index'] must be numeric

or
Index must be numeric

Finally, using an array as an index displays the error message:
Index for variable_name must be numeric scalar

or 
Index must be numeric scalar.

Expressions

An expression is a combination of variables, constants, and operators. Parentheses can be 
used to group together a combination of expressions. Multiple nesting of parentheses is 
allowed. In making expressions, combine only variables and constants of the same type:

• Real variables and constants only with other real variables and constants. 

• String variables and constants only with other string variables and constants.

The type of a local variable (a variable whose name begins with a $) is determined by the 
context in which it is first used. The only ambiguity is when a local variable is first used as 

nt=22*[2*3,r2+6,trunc(r3)]+2 nt=22*2*3+2,22*(r2+6)+2,22*trunc(r3)+2

d2=[0,1,2,3]/sw1 d2=0/sw1,1/sw1,2/sw1,3/sw1

Enter Result

nt=[2*[3+4]] nt=14

Enter Result

nt=[1,2],3 nt=1,2,3

nt=[1,2],[3,4] nt=1,2,3,4 

Enter Result



1.2 Programming with MAGICAL

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 35

a return argument of a command such as input, as discussed in the previous section on 
local variables. 

If an illegal combination is attempted, an error message is displayed:
Can't assign STRING value "value" to REAL variable \

"variable_name" 

or
Can't assign REAL value (value) to STRING variable \

"variable_name" 

Mathematical Expressions

Expressions can be classified as mathematical or Boolean. Mathematical expressions can 
be used in place of simple numbers or parameters. Expressions can be used in parameter 
assignments, such as in pw=0.6*pw90, or as input arguments to commands or macros, 
such as in pa(–5+sc,50+vp).

When parameters are changed as a result of expressions, the normal checks and limits on 
the entry of that particular parameter are followed. For example, if nt=7, the statement 
nt=0.5*nt will end with nt=3, just as directly entering nt=3.5 would have resulted 
in nt=3. Other examples of this include the round-off of fn entries to powers of two, 
limitation of various parameters to be positive only, etc.

Boolean Expressions

Boolean expressions have a value of either TRUE or FALSE. Booleans are represented 
internally as 0.0 for FALSE and 1.0 for TRUE, although in a Boolean expression any 
number other than zero is interpreted as TRUE. Boolean expressions can only compare 
quantities of the same type—real numbers with real numbers, or strings with strings. Some 
examples of Boolean expressions include pw=10, sw>=10000, at/2<0.05, and 
(pw<5) or (pw>10).

The explicit use of the words “TRUE” and “FALSE” is not allowed. All Boolean 
expressions are implicit—they are evaluated when used and given a value of TRUE or 
FALSE for the purpose of some decision. 

Input Arguments

Arguments passed to a macro are referenced by $n, where n is the argument number. An 
unlimited number of arguments ($1, $2, and so on) can be passed. The name of the macro 
itself may be accessed using the special name $0. For example, if the macro test1 is 
running, $0 is given the value test1. A second special variable $# contains the number 
of arguments passed and can be used for routines having a variable number of arguments. 
$## is the number of return values requested by the calling macro. Arguments can be either 
real or string types, as with all parameters.

An example of using an input arguments such as $1:
"vsmult(multiplier)" 

"Multiply vertical scale (vs) by input argument"

vs=$1*vs

Another example, which uses two input arguments:
"offset(arg1,arg2)"

"Increment vertical position (vp) and horizontal position (sc)"

vp=$1+vp

sc=$2+sc



Chapter 1. MAGICAL II Programming

36 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

The typeof operator returns a 0 if the variable is real. It returns a 1 if the variable is a 
string. It will abort if the variable does not exist. For example, in the conditional statement 
if typeof('$1') then ..., the then part is executed only if $1 is a string.

Name Replacement

An identifier surrounded by curly braces ({...}) results in the identifier being replaced by 
its value before the full expression is evaluated. If the name replacement is on the left side 
of the equal sign, the new name is assigned a value. If the name replacement is on the right 
side of the equal sign, the value of the new name is used. The following are examples of 
name replacement:

The use of curly braces for command execution is subject to a number of constraints. In 
general, using the VNMR command exec for the purpose of executing an arbitrary 
command string is recommended. In this last example, this would be exec($cmd).

Conditional Statements

The following forms of conditional statements are allowed:
if booleanexpression then ... endif

if booleanexpression then ... else ... endif
if booleanexpression then ... {elseif boolianexpression then...  
}[else...]endif

The elseif subexpression in braces can be repeated any number of times. The else 
subexpression in brackets is optional.)

Any number of statements (including none) can be inserted in place of the ellipses (...). If 
booleanexpression is TRUE, the then statements are executed; if 
booleanexpression is FALSE, the else statements (if any) are executed instead. 
Note that endif is required for both forms and that no other delimiters (such as BEGIN or 
END) are used, even when multiple statements are inserted. Nesting of if statements (the 
use of if statement as part of another if statement) is allowed, but be sure each if has 
a corresponding endif. Nested if...endif statements tend to result in long, confusing 
lists of endif keywords. Often, this can be avoided by using the elseif keyword. Any 
number of elseif statements can be included in an if...endif expression. Only one 
of the if, elseif, or else clauses will be executed.

The following example uses a simple if ... then conditional statement:
"error --- Check for error conditions"

if (pw>100) or (d1>30) or ((tn='H1') and (dhp='y'))

then write('line3','Problem with acquisition parameters')

endif

This example adds an else conditional statement:

$a = 'pw' "variable $a is set to string 'pw'" 

{$a} = 10.3 "pw is set to 10.3"

pw = 20.5 "pw is set to 20.5"

$b = {$a} "variable $b is set to 20.5"

{$a}[2]=5 "pw[2] is set to 5.0"

$b = {$a}[2] "variable $b is set to 5.0"

$cmd='wft' "$cmd is set to the string 'wft'"

{$cmd} "execute wft command"



1.2 Programming with MAGICAL

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 37

"checkpw --- Check pulse width against predefined limits"
if pw<1

then pw=1 write('line3','pw too small')

else if pw>100

then pw=100 write('line3','pw too large')

endif

endif

This example illustrates the use of elseif conditional statements:

if ($1='mon') then
echo('Monday')

elseif ($1 = 'tue') then
echo('Tuesday')

elseif ($1 = 'wed') then
echo('Wednesday')

elseif ($1 = 'thu') then
echo('Thursday')

elseif ($1 = 'fri') then
echo('Friday')

else

echo('Weekend')

endif

Loops

Two types of loops are available. The while loop has the form:
while booleanexpression do ... endwhile

This type of loop repeats the statements between do and endwhile, as long as 
booleanexpression is TRUE (if booleanexpression is FALSE from the start, 
the statements are not executed). 

The other type of loop is the repeat loop, which has the form:
repeat ... until booleanexpression

This loop repeats statements between repeat and until, until booleanexpression 
becomes TRUE (if booleanexpression is TRUE at the start, the statements are 
executed once). 

The essential difference between repeat and while loops is that the repeat type 
always performs the statements at least once, while the while type may never perform the 
statements. The following macro is an example of using the repeat loop:
"maxpk(first,last) -- Find tallest peak in a series of spectra"

$first=$1

repeat

select($1) peak:$ht

if $1=$first

then $maxht=$ht

else if $ht>$maxht then $maxht=$ht endif

endif

$1=$1+1

until $1>$2

Both types of loops are often preceded by $n=1, then have a statement like $n=$n+1 
inside the loop to increment some looping condition. Beware of endless loops! 



Chapter 1. MAGICAL II Programming

38 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Macro Length and Termination

Macros have no restriction on length. Execution of a macro is terminated when the 
command return is encountered. This is usually inserted into the macro after testing 
some condition, as shown in the example below:
"plotif--Plot a spectrum if tallest peak less than 200 mm"

peak:$ht

if $ht>200 then return else pl endif

The syntax return(expression1,expression2,...) allows the macro to return 
values to another calling macro, just as do commands. This information is captured by the 
calling macro using the format :argument1,argument2,... Here is an example of 
returning a value to the calling macro:
"abs(input):output -- Take absolute value of input"

if $1>0 then return($1) else return(-$1) endif

In nested macros, return terminates the currently operating macro, but not the macro that 
called the current macro. 

To terminate the action of the calling macro (and all higher levels of nesting), the abort 
command is provided. abort can be made to act like return at any particular level by 
using the abortoff command. Consider the following sequence: 
abortoff macro1 macro2

If macro1 contains an abort command and it is executed, abort terminates macro1; 
however, macro2 still will be executed. If the macro sequence did not contain the 
abortoff statement, however, execution of an abort command in macro1 would have 
prevented the operation of macro2. The aborton command nullifies the operation of 
abortoff and restores the normal functioning of abort.

Command and Macro Tracing

In VnmrJ we send the output to any terminal window. In the terminal window type 'tty'; 
reply is /dev/pts/xx, where xx is a number. Use this on the VnmrJ command line 
jFunc(55,'/dev/pts/xx'). Replace xx with the correct number.

The commands debug('c') and debug('C') turn on and off, respectively, VnmrJ 
command and macro tracing. When tracing is on, a list of each executed command and 
macro is displayed in the Terminal window from which VnmrJ was started. Nesting of the 
calls is shown by indentation of the output. A return status of “returned” or “aborted” can 
help track down which macro or command failed.

If VnmrJ is started when the user logs in, the output goes to a Console window. If no 
Console window is present, the output goes into a file in the /var/tmp directory. This last 
option is not recommended.

1.3 Relevant VnmrJ Commands
• “Spectral Analysis Tools,” page 39

• “Input/Output Tools,” page 40

• “Regression and Curve Fitting,” page 42

• “Mathematical Functions,” page 43

• “Creating, Modifying, and Displaying Macros,” page 44

• “Miscellaneous Tools,” page 46



1.3 Relevant VnmrJ Commands

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 39

Many VnmrJ commands are particularly well-suited for use with MAGICAL 
programming. This section lists some of those commands with their syntax (if the 
command uses arguments) and a short summary taken from the VnmrJ Command and 
Parameter Reference. Refer to that publication for more information. (Remember that 
string arguments must be enclosed in single quotes.) 

Spectral Analysis Tools

dres Measure linewidth and digital resolution

Syntax: dres<(<frequency<,fractional_height>>)> \
:linewidth,resolution 

Description: Analyzes line defined by current cursor position (cr) for linewidth and digital 
resolution. frequency overrides cr as the line frequency. 
fractional_height specifies the height at which linewidth is measured.

dsn Measure signal-to-noise

Syntax: dsn<(low_field,high_field)>:signal_to_noise,noise 

Description: Measures signal-to-noise of the tallest peak in the displayed spectrum. Noise 
region, in Hz, is specified by supplying low_field and high_field 
frequencies or it is specified by the positions of the left and right cursors.

dsnmax Calculate maximum signal-to-noise

Syntax: dsnmax<(noise_region)> 

Description: Finds best signal-to-noise in a region. noise_region, in Hz, can be 
specified, or the cursor difference (delta) can be used by default.

getll Get line frequency and intensity from line list

Syntax: getll(line_number)<:height,frequency> 

Description: Returns the height and frequency of the specified line number.

getreg Get frequency limits of a specified region

Syntax: getreg(region_number)<:minimum,maximum> 

Description: Returns the minimum and maximum frequencies, in Hz, of the specified region 
number.

integ Find largest integral in specified region

Syntax: integ<(highfield,lowfield)><:size,value> 

Description: Finds the largest absolute-value integral in the specified region or the total 
integral if no reset points are present between the specified limits. The default 
values for highfield and lowfield are parameters sp and sp+wp, 
respectively. 



Chapter 1. MAGICAL II Programming

40 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

mark Determine intensity of the spectrum at a point

Syntax: mark<(f1_position)> 
mark<(left_edge,region_width)>
mark<(f1_position,f2_position)> 
mark<(f1_start,f1_end,f2_start,f2_end)> 
mark<('trace',<options>)>
mark('reset') 

Description:  1D or 2D operations can be performed in the cursor or box mode for a total of 
four separate functions. In the cursor mode, the intensity at a particular point is 
found. In the box mode, the integral over a region is calculated. For 2D 
operations, this is a volume integral. In addition, the mark command in the box 
mode finds the maximum intensity and the coordinate(s) of the maximum 
intensity.

nll Find line frequencies and intensities

Syntax: nll<('pos'<,noise_mult))><:number_lines> 

Description: Returns the number of lines using the current threshold, but does not display or 
print the line list. 

numreg Return the number of regions in a spectrum

Syntax: numreg:number_regions 

Description: Finds the number of regions in a previously divided spectrum.

peak Find tallest peak in specified region

Syntax: peak<(min_frequency,max_frequency)><:height,freq> 

Description: Finds the height and frequency of the tallest peak in the selected region. 
min_frequency and max_frequency are the frequency limits, in Hz, of 
the region to be searched; default values are the parameters sp and sp+wp.

select Select spectrum or 2D plane without displaying it

Syntax: select<(<'f1f3'|'f2f3'|'f1f2'><,'proj'> \
<'next'|'prev'|plane>)><:index> 

Description: Sets future actions to apply to a particular spectrum in an array or to a particular 
2D plane of a 3D data set. index is the index number of spectrum or 2D plane.

Input/Output Tools

apa Plot parameters automatically

Description: Selects the appropriate command on different devices to plot the parameter list.

banner Display message with large characters

Syntax: banner(message<,color><,font>) 

Description: Displays the text given by message as large-size characters on the VNMR 
graphics windows.



1.3 Relevant VnmrJ Commands

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 41

clear Clear a window

Syntax: clear<(window_number)> 

Description: Clears window given by window_number. With no argument, clears the text 
screen. Clear(2) clears the graphics screen.

echo Display strings and parameter values in text window

Syntax: echo<(<'–n',>string1,string2,....)> 

Description: Functionally similar to the UNIX echo command. Arguments to VNMR echo 
can be strings or parameter values, such as pw. The '–n' option suppresses 
advancing to the next line. 

format Format a real number or convert a string for output

Syntax: format(real_number,length,precision):string_var 
format(string,'upper'|'lower'|'isreal'):return_var 

Description: Using first syntax, takes a real number and formats it into a string with the given 
length and precision. Using second syntax, converts a string variable into a 
string of characters, all upper case or all lowercase, or tests the first argument to 
verify that it satisfies the rules for a real number (1 is returned if the first 
argument is a real number, otherwise a zero is returned).

input Receive input from keyboard

Syntax: input<(<prompt><,delimiter>)>:var1,var2,... 

Description: Receives characters from the keyboard and stores them into one or more string 
variables. prompt is a string that is displayed on the command line. The 
default delimiter is a comma.

lookup Look up and return words and lines from text file

Syntax: lookup(options):return1,return2,...,number_returned 

Description: Searches a text file for a word and returns to the user subsequent words or lines. 
options is one or more keywords ('file',
'seek', 'skip', 'read', 'readline', 'count', and 
'delimiter') and other arguments.

nrecords Determine number of lines in a file

Syntax: nrecords(file):$number_lines 

Description: Returns the number of “records,” or lines, in the given file.

psgset Set up parameters for various pulse sequences

Syntax: psgset(file,param1,param2,...,paramN) 

Description: Sets up parameters for various pulse sequences using information in a file from 
the user or system parlib. 



Chapter 1. MAGICAL II Programming

42 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

write Write output to various devices

Syntax: write('graphics'|'plotter'<,color|pen> \
<,'reverse'>,x,y<,template>)<:height>

write('alpha'|'printer'|'line3'|'error',template) 
write('reset'|'file',file<,template>) 

Description: Displays strings and parameter values on various output devices.

Regression and Curve Fitting

analyze Generalized curve fitting

Syntax: (Curve fitting) analyze('expfit',xarray<,options>)
(Regression) analyze('expfit','regression'<,options>) 

Description: Provides an interface to the curve fitting program expfit, supplying input 
data in the form of the text file analyze.inp in the current experiment.

autoscale Resume autoscaling after limits set by scalelimits 

Description: Returns to autoscaling in which the scale limits are determined by the expl 
command such that all the data in the expl input file is displayed.

expfit Least-squares fit to exponential or polynomial curve

Syntax: expfit options <analyze.inp >analyze.list 

Description: A command that takes a least-squares curve fitting to the data supplied in the 
file analyze.inp. 

expl Display exponential or polynomial curves

Syntax: expl<(<options,>line1,line2,...)> 

Description: Displays exponential curves resulting from T1, T2, or kinetic analyses. Also 
displays polynomial curves from diffusion or other types of analysis.

pexpl Plot exponential or polynomial curves

Syntax: pexpl<(<options><,line1,line2,...)> 

Description: Plots exponential curves from T1, T2, or kinetics analysis. Also plots polynomial 
curves from diffusion or other types of analysis. 

poly0 Display mean of the data in the file regression.inp

Description: Calculates and displays the mean of data in the file regression.inp.

rinput Input data for a regression analysis

Description: Formats data for regression analysis and places it into the file 
regression.inp.



1.3 Relevant VnmrJ Commands

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 43

scalelimits Set limits for scales in regression

Syntax: scalelimits(x_start,x_end,y_start,y_end) 

Description: Causes the command expl to use typed-in scale limits.

Mathematical Functions

abs Find absolute value of a number

Syntax: abs(number)<:value> 

Description: Finds absolute value of a number. 

acos Find arc cosine of a number

Syntax: acos(number)<:value> 

Description: Finds arc cosine of a number. The optional return value is in radians.

asin Find arc sine of a number

Syntax: asin(number)<:value> 

Description: Finds arc sine of a number. The optional return value is in radians.

atan Find arc tangent of a number

Syntax: atan(number)<:value> 

Description: Finds arc tangent of a number. The optional return value is in radians.

atan2 Find arc tangent of two numbers

Syntax: atan2(y,x)<:value> 

Description: Finds arc tangent of y/x. The optional return argument value is in radians.

averag Calculate average and standard deviation of input

Syntax: averag(num1,num2,...) \
:average,sd,arguments,sum,sum_squares 

Description: Finds average, standard deviation, and other characteristics of a series of 
numbers.

cos Find cosine value of an angle 

Syntax: cos(angle)<:value> 

Description: Finds cosine of an angle given in radians.

exp Find exponential value of a number

Syntax: exp(number)<:value> 

Description: Finds exponential value (base e) of a number.



Chapter 1. MAGICAL II Programming

44 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

ln Find natural logarithm of a number

Syntax: ln(number)<:value> 

Description: Finds natural logarithm of a number. To convert to base 10, use
log10x = 0.43429 *ln(x).

sin Find sine value of an angle 

Syntax: sin(angle)<:value> 

Description: Finds sine an angle given in radians.

tan Find tangent value of an angle

Syntax: tan(angle)<:value> 

Description: Finds tangent of an angle given in radians.

Creating, Modifying, and Displaying Macros

crcom Create a user macro without using a text editor

Syntax: crcom(file,actions) 

Description: Creates a user macro file in the user's macro directory. The actions string is 
the contents of the new macro.

delcom Delete a user macro

Syntax: delcom(file) 

Description: Deletes a user macro file in the user's macro directory. The actions string is 
the contents of the new macro.

hidecommand Execute macro instead of command with same name

Syntax: hidecommand(command_name)<:$new_name>
hidecommand('?') 

Description: Renames a built-in VNMR command so that a macro with the same name as the 
built-in command is executed instead of the built-in command. 
command_name is the name of the command to be renamed. '?' displays a 
list of renamed built-in commands.

macrocat Display a user macro on the text window

Syntax: macrocat(file1<,file2><,...>) 

Description: Displays one or more user macro files, where file1, file2,... are names 
of macros in the user macro directory.

macrocp Copy a user macro file

Syntax: macrocp(from_file,to_file) 

Description: Makes a copy of an existing user macro.



1.3 Relevant VnmrJ Commands

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 45

macrodir List user macros

Description: Lists names of user macros.

macroedit Edit a user macro with user-selectable editor

Syntax: macroedit(file) 

Description: Modifies an existing user macro or creates a new macro. To edit a system macro, 
copy it to a personal macro directory first.

macrold Load a macro into memory

Syntax: macrold(file)<:dummy> 

Description: Loads a macro, user or system, into memory. If macro already exists in memory, 
it is overwritten by the new macro. Including a return value suppresses the 
message on line 3 that the macro is loaded.

macrorm Remove a user macro

Syntax: macrorm(file) 

Description: Removes a user macro from the user macro directory.

macrosyscat Display a system macro on the text window

Syntax: macrosyscat(file1<,file2><,...>) 

Description: Displays one or more system macro files, where file1, file2,... are 
names of macros in the system macro directory.

macrosyscp Copy a system macro to become a user macro

Syntax: macrosyscp(from_file,to_file) 

Description: Makes a copy of an existing system macro.

macrosysdir List system macros

Description: Lists names of system macros.

macrosysrm Remove a system macro

Syntax: macrosysrm(file) 

Description: Removes a system macro from the macro directory.

macrovi Edit a user macro with vi text editor

Syntax: macrovi(file) 

Description: Modifies an existing user macro or creates a new macro using the vi text editor. 
To edit a system macro, copy it to a personal macro directory first.

mstat Display memory usage statistics

Syntax: mstat<(program_id)> 



Chapter 1. MAGICAL II Programming

46 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Description: Displays memory usage statistics on macros loaded into memory.

purge Remove a macro from memory

Syntax: purge<(file)> 

Description: Removes a macro from memory, freeing extra memory space. With no 
argument, removes all macros loaded into memory by macrold.

record Record keyboard entries as a macro

Syntax: record<(file|'off')> 

Description: Records keyboard entries and stores the entries as a macro file in the user’s 
maclib directory.

Miscellaneous Tools

axis Provide axis labels and scaling factors

Syntax: axis('fn'|'fn1'|'fn2')<:$axis_label, \
$frequency_scaling,$factor> 

Description: Returns axis labels, the divisor to convert from Hz to units defined by the axis 
parameter with any scaling, and a second scaling factor determined by any 
scalesw type of parameter. The parameter 'fn'|'fn1'|'fn2' describes 
the Fourier number for the axis.

beepoff Turn beeper off

Description: Turns beeper sound off. The default is beeper sound on.

beepon Turn beeper on

Description: Turns beeper sound on. The default is beeper sound on.

bootup Macro executed automatically when VnmrJ is started

Syntax: bootup<(foreground)> 

Description: Displays a message, runs a user login macro (if it exists), starts Acqstat and 
acqi (spectrometer only), and displays the menu system. bootup and login 
can be customized for each user (login is preferred because bootup is 
overridden when a new VNMR release is installed). foreground is 0 if 
VNMR is being run in foreground, non-zero otherwise.

exec Execute a VnmrJ command

Syntax: exec(command_string) 

Description: Takes as an argument a character string constructed from a macro and executes 
the VNMR command given by command_string.

exists Determine if a parameter, file, or macro exists

Syntax: exists(name,type):$exists 



1.3 Relevant VnmrJ Commands

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 47

Description: Checks for the existence of a parameter, file, or macro with the given name. 
type is 'parameter', 'file', 'maclib', 'ascii', 'directory’ 
or filename. See the Command and Parameter Reference manual for a 
detailed description of the use of exists for Applications Directory usage.

focus Send keyboard focus to VNMR input window

Description: Sends keyboard focus to the VNMR input window. 

gap Find gap in the current spectrum

Syntax: gap(gap,height):found,position,width 

Description: Looks for a gap between lines of the currently displayed spectrum, where gap 
is the width of the desired gap and height is the starting height. found is 1 
is search is successful, or 0 if unsuccessful.

getfile Get information about directories and files

Syntax: getfile(directory,file_index):$file,$file_extension
getfile(directory):$number_files 

Description: If file_index is specified, the first return argument is the name of the file in 
the directory with the index file_index, excluding any extension, and the 
second return argument is the extension. If file_index is not specified, the 
return argument contains the number of files in the directory (dot files are not 
included in the count).

graphis Return the current graphics display status

Syntax: graphis(command):$yes_no
graphis:$display_command 

Description: Determines what command currently controls the graphics window. If no 
argument is supplied, the name of the currently controlling command is 
returned.

length Determine length of a string

Syntax: length(string):$string_length 

Description: Determines the length in characters of the given string.

listenoff Disable receipt of messages from send2Vnmr

Description: Deletes file $vnmruser/.talk, disallowing UNIX command send2Vnmr 
to send commands to VNMR.

listenon Enable receipt of messages from send2Vnmr

Description: Writes files with VNMR port number that UNIX command send2Vnmr needs 
to talk to VNMR. The command then to send commands to VNMR is
/vnmr/bin/send2Vnmr $vnmruser/.talk command
where command is any character string (commands, macros, or if statements) 
normally typed into the VNMR input window.



Chapter 1. MAGICAL II Programming

48 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

login User macro executed when VnmrJ activated

Description: When VNMR starts, the bootup macro executes, and then, if the login 
macro exists, bootup executes the login macro. By creating and 
customizing the login macro, a VNMR session can be tailored for an 
individual user. The login macro does not exist by default.

off Make a parameter inactive

Syntax: off(parameter|'n'<,tree>) 

Description: Makes a parameter inactive. tree is 'current', 'global', 
'processed', or 'systemglobal'.

on Make a parameter active or test its state

Syntax: on(parameter|'y'<,tree>)<:$active> 

Description: Makes a parameter active or tests the active flag of a parameter. tree is 
'current', 'global', 'processed', or 'systemglobal'.

readlk Read current lock level

Syntax: readlk<:lock_level> 

Description: Returns the same information as would be displayed on the digital lock display 
using the manual shimming window. It cannot be used during acquisition or 
manual shimming, but can be used to develop automatic shimming methods 
such as shimming via grid searching.

rtv Retrieve individual parameters

Syntax: rtv<(file,par1<,index1<,par2,index2...>>)><:val> 

Description: Retrieves one or more parameters from a parameter file to the experiment’s 
current tree. If a return argument is added, rtv instead returns values to macro 
variables, which avoids creating additional parameters in the current tree. For 
arrayed parameters, array index arguments can specify which elements to return 
to the macro. The default is the first element.

shell Start a UNIX shell

Syntax: shell<(command)>:$var1,$var2,... 

If no argument is given, opens a normal UNIX shell. If a UNIX command is 
entered as an argument, shell executes the command. Text lines usually 
displayed as a result of the UNIX command given in the argument can be 
returned to $var1, $var2, etc. shell calls involving pipes or input 
redirection (<) require either an extra pair of parentheses or the addition of 
; cat to the shell command string, such as:
shell('ls –t|grep May; cat')

or
shell('(ls –t|grep May)) 

solppm Return ppm and peak width of solvent resonances

Syntax: solppm:chemical_shift,peak_width 



1.3 Relevant VnmrJ Commands

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 49

Description: Returns information about the chemical shift in ppm and peak spread of solvent 
resonances in various solvents for either 1H or 13C, depending on the observe 
nucleus tn and the solvent parameter solvent. This macro is used 
“internally” by other macros only.

substr Select a substring from a string

Syntax: substr(string,word_number):substring 
substr(string,index,length):substring 

Description: Picks a substring out of a string. If two arguments are given, substring 
returns the word_number word in string. If three arguments, it returns a 
substring from string where index is the number of the character at which 
to begin and length is the length of the substring.

textis Return the current text display status

Syntax: textis(command):$yes_no
textis:$display_command 

Description: Determines what command currently controls the text window. If no argument 
is supplied, the name of the current controlling command is returned.

unit Define conversion units

Syntax: unit<(suffix,label,m<,tree><,'mult'|'div'>, \
b<,tree><,'add'|'sub'>)> 

Description: Defines a linear relationship that can be used to enter parameters with units. The 
unit is applied as a suffix to the numerical value (e.g., 10k, 100p). suffix 
identifies the name for the unit (e.g., 'k'). label is the name to be displayed 
when the axis parameter is set to the value of the suffix (e.g., 'kHz'). m and 
b are the slope and intercept, respectively, of the linear relationship. A 
convenient place to put unit commands for all users is in the bootup macro. 
Put private unit commands in a user’s login macro.



Chapter 1. MAGICAL II Programming

50 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 51

Chapter 2. Pulse Sequence Programming

Sections in this chapter:

• 2.1 “Application Type and Execpars Programming,” page 51

• 2.2 “Overview of Pulse Sequence Programming,” page 55

• 2.3 “Spectrometer Control,” page 60

• 2.4 “Pulse Sequence Statements: Phase and Sequence Control,” page 76

• 2.5 “Real-Time AP Tables,” page 83

• 2.6 “Accessing Parameters,” page 89

• 2.7 “Using Interactive Parameter Adjustment,” page 98

• 2.8 “Hardware Looping and Explicit Acquisition,” page 103

• 2.9 “Pulse Sequence Synchronization,” page 108

• 2.10 “Pulse Shaping,” page 108

• 2.11 “Shaped Pulses Using Attenuators,” page 116

• 2.12 “Internal Hardware Delays,” page 119

• 2.13 “Indirect Detection on Fixed-Frequency Channel,” page 122

• 2.14 “Multidimensional NMR,” page 122

• 2.15 “Gradient Control for PFG and Imaging,” page 125

• 2.16 “Programming the Performa XYZ PFG Module,” page 127

• 2.17 “Imaging-Related Statements,” page 129

• 2.18 “User-Customized Pulse Sequence Generation,” page 132

2.1 Application Type and Execpars Programming
An NMR protocol is a specific set of parameters and methods used to acquire, process, plot, 
and store NMR data. The parameters also specify the pulse sequence used to acquire the 
data. NMR protocols can be grouped into classes or types of applications, which often share 
many of the parameters and methods needed by individual protocols.

VnmrJ uses protocols and application types (apptype) to systematize the development of 
new NMR protocols. The next section describes how protocols and application types are 
programmed. The remainder of this chapter describes how to program pulse sequences 
using the traditional C language. To use the SpinCAD interface for creating pulse 
sequences, refer to the SpinCAD manual.

The application type concept provides preparation, prescan, processing, and plotting 
customization based on the type of NMR data.



Chapter 2. Pulse Sequence Programming

52 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

apptypes

Each apptype has a corresponding macro, which has the same name as the apptype. These 
macros handle the customization required for that apptype. 

Liquids apptypes

Imaging apptypes

execpar Parameters

Five execpar parameters control the execution of the apptype macros: execsetup, 
execprep, execprescan, execprocess, and execplot. The following two 
examples show how the execpar parameters are set for st1d and im2D apptypes.

These parameters should not be set to specific actions, such as 'ni=256' or 'pcon 
page'. They should only call the apptype macro with appropriate arguments, which 
avoids problems if someone wants to change the behavior. Instead of fixing all the old 
parameter sets, you only need to update one macro.

Files containing these execpar parameters are saved in the /vnmr/execpars directory. 
You can have private execpar parameters in a /userdir/execpars directory. The 
Configure EXEC parameters window (under the Utilities menu) allows you to create and 
update these parameters. Behind the scenes, the execpars macro handles these 
parameter files. It can read the execpars into the current parameter set, save execpars, create 
default execpars, or delete execpars.

apptype representative protocols

std1d Proton, Carbon, Phosphorus, Presat, Apt, Dept

homo2d Cosy, Dqcosy, Gcosy, Gdqcosy, Noesy

hetero2d Cigar, Cigar2j3j, Ghmbc, Ghmqc, Ghmqctoxy, Ghsqc, Ghsqctoxy, Hmbc, Hmqc, 
Hmqctoxy, Hsqc, Hsqctoxy

apptype representative protocols

im1D  press isis steam

im1Dcsi  presscsi steamcsi

im1Dglobal  spuls

im2D  angio gems mems sems semsdw

im2Dcsi  csi2d

im2Dfse  fsems

im3D  ct3d, ge3d, ge3dangio, se3d

im3Dfse  fse3d

imEPI  epidw epimss epimssn

imFM  fastestmap

std1d apptype im2D apptype

execsetup = `std1d('setup')`
execprep = ``
execprescan = ``
execprocess = `std1d('process')`
execplot = `std1d('plot`)

execsetup = `im2D('prep')`
execprep = `im2D('prep')`
execprescan = `im2D('prescan')`
execprocess = `im2D('proc')`
execplot = ``



2.1 Application Type and Execpars Programming

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 53

Standard macros execute the execpar strings. The rules for executing these strings, based 
on the execpar parameters, are as follows. If the parameter does not exist, or is set to 
inactive, the execpar string is not executed. Otherwise, the execpar string is executed. Some 
macros include default behavior. In these cases, if the execpar is set to inactive, the default 
behavior will occur. If the execpar is set to active and the value is '', no action, including no 
default action will occur. An example might clarify this. The process macro provides 
default NMR processing tools. At the beginning of this macro is the execpars handling.
on('execprocess'):$e
if ($e > 0.5) then

exec(execprocess)
return

endif

The on command tests whether the execprocess exists and is active. If it does not exist or 
is inactive, the $e will be less than 0.5 and the exec command and return command 
will not be executed. The rest of the process macro will be executed, giving default 
behavior. If the parameter is active, the exec command will be executed. Now, if 
execprocess='', the exec command will return without executing anything. This is 
followed by return, which exits the process macro, avoiding any default processing.

When a protocol is brought into a work space or study queue, the cqexp (for liquids) or 
sqexp (for imaging) macro is called. These check if the execsetup parameter exists. 
If it does not, it runs execpars to read the execpars for that apptype. Using the rules 
above, it might execute the execsetup string.

The execpars parameters are executed by several other standard macros: 

As a consequence of the execpars scheme, the usergo and go_seqfil macros are no 
longer used. This customization should be handled in the 'setup' or 'prep' section of 
the apptype macros.

The apptype macros should use the template shown in Listing 1. If there is a first argument, 
it should be prep, proc, prescan, or plot. Additional arguments can be used (setup, 
process, plot).

Macro execpar string executed, using above rules

acquire execprep

prep execprep

settime execprep

prescan_gain execprescan

process execprocess

plot execplot



Chapter 2. Pulse Sequence Programming

54 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Listing 1. apptype Macro Template

The execseq macro constructs a macro name as
  $macro = seqfil + '_' + $1

and will execute it if it exists. If no argument is given, it defaults to 'prep'. This allows 
for sequence specific behavior.

Protocol Programming

A protocol is made by defining its parameters and specifying its apptype. The New Protocol 
window (Utilities->Make a New Protocol) will save the current parameters for that 
protocol, construct the necessary file so that the protocol is available from the Locator and 
the Experiment selector, and create a macro which can be used to setup that protocol. For 
liquids, the macro calls the cqexp macro with the protocol name and apptype as the two 
arguments. For example, the macro for the Proton protocol is
  cqexp('Proton','std1d')

// ********  Parse input  ********

$action = 'prep'
$do = ''
if ($# > 0) then

$action = $1
if ($# > 1) then

$do = $2
endif

endif

isvnmrj:$vj

// ********  Setup  ********

if ($action = 'prep') then
// apptype preparatory customization

execseq('prep')  // Execute any sequence specific preparation
// additional apptype preparatory customization

// ********  Processing & Display  ********

elseif ($action = 'proc') then
// apptype processing customization

execseq('proc') // Execute any sequence specific processing
// additional apptype processing customization

// ********  Prescan  ********

elseif ($action = 'prescan') then
// apptype prescan customization

execseq('prescan') // Execute any sequence specific prescan
// additional apptype prescan customization

// ********  Plot  ********

elseif ($action = 'plot') then
// apptype plot customization

execseq('plot') // Execute any sequence specific plot
// additional plot prescan customization

endif



2.2 Overview of Pulse Sequence Programming

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 55

With this information, the cqexp macro reads in the execpars for the std1d apptype. It then 
executes macro defined by the execsetup parameter. In this case,
execsetup=`std1d('setup')`.

The std1d macro gets called with the 'setup' argument. Before calling the command 
specified by the execsetup parameter, the cqexp macro set the parameter macro to its 
first argument.

The first argument is the name of the specific protocol, so that, in this case, 
macro='Proton'. The apptype macros, (e.g., std1d) typically use the macro 
parameter in order to decide which parameter set should be used. 

2.2 Overview of Pulse Sequence Programming
• “Spectrometer Differences,” page 55

• “Pulse Sequence Generation Directory,” page 55

• “Compiling the New Pulse Sequence,” page 56

• “Troubleshooting the New Pulse Sequence,” page 57

• “Creating a Parameter Table for Pulse Sequence Object Code,” page 58

• “C Framework for Pulse Sequences,” page 58

• “Implicit Acquisition,” page 60

• “Acquisition Status Codes,” page 60

Pulse sequences can be written in C, a high-level programming language that allows 
considerable sophistication in the way pulse sequences are created and executed. New 
pulse sequences can be added to the software by writing and compiling a short C procedure. 
This process is simplified using the tools provided with VnmrJ.

Spectrometer Differences

This manual contains information on how to write pulse sequences for UNITYINOVA and 
MERCURYplus/-Vx spectrometers. Each spectrometer has different capabilities, so not all 
statements may be executed on all platforms. 

For example, because MERCURYplus/-Vx hardware differs significantly from UNITYINOVA 
hardware, sections in this manual covering waveform generators and imaging are not 
applicable to the MERCURYplus/-Vx even though the pulse sequence programming 
language is the same. Pay careful attention to comments in the text regarding the system 
applicability of the pulse sequence statement or technique.

Pulse Sequence Generation Directory

Pulse sequence generation (PSG) text files (like hom2dj.c in Listing 2) are stored in a 
directory named psglib. The system (/vnmr/psglib) and each user have a psglib 
directory.

The user psglib is stored in the user’s private directory system (e.g., for user vnmr1, in 
vnmrsys/psglib). Some systems use /space and Linux uses /home. All pulse 
sequence files stored in these directories are given the extension .c to indicate that the file 
contains C language source code. For instance, a homonuclear-2D-J sequence that may 
have written by a user (other than the system administrator) is automatically stored in the 



Chapter 2. Pulse Sequence Programming

56 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

user’s private pulse sequence directory and has a name like home/user/vnmrsys/
psglib/hom2dj.c

Numerous sequences are in the standard Varian-supplied directory /vnmr/psglib and 
in the user library directory /vnmr/userlib/psglib, or a sequence can be written 
using any of the standard text editors such as vi or textedit. Once a pulse sequence 
exists, it can subsequently be modified as desired, again using one of a number of text 
editors.

Compiling the New Pulse Sequence

After a pulse sequence is written, the source code is compiled by one of these methods:

• By entering seqgen(file<.c>) on the VnmrJ command line.

• By entering seqgen file<.c> from a UNIX shell. 

For example, entering seqgen('hom2dj') compiles the hom2dj.c sequence in 
VnmrJ and entering seqgen hom2dj does the same in Linux. Note that a full path, such 
as ('/home/vnmr1/vnmrsys/psglib/hom2dj.c') or even 
seqgen('hom2dj.c') is not necessary or possible—the seqgen command knows 
where to look to find the source code file and knows that it will have a .c extension. 

During compilation, the system performs the following steps:

1. If the program dps_ps_gen is present in /vnmr/bin, extensions are added to 
the pulse sequence to allow a graphical display of the sequence by entering the dps 
command. Statements dps_off, dps_on, dps_skip, and dps_show can be 
inserted in the pulse sequence to control the dps display.

2. The source code is passed through the Linux program lint to check for variable 
consistency, correct usage of functions, and other program details.

3. The source code is converted into object code.

4. If the conversion is successful, the object code is combined with the necessary 
system psg object libraries (libparam.so and libpsglib.so), in a 
procedure called link loading, to produce the executable pulse sequence code. This 
is actually done at run-time. If compilation of the pulse sequence with the dps 
extensions fails, the pulse sequence is recompiled without the dps extensions.

#include <standard.h>
pulsesequence()
{

initval(4.0,v9); divn(ct,v9,v8);
status(A);
hsdelay(d1);
status(B);
add(zero,v8,v1); pulse(pw,v1);
delay(d2/2.0);
mod4(ct,v1); add(v1,v8,v1); pulse(p1,v1);
delay(d2/2.0);
status(C);
mod2(ct,oph); dbl(oph,oph); add(oph,v8,oph);

}

Listing 2. Simplified Text File for hom2dj.c Pulse Sequence Listing



2.2 Overview of Pulse Sequence Programming

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 57

If the executable pulse sequence code is successfully produced, it is stored in the user 
seqlib directory (e.g., /home/vnmr1/vnmrsys/seqlib). If the user does not 
have a seqlib directory, it is automatically created.

Like psglib, different seqlib directories exist, including the system directory and each 
user’s directory. The user’s vnmrsys directory should have directories psglib and 
seqlib. Whenever a user attempts to run a pulse sequence, the software looks first in the 
user's personal directory for a pulse sequence by that name, then in the system directory.

A number of sequences are supplied in /vnmr/seqlib, compiled and ready to use. The 
source code for each of these sequences is found in /vnmr/psglib. To compile one of 
these sequences, or to modify a sequence in /vnmr/psglib, copy the sequence into the 
user’s psglib, make any desired modifications, then compile the sequence using 
seqgen. (seqgen will not compile sequences directly in /vnmr/psglib). All 
sequences in /vnmr/psglib have an appropriate macro using them.

Troubleshooting the New Pulse Sequence

During the process of pulse sequence generation (PSG) with the seqgen command, the 
user-written C procedure is passed through a utility to identify incorrect C syntax or to hint 
at potential coding problems. If an error occurs, a number of messages usually are 
displayed. Somewhere among them are these statements:
Pulse Sequence did not compile.
The following errors can also be found in the
file /home/vnmr1/vnmrsys/psglib/name.errors:

As a rule of thumb, focus on the lines in the name.errors text file that begin with the 
name of the pulse sequence enclosed in double quotes followed by the line number and 
those that begin with a line number in parentheses. In both cases, a brief description of the 
problem is also displayed. If the line of code looks correct, often the preceding line of code 
is the culprit. Note that a large number of error messages can be generated from the same 
coding error.

If a warning occurs, the following message appears:
Pulse Sequence did compile but may not function properly.
The following comments can also be found in the 
file /home/vnmr1/vnmrsys/psglib/name.errors:

This message means that although the pulse sequence has some inconsistent C code that 
may produce run-time errors, the pulse sequence did compile. Three warnings to watch for 
are the following:
warning: conversion from long may lose accuracy
warning: parameter_name may be used before set
warning: parameter_name redefinition hides earlier one

The first warning may be generated by less than optimum usage of the ix variable:
conversion from long may lose accuracy

An example can be found in a few of the earlier pulse sequences implementing TPPI. The 
following construct, which was taken from an older version of hmqc.c, generates the 
warning:
if (iphase == 3)
{

t1_counter = ((int) (ix - 1)) / (arraydim / ni);
initval((double) (t1_counter), v14);

}

Changing these lines to



Chapter 2. Pulse Sequence Programming

58 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

if (iphase == 3)
initval((double) ((int)((ix - 1) / (arraydim / ni) \
+1e-6)), v14);

avoids the warning and also provides for roundoff of the floating point expression to give 
proper TPPI phase increments.

Even the above expression can fail under some circumstances. That construction will not 
work for 3D and 4D experiments. With the availability of increment counters such as id2, 
id3, and id4, and the predefined phase1 variable, this example can be rewritten as
if (phase1 == 3)

assign(id2,v14);

The second warning generally suggests an uninitialized variable:
parameter_name may be used before set

This should be corrected; otherwise, unpredictable execution of the pulse sequence is 
likely. A common cause is the use of a user variable without first using a getval or 
getstr statement on the variable.

The third warning generally suggests that a variable is defined within the pulse sequence 
that has the same name as one of the standard PSG variables. 
parameter_name redefinition hides earlier one

This warning is normally avoided by renaming the variable in the pulse sequence or, if the 
variable corresponds to a standard PSG variable, by removing the variable definition and 
initialization from the pulse sequence and just using the standard PSG variable. A list of the 
standard PSG variable names is given in “Accessing Parameters,” page 89.

Finally, if the pulse sequence program is syntactically correct, the following message is 
displayed:
Done! Pulse sequence now ready to use.

Creating a Parameter Table for Pulse Sequence Object Code

The ability to modify or customize acquisition parameters to fit a given user-created pulse 
sequence is provided by a small number of commands. These commands make it possible 
to perform the following operations on an existing parameter table:

• Create new parameters

• Control the display and enterability of parameters

• Control the limits of the parameter

• Create a parameter table for n-dimensional experiments

The commands that enable the creation and modification of parameters are discussed in 
section 5.4 “Creating and Modifying Parameters,” page 288.

C Framework for Pulse Sequences

Each pulse sequence is built onto a framework written in the C programming language. 
Look again at the hom2dj sequence in Listing 2. The absolutely essential elements of this 
framework are these:
#include <standard.h>

pulsesequence()
{

}



2.2 Overview of Pulse Sequence Programming

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 59

This framework must be included exactly as shown. Between the two curly braces ({}) are 
placed pulse sequence statements, each statement ending with a semicolon.

The majority of pulse sequence statements allow the user to control pulses, delays, 
frequencies, and all functions necessary to generate pulse sequences. Most are in the 
general form statement(argument1,argument2,...), where statement is the 
name of the particular pulse sequence statement, and argument1, argument2,... is the 
information needed by that statement in order to function. 

Many of these arguments are listed as real number. Because of the flexibility of C, a real-
number argument can take three different forms: variable (e.g., d1), constant (e.g., 3.4, 
20.0e–6), or expression (e.g., 2.0*pw, 1.0–d2).

Times, whether delays or pulses, are determined by the type of acquisition controller board 
used on the system:

• Data Acquisition Controller boards:

times can be specified in increments as small as 12.5 ns with a minimum of 100 ns.

• Output boards and the MERCURYplus/-Vx:

times can be specified in increments as small as 0.1 μs. The smallest possible time 
interval in all other cases is 0.2 μs, or 0. 

Any pulse widths or delays less than the minimum generate a warning message and are then 
eliminated internally from the sequence. (Note that time constants within a pulse sequence 
are always expressed in seconds.)

A series of internal, real-time variables named v1, v2, ..., v14 are provided to perform 
calculations in real-time (by the acquisition computer) while the pulse sequence is 
executing. Real-time variables are discussed in detail later in this chapter. For now, note 
that all of the phases, and a small number of the other arguments to the pulse sequence 
statements discussed here, must be real-time variables. A real-time variable must appear as 
a simple argument (e.g., v1), and cannot be replaced by anything else, including an integer, 
a real number, a “regular” variable such as d1, or an expression such as v1+v2.

Any variables chosen for use in a pulse sequence must be declared. Most variables are of 
type double, while integers are of type int, and strings, such as dmm, are of type char 
with dimension MAXSTR. Table 3 lists the length of these basic types on the computer. 
Many variables that refer to parameters used in an experiment are already declared (see 
“Accessing Parameters,” page 89).

A codeint is a 16 bit integer (as opposed to a float or char). Real-time variables are of type 
codeint and are 16 bit integers on UNITYINOVA, MERCURYplus, and MERCURY-Vx. A 
framework including variable declarations of the main types might look like this:
#include <standard.h>

pulsesequence()

Table 3. Variable Types in Pulse Sequences

Type Description Length (bits)

char character 8

short short integer 16

int integer 32

long long integer 32

float floating point 32

double double-precision floating point 64



Chapter 2. Pulse Sequence Programming

60 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

{

double delta; /* declare delta as double */

char xpolar[MAXSTR]; /* declare xpolar as char */

...

}

Implicit Acquisition

The hom2dj.c pulse sequence listing in Listing 2 on page 56 has one notable omission—
data acquisition. In most pulse sequences, the sequence of events consists of a series of 
pulses and delays, followed at the very end by the acquisition of an FID; the entire process 
is then repeated for the desired number of transients, and then again (for arrayed and nD 
experiments) for subsequent elements of the arrayed or nD experiment.

In all these cases, pulse sequences use implicit acquisition, that is, following the pulse 
sequence as written by the user, an FID is automatically (implicitly) acquired. This 
acquisition is preceded by a delay that includes the parameter alfa with a delay based on 
the type of filter and the filter bandwidth. In addition, the phase of all channels of the 
spectrometer (except the receiver) is set to zero at this time.

Some pulse sequences are not described by this simple model; many solids NMR sequences 
are in this category, for example. These sequences use explicit acquisition, in which the 
preacquisition and acquisition steps must be explicitly programmed by the user. This 
method is described further in “Hardware Looping and Explicit Acquisition,” page 103.

Acquisition Status Codes

Whenever wbs, wnt, wexp, or werr processing occurs, the acquisition condition that 
initiated that processing is available from the parameter acqstatus. This acquisition 
condition is represented by two numbers, a “done” code and an “error” code. The done code 
is set in acqstatus[1] and the error code is set in acqstatus[2]. Macros can take 
different actions depending on the acquisition condition. 

The done codes and error codes are listed in Table 44 and in the file acq_errors in 
/vnmr/manual. For example, a werr command could specify special processing if the 
maximum number of transients is accumulated. The appropriate test would be the 
following:
if (acqstatus[2] = 200) then
“do special processing, e.g. dp='y' au”
endif

2.3 Spectrometer Control
• “Creating a Time Delay,” page 61

• “Pulsing the Observe Transmitter,” page 62

• “Pulsing a Non-Observe Transmitter,” page 64

• “Pulsing Channels Simultaneously,” page 65

• “Setting Transmitter Quadrature Phase Shifts,” page 67

• “Setting Small-Angle Phase Shifts,” page 67

• “Controlling the Offset Frequency,” page 69

• “Controlling Observe and Decoupler Transmitter Power,” page 70



2.3 Spectrometer Control

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 61

• “Status and Gating,” page 73

• “Interfacing to External User Devices,” page 75

More than 200 pulse sequence statements are available for pulse sequence generation 
(PSG). This section starts the discussion of each statement by covering statements intended 
primarily for spectrometer control. For discussion purposes, the statements in this section 
are divided into categories: delay-related, observe transmitter pulse-related, decoupler 
transmitter pulse-related, simultaneous pulses, transmitter phase control, small-angle phase 
shift, frequency control, power control, and gating control. 

Creating a Time Delay

The statements related to time delays are delay, hsdelay, idelay, vdelay, 
initdelay, and incdelay. Table 4 summarizes these statements.

The main statement to create a delay in a pulse sequence for a specified time is the 
statement delay(time), where time is a real number (e.g., delay(d1)). The 
hsdelay and idelay statements are variations of delay:

• To add a possible homospoil pulse to the delay, use hsdelay(time). If the 
homospoil parameter hs is set to 'y', then at the beginning of the delay, hsdelay 
inserts a shim coil '3' homospoil pulse of length hst seconds (refer to the description 
of status). 

• To cause interactive parameter adjustment (IPA) information to be generated when gf 
or go('acqi') is entered, use idelay(time,string), where string is the 
label used in acqi. If go is entered, idelay is the same as delay. See “Using 
Interactive Parameter Adjustment,” page 98, for details on IPA. IPA and idelay are 
not available on the MERCURYplus/-Vx.

To set a delay to the product of a fixed timebase and a real-time count, use 
vdelay(timebase,count), where timebase is NSEC (defined below), USEC 
(microseconds), MSEC (milliseconds), or SEC (seconds) and count is one of the real-time 
variables (v1 to v14). For predictable acquisition, the real-time variable should have a 
value of 2 or more. If timebase is set to NSEC, the delay depends on the type of 
acquisition controller board in the system:

• Systems with a Data Acquisition Controller board:

The minimum delay is a count of 0 (50 ns), and a count of n corresponds to a delay 
of (50 + (12.5*n)) ns.

• The vdelay statement is not available on the MERCURYplus/-Vx.

Use initdelay(time_increment,index) or incdelay(count,index) to 
enable a real-time incremental delay. A maximum of five incremental delays (set by 
index) can be defined in one pulse sequence. The following steps are required to set up 
an incremental delay (initdelay and incdelay are not available on the 
MERCURYplus/-Vx): 

Table 4. Delay-Related Statements

delay(time) Delay specified time
hsdelay(time) Delay specified time with possible hs pulse
idelay(time,string) Delay specified time with IPA
incdelay(count,index) Set real-time incremental delay
initdelay(time_increment,index) Initialize incremental delay
vdelay(timebase,count) Set delay with fixed timebase and real-time count



Chapter 2. Pulse Sequence Programming

62 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

1. Enter initdelay(time_increment,index) to initialize the time increment 
and delay. 

The argument time_increment is the time increment that will be multiplied by 
the count (a real-time variable) for the delay time, and index is one of the indices 
DELAY1, DELAY2, ..., DELAY5 (e.g., initdelay(1.0/sw,DELAY1) or 
initdelay(1.0/sw1,DELAY2)).

2. Set the increment delay by specifying its index and the multiplier count using 
incdelay(count,index) (e.g., for incdelay(v3,DELAY2), when v3=0, 
the delay is 0*(1/sw1)). 

Pulsing the Observe Transmitter

Statements related to pulsing the observe transmitter are rgpulse, irgpulse, pulse, 
ipulse, obspulse, and iobspulse. Table 5 summarizes these statements.

Note that observe transmitter does not refer to a specific physical channel, but to that 
physical channel used for observe.

Use rgpulse(width,phase,RG1,RG2) as the main statement to pulse the observe 
transmitter in a sequence, where width is the pulse width, phase (a real-time variable) 
is the pulse phase, and RG1 and RG2 are defined as:

• RG1 is the delay during which any needed phase shift is performed and the linear 
amplifier is gated on and then allowed to stabilize prior to executing the rf pulse, and 
RG2 is the delay after the pulse after gating off the amplifier. Thus, receiver gating is 
a misnomer: RG1 and RG2 set amplifier gating, as shown in Figure 1. The receiver is 
off during execution of the pulses and is only gated on immediately before acquisition.

• On the MERCURYplus/-Vx, the receiver and amplifiers are tied together such that when 
the amplifier is on, the receiver is automatically turned off and when the receiver is on, 
the amplifier is off.

Table 5. Observe Transmitter Pulse-Related Statements

iobspulse(string) Pulse observe transmitter with IPA
ipulse(width,phase,string) Pulse observe transmitter with IPA
irgpulse(width,phase,RG1,RG2,string) Pulse observe transmitter with IPA
obspulse() Pulse observe transmitter with amp. gating
pulse(width,phase). Pulse observe transmitter with amp. gating
rgpulse(width,phase,RG1,RG2) Pulse observe transmitter with amp. gating

Figure 1. Amplifier Gating

On

Off

On

Off

Width

RG2RG1

Transmitter

gating

Amplifier
gating



2.3 Spectrometer Control

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 63

Some further information about RG1 and RG2:

• Typically, RG1 is a few microseconds and RG2 is probe-dependant.

• The phase of the pulse is set at the beginning of RG1. The phase settling time is about:

0.2μsec on UNITYINOVA.

0.2μsec on MERCURYplus/-Vx.

• A transmitter gate is also switched during RG1. The switching time for this gate is less 
than:

0.1μsec on UNITYINOVA systems. 

For systems with linear amplifiers, an rf pulse can be unexpectedly curtailed if the amplifier 
goes into thermal shutdown. Thermal shutdown can be brought about if the amplifier duty 
cycle becomes too large for the average power output. 

The remaining statements for pulsing the observe transmitter are variations of rgpulse:

• To pulse the observe transmitter the same as rgpulse but with RG1 and RG2 set to 
the parameters rof1 and rof2, respectively, use pulse(width,phase). Thus, 
pulse(width,phase) and rgpulse(width,phase,rof1,rof2) are 
exactly equivalent.

• To pulse the observe transmitter the same as pulse but with width preset to pw and 
phase preset to oph, use obspulse(). Thus, obspulse() is exactly equivalent 
to rgpulse(pw,oph,rof1,rof2). 

• To pulse the observe transmitter with rgpulse, pulse, or obspulse, but generate 
interactive parameter adjustment (IPA) information when gf or go('acqi') is 
entered, use irgpulse(width,phase,RG1,RG2,string), 
ipulse(width,phase,string), or iobspulse(string), respectively. 
The string argument is used as a label in acqi. If go is entered, the IPA 
information is not generated. For details on IPA, see “Using Interactive Parameter 
Adjustment,” page 98. IPA is not available on MERCURYplus/-Vx systems.

The ampmode parameter gives override capability over the default selection of amplifier 
modes. Unless overridden, the observe channel is set to the pulse mode, other used channels 
are set to the CW (continuous wave) mode, and any unused channels are set to the idle 
mode. By using values of d, p, c, and i for the default, pulse, CW, and idle modes, 
respectively, ampmode can override the default modes. For example, ampmode='ddp' 
selects default behavior for the first two amplifiers and forces the third channel amplifier 
into the pulse mode. 

The selection of rf channels can be independently controlled with the rfchannel 
parameter. Single-channel broadband systems do not need rfchannel to set up a normal 
HMQC experiment (tn='H1', dn='C13'). The software recognizes that you cannot do 
this experiment and swaps the two channels automatically to make the experiment possible. 

The rfchannel parameter becomes important if, for example, if running an HMQC 
experiment with the X-nucleus using channel 3 with a three-channel spectrometer is 
required. Instead of rewriting the pulse sequence, create rfchannel (by entering 
create('rfchannel','string')), and set rfchannel, in this example set, 
rfchannel='132'. Channels 2 and 3 are effectively swapped without changing the 
sequence.

Similarly, to observe on channel 2, run S2PUL with rfchannel='21'. 

The rfchannel mechanism only works for pulse sequences that eliminate all references 
to the constants TODEV, DODEV, DO2DEV, and DO3DEV. To take advantage of 
rfchannel, remove statements, such as power and offset, that use these constants 



Chapter 2. Pulse Sequence Programming

64 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

and replace them with the corresponding statements, such as obspower and 
decoffset, that do not contain the constants.

Standard pulse sequences have been edited to take advantage of the rf channel 
independence afforded by the rfchannel parameter. This parameter makes it a simple 
matter to redirect, for example, the dn nucleus to use the third or fourth rf channel. 

Appropriate changes to the cabling of the probe are usually required if rfchannel is 
used.

The MERCURYplus/-Vx systems have two channels and the software automatically 
determines which channel is observe or decouple based on tn and dn.

Pulsing a Non-Observe Transmitter

Statements related to non-observe pulsing are decpulse, decrgpulse, idecpulse, 
idecrgpulse, dec2rgpulse, and dec3rgpulse. Table 6 summarizes these 
statements.

Use decpulse(width,phase) to pulse channel 2 in the pulse sequence at its current 
power level. width is the time of the pulse, in seconds, and phase is a real-time variable 
for the phase of the pulse (e.g., decpulse(pp,v3)). 

The amplifier is gated on during decoupler pulses as it is during observe pulses. The 
amplifier gating times (see RG1 and RG2 for decrgpulse below) are internally set to 
zero. The decoupler modulation mode parameter dmm should be 'c' during any period of 
time in which decoupler pulses occur.

To pulse the decoupler at its current power level and have user-settable amplifier gating 
times, use decrgpulse(width,phase,RG1,RG2), where width and phase are 
the same as used with decpulse, and RG1 and RG2 are the same as used with the 
rgpulse statement for observe transmitter pulses. In fact, decrgpulse is syntactically 
equivalent to rgpulse and functionally equivalent with two exceptions:

• The decoupler is pulsed at its current power level (instead of the transmitter).

• If homo='n', the slow gate (100 ns switching time on UNITY, on the decoupler board is 
always open and therefore need not be switched open during RG1. In contrast, if 
homo='y', the slow gate on the decoupler board is normally closed and must 
therefore be allowed sufficient time during RG1 to switch open (homo is not used on 
the MERCURYplus/-Vx).

For systems with linear amplifiers, RG1 for a decoupler pulse is important from the 
standpoint of amplifier stabilization under either of the following conditions:

• When tn and dn both equal 3H, 1H, or 19F (high-band nuclei).

Table 6. Decoupler Transmitter Pulse-Related Statements 

decpulse(width,phase) Pulse decoupler transmitter with amp. gating
decrgpulse(width,phase,RG1,RG2) Pulse first decoupler with amplifier gating 
dec2rgpulse(width,phase,RG1,RG2) Pulse second decoupler with amplifier gating
dec3rgpulse(width,phase,RG1,RG2) Pulse third decoupler with amplifier gating
dec4rgpulse(width,phase,RG1,RG2) Pulse deuterium decoupler with amplifier gating
idecpulse(width,phase,string) Pulse first decoupler transmitter with IPA
idecrgpulse* Pulse first decoupler with amplifier gating and IPA
* idecrgpulse(width,phase,RG1,RG2,string)



2.3 Spectrometer Control

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 65

• When tn and dn are less than or equal to 31P (low-band nuclei). 

For these conditions, the “decoupler” amplifier module is placed in the pulse mode, in 
which it remains blanked between pulses. In this mode, RG1 must be sufficiently long to 
allow the amplifier to stabilize after blanking is removed: 5 μs is typically right.

When the tn nucleus and the dn nucleus are in different bands, such as tn is 1H and dn 
is 13C, the “decoupler” amplifier module is placed in the continuous wave (CW) mode, in 
which it is always unblanked regardless of the state of the receiver. In this mode, RG1 is 
unimportant with respect to amplifier stabilization prior to the decoupler pulse, but with 
respect to phase setting, it must be set.

The remaining decoupler transmitter pulse-related statements are variations of decpulse 
and decrgpulse:

• To pulse the decoupler the same as decpulse or decrgpulse, but generate 
interactive parameter adjustment (IPA) information when gf or go('acqi') is 
entered, use idecpulse(width,phase,string) or 
idecrgpulse(width,phase,RG1,RG2,string), respectively, where 
string is used as a label in acqi. If go is entered instead, the IPA information is not 
generated. For details on IPA, see “Using Interactive Parameter Adjustment,” page 98. 
IPA is not available on MERCURYplus/-Vx systems.

• Use the following to pulse the second decoupler (channel 2): 
dec2rgpulse(width,phase,RG1,RG2). 

• Use the following to pulse the third decoupler (channel 4): 
dec3rgpulse(width,phase,RG1,RG2). 

• Use the following to pulse UNITYINOVA systems with a deuterium decoupler installed 
as the fifth channel, a fourth decoupler (channel 5): 
dec4rgpulse(width,phase,RG1,RG2).

• The width, phase, RG1, and RG2 arguments have the same meaning as used with 
decrgpulse and rgpulse. The homo parameter has no effect on the gating on the 
second decoupler board. On UNITYINOVA systems only, homo2 controls the 
homodecoupler gating of the second decoupler, homo3 does the same on the third 
decoupler, and homo4 does the same on the fourth decoupler when it is used as a 
deuterium channel (on the MERCURYplus/-Vx, dec2rgpulse, dec3rgpulse, 
and dec4rgpulse have no meaning and homo is not used).

Pulsing Channels Simultaneously

Statements for controlling simultaneous, non-shaped pulses are simpulse, sim3pulse, 
and sim4pulse. Table 7 summarizes these statements. Simultaneous pulses statements 
using shaped pulses are covered in a later section.

Use simpulse(obswidth,decwidth,obsphase,decphase,RG1,RG2) to 
simultaneously pulse the observe and first decoupler rf channels with amplifier gating (e.g., 
simpulse(pw,pp,v1,v2,0.0,rof2)).

Table 7. Simultaneous Pulses Statements

simpulse* Pulse observe and decoupler channels simultaneously
sim3pulse* Pulse simultaneously on two or three rf channels
sim4pulse* Simultaneous pulse on four channels
* sim3pulse(pw1,pw2,pw3,phase1,phase2,phase3,RG1,RG2) 

sim3pulse(pw1,pw2,pw3,phase1,phase2,phase3,RG1,RG2) 
sim4pulse(pw1,pw2,pw3,pw4,phase1,phase2,phase3,phase4,RG1,RG2)



Chapter 2. Pulse Sequence Programming

66 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Figure 2 illustrates the action of simpulse 

The shorter of the two pulses is centered on the longer pulse, while the amplifier gating 
occurs before the start of the longer pulse (even if it is the decoupler pulse) and after the 
end of the longer pulse. The absolute difference in the two pulse widths must be greater than 
or equal to the following values:

• UNITYINOVA systems: 0.2 μs

• on the MERCURYplus/-Vx systems: 0.4 μs

otherwise, a timed event of less than the following minimum values:

• UNITYINOVA systems: 0.1 μs

• MERCURYplus/-Vx systems: 0.2 μs 

would be produced. In such cases, a short time (0.2 μs to 0.4 μs) is added to the longer of 
the two pulse widths to remedy the problem, or the pulses are made the same if the 
difference is less than half the minimum (less than 0.05 μs on UNITYINOVA, less than 0.2 μs 
on MERCURYplus/-Vx systems).

sim3pulse(pw1,pw2,pw3,phase1,phase2,phase3,RG1,RG2) performs a 
simultaneous, three-pulse pulse on three independent rf channels, where pw1, pw2, and 
pw3 are the pulse durations on the observe transmitter, first decoupler, and second 
decoupler, respectively. phase1, phase2, and phase3 are real-time variables for the 
phases of the corresponding pulses, for example, sim3pulse(pw,p1,p2,oph, 
v10,v1,rof1,rof2).

A simultaneous, two-pulse pulse on the observe transmitter and the second decoupler can 
be achieved by setting the pulse length for the first decoupler to 0.0; for example, 
sim3pulse(pw,0.0,p2,oph,v10,v1,rof1,rof2). The sim3pulse 
statement has no meaning on MERCURYplus/-Vx.

Use sim4pulse(pw1,pw2,pw3,pw4,phase1,phase2,phase3,phase4, 
RG1,RG2) to perform simultaneous pulses on as many as four different rf channels. 
Except for the added arguments pw4 and phase4 for a third decoupler, the arguments in 
sim4pulse are defined the same as sim3pulse. If any pulse is set to 0.0, no pulse is 

Transmitter
gating

Decoupler
gating

obswidth

Decoupler
gating

Transmitter
gating

Amplifier
gating

Amplifier
gating

RG1 RG2 RG1 RG2

Figure 2. Pulse Observe and Decoupler Channels Simultaneously

Decoupler pulse > Observe pulseObserve pulse > Decoupler pulse

decwidth

decwidth obswidth



2.3 Spectrometer Control

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 67

executed on that channel. The sim4pulse statement has no meaning on MERCURYplus/
-Vx.

Setting Transmitter Quadrature Phase Shifts

The statements txphase, decphase, dec2phase, dec3phase, dec4phase 
control transmitter quadrature phase (multiple of 90°). Table 8 summarizes these 
statements.

To set the transmitter phase, use txphase(phase), where phase is a real-time variable 
(v1 to v14, etc.) or a real-time constant (zero, one, etc.) that references the desired 
phase. This enables changing the transmitter phase independently from a pulse. 

For example, knowing that the transmitter phase takes a finite time to shift (about 1 μs on 
a MERCURYplus/-Vx, 200 ns for UNITYINOVA), “preset” the transmitter phase at the 
beginning of a delay that precedes a particular pulse. The “normal” pulse sequences use an 
rof1 time preceding the pulse to change the transmitter phase, and it is not necessary to 
“preset” the phase. The phase change will occur at the start of the next event in the pulse 
sequence. 

The other phase control statements are variations of txphase:

• To set the decoupler phase, use decphase(phase). The decphase statement is 
syntactically and functionally equivalent to txphase. decphase is useful for a 
decoupler pulse in all cases where txphase is useful for a transmitter pulse.

• To set the quadrature phase of the second decoupler rf or third decoupler rf, use 
dec2phase(phase) or dec3phase(phase), respectively.

The hardware WALTZ decoupling lines are XORed with the decoupler phase control. The 
performance of the WALTZ decoupling should not be affected by the decoupler phase 
setting. 

When using pulse sequences with implicit acquisition, the decoupler phase is controlled by 
the relevant shapelib file used, e.g., WALTZ16. Set to 0 automatically (within the 
test4acq procedure in the module hwlooping.c in /vnmr/psg), so under most 
circumstances no problems are seen. But if you are using explicit acquisition or if you are 
trying to perform WALTZ decoupling during a period other than acquisition, you must use 
a decphase(zero) statement in the pulse sequence before the relevant time period.

Setting Small-Angle Phase Shifts

Setting the small-angle phase of rf pulses is implemented by three different methods:

• Fixed 90° settings

• Direct synthesis hardware control

• Phase-pulse phase shifting

The statements related to these methods are summarized in Table 9.

Table 8. Transmitter Quadrature Phase Control Statements

decphase(phase) Set quadrature phase of first decoupler
dec2phase(phase) Set quadrature phase of second decoupler
dec3phase(phase) Set quadrature phase of third decoupler
dec4phase(phase) Set quadrature phase of fourth decoupler
txphase(phase) Set quadrature phase of observe transmitter



Chapter 2. Pulse Sequence Programming

68 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Fixed 90° Settings

The first method is the hardwired 90° (or quadrature) phase setting. Both the observe and 
the decoupler transmitters invoke phases of 0°, 90°, 180°, and 270° instantaneously using 
the obspulse, pulse, rgpulse, simpulse, decpulse, decrgpulse, 
dec2rgpulse, dec3rgpulse, dec4rgpulse, txphase, decphase, 
dec2phase, dec3phase, and dec4phase statements. 

Small-Angle Phase Shifts

A second method of small-angle phase selection is implemented only on spectrometers 
with direct synthesis. The hardware sets transmitter phase in the following increments:

• UNITYINOVA systems: 0.25º

• on MERCURYplus/-Vx systems: 1.41° 

independently of the phase of the receiver. This method is an absolute technique (e.g., if a 
phase of 60° is invoked twice, the second phase selection does nothing). 

The obsstepsize(base) statement sets the step size of the small-angle phase 
increment to base for the observe transmitter. Similarly, decstepsize(base), 
dec2stepsize(base), and dec3stepsize(base) set the step size of the 
small-angle phase increment to base for the first decoupler, second decoupler, and third 
decoupler, respectively (assuming that system is equipped with appropriate hardware). The 
base argument is a real number or variable. 

The base phase shift selected is active only for the xmtrphase statement if the 
transmitter is the requested device, only for the dcplrphase statement if the decoupler 
is the requested device, only for the dcplr2phase statement if the second decoupler is 
the requested device, or only for the dcplr3phase if the third decoupler is the required 
device, that is, every transmitter has its own “base” phase shift. Phase information into 
pulse, rgpulse, decpulse, decrgpulse, dec2rgpulse, dec3rgpulse, and 
simpulse is still expressed in units of 90°.

The statements xmtrphase(multiplier), dcplrphase(multiplier), 
dcplr2phase(multiplier), and dcplr3phase(multiplier) set the phase of 
transmitter, first decoupler, second decoupler, or third decoupler, respectively, in units set 
by stepsize. If stepsize has not been used, the default step size is 90°. The argument 
multiplier is a small-angle phaseshift multiplier. The small-angle phaseshift is a 
product of the multiplier and the preset stepsize for the rf device (observe transmitter, 
first decoupler, second decoupler, or third decoupler). multiplier must be a real-time 
variable.

Table 9. Phase Shift Statements

dcplrphase(multiplier) Set small-angle phase of first decoupler
dcplr2phase(multiplier) Set small-angle phase of second decoupler
dcplr3phase(multiplier) Set small-angle phase of third decoupler
decstepsize(base) Set step size of first decoupler
dec2stepsize(base) Set step size of second decoupler
dec3stepsize(base) Set step size of third decoupler
obsstepsize(base) Set step size of observe transmitter
phaseshift* Set phase-pulse technique, rf type A or B
stepsize(base,device) Set small-angle phase step size
xmtrphase(multiplier) Set small-angle phase of observe transmitter, rf type C
* phaseshift(base,multiplier,device)



2.3 Spectrometer Control

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 69

The decstepsize, dec2stepsize, dec3stepsize, and obsstepsize 
statements are similar to the stepsize statement but have the channel selection fixed. 
Each of the following pairs of statements are functionally the same:

• obsstepsize(base) and stepsize(base,OBSch).

• decstepsize(base) and stepsize(base,DECch).

• dec2stepsize(base) and stepsize(base,DEC2ch).

• dec3stepsize(base) and stepsize(base,DEC3ch).

On systems with Output boards only, if the product of the base and multiplier is 
greater than 90°, the sub-90° part is set by the xmtrphase, dcplrphase, 
dcplr2phase, or dcplr3phase statements. Carryovers that are multiples of 90° are 
automatically saved and added in at the time of the next 90° phase selection (e.g., at the 
time of the next pulse or decpulse). This is true even if stepsize has not been used 
and base is at its default value of 90°. The following example may help you to understand 
this question of “carryovers”:
obsstepsize(60.0); /* set 60° step size for obs. xmtr*/
initval(6.0,v1); modn(ct,v1,v2); /* v2=012345012345 */

xmtrphase(v2); /* phase=0,60,120,180,240,300 */

/* small-angle part=0,60,30,0,60,30 */

/* carry-over=0,0,90,180,180,270 */

mod4(ct,v3);pulse(pw,v3); /* specified phase=0,90,180,270 */

/* 90° phase shift actually used */
/* = 0,90,270,450,180,360 */

/* = specified + carry-over */

If xmtrphase, dcplrphase, dcplr2phase, or dcplr3phase is used to set the 
phase for some pulses in a pulse sequence, it is often necessary to use 
xmtrphase(zero), dcplrphase(zero), dcplr2phase(zero), or 
dcplr3phase(zero) preceding other pulses to ensure that the phase specified by a 
previous xmtrphase, dcplrphase, dcplr2phase, or dcplr3phase does not 
carry over into an unwanted pulse or decpulse statement.

Phases specified in txphase, pulse, rgpulse, decphase, decpulse, 
decrgpulse, dec2phase, dec2rgpulse, dec3rgpulse, and dec4rgpulse 
statements change the 90° portion of the phase shift only. This feature provides a separation 
between the small-angle phase shift and the 90° phase shifts and facilitates programming 
phase cycles or additional coherence transfer selective phase cycling “on top of” small-
angle phase shifts. 

Be sure to distinguish xmtrphase from txphase. txphase is optional and needed if 
the gating time RG1 is set to zero in pulse statements; xmtrphase is needed any time the 
transmitter phase shift is to be set to a value not a multiple of 90°. The same distinction can 
be made between dcplrphase and decphase, dcplr2phase and dec2phase, and 
dcplr3phase and dec3phase.

Controlling the Offset Frequency

Statements for frequency control are decoffset, dec2offset, dec3offset, 
dec4offset, obsoffset, offset, and ioffset. Table 10 summarizes these 
statements.

The main statement to set the offset frequency of the observe transmitter (parameter tof), 
first decoupler (dof), second decoupler (dof2), or third decoupler (dof3) is the statement 
offset(frequency,device), where frequency is the new value of the 



Chapter 2. Pulse Sequence Programming

70 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

appropriate parameter and device is OBSch (observe transmitter), DECch (first 
decoupler), DEC2ch (second decoupler), or DEC3ch (third decoupler). However, for 
clarity, use obsoffset, decoffset, etc. in actual coding. For example, use 
offset(to2,OBSch) to set the observe transmitter offset frequency. DEC2ch can be 
used only on systems with three rf channels. Likewise, DEC3ch is used only on systems 
with four rf channels.

• For systems with rf type D, the frequency shift time is 14.95 μs (latching with or 
without over-range). No 100-μs delay is inserted into the sequence by the offset 
statement. Offset frequencies are not returned automatically to their “normal” values 
before acquisition; this must be done explicitly, as in the example below.

• The frequency shift time is 4 μs for UNITYINOVA systems.

• The setup time is 86.4 μs and the shift time is 1 μs for MERCURYplus/-Vx systems.

Other frequency control statements are variations of offset:

• To set the offset frequency of the observe transmitter the same as offset but generate 
interactive parameter adjustment (IPA) information when gf or go('acqi') is 
entered, use ioffset(frequency,device,string), where string is used 
as a label for the slider in acqi. If go is entered instead, the IPA information is not 
generated. For details on IPA, see “Using Interactive Parameter Adjustment,” page 98. 
IPA is not available on MERCURYplus/-Vx systems.

• To set the offset frequency of the observe transmitter (parameter tof), use 
obsoffset(frequency), which functions the same as 
offset(frequency,OBSch).

• To set the offset frequency of the first decoupler (parameter dof), use 
decoffset(frequency), which functions the same as 
offset(frequency,DECch).

• To set the offset frequency of the second decoupler (parameter dof2), use 
dec2offset(frequency), which functions the same as 
offset(frequency,DEC2ch).

• To set the offset frequency of the third decoupler (parameter dof3), use 
dec3offset(frequency), which functions the same as 
offset(frequency,DEC3ch).

• To set the offset frequency of the fourth decoupler used as the fifth channel (parameter 
dof4), use dec4offset(frequency), which functions the same as 
offset(frequency,DEC4ch).

Controlling Observe and Decoupler Transmitter Power

Statements to control power by adjusting the coarse attenuators on linear amplifier systems 
are power, obspower, decpower, dec2power, dec3power, and dec4power. 

Table 10. Frequency Control Statements

decoffset(frequency) Change offset frequency of first decoupler
dec2offset(frequency) Change offset frequency of second decoupler
dec3offset(frequency) Change offset frequency of third decoupler
dec4offset(frequency) Change offset frequency of fourth decoupler
obsoffset(frequency) Change offset frequency of observe transmitter
offset(frequency,device) Change offset frequency of transmitter or decoupler
ioffset(frequency,device,string) Change offset frequency with IPA



2.3 Spectrometer Control

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 71

Statements to control fine power are pwrf, pwrm, rlpwrm, obspwrf, decpwrf, 
dec2pwrf, and dec3pwrf.Statements to control decoupler power level switching are 
declvlon, declvloff, and decpwr. Table 11 summarizes these statements.

Coarse Attenuator Control

 UNITYINOVA systems with linear amplifiers use the lower-level statement 
power(value,device) to change transmitter or decoupler power by adjusting the 
coarse attenuators from 0 (minimum power) to 63 (maximum power) on channels with a 
63-dB attenuator, or from –16 (minimum power) to 63 (maximum power) on channels with 
a 79-dB attenuator.

• Value must be stored in a real-time variable such as v2 for this form of control; the 
actual value cannot be placed directly in the power statement. This allows the 
attenuators to be changed in real-time or from pulse to pulse. 

• device is OBSch to change the transmitter power, DECch to change the first 
decoupler power, DEC2ch to change the second decoupler power, or DEC3ch to 
change the third decoupler power (e.g., power(v2,OBSch)). 

To avoid using a real-time variable, the fixed-channel statements obspower(value), 
decpower(value), dec2power(value), and dec3power(value) should be 
used in place of the power statement, for example, obspower(63.0). For all of these 
statements, value is either a real number or a variable. These statements are typically used 
in most sequences.

These power and associated fixed-channel statements allow configurations such as the use 
of the transmitter at a low power level for presaturation followed by a higher power for 
uniform excitation. The phase of the transmitter is specified as being constant to within 5° 
over the whole range of transmitter power. Therefore, pulsing at low power with a certain 
phase and later at high power with the same phase, the two phases are the “same” to within 
5° (at any one power level, the phase is constant to considerably better than 0.5°).The time 
of the power change is specified in Table 33. 

While no psg delay is associated with the coarse power control, the device itself takes about 
2 microseconds to stabilize at the new value. This will happen in parallel with the next psg 
event in the program. This stabilization time is inconsequential except for back-to-back 
power statements.

Table 11. Power Control Statements

declvloff() Return first decoupler back to “normal” power
declvlon() Turn on first decoupler to full power
decpower(value) Change first decoupler power, linear amplifier
dec2power(value) Change second decoupler power, linear amplifier
dec3power(value) Change third decoupler power, linear amplifier
dec4power(value) Change deuterium decoupler power, linear amplifier
decpwr(level) Set decoupler high-power level, class C amplifier
decpwrf(value) Set first decoupler fine power
dec2pwrf(value) Set second decoupler fine power
dec3pwrf(value) Set third decoupler fine power
obspower(value) Change observe transmitter power, linear amplifier
obspwrf(value) Set observe transmitter fine power
power(value,device) Change transmitter or decoupler power, linear amplifier
pwrf(value,device) Change transmitter or decoupler fine power
pwrm(value,device) Change transmitter or decoupler linear mod. power
rlpwrm(rlvalue,device) Set transmitter or decoupler linear mod. power



Chapter 2. Pulse Sequence Programming

72 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

On systems with an Output board only, the power and associated statements are preceded 
internally by a 0.2 μs delay by default (see the apovrride pulse statement for more 
details). 

CAUTION:  Use caution when setting values of power, obspower, decpower, 
dec2power, and dec3power greater than 49 (about 2 watts). 
Performing continuous decoupling or long pulses at power levels 
greater than this can result in damage to the probe. Set a safety 
maximum for the tpwr, dpwr, dpwr2, and dpwr3 parameters in te 
Utilities->System Settings window or use global variable 
maxattnech1, maxattnech2, … to have psg (the go command) 
check for power values in excess of defined limits.

Fine-Power Control

To change the fine power of a transmitter or decoupler by adjusting the optional linear fine 
attenuators, use pwrf(value,device) or pwrm(value,device). The value 
argument is real-time variable, which means it cannot be placed directly in the pwrf or 
pwrm statement, and can range from 0 to 4095 (60 dB on UNITYINOVA, about 6 dB on other 
systems). The device is OBSch (for the observe transmitter), or DECch (first decoupler), 
(on UNITYINOVA only), device can also be DEC2ch (second decoupler), or DEC3ch (third 
decoupler). MERCURYplus/-Vx systems do not support pwrf and pwrm with real-time 
parameters but support all other parameters.

The fixed-channel statements obspwrf(value), decpwrf(value), 
dec2pwrf(value), and dec3pwrf, or rlpwrm(value,device) to avoid 
arguments using real-time variables and are the preferred usage. These statements change 
transmitter or decoupler power on systems with linear amplifiers and value is either a real 
number or a variable and is stored in a C variable of type double.

The ipwrf(value,device,string) and ipwrm(value,device,string) 
statement changes interactively the transmitter or decoupler fine power or linear 
modulators by adjusting the optional fine attenuators. The value and device arguments 
are the same as pwrf. string can be any string; the first six letters are used in acqi. 
This statement will generate interactive parameter adjustment (IPA) information only when 
the command gf or go('acqi') is typed. When the command go is typed, this 
statement is ignored by the pulse sequence. Use the pwrf pulse statement for this purpose. 
Do not execute pwrf and ipwrf in the same pulse sequence, as they cancel each other's 
effect.

On systems with an Output board only, a 0.2 μs delay internally precedes the AP (analog 
port) bus statements power, obspower, decpower, and dec2power. The 
apovrride() statement prevents this 0.2 μs delay from being inserted prior to the next 
(and only the next) occurrence of one of the these AP bus statements.

Decoupler Power-Level Switching

On UNITYINOVA systems with class C or linear amplifiers, declvlon() and 
declvloff() switch the decoupler power level between the power level set by the high-
power parameter(s) to the full output of the decoupler. The statement declvlon() gives 
full power on the decoupler channel; declvloff switches the decoupler to the power 
level set by the appropriate parameters defined by the amplifier type: dhp for class C 
amplifiers or dpwr for a linear amplifiers. If dhp='n', these statements do not have any 
effect on systems with class C amplifiers, but still function for systems with linear 
amplifiers.



2.3 Spectrometer Control

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 73

If declvlon is used, make sure declvloff is used prior to time periods in which 
normal, controllable power levels are desired, for example, prior to acquisition. Full 
decoupler power should only be used for decoupler pulses or for solids applications.

MERCURYplus/-Vx systems do not use declvlon or declvloff. 

Status and Gating

Statements to control decoupler and homospoil status are status and setstatus. 
Explicit transmitter and receiver gating control statements are xmtroff, xmtron, 
decoff, decon, dec2off, dec2on, dec3off, dec3on, rcvroff, and rcvron. 
Statements for amplifier blanking and unblanking are obsblank, obsunblank, 
decblank, decunblank, dec2blank, dec2unblank, dec3blank, 
dec3unblank, blankingoff, and blankingon. Finally, statements for user-
dedicated lines are sp#off and sp#on (#=1, 2, or 3). Table 12 summarizes these 
statements.

Gating States

Use status(state) to control decoupler and homospoil gating in a pulse sequence, 
where state is A to Z (e.g., status(A) or status(B)). Parameters controlled by 
status are dm (first decoupler mode), dmm (first decoupler modulation mode), and hs 

Table 12. Gating Control Statements

blankingoff() Unblank amplifier channels and turn amplifiers on
blankingon() Blank amplifier channels and turn amplifiers off
decblank() Blank amplifier associated with the 1st decoupler
dec2blank() Blank amplifier associated with the 2nd decoupler
dec3blank() Blank amplifier associated with the 3rd decoupler
decoff() Turn off first decoupler
dec2off() Turn off second decoupler
dec3off() Turn off third decoupler
decon() Turn on first decoupler
dec2on() Turn on second decoupler
dec3on() Turn on third decoupler
decunblank() Unblank amplifier associated with the 1st decoupler
dec2unblank() Unblank amplifier associated with the 2nd decoupler
dec3unblank() Unblank amplifier associated with the 3rd decoupler
dhpflag=TRUE|FALSE Switch decoupling between high- and low-power levels
initparms_sis() Initialize parameters for spectroscopy imaging sequences
obsblank() Blank amplifier associated with observe transmitter
obsunblank() Explicitly enables the amplifier for the observe transmitter
rcvroff() Turn off receiver gate and amplifier blanking gate
rcvron() Turn on receiver gate and amplifier blanking gate
recoff() Turn off receiver gate only
recon() Turn on receiver gate only
setstatus* Set status of observe transmitter or decoupler transmitter
status(state) Change status of decoupler and homospoil
statusdelay(state,time) Execute status statement with given delay time
xmtroff() Turn off observe transmitter
xmtron() Turn on observe transmitter
* setstatus(channel,on,mode,sync,mod_freq)



Chapter 2. Pulse Sequence Programming

74 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

(homospoil). For systems with a third or fourth rf channel, dm2 and dm3 (second and third 
decoupler modes) and dmm2 and dmm3 (second and third decoupler modulation mode) are 
also under status control. For systems with a deuterium decoupler channel as the fourth 
decoupler, dm4 and dmm4 are under status control.

Each of these parameters can have multiple states: status(A) sets each parameter to the 
state described by the first letter of its value; status(B) uses the second letter, etc. If a 
pulse sequence has more status statements than there are status modes for a particular 
parameter, control reverts to the last letter of the parameter value. Thus, if dm='ny', 
status(C) will look for the third letter, find none, and then use the second letter (y) and 
turn the decoupler on.

Use setstatus(channel,on,mode,sync,mod_freq)to control decoupler 
gating as well as decoupler modulation modes (GARP, CW, WALTZ, etc.). channel is 
OBSch, DECch, DEC2ch, or DEC3ch, on is TRUE or FALSE, mode is a decoupler mode 
('c', 'g', 'p', etc.), sync is TRUE or FALSE, and mod_freq is the modulation 
frequency (e.g., setstatus(DECch,TRUE,'w',FALSE,dmf). The setstatus 
statement is not available on the MERCURYplus/-Vx. 

setstatus provides a way to set transmitters independent of the parameters, one channel 
at a time. For example, setstatus(OBSch,TRUE,'g',TRUE,obs_mf), turns the 
observe transmitter (OBSch) on (TRUE), using GARP modulation ('g') in synchronized 
mode (TRUE) with a modulation frequency of obs_mf. (The obs_mf parameter will need 
to be calculated from a parameter set with an appropriate getval statement.)

Note: Be sure to set the power to a safe level before calling setstatus. 

Timing for setstatus is the same as for status except that only one channel needs to 
be taken into account. To ensure that the timing is constant for the status, use the 
statusdelay statement (e.g., statusdelay(A,2.0e-5))

Homospoil gating is treated somewhat differently than decoupler gating. If a particular 
homospoil code letter is 'y', delays coded as hsdelay that occur when the status 
corresponds to that code letter will begin with a homospoil pulse, the duration of which is 
determined by the parameter hst. Thus if hs='ny', all hsdelay delays that occur 
during status(B) will begin with a homospoil pulse. The final status always occurs 
during acquisition, at which time a homospoil pulse is not permitted. Thus, if a particular 
pulse sequence uses status(A), status(B), and status(C), dm and other 
decoupler parameters may have up to three letters, but hs will only have two, since 
hs='y' during status(C) would be meaningless and is ignored.

Transmitter Gating

On all systems, transmitter gating is handled as follows:

• Explicit transmitter gating in the pulse sequence is provided by xmtroff() and 
xmtron(). Transmitter gating is handled automatically by obspulse, pulse, 
rgpulse, simpulse, sim3pulse, shaped_pulse, simshaped_pulse, 
sim3shaped_pulse, and spinlock. The obsprgon statement should 
generally be enabled with an explicit xmtron statement, followed by xmtroff. 

• Explicit gating of the first decoupler in the pulse sequence is provided by decoff() 
and decon(). First decoupler gating is handled automatically by decpulse, 
decrgpulse, declvlon, declvloff, simpulse, sim3pulse, 
decshaped_pulse, simshaped_pulse, sim3shaped_pulse, and 
decspinlock. The decprgon function should generally be enabled with explicit 
decon statement and followed by a decoff call. 



2.3 Spectrometer Control

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 75

• Explicit gating of the second decoupler in the pulse sequence is provided by dec2off 
and dec2on. Second decoupler gating is handled automatically by dec2pulse, 
dec2rgpulse, sim3pulse, dec2shaped_pulse, sim3shaped_pulse, 
and dec2spinlock. The dec2prgon function should generally be enabled with 
an explicit dec2con statement, followed by dec2off. 

• Likewise, explicit gating of the third decoupler in the pulse sequence is provided by 
dec3off and dec3on. Third decoupler gating is handled automatically by 
dec3pulse, dec3rgpulse, dec3shaped_pulse, and dec3spinlock. The 
dec3prgon function should generally be enabled with an explicit dec3con 
statement, followed by dec3off. 

Receiver Gating

Explicit receiver gating in the pulse sequence is provided by the rcvroff(), 
rcvron(), recoff(), and recon() statements. These statements control the receiver 
gates except when pulsing the observe channel (in which case the receiver is off) or during 
acquisition (in which case the receiver is on). The recoff and recon statements 
(available only on UNITYINOVA systems) affect the receiver gate only and do not affect the 
amplifier blanking gate, which is the role of rcvroff and rcvron.

• The receiver is on only during acquisition, except for certain imaging pulse sequences 
on UNITYINOVA, that have explicit acquires (such as SEMS, MEMS, and FLASH), and 
for the initparms_sis() statement that defaults the receiver gate to on. 

• On MERCURYplus/-Vx, receiver gating is tied to the amplifier blanking and is 
normally controlled automatically by the pulse statements rgpulse, pulse, 
obspulse, decrgpulse, decpulse, and dec2rgpulse. 

Amplifier Channel Blanking and Unblanking

Amplifier channel blanking and unblanking methods depend on the system.

• The receiver and amplifiers are not linked on UNITYINOVA. To explicitly blank and 
unblank amplifiers, the following statements are provided:

For the amplifier associated with the observe transmitter:
obsblank() and obsunblank().

For the amplifiers associated with the first, second, and third decouplers:
decblank() and decunblank(), dec2blank()and dec2unblank(), 
and dec3blank()and dec3unblank(), respectively.

These statements replace blankon and blankoff, no longer in VnmrJ.

• On MERCURYplus/-Vx, the receiver and amplifier are linked. At the end of each pulse 
statement, the receiver is automatically turned back on and the amplifier blanked. 
Immediately prior to data acquisition, the receiver is implicitly turned back on.

Interfacing to External User Devices

The sp#on and sp#off statements are used for interfacing with external user devices.

User-Dedicated Spare Lines

One or more user-dedicated spare lines are available for high-speed device control:

• UNITYINOVA consoles have five spare lines in the Breakout panel on the rear of the left 
cabinet. Each spare line is a BNC connector. The sp#on() and sp#off() 
statements control specified SPARE lines (#= spare line 1, 2, 3, 4, or 5).



Chapter 2. Pulse Sequence Programming

76 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

User AP (Analog Port) Lines
UNITYINOVA consoles have two 24-pin user AP connectors, J8212 and J8213, in the 
Breakout panel on the rear of the left cabinet. Each connector has 16 user-controllable lines 
coinciding with two 8-bit AP bus registers. All four of the AP bus registers are writeable 
but only one register is readable.

Table 13 shows the mapping of the 
user AP lines. On both connectors, 
lines 17 to 25 are ground lines.

User AP lines allow the synchronous 
access by users to external services 
while running a pulse sequence. The 
statements 
setuserap(value,reg), 
vsetuserap(rtvar,reg), and 
readuserap(rtvar) provide access to these lines.

The setuserap and vsetuserap statements enable writing 8-bit information to one of 
four registers. Each write takes one AP bus cycle, which is 0.5 μs for the UNITYINOVA. The 
only difference between setuserap and vsetuserap is that vsetuserap uses a 
real-time variable to set the value.

The readuserap statement lets you read 8-bit information from the register into a real-
time variable. You can then act on this information using real-time math and real-time 
control statements while the pulse sequence is running; however, because the system has to 
wait for the data to be read before it can continue parsing and stuffing the FIFO, a 
significant amount of overhead is involved in servicing the read and refilling the FIFO. The 
readuserap statement takes 500 μs to execute. The readuserap statement puts in a 
500 μs delay immediately after reading the user AP lines in order for the parser to parse and 
stuff more words into the FIFO before it underflows. However, this time may not be long 
enough and you may want to pad this time with a delay immediately following the 
readuserap statement to avoid FIFO underflow. Depending on the actions in the pulse 
sequence, your delay may need to be a number of milliseconds. If there is an error in the 
read, a warning message is sent to the host and a –1 is returned to the real-time variable.

2.4 Pulse Sequence Statements: Phase and Sequence Control
• “Real-Time Variables and Constants,” page 77

• “Calculating in Real-Time Using Integer Mathematics,” page 78

• “Controlling a Sequence Using Real-Time Variables,” page 79

• “Real-Time vs. Run-Time—When Do Things Happen?,” page 80

• “Manipulating Acquisition Variables,” page 80

• “Intertransient and Interincrement Delays,” page 81

• “Controlling Pulse Sequence Graphical Display,” page 82

A series of internal variables, named v1, v2, ..., v14, are provided to perform calculations 
during “real-time” (while the pulse sequence is executing). All real-time variables are 
pointers to particular memory locations in the controller memory. A real-time variable does 
not change, rather the value in the memory location to which that real-time variable points 
is changed. 

Table 13. Mapping of User AP Lines

Register Connector Lines Function

0 J8213 9 to 16 output

1 J8213 1 to 8 output

2 J8212 9 to 16 output

3 J8212 1 to 8 input/output



2.4 Pulse Sequence Statements: Phase and Sequence Control

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 77

For example, when we speak of v1 being set equal to 1, what we really mean is that the 
value in the memory location pointed to by the real-time variable v1 is 1. The actual value 
of v1, a pointer, is not changed. The two ideas are interchangeable as long as we recognize 
exactly what is happening at the level of the controller memory.

These internal, real-time variables can be used for a number of purposes, but the two most 
important are control of the pulse sequence execution (for looping and conditional 
execution, for example) and calculation of phases. For each pulse in the sequence, the phase 
is calculated dynamically (at the start of each transient) rather than entirely at the start of 
this experiment. This allows phase cycles to attain essentially unlimited length, because 
only one number must be calculated for each phase during each transient. By contrast, 
attempting to calculate in advance a phase cycle with a cycle of 256 transients and different 
phases for each of 5 different pulses would require storing 256 × 5 or 1280 different phases.

Real-Time Variables and Constants

The following variables and constants can be used for real-time calculations:

v1 to v14 Real-time variables are used for calculations of loops, phases, etc. They 
are at the complete disposal of the user. The variables point to 16-bit 
integers, which can hold values of –32768 to +32767. 

ct Completed transient counter, which points to a 32-bit integer that is 
incremented after each transient, starting with a value of 0 prior to the 
first experiment. This pattern (0,1,2,3,4, ...) is the basis for most 
calculations. Steady-state transients, invoked by the ss parameter, do 
not change ct.

bsctr Block size counter, which points to a 16-bit integer that is decremented 
from bs to 1 during each block of transients. After completing the last 
transient in the block, bsctr is set back to a value of bs. Thus if 
bs=8, bsctr has successive values of 8,7,6,5,4,3,2,1,8,7, ... .

oph Real-time variable that controls the phase of the receiver in 90° 
increments (0=0°, 1=90°, 2=180°, and 3=270°). Prior to the execution 
of the pulse sequence itself, oph is set to 0 if parameter cp is set to 
'n', or to the successive values 0,1,2,3,0,1,2,3,... if cp is set 
to 'y'. The value of oph can be changed explicitly in the pulse 
sequence by any of the real-time math statements described in the next 
section (assign, add, etc.) and is also changed by the 
setreceiver statement.

zero, one, 
two, three

Pointers to constants set to select constant phases of 0°, 90°, 180°, and 
270°. They cannot be replaced by numbers 0, 1, 2, and 3.

ssval, 
ssctr, 
bsval

Real-time variables described in “Manipulating Acquisition 
Variables,” page 80.

id2,id3,id4 Pointers (or indexes) to constants identifying the current increment in 
multidimensional experiments. id2 is the current d2 increment. Its 
value ranges from 0 to the size of the d2 array minus 1, which is 
typically 0 to (ni–1). id3 corresponds to current index of the d3 
array in a 3D experiment. Its range is 0 to
(ni2-1). id4 corresponds to the current index of the d4 array. Its 
range is 0 to (ni3-1). Only MERCURYplus/-Vx support id2.



Chapter 2. Pulse Sequence Programming

78 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Calculating in Real-Time Using Integer Mathematics

A series of special integer mathematical statements are provided that are fast enough to 
execute in real-time: add, assign, dbl, decr, divn, hlv, incr, mod2, mod4, modn, 
mult, and sub. These statements are summarized in Table 14.

Remember that integer mathematics does not include fractions. If a fraction appears in a 
result, the value is truncated; thus, one-half of 3 is 1, not 1.5.

Integer statements also use the modulo, which is the number that remains after the modulo 
number is divided into the original number. For example, the value of 8 modulo 2 (often 
abbreviated “8 mod 2”) is found by dividing 2 into 8, giving an answer of 4 with a 
remainder of 0, so 8 mod 2 is 0. Similarly, 9 mod 2 is 1, since 2 into 9 gives 4 with a 
remainder of 1. The modulus of a negative number is not defined in VnmrJ software and 
should not be used.

Each statement performs one calculation at a time. For example, hlv(ct,v1) takes half 
the current value of ct and places it in the variable v1. Before each transient, ct has a 
given value (e.g., 7), and after this calculation, v1 has a certain value (e.g., 3 if ct was 7). 

To visualize the action of a statement over the course of a number of transients, pulse 
sequences typically document this action explicitly as part of their comments. The 
comment v1=0,0,1,1, .... (or v1=001122...) means that v1 assumes a value of 0 
during the first transient, 0 during the second, 1 during the third, etc. 

The following series of examples illustrates the action of integer mathematics statements 
and how comments are typically used:
hlv(ct,v1); /* v1=0011223344... */

dbl(v1,v1); /* v1=0022446688... */

mod4(v1,v1); /* v1=0022002200... */

mod2(ct,v2); /* v2=010101... */

dbl(v2,v3); /* v3=020202... */

/* v1=00112233... */

hlv(v1,v2); /* v2=00001111....  */

dbl(v1,v1); /* v1=00224466.... */

add(v1,v2,v3); /* v3=00225577....  */

mod4(v3,oph); /* oph=00221133...,receiver phase cycle */

Note that the same variable can be used as the input and output of a particular statement 
(e.g., dbl(v1,v1) is fine so it is not necessary to use dbl(v1,v2)). Note also that 

Table 14. Integer Mathematics Statements

add(vi,vj,vk) Add integer values: set vk equal to vi + vj
assign(vi,vj) Assign integer values: set vj equal to vi
dbl(vi,vj) Double an integer value: set vj equal to 2•vi
decr(vi) Decrement an integer value: set vi equal to vi –1
divn(vi,vj,vk) Divide integer values: set vk equal to vi div vj
hlv(vi,vj) Find half the value of an integer: set vj to integer part of 0.5•vi
incr(vi) Increment an integer value: set vi equal to vi + 1
mod2(vi,vj) Find integer value modulo 2: set vj equal to vi modulo 2
mod4(vi,vj) Find integer value modulo 4: set vj equal to vi modulo 4
modn(vi,vj,vk) Find integer value modulo n: set vk equal to vi modulo vj
mult(vi,vj,vk) Multiply integer values: set vk equal to vi•vj
sub(vi,vj,vk) Subtract integer values: set vk equal to vi – vj



2.4 Pulse Sequence Statements: Phase and Sequence Control

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 79

although the mod4 statement is used in several cases, it is never necessary to include it, 
even if appropriate, because an implicit modulo 4 is always performed on all phases (except 
when setting small-angle phase shifts).

The division provided by the divn statement is integer division, thus remainders are 
ignored. vj in each case must be a real-time variable and not a real number (like 6.0) or 
even an integer constant (like 6). To perform, for example, a modulo 6 operation, something 
like the following is required:
initval(6.0,v1);

modn(v2,v1,v7); /* v7 is v2 modulo 6 */

Controlling a Sequence Using Real-Time Variables

In addition to being used for phase calculations, real-time variables can also be used for 
pulse sequence control. Table 15 lists pulse sequence control statements.

By placing pulse sequence statements between a loop(count,index) statement and 
an endloop(index) statement, the enclosed statements can be executed repeatedly. 
The count argument used with loop is a real-time variable that specifies the number of 
times to execute the enclosed statements. count can be any positive number, including 
zero. index is a real-time variable used as a temporary counter to keep track of the number 
of times through the enclosed statements and must not be altered by any of the statements. 
An example of using loop and endloop is the following:
mod4(ct,v5); /* times through loop: v5=01230123... */

loop(v5,v3); /* v3 is a dummy to keep track of count */

delay(d3); /* variable delay depending on the ct */

endloop(v3);

Statements within the pulse sequence can be executed conditionally by being enclosed 
within ifzero(vi), elsenz(vi), and endif(vi) statements. vi is a real-time 
variable used as a test variable, to be tested for either being zero or non-zero. The elsenz 
statement may be omitted if it is not desired. It is also not necessary for any statements to 
appear between the ifzero and the elsenz or the elsenz and the endif statements. 
The following code is an example of a conditional construction:
mod2(ct,v1); /* v1=010101... */

ifzero(v1); /* test if v1 is zero */

pulse(pw,v2); /* execute these statements */

delay(d3); /* if v1 is zero */

elsenz(v1); /* test if v1 is non-zero */

pulse(2.0*pw,v2); /* execute these statements */

delay(d3/2.0); /* if v1 is non-zero */

endif(v1);

If numbers other than those easily accessible in integer math (such as ct, oph, three) are 
needed, any variable can be initialized to a value with the initval(number,vi) 
statement (e.g., initval(4.0,v9). The real number input is rounded off and placed in 
the variable vi. This statement, unlike the statements such as add and sub described 

Table 15. Pulse Sequence Control Statements

elsenz(vi) Execute succeeding statements if argument is nonzero
endif(vi) End ifzero statement
endloop(index) End loop
ifzero(vi) Execute succeeding statements if argument is zero
initval(realnumber,vi) Initialize a real-time variable to specified value
loop(count,index) Start loop



Chapter 2. Pulse Sequence Programming

80 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

above, is executed once and only once at the start of a non-arrayed 1D experiment or at the 
start of each increment in a 2D experiment or an arrayed 1D experiment, not at the start of 
each transient. 

Real-Time vs. Run-Time—When Do Things Happen?

It may help to explain the pulse sequence execution process in more detail. When an 
experiment begins, the go program is executed. This program looks up the various 
parameters, finds the name of the current pulse sequence, and looks in seqlib for a file 
of that name. The file in seqlib is a compiled C program, which was compiled with the 
seqgen command. This program, which is run by the go program, combines the 
parameters supplied to it by go together with a series of instructions that form the pulse 
sequence.

The output of the pulse sequence program in seqlib is table of numbers, known as the 
code table (generally referred to as Acodes or Acquisition codes), which contains 
instructions for executing a pulse sequence in a special language. The pulse sequence 
program sends a message to the acquisition computer to begin operation, informing it 
where the code table is stored. This code table is downloaded into the acquisition computer 
and processed by an interpreter, which is executing in the acquisition computer and which 
controls operation during acquisition. If after entering go or su, etc., the message that PSG 
aborted abnormally appears, run the psg macro to help identify the problem.

A pulse sequence can intermix statements involving C, such as d2=1.0/(2.0*J), with 
special statements, such as hlv(ct,v2). These two statements are fundamentally 
different kinds of operations. Entering go causes the evaluation of all higher-level 
expressions once for each increment. Thus in d2=1.0/(2.0*J), the value of J is looked 
up, d2 is calculated as one divided by 2*J, and the value of d2 is fixed. Statements in this 
category are called run-time, since they are executed when go is run. The hlv statement, 
however, is executed every transient. Before each transient, the system examines the 
current value of ct, performs the integer hlv operation, and sets the variable v2 (used for 
phases, etc.) to that value. On successive transients, v2 has values of 0,0,1,1,2,2, etc. 
Statements like these are called real-time, because they execute during the real-time 
operation of the pulse sequence.

Run-time statements are statements that are evaluated and executed in the host computer 
by the pulse sequence program in seqlib when go is entered. Real-time statements are 
statements that are repeatedly (every transient) executed by the code program run in a 
specific controller. Therefore, it is not possible to include a statement like 
d2=1.0+0.33*ct. The variable ct is a real-time variable (it is actually an integer 
pointer variable), while “C-type” mathematics are a run-time operation. Only the special 
real-time statements included in this section can be executed on a transient-by-transient 
basis.

Manipulating Acquisition Variables

Certain acquisition parameters, such as ss (steady-state pulses) and bs (block size), cannot 
be changed in a pulse sequence with a simple C statement. The reason is that by the time 
the pulsesequence function is executed, the values of these variables are already stored 
in a region of the host computer memory that will subsequently be part of the “low-core” 
portion of the acquisition code in the acquisition computer. These memory locations can be 
accessed and modified, however, by using real-time math functions with the appropriate 
real-time variables.

The value of ss in low core is associated with real-time variables ssval and ssctr:



2.4 Pulse Sequence Statements: Phase and Sequence Control

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 81

• ssval is never modified by the acquisition computer unless specifically instructed by 
statements within the pulse sequence. 

• ssctr is automatically initialized to ssval. 

For the first increment only, if ssval is greater than zero, or else before every increment 
in an arrayed 1D or 2D experiment, ssctr is decremented after each steady-state transient 
until it reaches 0. When ssctr is 0, all subsequent transients are collected as data.

The value of bs in low core is associated with real-time variables bsval and bsctr:

• bsval is never modified by the acquisition computer unless specifically instructed by 
statements within the pulse sequence. 

• bsctr is automatically initialized to bsval after each block of transients has been 
completed. 

During the acquisition of a block of transients, bsctr is decremented after each transient. 
If bsval is non-zero, a zero value for bsctr signals that the block of transients is 
complete.

The ability within a pulse sequence to modify the values of these low core acquisition 
variables can be used to add various capabilities to pulse sequences. As an example, the 
following pulse sequence illustrates the cycling of pulse and receiver phases during steady-
state pulses:
#include <standard.h>

pulsesequence()

{

/* Implement steady-state phase cycling */

sub(ct,ssctr,v10);

initval(16.0,v9);

add(v10,v9,v10);

/* Phase calculation statements follow,

using v10 in place of ct as the starting point */

/* Actual pulse sequence goes here */

}

Intertransient and Interincrement Delays

When running arrayed or multidimensional experiments (using ni, ni2, etc.), certain 
operations are done preceding and following the pulse sequence for every array element 
and every transient. These overhead operations take up time must be accounted for when 
running a pulse sequence. This might be especially important if the repetition time of a 
pulse sequence has to be maintained across every element and every scan during an arrayed 
or multidimensional experiment. 

These overhead times between increments (array elements) and transients are deterministic 
(i.e., both known and constant); however, the time between increments, which we will call 
x, is longer than the time between transients, which we will call y. Also, the time between 
increments will change depending on the number of rf channels.

To maintain a constant repetition time, a parameter called d0 (for d-zero) can be created so 
that x=y+d0. Because the interincrement overhead time will differ with different system 
configurations—and to keep the d0 delay consistent across systems—if d0 is set greater 
than the overhead delay, the inter-FID delay x is padded such that y+d0=x+(d0-(x-
y)). In other words, d0 is used to set a standard delay so the interincrement delay and the 
intertransient delay are the same when executing transient scans within an array element. 
The delay is inserted at the beginning of each scan of a FID after the first scan has 



Chapter 2. Pulse Sequence Programming

82 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

completed. The d0 delay can be set by the user or computed by PSG (if d0 is set to 'n'). 
When d0 does not exist, no delay is inserted.

Another factor to consider when keeping a consistent timing in the pulse sequence is the 
status statement. The timing of this statement varies depending on the number of 
channels and the type of decoupler modulation. To keep this timing constant, the pulse 
sequence statement statusdelay allows the user to set a constant delay time for 
changing the status. For this to work, the delay time has to be longer than the time it takes 
to set the status. For timing and more information, see the description of statusdelay 
in Chapter 3.

The overhead operations preceding every transient are resetting the DTM (data-to-
memory) control information. The overhead operations following every transient are error 
detection for number of points and data overflow; detection for blocksize, end of scan, and 
stop acquisition; and resetting the decoupler status. d0 does not take these delays into 
account.

The overhead operations preceding every array element are initializing the rf channel 
settings (frequency, power, etc.), initializing the high-speed (HS) lines, initializing the 
DTM, and if arrayed, setting the receiver gain. d0 does not take into account arraying of 
decoupler status shims, VT, or spinning speed.

Controlling Pulse Sequence Graphical Display

The dps_off, dps_on, dps_skip, and dps_show statements, summarized in Table 
16, can be inserted into a pulse sequence to control the graphical display of the pulse 
sequence statements by the dps command:

• Insert dps_off() into the sequence to turn off dps display of statements. All pulse 
sequences following dps_off will not be shown.

• Insert dps_on() into the sequence to turn on dps display of statements. All pulse 
sequences following dps_on will be shown.

• Insert dps_skip() into the sequence to skip dps display of the next statement. The 
next pulse sequence statement will not be displayed.

• Insert dps_show(options) statements into the pulse sequence to draw pulses for 
dps display. The pulses will appear in the graphical display of the sequence. 

Many options to dps_show are available. These options enable drawing a line to 
represent a delay, drawing a pulse picture and displaying the channel name below the 
picture, drawing shaped pulses with labels, drawing observe and decoupler pulses at 
the same time, and much more. Refer to Chapter 3, “Pulse Sequence Statement 
Reference,”  for a full description of dps_show, including examples.

Table 16. Statements for Controlling Graphical Display of a Sequence

dps_off() Turn off graphical display of statements
dps_on() Turn on graphical display of statements
dps_show(options)* Draw delay or pulses in a sequence for graphical display
dps_skip() Skip graphical display of next statement
* dps_show has many options. See Chapter 3, “Pulse Sequence Statement Reference,” 

for the syntax and examples of use.



2.5 Real-Time AP Tables

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 83

2.5 Real-Time AP Tables
• “Loading AP Table Statements from Linux Text Files,” page 83

• “Table Names and Statements,” page 84

• “AP Table Notation,” page 84

• “Handling AP Tables,” page 85

• “Examples of Using AP Tables,” page 87

• “Using Internal Phase Tables,” page 87

Real-time acquisition phase (AP) tables can be created under pulse sequence control. These 
tables can store phase cycles, an array of attenuator values, etc. In the pulse sequence, the 
tables are associated with variables t1, t2, ... t60. 

The following pulse sequence statements accept the table variables t1 to t60 at any place 
where a simple AP variable, such as v1, can be used:

For example, the statement rgpulse(pw,t1,rof1,rof2) performs an observe 
transmitter pulse whose phase is specified by a particular statement in the real-time AP 
table t1, whereas rgpulse(pw,v1,rof1,rof2) performs the same pulse whose 
phase is specified by the real-time variable v1. The real-time math functions add(), 
assign(), etc. listed in Table 14 cannot be used with tables t1-t60. The appropriate 
functions to use are given in Table 17.

Statements using a table can occur anywhere in a pulse sequence except in the statements 
enclosed by an ifzero-endif pair.

Loading AP Table Statements from Linux Text Files 

Table statements can be loaded from an external Linux text file with the loadtable 
statement or can be set directly within the pulse sequence with the settable statement. 
The values stored must be integral and must lie within the 16-bit integer range of –32768 
to 32767.

The AP table file must be placed in the user’s private directory tablib, which might be, 
for example, /home/vnmr1/vnmrsys/tablib, or in the system directory for table 
files, /vnmr/tablib. The software looks first in the user's personal tablib directory 
for a table of the specified name, then in the system directory. The format for the table file 
is quite flexible, comments are allowed, and several special notations are available. 

pulse rgpulse decpulse

decrgpulse dec2rgpulse dec3rgpulse

simpulse txphase decphase

dec2phase dec3phase xmtrphase

dcplrphase dcplr2phase dcplr3phase

phaseshift spinlock decspinlock

dec2spinlock dec3spinlock shaped_pulse

decshaped_pulse dec2shaped_pulse dec3shaped_pulse

simshaped_pulse sim3shaped_pulse power

pwrf



Chapter 2. Pulse Sequence Programming

84 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Table Names and Statements

Entries in the table file are referred to as table names. Each table name must come from the 
set t1 to t60 (e.g., t14 is a table name). A table name may be used only once within the 
table file. If a table name is used twice within the table file, an error message is displayed 
and pulse sequence generation (PSG) aborts.

Each table statement must be written as an integer number and separated from the next 
statement by some form of “white” space, such as a blank space, tab, or carriage return. 

The table name is separated from the table statements by an = or a += sign (the += sign is 
explained on page 84), and there must be a space between the table name and either of these 
two signs. For example, if a table file contains the table name t1 with statements 0, 1, 2, 
3, 2, 3, 0, 1, it would be written as t1 = 0 1 2 3 2 3 0 1.

The index into a table can range from 0 to 1 less than the number of statements in the table. 
Note that an index of 0 will access the first statement in the table. Unless the autoincrement 
attribute (described on page 84) is imparted to the table, the index into the table is given by 
ct, the completed transient counter.

If the number of transients exceeds the length of the table, access to the table begins again 
at the beginning of the table. Thus, given a table of length n with statements numbered 
0 through n–1 (this numbering is strictly a way to think about the numbering and does not 
imply the statements are actually numbered), then when the transient number is ct, the 
number of the statement of the table that will be used is ct mod n (remember that ct starts 
at 0 on the first transient, since ct represents the number of completed transients).

AP Table Notation

Special notation is available within the table file to simplify entering the table statements 
and to impart specific attributes to any table within that file:

(...)# Indicates the table segment within the parentheses is to be replicated in its 
entirety # times (where # ranges from 1 to 64) before preceding to any 
succeeding statements or segments. Do not include any space after “)”. 
For example: t1=(0 1 2)3 /* t1 table=012012012 */.

[...]# Indicates each statement in the table segment within square brackets is to 
be replicated # times (where # ranges from 1 to 64) before going to the 
next statement in that segment. Do not include any space after “]”. For 
example:t1=[0 1 2]3 /* t1 table=000111222 */.

{...}# Imparts the “divn-return” attribute to the table and indicates that the actual 
index into the table is to be the index divided by the number # (where # 
ranges from 1 to 64). # is called the divn factor and can be explicitly set 
within a sequence for any table (see setdivnfactor). This attribute 
provides a #-fold level of table compaction to the acquisition processor. 
The {} notation must enclose all of the table statements for a given table. 
This notation should not be used if this table will be subject to table 
operations such as ttadd (see page 86)—in this case use [ ]#, which is 
equivalent except for table compression. In entering the { }# notation, 
do not include any space after “}”.

+= Indicates that the index into the table starts at 0 for each new FID in an 
array or 2D experiment, is incremented after each access of the table and 
is therefore independent of ct. This is the autoincrement attribute, which 
can delimit the table name from the table statements. It can be explicitly 
set within a pulse sequence for any table (see setautoincrement). 



2.5 Real-Time AP Tables

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 85

The (...)# and [...]# notations are expanded by PSG at run-time and, therefore, offer 
no degree of table compaction to the acquisition processor. Nesting of (...) and [...] 
expressions is not allowed.The autoincrement += attribute can be used in conjunction with 
the divn-return attribute and with the (...) and [...] notations.

Multiple {...} expressions within one table are not allowed, but (...) and [...] 
expressions can be placed within a {...} expression.

The following examples illustrate combining the notation:
t2 = [0 1 2 3]4 (0 0 2 2)4

/* t2 table = 00001111222233330022002200220022 */

t3 = {0 1 (0 2)2 0 2 [3 1]4}4

/* t3 table = 0102020233331111 with divn-factor = 4;

i.e., 00001111000022220000222200002222 ... */

t4 += {0 1 2 3}8

/* t4 table with autoincrement and divn-factor = 8

i.e., 00000000111111112222222233333333 with index

incremented at each reference to table, not at each ct */

Handling AP Tables

Table 17 lists statements for handling AP tables. 

The loadtable(file) statement loads AP table statements from table text file. file 
specifies the name of the table file (a UNIX text file) in the user's personal tablib 
directory or in the VnmrJ system tablib directory. loadtable can be called multiple 
times within a pulse sequence. Care should be taken to ensure that the same table name is 
not used more than once by the pulse sequence.

The settable(tablename,numelements,intarray) statement stores an array 
of integers in a real-time AP table. tablename specifies the name of the table (t1 to 
t60). numelements specifies the size of the table. intarray is a C array that contains 
the table elements. These elements can range from –32768 to 32767. The user must 

Table 17. Statements for Handling AP Tables

getelem(tablename,APindes,APdest) Retrieve an element from a AP table
loadtable(file) Load AP table elements from table text file
setautoincrement(tablename) Set autoincrement attribute for a table
setdivnfactor(tablename,divnfactor) Set divn-return attribute and divn-factor
setreceiver(tablename) Associate rcvr. phase cycle with AP table
settable* Store array of integers in real-time AP table
tsadd(tablename,scalarval,moduloval) Add an integer to AP table elements
tsdiv(tablename,scalarval,moduloval) Divide a table into a second table
tsmult(tablename,scalarval,moduloval) Multiply an integer with AP table elements
tssub(tablename,scalarval,moduloval) Subtract an integer from AP table elements
ttadd* Add a table to a second table
ttdiv* Divide a table into a second table
ttmult* Multiply a table by a second table
ttsub* Subtract a table from a second table
* settable(tablename,numelements,intarray)

ttadd(tablenamedest,tablenamemod,moduloval)
ttdiv(tablenamedest,tablenamemod,moduloval)
ttmult(tablenamedest,tablenamemod,moduloval)
ttdiv(tablenamedest,tablenamemod,moduloval)



Chapter 2. Pulse Sequence Programming

86 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

predefine and predimension this array in the pulse sequence using C language statements 
prior to calling settable.

The getelem(tablename,APindex,APdest) statement retrieves an element from 
a table. tablename specifies the name of the Table (t1 to t60). APindex is an AP 
variable (v1 to v14, oph, ct, bsctr, or ssctr) that contains the index of the desired 
table element. Note that the first element of a table has an index of 0. APdest is also an 
AP variable (v1 to v14 and oph) into which the retrieved table element is placed. For 
tables for which the autoincrement feature is set, APindex, the second argument to 
getelem, is ignored and can be set to any AP variable name; each element in such a table 
is by definition always accessed sequentially.

The setautoincrement(tablename) statement sets the autoincrement attribute for 
a table. tablename specifies the name of the table (t1 to t60). The index into the table 
is set to 0 at the start of an FID acquisition and is incremented after each access into the 
table. Tables using the autoincrement feature cannot be accessed within a hardware loop.

The setdivnfactor(tablename,divnfactor) statement sets the divn-return 
attribute and the divn-factor for a table. tablename specifies the name of the table (t1 
to t60). The actual index into the table is now set to (index/divnfactor). {0 1}2 is 
therefore translated by the acquisition processor, not by pulse sequence generation (PSG), 
into 0 0 1 1. The divn-return attribute results in a divn-factor-fold compression of the 
AP table at the level of the acquisition processor. 

The setreceiver(tablename) statement assigns the ctth element of the AP table 
tablename to the receiver variable oph. If multiple setreceiver statements are used 
in a pulse sequence, or if the value of oph is changed by real-time math statements such as 
assign, add, etc., the last value of oph prior to the acquisition of data determines the 
value of the receiver phase.

To perform run-time scalar operations of an integer with AP table elements, use the 
following statements:
tsadd(tablename,scalarval,moduloval)

tssub(tablename,scalarval,moduloval)

tsmult(tablename,scalarval,moduloval)

tsdiv(tablename,scalarval,moduloval)

where tablename specifies the name of the table (t1 to t60) and scalarval is added 
to, subtracted from, multiplied with, or divided into each element of the table. The result of 
the operation is taken modulo moduloval (if moduloval is greater than 0). tsdiv 
requires that scalarval is not equal to 0; otherwise, an error is displayed and PSG 
aborts.

To perform run-time vector operations of one AP table with a second table, use the 
following table-to-table statements:
ttadd(tablenamedest,tablenamemod,moduloval)

ttsub(tablenamedest, tablenamemod, moduloval)

ttmult(tablenamedest,tablenamemod,moduloval)

ttdiv(tablenamedest, tablenamemod,moduloval)

where tablenamedest and tablenamemod are the names of tables (t1 to t60). Each 
element in tablenamedest is modified by the corresponding element in 
tablenamemod. The result, stored in tablenamedest, is taken modulo moduloval 
(if moduloval is greater than 0). The number of elements in tablenamedest must be 
greater than or equal to the number of elements in tablenamemod. ttdiv requires that 
no element in tablenamemod equal 0.



2.5 Real-Time AP Tables

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 87

Examples of Using AP Tables

This section contains a two-pulse sequence and a homonuclear J-resolved experiment as 
examples of using AP tables.

Two-Pulse Sequence 

Listing 3 is the contents of the files /home/vnmr1/vnmrsys/psglib/t2pul.c and 
/home/vnmr1/vnmrsys/tablib/t2pul associated with a hypothetical two-pulse 
sequence T2PUL. 

Notice that t2 and t3 are identical. The pulse sequence could have used just one phase for 
both the observe pulse and the receiver, but using two separate phases in this way provides 
more flexibility for allowing run-time modification of all phases independently (e.g., a 
cancellation experiment can be run by changing line 2 in the tablib file to t2 = 0 or by 
changing line 3 to t3 = 0).

Homonuclear J-Resolved Experiment

Listing 4 lists files /home/vnmr1/vnmrsys/psglib/hom2djt.c and /home/
vnmr1/vnmrsys/tablib/hom2djt associated with a hypothetical homonuclear 
J-resolved sequence HOM2DJT. 

This sequence uses “conventional” phase cycling, completely different than the pulse 
cycling in the standard HOM2DJ sequence found in psglib. The phase cycling, 
contained here in t4, is added to the phases by the pulse sequence itself with the series of 
three ttadd statements. This can also be done in the table itself, for example, by replacing 
the t2 line in the tablib file with t2 = 1 2 3 0 3 0 1 2 2 3 0 1 0 1 2 3, 
which is the completely “spelled out” phase cycle for the second pulse. 

When using a table to be referenced with a ttadd statement, the table cannot be 
compressed by using t4 = {0 2 1 3}4. Square brackets, which are exactly equivalent 
to the curly brackets but without achieving table compression at the level of the acquisition 
processor must be used.

Using Internal Phase Tables

Another use of tables is to internally declare them and convert them to t variables. This has 
the advantage of giving internal documentation and having independence of external tables 

#include <standard.h>

pulsesequence()
{

loadtable("t2pul");
status(A);

hsdelay(d1);
status(B);

pulse(p1,t1);
hsdelay(d2);

status(C);
pulse(pw,t2);
setreceiver(t3);

}

t1 = 0
/* 0000 */

t2 = 0 2 1 3
/* 0213 */

t3 = 0 2 1 3
/* 0213 */

Listing 3. Two-Pulse Sequence t2pul.c with Phase Tables



Chapter 2. Pulse Sequence Programming

88 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

(which might have been modified). Listing 5 shows code for a generic phase-sensitive 2D 
experiment that also illustrates the use of tsadd and handles the case of phase=2.

#include <standard.h>
pulsesequence()
{

loadtable("hom2djt");
ttadd(t1,t4,4);
ttadd(t2,t4,4);
ttadd(t3,t4,4);
status(A);

hsdelay(d1);
status(B);

pulse(pw,t1);
delay(d2/2);
pulse(p1,t2);
delay(d2/2);

status(C);
setreceiver(t3);

}

t1 = [0]16
/*0000000000000000 */

t2 = (1 2 3 0)4
/*1230123012301230 */

t3 = (0 2)8
/*0202020202020202 */

t4 = [0 2 1 3]4
/* 0000222211113333 */

Listing 4. Homonuclear J-Resolved Sequence hom2djt.c with Phase Tables

Listing 5. Example of Internal Phase Tables

#include<standard.h>

static int phi1[2] = {3,1,3,1}, /*phase for pulse 1 */
 phi2[4]={0,0,2,2}, /*phase for pulse 2 */

rec[4]={0,2,2,0}; /*receiver phase */ 

pulsesequence()
{
... /*psg statements */

settable(t1,4,phi1); /*set t variables */
settable(t2,4,phi2);
settable(t3,4,rec); 
if (phase1=2) tsadd(t1,1,4); /*for states-haberkorn */
...

rgpulse(pw,t1,rof1,rof1); /*phase increment for phase=2 */
delay(d2); /*2D evolution time */
...  /*psg statements */

rgpulse(pw,t2,rof1,rof1);
...
setreceiver(t3);
}

/*name.c “name of sequence”
... 2D sequence using State-Haberkorn method for phase-sensitive date in F1 (set 
phase=1,2)...
*/



2.6 Accessing Parameters

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 89

2.6 Accessing Parameters
• “Categories of Parameters,” page 89

• “Looking Up Parameter Values,” page 96

• “Using Parameters in a Pulse Sequence,” page 96

The getval and getstr statement look up the value of parameters, providing access to 
parameters. Table 18 summarizes these statements.

Parameters are defined by the user in particular experiment files (exp1, exp2, etc.) in 
which the operation is occurring. These parameters are not the same as the parameters that 
are accessible to the pulse sequence during its execution, although they are at least 
potentially the same.

Categories of Parameters

Parameters can be divided into three categories:

• Parameters used in a pulse sequence exactly as in the parameter set; in other words, the 
name of the parameter (d1, for example) is the same in both places. Thus, a statement 
like delay(d1) is legitimate. Table 19 lists VnmrJ parameter names and 
corresponding pulse sequence generation (PSG) variable names and types.Table 19 is 
for quick reference only. For the most current listing, go to /vnmr/psg/
acqparms.h (unityINOVA) or /vnmr/psg/acqparms2.h (Mercuryplus/Vx). 
Table 20 summarizes VnmrJ parameter names used primarily for imaging. Parameters 
in this category do not need to be declared as specific types (e.g., char) or require 
getval or getstr. 

• Parameters used in the pulse sequence derived from those in the parameter set.

• Parameters unknown to the pulse sequence. This includes parameters created by the 
user for a particular pulse sequence (such as J or mix) as well as a few surprises, such 
as at, the acquisition time (the pulse sequence does not know this). The statements 
getval and getstr are provided for this category.  

Table 19. Global PSG Parameters

Acquisition 

extern char il[MAXSTR] interleaved acquisition parameter,'y','n' 

extern double inc2D t1 dwell time in a 3D/4D experiment 

extern double inc3D t2 dwell time in a 3D/4D experiment 

extern double sw spectral width 

extern double nf Number of FIDs in pulse sequence

extern double np Number of data points to acquire (real)

extern double nt Number of transients 

extern double sfrq Observe frequency MHz 

extern double dfrq Decoupler frequency MHz 

extern double dfrq2 2nd decoupler frequency MHz 

extern double dfrq3 3rd decoupler frequency MHz 

Table 18. Parameter Value Lookup Statements

getstr(parametername,internalname) Look up value of string parameter
internalname=getval(parametername) Look up value of numeric parameter



Chapter 2. Pulse Sequence Programming

90 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

extern double dfrq4 4th decoupler frequency MHz 

extern double bs Block size 

extern double tof Observe transmitter offset 

extern double dof Decoupler offset 

extern double dof2 2nd decoupler offset 

extern double dof3 3rd decoupler offset 

extern double dof4 4th decoupler offset 

extern double gain Receiver gain value, or 'n' for autogain 

extern double dlp Decoupler low power value 

extern double tpwr Transmitter pulse power 

extern double tpwrf Transmitter fine linear attenuator for pulse 

extern double dpwr Decoupler pulse power 

extern double dpwrf Decoupler fine linear attenuator for pulse 

extern double dpwrf2 2nd decoupler fine linear attenuator 

extern double dpwrf3 3rd decoupler fine linear attenuator 

extern double dpwrf4 4th decoupler fine linear attenuator 

extern double dpwr2 2nd decoupler power course attenuator

extern double dpwr3 3rd decoupler power course attenuator

extern double dpwr4 4th decoupler power course attenuator

extern double filter Pulse amp filter setting 

extern double xmf Observe transmitter pulse width 

extern double dmf Decoupler modulation frequency 

extern double dmf2 Decoupler modulation frequency 

dmf3

dmf4

extern double fb Filter bandwidth

extern double vttemp VT temperature setting

extern double vtwait VT temperature time-out setting

extern double vtc VT temperature cooling gas setting 

extern double cpflag Phase cycling; 1=no cycling, 0=quad detect

extern double dhpflag Decoupler high power flag 

Pulse Widths 

extern double pw Transmitter modulation frequency 

extern double p1 A pulse width 

extern double pw90 90° pulse width 

extern double hst Time homospoil is active 

Delays 

extern double alfa Time after receiver is turned on that acquisition begins 

extern double beta  Audio filter time constant 

extern double d1 Delay

extern double d2 An auto incremental delay, used in 2D experiments 

extern double d3 An auto incremental delay, used in 3D experiments 

extern double d4 An auto incremental delay, used in 4D experiments 

Table 19. Global PSG Parameters (continued)



2.6 Accessing Parameters

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 91

extern double pad Preacquisition delay 

extern double padactive Preacquisition delay active parameter flag 

extern double rof1 Amplifier unblanking delay before pulse 

extern double rof2 Amplifier blanking delay 

2D/3D/4D

extern double totaltime Total timer events for an experiment duration estimate 

extern int phase1 Used for 2D acquisition 

extern int phase2 Used for 3D acquisition 

extern int phase3 Used for 4D acquisition 

extern int d2_index d2 increment (from 0 to ni−1)

extern int d3_index d3 increment (from 0 to ni2−1)

extern int d4_index d4 increment (from 0 to ni3−1)

Programmable Decoupling Sequences 

extern char xseq[MAXSTR]

extern char dseq[MAXSTR]

extern char dseq2[MAXSTR]

extern char dseq3[MAXSTR]

extern char dseq4[MAXSTR]

extern double xres Digit resolution prg dec

extern double dres Digit resolution prg dec

extern double dres2 Digit resolution prg dec

extern double dres3 Digit resolution prg dec

extern double dres4 Digit resolution prg dec

Status Control

extern char xm[MAXSTR] Transmitter status control

extern char xmm[MAXSTR] Transmitter modulation type control

extern char dm[MAXSTR] 1st decoupler status control

extern char dmm[MAXSTR] 1st decoupler modulation type control

extern char dm2[MAXSTR] 2nd decoupler status control

extern char dmm2[MAXSTR] 2nd decoupler modulation type control

extern char dm3[MAXSTR] 3rd decoupler status control

extern char dmm3[MAXSTR] 3rd decoupler modulation type control

extern char dm4[MAXSTR] 4th decoupler status control

extern char dmm4[MAXSTR] 4th decoupler modulation type control

extern char homo[MAXSTR] 1st decoupler homo mode control

extern char homo2[MAXSTR] 2nd decoupler homo mode control

extern char homo3[MAXSTR] 3rd decoupler homo mode control

extern char homo4[MAXSTR] 4th decoupler homo mode control

extern int xmsize Number of characters in xm 

extern int xmmsize Number of characters in xmm 

extern int dmsize Number of characters in dm 

extern int dmmsize Number of characters in dmm 

Table 19. Global PSG Parameters (continued)



Chapter 2. Pulse Sequence Programming

92 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

extern int dm2size Number of characters in dm2 

extern int dmm2size Number of characters in dmm2 

extern int dm3msize Number of characters in dm3 

extern int dmm3msize Number of characters in dmm3 

extern int dm4size Number of characters in dm4 

extern int dmm4msize Number of characters in dmm4 

extern int homosize Number of characters in homo 

extern int homo2size Number of characters in homo2 

extern int homo3size Number of characters in homo3 

extern int homo4size Number of characters in homo4 

extern int hssize Number of characters in hs 

Table 20. Imaging and Other Variables 

RF Pulses 

extern double p2 Pulse length 

extern double p3 Pulse length 

extern double p4 Pulse length 

extern double p5 Pulse length 

extern double pi Inversion pulse length 

extern double psat Saturation pulse length 

extern double pmt Magnetization transfer pulse length 

extern double pwx X-nucleus pulse length 

extern double pwx2 X-nucleus pulse length 

extern double ps1 Spin-lock pulse length 

extern char pwpat[MAXSTR] Pattern for pw, tpwr 

extern char pw1pat[MAXSTR] Pattern for p1, tpwr1 

extern char pw2pat[MAXSTR] Pattern for p2, tpwr2

extern char pw3pat[MAXSTR] Pattern for pw3, tpwr3 

extern char pw4pat[MAXSTR] Pattern for pw4, tpwr4 

extern char pw5pat[MAXSTR] Pattern for pw5, tpwr5 

extern char pipat[MAXSTR] Pattern for pi, tpwri 

extern char satpat[MAXSTR] Pattern for pw, tpwr 

extern char mtpat[MAXSTR] Pattern for psat, satpat 

extern char ps1pat[MAXSTR] Pattern for spin-lock 

extern double tpwr1 Transmitter pulse power 

extern double tpwr2 Transmitter pulse power 

extern double tpwr3 Transmitter pulse power 

extern double tpwr4 Transmitter pulse power 

extern double tpwr5 Transmitter pulse power 

extern double tpwri Inversion pulse power 

extern double satpwr Saturation pulse power 

extern double mtpwr Magnetization transfer pulse power 

Table 19. Global PSG Parameters (continued)



2.6 Accessing Parameters

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 93

extern double pwxlvl pwx pulse level 

extern double pwxlvl2 pwx2 power level 

extern double tpwrs1 Spin-lock power level 

RF Decoupler Pulses

extern char decpat[MAXSTR] Pattern for decoupler pulse 

extern char decpat1[MAXSTR] Pattern for decoupler pulse 

extern char decpat2[MAXSTR] Pattern for decoupler pulse 

extern char decpat3[MAXSTR] Pattern for decoupler pulse 

extern char decpat4[MAXSTR] Pattern for decoupler pulse 

extern char decpat5[MAXSTR] Pattern for decoupler pulse 

extern char dpwr1 Decoupler pulse power 

extern char dpwr4 Decoupler pulse power 

extern char dpwr5 Decoupler pulse power 

Gradients 

extern double gro, gro2, gro3 Readout gradient strength 

extern double gpe, gpe2, gpe3 Phase encode for 2D, 3D, and 4D 

extern double gss, gss2, gss3 Slice-select gradients 

extern double gror Readout focus 

extern double gssr Slice-select refocus

extern double grof Readout refocus fraction 

extern double gssf Slice-select refocus fraction 

extern double g0, g1,... g9 Numbered levels 

extern double gx, gy, gz X, Y, and Z levels 

extern double gvox1, gvox2, gvox3 Voxel selection

extern double gdiff Diffusion encode 

extern double gflow Flow encode 

extern double gspoil, gspoil2 Spoiler gradient levels 

extern double gcrush, gcrush2 Crusher gradient levels 

extern double gtrim, gtrim2 Trim gradient levels 

extern double gramp, gramp2 Ramp gradient levels 

extern double gpemult Shaped phase encode multiplier 

extern double gradstepsz Positive steps in the gradient DAC 

extern double gradunit Dimensional conversion factor 

extern double gmax Maximum gradient value (G/cm)

extern double gxmax X maximum gradient value (G/cm)

extern double gymax Y maximum gradient value (G/cm)

extern double gzmax Z maximum gradient value (G/cm) 

extern double gtotlimit Limit combined gradient values (G/cm) 

extern double gxlimit Safety limit for X gradient (G/cm)

extern double gylimit Safety limit for Y gradient (G/cm) 

extern double gzlimit Safety limit for Z gradient (G/cm) 

extern double gxscale X scaling factor for gmax 

extern double gyscale Y scaling factor for gmax

Table 20. Imaging and Other Variables  (continued)



Chapter 2. Pulse Sequence Programming

94 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

extern double gzscale Z scaling factor for gmax

extern char gpatup[MAXSTR] Gradient ramp-up pattern 

extern char gpatdown[MAXSTR] Gradient ramp-down pattern 

extern char gropat[MAXSTR] Readout gradient pattern 

extern char gpepat[MAXSTR] Phase encode gradient pattern 

extern char gsspat[MAXSTR] Slice gradient pattern

extern char gpat[MAXSTR] General gradient pattern 

extern char gpat1[MAXSTR] General gradient pattern 

extern char gpat2[MAXSTR] General gradient pattern 

extern char gpat3[MAXSTR] General gradient pattern 

extern char gpat4[MAXSTR] General gradient pattern

extern char gpat5[MAXSTR] General gradient pattern 

Delays

extern double tr Repetition time per scan

extern double te Primary echo time

extern double ti Inversion time

extern double tm Mid-delay for STE

extern double at Acquisition time

extern double tpe, tpe2, tpe3 Phase encode durations for 2D to 4D

extern double tcrush Crusher gradient duration

extern double tdiff Diffusion encode duration 

extern double tdelta Diffusion encode duration 

extern double tDELTA Diffusion gradient separation 

extern double tflow Flow encode duration 

extern double tspoil Spoiler duration 

extern double hold Physiological trigger hold off 

extern double trise Gradient coil rise time: sec 

extern double satdly Saturation time 

extern double tau General use delay 

extern double runtime User variable for total experiment time

Frequencies

extern double resto Reference frequency offset 

extern double wsfrq Water suppression offset 

extern double chessfrq Chemical shift selection offset 

extern double satfrq Saturation offset 

extern double mtfrq Magnetization transfer offset 

Physical Sizes and Positions (for slices, voxels, and FOV)

extern double pro FOV position in readout 

extern double ppe, ppe2, ppe3 FOV position in phase encode 

extern double pos1, pos2, pos3 Voxel position 

extern double pss[MAXSLICE] Slice position array 

extern double lro Readout FOV

Table 20. Imaging and Other Variables  (continued)



2.6 Accessing Parameters

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 95

extern double lpe, lpe2, lpe3 Phase encode FOV

extern double lss Dimension of multislice range

extern double vox1, vox2, vox3 Voxel size

extern double thk Slice or slab thickness

extern double lpe, lpe2, lpe3 Phase encode FOV

extern double fovunit Dimensional conversion factor

extern double thkunit Dimensional conversion factor

Bandwidths

extern double sw1, sw2, sw3 Phase encode bandwidths / spectral widths

Counts and Flags

extern double nD Experiment dimensionality

extern double ns Number of slices

extern double ne Number of echoes

extern double ni Number of standard increments

extern double nv, nv2, nv3 Number phase encode views

extern double ssc Compressed ss transients

extern double ticks External trigger counter

extern char ir[MAXSTR] Inversion recovery flag

extern char ws[MAXSTR] Water suppression flag

extern char mt[MAXSTR] Magnetization flag

extern char pilot[MAXSTR] Auto gradient balance flag

extern char seqcon[MAXSTR] Acquisition loop control flag

extern char petable[MAXSTR] Name for phase encode table

extern char acqtype[MAXSTR] Example: “full” or “half” echo

extern char exptype[MAXSTR] Example: “se” or “fid” in CSI

extern char apptype[MAXSTR] Keyword for parameter init, e.g, “imaging”

extern char seqfile[MAXSTR] Pulse sequence name

extern char rfspoil[MAXSTR] rf spoiling flag

extern char satmode[MAXSTR] Presentation mode

extern char verbose[MAXSTR] Verbose mode for sequences and psg

Miscellaneous

extern double rfphase rf phase shift

extern double B0 Static magnetic field level

extern double slcto Slice selection offset 

extern double delto Slice spacing frequency

extern double tox Transmitter offset

extern double toy Transmitter offset

extern double toz Transmitter offset

extern double griserate Gradient rise rate

Table 20. Imaging and Other Variables  (continued)



Chapter 2. Pulse Sequence Programming

96 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Looking Up Parameter Values

The statement internalname=getval(parametername) allows the pulse 
sequence to look up the value of any numeric parameter that it otherwise does not know 
(parametername) and introduce it into the pulse sequence in the variable 
internalname. internalname can be any legitimate C variable name that has been 
defined as type double at the beginning of the pulse sequence (even if it is created as type 
integer). If parametername is not found in the current experiment parameter list, 
internalname is set to zero, and PSG produces a warning message. For example, 
double j;

...

j=getval("j");

Or simply double j=getval(“j”); 

The getstr(parametername,internalname) statement is used to look up the 
value of the string parameter parametername in the current experiment parameter list 
and introduce it into the pulse sequence in the variable internalname. 
internalname can be any legitimate C variable name that has been defined as array of 
type char with dimension MAXSTR at the beginning of the pulse sequence. If the string 
parameter parametername is not found in the current experiment parameter list, 
internalname is set to the null string, and PSG produces a warning message. For 
example:
char coil[MAXSTR];

...

getstr("sysgcoil",coil);

Using Parameters in a Pulse Sequence

As an example of using parameters in a pulse sequence, create a new pulse sequence with 
new variable names and have it fully functional from VnmrJ. Usually, the best way to 
compose a new pulse sequence is to start from a known good pulse sequence and from a 
known good parameter set. For many pulse sequences, s2pul.c in /vnmr/psglib and 
s2pul.par in /vnmr/parlib are a good place to start.

Create a new pulse sequence similar to s2pul but with new variable names and using a 
shaped pulse as follows:

1. Open a shell window.

2. Enter cd ~/vnmrsys/psglib.

3. Use a text editor such as vi to create the file newpul.c shown in Listing 6.

4. Save the file newpul.c.

5. Enter seqgen newpul after newpul.c is created. 

The following lines are displayed during pulse sequence generation:

Beginning Pulse Sequence Generation Process...
Adding DPS extensions to Pulse Sequence...
Lint Check of Sequence...
Compiling Sequence...
Link Loading...

Done! Pulse sequence newpul now ready to use.

6. To use the pulse sequence in VnmrJ, add new parameters starting from a known 
good parameter set (e.g. s2pul.par) by entering from the VnmrJ command line:



2.6 Accessing Parameters

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 97

s2pul

seqfil='newpul'

create('d1new','delay') d1new=1

create('d2new','delay') d2new=.001

create('p1new','pulse') p1new=0

create('pwnew','pulse') pwnew=40

create('patnew','string') patnew='square'

7. The parameters need to be saved as newpul.par in parlib so they can be easily 
retrieve them the next time the pulse sequence is run. Enter:

cd

cd('vnmrsys/parlib')

svp('newpul')

8. Create a macro by entering to access the new parameters and pulse sequence, for 
example:

macrovi('newpul')

9. In the pop-up editor window, enter the insert mode and add the line:

Save the macro and exit. This macro requires the file newpul.par to be present in 
parlib. 

/* newpul.c - new pulse sequence */
#include <standard.h>

static int ph2[4] = {0,1,2,3};

pulsesequence()
{
  double d1new, d2new, p1new, pwnew;
  char patnew[MAXSTR];
  d1new = getval("d1new");
  d2new = getval("d2new");
  p1new = getval("p1new");
  pwnew= getval("pwnew");
  getstr("patnew",patnew);

assign(zero,v1);
settable(t2,4,ph2);
getelem(t2,ct,v2);

  /* equilibrium period */
  status(A);
  hsdelay(d1new);

  /* --- tau delay --- */
  status(B);
  pulse(p1new,v1);
  hsdelay(d2new);

  /* --- observe period --- */
  status(C);
  shaped_pulse(patnew,pwnew,v2,rof1,rof2);
}

Listing 6. File newpul.c for a New Pulse Sequence

psgset('newpul','array','dg','d1new','d2new','p1new','pwnew','patnew')



Chapter 2. Pulse Sequence Programming

98 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Enter newpul in the VnmrJ command line any time the new pulse sequence is needed. 
Most of the pulse sequences in /vnmr/psglib are set up in a similar fashion, and so are 
easily accessible.

The newpul.c pulse sequence also contains examples of phase cycling. There are two 
basic ways to perform arbitrary user-defined phase cycling:

• Use the real-time variables v1-v14, oph, zero, one, two, and three, and 
perform math integer operations on them using functions in Table 14. 

• Use the real-time AP tables t1-t60, which may be assigned either by static variable 
declarations and using settable(), or by loading in a table from tablib using 
loadtable() (see Table 17). 

An example of using the real-time variable v1 is given in newpul.c used by assign() 
and pulse(). An example of using real-time AP tables is given using ph2 and t2. We 
could also replace v2 with t2 in the shaped_pulse() statement in this particular pulse 
sequence. In some cases, however, it is necessary to perform further integer math 
operations on the phase cycle, which is easier to perform on real-time variables than on AP 
tables, so we give the example using getelem() to assign the table t2 to variable v2. 
For other examples of phase cycling calculations, see the pulse sequences in /vnmr/
psglib. 

To add 2D parameters to the newpul.c pulse sequence, make the following changes:

• In step 2, change d2new to d2.

• In step 4, enter par2d set2d('newpul') p1new=40.

• In step 7, add par2d set2d('newpul') to the newpul macro after the psgset 
line.

Also, see the cosyps.c pulse sequence in /vnmr/psglib, section 2.14 
“Multidimensional NMR,” page 122, and the chapter on Multidimensional NMR in the 
NMR Spectroscopy, User Guide manual. 

2.7 Using Interactive Parameter Adjustment
The section “Spectrometer Control,” page 60 included statements for interactive parameter 
adjustment (IPA). Such routines start with the letter i (e.g., idelay, irgpulse). For 
users who need added flexibility in programming, this section explains IPA and these 
routines in more detail. IPA is available on all systems except MERCURYplus/-Vx. 

General Routines

In addition to the statements previously described, PSG has four general routines:

• G_Pulse for generic pulse control

• G_Offset for adjustment of the offset frequency

• G_Delay for generic delay control

• G_Power for fine power control. 

Each of these routines is called with an argument list (see page 100) specified with 
attribute-value pairs, terminated by a mandatory zero. The terminating zero is mandatory. 
If the zero is left out, the results are unpredictable and can include a core dump of PSG.



2.7 Using Interactive Parameter Adjustment

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 99

Each attribute has a default value—a pulse can be specified simply as G_Pulse(0), 
which would produce a transmitter pulse of size pw with rof1 and rof2 set the same as 
the experiment parameters and phase cycled with the parameter oph.

The attribute SLIDER_LABEL determines whether output is generated for the Acquisition 
window (opened by the acqi command). If no label is specified, no IPA information is 
generated by the subroutine. The use of the SLIDER_LABEL with the same value for 
delays or pulses allows multiple delays or pulses to be controlled via one slider. This is 
covered later in this section.

As an example of a pulse sequence using the general routines, Listing 7 shows the source 
code of i2pul.c, which can be compiled and run like S2PUL, but when go('acqi') 
is typed, IPA information is generated in /vnmr/acqqueue/acqi.IPA. 

The command acqi can be used to adjust the pulses and delays in the sequence. Note that 
G_Pulse covers the statements obspulse, pulse, decpulse, etc. 

Macro definitions have been written to cover these:
#define obspulse() G_Pulse(0)

#define decpulse(decpulse,phaseptr) \

G_Pulse (PULSE_DEVICE, DODEV, \

PULSE_WIDTH, decpulse, \

PULSE_PHASE, phaseptr, \

PULSE_PRE_ROFF, 0.0, \

/* I2PUL - interactive two-pulse sequence */
#include <standard.h>
static int phasecycle[4]={0,2,1,3};
pulsesequence()
{

/* equilibrium period */
settable(t1,4,phasecycle);
status(A);
hsdelay(d1);
/* --- tau delay --- */
status(B);
ipulse(p1,zero,"p1");
/*
* This ipulse statement is equivalent to 
* the following general pulse statement.
* G_Pulse(PULSE_WIDTH, p1,
* PULSE_PHASE, zero,
* SLIDER_LABEL, "p1",
* 0);
*/
G_Delay(DELAY_TIME, d2,

SLIDER_LABEL, "d2",
SLIDER_MAX, 10,
0);

/* --- observe period --- */
status(C);
ipulse(pw,t1,"pw");
setreceiver(t1);

}

Listing 7. Pulse Sequence Listing of File i2pul.c



Chapter 2. Pulse Sequence Programming

100 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

PULSE_POST_ROFF, 0.0, \

0)

See the file /vnmr/psg/macros.h for a complete list. This file is automatically 
included when the file standard.h is included in a pulse sequence. Note also that the 
same pulse sequence can be used to execute go as well as go('acqi'); however, IPA 
information is only generated when go('acqi') is used.

Interactive adjustment of simultaneous pulses is not supported. A limit of 10 has been set 
on the number of calls with a label. This limits the number of parameters that can be 
adjusted within one pulse sequence. Note that a subroutine call within a hardware loop is 
still only one label.

Parameters are adjusted at the end of a sweep. Since this takes a finite amount of time, 
steady state may be affected. Of course, changing any parameter value also affects the 
steady state, so this should be of little or no consequence.

Generic Pulse Routine

The G_Pulse generic pulse routine has the following syntax:
G_Pulse( PULSE_WIDTH, pw,

PULSE_PRE_ROFF, rof1,

PULSE_POST_ROFF, rof2,

PULSE_DEVICE, TODEV,

SLIDER_LABEL, NULL,

SLIDER_SCALE, 1,

SLIDER_MAX, 1000,

SLIDER_MIN, 0,

SLIDER_UNITS, 1e–6,

PULSE_PHASE, oph,

0);

The following table describes the attributes used with G_Pulse:

Examples of using G_Pulse:
G_Pulse(0); /* equals obspulse(); */

G_Pulse(PULSE_WIDTH, pw, /* equals pulse(pw,v1); */

Attribute Type Default Description

PULSE_WIDTH double pw As specified in parameter set

PULSE_PRE_ROFF double rof1 As specified in parameter se.

PULSE_POST_ROFF double rof2 As specified in parameter set

PULSE_DEVICE int TODEV TODEV for observe channel or DODEV 
for 1st decoupler. Also DO2DEV or 
DO3DEV for 2nd/3rd decoupler

SLIDER_LABEL char * NULL Label (1- 6 characters) for acqi or 
NULL for no output to acqi.

SLIDER_SCALE int 1 Decimal places (0 to 3) on slider

SLIDER_MAX int 100 Maximum value on the slider

SLIDER_MIN int 0 Minimum value on the slider

SLIDER_UNITS double 1e–6 Pulses are in μs, scale factor

PULSE_PHASE int oph Real-time variable



2.7 Using Interactive Parameter Adjustment

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 101

PULSE_PHASE, v1,

0); /* required terminating zero */

Frequency Offset Subroutine

The G_Offset routine adjusts the offset frequency. It has the following syntax:
G_Offset(OFFSET_DEVICE, TODEV,

OFFSET_FREQ, tof,

SLIDER_LABEL, NULL,

SLIDER_SCALE, 0,

SLIDER_MAX, 1000,

SLIDER_MIN, –1000,

SLIDER_UNITS, 0,

0);

The following table describes the attributes used with G_Offset:

* Default value is described in the description column for this attribute.

Examples of using G_Offset:
G_Offset(OFFSET_DEVICE, TODEV, /* equivalent to  */

OFFSET_FREQ, tof, /* offset(tof,TODEV); */

0); /* required terminating zero */

G_Offset(OFFSET_DEVICE, TODEV, /* basic interactive */

OFFSET_FREQ, tof, /* offset statement */

SLIDER_LABEL, “TOF”,/* for fine adjustment of */

0); /* transmitter frequency */

Attribute Type Default Description

OFFSET_DEVICE int none Device (or rf channel) to receive frequency 
offset. This is required! Thus, 
G_Offset(0) not allowed. TODEV for 
transmitter channel or DODEV for first 
decoupler channel. On UNITYplus, DO2DEV 
for 2nd decoupler channel, or DO3DEV for 3rd 
decoupler channel.

OFFSET_FREQ double * Offset frequency for selected channel. Default 
is offset frequency parameter (tof, dof, 
dof2, dof3) of associated channel.

SLIDER_LABEL char * NULL If no slider label selected, offset cannot be 
changed in acqi. Otherwise, becomes the 
label (1-6 characters) in acqi.

SLIDER_SCALE int 0 Number of decimal places displayed in acqi. 
Default is 0 because default range is 2000 Hz, 
so a resolution finer than 1 Hz is not necessary.

SLIDER_MAX int * Maximum value on the slider. Default is 1000 
Hz more than the offset frequency.

SLIDER_MIN int * Minimum value on the slider. Default is 1000 
Hz less than the offset frequency.

SLIDER_UNITS double 1.0 Frequencies are in Hz.



Chapter 2. Pulse Sequence Programming

102 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Generic Delay Routine

The G_Delay generic delay routine has the following syntax:
G_Delay(DELAY_TIME, d1,

SLIDER_LABEL, NULL,

SLIDER_SCALE, 1,

SLIDER_MAX, 60,

SLIDER_MIN, 0,

SLIDER_UNITS, 1.0,

0);

The following table describes the attributes used with G_Delay:

Examples of using G_Delay:
G_Delay(0); /* equals delay(d1); */

G_Delay(DELAY_TIME, d2, /* equals delay(d2); */

0); /* required terminating zero */

IPA allows one slider to control more than one delay or pulse. The maximum number of 
delays or pulses a slider can control is 32. This multiple control is obtained whenever 
multiple calls to G_Pulse or G_Delay have the same value for the SLIDER_LABEL 
attribute. 

The first call to G_Pulse in a pulse sequence sets the initial value, the maximum and 
minimum of the slider, and the scale. Later calls to G_Pulse within that pulse sequence 
do not alter these. The SLIDER_UNITS attribute are unique to each call to G_Pulse. 
This allows changing the value seen by a particular event by some multiplication factor. For 
example, the following two statements create a single slider in the Acquisition window 
(opened by the acqi command) labeled PW that will control two separate pulses.
G_Pulse(PULSE_DEVICE, TODEV,

PULSE_WIDTH, pw,

SLIDER_LABEL, "PW",

SLIDER_SCALE, 1,

SLIDER_MAX, 1000,

SLIDER_MIN, 0,

SLIDER_UNITS, 1.0e-6,

0);

G_Pulse(PULSE_DEVICE, TODEV,

PULSE_WIDTH, pw*2.0,

SLIDER_LABEL, "PW",

SLIDER_UNITS, 2.0e-6,

0);

Attribute Type Default Description

DELAY_TIME double d1 As specified in parameter set.

SLIDER_LABEL char * NULL Label (1 to 6 characters) for acqi or 
NULL for no output to acqi.

SLIDER_SCALE int 1 Decimal places (0 to 3) displayed.

SLIDER_MAX int 60 Maximum value on the slider.

SLIDER_MIN int 0 Minimum value on the slider.

SLIDER_UNITS double 1.0 Delays are in seconds.



2.8 Hardware Looping and Explicit Acquisition

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 103

The width of the first pulse will initially be pw, as set by the PULSE_WIDTH attribute for 
the first G_Pulse call. The width of the second pulse will initially be pw*2.0, as set by 
the PULSE_WIDTH attribute for the second G_Pulse call. 

When the slider is changed in acqi, the amount that the actual pulse width changes is 
determined by the product of the slider change and the respective multiplicative factors 
specified by the attribute SLIDER_UNITS. For example, if the slider increased by 3 units, 
the first pulse width would by increased by 3 * 1.0e-6 seconds and the second pulse would 
be increased by 3 * 2.0e-6 seconds. In this way, the initial 1 to 2 ratio in pulse widths is 
maintained while the slider is changed.

Fine Power Subroutine

The G_Power subroutine is used on systems with the optional linear fine attenuators. It 
has the following syntax:
G_Power(POWER_VALUE, tpwrf,

POWER_DEVICE, TODEV,

SLIDER_LABEL, NULL,

SLIDER_SCALE, 1,

SLIDER_MAX, 4095,

SLIDER_MIN, 0,

SLIDER_UNITS, 1.0,

0);

The following table describes the attributes used with G_Power:

Examples of using G_Power:
G_Power(0);

G_Power(POWER_VALUE, dpwrf,

POWER_DEVICE, DODEV,

0); /* required terminating zero */

2.8 Hardware Looping and Explicit Acquisition
• “Receiver Phase For Explicit Acquisitions,” page 107

• “Multiple FID Acquisition,” page 107

Attribute Type Default Description

POWER_VALUE double tpwrf As specified in parameter set.

POWER_DEVICE int TODEV TODEV for transmitter channel or 
DODEV for decoupler channel. On 
UNITYplus also DO2DEV and DO3DEV 
for 2nd and 3rd decoupler channels.

SLIDER_LABEL char * NULL Label (1 to 6 characters) for acqi or 
NULL for no output to acqi.

SLIDER_SCALE int 1 Decimal places (0 to 3) on slider.

SLIDER_MAX int 4095 Maximum value on the slider.

SLIDER_MIN int 0 Minimum value on the slider.

SLIDER_UNITS double 1.0 Power in arbitrary units.



Chapter 2. Pulse Sequence Programming

104 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

The loop and endloop statements described previously generate a soft loop, which 
means that they force the acquisition computer to repeatedly place the information 
contained within the loop into the pulse program buffer (a FIFO). If this loop must run 
extremely fast, a condition may arise in which the acquisition computer is not able to 
provide input to the pulse program buffer as fast as the sequence is required to operate, and 
this technique does not work. 

Because of this problem, a different mode of looping known as hardware looping is 
supported in current systems. In this mode, the pulse program buffer provides its own 
looping, and the speed can be at the maximum possible rate, with the only limitation being 
the number of events that can occur during each repetition of the loop. Table 21 lists 
statements related to hardware looping. 

Controlling Hardware Looping

Use the starthardloop(numrepetitions) and endhardloop() statements 
start and end a hardware loop. The numrepetitions argument to starthardloop 
must be a real-time integer variable, such as v2, and not a regular integer, a real number, 
or a variable. The number of repetitions of the hardware loop must be two or more. If the 
number of repetitions is 1, the hardware looping feature itself is not activated. A hardware 
loop with a count equal to 0 is not permitted and will generate an error. Depending on the 
pulse sequence, additional code may be needed to trap for this condition and skip the 
starthardloop and endhardloop statements if the count is 0.

Only instructions that require no further intervention by the acquisition computer (pulses, 
delays, acquires, and other scattered instructions) are allowed in a hard loop. Most notably, 
no real-time math statements are allowed, thereby precluding any phase cycle calculations. 
Also, no AP table with the autoincrement feature set can be used within a hard loop. 
The number of events included in the hard loop, including the total number of data points 
if acquisition is performed, must be as follows:

2048 or less for the MERCURYplus/-Vx STM/Output board, or Data Acquisition 
Controller board.

In all cases, the number of events must be greater than 1. No nesting of hard loops is 
allowed.

For MERCURYplus/-Vx STM/Output boards, Data Acquisition Controller boards, There 
are no timing restrictions between multiple, back-to-back hard loops. There is one subtle 
restriction placed on the actual duration of a hard loop if back-to-back hard loops are 
encountered: the duration of the ith hard loop must be N(i+1) * 0.4 ms, where N(i+1) is the 
number of events occurring in the (i+1)th hard loop.

Number of Events in Hardware Loops

An event is a single activation of the timing circuitry. Pulses, delays, phase shifts, etc., set 
or reset various gate lines to turn on and off pulses, phase shift lines, etc. but activate the 
timing circuitry in the same way. Timing is accomplished as follows:

• The Data Acquisition Controller board uses one time base of 12.5 ns. 

Table 21. Hardware Looping Related Statements

acquire(num_points,sampling_interval Explicitly acquire data
clearapdatatable() Zero data in acquisition processor memory
endhardloop() End hardware loop
starthardloop(num_repetitions) Start hardware loop



2.8 Hardware Looping and Explicit Acquisition

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 105

• MERCURYplus/-Vx systems use two time bases: 0.1 μs and 1 ms. As many events as 
needed are used. Delays greater than 96 seconds use a hard loop.

Therefore, larger timer words may produce multiple events. The final point to understand 
is that some things that look like one event may actually be more. Consider, for example, 
the statement rgpulse(pw,v1,rof1,rof2). Does this generate a single event? No, 
it generates at least three (or more depending on the length of the events). That is because 
we generate first a time of rof1 with the amplifier unblanked but transmitter off, then a 
time of pw with the transmitter on, and then a time rof2 with the transmitter off but the 
amplifier unblanked. Times that are zero generate no events, however. For example, 
rgpulse(5.0e–6,v1,0.0,0.0) generates only a single event.

Although pulses, delays, and data point acquisitions are the most common things to be in a 
hardware loop, other choices are possible. Table 22 lists the number of events that may be 
generated by each statement.

On MERCURYplus/-Vx systems, any delay (pulse, delay, decrgpulse, etc.) is 
limited to 96 seconds within a hardware loop. In practice, this is not a restriction.

Explicit Acquisition

Closely related to hardware looping is the explicit acquisition feature—the acquisition of 
one or more pairs of data points explicitly by the pulse sequence. This feature enables 
interspersing of pulses and data acquisition and allows coding pulse sequences that acquire 
multiple FIDs during the course of a pulse sequence (such as COCONOSY). It also allows 
pulse sequences that acquire a single FID one or more points at a time (such as MREV-type 
sequences).

The acquire(number_points,sampling_interval) statement explicitly 
acquires data points at the specified sampling interval, where the sequence of events is 
acquire a pair of points for 200 ns, delay for sampling_interval less 200 ns, then 
repeat number_points/2 times. For example, acquiring an FID would use 
acquire(np,1.0/sw). 

Both arguments to the acquire statement must be real numbers or variables. The number 
of complex points to be acquired must be a multiple of 2 for Data Acquisition Controller, 
and STM/Output boards. Inside a hardware loop, Data Acquisition Controller and STM/
Output boards can accept a maximum of 2048 complex points, number_points must be 
a multiple of 2, because only pairs of points can be acquired. 

NMR spectrometer systems include small overhead delays before and after the acquire 
statement. The pre-acquire delay takes into account setting the receiver phase (oph) and 
enabling data overflow detection. Disabling data overflow detection creates a post-
acquire delay. These overhead delays and associated functions are placed outside the 
loop when acquire statements are within a loop, and before the first acquire and after 
the last acquire, when more than one acquire statement is used to acquire a FID.

Once an explicit acquisition is invoked, even if for one pair of data points, the standard 
“implicit” acquisition is turned off, and the user is responsible for acquiring the full number 
of data points. Failure to acquire the correct number of data points before the end of the 
pulse sequence generates an error. The total number of data points acquired before the end 
of the sequence must equal the specified number (np). An example of the programming 
necessary to program a simple explicit acquisition, analogous to the normal implicit 
acquisition, would look like this: 
rcvron();

txphase(zero);



Chapter 2. Pulse Sequence Programming

106 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

decphase(zero);

delay(alfa);

acquire(np,1.0/sw);

Although generally not needed, the clearapdatatable() statement is available to 
zero the acquired data table at times other than at the start of the execution of a pulse 
sequence, when the data table is automatically zeroed.

The limitation that multiple hardloops cannot be nested has consequences for the use of the 
acquire statement inside a hardloop. Depending on its arguments and how it is built into 

Table 22. Number of Events for Statements in a Hardware Loop

Statement UNITYINOVA MERCURYplus/-Vx

acquire (Data Acq. Controller board) 1 to 2048 —

acquire (Pulse Seq. Controller board) — —

acquire (Acq. 
Controller board)

— —

acquire (Output board) — —

dcplrphase,
dcplr2phase, dcplr3phase

1 6

declvlon,
declvloff

1 —

decphase,
dec2phase, dec3phase

0 0

decpulse 0 1 or 2

decrgpulse,
dec2rgpulse, dec3rgpulse

0 3 to 6

delay 1 1 to 5

hsdelay 1 1 to 5

lk_hold,
lk_sample

1 3

obspulse 3 3 to 6

offset 9 72

power, obspower,
decpower,
dec2power,
dec3power

1 3

pwrf, obspwrf,
decpwrf, dec2pwrf, dec3pwrf

1 —

pulse,rgpulse 3 3 to 6

simpulse 3 to 5 3 to 15

sim3pulse 3 to 7 —

status 0 to 5 times 
number of 
channels

0 to 12

txphase 0 0

xmtrphase 1 6



2.8 Hardware Looping and Explicit Acquisition

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 107

a pulse sequence, the acquire statement may internally be done as a hardloop by itself. 
However, a construct like the following does not work:
initval(np/2.0, v14);

starthardloop(v14);

acquire(2.0, 1.0/sw);

endhardloop();

A loop that consists of a single acquire call is not permitted, but such constructs are not 
needed because a single statement can be used instead:
acquire(np,1.0/sw);

This statement is not equivalent to the first construct because the acquire statement will 
sample more than just two points (i.e., a complex data point) per loop cycle, thus allowing 
for np greater than 2.0 × (maximum number of loop cycles). Note that the loop uses a 16-
bit loop counter. Therefore, the maximum number of cycles is 32767 (the largest possible 
16-bit number).

On the other hand, a hardloop that contains acquire together with other pulse sequence 
events works fine as long as the number of complex points to be acquired plus the number 
of extra FIFO words per loop cycle does not exceed the total number of words in the loop 
FIFO:
initval(np/2.0, v14);

loop(v14);

acquire(2.0, 1.0/sw - (rof1 + pw + rof2));

rgpulse(pw, v1, rof1, rofr2);

endloop;

Explicit hardloops with acquire calls are a standard feature in multipulse solids 
sequences.

Receiver Phase For Explicit Acquisitions

Receiver phase can be changed for explicit acquisitions, the same as for implicit 
acquisitions, by changing oph or by using the setreceiver statement. The value of 
oph at the time of the acquisition of the first data point is the value that determines the 
receiver phase setting for the duration of that particular “scan”—the receiver cannot be 
changed after acquiring some data points and before acquiring the rest.

Multiple FID Acquisition

Explicit acquisition of data can also be used to acquire more than one FID per pulse 
sequence (simultaneous COSY-NOESY for example). This can be done for 1D or 2D 
experiments. The parameter nf, for number of FIDs, controls this if it is created and set. 
To perform such an experiment, enter create('nf','integer') to create nf and 
then set nf equal to an integer such as 2 and a second new parameter cf (current FID).

Once the data have been acquired cf (current FID) is used to identify the FID to 
manipulate. Setting cf=2, for example, recognizes the second FID in the COSY-NOESY 
experiment (and produces a NOESY spectrum after Fourier transformation). Note that this 
is distinct from the standard array capability and is compatible with the standard arrays. The 
acquisition is an array of ten experiments, with each consisting of three FIDs that are 
generated during each pulse sequence. To display the second FID of the seventh 
experiment, for example, type cf=2 dfid(7).



Chapter 2. Pulse Sequence Programming

108 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

2.9 Pulse Sequence Synchronization
• “External Time Base,” page 108

• “Controlling Rotor Synchronization,” page 108

A pulse sequence is just a set of accurately timed delays that turn the hardware on and off.

External Time Base

An external timebase halts the pulse sequence until the number of external events in the 
count field have occurred for purposes of synchronization. The source of events or ticks of 
this external timebase is up to the user. This feature is not available on MERCURYplus/-Vx 
systems.

Controlling Rotor Synchronization

Statements for rotor control on NMR systems with solids rotor synchronization hardware 
are rotorperiod, rotorsync, and xgate. Table 23 summarizes these statements.

• Use rotorperiod(period) to obtain the rotor period, where period is a real-
time variable into which is the rotor period is placed (e.g., rotorperiod(v5)). The 
period is placed into the referenced variable as an integer in units of 50 ns.

• Use rotorsync(rotations) to insert a variable-length delay, where 
rotations is a real-time variable that points to the number of rotations to delay, for 
example, rotorsync(v6). The delay allows synchronizing the execution of the 
pulse sequence with a particular orientation of the sample rotor. When the 
rotorsync statement is encountered, the pulse sequence is stopped until the number 
of rotor rotations has occurred as referenced by the real-time variable given.

• Use xgate(events) to halt the pulse sequence from an external event, where 
events is a double variable (e.g., xgate(2.0)). When the number of external 
events has occurred, the pulse sequence continues.

Both rotorsync and xgate can be used, but there is a very important distinction 
between the two—rotorsync synchronizes to the exact position of the rotor, whereas 
xgate synchronizes to the zero degree position of rotation. For example, if the rotor is at 
90°, then for xgate(1.0), the pulse sequence will begin when the rotor is at zero 
degrees, a rotation of 270°; however, for the equivalent rotorsync, the pulse sequence 
will begin when the rotor is at 90°, or 360° rotation.

2.10 Pulse Shaping
• “File Specifications,” page 109

• “Performing Shaped Pulses,” page 112

• “Programmable Transmitter Control,” page 114

• “Setting Spin Lock Waveform Control,” page 115

Table 23. Rotor Synchronization Control Statements

rotorperiod(period) Obtain rotor period of high-speed rotor

rotorsync(rotations) Gated pulse sequence delay from MAS rotor position

xgate(events) Gate pulse sequence from an external event



2.10 Pulse Shaping

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 109

• “Shaped Pulse Calibration,” page 115

RF pulse shapes can be executed on one or more rf channels, along with programmed 
decoupling patterns, and gradient shapes for imaging applications. MERCURYplus/-V 
shapes are Dante style pulses. Shaped decoupling is not possible on MERCURYplus/-Vx 
systems. For pulse shaping programming using Pbox, see the manual NMR Spectroscopy, 
User Guide. All VnmrS system waveforms must have 4μsec resolution.

Pulse control of the waveform generators consists of two separate parts:

• A text file describing the shape of a waveform.

• A pulse sequence statement applying that waveform in an appropriate manner.

The power of rf shape or decoupler pattern is controlled by the standard power and fine 
power control statements for that rf channel. For example, obspower and obspwrf will 
scale the overall power of a shape on the observe channel. MERCURYplus/-Vx uses only 
coarse power.

File Specifications

The macro sh2pul sets up a shaped two-pulse (SH2PUL) experiment. This sequence 
behaves like the standard two-pulse sequence S2PUL except that the normal hard pulses 
are changed into shaped pulses from the waveform generator. 

To find pulse shape definitions, the pulse sequence generation (PSG) software looks in a 
user’s vnmrsys/shapelib directory and then in the system's shapelib. Each 
shapelib directory contains files specifying the defined shapes for rf pulses, decoupling, 
and gradient waveforms. To differentiate the files in a shapelib directory, each type uses 
a different suffix, Table 24:

Each pattern file is a set of element specifications with one element per line. Therefore, a 
67 element pattern contains 67 lines. Any blank lines and comments (characters after a # 
sign on a line) in a specification are ignored. 

Shapes can be created by macro, by programs, or by hand. The specifications for each kind 
of pattern are listed in the following table (if a field is not specified, the default given is 
used). As an example, a slightly modified excerpt from a file in the system directory 
shapelib is also shown.

Table 24. Shapelib File Suffix List

Pattern Type Suffix Example

rf pulses .RF gauss.RF

decoupling .DEC mlev16.DEC

gradient .GRD hard.GRD



Chapter 2. Pulse Sequence Programming

110 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

RF Patterns

For example, the first 8 elements (after the comment lines) of the file sinc.RF:
0.000 0.000 1.000000

0.000 8.000 1.000000

0.000 16.000 1.000000

0.000 24.000 1.000000

0.000 32.000 1.000000

0.000 40.000 1.000000

0.000 48.000 1.000000

0.000 56.000 1.000000

In using the .RF patterns, the actual values for the amplitude are treated as relative values, 
not as absolute values. All of the amplitudes in the rf shape file are divided by the largest 
amplitude in the shape file and then multiplied by 4095.0. The net result is that shapes 
with values of the amplitudes between 0 to 10.0, or between 0 to 4095.0, or between 0 
to 100000.0, are effectively all the same shape.

To implement .RF patterns with absolute values for amplitudes, use a shape element with 
0 duration to fix the scaling factor for the shape. Here is a simple example:

A shape with elements
0.00 10.0 1.0

0.00 100.0 1.0

0.00 20.0 1.0

will result in an actual shape of
0.00 4095.0*10.0/100.0 1.0 0.00 409.50 1.0

0.00 4095.0*100.0/100.0 1.0 or 0.00 4095.0 1.0

0.00 4095.0*20.0/100.0 1.0 0.00 819.00 1.0

A shape with elements
0.00 4095.0 0.0

0.00 10.0 1.0

0.00 100.0 1.0

0.00 20.0 1.0

will result in an actual shape of
0.00 4095.0*10.0/4095.0 1.0 0.00 10.0 1.0

0.00 4095.0*100.0/4095.0 1.0 or 0.00 100.0 1.0

0.00 4095.0*20.0/4095.0 1.0 0.00 20.0 1.0

Table 25. RF Patterns

Column Description Limits Default

1 Phase angle (in degrees) 
Phase limits

0.043° resolution 
No limit on magnitude

Required

2 Amplitude 0 to scalable max max

3 Relative duration 0, or 1 to 255 1

4 Transmitter gate 0, 1 1 (gate on)



2.10 Pulse Shaping

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 111

Decoupler Patterns

For example, the first 8 elements (after the comment lines) of the file waltz16.DEC:
270.0 180.0

360.0 0.0

180.0 180.0

270.0 0.0

90.0 180.0

180.0 0.0

360.0 180.0

180.0 0.0

In using the gate field in .DEC patterns, note the following:

• The waveform controller gate is ORed with the controller gate. This means that any 
time the controller gate is on, the transmitter is on, irrespective of any waveform 
generator gate.

• If a decoupler pattern is activated under status control (using dmm='p'), an implicit 
controller gate statement is added. In this situation, any 0s or 1s in the gate field of 
the .DEC pattern are irrelevant because they are overridden (as indicated above). 

• If a decoupler pattern is activated by the decprgon statement, the unityINOVA 
waveform generator gate is the controlling factor. If this gate is specified as 0s or 1s in 
the .DEC file, that gating will occur. If there is no gate field in the .DEC file, the 
default occurs—the gate is set to 0 and the decoupler is off. An alternate is to follow 
the decprgon statement with some kind of gate statement (e.g., decon) to turn on 
the controller gate (overriding the default of the gate set to 0 from the controller) and 
to proceed the decprgoff statement with a statement to turn the gate off (for 
example, decoff). 

Gradient Patterns

For example, the first 8 elements (after the comment lines) of the file trap.GRD:
1024 1

2048 1

3072 1

4096 1

5120 1

Table 26. Decoupler Patterns

Column Description Limits Default

1 Tip angle per element (in degrees) 
Phase limits

0° to 500°, 1° resolution 
No limit on magnitude

Required

2 RF phase (in degrees) 0.043° resolution Required

3 Amplitude 0 to scalable max max

4 Transmitter gate 0, 1 0 (gate off)

Table 27. Gradient Patterns

Column Description Limits Default

1 Output amplitude –32767 to 32767, 1 unit resolution Required

2 Relative duration 1 to 255 1



Chapter 2. Pulse Sequence Programming

112 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

6144 1

7168 1

8192 1

Performing Shaped Pulses

Statements to perform shaped pulses are listed in Table 28. 

Shaped Pulse on Observe Transmitter or Decouplers

Use shaped_pulse(shape,width,phase,RG1,RG2) to perform a shaped pulse 
on the observe transmitter where shape is the name of a text file in shapelib that stores 
the rf pattern (leave off the .RF file extension), width is the duration of the pulse; phase 
is the phase of the pulse (it must be a real-time variable); RG1 is the delay between 
unblanking the amplifier and gating on the transmitter (the phase shift occurs at the 
beginning of this delay); and RG2 is the delay between gating off the transmitter and 
blanking the amplifier (e.g., shaped_pulse("gauss",pw,v1,rof1,rof2)).

The statements shaped_pulse, decshaped_pulse, and dec2shaped_pulse 
provide pulse shaping through the linear attenuator and the small-angle phase shifter on the 
AP bus if a rf channel does not have a waveform generator. AP tables for the attenuation 
and phase values are created on the fly, and the real-time variables v12 and v13 are used 
to control the execution of the shape. This pulse shaping through the AP bus was 
exclusively controlled by the statements apshaped_pulse, apshaped_decpulse, 
and apshaped_dec2pulse on previous versions of VNMR.

For shaped pulses, the minimum pulse length is:

• 0.2 μs on UNITYINOVA waveform generator control. 

The overhead at the beginning and end of the shaped pulse is:

• UNITYINOVA: starts at 0.95 μs falling to 0 at the end.

• Acquisition Controller board systems: starts at 10.75 μs falling to 4.3 μs at the end.

• Output board systems: starts at 10.95 μs falling to 4.5 μs at the end.

If the length is less than 0.2 μs on UNITYINOVA the pulse is not executed and there is no 
overhead. 

The decshaped_pulse, dec2shaped_pulse, and dec3shaped_pulse 
statements allow a shaped pulse to be performed on the first, second, and third decoupler, 

Table 28. Shaped Pulse Statements

decshaped_pulse* Perform shaped pulse on first decoupler
dec2shaped_pulse* Perform shaped pulse on second decoupler
dec3shaped_pulse* Perform shaped pulse on third decoupler
shaped_pulse* Perform shaped pulse on observe transmitter
simshaped_pulse* Perform simultaneous two-pulse shaped pulse
sim3shaped_pulse* Perform a simultaneous three-pulse shaped pulse
* decshaped_pulse(shape,width,phase,RG1,RG2)

dec2shaped_pulse(shape,width,phase,RG1,RG2
dec3shaped_pulse(shape,width,phase,RG1,RG2)
simshaped_pulse(obsshape,decshape,obswidth,decwidth,

obsphase,decphase,RG1,RG2)
sim3shaped_pulse(obsshape,decshape,dec2shape,obswidth,

decwidth,dec2width,obsphase,decphase,dec2phase,RG1,RG2)



2.10 Pulse Shaping

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 113

respectively. The arguments and overhead used for each is the same as shaped_pulse, 
except they apply to the decoupler controlled by the statement.

Simultaneous Two-Pulse Shaped Pulse

simshaped_pulse (obsshape, decshape, obswidth, decwidth, 
obsphase,decphase,RG1,RG2) performs a simultaneous, two-pulse shaped pulse 
on the observe transmitter and the first decoupler under waveform generator control. 
obsshape is the name of the text file that contains the rf pattern to be executed on the 
observe transmitter; decshape is the name of the text file that contains the rf pattern to 
be executed on the first decoupler; obswidth is the duration of the pulse on the observe 
transmitter; decwidth is the duration of the pulse on the first decoupler; obsphase is 
the phase of the pulse on the observe transmitter (it must be a real-time variable); 
decphase is the phase of the pulse on the first decoupler (it must be a real-time variable); 
RG1 is the delay between unblanking the amplifier and gating on the first rf transmitter (all 
phase shifts occur at the beginning of this delay); and RG2 is the delay between gating off 
the final rf transmitter and blanking the amplifier; for example:
simshaped_pulse("gauss","hrm180",pw,p1,v2,v5,rof1,rof2)

The overhead at the beginning and end of the simultaneous two-pulse shaped pulse is:

• UNITYINOVA: starts at 1.45 μs falling to 0 at the end.

• Acquisition Controller board systems: starts at 21.5 μs falling to 8.6 μs at the end.

• Output board systems: starts at 21.7 μs falling to 8.8 μs at the end.

These values hold regardless of the values for obswidth and decwidth. 

If either obswidth or decwidth is 0.0, no pulse occurs on the corresponding channel. 
If both obswidth and decwidth are non-zero and either obsshape or decshape is 
set to the null string (''), then a pulse occurs on the channel with the null shape name. If 
either the pulse width is zero or the shape name is the null string, then a waveform generator 
is not required on that channel.

Simultaneous Three-Pulse Shaped Pulse

The sim3shaped_pulse statement performs a simultaneous, three-pulse shaped pulse 
under waveform control on three independent rf channels. The arguments to sim3shaped 
are the same as defined previously for simshaped_pulse, except that dec2shape is 
the name of the text file that contains the rf pattern to be executed on the second decoupler, 
dec2width is the duration of the pulse on the second decoupler, and dec2phase is the 
phase (a real-time variable) of the pulse on the second decoupler (e.g., 
sim3shaped_pulse("gauss","hrm180","sinc",pw,p1,v2,v5,v6,
rof1,rof2)).

The overhead at the beginning and end of the simultaneous three-pulse shaped pulse is:

• UNITYINOVA: starts at 1.95 μs falling to 0 at the end.

• Acquisition Controller board systems: starts at 32.25 μs falling to 12.9 μs at the end.

• Output board systems: starts at 32.45 μs falling to 13.1 μs at the end.

These values hold regardless of the values for obswidth, decwidth, and dec2width. 

Setting one of the pulse lengths to the value 0.0, sim3shaped_pulse also performs a 
simultaneous two-pulse shaped pulse on any combination of three rf channels. (e.g., to 
perform simultaneous shaped pulses on the first decoupler and second decoupler, but not 
the observe transmitter, set the obswidth argument to 0.0).



Chapter 2. Pulse Sequence Programming

114 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

If any of the shape names are set to the null string (''), a normal rectangular pulse occurs 
on the channel with the null shape name. If either the pulse width is zero or the shape name 
is the null string, a waveform generator is not required on that channel.

Programmable Transmitter Control

Statements related to programmable transmitter control are listed in Table 29.

Programmable Control of Observe Transmitter

Use obsprgon(name,90_pulselength,tipangle_resoln) to set 
programmable phase and amplitude control of the observe transmitter. name is the name 
of the file in shapelib that stores the decoupling pattern, 90_pulselength is the 
pulse duration for a 90° tip angle, and tipangle_resoln is the resolution in tip-angle 
degrees to which the decoupling pattern is stored in the waveform generator (e.g.,
obsprgon("waltz16",pw90,90.0)).

The obsprgon statement returns the number of 50-ns ticks (as an integer value) in one 
cycle of the decoupling pattern. Explicit gating of the observe transmitter with xmtron 
and xmtroff is generally required. 

To terminate any programmable phase and amplitude control on the observe transmitter 
under waveform control, use obsprgoff(). 

Programmable Control of Decouplers

The decprgon, dec2prgon, and dec3prgon statements set programming decoupling 
on the first, second, and third decouplers, respectively. The arguments for each statement 
are the same as obsprgon, except they apply to the decoupler controlled by the statement. 
Each statement returns the number of 50 ns ticks (as an integer value) in one cycle of the 
decoupling pattern. Similarly, explicit gating of the selected decoupler is generally 
required, and termination of the control is done by the decprgoff(), dec2prgoff(), 
and dec3prgoff() statements, respectively.

Arguments to obsprgon, decprgon, dec2prgon, and dec3prgon can be variables 
(which need the appropriate getval and getstr statements) to permit changes via 
parameters.

The macro pwsadj(shape_file,pulse_parameter) adjusts the pulse interval 
time so that the pulse interval for the shape specified by shape_file (a file from 
shapelib) is an integral multiple of 100 ns. This eliminates a time truncation error in the 

Table 29. Programmable Control Statements

decprgoff() End programmable decoupling on first decoupler
dec2prgoff() End programmable decoupling on second decoupler
dec3prgoff() End programmable decoupling on third decoupler
decprgon* Start programmable decoupling on first decoupler
dec2prgon* Start programmable decoupling on second decoupler
dec3prgon* Start programmable decoupling on third decoupler
obsprgoff() End programmable control of observe transmitter
obsprgon* Start programmable control of observe transmitter
* decprgon(name,90_pulselength,tipangle_resoln)

dec2prgon(name,90_pulselength,tipangle_resoln)
dec3prgon(name,90_pulselength,tipangle_resoln)
obsprgon(name,90_pulselength,tipangle_resoln)



2.10 Pulse Shaping

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 115

execution of the shaped pulse by the programmable pulse modulators. 
pulse_parameter is a string containing the adjusted pulse interval time.

Setting Spin Lock Waveform Control 

Statements for spin lock control on systems with optional waveform generators are listed 
in Table 30. 

Spin Lock Waveform Control on Observe Transmitter

To execute a waveform-controlled spin lock on the observe transmitter, use 
spinlock(name,90_pulselength,tipangle_resoln,phase,ncycles), 
name is the name of the file in shapelib that stores the decoupling pattern (leave off 
the .DEC file extension); 90_pulselength is the pulse duration for a 90° tip angle; 
tipangle_resoln is the resolution in tip-angle degrees to which the decoupling pattern 
is stored in the waveform generator; phase is the phase angle of the spin lock (it must be 
a real-time variable); and ncycles is the number of times that the spin-lock pattern is to 
be executed (e.g., spinlock('mlev16',pw90,90.0,v1,ncyc)).

Both rf gating and the mixing delay are handled within this statement. 

Spin Lock Waveform Control on Decouplers

The decspinlock, dec2spinlock, and dec3spinlock set spin lock waveform 
control on the first, second, and third decouplers, respectively. The arguments are the same 
as used with spinlock, except that 90_pulselength is the pulse duration for a 90° tip 
angle on the decoupler controlled by the statement.

Arguments to spinlock, decspinlock, dec2spinlock, and dec3spinlock can 
be variables (which would need the appropriate getval and getstr statements) to 
permit changes via parameters.

Shaped Pulse Calibration 

Macros bandinfo and pulseinfo can be run interactively (without arguments) to give 
a table with shaped pulse information for calibration. bandinfo takes the name of any 
legal shape and the bandwidth desired for the pulse and gives a table containing the 
duration of that pulse and a predicted 90° pulse power setting. pulseinfo takes the name 
of the shape and the duration of the pulse and gives the bandwidth of that pulse and a 
predicted 90° pulse power setting. Both macros can also be called from another macro. For 
more information, refer to the Command and Parameter Reference.

Table 30. Spin Lock Control Statements

decspinlock* Set spin lock waveform control on first decoupler
dec2spinlock* Set spin lock waveform control on second decoupler
dec3spinlock* Set spin lock waveform control on third decoupler
spinlock* Set spin lock waveform control on observe transmitter
* decspinlock(name,90_pulselength,tipangle_resoln,phase,ncycles)

decs2pinlock(name,90_pulselength,tipangle_resoln,phase,ncycles)
decs3pinlock(name,90_pulselength,tipangle_resoln,phase,ncycles)
spinlock(name,90_pulselength,tipangle_resoln,phase,ncycles)



Chapter 2. Pulse Sequence Programming

116 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

2.11 Shaped Pulses Using Attenuators
• “Controlling Shaped Pulses Using Attenuators,” page 117

• “Controlling Attenuation,” page 118

UNITYINOVA and MERCURYplus/-Vx systems are equipped with computer-controlled 
attenuators (0 dB to 79 dB on UNITYINOVA, or 0 dB to 63 dB on MERCURYplus/-Vx) on the 
observe and decouple channels, linear amplifiers, and T/R (transmit/receive) switch 
preamplifiers that allow low-level transmitter signals to be generated and pass unperturbed 
into the probe. The combination of these elements means that the capability for performing 
shaped pulse experiments is inherent in the systems and does not require the more 
sophisticated waveform generation capability of the optional waveform generators.

Hardware differences must be considered between systems, with and without the waveform 
generators. The attenuators have more limited dynamic range, slower switching time, and 
fewer pulse programming steps available. Nonetheless, the capability still allows 
significant experiments using only attenuators.

Three issues affect all shaped pulses, but particularly attenuator-based pulses:

• Number of steps – The more steps used, the closer the shape approximates a continuous 
shape. At what level does this become overkill? For the most common shape, 
Gaussian, as few as 19 steps have been shown to be completely acceptable.

•  Dynamic range – How much dynamic range is required within a shape for proper 
results. For a Gaussian shape it has been shown that 33 dB is a useful limit; little or no 
improvement is achieved with more. With a single 63-dB attenuator, then, a Gaussian 
pulse with 33 dB dynamic range can be superimposed on a level ranging from 0- to 30-
dB, more with a 79-dB attenuator.

• Overall power level of the shape – A Gaussian pulse has an effective power 
approximately 8 dB lower than a rectangular pulse with an identical peak power. This 
means that given a full-power rectangular pulse of, say, 25 kHz, a Gaussian pulse with 
the same peak power has approximately a 10 kHz strength. Using instead a Gaussian 
pulse with only 33 dB dynamic range and a peak power 30 dB lower results in a shaped 
pulse of approximately 312 Hz, which is useful for some applications, like exciting the 
NH region of a spectrum, but too strong for others.

To increase the dynamic range (and decrease the strength of the shaped pulse) further, we 
can use one of three approaches: 

• Replace the 63-dB attenuator with a 79-dB unit. This adds 16 dB of dynamic range, 
producing shaped pulses in the range of 50 Hz, suitable for multiplet excitation. 

• Add an additional 63-dB attenuator in series with the first. If you use the entire 63 dB 
of the second attenuator to control the level of the pulse and use the first attenuator only 
for the shape, you still produce a pulse whose power is (for a Gaussian) 71 dB (63 + 8) 
below that of the hard pulse. This would produce a 7 Hz pulse, about as weak a pulse 
as one ever needs (and which could be reduced 30 dB further by only using 33 dB of 
the first attenuator for the shape). It is possible to use this control to create shaped 
pulses without a waveform generator.

• Use a time-sharing or “DANTE” approach, applying the shaped pulse in such a way 
that it is switched on and off with a particular duty cycle during the course of the shape. 
A 10% duty cycle, for example, reduces the power by a factor of ten.

Both the phase and linear attenuator on each transmitter can be controlled through pulse 
sequence statements (see pwrf, obspwrf, decpwrf, dec2pwrf, dec3pwrf, pwrm, 
rlpwrm, and dcplrphase) so it is possible to create shaped pulses without a waveform 
generator. 



2.11 Shaped Pulses Using Attenuators

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 117

AP Bus Delay Constants

Table 31 lists the most important AP bus delay “constants” (C macros). The list is 
incomplete, but a complete list can be found at the bottom of the text file 
/vnmr/psg/apdelay.h.

The constants OFFSET_DELAY and OFFSET_LTCH_DELAY are applicable only to 
systems that use PTS synthesizers with latching on the input. Although the constants are 
identical, use only OFFSET_DELAY on these systems. 

Controlling Shaped Pulses Using Attenuators

The statements power, obspower, decpower, dec2power, dec3power, and 
(optionally) pwrf, obspwrf, decpwrf, dec2pwrf, dec3pwrf, pwrm, and rlpwrm 

Table 31. AP Bus Delay Constants 

Constant Indicates Duration of

ACQUIRE_START_DELAY* Overhead at start of acquisition

ACQUIRE_STOP_DELAY* Overhead at end of acquisition

DECMODFREQ_DELAY Overhead for setting modulator frequency 

GRADIENT_DELAY rgradient, zgradpulse (two times)

OBLIQUEGRADIENT_DELAY oblique_gradient (applicable only to imaging) 

OFFSET_DELAY** decoffset, dec2offset, obsoffset, offset 

OFFSET_LTCH_DELAY*** decoffset, dec2offset, obsoffset, offset 

POWER_DELAY decpower, dec2power, obspower, power, rlpower, etc.

PRG_OFFSET_DELAY Time shift of WFG output with obsprgon, etc. 

PRG_START_DELAY decprgon, dec2prgon, obsprgon, etc. 

PRG_STOP_DELAY decprgoff, dec2prgoff, obsprgoff, etc.

PWRF_DELAY decpwrf, dec2pwrf, obspwrf, pwrf 

SAPS_DELAY dcplrphase, dcplr2phase, dcplr3phase, 
xmtrphase

SETDECMOD_DELAY Overhead for setting modulator mode 

SPNLCK_START_DELAY Overhead at start of decspinlock, spinlock, etc.

SPNLCK_STOP_DELAY Overhead at end of decspinlock, spinlock, etc.

VAGRADIENT_DELAY vagradpulse (two times)

WFG_OFFSET_DELAY Time shift of WFG output 

WFG_START_DELAY Overhead at start of decshaped_pulse, shaped_pulse 

WFG_STOP_DELAY Overhead at end of decshaped_pulse, shaped_pulse 

WFG2_START_DELAY Overhead at start of simshaped_pulse, etc. 

WFG2_STOP_DELAY Overhead at end of simshaped_pulse, etc. 

WFG3_START_DELAY Overhead at start of sim3shaped_pulse, etc. 

WFG3_STOP_DELAY Overhead at end of sim3shaped_pulse, etc. 

* On UNITYINOVA systems; on other systems, this constant is zero (no support for FSQ).
** Use OFFSET_DELAY only on UNITYINOVA systems. 
*** Only on systems that use PTS synthesizers with latching.



Chapter 2. Pulse Sequence Programming

118 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

are used to change the attenuation (and hence the power level) of either the transmitter or 
decouplers. A pulse sequence in which one of these statements is placed in a loop and 
repeatedly executed with different values for the amount of attenuation therefore results in 
a shaped pulse. This can be a C loop or a “soft” loop (using the loop statement), but not a 
“hard” loop. The successive values for the power may be calculated in real-time, read from 
a table (assuming that only positive numbers are involved), or set up from a static C 
variable. Although no standard pulse sequences exist that implement this feature, several 
contributions to the user library provide excellent examples of how to do this.

The statements shaped_pulse, decshaped_pulse, and dec2shaped_pulse 
provide fine-grained “waveform generator-type” pulse shaping through the AP bus. If an 
rf channel does not have a waveform generator configured, this is the same type of pulse 
shaping that statements apshaped_pulse, apshaped_decpulse, and 
apshaped_dec2pulse provide, and is a simpler implementation. 

The apshaped_pulse, apshaped_decpulse, and apshaped_dec2pulse pulse 
statements use table variables to define the amplitude and phase tables, whereas the 
standard shaped_pulse, decshaped_pulse, and dec2shaped_pulse 
statements create and use these tables on the fly. Both types of AP bus waveshaping 
statements use real-time variables v12 and v13 to control shape execution. Table 32 
summarizes the statements described in this section.

MERCURYplus/-Vx systems support the shaped_pulse and decshaped_pulse. 
However, shapes are created using DANTE style pulses, not using a waveform generator. 
Furthermore, the apshaped_pulse is supported. However, only power level is 
controlled, not phase, which makes gauss.RF the only usable shape.

Controlling Attenuation

On systems with two attenuators, connect the two existing attenuators in series, leaving one 
channel without computer-controlled attenuation. This is often acceptable in homonuclear 
experiments, while in heteronuclear experiments and some homonuclear experiments it 
may be desirable to insert a simple fixed attenuator in-line in the channel that isn’t being 
shaped. 

If you take this approach, the tpwr and dpwr parameters (or, equivalently, the 
power(...,OBSch) and power(...,DECch) pulse sequence statements) control the two 
attenuators. The simplest approach is to use one of the two attenuators to control the shape, 

Table 32. Statements for Pulse Shaping Through the AP Bus

apshaped_decpulse* First decoupler pulse shaping via the AP bus
apshaped_dec2pulse* Second decoupler pulse shaping via the AP bus
apshaped_pulse* Observe transmitter pulse shaping via the AP bus
decshaped_pulse* Perform shaped pulse on first decoupler
dec2shaped_pulse* Perform shaped pulse on second decoupler
shaped_pulse* Perform shaped pulse on observe transmitter
* apshaped_decpulse(shape,pulse_width,pulse_phase,

power_table,phase_table,RG1,RG2)
apshaped_dec2pulse(shape,pulse_width,pulse_phase,

power_table,phase_table,RG1,RG2)
apshaped_pulse(shape,pulse_width,pulse_phase,power_table,

phase_table,RG1,RG2)
decshaped_pulse(shape,width,phase,RG1,RG2)
dec2shaped_pulse(shape,width,phase,RG1,RG2)
dec3shaped_pulse(shape,width,phase,RG1,RG2)
shaped_pulse(shape,width,phase,RG1,RG2)



2.12 Internal Hardware Delays

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 119

while using the second to set the overall level of the pulse. Assuming that there are also 
hard pulses in the pulse sequence, you’ll also need to remember to write your pulse 
sequence to return both attenuators to values suitable for the hard pulse.

2.12 Internal Hardware Delays
• “Delays from Changing Attenuation,” page 119

• “Delays from Changing Status,” page 120

• “Waveform Generator High-Speed Line Trigger,” page 121

Many pulse sequence statements result in “hidden” delays. These delays are not intrinsic to 
pulse sequence generation (PSG) software but are rather internal to the hardware. 

Each AP bus instruction is considered a FIFO event and incurs the following delay, which 
is the time it takes to set the hardware on the AP bus:

• On UNITYINOVA, 0.5-μs delay (except PFG, which has a 1.0-μs delay).

• On MERCURYplus/-Vx, 1.2 μs delay.

Delays from Changing Attenuation

The pulse sequence statement power, which is used to change the level of attenuation 
produced by a 63-dB rf attenuator in the system, leads to the following values:

• On UNITYINOVA, 1 AP bus instruction, 0.5-μs concomitant internal delay (WFG start 
takes 1 AP bus instructions at 0.5 μs and extra board delay of 0.75 μs, total 1.25 μs).

• On MERCURYplus/-Vx, 4 AP bus instructions, 4.8-μs concomitant internal delay.

Table 33 lists all pulse sequence statements that lead to an internal delay and the magnitude 
of this delay. Similar information to the table is contained in the PSG header file 
apdelay.h, which resides in the VnmrJ system PSG directory.

Table 33. AP Bus Overhead Delays

Internal Delay (μs)

Pulse Sequence Statements UNITYINOVA MERCURYplus/-Vx Output Board 

acquire 1.0 pre
0.5 post

— —

xmtrphase
dcphase
dcplrphase
dcplr2phase
dcplr3phase

0.5 7.2 2.35

power, obspower
decpower
dec2power
dec3power

0.5 4.8 4.5

pwrf, obspwrf
decpwrf
dec2pwrf
dec3pwrf

0.5 — —

offset (S=standard
L=latching)

4.0 86.4 15.25 S
21.7 L



Chapter 2. Pulse Sequence Programming

120 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

On systems with the Output board, Table 33 indicates that the pulse sequence statement 
power incurs a 4.5 μs internal delay, not a 4.3 μs delay as previously stated. Of the 4.5 μs 
delay, 0.2 μs is to allow any high-speed line, (for example, the transmitter gate control line) 
that has been turned off in PSG at the end of the preceding delay to actually turn off in 
hardware before the AP bus instructions have been issued from the FIFO. Otherwise, any 
such high-speed line would not be turned off in hardware until the end of the series of AP 
bus instructions. This extra 0.2 μs delay can be avoided with the apovrride statement.

Delays from Changing Status

Other delays can be incurred with the status and setstatus statements. The first 
occurrence of the status statement always incurs the full delay. On subsequent 
occurrences of status, the delay depends on values of the parameters dmm, dmm2, and 
dmm3. There are three parts that contribute to this delay:

• Modulation mode – If the modulation mode changes, 1.0 μs is added to the delay, and 
the first occurrence of 's' in the dm string (or dm2 or dm3) adds an extra 1.0 μs. On 
systems with apinterface=3, if and only if the modulation mode changes. Note 
that the waveform generator (mode 'p') needs CW modulation (mode 'c').

shaped_pulse
decshaped_pulse
dec2shaped_pulse
dec3shaped_pulse

1.25 pre
0.5 post

— 15.45

simshaped_pulse * — 30.50

sim3shaped_pulse ** — 45.55

obsprgon
decprgon
dec2prgon
dec3prgon

1.25 — 10.95

obsprgoff
decprgoff
dec2prgoff
dec3prgoff

0.5 — 4.5

spinlock
decspinlock
dec2spinlock
dec3spinlock

1.25 pre
0.5 post

— 15.45

rgradient and
vgradient with
gradtype='p'

4.0 — Not an option

rgradient and
vgradient with
gradtype='w'

0.5 — Not an option

zgradpulse
gradtype='p'

delay 
+ 8.0

— Not an option

zgradpulse
gradtype='w'

delay 
+ 1.0

— Not an option

* simshaped_pulse: 1.75 pre, 0.5 post
** sim3shaped_pulse: 2.25 pre, 0.5 post

Table 33. AP Bus Overhead Delays

Internal Delay (μs)

Pulse Sequence Statements UNITYINOVA MERCURYplus/-Vx Output Board 



2.12 Internal Hardware Delays

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 121

• Waveform generator – Starting a waveform generator adds 1.25 μs. Stopping a 
waveform generator adds 1 μs on UNITYINOVA and 4.3 μsec on other systems. 
(The modulation mode is to or from 'p'.) The waveform generator also has an offset 
or propagation delay, which is discussed on page 121. 

• Modulation frequency – If the modulation frequency changes, 1 μs is added on 
UNITYINOVA and 6.45 μsec on other systems. Note that for the UNITYINOVA, this is 
different for a shaped pulse. The modulation frequency can change if the statement 
setstatus is called with a modulation frequency different from the parameter 
corresponding to the transmitter set, or if the modulation mode changes to or from 'g' 
and 'r'. If the change is to 'g' and 'r', the modulation frequency is internally 
scaled, changing the frequency. 

Finally, these delays are added up for each channel, and this becomes the delay incurred for 
status or setstatus. For example, if dm='nnnss', dmm='cpfwp', and 
dm2='y', then dmm2='cccpc', Table 34 summarizes the internal intervals, assuming 
status(A) is the initial state. 

To keep the status timing constant, use the statusdelay statement. This statement 
allows the user to specify a defined period of time for the status statement to execute. 
For example, if statusdelay('B',2.0e-5) is used, as long as the time it takes to 
execute status for state B is less than 20 microseconds, the statement will always take 
20 microseconds. If the time to execute state B is greater than 20 microseconds, the 
statement still executes, but a warning message is generated.

Waveform Generator High-Speed Line Trigger

Along with the AP bus overhead delay, the waveform generator has an offset delay as a 
result of high-speed line (WFG) propagation delay. This shifts the rf pattern beyond the AP 
bus delay. Figure 3 illustrates the delay. The time overhead for the AP bus is 1.25 μs (this 
includes a 0.5-μs AP bus delay and a 0.75-μs board delay). The offset delay is an additional 
0.45 μs, for a total delay of 1.70 μs. The WFG also has a post pulse overhead delay. 

Note that if the shaped pulse is followed by a delay, say d3, then the end of the delay is at 
1.7+pshape+0.5+d3. To obtain the proper offset delay, available in apdelay.h. are 
macros WFG_OFFSET_DELAY, WFG2_OFFSET_DELAY, and WFG3_OFFSET_DELAY.

At the end of data collection, 3.5 ms is inserted to give the acquisition computer time to 
check lock, temperature, spin, etc. The system has a 0.004-ms delay at the start of a 
transient to initialize the data collection hardware, and a 2.006-ms delay at the end of a 
transient for data collection error detection. For systems with gradients, the end of scan 
delays do not include the times to turn off gradients, which is done at the end of every scan.

Table 34. Example of AP Bus Overhead Delays for status Statement

Statement Delay (μs)
Delay (μs)
apinterface=3 

Reason

status(B) 0 0 dmm from 'c' to 'p', WFG not started 
because dm='n' in B

status(C) 1.0 4.3 dmm from 'p' to 'f', no WFG to stop

status(D) 1.0+1.25 4.3+10.75 dmm from 'f' to 'w', synchronize, 
dmm2 from 'c' to 'p'

status(E) 1.75+0.5 15.05+4.3 dmm from 'w' to 'p' (='c') and 
start WFG, dmm2 from 'p' to 'c', only 
stop WFG



Chapter 2. Pulse Sequence Programming

122 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

2.13 Indirect Detection on Fixed-Frequency Channel
Indirect detection experiments, in which the observe nucleus is 1H and the decouple 
nucleus is a low-frequency nucleus, usually 13C, are easily done on systems with two 
broadband channels. Systems with a fixed-frequency decoupler depend on the type of 
system.

Fixed-Frequency Decoupler

A UNITYINOVA system with the label Type of RF set to U+ H1 Only in the CONFIG window, 
or any MERCURYplus/-Vx broadband system, can use the same parameter sets and pulse 
sequences as a dual-broadband system (e.g., HMQC) as long as the pulse statements in a 
sequence do not use the channel identifiers TODEV, DODEV, DO2DEV, and DO3DEV. This 
restriction is negligible because statements obspower, decpower, dec2power, and 
dec3power are available that specify an rf channel without requiring the these channel 
identifiers. Each of these statements require only the power level and can be remapped to 
different rf channels. The rfchannel parameter enables remapping rf channel selection. 
Refer to the description of rfchannel in the Command and Parameter Reference for 
details.

MERCURYplus/-Vx support automatic channel swapping as well.

2.14 Multidimensional NMR
• “Hypercomplex 2D,” page 123

• “Real Mode Phased 2D: TPPI,” page 124

A standard feature of all pulse sequences is the ability to array acquisition parameters and 
automatically acquire an array of the corresponding FIDs. For example, arraying the pw 
parameter and viewing the resulting array of spectra is one way to estimate the 90-degree 
pulse width. This explicit array feature is automatic, whenever a parameter is set to multiple 
values, such as pw=5,6,7,8,9,10.

A separate type of arrayed variable is used for 2D, 3D, and 4D experiments. The 
distinguishing feature of this type of data set is that the arrayed element has a uniform, 
automatically calculated increment between values. The ni parameter is set to the number 

 1.25 μs + 0.45 μs

RF 

XMTR

WFG

HS line

HS line

1.25 μs

0.45 μs

RF out

Figure 3. Waveform Generator Offset Delay



2.14 Multidimensional NMR

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 123

of increments desired in the first indirect dimension of a multidimensional data set. The 
inverse of the parameter sw1 defines the increment in successive values of the implicitly 
arrayed delay d2. For example, if ni=8, an implicit d2 array with values d2=0, 1/sw1, 
2/sw1, 3/sw1, 4/sw1, 5/sw1, 6/sw1, 7/sw1 is generated. Eight FIDs, each using the 
corresponding d2 delay, will be acquired. 

For the second indirect dimension, the analogous parameters are ni2, sw2, and d3. For 
the third indirect dimension, the analogous parameters are ni3, sw3, and d4.

When creating a new 2D pulse sequence in standard form, the pulse sequence should 
contain a d2 delay. To create the appropriate parameters, use the par2d macro. It is 
usually convenient to call par2d from within the macro used to set up the pulse sequence 
and to set the parameters to appropriate values with the set2d macro. Examples of 2D 
pulse sequences are given in the standard software in /vnmr/psglib and /vnmr/
maclib. 

When creating a new 3D pulse sequence in standard form, the pulse sequence should 
contain the delays d2 and d3, and parameters can be created with the par3d macro. 
Similarly, a 4D pulse sequence should contain the delays d2, d3, and d4, with parameters 
created by the par4d macro. 

Each indirect dimension of data can be acquired in a phase-sensitive mode. Examples of 
this include the hypercomplex method and the TPPI method (see the chapter on 
multidimensional NMR in NMR Spectroscopy, User Guide manual for more details).

For each indirect dimension, a phase parameter selects the type of acquisition. For the first 
indirect dimension, the corresponding phase parameter is phase. For the second indirect 
dimension, the parameter is phase2. For the third indirect dimension, the parameter is 
phase3. The total number of FIDs in a given multidimensional data set is stored in the 
parameter arraydim. For a 2D experiment, arraydim is equal to ni*(number of 
elements of the phase parameter).

When programming the multidimensional pulse sequences, it is convenient to have access 
to the current increment in a particular indirect dimension, and to know what the phase 
element is. Table 35 lists these PSG variables (see Table 19 for the full list of Vnmr 
parameters and their corresponding PSG variable names and types).

Some pulse sequences, such as heteronuclear 2D-J (HET2DJ), can be used “as is” for 
phase-sensitive 2D NMR; however, the hypercomplex and TPPI experiments require more 
information compared to “normal” pulse sequences, see below.

Hypercomplex 2D

Hypercomplex 2D (States, Haberkorn, Ruben) requires only that a pulse sequence be run 
using an arrayed parameter that generates the two required experiments. While this can be 
any parameter, for consistency we recommend the use of a parameter phase, which can 
be set by the user to 0 (to give a non-phase-sensitive experiment) or to an array (as in 
phase=1,2) to generate the two desired experiments. The parameter phase is 
automatically made available to a pulse sequence as the integer phase1. Typical code as 
part of the pulse sequence might look like this:
pulsesequence()

{

if (phase1==0)

{ /* Phase calculation for */

... /* non-phase-sensitive experiment */

}

else if (phase1==1)



Chapter 2. Pulse Sequence Programming

124 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

{ /* Phase calculation for */

... /* first of two arrays */

}

else if (phase1==2)

{ /* Phase calculation for */

... /* second of two arrays */

}

}

This code usually can be condensed because the phases are obviously related in the three 
experiments, and three separate phase calculations are not needed. One possibility is to 
write down the phase cycle for the entire experiment, interspersing the “real” and 
“imaginary” experiments, then generate an “effective transient counter” as follows:

Now a single phase cycle can be derived from v10 instead of from ct. If phase1=0, each 
element of this phase cycle is selected. If phase1=1, only the odd elements are selected 
(the first, third, fifth, etc. transients for which ct=0,2,4,...). If phase1=2, the even 
elements only are selected (ct odd).

Real Mode Phased 2D: TPPI

For TPPI experiments, the increment index is typically needed at some point in the phase 
calculation. The simplest way to obtain the index is to use the built-in real-time constant 
id2. This can be used in a construction such as
if (phase1==3)

Table 35. Multidimensional PSG Variables

PSG Variable PSG type VnmrJ parameter Description

d2_index int 0 to (ni-1) Current index of the d2 array

id2 real-time 0 to (ni-1) Current real-time index of the d2 array

inc2D double 1.0/sw1 Dwell time for first indirect dimension

phase1 int phase Acquisition mode for first indirect dimension

d3_index int 0 to (ni2-1) Current index of the d3 array

id3 real-time 0 to (ni2-1) Current real-time index of the d3 array

inc3D double 1.0/sw2 Dwell time for second indirect dimension

phase2 int phase2 Acquisition mode for second indirect dimension

d4_index int 0 to (ni3-1) Current index of the d4 array

id4 real-time 0 to (ni3-1) Current real-time index of the d4 array

inc4D double 1.0/sw3 Dwell time for third indirect dimension

phase3 int phase3 Acquisition mode for third indirect dimension

ix int 1 to arraydim Current element of an arrayed experiment

if (phase==0) assign(ct,v10); /* v10=01234... */
else
{if (phase==1) dbl(ct,v10); /* v10=02468... */

else
incr(v10); /* v10=13579... */

}



2.15 Gradient Control for PFG and Imaging

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 125

add(v11,id2,v11);

which adds the increment value (which starts at 0) to the phase contained in v11.

2.15 Gradient Control for PFG and Imaging
• “Setting the Gradient Current Amplifier Level,” page 126

• “Generating a Gradient Pulse,” page 127

• “Controlling Lock Field Correction Circuitry,” page 127

• “Programming Microimaging Pulse Sequences,” page 127

Varian, Inc. NMR systems support gradient control for applications using the optional 
pulsed field gradient (PFG) and imaging. The configuration parameter gradtype, set by 
the config program, specifies the presence of gradient hardware and its capabilities. The 
available gradient control statements are listed in Table 36.

MERCURYplus/-Vx systems use rgradient and vagradient, and the lk_sample 
and lk_hold statements.

Table 36. Gradient Control Statements
lk_hold() Set lock field correction circuitry to hold
lk_sample() Set lock field correction circuitry to sample
obl_gradient* Execute an oblique gradient
oblique_gradient* Execute an oblique gradient
obl_shapedgradient* Execute a shaped oblique gradient
oblique_shapedgradient* Execute a shaped oblique gradient
pe_gradient* Oblique gradient with PE in 1 axis
pe2_gradient* Oblique gradient with PE in 2 axes
pe3_gradient* Oblique gradient with PE in 3 axes
pe_shapedgradient* Oblique shaped gradient with PE in 1 axis
pe2_shapedgradient* Oblique shaped gradient with PE in 2 axes
pe3_shapedgradient* Oblique shaped gradient with PE in 3 axes
phase_encode_gradient* Oblique gradient with PE in 1 axis
phase_encode3_gradient* Oblique gradient with PE in 3 axes
phase_encode_shapedgradient* Oblique shaped gradient with PE in 1 axis
phase_encode3_shapedgradient
*

Oblique shaped gradient with PE in 3 axes

rgradient(channel,value) Set gradient to specified level
shapedgradient* Shaped gradient pulse
shaped2Dgradient* Arrayed shaped gradient function
shapedincgradient* Dynamic variable gradient function
shapedvgradient* Dynamic variable shaped gradient function
vgradient* Set gradient to level determined by real-time math
vagradient* Variable angle gradient
vagradpulse* Pulse controlled variable angle gradient
vashapedgradient* Variable angle shaped gradient
vashapedgradpulse* Variable angle pulse controlled shaped gradient
zgradpulse(value,delay) Create a gradient pulse on the z channel
zero_all_gradients* Set all gradients to zero
* For the argument list, refer to the statement reference in Chapter 3



Chapter 2. Pulse Sequence Programming

126 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Table 37 lists delays for shaped gradient statements on systems with gradient waveform 
generators (gradtype='w' or gradtype='q'). The times for the three-axis gradient 

statements (obl_gradient, oblique_gradient, pe2_gradient, 
phase_encode3_gradient, etc.) with gradtype='w' or gradtype='q' are the 
overhead times for setting all three gradients. The gradients are always set in sequential 
'x', 'y', 'z' order.

Some gradient statements use DAC values to set the gradient levels and others use values 
in gauss/cm. The lower level gradient statements (gradient, rgradient, zgradpulse, 
shapedgradient, etc.) use DAC values, and the obliquing and variable-angle gradient 
statements use gauss/cm. The gradient statements associated with DAC values are used in 
single-axis PFG pulse sequences and microimaging pulse sequences, while the gradient 
statements associated with gauss/cm are used in imaging pulse sequences and triple-axis 
PFG pulse sequences.

Setting the Gradient Current Amplifier Level

To set the gradient current amplifier level, use rgradient(channel,value), where 
channel is 'X', 'x', 'Y', 'y', 'Z', or 'z' (only 'Z' or 'z' is supported on 
MERCURYplus/-Vx) and value is a real number for the amplifier level 
(e.g, rgradient('z',1327.0)). For the Performa I PFG module, value must be 
from 2048 to 2047; for Performa II, III, or IV, value must be from –32768.0 to 32767.0.

To set the gradient current amplifier level but determine the value instead by real-time 
math, use vgradient(channel,intercept,slope,rtval), where channel 
is used the same as in rgradient, and amplifier level is determined by intercept + 
slope * rtval (e.g., vgradient('z',–5000.0,2500.0,v10). This statement 
not available on the Performa I PFG module.

Table 37. Delays for Obliquing and Shaped Gradient Statements

Pulse Sequence Statements Delay (μs)

shapedgradient 0.5

shapedvgradient 1.5

shapedincgradient 1.5

incgradient (gradtype='p', gradtype='q') 4.0

incgradient (gradtype='w') 0.5

obl_gradient, oblique_gradient, pe_gradient, 
phase_encode_gradient (gradtype='p', gradtype='q')

12.0

obl_gradient, oblique_gradient, pe_gradient, 
phase_encode_gradient (gradtype='w')

1.5

pe2_gradient, phase_encode3_gradient (gradtype='p', 
gradtype='q')

12.0

pe2_gradient, phase_encode3_gradient (gradtype='w') 1.5

obl_shapedgradient, oblique_shapedgradient 1.5

pe_shapedgradient, phase_encode_shapedgradient 4.5

pe2_shapedgradient, pe3_shapedgradient, 
phase_encode3_shapedgradient

4.5



2.16 Programming the Performa XYZ PFG Module

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 127

Generating a Gradient Pulse

To create a gradient pulse on the z channel with given amplitude and duration, use 
zgradpulse(value,delay), where value is used the same as in rgradient and 
delay is any delay parameter (e.g., zgradpulse(1234.0,d2)).

shapedgradient(pattern,width,amp,channel,loops,wait) generates a 
shaped gradient, where pattern is a file in shapelib, width is the pulse length, amp 
is a value that scales the amplitude of the pulse, channel is the same as used with 
rgradient, loops is the number of times (1 to 255) to loop the waveform, and wait 
is WAIT or NOWAIT for whether or not a delay is inserted to wait until the gradient is 
completed before executing the next statement. 

Example:

shapedvgradient("hsine",d3,amplitude,igpe,
v5,gphase,v1,NOWAIT,1);

This statement is only available on the Perform II, III, or IV PFG module.

Controlling Lock Field Correction Circuitry

On Varian, Inc. NMR systems, lk_sample() and lk_hold() are provided to control 
the lock field correction circuitry. If during the course of a pulse sequence the lock signal 
is disturbed—for instance, with a gradient pulse or pulses at the 2H frequency—the lock 
circuitry might not be able to hold on to the lock. When this is the case, the correction added 
in the feedback loop that holds the lock can be held constant by calling lk_hold(). At 
some time after the disturbance has passed (how long depends on the type of disturbance), 
the statement lk_sample() should be called to allow the circuitry to correct for 
disturbances external to the experiment.

Programming Microimaging Pulse Sequences

The procedures for programming microimaging pulse sequences are the same as those used 
in the programming of spectroscopy sequences, with the exception that additional pulse 
sequence statements have been added to define the amplitude and timing of the gradient 
pulses and the shaped rf pulses. For example, in the statement 
rgradient(name,value) to set a gradient, the argument name is either X, Y, or Z (or 
alternatively with the connection through the parameter orient, gread, gphase, or 
gslice) and value is the desired gradient strength in DAC units at the time the 
statement is to be implemented.

The basic imaging sequences included with the VnmrJ software are sequences for which 
the image data can be acquired, processed, and displayed with essentially the same software 
tools that are used with 2D spectra. These sequences have been written in a form that 
provides a great deal of flexibility in adapting them to the different modes of imaging and 
includes the capabilities of multislice and multiecho imaging. Many of the spectroscopic 
preparation pulse sequences can be linked to the standard imaging sequences to limit the 
spin population type that is imaged, to provide greater contrast in the image, or to remove 
artifacts from the image. 

2.16 Programming the Performa XYZ PFG Module 
• “Creating Gradient Tables,” page 128

• “Pulse Sequence Programming,” page 128



Chapter 2. Pulse Sequence Programming

128 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

The Performa XYZ pulsed field gradient (PFG) module adds new capabilities to high-
resolution liquids experiments on Varian spectrometers. The module applies gradients in B0 
along three distinct axes at different times during the course of the pulse sequence. These 
gradients can perform many functions, including solvent suppression and coherence 
pathway selection. This section describes pulse sequence programming of the module.

Creating Gradient Tables

In order for the software to have the necessary information on all three axes to convert 
between gauss/cm and DAC values, the XYZ PFG probe and amplifier combination can be 
calibrated using the creategtable macro and a gradient table made in 
/vnmr/imaging/gradtables. 

The macro first prompts the user to see if the gradient axes are set to the same gradient 
strength (horizontal-bore imaging system) or if the axes have different gradient strengths 
(vertical-bore PFG gradients). Next, the user is prompted for a name for the gradient coil, 
and that name is then used in the gcoil and sysgcoil parameters in order to correctly 
translate between DAC and gauss/cm values. Finally, the macro prompts the user for the 
boresize of the magnet (51 mm), the gradient rise time (40 μs), and the maximum gradient 
strength obtainable for each axis. Note that the gradient strengths are not equal and the 
amplifier does not limit the combined output. 

If the parameter gcoil does not exist in a parameter set and must be created, set the 
protection bit that causes the macro _gcoil to be executed must be set when the value for 
gcoil is changed. Set the protection bit using either of these procedures:

• Use the macro updtgcoil, which will create the gcoil parameter if it does not 
exist.

• Create gcoil with the following commands:
create('gcoil','string')
setprotect('gcoil','set',9) 

In an experiment that uses gradient coils, the sysgcoil parameter can be set to the coil 
name specified with the creategtable macro and then the updtgcoil macro can be 
run to update the local gcoil parameter from the global sysgcoil parameter. When the 
local gcoil parameter is updated, the local gxmax, gymax, gzmax, trise and 
boresize parameters are also updated. Refer to the Command and Parameter Reference 
and the VnmrJ Imaging, User Guide for additional information about creategtable.

Pulse Sequence Programming 

Table 38 lists the pulse sequence statements related to the XYZ PFG module.The system 
can be programmed by using the statements rgradient(channel,value) and 
zgradpulse(value,delay). Pulse sequences g2pul.c and profile.c in 
/vnmr/psglib are examples of using the gradaxis parameter and the rgradient 
statement.

To produce a gradient at any angle by the combination of two or more gradients, the 
vagradpulse(gradlvl,gradtime,theta,phi) statement can be used, and to 
produce three equal and simultaneous gradients, such that an effective gradient is produced 
at the magic angle, the magradpulse(gradlvl,gradtime) statement is available. 
The statements vagradpulse and magradpulse are structured so that the software 
does all of the calculations to produce the effective gradient desired. Both statements take 
the argument for the gradient level (gradlvl) in gauss/cm. This is distinctly different 



2.17 Imaging-Related Statements

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 129

from the rgradient and zgradpulse statements, which take the argument for the 
gradient level (value) in DAC.

With these statements, the gcoil and sysgcoil parameters are required for the software 
to calculate the correct DAC value for each channel in order to produce the requested 
effective gradient. After the gradients have each been calibrated and a gradtable has 
been constructed with the creategtable macro, as described above, then the 
sysgcoil parameter can be set to that coil name used. The updtgcoil macro can then 
update the local gcoil parameter from the global sysgcoil parameter. 

The vagradpulse statement uses the theta and phi angles to produce an effective 
gradient at any arbitrary angle. For example, using vagradpulse with theta=54.7 
and phi=0.0, an effective gradient is produced at the magic angle by the correct 
combination of the Z gradient and the Y gradient. Whereas, if theta=54.7 and phi=90, 
an effective gradient is produced at the magic angle by the correct combination of the Z 
gradient and the X gradient. Variations on the vagradpulse statement include the 
capability of shaping the gradient waveform with the vashapedgradient and the 
vashapedgradpulse statements. For more information about these statements, see 
their descriptions in Chapter 3. 

In addition, the magradpulse statement produces equal and simultaneous gradients on 
all three axes in order to produce an effective gradient at the magic angle. Variations on the 
magradpulse statement include the capability of shaping the gradient waveform with 
the mashapedgradient and the mashapedgradpulse statements. Again, for more 
information, refer to Chapter 3.

2.17 Imaging-Related Statements
• “Real-time Gradient Statements,” page 131

• “Oblique Gradient Statements,” page 131

• “Global List and Position Statements,” page 131

• “Looping Statements,” page 131

• “Waveform Initialization Statements,” page 132

The PSG statements related to imaging, summarized in Table 39, were developed to 
support oblique imaging using standard units (gauss/cm) to set the gradient values and to 

Table 38. Performa XYZ PFG Module Statements

magradient(gradlvl) Simultaneous gradient at the magic angle
magradpulse(gradlvl,gradtime) Simultaneous gradient pulse at the magic angle
mashapedgradient* Simultaneous shaped gradient at the magic angle
mashapedgradpulse* Simultaneous shaped gradient pulse at the magic angle
rgradient(axis,value) Set gradient to specified level
vagradpulse* Variable angle gradient pulse
vashapedgradient* Variable angle shaped gradient
vashapedgradpulse* Variable angle shaped gradient
zgradpulse(value,delay) Create a gradient pulse on the z channel
* mashapedgradient(pattern,gradlvl,gradtime,theta,phi,loops,wait)

mashapedgradpulse(pattern,gradlvl,gradtime,theta,phi)
vagradpulse(gradlvl,gradtime,theta,phi)
vashapedgradient(pattern,gradlvl,gradtime,theta,phi,loops,wait)
vashapedgradpulse(pattern,gradlvl,gradtime,theta,phi)



Chapter 2. Pulse Sequence Programming

130 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

support the use of real-time variables and loops when constructing imaging sequences. 
Using real-time variables and loops resulting in “compressed” acquisitions, instead of 

Table 39. Imaging-Related Statements

The sli and vsli statements are not supported on UNITYINOVA. UNITYINOVA support 
for interfacing to an external device is included in the AP User interface.

create_delay_list* Create table of delays
create_freq_list* Create table of frequencies
create_offset_list* Create table of frequency offsets
endmsloop*/endpeloop* Ends a loop started by the msloop/peloop
getarray* Retrieves all values of arrayed parameter
getorientation* Read image plane orientation
incgradient* Dynamic variable gradient function
init_rfpattern* Create rf pattern file
init_gradpattern* Create gradient pattern file
init_vscan* Initialize real-time variable for vscan 
obl_gradient* Execute an oblique gradient
oblique_gradient* Execute an oblique gradient
obl_shapedgradient* Execute a shaped oblique gradient
oblique_shapedgradient* Execute a shaped oblique gradient
msloop*/peloop* Provides a sequence-switchable loop
pe_gradient* Oblique gradient with PE in 1 axis
pe2_gradient* Oblique gradient with PE in 2 axes
pe3_gradient* Oblique gradient with PE in 3 axes
pe_shapedgradient* Oblique shaped gradient with PE in 1 axis
pe2_shapedgradient* Oblique shaped gradient with PE in 2 axes
pe3_shapedgradient* Oblique shaped gradient with PE in 3 axes
phase_encode_gradient* Oblique gradient with PE in 1 axis
phase_encode3_gradient* Oblique gradient with PE in 3 axes
phase_encode_shapedgradient* Oblique shaped gradient with PE in 1 axis
phase_encode3_shapedgradient* Oblique shaped gradient with PE in 3 axes
poffset*/position_offset* Set frequency based on position
poffset_list* Set frequency from position list
position_offset_list* Set frequency from position list
shapedgradient* Provide shaped gradient pulse
shaped2Dgradient* Arrayed shaped gradient function
shapedincgradient* Dynamic variable gradient function
shapedvgradient* Dynamic variable shaped gradient function
sli* Set SLI lines
vagradient* Variable angle gradient
vagradpulse* Pulse controlled variable angle gradient
vashapedgradient* Variable angle shaped gradient
vashapedgradpulse* Variable angle pulse controlled shaped gradient
vdelay* Select delay from table
vdelay_list* Get delay value from delay list with real-time index
vfreq* Select frequency from table
vgradient* Dynamic variable gradient
voffset* Select frequency offset from table
vscan* Dynamic variable scan function
vsli* Set SLI lines from real-time variable
zero_all_gradients* Sets all gradients to zero
* For the argument list, refer to the statement reference in Chapter 3



2.17 Imaging-Related Statements

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 131

standard acquisition arrays, reduces the number of acodes sets needed to run the 
experiment, cutting down significantly on the start-up time of the experiment and removing 
any inter-FID and intertransient overhead delays. This is not really a problem, because its 
small overhead delays and d0 parameter make the inter-FID and intertransient delays 
consistent, but may make a difference in some applications.All VnmrS system waveforms 
must have 4μsec resolution.

Real-time Gradient Statements

Real-time gradient statements consist of additions to the standard gradient and 
shapedgradient statements, which provide real-time variable control for the gradient 
amplitudes. Real-time statements include shapedvgradient, which provides real-time 
control on one axis and incgradient and shapedincgradient, which support 
real-time control over three axes. The vgradient statement also belongs to this group.

Oblique Gradient Statements

To support oblique imaging and the imaging interface, oblique gradient statements include 
oblique_gradient, phase_encode_gradient, pe_gradient and all of their 
variations. The inputs to these statements are amplitudes and phases. Amplitudes are 
expressed in gauss/cm and correspond to the read-out, phase-encode, and slice-select axis 
in the logical frame. Phase angles correspond to Euler angles psi, phi, and theta and 
describe the coordinate rotation applied to the input amplitudes. For more information on 
use, see the manual VnmrJ Imaging, User Guide. 

Global List and Position Statements

The global list statements support real-time selection of frequencies, offsets, and delays. 
Global lists are different from AP tables in that the lists are sent down to the acquisition 
console when the experiment starts up and remain accessible until the experiments 
completes. The lists can be arrayed parameters (with a protection bit set to prevent an 
arrayed acquisition) read into the pulse sequence using the getarray statement or 
standard C language arrays calculated within the pulsesequence. The lists are initialized 
with the statements create_freq_list, create_offset_list, and 
create_delay_list, and then selected and set using the vfreq, voffset, and 
vdelay_list statements, which use a real-time parameter as an index into the list.

The position statements set the rf frequency from a given position or an array of positions. 
These statements are poffset, poffset_list, position_offset, and 
position_offset_list. The position list statements use global lists, which initialize 
the list and select and set the position in a single statement.

When creating global list parameters, create them as acquisition parameters and set 
protection bit 8 (value 256) or else PSG tries to array them as standard arrayed acquisitions. 

Looping Statements

The looping statements msloop and peloop define multislice and phase encode loops 
when creating imaging pulse sequences. The looping statements also allow selection of a 
standard “arrayed” acquisition or a “compressed” acquisition using the seqcon parameter.



Chapter 2. Pulse Sequence Programming

132 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Waveform Initialization Statements

The waveform initialization statements init_rfpattern and init_gradpattern 
are available to all configurations and allow the user to calculate and create gradient and rf 
patterns in PSG. 

2.18 User-Customized Pulse Sequence Generation
The complete pulse sequence generation (PSG) source code is supplied in the VnmrJ 
system psg directory. This code enables users to create their own libpsglib.so PSG 
directory for link loading with the pulse sequence object file pulsesequence.o. 

The shell script setuserpsg in the system directory creates the directory vnmrsys/
psg for a user, if it does not already exist, and initializes this user PSG directory with the 
appropriate object libraries from the system PSG directory. The script setuserpsg 
should only have to be run once by each separate user. setuserpsg places the file 
libpsglib.a in the user’s psg directory.

The shell script psggen compiles files in the user PSG object directory and places the files 
in the user PSG directory. When executed, seqgen looks first for the user PSG library ~/
vnmrsys/psg in the user PSG directory, and then in the system library directory /
vnmr/lib.

Modifying a PSG source file and subsequently recompiling the user PSG object directory 
is done as follows:

1. Enter setuserpsg from a shell (done only once). 

Typical output from this command is as follows:

Creating user PSG directory...
Copying User PSG library from system directory...

2. Copy the desired PSG source file(s) from $vnmrsystem/psg to 
$vnmruser/psg.

3. Modify the PSG source files in the user PSG directory.

4. Enter psggen from a shell or from within Vnmr. 

Typical output from this command is as follows:

Creating additional source links...
Compiling PSG Library...
PSG Library Complete.



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 133

Chapter 3. Pulse Sequence Statement Reference

This chapter is a reference for the statements used in VnmrJ pulse sequence programming. 

 

Top A B C D E G H I L M O P R S T V W X Z

abort_message Send an error to VnmrJ and abort the PSG process 

acquire Explicitly acquire data 

add Add integer values 

apovrride Override internal software AP bus delay 

apshaped_decpulse First decoupler pulse shaping via AP bus 

apshaped_dec2pulse Second decoupler pulse shaping via AP bus 

apshaped_pulse Observe transmitter pulse shaping via AP bus 

assign Assign integer values 

blankingoff Unblank amplifier channels and turn amplifiers on 

blankingon Blank amplifier channels and turn amplifiers off 

blankoff Stop blanking observe or decoupler amplifier (obsolete) 

blankon Start blanking observe or decoupler amplifier (obsolete) 

clearapdatatable Zero all data in acquisition processor memory 

create_delay_list Create table of delays 

create_freq_list Create table of frequencies 

create_offset_list Create table of frequency offsets 

dbl Double an integer value 

dcplrphase Set small-angle phase of 1st decoupler, 

dcplr2phase Set small-angle phase of 2nd decoupler, 

dcplr3phase Set small-angle phase of 3rd decoupler, 

decblank Blank amplifier associated with first decoupler 

dec2blank Blank amplifier associated with second decoupler 

dec3blank Blank amplifier associated with third decoupler 

declvloff Return first decoupler back to “normal” power 

declvlon Turn on first decoupler to full power 

decoff Turn off first decoupler 

dec2off Turn off second decoupler 

dec3off Turn off third decoupler 

decoffset Change offset frequency of first decoupler 

dec2offset Change offset frequency of second decoupler 



Chapter 3. Pulse Sequence Statement Reference

134 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

dec3offset Change offset frequency of third decoupler 

dec4offset Change offset frequency of fourth decoupler 

decon Turn on first decoupler 

dec2on Turn on second decoupler 

dec3on Turn on third decoupler 

decphase Set quadrature phase of first decoupler 

dec2phase Set quadrature phase of second decoupler 

dec3phase Set quadrature phase of third decoupler 

dec4phase Set quadrature phase of fourth decoupler 

decpower Change first decoupler power level, linear amp. systems 

dec2power Change second decoupler power level, linear amp. systems 

dec3power Change third decoupler power level, linear amp. systems 

dec4power Change fourth decoupler power level, linear amp. systems 

decprgoff End programmable decoupling on first decoupler 

dec2prgoff End programmable decoupling on second decoupler 

dec3prgoff End programmable decoupling on third decoupler 

decprgon Start programmable decoupling on first decoupler 

dec2prgon Start programmable decoupling on second decoupler 

dec3prgon Start programmable decoupling on third decoupler 

decpulse Pulse first decoupler transmitter with amplifier gating 

decpwr Set first decoupler high-power level, class C amplifier 

decpwrf Set first decoupler fine power 

dec2pwrf Set second decoupler fine power 

dec3pwrf Set third decoupler fine power 

decr Decrement an integer value 

decrgpulse Pulse first decoupler with amplifier gating 

dec2rgpulse Pulse second decoupler with amplifier gating 

dec3rgpulse Pulse third decoupler with amplifier gating 

dec4rgpulse Pulse fourth decoupler with amplifier gating 

decshaped_pulse Perform shaped pulse on first decoupler 

dec2shaped_pulse Perform shaped pulse on second decoupler 

dec3shaped_pulse Perform shaped pulse on third decoupler 

decspinlock Set spin lock waveform control on first decoupler 

dec2spinlock Set spin lock waveform control on second decoupler 

dec3spinlock Set spin lock waveform control on third decoupler 

decstepsize Set step size for first decoupler 

dec2stepsize Set step size for second decoupler 

dec3stepsize Set step size for third decoupler 

decunblank Unblank amplifier associated with first decoupler 

dec2unblank Unblank amplifier associated with second decoupler 

dec3unblank Unblank amplifier associated with third decoupler 

delay Delay for a specified time 

dhpflag Switch decoupling from low-power to high-power 



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 135

divn Divide integer values 

dps_off Turn off graphical display of statements 

dps_on Turn on graphical display of statements 

dps_show Draw delay or pulses in a sequence for graphical display 

dps_skip Skip graphical display of next statement 

elsenz Execute succeeding statements if argument is nonzero 

endhardloop End hardware loop 

endif End execution started by ifzero or elsenz 

endloop End loop 

endmsloop End multislice loop 

endpeloop End phase-encode loop 

gate Device gating (obsolete) 

getarray Get arrayed parameter values 

getelem Retrieve an element from a table 

getorientation Read image plane orientation 

getstr Look up value of string parameter 

getval Look up value of numeric parameter 

G_Delay Generic delay routine 

G_Offset Frequency offset routine 

G_Power Fine power routine 

G_Pulse Generic pulse routine 

hdwshiminit Initialize next delay for hardware shimming 

hlv Find half the value of an integer 

hsdelay Delay specified time with possible homospoil pulse 

idecpulse Pulse first decoupler transmitter with IPA 

idecrgpulse Pulse first decoupler with amplifier gating and IPA 

idelay Delay for a specified time with IPA 

ifzero Execute succeeding statements if argument is zero 

incdelay Set real-time incremental delay 

incgradient Generate dynamic variable gradient pulse 

incr Increment an integer value 

init_rfpattern Create rf pattern file 

init_gradpattern Create gradient pattern file 

init_vscan Initialize real-time variable for vscan statement 

initdelay Initialize incremental delay 

initparms_sis Initialize parameters for spectroscopy imaging sequences 

initval Initialize a real-time variable to specified value 

iobspulse Pulse observe transmitter with IPA 

ioffset Change offset frequency with IPA 

ipulse Pulse observe transmitter with IPA 

ipwrf Change transmitter or decoupler fine power with IPA 

ipwrm Change transmitter or decoupler lin. mod. power with IPA 

irgpulse Pulse observe transmitter with IPA 



Chapter 3. Pulse Sequence Statement Reference

136 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

lk_hold Set lock correction circuitry to hold correction 

lk_sample Set lock correction circuitry to sample lock signal 

loadtable Load AP table elements from table text file 

loop Start loop 

loop_check Check that number of FIDs is consistent with number of slices, etc. 

magradient Simultaneous gradient at the magic angle 

magradpulse Gradient pulse at the magic angle 

mashapedgradient Simultaneous shaped gradient at the magic angle 

mashapedgradpulse Simultaneous shaped gradient pulse at the magic angle 

mod2 Find integer value modulo 2 

mod4 Find integer value modulo 4 

modn Find integer value modulo n 

msloop Multislice loop 

mult Multiply integer values 

obl_gradient Execute an oblique gradient 

oblique_gradient Execute an oblique gradient 

obl_shapedgradient Execute a shaped oblique gradient 

obl_shaped3gradient Execute a shaped oblique gradient

oblique_shapedgradient Execute a shaped oblique gradient 

obsblank Blank amplifier associated with observe transmitter 

obsoffset Change offset frequency of observe transmitter 

obspower Change observe transmitter power level, lin. amp. systems 

obsprgoff End programmable control of observe transmitter 

obsprgon Start programmable control of observe transmitter 

obspulse Pulse observe transmitter with amplifier gating 

obspwrf Set observe transmitter fine power 

obsstepsize Set step size for observe transmitter 

obsunblank Unblank amplifier associated with observe transmitter 

offset Change offset frequency of transmitter or decoupler 

pbox_ad180 Generate Hadamard encoded adiabatic 180 deg. shapes using Pbox 

pbox_mix Generate Hadamard encoded mixing shapes using Pbox. 

pboxHT_F1 Generate arbitrary shapes in F1 using Pbox 

pboxHT_F1e Generate Hadamard encoded excitation shapes in F1 using Pbox 

pboxHT_F1i Generate Hadamard encoded inversion shapes in F1 using Pbox 

pboxHT_F1s Generate Hadamard encoded sequential inversion shapes 

pboxHT_F1r Generate Hadamard encoded refocusing shapes in F1 using Pbox 

pe_gradient Oblique gradient with phase encode in one axis 

pe2_gradient Oblique gradient with phase encode in two axes 

pe3_gradient Oblique gradient with phase encode in three axes 

pe_shapedgradient Oblique shaped gradient with phase encode in one axis 

pe2_shapedgradient Oblique shaped gradient with phase encode in two axes 

pe3_shapedgradient Oblique shaped gradient with phase encode in three axes 

pe3_shaped3gradient Oblique shaped gradient with phase encode in three axis



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 137

peloop Phase-encode loop 

phase_encode_gradient Oblique gradient with phase encode in one axis 

phase_encode3_gradient Oblique gradient with phase encode in three axes 

phase_encode_shapedgra
dient

Oblique shaped gradient with PE in one axis 

phase_encode3_shapedgr
adient

Oblique shaped gradient with PE in three axes 

phaseshift Set phase-pulse technique, rf type A or B 

poffset (Inova system) Set frequency based on position 

poffset_list Set frequency from position list 

position_offset Set frequency based on position 

position_offset_list Set frequency from position list 

power Change power level 

psg_abort Abort the PSG process 

pulse Pulse observe transmitter with amplifier gating 

putCmd Send a command to VnmrJ form a pulse sequence 

pwrf Change transmitter or decoupler fine power 

pwrm Change transmitter or decoupler linear modulator power 

rcvroff Turn off receiver gate and amplifier blanking gate 

rcvron Turn on receiver gate and amplifier blanking gate 

readuserap Read input from user AP register 

recoff Turn off receiver gate only 

recon Turn on receiver gate only 

rgpulse Pulse observe transmitter with amplifier gating 

rgradient Set gradient to specified level 

rlpower Change power level 

rlpwrf Set transmitter or decoupler fine power (obsolete) 

rlpwrm Set transmitter or decoupler linear modulator power 

rotate Sets the standard oblique rotation angles

rot_angle Sets user defined oblique rotation angles

rotorperiod Obtain rotor period of MAS rotor 

rotorsync Gated pulse sequence delay from MAS rotor position 

setautoincrement Set autoincrement attribute for a table 

setdivnfactor Set divn-return attribute and divn-factor for AP table 

setreceiver Associate the receiver phase cycle with a table 

setstatus Set status of observe transmitter or decoupler transmitter 

settable Store an array of integers in a real-time AP table 

setuserap Set user AP register 

shapedpulse Perform shaped pulse on observe transmitter 

shaped_pulse Perform shaped pulse on observe transmitter 

shapedgradient Generate shaped gradient pulse 

shaped2Dgradient Generate arrayed shaped gradient pulse 

shapedincgradient Generate dynamic variable gradient pulse 



Chapter 3. Pulse Sequence Statement Reference

138 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

shapedvgradient Generate dynamic variable shaped gradient pulse 

simpulse Pulse observe and decouple channels simultaneously 

sim3pulse Pulse simultaneously on 2 or 3 rf channels 

sim4pulse Simultaneous pulse on four channels 

simshaped_pulse Perform simultaneous two-pulse shaped pulse 

sim3shaped_pulse Perform a simultaneous three-pulse shaped pulse 

sli Set SLI lines 

sp#off Turn off specified spare line (Inova #=1 to 5) 

sp#on Turn on specified spare line (Inova #=1 to 5)

spinlock Control spin lock on observe transmitter 

starthardloop Start hardware loop 

status Change status of decoupler and homospoil 

statusdelay Execute the status statement with a given delay time 

stepsize Set small-angle phase step size, 

sub Subtract integer values 

text_error Send a text error message to VnmrJ 

text_message Send a message to VnmrJ 

tsadd Add an integer to AP table elements 

tsdiv Divide an integer into AP table elements 

tsmult Multiply an integer with AP table elements 

tssub Subtract an integer from AP table elements 

ttadd Add a table to a second table 

ttdiv Divide a table into a second table 

ttmult Multiply a table by a second table 

ttsub Subtract a table from a second table 

txphase Set quadrature phase of observe transmitter 

vagradient Variable angle gradient 

vagradpulse Variable angle gradient pulse 

var_active Checks if the parameter is being used 

vashapedgradient Variable angle shaped gradient 

vashapedgradpulse Variable angle shaped gradient pulse 

vdelay Set delay with fixed timebase and real-time count 

vdelay_list Get delay value from delay list with real-time index 

vfreq Select frequency from table 

vgradient Set gradient to a level determined by real-time math 

voffset Select frequency offset from table 

vscan Provide dynamic variable scan 

vsetuserap Set user AP register using real-time variable 

vsli Set SLI lines from real-time variable 

warn_message Send a warning message to VnmrJ 

xgate Gate pulse sequence from an external event 

xmtroff Turn off observe transmitter 

xmtron Turn on observe transmitter 



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 139

xmtrphase Set transmitter small-angle phase, rf type C, D 

zero_all_gradients Zero all gradients 

zgradpulse Create a gradient pulse on the z channel 



Chapter 3. Pulse Sequence Statement Reference

140 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

A

abort_message Send an error to VnmrJ and abort the PSG process

Syntax: abort_message(char *format, ...) 

Description: abort_message sends the specified error message to VnmrJ and then aborts 
the PSG process.

acquire Explicitly acquire data 

Applicability: UNITYINOVA 

For UNITYINOVA systems, there are small overhead delays before and after the 
acquire. The pre-acquire delay takes into account setting the receiver phase with 
oph and enabling data overflow detection. The post-acquire delay is for 
disabling data overflow detection. When using acquire statements within a 
hardware loop these overhead delays and the functions associated with them are 
placed outside the hardware loop. When using multiple acquire statements 
outside a hardware loop in a pulse sequence setting, the phase and enabling data 
overflow detection is done before the first acquire statement. Disabling 
overflow detection is done after the last acquire, so there is no overhead time 
between acquire statements.

If an acquire statement occurs outside a hardware loop, the number of 
complex points to be acquired must be a multiple of 2 on systems with a Digital 
Acquisition Controller board, an Acquisition Controller board, or a Pulse 
Sequence Controller board, or must be a multiple of 32 on systems with a 
Output board (see page 140 for descriptions of each board).

Inside a hardware loop, systems with a Digital Acquisition Controller board or 
a Pulse Sequence Controller board can accept a maximum of 2048 complex 
points, systems with an Acquisition Controller board can accept a maximum of 
1024 complex points, and systems with an Output board can accept a maximum 
of 63 complex points. 

The following list identifies the acquisition controller boards used on Varian 
NMR spectrometer systems:

Top A B C D E G H I L M O P R S T V W X Z

abort_message Send an error to VnmrJ and abort the PSG process 

acquire Explicitly acquire data 

add Add integer values 

apovrride Override internal software AP bus delay 

apshaped_decpulse First decoupler pulse shaping via AP bus 

apshaped_dec2pulse Second decoupler pulse shaping via AP bus 

apshaped_pulse Observe transmitter pulse shaping via AP bus 

assign Assign integer values 



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 141

• Data Acquisition Controller boards, Part No. 01-902010-00. Started 
shipping in mid-1995 with the introduction of the UNITYINOVA system. 

• Pulse Sequence Controller boards, Part No. 00-992560-00. Started 
shipping in early 1993 with the introduction of the UNITYplus system. 

• Acquisition Controller boards, Part No. 00-969204-00 or 00-990640-00. 
Started shipping 00-969204-00 in late 1988 as a replacement for the Output 
boards. Part No. 00-990640-00 replaced 00-969204-00 in mid-1990.

• Output boards, Part No. 00-953520-0#, where # is an integer. Shipped with 
systems prior to 1988. 

Examples: acquire(np,1.0/sw); 

add Add integer values

Syntax: add(vi,vj,vk) 
codeint vi; /* real-time variable vi for addend */ 
codeint vj; /* real-time variable vj for addend */ 
codeint vk; /* real-time variable vk for sum */ 

Description: Sets vk equal to the sum of integer values of vi and vj.

Arguments: vi, vj, and vk are real-time variables (v1 to v14, oph, etc.).

Examples: add(v1,v2,v3); 

apovrride Override internal software AP bus delay 

Applicability: UNITYINOVA systems

Applicability: Systems with the 63-step Output board (Part No. 00-953520-0#, where # is an 
integer). This board shipped prior to 1988.

Syntax: apovrride() 

Description: Systems with the 63-step Output board can use this statement to prevent a delay 
of 0.2 μs from being inserted prior to the next (and only the next) occurrence of 
one of the AP (analog port) bus statements dcplrphase, dcplr2phase, 
dcplr3phase, decprgoff, dec2prgoff, dec3prgoff, decprgon, 
dec2prgon, dec3prgon, decshaped_pulse, dec2shaped_pulse, 
dec3shaped_pulse, decspinlock, dec2spinlock, 
dec3spinlock, obsprgoff, obsprgon, power, rlpower, 
shaped_pulse, simshaped_pulse, sim3shaped_pulse, 
spinlock, and xmtrphase.

Related: endhardloop End hardware loop
starthardloop Start hardware loop 

Related: assign Assign integer values
dbl Double an integer value
decr Decrement an integer value
divn Divide integer values 
hlv Half the value of an integer
incr Increment an integer value
mod2 Find integer value modulo 2
mod4 Find integer value modulo 4
modn Find integer value modulo n 
mult Multiply integer values 
sub Subtract integer values



Chapter 3. Pulse Sequence Statement Reference

142 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

apshaped_decpulseFirst decoupler pulse shaping via AP bus 

Applicability: UNITYINOVA systems and MERCURYplus/-Vx. 
MERCURYplus/-Vx only supports shapes with no phase shifts.

Syntax: apshaped_decpulse(shape,pulse_width,pulse_phase,
power_table,phase_table,RG1,RG2)
char *shape; /* name of .RF shape file */
double pulse_width; /* pulse width in sec */
codeint pulse_phase; /* real-time phase of pulse */
codeint power_table; /* table variable to store power */
codeint phase_table; /* table variable to store phase */
double RG1; /* gating time before pulse in sec */
double RG2; /* gating time after pulse in sec */

Description: Provides first decoupler fine-grained “waveform generator-type” pulse shaping 
through the AP bus. A pulse shape file for the waveform generator (/vnmr/
shapelib/*.RF) is used. This statement overrides any existing small-angle 
phase shifting (i.e., a preceding dcplrphase) and step size setting on the first 
decoupler channel. After apshaped_decpulse, first decoupler channel 
small-angle phase shifting is reset to zero and the step size is set to 0.25 degrees.

apshaped_decpulse capability is now integrated into the statement 
decshaped_pulse. The decshaped_pulse statement calls 
apshaped_decpulse without table variables if a waveform generator is not 
configured on the decoupler channel. decshaped_pulse creates AP tables 
on the fly for amplitude and phase, and does not use the AP tables allocated for 
users. It still uses real-time variables v12 and v13.

Arguments: shape is a shape file (without the .RF extension) in /vnmr/shapelib or 
in ~/vnmrsys/shapelib. The amplitude and phase fields of the shape file 
are used. The relative duration field (field 3) should be left at the default value 
of 1.0 or at least small numbers, and the gate field (field 4) is currently not used 
because the transmitter is switched on throughout the shape. On 
MERCURYplus/-Vx systems, no phase is changed or set.

pulse_width is the total pulse width, in seconds, excluding the amplifier 
gating delays around the pulse.

pulse_phase is the 90° phase shift of the pulse. For small-angle phase 
shifting, note that apshaped_decpulse sets the phase step size to the 
minimum on the one channel that is used.

power_table and phase_table are two table variables (t1 to t60) used 
as intermediate storage addresses for the amplitude and phase tables, 
respectively. If apshaped_decpulse is called more than once, different 
table names should be used in each call.

RG1 is the amplifier gating time, in seconds, before the pulse.

RG2 is the amplifier gating time, in seconds, after the pulse.

Examples: apshaped_decpulse("gauss",pw,v1,rof1,rof2); 

apshaped_dec2pulseSecond decoupler pulse shaping via AP bus 

Applicability: UNITYINOVA systems.

Related: apshaped_dec2pulse Second decoupler pulse shaping via the AP bus
apshaped_pulse Observe transmitter pulse shaping via the AP bus 
dcplrphase Set small-angle phase of first decoupler, 
decshaped_pulse Perform shaped pulse on first decoupler 



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 143

Syntax: apshaped_dec2pulse(shape,pulse_width,pulse_phase, 
power_table,phase_table,RG1,RG2) 

char *shape; /* name of .RF shape file */
double pulse_width; /* pulse width in sec */
codeint pulse_phase; /* real-time phase of pulse */
codeint power_table; /* table variable to store power */
codeint phase_table; /* table variable to store phase */
double RG1; /* gating time before pulse in sec */
double RG2; /* gating time after pulse in sec */

Description: Provides second decoupler fine-grained “waveform generator-type” pulse 
shaping through the AP bus. A pulse shape file for the waveform generator (/
vnmr/shapelib/*.RF) is used. Note that the real-time variables v12 and 
v13 are used by this statement. apshaped_dec2pulse overrides any 
existing small-angle phase shifting (i.e., a preceding dcplr2phase) and step 
size setting on the second decoupler channel. 

After apshaped_dec2pulse, second decoupler channel small-angle phase 
shifting is reset to zero and the step size is set to 0.25 degrees.

apshaped_dec2pulse capability is now integrated into the statement 
dec2shaped_pulse. The dec2shaped_pulse statement calls 
apshaped_dec2pulse without table variables if a waveform generator is 
not configured on the decoupler channel. dec2shaped_pulse creates AP 
tables on the fly for amplitude and phase, and does not use the AP tables 
allocated for users.It still uses real-time variables v12 and v13.

Arguments: shape is a shape file (without the .RF extension) in /vnmr/shapelib or 
in ~/vnmrsys/shapelib. The amplitude and phase fields of the shape file 
are used. The relative duration field (field 3) should be left at the default value 
of 1.0 or at least small numbers, and the gate field (field 4) is currently not used 
because the transmitter is switched on throughout the shape.

pulse_width is the total pulse width, in seconds, excluding the amplifier 
gating delays around the pulse.

pulse_phase is the 90° phase shift of the pulse. For small-angle phase 
shifting, note that apshaped_dec2pulse sets the phase step size to the 
minimum on the one channel that is used.

power_table and phase_table are two table variables (t1 to t60) used 
as intermediate storage addresses for the amplitude and phase tables, 
respectively. If apshaped_dec2pulse is called more than once, different 
table names should be used in each call.

RG1 is the amplifier gating time, in seconds, before the pulse.

RG2 is the amplifier gating time, in seconds, after the pulse.

Examples: apshaped_dec2pulse("gauss",pw,v1,t10,t11,rof1,rof2); 

apshaped_pulseObserve transmitter pulse shaping via AP bus 

Applicability: UNITYINOVA systems and MERCURYplus/-Vx. 
MERCURYplus/-Vx only supports shapes with no phase shifts.

Related: apshaped_decpulse First decoupler pulse shaping via the AP bus
apshaped_pulse Observe transmitter pulse shaping via the AP bus 
dcplr2phase Set small-angle phase of 2nd decoupler, 
dec2shaped_pulse Perform shaped pulse on second decoupler 



Chapter 3. Pulse Sequence Statement Reference

144 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Syntax: apshaped_pulse(shape,pulse_width,pulse_phase, 
power_table,phase_table,RG1,RG2) 

char *shape; /* name of .RF shape file */
double pulse_width; /* pulse width in sec */
codeint pulse_phase; /* real-time phase of pulse */
codeint power_table; /* table variable to store power */
codeint phase_table; /* table variable to store phase */
double RG1; /* gating time before pulse in sec */
double RG2; /* gating time after pulse in sec */

Description: Provides observe transmitter fine-grained “waveform generator-type” pulse 
shaping through the AP bus. A pulse shape file for the waveform generator (/
vnmr/shapelib/*.RF) is used. This statement overrides any existing 
small-angle phase shifting (i.e., a preceding xmtrphase) and step size setting 
on the observe transmitter channel. After apshaped_pulse, observe 
transmitter channel small-angle phase shifting is reset to zero and the step size 
is set to 0.25 degrees.

apshaped_pulse capability is now integrated into the shaped_pulse 
statement. The shaped_pulse statement calls apshaped_pulse without 
table variables if a waveform generator is not configured on the decoupler 
channel. shaped_pulse creates AP tables on the fly for amplitude and phase, 
and does not use the AP tables allocated for users. It still uses real-time variables 
v12 and v13.

Arguments: pattern is a shape file (without the .RF extension) in /vnmr/shapelib 
or in ~/vnmrsys/shapelib. The amplitude and phase fields of the shape 
file are used. The relative duration field (field 3) should be left at the default 
value of 1.0 or at least small numbers, and the gate field (field 4) is currently not 
used because the transmitter is switched on throughout the shape. On 
MERCURYplus/-Vx systems, no phase is changed or set.

pulse_width is the total pulse width, in seconds, excluding amplifier gating 
delays around the pulse.

pulse_phase is the 90° phase shift of the pulse. For small-angle phase 
shifting, note that apshaped_pulse sets the phase step size to the minimum 
on the one channel that is used.

power_table and phase_table are two table variables (t1 to t60) used 
as intermediate storage addresses for the amplitude and phase tables, 
respectively. If apshaped_pulse is called more than once, different table 
names should be used in each call.

RG1 is the amplifier gating time, in seconds, before the pulse.

RG2 is the amplifier gating time, in seconds, after the pulse.

Examples: apshaped_pulse("gauss",pw,v1,rof1,rof2); 

assign Assign integer values

Syntax: assign(vi,vj) 
codeint vi; /* real-time variable for starting value */
codeint vj; /* real-time variable for assigned value */

Description: Sets vj equal to the integer value vi. 

Related: apshaped_decpulse First decoupler pulse shaping via the AP bus
apshaped_dec2pulse Second decoupler pulse shaping via the AP bus 
shaped_pulse Perform shaped pulse on observe transmitter 
xmtrphase Set small-angle phase of observe transmitter, rf C or D 



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 145

Arguments: vi and vj are real-time variables (v1 to v14, oph, etc.).

Examples: assign(v3,v2); 

B

blankingoff Unblank amplifier channels and turn amplifiers on

Applicability: MERCURYplus/-Vx systems only.

Syntax: blankingoff() 

Description: Unblanks, or enables, both amplifier channels. 

blankingon Blank amplifier channels and turn amplifiers off

Applicability: MERCURYplus/-Vx systems only.

Syntax: blankingon() 

Description: Blanks, or disables, both amplifier channels. 

blankoff Stop blanking observe or decoupler amplifier (obsolete)

Description: No longer in VnmrJ. The blankoff statement is replaced by the statements 
obsunblank, decunblank, dec2unblank, and dec3unblank. 

Related: add Add integer values
dbl Double an integer value
decr Decrement an integer value
divn Divide integer values 
hlv Half the value of an integer
incr Increment an integer value
mod2 Find integer value modulo 2
mod4 Find integer value modulo 4
modn Find integer value modulo n 
mult Multiply integer values 
sub Subtract integer values

Top A B C D E G H I L M O P R S T V W X Z

blankingoff Unblank amplifier channels and turn amplifiers on 

blankingon Blank amplifier channels and turn amplifiers off 

blankoff Stop blanking observe or decoupler amplifier (obsolete) 

blankon Start blanking observe or decoupler amplifier (obsolete) 

Related: blankingon Blank amplifier channels and turn amplifiers off

Related: blankingoff Unblank amplifier channels and turn amplifiers on

Related: decunblank Unblank amplifier associated with first decoupler
dec2unblank Unblank amplifier associated with second decoupler 



Chapter 3. Pulse Sequence Statement Reference

146 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

blankon Start blanking observe or decoupler amplifier (obsolete)

Description: No longer in VnmrJ. The blankon statement is replaced by the statements 
obsblank, decblank, dec2blank, and dec3blank. 

C

clearapdatatableZero all data in acquisition processor memory 

Applicability: UNITYINOVA systems.

Syntax: clearapdatatable() 

Description: Zeroes the acquired data table at times other than at the start of the execution of 
a pulse sequence, when the data table is automatically zeroed. This statement is 
generally not needed.

create_delay_listCreate table of delays

Applicability: UNITYINOVA systems.

Syntax: create_delay_list(list,nvals,list_number) 
double *list; /* pointer to list of delays */
int nvals; /* number of values in list */
int list_number; /* number 0–255 for each list */

Description: Stores global lists of delays that can be accessed with a real-time variable or 
table element for dynamic setting in pulse sequences. The lists need to be 
created in order starting from 0 using the list_number argument, or by 
setting the list_number argument to –1, which makes the software allocate 
and create the next free list and give the list number as a return value. Each list 
must have a unique and sequential list_number. There can be a maximum 
of 256 lists, depending on the size of the lists. The lists are stored in data 
memory and compete for space with the acquisition data for each array element. 

dec3unblank Unblank amplifier associated with third decoupler 
obsunblank Unblank amplifier associated with observe transmitter

Related: decblank Blank amplifier associated with first decoupler
dec2blank Blank amplifier associated with second decoupler 
dec3blank Blank amplifier associated with third decoupler 
obsblank Blank amplifier associated with observe transmitter

Top A B C D E G H I L M O P R S T V W X Z

clearapdatatable Zero all data in acquisition processor memory 

create_delay_list Create table of delays 

create_freq_list Create table of frequencies 

create_offset_list Create table of frequency offsets 



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 147

If a list is created, the return value is the number of the list (0 to 255); if an error 
occurs, the return value is negative.

create_delay_list creates what is called a global list. Global lists are 
different from AP tables in that the lists are sent down to the acquisition console 
when the experiment starts up and are accessible until the experiment 
completes. In working with arrayed experiments, be careful when using a –1 in 
the list_number argument because a list will be created for each array 
element. In this case, a list parameter can be created as an arrayed parameter 
with protection bit 8 (256) set. To read in the values of this type of parameter, 
use the getarray statement. To ensure that the list is only created once, check 
the global array counter variable ix, and only call create_delay_list to 
create the list when it equals 1 (as shown in the example).

Arguments: list is a pointer to a list of delays.

nvals is the number of values in the list. 

list_number –1 or a unique number from 0 to 255 for each list.

Examples: pulsesequence()
{

/* Declare static to save between calls */
static int list1, list2;
int i, n;
double delay1[1024], delay2[1024];

n = 1024;
if (ix == 1) {

for (i=0; i<n; i++) {
... /* Initialize delay1 & delay2 arrays */

}
/* First, list1 is set to 0 */
list1 = create_delay_list(delay1,n,0); 
/* This is list #1 */
create_freq_list(freqs,nfreqs,OBSch,1);
/* This is list #2 */
create_offset_list(freqs,nfreqs,OBSch,2);
/* Next, list2 is set to 3 */
list2 = create_delay_list(delay2,n,-1);

}
...
vdelay_list(list2,v5); /* Use v5 from list2 */
vfreq(1,v2); /* Use v2 from list #1 */
voffset(2,v1); /* Use v1 from list #2 */
vdelay_list(list1,v1); /* Use v1 from list1 */
...

} 

Related: create_freq_list Create table of frequencies
create_offset_list Create table of frequency offsets
delay Delay for a specified time
getarray Retrieves all values of an arrayed parameter
vdelay Select delay from table



Chapter 3. Pulse Sequence Statement Reference

148 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

create_freq_listCreate table of frequencies

Applicability:  UNITYINOVA systems.

Syntax: create_freq_list(list,nvals,device,list_number) 
double *list; /* pointer to list of frequencies */
int nvals; /* number of values in list */
int device; /* OBSch, DECch, DEC2ch, or DEC3ch */
int list_number; /* number 0–255 for each list */

Description: Stores global lists of frequencies that can be accessed with a real-time variable 
or table element for dynamic setting of frequencies. Frequency lists use 
frequencies in MHz (such as from sfrq, dfrq). The lists need to be created in 
order starting from 0 using the list_number argument, or by setting the 
list_number argument to –1, which makes the software allocate and create 
the next free list and give the list number as a return value. Each list must have 
a unique and sequential list_number. There can be a maximum of 256 lists 
depending on the size of the lists. The lists are stored in data memory and 
compete for space with the acquisition data for each array element. If a list is 
created, the return value is the number of the list (0 to 255); if an error occurs, 
the return value is negative.

create_freq_list creates what is called a global list. Global lists are 
different from AP tables in that the lists are sent down to the acquisition console 
when the experiment starts up and are accessible until the experiment 
completes. In working with arrayed experiments, be careful when using a –1 in 
the list_number argument because a list will be created for each array 
element. In this case, a list parameter can be created as an arrayed parameter 
with protection bit 8 (256) set. To read in the values of this type of parameter, 
use the getarray statement. To ensure that the list is only created once, check 
the global array counter variable ix, and only call create_freq_list to 
create the list when it equals 1. An example is shown in the entry for the 
create_delay_list statement.

Arguments: list is a pointer to a list of frequencies.

nvals is the number of values in the list. 

device is OBSch (observe transmitter), DECch (first decoupler), DEC2ch 
(second decoupler), or DEC3ch (third decoupler).

list_number is –1 or a unique number from 0 to 255 for each list created. 

Examples: See the example for the create_delay_list statement. 

create_offset_list Create table of frequency offsets

Applicability: UNITYINOVA systems.

Syntax: create_offset_list(list,nvals,device,list_number) 
double *list; /* pointer to list of frequency offsets */
int nvals; /* number of values in list */
int device; /* OBSch, DECch, DEC2ch, or DEC3ch */
int list_number; /* number 0–255 for each list */

Related: create_delay_list Create table of delays
create_offset_list Create table of frequency offsets
getarray Retrieves all values of an arrayed parameter
delay Delay for a specified time
vfreq Select frequency from table



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 149

Description: Stores global lists of frequencies that can be accessed with a real-time variable 
or table element for dynamic setting of frequency offsets. Offset lists define lists 
of frequency offsets in Hz (such as from tof, dof). Imaging pulse sequences 
typically use offset lists, not frequency lists. The lists need to be created in order 
starting from 0 using the list_number argument, or by setting the 
list_number argument to –1, which makes the software allocate and create 
the next free list and give the list number as a return value. Each list must have 
a unique and sequential list_number. There can be a maximum of 256 lists 
depending on the size of the lists. The lists are stored in data memory and 
compete for space with the acquisition data for each array element. If a list is 
created, the return value is the number of the list (0 to 255); if an error occurs, 
the return value is negative.

create_offset_list creates what is called a global list. Global lists are 
different from AP tables in that the lists are sent down to the acquisition console 
when the experiment starts up and are accessible until the experiment 
completes. In working with arrayed experiments, be careful when using a –1 in 
the list_number argument because a list will be created for each array 
element. In this case, a list parameter can be created as an arrayed parameter 
with protection bit 8 (256) set. To read in the values of this type of parameter, 
use the getarray statement. To ensure that the list is only created once, check 
the global array counter variable ix, and only call create_offset_list 
to create the list when it equals 1. An example is shown in the entry for the 
create_delay_list statement.

Arguments: list is a pointer to a list of frequency offsets.

nvals is the number of values in the list. 

device is OBSch (observe transmitter), DECch (first decoupler), DEC2ch 
(second decoupler), or DEC3ch (third decoupler).

list_number is –1 or a unique number from 0 to 255 for each list created. 

Examples: See the example for the create_delay_list statement. 

D

Related: create_delay_list Create table of delays
create_freq_list Create table of frequencies
getarray Retrieves all values of an arrayed parameter
delay Delay for a specified time
voffset Select frequency offset from table

Top A B C D E G H I L M O P R S T V W X Z

dbl Double an integer value 

dcplrphase Set small-angle phase of 1st decoupler,

dcplr2phase Set small-angle phase of 2nd decoupler,

dcplr3phase Set small-angle phase of 3rd decoupler 

decblank Blank amplifier associated with first decoupler 



Chapter 3. Pulse Sequence Statement Reference

150 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

dec2blank Blank amplifier associated with second decoupler 

dec3blank Blank amplifier associated with third decoupler 

declvloff Return first decoupler back to “normal” power 

declvlon Turn on first decoupler to full power 

decoff Turn off first decoupler 

dec2off Turn off second decoupler 

dec3off Turn off third decoupler 

decoffset Change offset frequency of first decoupler 

dec2offset Change offset frequency of second decoupler 

dec3offset Change offset frequency of third decoupler 

dec4offset Change offset frequency of fourth decoupler 

decon Turn on first decoupler 

dec2on Turn on second decoupler 

dec3on Turn on third decoupler 

decphase Set quadrature phase of first decoupler 

dec2phase Set quadrature phase of second decoupler 

dec3phase Set quadrature phase of third decoupler 

dec4phase Set quadrature phase of fourth decoupler 

decpower Change first decoupler power level, linear amp. systems 

dec2power Change second decoupler power level, linear amp. systems 

dec3power Change third decoupler power level, linear amp. systems 

dec4power Change fourth decoupler power level, linear amp. systems 

decprgoff End programmable decoupling on first decoupler 

dec2prgoff End programmable decoupling on second decoupler 

dec3prgoff End programmable decoupling on third decoupler 

decprgon Start programmable decoupling on first decoupler 

dec2prgon Start programmable decoupling on second decoupler 

dec3prgon Start programmable decoupling on third decoupler 

decpulse Pulse first decoupler transmitter with amplifier gating 

decpwr Set first decoupler high-power level, class C amplifier 

decpwrf Set first decoupler fine power 

dec2pwrf Set second decoupler fine power 

dec3pwrf Set third decoupler fine power 

decr Decrement an integer value 

decrgpulse Pulse first decoupler with amplifier gating 

dec2rgpulse Pulse second decoupler with amplifier gating 

dec3rgpulse Pulse third decoupler with amplifier gating 

dec4rgpulse Pulse fourth decoupler with amplifier gating 

decshaped_pulse Perform shaped pulse on first decoupler 

dec2shaped_pulse Perform shaped pulse on second decoupler 

dec3shaped_pulse Perform shaped pulse on third decoupler 

decspinlock Set spin lock waveform control on first decoupler 

dec2spinlock Set spin lock waveform control on second decoupler 



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 151

dbl Double an integer value

Syntax: dbl(vi,vj) 
codeint vi; /* variable for starting value */
codeint vj; /* variable for twice starting value */

Description: Sets vj equal to twice the integer value of vi. 

Arguments: vi and vj are real-time variables (v1 to v14, oph, etc.).

Examples: dbl(v1,v2); 

dcplrphase Set small-angle phase of 1st decoupler

Applicability: UNITYINOVA systems using a first decoupler with rf type C or D, and 
MERCURYplus/-Vx. 

Syntax: dcplrphase(multiplier) 
codeint multiplier; /* real-time phase step multiplier */

Description: Sets first decoupler phase in step size units set by the stepsize statement. 
The small-angle phaseshift is a product of multiplier and the step size. If 
decstepsize has not been used, default step size is 90°.

If the product of the step size set by the decstepsize statement and 
multiplier is greater than 90°, the sub-90° part is set by dcplrphase. 

dec3spinlock Set spin lock waveform control on third decoupler 

decstepsize Set step size for first decoupler 

dec2stepsize Set step size for second decoupler 

dec3stepsize Set step size for third decoupler 

decunblank Unblank amplifier associated with first decoupler 

dec2unblank Unblank amplifier associated with second decoupler 

dec3unblank Unblank amplifier associated with third decoupler 

delay Delay for a specified time 

dhpflag Switch decoupling from low-power to high-power 

divn Divide integer values 

dps_off Turn off graphical display of statements 

dps_on Turn on graphical display of statements 

dps_show Draw delay or pulses in a sequence for graphical display 

dps_skip Skip graphical display of next statement 

Related: add Add integer values
assign Assign integer values
decr Decrement an integer value
divn Divide integer values 
hlv Half the value of an integer
incr Increment an integer value
mod2 Find integer value modulo 2
mod4 Find integer value modulo 4
modn Find integer value modulo n 
mult Multiply integer values 
sub Subtract integer values



Chapter 3. Pulse Sequence Statement Reference

152 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Only on systems with an Output board are carryovers that are multiples of 90° 
automatically saved and added in at the time of the next 90° phase selection 
(such as at the time of the next pulse or decpulse). On systems with a Data 
Acquisition Controller board, a Pulse Sequence Controller board, or an 
Acquisition Controller board, this is done by dcplrphase (see the description 
section of the acquire statement for further information about these boards).

Unlike decphase, dcplrphase is needed any time the first decoupler 
phase shift is to be set to a value not a multiple of 90°. decphase sets 
quadrature phase shift only, which is rarely needed.

Arguments: multiplier is a small-angle phaseshift multiplier for the first decoupler. The 
value must be a real-time variable (v1 to v14, oph, etc.) or real-time constant 
(zero, one, etc.).

Examples: dcplrphase(zero); 

dcplr2phase Set small-angle phase of 2nd decoupler 

Applicability: UNITYINOVA systems using a first decoupler with rf type C or D. 

Syntax: dcplr2phase(multiplier) 
codeint multiplier; /* real-time phase step multiplier */

Description: Sets second decoupler phase in step size units set by the dec2stepsize 
statement. The small-angle phaseshift is a product of multiplier and the 
step size. If dec2stepsize has not been used, the default step size is 90°. 

If the product of the step size set by the stepsize statement and 
multiplier is greater than 90°, the sub-90° part is set by dcplr2phase.

The following apply to UNITYINOVA systems with the specified hardware:

Output board: 
carryovers that are multiples of 90° are automatically saved and added in at the 
time of the next 90° phase selection (such as at the time of the next pulse or 
dec2pulse). 

Data Acquisition Controller board: 
a Pulse Sequence Controller board, or an Acquisition Controller board, this is 
done by dcplr2phase (see the description section of the acquire 
statement for further information about these boards).

Unlike dec2phase, dcplr2phase is needed any time the second decoupler 
phase shift is to be set to a value that is not a multiple of 90°. dec2phase sets 
quadrature phase shift only, which is rarely need.

Arguments: multiplier is a small-angle phaseshift multiplier for the second decoupler. 
The value must be a real-time variable (v1 to v14, oph, etc.) or real-time 
constant (zero, one, etc.).

Examples: dcplr2phase(zero); 

Related: dcplr2phase Set small-angle phase of second decoupler
dcplr3phase Set small-angle phase of third decoupler
decphase Set quadrature phase of first decoupler 
decstepsize Set small-angle phase step size
xmtrphase Set small-angle phase of obs. transmitter

Related: dcplrphase Set small-angle phase of first decoupler,
dec2phase Set quadrature phase of second decoupler 



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 153

dcplr3phase Set small-angle phase of 3rd decoupler

Applicability:  UNITYINOVA systems using a first decoupler with rf type C or D. 

Syntax: dcplr3phase(multiplier) 
codeint multiplier; /* multiplies phase step */

Description: Sets the third decoupler phase in units set by the dec3stepsize statement. 
If dec3stepsize has not been used, the default step size is 90°. The small-
angle phaseshift is a product of multiplier and the preset stepsize. The 
full small-angle phase is set by dcplr3phase.

Unlike dec3phase, dcplr3phase is needed any time the third decoupler 
phase shift is to be set to a value that is not a multiple of 90°. dec3phase sets 
quadrature phase shift only, which is rarely needed.

Arguments: multiplier is a small-angle phaseshift multiplier for the third decoupler. 
The value must be a real-time variable (v1 to v14, oph, etc.) or real-time 
constant (zero, one, etc.).

Examples: dcplr2phase(zero); 

decblank Blank amplifier associated with first decoupler 

Applicability: UNITYINOVA systems.

Syntax: decblank() 

Description: Disables the amplifier for the first decoupler. This is generally used after a call 
to decunblank. See also: “Amplifier Channel Blanking and Unblanking,” 
page 75.

dec2blank Blank amplifier associated with second decoupler 

Applicability:  UNITYINOVA systems with linear amplifiers.

Syntax: dec2blank() 

Description: Disables the amplifier for the second decoupler. This is generally used after a 
call to dec2unblank. See also: “Amplifier Channel Blanking and 
Unblanking,” page 75.

dec2stepsize Set small-angle phase step size, 
xmtrphase Set small-angle phase of obs. transmitter, rf type C

Related: dcplrphase Set small-angle phase of first decoupler,
dec3phase Set quadrature phase of third decoupler 
dec3stepsize Set small-angle phase step size, 
xmtrphase Set small-angle phase of obs. transmitter, rf type C 

Related: decunblank Unblank amplifier associated with first decoupler
obsblank Blank amplifier associated with observe transmitter
obsunblank Unblank amplifier associated with observe transmitter
rcvroff Turn off receiver
rcvron Turn on receiver

Related: dec2unblank Unblank amplifier associated with second decoupler
rcvroff Turn off receiver
rcvron Turn on receiver



Chapter 3. Pulse Sequence Statement Reference

154 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

dec3blank Blank amplifier associated with third decoupler 

Applicability: UNITYINOVA systems using a third decoupler. 

Syntax: dec3blank() 

Description: Disables the amplifier for the third decoupler. This is generally used after a call 
to dec3unblank. See also: “Amplifier Channel Blanking and Unblanking,” 
page 75.

declvloff Return first decoupler back to “normal” power

Syntax: declvloff() 

Description: Switches the decoupler power to the power level set by the appropriate 
parameters defined by the amplifier type: dhp for class C amplifiers or dpwr 
for linear amplifiers. If dhp='n', declvloff has no effect on systems with 
class C amplifiers but still functions for systems with linear amplifiers. 

declvlon Turn on first decoupler to full power

Syntax: declvlon() 

Description: Switches the first decoupler power level between the power level set by the 
high-power parameter(s) to the full output of the decoupler. If dhp='n', 
declvloff has no effect on systems with class C amplifiers but still functions 
for systems with linear amplifiers. 

If declvlon is used, make sure declvloff is used prior to time periods in which 
normal, controllable power levels are desired, such as prior to acquisition. Use 
full decoupler power only for decoupler pulses or for solids applications.

decoff Turn off first decoupler 

Syntax: decoff() 

Description: Explicitly gates off the first decoupler in the pulse sequence. Amplifier blanking 
state is unchanged. See also: “Amplifier Channel Blanking and Unblanking,” 
page 75.

Related: dec3unblank Unblank amplifier associated with third decoupler 
rcvroff Turn off receiver
rcvron Turn on receiver

Related: declvlon Turn on first decoupler to full power
power Change transmitter or decoupler power, lin. amp. sys. 
pwrf Change transmitter or decoupler fine power 
rlpower Change transmitter or decoupler power, lin. amp. sys. 
rlpwrf Set transmitter or decoupler fine power 

declvloff Return first decoupler back to “normal” power
Related: power Change transmitter or decoupler power, lin. amp. sys. 

pwrf Change transmitter or decoupler fine power 
rlpower Change transmitter or decoupler power, lin. amp. sys. 
rlpwrf Set transmitter or decoupler fine power 

Related: decon Turn on first decoupler
dec2off Turn off second decoupler 
dec3off Turn off third decoupler 



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 155

dec2off Turn off second decoupler 

Applicability: Systems with a second decoupler. Amplifier blanking state is unchanged.

Syntax: dec2off() 

Description: Explicitly gates off the second decoupler in the pulse sequence. See also: 
“Amplifier Channel Blanking and Unblanking,” page 75.

dec3off Turn off third decoupler 

Applicability: UNITYINOVA systems with a third decoupler. Amplifier blanking state is 
unchanged.

Syntax: dec3off() 

Description: Explicitly gates off the third decoupler in the pulse sequence. See also: 
“Amplifier Channel Blanking and Unblanking,” page 75.

decoffset Change offset frequency of first decoupler

Syntax: decoffset(frequency) 
double frequency; /* offset in Hz */

Description: Changes the offset frequency of the first decoupler (parameter dof). It is 
functionally the same as offset(frequency,DODEV).

Arguments: frequency is the offset frequency desired, in hertz.

Examples: decoffset(do1); 

dec2offset Change offset frequency of second decoupler

Syntax: dec2offset(frequency) 
double frequency; /* offset frequency in Hz */

Description: Changes the offset frequency of the second decoupler (parameter dof2). It is 
functionally the same as offset(frequency,DO2DEV). 

Arguments: frequency is the offset frequency desired, in hertz.

Examples: dec2offset(do2); 

dec3offset Change offset frequency of third decoupler

Syntax: dec3offset(frequency) 
double frequency; /* offset frequency in Hz */

Related: dec2on Turn on second decoupler 

Related: dec3on Turn on third decoupler

Related: dec2offset Change offset frequency of second decoupler
dec3offset Change offset frequency of third decoupler
obsoffset Change offset frequency of observe transmitter
offset Change offset frequency of transmitter or decoupler

Related: decoffset Change offset frequency of first decoupler
dec3offset Change offset frequency of third decoupler
obsoffset Change offset frequency of observe transmitter
offset Change offset frequency of transmitter or decoupler



Chapter 3. Pulse Sequence Statement Reference

156 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Description: Changes the offset frequency of the third decoupler (parameter dof3). It is 
functionally the same as offset(frequency,DO3DEV).

Arguments: frequency is the offset frequency desired, in hertz.

Examples: dec3offset(do3); 

dec4offset Change offset frequency of fourth decoupler

Applicability: UNITYINOVA system with a deuterium decoupler channel as the fourth decoupler.

Syntax: dec4offset(frequency) 
double frequency; /* offset frequency in Hz */ 

Description: Changes the offset frequency of the fourth decoupler (parameter dof4). It is 
functionally the same as offset(frequency,DO4DEV).

Arguments: frequency is the offset frequency desired, in hertz.

Examples: dec4offset(do4); 

decon Turn on first decoupler 

Syntax: decon() 

Description: Explicitly gates on the first decoupler in the pulse sequence. First decoupler 
gating is handled automatically by the statements declvloff, declvlon, 
decpulse, decrgpulse, decshaped_pulse, decspinlock, 
simpulse, sim3pulse, simshaped_pulse, sim3shaped_pulse. 

decprgon generally needs to be enabled with an explicit decon statement 
and followed by a decoff call. Amplifier blanking state is unchanged. See 
also: “Amplifier Channel Blanking and Unblanking,” page 75.

dec2on Turn on second decoupler 

Applicability: UNITYINOVA system using a second decoupler. 

Syntax: dec2on() 

Description: Explicitly gates on the second decoupler in the pulse sequence. Second 
decoupler gating is handled automatically by the statements dec2rgpulse, 
dec2shaped_pulse, dec2spinlock, sim3pulse, and 
sim3shaped_pulse.

Related: decoffset Change offset frequency of first decoupler
dec2offset Change offset frequency of second decoupler
obsoffset Change offset frequency of observe transmitter
offset Change offset frequency of transmitter or decoupler

Related: decoffset Change offset frequency of first decoupler
dec2offset Change offset frequency of second decoupler
obsoffset Change offset frequency of observe transmitter
offset Change offset frequency of transmitter or decoupler
rftype Type of rf generation

Related: decoff Turn off first decoupler
dec2on Turn on second decoupler 
dec3on Turn on third decoupler 



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 157

dec2prgon generally needs to be enabled with an explicit dec2on 
statement and followed by a dec2off call. Amplifier blanking state is 
unchanged. See also: “Amplifier Channel Blanking and Unblanking,” page 75.

dec3on Turn on third decoupler 

Applicability: UNITYINOVA system using a third decoupler. 

Syntax: dec3on() 

Description: Explicitly gates on the third decoupler in the pulse sequence. Third decoupler 
gating is handled automatically by the statements dec3rgpulse, 
dec3shaped_pulse, and dec3spinlock

dec3prgon generally needs to be enabled with an explicit dec3on 
statement and followed by a dec3off call. Amplifier blanking state is 
unchanged. See also: “Amplifier Channel Blanking and Unblanking,” page 75.

decphase Set quadrature phase of first decoupler

Syntax: decphase(phase) 
codeint phase; /* real-time variable for quad. phase */

Description: Sets quadrature phase (multiple of 90°) for the first decoupler rf. decphase is 
syntactically and functionally equivalent to txphase and is useful for a 
decoupler pulse in all cases where txphase is useful for a transmitter pulse. 

Arguments: phase is the quadrature phase for the first decoupler rf. The value must be a 
real-time variable (v1 to v14, oph, ct, etc.).

Examples: decphase(v4); 

dec2phase Set quadrature phase of second decoupler 

Applicability:  UNITYINOVA system using a second decoupler. 

Syntax: dec2phase(phase) 
codeint phase; /* real-time variable for quad. phase */

Description: Sets quadrature phase (multiple of 90°) for the second decoupler rf.

Arguments: phase is the quadrature phase for the second decoupler rf. The value must be 
a real-time variable (v1 to v14, oph, ct, etc.).

Examples: dec2phase(v9); 

dec3phase Set quadrature phase of third decoupler 

Applicability: UNITYINOVA system using a third decoupler. 

Related: dec2off Turn off second decoupler

Related: dec3off Turn off third decoupler

Related: dcplrphase Set small-angle phase of first decoupler,
dec2phase Set quadrature phase of second decoupler 
dec3phase Set quadrature phase of third decoupler 
txphase Set quadrature phase of observe transmitter

Related: dcplr2phase Set small-angle phase of second decoupler,
decphase Set quadrature phase of first decoupler 



Chapter 3. Pulse Sequence Statement Reference

158 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Syntax: dec3phase(phase) 
codeint phase; /* real-time variable for quad. phase */

Description: Sets quadrature phase (multiple of 90°) for the third decoupler rf.

Arguments: phase is the quadrature phase for the third decoupler rf. The value must be a 
real-time variable (v1 to v14, oph, ct, etc.).

Examples: dec3phase(v9); 

dec4phase Set quadrature phase of fourth decoupler 

Applicability: UNITYINOVA system with a deuterium decoupler channel as the fourth decoupler.

Syntax: dec4phase(phase) 
codeint phase; /* real-time variable for quad. phase */

Description: Sets quadrature phase (multiple of 90°) for the fourth decoupler rf.

Arguments: phase is the quadrature phase for the third decoupler rf. The value must be a 
real-time variable (v1 to v14, oph, ct, etc.).

Examples: dec4phase(v9); 

decpower Change first decoupler power level

Applicability: UNITYINOVA systems with linear amplifiers.

Syntax: decpower(power) 
double power; /* new power level for DODEV */

Description: Changes the first decoupler power. It is functionally the same as 
rlpower(value,DODEV). See also: “Amplifier Channel Blanking and 
Unblanking,” page 75.

Arguments: power sets the power level by assuming values from –16 (minimum power) to 
79 (maximum power) on channels with a 63-dB attenuator, or from –16 
(minimum power) to 63 (maximum power) on channels with a 79-dB 
attenuator.

CAUTION: Be careful, on systems with linear amplifiers, when using values of 
decpower greater than 49 (about 2 watts). Performing continuous 
decoupling or long pulses at power levels greater than this can result 
in damage to the probe. Use config to set a safety maximum for 
parameters tpwr, dpwr, dpwr2, and dpwr3.

dec2power Change second decoupler power level

Applicability:  UNITYINOVA system using a second decoupler. 

Syntax: dec2power(power) 

Related: dcplr3phase Set small-angle phase of third decoupler,
decphase Set quadrature phase of first decoupler

rftype Type of rf generation
Related: decphase Set quadrature phase of first decoupler

Related: dec2power Change second decoupler power
dec3power Change third decoupler power
obspower Change observe transmitter power
rlpower Change power level



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 159

double power; /* new power level for DO2DEV */

Description: Changes the second decoupler power. It is functionally the same as 
rlpower(value,DO2DEV). See also: “Amplifier Channel Blanking and 
Unblanking,” page 75.

Arguments: power sets the power level by assuming values from 0 (minimum power) to 63 
(maximum power) on channels with a 63-dB attenuator, or from –16 (minimum 
power) to 63 (maximum power) on channels with a 79-dB attenuator.

dec3power Change third decoupler power level

Applicability: UNITYINOVA system using a third decoupler. 

Syntax: dec3power(power) 
double power; /* new power level for DO3DEV */

Description: Changes the third decoupler power. It is functionally the same as 
rlpower(value,DO3DEV). See also: “Amplifier Channel Blanking and 
Unblanking,” page 75.

Arguments: power sets the power level by assuming values from 0 (minimum power) to 63 
(maximum power) on channels with a 63-dB attenuator, or from –16 (minimum 
power) to 63 (maximum power) on channels with a 79-dB attenuator.

dec4power Change fourth decoupler power level

Applicability: UNITYINOVA system with a deuterium decoupler channel as the fourth decoupler.

Syntax: dec4power(power) 
double power; /* new power level for DO4DEV */

Description: Changes the third decoupler power. It is functionally the same as 
rlpower(value,DO4DEV). See also: “Amplifier Channel Blanking and 
Unblanking,” page 75.

Arguments: power sets the power level by assuming values from –16 (minimum power) to 
63 (maximum power).

decprgoff End programmable decoupling on first decoupler 

Applicability: UNITYINOVA systems with a waveform generator on rf channel for the first 
decoupler.

Related: decpower Change first decoupler power
dec3power Change third decoupler power
obspower Change observe transmitter power
rlpower Change power level

Related: decpower Change first decoupler power
dec2power Change second decoupler power
obspower Change observe transmitter power
rlpower Change power level

Related: decpower Change first decoupler power
dec2power Change second decoupler power
obspower Change observe transmitter power
rlpower Change power level
rftype Type of rf generation



Chapter 3. Pulse Sequence Statement Reference

160 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Syntax: decprgoff() 

Description: Terminates any waveform-controlled programmable decoupling on the first 
decoupler started by the decprgon statement. See also: “Amplifier Channel 
Blanking and Unblanking,” page 75.

dec2prgoff End programmable decoupling on second decoupler 

Applicability: UNITYINOVA systems with a waveform generator on rf channel for the second 
decoupler.

Syntax: dec2prgoff() 

Description: Terminates any waveform-generator controlled programmable decoupling on 
the second decoupler set by the dec2prgon statement. See also: “Amplifier 
Channel Blanking and Unblanking,” page 75.

dec3prgoff End programmable decoupling on third decoupler 

Applicability: UNITYINOVA systems with a waveform generator on rf channel with the third 
decoupler.

Syntax: dec3prgoff() 

Description: Terminates any waveform-generator-controlled programmable decoupling on 
the third decoupler set by the dec3prgon statement. See also: “Amplifier 
Channel Blanking and Unblanking,” page 75.

decprgon Start programmable decoupling on first decoupler 

Applicability: UNITYINOVA systems with a waveform generator on rf channel for the first 
decoupler.

Syntax: decprgon(pattern,90_pulselength,tipangle_resoln) 
char *pattern; /* name of .DEC file */
double 90_pulselength; /* 90-deg pulse length in sec */
double tipangle_resoln; /* tip-angle resolution */

Description: Executes programmable decoupling on the first decoupler under waveform 
generator control, and returns the number of 12.5-ns ticks (as an integer value) 
in one cycle of the decoupling pattern. Explicit gating of the first decoupler with 
decon and decoff is generally required. Arguments can be variables (which 
require the appropriate getval and getstr statements) to permit changes by 
the parameters (see the second example). See also: “Amplifier Channel 
Blanking and Unblanking,” page 75.

Arguments: pattern is the name of the text file in the shapelib directory that stores the 
decoupling pattern (leave off the .DEC file extension).

90_pulselength is the pulse duration, in seconds, for a 90° tip angle on the 
first decoupler.

Related: decprgon Start programmable decoupling on first decoupler
dec2prgoff End programmable decoupling on second decoupler 
dec3prgoff End programmable decoupling on third decoupler 

Related: dec2prgon Start programmable decoupling on second decoupler

Related: dec3prgon Start programmable decoupling on third decoupler



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 161

tipangle_resoln is the resolution, in tip-angle degrees, of the decoupling 
pattern stored in the waveform generator. 

Examples: decprgon("garp1",1/dmf, 1.0); 
decprgon(modtype,pwx90,dres); 
ticks = decprgon("waltz16",1/dmf,90.0); 

dec2prgon Start programmable decoupling on second decoupler 

Applicability: UNITYINOVA systems with a waveform generator on rf channel for the second 
decoupler.

Syntax: dec2prgon(pattern,90_pulselength,tipangle_resoln) 
char *pattern; /* name of .DEC text file */
double 90_pulselength; /* 90∞∞∞-deg pulse length in sec 
*/
double tipangle_resoln; /* tip-angle resolution */

Description: Executes programmable decoupling on second decoupler under waveform 
generator control, and returns the number of 12.5-ns ticks (as an integer value) 
in one cycle of the decoupling pattern. Explicit gating of the second decoupler 
with dec2on and dec2off is generally required. Arguments can be variables 
(which require the appropriate getval and getstr statements) to permit 
changes by the parameters (see the second example). See also: “Amplifier 
Channel Blanking and Unblanking,” page 75.

Arguments: pattern is the name of the text file in the shapelib directory that stores the 
decoupling pattern (leave off the .DEC file extension).

90_pulselength is the pulse duration, in seconds, for a 90° tip angle on the 
second decoupler.

tipangle_resoln is the resolution, in tip-angle degrees, to which the 
decoupling pattern is stored in the waveform. 

Examples: (1) dec2prgon("waltz16",1/dmf2,90.0); 

(2) dec2prgon(modtype,pwx290,dres2); 
ticks=dec2prgon("garp1",1/dmf2,1.0); 

dec3prgon Start programmable decoupling on third decoupler 

Applicability: UNITYINOVA systems with a waveform generator on rf channel for the third 
decoupler.

Syntax: dec3prgon(pattern,90_pulselength,tipangle_resoln) 
char *pattern; /* name of .DEC text file */
double 90_pulselength; /* 90-deg pulse length in sec */
double tipangle_resoln; /* tip-angle resolution */

Description: Executes programmable decoupling on third decoupler under waveform 
control. It returns the number of 12.5-ns ticks (as an integer value) in one cycle 

Related: decprgoff End programmable decoupling on first decoupler
dec2prgon Start programmable decoupling on second decoupler 
dec3prgon Start programmable decoupling on third decoupler 
obsprgon Start programmable control of obs. transmitter 

Related: decprgon Start programmable decoupling on first decoupler
dec3prgoff End programmable decoupling on third decoupler 
obsprgon Start programmable control of obs. transmitter 



Chapter 3. Pulse Sequence Statement Reference

162 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

of the decoupling pattern. Explicit gating of the third decoupler with dec3on 
and dec3off is generally required. Arguments can be variables (which require 
the appropriate getval and getstr statements) to permit changes by 
parameters (see second example). See also: “Amplifier Channel Blanking and 
Unblanking,” page 75.

Arguments: pattern is the name of the text file in the shapelib directory that stores the 
decoupling pattern (leave off the .DEC file extension).

90_pulselength is the pulse duration, in seconds, for a 90° tip angle on the 
third decoupler.

tipangle_resoln is the resolution, in tip-angle degrees, to which the 
decoupling pattern is stored in the waveform. 

Examples: (1) dec3prgon("waltz16",1/dmf3,90.0); 

(2) dec3prgon(modtype,pwx390,dres3); 
ticks = dec3prgon("garp1",1/dmf3,1.0); 

decpulse Pulse first decoupler transmitter with amplifier gating

Syntax: decpulse(width,phase) 
double width; /* width of pulse in sec */
codeint phase; /* real-time variable for phase of pulse */

Description: Pulses the first decoupler at its current power level. The amplifier is gated off 
during decoupler pulses as it is during observe pulses. The amplifier gating 
times (see RG1 and RG2 for decrgpulse) are internally set to zero for this 
statement. dmm should be set to 'c' during any period of time in which 
decoupler pulses occur. See also: “Amplifier Channel Blanking and 
Unblanking,” page 75.

Arguments: width is the duration of the pulse, in seconds.

phase is the phase of the pulse. The value must be a real-time variable (v1 to 
v14, etc.) or a real-time constant (zero, one, etc.).

Examples: decpulse(pp,v3); 
decpulse(2.0*pp,zero); 

decpwr Set first decoupler high-power level, class C amplifier 

Applicability: All systems with class C amplifiers.

Syntax: decpwr(level) 
double level; /* new power level for DODEV channel */

Description: Changes the first decoupler high-power level to the value specified. To reset the 
power back to the “standard” dhp level, use decpwr(dhp). 

Switching between low power decoupling (dhp='n') and high power 
decoupling (dhp=x), as well as switching between different levels of low 

Related: decprgon Start programmable decoupling on first decoupler 
dec2prgoff End programmable decoupling on second decoupler 
obsprgon Start programmable control of obs. transmitter 

Related: decrgpulse Pulse decoupler transmitter with amplifier gating
rgpulse Pulse observe transmitter with amplifier gating
simpulse Pulse observe, decoupler channels simultaneously
sim3pulse Simultaneous pulse on 2 or 3 rf channels 



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 163

power decoupling, uses relays whose switching time is about 10 ms and are not 
provided for in the standard pulse sequence capability. Neither function should 
prove necessary because extremely low levels of decoupling are provided for in 
dhp mode by using very small (0 to 30) values of dhp.

Arguments: level specifies the decoupler high-power level, from 0 (lowest) to 255 (full 
power). These values in this range increase monotonically but are neither linear 
nor logarithmic

Examples: decpwr(255.0); 
decpwr(level1); 

decpwrf Set first decoupler fine power 

Applicability: UNITYINOVA systems with fine power control on the first decoupler. 

Syntax: decpwrf(power) 
double power; /* new fine power value for DODEV */

Description: Changes first decoupler fine power. It is functionally the same as 
rlpwrf(value,DECch). See also: “Amplifier Channel Blanking and 
Unblanking,” page 75.

Arguments: power is the fine power desired.

Examples: decpwrf(4.0); 

dec2pwrf Set second decoupler fine power 

Applicability: UNITYINOVA systems with fine power control on the second decoupler. 

Syntax: dec2pwrf(power) 
double power; /* new fine power value for DO2DEV */

Description: Changes the second decoupler fine power. It is functionally the same as 
rlpwrf(value,DEC2ch). See also: “Amplifier Channel Blanking and 
Unblanking,” page 75.

Arguments: power is the fine power desired.

Examples: dec2pwrf(4.0);

dec3pwrf Set third decoupler fine power 

Applicability: UNITYINOVA systems with fine power control on the third decoupler. 

Syntax: dec3pwrf(power) 
double power; /* new fine power value for DO3DEV */

Description: Changes third decoupler fine power. It is functionally the same as 
rlpwrf(value,DEC3ch). See also: “Amplifier Channel Blanking and 
Unblanking,” page 75.

Related: dec2pwrf Set second decoupler fine power
dec3pwrf Set third decoupler fine power
obspwrf Set observe transmitter fine power
rlpwrf Set transmitter or decoupler fine power

Related: decpwrf Set first decoupler fine power
dec3pwrf Set third decoupler fine power
obspwrf Set observe transmitter fine power
rlpwrf Set transmitter or decoupler fine power



Chapter 3. Pulse Sequence Statement Reference

164 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Arguments: power is the fine power desired.

Examples: dec3pwrf(4.0); 

decr Decrement an integer value

Syntax: decr(vi) 
codeint vi; /* real-time variable for starting value */

Description: Decrements integer value vi by 1 (i.e., vi=vi–1).

Arguments: vi is a real-time variable (v1 to v14, oph, etc.).

Examples: decr(v5); 

decrgpulse Pulse first decoupler with amplifier gating

Syntax: decrgpulse(width,phase,RG1,RG2) 
double width; /* width of pulse in sec */
codeint phase; /* real-time variable for phase */
double RG1; /* gating delay before pulse in sec */
double RG2; /* gating delay after pulse in sec */

Description: Syntactically equivalent to rgpulse statement and functionally equivalent to 
rgpulse with two exceptions. First, the first decoupler (instead of the 
transmitter) is pulsed at its current power level. Second, if homo='n', the slow 
gate on the first decoupler board is always open and therefore need not be 
switched open during RG1. In contrast, if homo='y', the slow gate on the first 
decoupler board is normally closed and must therefore be allowed sufficient 
time during RG1 to switch open.

For systems with linear amplifiers, RG1 for a decoupler pulse is important from 
the standpoint of amplifier stabilization under the following conditions: tn,dn 
equal {3H, 1H, 19F} (high-band nuclei, 3H does not apply to MERCURYplus/-
Vx systems), or tn,dn less than or equal to 31P (low-band nuclei). For these 
conditions, the “decoupler” amplifier module is placed in pulse mode, in which 
it remains blanked as long as the receiver is on. In this mode, RG1 must be 
sufficiently long to allow the amplifier to stabilize after blanking is removed: 5 
to 10 μs(2 μs typical for MERCURYplus/-Vx) for high-band nuclei and 10 to 20 
μs (2 μs typical for MERCURYplus/-Vx) for low-band nuclei. Solids require at 

Related: decpwrf Set first decoupler fine power
dec2pwrf Set second decoupler fine power
obspwrf Set observe transmitter fine power
rlpwrf Set transmitter or decoupler fine power

Related: add Add integer values
assign Assign integer values
dbl Double an integer value
divn Divide integer values 
hlv Half the value of an integer
incr Increment an integer value
mod2 Find integer value modulo 2
mod4 Find integer value modulo 4
modn Find integer value modulo n 
mult Multiply integer values 
sub Subtract integer values



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 165

least 1.5 μs. On 500-MHz systems that use the ENI-5100 class A amplifier for 
low-band nuclei on the observe channel, RG1 should be 40–60 μs.

If the tn nucleus and the dn nucleus are in different bands (e.g., tn is 1H and 
dn is 13C), the “decoupler” amplifier module is placed in the cw mode, in which 
it is always unblanked regardless of the state of the receiver. In this mode RG1 
is unimportant with respect to amplifier stabilization prior to the decoupler 
pulse.

Arguments: width is the duration, in seconds, of the decoupler transmitter pulse.

phase is the phase of the pulse. It must be a real-time variable (v1 to v14, etc.) 
or a real-time constant (zero, one, etc.).

RG1 is the time, in seconds, before the start of the pulse that the amplifier is 
gated off.

RG2 is the time, in seconds, after the end of the pulse that the amplifier is gated 
on.

Examples: decrgpulse(pp,v3,rof1,rof2); 
decrgpulse(pp,zero,1.0e–6,0.2e–6); 

dec2rgpulse Pulse second decoupler with amplifier gating 

Applicability: UNITYINOVA system with a second decoupler.

Syntax: dec2rgpulse(width,phase,RG1,RG2) 
double width; /* width of pulse in sec */
codeint phase; /* real-time variable for phase */
double RG1; /* gating delay before pulse in sec */
double RG2; /* gating delay after pulse in sec */

Description: Performs an explicit amplifier-gated pulse on the second decoupler (DEC2ch). 

Arguments: width is the duration, in seconds, of the pulse.

phase is the phase of the pulse. It must be a real-time variable (v1 to v14, etc.) 
or a real-time constant (zero, one, etc.).

RG1 is the delay, in seconds, between gating the amplifier on and gating the rf 
transmitter on (the phaseshift occurs at the beginning of this delay). RG1 is 
important for amplifier stabilization under the same conditions as described for 
decrgpulse.

RG2 is the delay, in seconds, between gating the rf transmitter off and gating the 
amplifier off. homo has no effect on the gating on the second decoupler board. 
homo2 controls gating of second decoupler rf.

Examples: dec2rgpulse(p1,v10,rof1,rof2); 

Related: decpulse Pulse first decoupler with amplifier gating
dec2rgpulse Pulse second decoupler with amplifier gating 
dec3rgpulse Pulse third decoupler with amplifier gating 
idecpulse Pulse first decoupler transmitter with IPA 
idecrgpulse Pulse first decoupler with amplifier gating and IPA 
irgpulse Pulse observe transmitter with IPA 
rgpulse Pulse observe transmitter with amplifier gating
simpulse Pulse observe, decoupler channels simultaneously
sim3pulse Simultaneous pulse on 2 or 3 rf channels 



Chapter 3. Pulse Sequence Statement Reference

166 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

dec3rgpulse Pulse third decoupler with amplifier gating 

Applicability: UNITYINOVA systems with a third decoupler.

Syntax: dec3rgpulse(width,phase,RG1,RG2) 
double width; /* width of pulse in sec */
codeint phase; /* real-time variable for phase */
double RG1; /* gating delay before pulse in sec */
double RG2; /* gating delay after pulse in sec */

Description: Performs an explicit amplifier-gated pulse on the third decoupler (DEC3ch). 

Arguments: width is the duration, in seconds, of the pulse.

phase is the phase of the pulse. It must be a real-time variable (v1 to v14, etc.) 
or a real-time constant (zero, one, etc.).

RG1 is the delay, in seconds, between gating the amplifier on and gating the rf 
transmitter on (the phaseshift occurs at the beginning of this delay). RG1 is 
important for amplifier stabilization under the same conditions as described for 
decrgpulse.

RG2 is the delay, in seconds, between gating the rf transmitter off and gating the 
amplifier off. homo has no effect on the gating on the third decoupler board. 
homo3 controls gating of third decoupler rf.

Examples: dec3rgpulse(p1,v10,rof1,rof2); 

dec4rgpulse Pulse fourth decoupler with amplifier gating 

Applicability: UNITYINOVA systems with a deuterium decoupler channel as the fourth 
decoupler.

Syntax: dec4rgpulse(width,phase,RG1,RG2) 
double width; /* width of pulse in sec */
codeint phase; /* real-time variable for phase */
double RG1; /* gating delay before pulse in sec */
double RG2; /* gating delay after pulse in sec */

Description: Performs an explicit amplifier-gated pulse on the fourth decoupler (DEC4ch). 

Arguments: width is the duration, in seconds, of the pulse.

phase is the phase of the pulse. It must be a real-time variable (v1 to v14, etc.) 
or a real-time constant (zero, one, etc.).

RG1 is the delay, in seconds, between gating the amplifier on and gating the rf 
transmitter on (the phaseshift occurs at the beginning of this delay). RG1 is 

Related: decpulse Pulse first decoupler with amplifier gating
decrgpulse Pulse first decoupler with amplifier gating
idecpulse Pulse first decoupler with IPA 
rgpulse Pulse observe transmitter with amplifier gating
simpulse Pulse observe, decoupler channels simultaneously
sim3pulse Simultaneous pulse on 2 or 3 rf channels 

Related: decpulse Pulse first decoupler with amplifier gating
decrgpulse Pulse first decoupler with amplifier gating
rgpulse Pulse observe transmitter with amplifier gating
simpulse Pulse observe, decoupler channels simultaneously
sim3pulse Simultaneous pulse on 2 or 3 rf channels 



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 167

important for amplifier stabilization under the same conditions as described for 
decrgpulse.

RG2 is the delay, in seconds, between gating the rf transmitter off and gating the 
amplifier off.

Examples: dec4rgpulse(p1,v10,rof1,rof2); 

decshaped_pulse Perform shaped pulse on first decoupler 

Applicability: UNITYINOVA systems with waveform generator on rf channel for the first 
decoupler.

Syntax: decshaped_pulse(pattern,width,phase,RG1,RG2) 
char *pattern; /* name of .RF text file */
double width; /* width of pulse in sec */
codeint phase; /* real-time variable for phase */
double RG1; /* gating delay before pulse in sec */
double RG2; /* gating delay after pulse in sec */

Description: Performs a shaped pulse on the first decoupler. If a waveform generator is 
configured on the channel, it is used; otherwise, the linear attenuator and the 
small-angle phase shifter are used to effectively perform an 
apshaped_decpulse statement. 

When using the waveform generator, the shapes are downloaded into the 
waveshaper before the start of an experiment. When decshaped_pulse is 
called, the shape is addressed and started. The minimum pulse length and 
stepsize is 50 ns. The overhead at the start and end of the shaped pulse varies:

• UNITY 1 μs (start), 0 (end)

• System with Acquisition Controller board: 10.75 μs (start), 4.3 μs (end)

• System with Output board: 10.95 μs (start), 4.5 μs (end)

INOVA: If the length is less than 50 ns, the pulse is not executed and there is no 
overhead.

When using the linear attenuator and the small-angle phase shifter to generate a 
shaped pulse, the decshaped_pulse statement creates AP tables on the fly 
for amplitude and phase. It also uses the real-time variables v12 and v13 to 
control the execution of the shape. It does not use AP table variables. For timing 
and more information, see the description of apshaped_decpulse. Note 
that if using AP tables with shapes that have a large number of points, the FIFO 
can become overloaded with words generating the pulse shape and FIFO 
Underflow errors can result.

Arguments: pattern is the name of a text file in the shapelib directory that stores the 
rf pattern (leave off the .RF file extension).

width is the duration, in seconds, of the pulse.

phase is the phase of the pulse. It must be a real-time variable (v1 to v14, etc.) 
or a real-time constant (zero, one, etc.)

Related: decpulse Pulse first decoupler with amplifier gating
decrgpulse Pulse first decoupler with amplifier gating
rgpulse Pulse observe transmitter with amplifier gating
simpulse Pulse observe, decoupler channels simultaneously
sim3pulse Simultaneous pulse on 2 or 3 rf channels 



Chapter 3. Pulse Sequence Statement Reference

168 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

RG1 is the delay, in seconds, between gating the amplifier on and gating the first 
decoupler on (the phaseshift occurs at the beginning of this delay).

RG2 is the delay, in seconds, between gating the first decoupler off and gating 
the amplifier off.

Examples: decshaped_pulse("sinc",p1,v5,rof1,rof2); 

dec2shaped_pulsePerform shaped pulse on second decoupler 

Applicability: UNITYINOVA systems with waveform generator on rf channel for the second 
decoupler.

Syntax: dec2shaped_pulse(pattern,width,phase,RG1,RG2) 
char *pattern; /* name of .RF text file */
double width; /* width of pulse in sec */
codeint phase; /* real-time variable for phase */
double RG1; /* gating delay before pulse in sec */
double RG2; /* gating delay after pulse in sec */

Description: Performs a shaped pulse on the second decoupler. If a waveform generator is 
configured on the channel, it is used; otherwise, the linear attenuator and the 
small-angle phase shifter are used to effectively perform an 
apshaped_dec2pulse statement. 

When using the waveform generator, the shapes are downloaded into the 
waveshaper before the start of an experiment. When dec2shaped_pulse is 
called, the shape is addressed and started. The minimum pulse length and 
stepsize is 50 ns. The overhead at the start and end of the shaped pulse varies:

• UNITYINOVA: 1 μs (start), 0 (end)

• System with Acquisition Controller board: 10.75 μs (start), 4.3 μs (end)

• System with Output board: 10.95 μs (start), 4.5 μs (end)

If the length is less than 50 ns, the pulse is not executed and there is no overhead.

When using the linear attenuator and the small-angle phase shifter to generate a 
shaped pulse, the dec2shaped_pulse statement creates AP tables on the fly 
for amplitude and phase. It also uses the real-time variables v12 and v13 to 
control the execution of the shape. It does not use AP table variables. For timing 
and more information, see the description of apshaped_dec2pulse. Note 
that if using AP tables with shapes that have a large number of points, the FIFO 
can become overloaded with words generating the pulse shape and FIFO 
Underflow errors can result.

Arguments: pattern is the name of a text file in the shapelib directory that stores the 
rf pattern (leave off the .RF file extension).

width is the duration, in seconds, of the pulse.

phase is the phase of the pulse. It must be a real-time variable (v1 to v14, etc.) 
or a real-time constant (zero, one, etc.)

RG1 is the delay, in seconds, between gating the amplifier on and gating the 
second decoupler on (the phaseshift occurs at the beginning of this delay).

Related: dec2shaped_pulse Perform shaped pulse on second decoupler 
dec3shaped_pulse Perform shaped pulse on third decoupler 
shaped_pulse Perform shaped pulse on observe transmitter 
simshaped_pulse Simultaneous two-pulse shaped pulse 
sim3shaped_pulse Simultaneous three-pulse shaped pulse 



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 169

RG2 is the delay, in seconds, between gating the second decoupler off and 
gating the amplifier off.

Examples: dec2shaped_pulse("gauss",p1,v9,rof1,rof2); 

dec3shaped_pulse Perform shaped pulse on third decoupler 

Applicability: UNITYINOVA systems with waveform generator on rf channel for the third 
decoupler.

Syntax: dec3shaped_pulse(pattern,width,phase,RG1,RG2) 
char *pattern; /* name of .RF text file */
double width; /* width of pulse in sec */
codeint phase; /* real-time variable for phase */
double RG1; /* gating delay before pulse in sec */
double RG2; /* gating delay after pulse in sec */

Description: Performs a shaped pulse on the third decoupler. If a waveform generator is 
configured on the channel, it is used; otherwise, the linear attenuator and the 
small-angle phase shifter are used to effectively perform an 
apshaped_dec3pulse statement. 

The shapes are downloaded into the controller before the start of an experiment. 
When dec3shaped_pulse is called, the shape is addressed and started. The 
minimum pulse length and stepsize is 50 ns. The overhead at the start and end 
of the shaped pulse varies:

• UNITYINOVA: 1 μs (start), 0 (end)

• System with Acquisition Controller board: 10.75 μs (start), 4.3 μs (end)

• System with Output board: 10.95 μs (start), 4.5 μs (end)

If the length is less than 50 ns, the pulse is not executed and there is no overhead.

When using the linear attenuator and the small-angle phase shifter to generate a 
shaped pulse, the dec3shaped_pulse statement creates AP tables on the fly 
for amplitude and phase. It also uses the real-time variables v12 and v13 to 
control the execution of the shape. It does not use AP table variables. For timing 
and more information, see the description of apshaped_dec3pulse. Note 
that if using AP tables with shapes that have a large number of points, the FIFO 
can become overloaded with words generating the pulse shape and FIFO 
Underflow errors can result.

Arguments: pattern is the name of a text file in the shapelib directory that stores the 
rf pattern (leave off the .RF file extension).

width is the duration, in seconds, of the pulse.

phase is the phase of the pulse. It must be a real-time variable (v1 to v14, etc.) 
or a real-time constant (zero, one, etc.).

RG1 is the delay, in seconds, between gating the amplifier on and gating the 
third decoupler on (the phaseshift occurs at the beginning of this delay).

RG2 is the delay, in seconds, between gating the third decoupler off and gating 
the amplifier off.

Examples: dec3shaped_pulse("gauss",p1,v9,rof1,rof2); 

Related: decshaped_pulse Perform shaped pulse on first decoupler 
shaped_pulse Perform shaped pulse on observe transmitter 
sim3shaped_pulse Simultaneous three-pulse shaped pulse 



Chapter 3. Pulse Sequence Statement Reference

170 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

decspinlock Set spin lock waveform control on first decoupler 

Applicability: UNITYINOVA systems with waveform generator on rf channel for the first 
decoupler.

Syntax: decspinlock(pattern,90_pulselength,tipangle_resoln, 
phase,ncycles) 

char *pattern; /* name of .DEC text file */
double 90_pulselength; /* 90∞∞-deg pulse length in sec */
double tipangle_resoln; /* resolution of tip angle */
codeint phase; /* phase of spin lock */
int ncylces; /* number of cycles to execute */

Description: Executes a waveform-controlled spin lock on the first decoupler, handling both 
rf gating and the mixing delay. Arguments can be variables (which require the 
appropriate getval and getstr statements) to permit changes via 
parameters (see the second example).

Arguments: pattern is the name of the text file in the shapelib directory that stores the 
decoupling pattern (leave off the .DEC file extension).

90_pulselength is the pulse duration, in seconds, for a 90° tip angle.

tipangle_resoln is the resolution, in tip-angle degrees, to which the 
decoupling pattern is stored in the waveform generator.

phase is the phase of the spin lock. It must be a real-time variable (v1 to v14, 
etc.) or a real-time constant (zero, one, etc.).

ncycles is the number of times the spin-lock pattern is to be executed. 

Examples: decspinlock("mlev16",p190,dres,v1,30); 
decspinlock(spinlk,pp90,dres,v1,cycles); 

dec2spinlock Set spin lock waveform control on second decoupler 

Applicability: UNITYINOVA systems with waveform generator on rf channel for the second 
decoupler.

Syntax: dec2spinlock(pattern,90_pulselength, 
tipangle_resoln,phase,ncycles) 

char *pattern; /* name of .DEC text file */
double 90_pulselength; /* 90-deg pulse length of channel */
double tipangle_resoln; /* resolution of tip angle */
codeint phase; /* phase of spin lock */
int ncylces; /* number of cycles to execute */

Description: Executes a waveform-controlled spin lock on the second decoupler. Both the rf 
gating and the mixing delay are handled within this function. Arguments can be 
variables (which require the appropriate getval and getstr statements) to 
permit changes via parameters (see the second example).

Arguments: pattern is the name of the text file in the shapelib directory that stores the 
decoupling pattern (leave off the .DEC file extension).

Related: decshaped_pulse Perform shaped pulse on first decoupler
shaped_pulse Perform shaped pulse on observe transmitter 

Related: dec2spinlock Set spin lock waveform control on second decoupler
dec3spinlock Set spin lock waveform control on third decoupler 
spinlock Set spin lock waveform control on obs. transmitter 



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 171

90_pulselength is the pulse duration, in seconds, for a 90° tip angle.

tipangle_resoln is the resolution, in tip-angle degrees, to which the 
decoupling pattern is stored in the waveform generator.

phase is the phase of the spin lock. It must be a real-time variable (v1 to v14, 
etc.) or a real-time constant (zero, one, etc.).

ncycles is the number of times that the spin-lock pattern is to be executed. 

Examples: (1) dec2spinlock("mlev16",p290,dres2,v1,42); 
(2) dec2spinlock(lock2,pwx2,dres2,v1,cycles); 

dec3spinlock Set spin lock waveform control on third decoupler 

Applicability: UNITYINOVA systems with waveform generator on rf channel for the third 
decoupler.

Syntax: dec3spinlock(pattern,90_pulselength, 
tipangle_resoln,phase,ncycles) 

char *pattern; /* name of .DEC text file */
double 90_pulselength; /* 90-deg pulse length of channel */
double tipangle_resoln;/* resolution of tip angle */
codeint phase; /* phase of spin lock */
int ncylces; /* number of cycles to execute */

Description: Executes a waveform-controlled spin lock on the third decoupler. Both the rf 
gating and the mixing delay are handled within this function. Arguments can be 
variables (which would need the appropriate getval and getstr statements) 
to permit changes via parameters (see the second example).

Arguments: pattern is the name of the text file in the shapelib directory that stores the 
decoupling pattern (leave off the .DEC file extension).

90_pulselength is the pulse duration, in seconds, for a 90° tip angle.

tipangle_resoln is the resolution in tip-angle degrees to which the 
decoupling pattern is stored in the waveform generator.

phase is the phase of the spin lock. It must be a real-time variable (v1 to v14, 
etc.) or a real-time constant (zero, one, etc.).

ncycles is the number of times that the spin-lock pattern is to be executed. 

Examples: dec3spinlock("mlev16",p390,dres3,v1,42); 
dec3spinlock(lock2,pwx2,dres3,v1,cycles); 

decstepsize Set step size for first decoupler

Syntax: decstepsize(step_size) 
double step_size; /* phase step size */

Description: Sets the step size of the first decoupler. It is functionally the same as 
stepsize(base,DECch).

Arguments: step_size is the phase step size desired and is a real number or a variable. 

Examples: decstepsize(30.0); 

Related: decspinlock Set spin lock waveform control on first decoupler
spinlock Set spin lock waveform control on obs. transmitter 

Related: decspinlock Set spin lock waveform control on first decoupler
spinlock Set spin lock waveform control on observe transmitter



Chapter 3. Pulse Sequence Statement Reference

172 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

dec2stepsize Set step size for second decoupler

Applicability: UNITYINOVA system with a second decoupler.

Syntax: dec2stepsize(step_size) 
double step_size; /* phase step size */

Description: Sets the step size of the first decoupler. This statement is functionally the same 
as stepsize(base,DEC2ch).

Arguments: step_size is the phase step size desired and is a real number or a variable. 

Examples: dec2stepsize(30.0); 

dec3stepsize Set step size for third decoupler

Applicability: UNITYINOVA system with a third decoupler.

Syntax: dec3stepsize(step_size) 
double step_size; /* phase step size */

Description: Sets the step size of the third decoupler. This statement is functionally the same 
as stepsize(base,DEC3ch).

Arguments: step_size is the phase step size desired and is a real number or a variable. 

Examples: dec3stepsize(30.0); 

decunblank Unblank amplifier associated with first decoupler 

Applicability:  UNITYINOVA systems.

Syntax: decunblank() 

Description: Explicitly enables the amplifier for the first decoupler. This overwrites the 
implicit blanking and unblanking of the amplifier before and after pulses. 
decunblank is generally followed by a call to decblank.

Related: dec2stepsize Set step size of second decoupler
dec3stepsize Set step size of third decoupler
obsstepsize Set step size of observe transmitter
stepsize Set small-angle phase step size,

Related: decstepsize Set step size of first decoupler
dec3stepsize Set step size of third decoupler
obsstepsize Set step size of observe transmitter
stepsize Set small-angle phase step size, 

Related: decstepsize Set step size of first decoupler
dec2stepsize Set step size of second decoupler
obsstepsize Set step size of observe transmitter
stepsize Set small-angle phase step size, 

Related: decblank Blank amplifier associated with first decoupler 
obsblank Blank amplifier associated with observe transmitter
obsunblank Unblank amplifier associated with observe transmitter
rcvroff Turn off receiver
rcvron Turn on receiver



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 173

dec2unblank Unblank amplifier associated with second decoupler 

Applicability: UNITYINOVA systems with a second decoupler.

Syntax: dec2unblank() 

Description: Explicitly enables the amplifier for the second decoupler. This overwrites the 
implicit blanking and unblanking of the amplifier before and after pulses. 
dec2unblank is generally followed by a call to dec2blank.

dec3unblank Unblank amplifier associated with third decoupler 

Applicability: UNITYINOVA systems with a third decoupler.

Syntax: dec3unblank() 

Description: Explicitly enables the amplifier for the third decoupler. This overwrites the 
implicit blanking and unblanking of the amplifier before and after pulses. 
dec3unblank is generally followed by a call to dec3blank.

delay Delay for a specified time

Applicability: UNITYINOVA systems with class C amplifiers.

Syntax: delay(time) 
double time; /* delay in sec */

Description: Sets a delay for a specified number of seconds.

Arguments: time specifies the delay, in seconds (minimum of 50 ns, minimum increment 
12.5 ns)

Examples: delay(d1); 
delay(d2/2.0); 

dhpflag Switch decoupling from low-power to high-power

Applicability: All systems with class C amplifiers.

Syntax: dhpflag 

Description: Switches the system from low-power to high-power decoupling; e.g., 
dhpflag=TRUE (correct use of upper and lower case letters is necessary). 

Values: TRUE; switches the system to high-power decoupling.

FALSE; switches the system to low-power decoupling.

Related: dec2blank Blank amplifier associated with second decoupler
rcvroff Turn off receiver
rcvron Turn on receiver

Related: dec3blank Blank amplifier associated with third decoupler
rcvroff Turn off receiver
rcvron Turn on receiver

Related: dps_show Draw delay or pulses in a sequence for graphical display
hsdelay Delay specified time with possible homospoil pulse
incdelay Real time incremental delay 
initdelay Initialize incremental delay 
vdelay Delay with fixed timebase and real time count 

Related: status Draw delay or pulses in a sequence for graphical display



Chapter 3. Pulse Sequence Statement Reference

174 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

divn Divide integer values 

Syntax: divn(vi,vj,vk) 
codeint vi; /* real-time variable for dividend */
codeint vj; /* real-time variable for divisor */
codeint vk; /* real-time variable for quotient */

Description: Sets the integer value vk equal to vi divided by vj. Any remainder is ignored.

Arguments: vi is the dividend, vj is the divisor, and vk is the quotient. All three are real-
time variables (v1 to v14, oph, etc.).

Examples: divn(v2,v3,v4); 

dps_off Turn off graphical display of statements

Syntax: dps_off() 

Examples: Turns off dps display of statements. Pulse statements following dps_off are 
not shown in the graphical display.

dps_on Turn on graphical display of statements

Syntax: dps_on() 

Description: Turns on dps display of statements. Pulse statements following dps_on are 
shown in the graphical display.

dps_show Draw delay or pulses in a sequence for graphical display

Syntax: (1) dps_show("delay",time)
double time; /* delay in sec */

Syntax: (2) dps_show("pulse",channel,label,width)
char *channel; /* "obs", "dec”, "dec2",or "dec3" */
char *label; /* text label selected by user */
double width; /* pulse length in sec */

Syntax: (3) dps_show("shaped_pulse",channel,label,width)
char *channel; /* "obs", "dec”, "dec2",or "dec3" */

Related: add Add integer values
assign Assign integer values
dbl Double an integer value
decr Decrement an integer value
hlv Half the value of an integer
incr Increment an integer value
mod2 Find integer value modulo 2
mod4 Find integer value modulo 4
modn Find integer value modulo n 
mult Multiply integer values 
sub Subtract integer values

Related: dps_on Turn on graphical display of statements
dps_show Draw delay or pulses in a sequence for graphical display
dps_skip Skip graphical display of next statement

Related: dps_off Turn off graphical display of statements
dps_show Draw delay or pulses in a sequence for graphical display
dps_skip Skip graphical display of next statement



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 175

char *label; /* text label selected by user */
double width; /* pulse length in sec */

Syntax: (4) dps_show("simpulse",label_of_obs,width_of_obs, 
label_of_dec,width_of_dec) 

char *label_of_obs; /* text label selected by user */
double width_of_obs; /* pulse length in sec */
char *label_of_dec; /* text label selected by user */
double width_of_dec; /* pulse length in sec */

Syntax: (5) dps_show("simshaped_pulse",label_of_obs, 
width_of_obs,label_of_dec,width_of_dec) 

char *label_of_obs; /* text label selected by user */
double width_of_obs; /* pulse length in sec */
char *label_of_dec; /* text label selected by user */
double width_of_dec; /* pulse length in sec */

Syntax: (6) dps_show("sim3pulse",label_of_obs,width_of_obs, 
label_of_dec,width_of_dec,label_of_dec2, 
width_of_dec2) 

char *label_of_obs; /* text label selected by user */
double width_of_obs; /* pulse length in sec */
char *label_of_dec; /* text label selected by user */
double width_of_dec; /* pulse length in sec */
char *label_of_dec2; /* text label selected by user */
double width_of_dec2; /* pulse length in sec */

Syntax: (7) dps_show("sim3shaped_pulse",label_of_obs, 
width_of_obs,label_of_dec,width_of_dec, 
label_of_dec2,width_of_dec2) 

char *label_of_obs; /* text label selected by user */
double width_of_obs; /* pulse length in sec */
char *label_of_dec; /* text label selected by user */
double width_of_dec; /* pulse length in sec */
char *label_of_dec2; /* text label selected by user */
double width_of_dec2; /* pulse length in sec */

Syntax: (8) dps_show("zgradpulse",value,delay) 
double value; /* amplitude of gradient on z channel */
double delay; /* length of gradient in sec */

Syntax: (9) dps_show("rgradient",channel,value) 
char channel; /* 'X', 'x', 'Y', 'y', 'Z', or 'z' */
double value; /* amplitude of gradient amplifier */

Syntax: (10) dps_show("vgradient",channel,intercept, 
slope,mult) 

char channel; /* gradient channel 'x', 'y' or 'z' */
int intercept; /* initial gradient level */
int slope; /* gradient increment */
codeint mult; /* real-time variable */

Syntax: (11) dps_show("shapedgradient",pattern,width,amp, 
channel,loops,wait) 

char *pattern; /* name of shape text file */
double width; /* length of pulse */
double amp; /* amplitude of pulse */
char channel; /* gradient channel 'x', 'y', or 'z' */
int loops; /* number of loops */
int wait; /* WAIT or NOWAIT */

Syntax: (12) dps_show("shaped2Dgradient",pattern,width,amp, 
channel,loops,wait,tag) 



Chapter 3. Pulse Sequence Statement Reference

176 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

char *pattern; /* name of shape text file */
double width; /* length of pulse */
double amp; /* amplitude of pulses */
char channel; /* gradient channel 'x', 'y', or 'z' */
int loops; /* number of loops */
int wait; /* WAIT or NOWAIT */
int tag; /* unique number for gradient element */

Description: Draws for dps graphical display the pulses, lines, and labels related to the 
statement (if it exists) given as the first argument. 

• Syntax 1 draws a line to represent a delay. 

• Syntax 2 draws a pulse picture and display a label underneath the picture.

• Syntax 3 draws the picture of a shaped pulse and displays a label 
underneath the picture. 

• Syntax 4 draws observe and decoupler pulses at the same time. 

• Syntax 5 draws a shaped pulse for observe and decoupler channels at the 
same time. 

• Syntax 6 draws observe, decoupler, and second decoupler pulses at the 
same time. 

• Syntax 7 draws a shaped pulse for observe, decoupler, and the second 
decoupler channels at the same time. 

• Syntax 8 draws a pulse on the z channel. 

• Syntax 9 draws a pulse on the specified channel. 

• Syntax 10 draws a gradient picture. 

• Syntax 11 draws a shaped pulse on a specified channel. 

• Syntax 12 draws a shaped pulse on a specified channel. For an explanation 
of the arguments (delay, shapedpulse, etc.), see the corresponding 
entry in this reference.

Examples: dps_show("delay",d1); 
dps_show("pulse","obs","obspulse",p1); 
dps_show("pulse","dec","pw",pw); 
dps_show("shaped_pulse","obs","shaped",p1*2); 
dps_show("shaped_pulse","dec2","gauss",pw); 
dps_show("simpulse","obs_pulse",p1,"dec_pulse",p2); 
dps_show("simshaped_pulse","gauss",p1,"gauss",p2); 
dps_show("sim3pulse","p1",p1,"p2",p2,"p1*2",p1*2); 
dps_show("zgradpulse",123.0,d1); 
dps_show("rgradient",'x',1234.0); 
dps_show("vgradient",'x',0,2000,v10); 
dps_show("shapedgradient","sinc",1000.0,3000.0, \ 

'y',1,NOWAIT); 
dps_show("shaped2Dgradient","square",1000.0, \ 

3000.0,'y',0,NOWAIT,1); 

Related: delay Delay for a specified time
dps_off Turn off graphical display of statements
dps_on Turn on graphical display of statements
dps_skip Skip graphical display of next statement
pulse Pulse observe transmitter with amplifier gating
rgradient Set gradient to specified level



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 177

dps_skip Skip graphical display of next statement

Syntax: dps_skip() 

Description: Skips dps display of the next statement. The statement following dps_skip 
is not shown in the graphical display.

E

elsenz Execute succeeding statements if argument is nonzero

Syntax: elsenz(vi) 
codeint vi; /* real-time variable tested as 0 or not */

Description: Placed between the ifzero and endif statements to execute succeeding 
statements if vi is nonzero. The elsenz statement can be omitted if it is not 
desired. It is also not necessary for any statements to appear between the 
ifzero and the elsenz, or between the elsenz and the endif statements. 

Arguments: vi is a real-time variable (v1 to v14, oph, etc.) tested for either being zero or 
non-zero.

n is the same value (1, 2, or 3) as used in the corresponding ifzero statement.

Examples: elsenz(v2); 
elsenz(1); 

shaped_pulse Perform shaped pulse on observe transmitter
shapedgradient Generate shaped gradient pulse
shaped2Dgradient Generate arrayed shaped gradient pulse
simpulse Pulse observe and decouple channels simultaneously
sim3pulse Pulse simultaneously on 2 or 3 rf channels
simshaped_pulse Perform simultaneous two-pulse shaped pulse
sim3shaped_pulse Perform a simultaneous three-pulse shaped pulse
vgradient Set gradient to a level determined by real-time math
zgradpulse Create a gradient pulse on the z channel

Related: dps_off Turn off graphical display of statements
dps_on Turn on graphical display of statements
dps_show Draw delay or pulses for graphical display of a sequence

Top A B C D E G H I L M O P R S T V W X Z

elsenz Execute succeeding statements if argument is nonzero 

endhardloop End hardware loop 

endif End execution started by ifzero or elsenz 

endloop End loop 

endmsloop End multislice loop 

endpeloop End phase-encode loop 



Chapter 3. Pulse Sequence Statement Reference

178 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

endhardloop End hardware loop 

Applicability: UNITYINOVA and MERCURYplus/-Vx
excluding MERCURYplus/-Vx with output boards have part numbers 00-
953529-0# where # is from 0 to 4.

Syntax: endhardloop() 

Description: Ends a hardware loop that was started by the starthardloop statement.

endif End execution started by ifzero or elsenz

Syntax: endif(vi) 
codeint vi; /* real-time variable to test if 0 or not */

Description: Ends conditional execution started by the ifzero and elsenz statements.

Arguments: vi is a real-time variable (v1 to v14, oph, etc.) that is tested for either being 
zero or non-zero.

n is the same value (1, 2, or 3) as used in the corresponding ifzero statement.

Examples: endif(v4); 
endif(2); 

endloop End loop

Syntax: endloop(index) 
codeint index; /* real-time variable */

Description: Ends a loop that was started by a loop statement. 

Arguments: index is a real-time variable used as a temporary counter to keep track of the 
number of times through the loop. It must not be altered by any statements 
within the loop.

n is the same value (1, 2, or 3) as used in the corresponding loop statement.

Examples: endloop(v2); 
endloop(2); 

endmsloop End multislice loop

Applicability:  UNITYINOVA systems.

Syntax: endmsloop(state,apv2) 
char state; /* compressed or standard */
codeint apv2; /* current counter value */

Description: Ends a loop that was started by a msloop statement. 

Related: endif End ifzero statement
ifzero Execute succeeding statements if argument is zero

Related: acquire Explicitly acquire data
starthardloop Start hardware loop 

Related: elsenz Execute succeeding statements if argument is nonzero
ifzero Execute succeeding statements if argument is zero

Related: loop Start loop



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 179

Arguments: state is either 'c' to designate the compressed mode, or 's' to designate 
the standard arrayed mode. It should be the same value that was in the state 
argument in the msloop loop that it is ending.

apv2 is a real-time variable that holds the current counter value. This variable 
should be the same variable that was in the apv2 counter variable in the 
msloop loop that it is ending.

Examples: endmsloop(seqcon[1],v12); 

endpeloop End phase-encode loop

Applicability: UNITYINOVA systems.

Syntax: endpeloop(state,apv2) 
char state; /* compressed or standard */
codeint apv2; /* current counter value */

Description: Ends a loop that was started by a peloop statement. 

Arguments: state is either 'c' to designate the compressed mode, or 's' to designate 
the standard arrayed mode. It should be the same value that was in the state 
argument in the peloop loop that it is ending.

apv2 is a real-time variable that holds the current counter value. This variable 
should be the same variable that was in the apv2 counter variable in the 
peloop loop that it is ending.

Examples: endpeloop(seqcon[1],v12); 

G

Related: msloop Multislice loop
endloop End loop
endpeloop End phase-encode loop

Related: peloop Phase-encode loop
endloop End loop
endmsloop End multi-slice loop

Top A B C D E G H I L M O P R S T V W X Z

gate Device gating (obsolete) 

getarray Get arrayed parameter values 

getelem Retrieve an element from a table 

getorientation Read image plane orientation 

getstr Look up value of string parameter 

getval Look up value of numeric parameter 

G_Delay Generic delay routine 

G_Offset Frequency offset routine 



Chapter 3. Pulse Sequence Statement Reference

180 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

gate Device gating (obsolete)

Description: Not supported. Replace gate statements as follows:
gate(DECUPLR,TRUE) by a decon() statement.
gate(DECUPLR,FALSE) by a decoff() statement.
gate(DECUPLR2,TRUE) by a dec2on() statement.
gate(DECUPLR2,FALSE) by a dec2off() statement.
gate(RXOFF,TRUE) by a rcvroff() statement.
gate(RXOFF,FALSE) by a rcvron() statement.
gate(TXON,FALSE) by a xmtroff() statement.
gate(TXON,TRUE) by a xmtron() statement.

getarray Get arrayed parameter values

Applicability: UNITYINOVA systems.

Syntax: number=getarray(parname,array) 
char *parname; /* parameter name */
double array[]; /* starting address of array */

Description: Retrieves all values of an arrayed parameter from the parameter set. It performs 
a sizeof on the array address to check for the maximum number of statements 
that the array can hold. The number of statements in the arrayed parameter 
parname is determined and returned by getarray as an integer. This 
statement is very useful when reading in parameter values for a global list of 
PSG statements such as poffset_list and position_offset_list.

When creating an acquisition parameter array that will be treated as lists, 
protection bit 8 (256) is set if the parameter is not to be treated as an arrayed 
acquisition parameter. An example of the pss parameter when compressing 
slice select portion of the acquisition is create(pss,real) 
setprotect(pss,on,256)

Arguments: number is an integer return argument that holds the number of values in 
parname.

parname is a numeric parameter, either arrayed or single value.

array is the starting address of an array of doubles.

Examples: double upss[256]; /* declare array upss */ 
int uns; 
uns = getarray(upss,upss); /* get values from upss */ 
poffset_list(upss,gss,uns,v12); 

getelem Retrieve an element from a table 

Syntax: getelem(table,index,dest) 

G_Power Fine power routine 

G_Pulse Generic pulse routine 

Related: create_delay_list Create table of delays
create_freq_list Create table of frequencies
create_offset_list Create table of offsets
poffset_list Set frequency from position list
position_offset_list Set frequency from position list



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 181

codeint table; /* table variable */
codeint index; /* variable for index to element */
codeint dest; /* variable for destination */

Description: Gets an element from a table. The element is identified by an index.

Arguments: table specifies the name of the table (t1 to t60).

index is a variable (v1 to v14, oph, ct, bsctr, or ssctr) that contains the 
index of the desired table element. Note that the first element of a table has an 
index of 0. For tables for which the autoincrement feature is set, the index 
argument is ignored and can be set to any variable name; each element in such 
a table is by definition always accessed sequentially.

dest is an variable (v1 to v14 and oph) into which the retrieved table element 
is placed.

Examples: getelem(t25,ct,v1); 

getorientationRead image plane orientation

Applicability:  UNITYINOVA systems with PFG modules. 

Syntax: <error_return => getorientation(&char1,

&char2,&char3,search_string) 
char *char1,*char2,*char3; /* program variable pointers */
char *search_string; /* pointer to search string */

Description: Reads in and processes the value of a string parameter used typically for control 
of magnetic field gradients. The source of the string value is typically a user-
created parameter available in the current parameters of the experiment used to 
initiate acquisition.

Arguments: error_return can contain the following values:

• error_return is set to zero if getorientation was successful in 
finding the parameter given in search_string and reading in the value 
of that parameter.

• error_return is set to –1 if search_string was not empty but it 
did not contain the correct characters.

• error_return is set to a value greater than zero if the procedure failed 
or if the string value is made up of characters other than n, x, y, and z. 

char1, char2, and char3 are user-created program variables of type char 
(single characters). The address operator (&) is used with these arguments to 
pass the address, rather than the values of these variables, to 
getorientation.

search_string is a literal string that getorientation will search for in 
the VnmrJ parameter set, i.e., the parameter name. For example, if 
search_string="orient", the value of parameter orient will be 
accessed. The value of the parameter should not exceed three characters and 
should only be made up of characters from the set n, x, y, and z.

Related: loadtable Load AP table elements from table text file
setautoincrement Set autoincrement attribute for a table 
setdivnfactor Set divn-return attribute and divn-factor for AP table 
setreceiver Associate the receiver phase cycle with a table 
settable Store an array of integers in a real-time AP table 



Chapter 3. Pulse Sequence Statement Reference

182 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

The message can’t find variable in tree aborts 
getorientation. This means there is no string associated with 
search_string or the parameter name cannot be found.

Examples: (1) pulsesequence()
{

...

char phase,read,slice;

...

getorientation(&read,&phase,&slice,"orient");

...

}

(2) pulsesequence()
{
...
char rd, ph, sl;
int error;
...
error=getorientation(&rd,&ph,&sl,”ort”);
...
}

getstr Look up value of string parameter

Syntax: getstr(parameter_name,internal_name) 
char *parameter_name; /* name of parameter */
char *internal_name; /* parameter value buffer name */

Description: Looks up the value of the string parameter parameter_name in the current 
experiment parameter list and introduces it into the pulse sequence in the 
variable internal_name. If parameter_name is not found in the current 
experiment parameter list, internal_name is set to the null string and PSG 
produces a warning message.

Arguments: parameter_name is a string parameter.

internal_name is any legitimate C variable name defined at the beginning 
of the pulse sequence as an array of type char with dimension MAXSTR.

Examples: getstr("xpol",xpol); 

getval Look up value of numeric parameter

Syntax: internal_name = getval(parameter_name) 
char *parameter_name; /* name of parameter */

Description: Looks up the value of the numeric parameter parameter_name in the current 
experiment parameter list and introduces it into the pulse sequence in the 
variable internal_name. If parameter_name is not found in the current 
experiment parameter list, internal_name is set to zero and PSG produces 
a warning message.

Arguments: parameter_name is a numeric parameter.

Related: shapedvgradient Dynamic variable shaped gradient function
rgradient Set gradient to specified level
vgradient Dynamic variable gradient function

Related: getval Look up value of numeric parameter



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 183

internal_name can be any legitimate C variable name that has been defined 
at the beginning of the pulse sequence as type double.

Examples: J=getval("J"); 
acqtime=getval("at"); 
delay(getval("mix")); 

G_Delay Generic delay routine 

Applicability: UNITYINOVA systems.

Syntax: G_Delay(DELAY_TIME,  d1, 
SLIDER_LABEL, NULL, 
SLIDER_SCALE, 1, 
SLIDER_MAX, 60, 
SLIDER_MIN, 0, 
SLIDER_UNITS, 1.0, 
0); 

Description: See the section “Generic Pulse Routine,” page 100.

G_Offset Frequency offset routine 

Applicability: UNITYINOVA systems.

Syntax: G_Offset(OFFSET_DEVICE, TODEV, 
OFFSET_FREQ, tof, 
SLIDER_LABEL, NULL, 
SLIDER_SCALE, 0, 
SLIDER_MAX, 1000, 
SLIDER_MIN, –1000, 
SLIDER_UNITS, 0, 
0); 

Description: See the section “Frequency Offset Subroutine,” page 101. 

G_Power Fine power routine 

Applicability: UNITYINOVA systems.

Syntax: G_Power(POWER_VALUE, tpwrf,
POWER_DEVICE, TODEV,
SLIDER_LABEL, NULL,
SLIDER_SCALE, 1,
SLIDER_MAX, 4095,
SLIDER_MIN, 0,
SLIDER_UNITS, 1.0,
0);

Description: See the section “Fine Power Subroutine,” page 103. 

G_Pulse Generic pulse routine 

Applicability: UNITYINOVA systems.

Syntax: G_Pulse(PULSE_WIDTH, pw, 
PULSE_PRE_ROFF, rof1, 
PULSE_POST_ROFF, rof2, 

Related: getstr Look up value of string parameter



Chapter 3. Pulse Sequence Statement Reference

184 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

PULSE_DEVICE, TODEV, 
SLIDER_LABEL, NULL, 
SLIDER_SCALE, 1, 
SLIDER_MAX, 1000, 
SLIDER_MIN, 0, 
SLIDER_UNITS, 1e–6, 
PULSE_PHASE, oph, 
0); 

Description: See “Generic Pulse Routine,” page 100.

H

 

hdwshiminit Initialize next delay for hardware shimming 

Applicability: UNITYINOVA systems.

Syntax: hdwshiminit() 

Description: Enables hardware shimming during the following delay or during the following 
presaturation pulse, defined as a power level change followed by pulse. 
hdwshiminit is not necessary for the first delay or presaturation pulse in a 
pulse sequence, which is automatically enabled for hardware shimming.

Examples: hdwshiminit();

delay(d2); 

/*hardware shim during d2 if hdwshim='y'*/

hdwshiminit();

obspower(satpwr);

rgpulse(satdly,v5, rof1, rof2);

/*hardware shim during satdly if hdwshim='p'*/ 

hlv Find half the value of an integer

Syntax: hlv(vi,vj) 
codeint vi; /* real-time variable for starting value */
codeint vj; /* real-time variable for 1/2 starting value */

Description: Sets vj equal to the integer part of one-half of vi.

Arguments: vi is the starting value, and vj is the integer part of one-half of the starting 
value. Both arguments much be real-time variables (v1 to v14, oph, etc.).

Examples: hlv(v2,v5); 

Top A B C D E G H I L M O P R S T V W X Z

hdwshiminit Initialize next delay for hardware shimming 

hlv Find half the value of an integer 

hsdelay Delay specified time with possible homospoil pulse 

Related: delay Delay for a specified time



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 185

hsdelay Delay specified time with possible homospoil pulse

Syntax: hsdelay(time) 
double time; /* delay in sec */

Description: Sets a delay for a specified number of seconds. If the homospoil parameter hs 
is set appropriately (see the definition of status), hsdelay inserts a 
homospoil pulse of length hst sec at the beginning of the delay.

Arguments: time specifies the length of the delay, in seconds.

Examples: hsdelay(d1); 
hsdelay(1.5e–3); 

I

 

Related: add Add integer values
assign Assign integer values
dbl Double an integer value
decr Decrement an integer value
divn Divide integer values 
incr Increment an integer value
mod2 Find integer value modulo 2
mod4 Find integer value modulo 4
modn Find integer value modulo n 
mult Multiply integer values 
sub Subtract integer values

Related: delay Delay for a specified time
incdelay Real time incremental delay 
initdelay Initialize incremental delay 
vdelay Delay with fixed timebase and real time count 

Top A B C D E G H I L M O P R S T V W X Z

idecpulse Pulse first decoupler transmitter with IPA 

idecrgpulse Pulse first decoupler with amplifier gating and IPA 

idelay Delay for a specified time with IPA 

ifzero Execute succeeding statements if argument is zero 

incdelay Set real-time incremental delay 

incgradient Generate dynamic variable gradient pulse 

incr Increment an integer value 

indirect Set indirect detection 

init_rfpattern Create rf pattern file 

init_gradpattern Create gradient pattern file 

init_vscan Initialize real-time variable for vscan statement 

initdelay Initialize incremental delay 

initparms_sis Initialize parameters for spectroscopy imaging sequences 



Chapter 3. Pulse Sequence Statement Reference

186 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

idecpulse Pulse first decoupler transmitter with IPA 

Applicability: UNITYINOVA systems 

Syntax: idecpulse(width,phase,label) 
double width; /* pulse width in sec */
codeint phase; /* real-time variable for phase */
char *label; /* slider label in acqi */

Description: Functions the same as the decpulse statement but generates interactive 
parameter adjustment (IPA) information when gf or go('acqi') is typed. 
idecpulse is the same as decpulse if go is typed.

Arguments: width is the duration, in seconds, of the pulse.

phase is the phase of the pulse. It must be a real-time variable (v1 to v14, 
oph, etc.) or a real-time constant (zero, one, etc.).

label is the short character string to be given to the slider when displayed in 
the Acquisition window (acqi program).

Examples: idecpulse(pp,v1,"decpul"); 
idecpulse(pp,v2,"pp"); 

idecrgpulse Pulse first decoupler with amplifier gating and IPA 

Applicability: UNITYINOVA systems 

Syntax: idecrgpulse(width,phase,RG1,RG2,label) 
double width; /* pulse width in sec */
codeint phase; /* real-time variable for phase */
double RG1; /* gating delay before pulse in sec */
double RG2; /* gating delay after pulse in sec */
char *label; /* slider label in acqi */

Description: Works similar to the decrgpulse statement but generates interactive 
parameter adjustment (IPA) information when gf or go('acqi') is typed. 
idecrgpulse is the same as decrgpulse if go is typed.

Arguments: width is the duration, in seconds, of the decoupler transmitter pulse.

phase sets the decoupler transmitter phase. The value must be a real-time 
variable.

RG1 is the time, in seconds, that the amplifier is gated on prior to the start of the 
pulse.

RG2 is the time, in seconds, that the amplifier is gated off after the end of the 
pulse.

initval Initialize a real-time variable to specified value 

iobspulse Pulse observe transmitter with IPA 

ioffset Change offset frequency with IPA 

ipulse Pulse observe transmitter with IPA 

ipwrf Change transmitter or decoupler fine power with IPA 

ipwrm Change transmitter or decoupler lin. mod. power with IPA 

irgpulse Pulse observe transmitter with IPA 

Related: decpulse Pulse the decoupler transmitter



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 187

label is the short character string to be given to the slider when displayed in 
the Acquisition window (acqi program).

Examples: idecrgpulse(pp,v5,rof1,rof2,"decpul"); 
idecrgpulse(pp,v4,rof1,rof2,"pp"); 

idelay Delay for a specified time with IPA 

Applicability: UNITYINOVA systems 

Syntax: idelay(time,label) 
double time; /* delay in sec */
char *label; /* slider label in acqi */

Description: Works similar to the delay statement but generates interactive parameter 
adjustment (IPA) information when gf or go('acqi') is entered. idelay 
is the same as delay if go is entered.

Arguments: time is the length of the delay, in seconds.

label is the short character string to be given to the slider when displayed in 
the Acquisition window (acqi program).

Examples: idelay(d1,"delay"); 
idelay(d1,"d1"); 

ifzero Execute succeeding statements if argument is zero 

Syntax: ifzero(vi) 
codeint vi; /* real-time variable to check for zero */

Description: Executes succeeding statements if vi is zero. If vi is non-zero and an elsenz 
statement exits before the next endif statement, execution moves to the 
elsenz statement. Conditional execution ends when the endif statement is 
reached. It is not necessary for any statements to appear between the ifzero 
and the elsenz or between the elsenz and the endif statements. 

Arguments: vi is a real-time variable (v1 to v14, oph, etc.) that is tested for being either 
zero or non-zero.

n is the same value (1, 2, or 3) as used in the corresponding elsenz or endif 
statements.

Examples: mod2(ct,v1); /* v1=010101... */ 
ifzero(v1); /* test if v1 is zero */ 

pulse(pw,v2); /* execute if v1 is zero */ 
delay(d3); /* execute if v1 is zero */ 

elsenz(v1); /* test if v1 is non-zero */ 
pulse(2.0*pw,v2); /* execute if v1 is non-zero */ 
delay(d3/2.0); /* execute if v1 is non-zero */ 

endif(v1); /* end conditional execution */ 

Related: decrgpulse Pulse decoupler transmitter with amplifier gating

Related: delay Delay for a specified time

Related: elsenz Execute succeeding statements if argument is nonzero
endif End ifzero statement
initval Initialize real-time variable to specified value



Chapter 3. Pulse Sequence Statement Reference

188 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

incdelay Set real-time incremental delay 

Applicability: UNITYINOVA systems.

Syntax: incdelay(count,index) 
codeint count; /* real-time variable */
int index; /* time increment: DELAY1, DELAY2, etc. */

Description: Enables real-time incremental delays. Before incdelay can be used to set a 
delay, an associated initdelay statement must be executed to initialize the 
time increment and delay index.

Arguments: count is a real-time variable (ct, v1 to v14, etc.) that multiplies the 
time_increment (initialized by the initdelay statement) to set the delay 
time.

index is DELAY1, DELAY2, DELAY3, DELAY4, or DELAY5. It identifies 
which time increment is being multiplied by count to equal the delay. 

Examples: incdelay(ct,DELAY1); 
incdelay(v3,DELAY2); 

incgradient Generate dynamic variable gradient pulse

Applicability: UNITYINOVA systems.

Syntax: incgradient(channel,base,inc1,inc2,inc3,mult1,mult2,mult3) 
char channel; /* gradient 'x', 'y', or 'z' */
int base; /* base value */
int inc1,inc2,inc3; /* increments */
codeint mult1,mult2,mult3; /* multipliers */

Description: Provides a dynamic variable gradient pulse controlled using the AP math 
functions. It drives the chosen gradient to the level defined by the formula:

level=base+inc1*mult1+inc2*mult2+inc3*mult3

with increments inc1, inc2, inc3 and multipliers mult1, mult2, mult3.

The range of the gradient level is –32767 to +32767. If the requested level lies 
outside the legal range, it is clipped at the appropriate boundary value. Note that, 
while each variable in the level formula must fit in a 16-bit integer, partial 
sums and products in the calculation are done with double-precision 32-bit 
integers.

The action of the gradient after the use of the incgradient statement is 
controlled by the gradient power supply and optional gradient compensation 
boards. The gradient level is ramped at the maximum slew rate to the value 
requested by incgradient. This fact becomes a concern when using the 
incgradient statement in a loop with a delay statement to produce a 
modulated gradient. The delay statement should be sufficiently long so as to 
allow the gradient to reach the assigned value, that is,

The following error messages are possible:

• Bad gradient specified: channel is caused by the channel 
character evaluating to other than 'x', 'y', or 'z'; or by being a string.

Related: delay Delay for a specified time
hsdelay Delay with possible homospoil pulse
initdelay Initialize incremental delay 
vdelay Delay with fixed timebase and real time count 

delay
new_level old_level–

full_scale
--------------------------------------------------------- risetime×≥



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 189

• mult[i] illegal RT variable: multiplier_i is caused by 
mult1, mult2, or mult3 having a value other than a AP math variable, 
v1 to v14.

Arguments: channel is an expression that evaluates to the character 'x', 'y', or 'z'. 
(do not confuse characters 'x', 'y' and 'z' with strings "x", "y" and "z".) 

base and inc1, inc2, inc3 are the base value and increments used in the 
formula for determining the gradient level. 

mult1, mult2, mult3 are the multipliers used in the gradient level formula. 
These arguments should be math variables, v1 to v14. Note that tables (t1 to 
t60) are not allowed in this statement.

Examples: See the program inctst.c 

incr Increment an integer value

Syntax: incr(vi) 
codeint vi; /* real-time variable to increment */

Description: Increments by 1 the integer value given by vi (i.e, vi=vi+1).

Arguments: vi is the integer to be incremented, It must be a real-time variable (v1 to v14, 
oph, etc.).

Examples: incr(v4); 

indirect Set indirect detection

Applicability: No longer useful to any system using VNMR 5.2 or later.

Syntax: indirect() 

Description: Starting with VNMR 5.2, if tn is 'H1' and dn is not 'H1', the software 
automatically uses the decoupler as the observe channel and the broadband 
channel as the decoupler channel.

init_rfpattern Create rf pattern file

Applicability: UNITYINOVA systems.

Related: getorientation Read image plane orientation
rgradient Set gradient to specified level
shapedgradient Provide shaped gradient pulse to gradient channel
shaped2Dgradient Generate arrayed shaped gradient pulse
shapedvgradient Generate dynamic variable shaped gradient pulse
vgradient Generate dynamic variable gradient pulse

Related: add Add integer values
assign Assign integer values
dbl Double an integer value
decr Decrement an integer value
divn Divide integer values 
hlv Half the value of an integer
mod2 Find integer value modulo 2
mod4 Find integer value modulo 4
modn Find integer value modulo n 
mult Multiply integer values 
sub Subtract integer values



Chapter 3. Pulse Sequence Statement Reference

190 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Syntax: init_rfpattern(pattern,rfpat_struct,nsteps) 
char *pattern; /* name of .RF text file */
RFpattern *rfpat_struct; /* pointer to struct RFpattern */
int nsteps; /* number of steps in pattern */
typedef struct _RFpattern {

double phase; /* phase of pattern step */
double amp; /* amplitude of pattern step */
double time: /* length of pattern step in sec */

} RFpattern

Description: Creates and defines rf patterns within a pulse sequence. The patterns can be 
created by any algorithm as long as each pattern step is correctly put into the 
rfpat_struct argument. The number of steps in the pattern also has to be 
furnished as an argument. init_rfpattern saves the created pattern as a 
pattern file (with the suffix .RF appended to the name) in the user’s 
shapelib directory. This statement does not have any return value.

Arguments: pattern is the name of the pattern file (without the .RF suffix).

rfpat_struct is the rf structure that contains the pattern.

nsteps is the number of steps in the pattern.

Examples: #include "standard.h"
pulsesequence()
{
int nsteps;
RFpattern pulse1[512], pulse2[512];
Gpattern gshape[512];
...
nsteps = 0;
for (j=0; j<256; j++) {

pulse1[j].phase = (double)j*0.5;
pulse1[j].amp = (double)j*2;
pulse1[j].time = 1.0;
nsteps = nsteps +1;

}
init_rfpattern(p1pat,pulse1,nsteps);
nsteps = 512;
for (j=0; j<nsteps; j++) {

gshape[j].amp = 32767.0*sin((double)j/50.0);
gshape[j].time = 1.0;

}
init_gradpattern("gpat",gshape,nsteps);
...
shaped_pulse(p1pat,p1,v1,rof1,rof1);
...
shapedgradient("gpat",.01, 16000.0, 'z', 1, WAIT);
...
} 

Related: init_gradpattern Create gradient pattern file
pulse Pulse observe transmitter with amplifier gating
shaped_pulse Perform shaped pulse on observe transmitter
shapedgradient Provide shaped gradient pulse to gradient channel
simpulse Pulse observe and decouple channels simultaneously
simshaped_pulse Perform simultaneous two-pulse shaped pulse



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 191

init_gradpattern Create gradient pattern file

Applicability: UNITYINOVA systems.

Syntax: init_gradpattern(pattern_name,gradpat_struct,nsteps) 
char *pattern; /* name of .GID pattern file */
Gpattern *gradpat_struct; /* pointer to struct Gpattern */
int nsteps; /* number of steps in pattern */
typedef struct _Gpattern{

double amp; /* amplitude of pattern step */
double time; /* pattern step length in sec */

} Gpattern 

Description: Creates and defines gradient patterns within a pulse sequence. The patterns can 
be created by any algorithm as long as each pattern step is correctly put into the 
gradpat_struct argument. The number of steps in the pattern also has to 
be furnished as an argument. init_gradpattern saves the created pattern 
as a pattern file (with a .GRD suffix is appended to the name) in the user’s 
shapelib directory. This statement has no return value.

Arguments: pattern is the name of the pattern file (without the .GRD suffix). 

gradpat_struct is the gradient structure that contains the pattern.

nsteps is the number of steps in the pattern.

Examples: See the example for the init_rfpattern statement. 
 

initdelay Initialize incremental delay 

Applicability: UNITYINOVA systems 

Syntax: initdelay(time_increment,index) 
double time_increment; /* time increment in sec */
int index; /* time increment: DELAY1, etc. */

Description: Initializes a time increment delay and its associated delay index. This statement 
must be executed before an incdelay statement can set an incremental delay. 
A maximum of five incremental delays (set by the index argument) can be 
defined in one pulse sequence.

Arguments: time_increment is the time increment, in seconds, that is multiplied by the 
count argument (set in the incdelay statement) for the delay time.

index is DELAY1, DELAY2, DELAY3, DELAY4, or DELAY5, and identifies 
which time increment is being initialized. 

Examples: initdelay(1.0/sw,DELAY1); 
initdelay(1.0/sw1,DELAY2); 

Related: pulse Pulse observe transmitter with amplifier gating
shaped_pulse Perform shaped pulse on observe transmitter
simpulse Pulse observe and decouple channels simultaneously
simshaped_pulse Perform simultaneous two-pulse shaped pulse

Related: delay Delay for a specified time
hsdelay Delay with possible homospoil pulse
incdelay Real time incremental delay 
vdelay Delay with fixed timebase and real time count 



Chapter 3. Pulse Sequence Statement Reference

192 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

initparms_sis Initialize parameters for spectroscopy imaging sequences

Applicability: Imaging systems; however, this statement will be obsoleted in future versions 
of VnmrJ.

Syntax: void initparms_sis() 

Description: Sets the default state of the receiver to ON so that the receiver is enabled for 
explicit acquisitions. The original purpose of initparms_sis was to 
initialize the standard imaging parameters in imaging sequences, but starting 
with VNMR 5.3, initialization of these parameters has been folded into PSG.

Examples: /* To upgrade older SIS sequences for Vnmr 5.1+: */
/* insert initparms_sis() after the variable */
/* declarations and update ‘griserate’ variable. */
...
/* EXTERNAL TRIGGER */
double rcvry,hold;
initparms_sis();
griserate = trise/gradstepsz;
/**[3.2] PARAMETER READ IN FROM EXPERIMENT *******/
... 

initval Initialize a real-time variable to specified value

Syntax: initval(number,vi) 
double number; /* value to use for initialization */
codeint vi; /* variable to be initialized */

Description: Initializes a real- time variable with a real number. The real number input is 
rounded off and placed in the variable vi. Unlike add, sub, etc., initval is 
executed once and only once at the start of a non-arrayed 1D experiment or at 
the start of each increment in an n-dimensional or an arrayed experiment, not at 
the start of each transient; this must be taken into account in pulse sequence 
programming, as shown in the example.

Arguments: number is the real number, from –32768.0 to 32767.0, to be placed in the real-
time variable. Entering a value less than –32768.0 (after rounding off) results in 
using –32768, and entering a value greater than 32767.0 (after rounding off) 
results in using 32767.

vi is the real-time variable (v1 to v14, etc.).to be initialized 

Examples: (1) initval(nt,v8); 

(2) ifzero(ct);
assign(v8,v7);

elsenz(ct);
decr(v7);

endif(ct); 

iobspulse Pulse observe transmitter with IPA 

Applicability: UNITYINOVA systems 

Syntax: iobspulse(label) 
char *label; /* slider label in acqi */

Related: elsenz Execute succeeding statements if argument is nonzero
ifzero Execute succeeding statements if argument is zero
loop Start loop



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 193

Description: Functions the same as obspulse except iobspulse generates interactive 
parameter adjustment (IPA) information when gf or go('acqi') is entered. 
If go is entered, iobspulse is the same as obspulse.

Arguments: label is the short character string to be given to the slider when displayed in 
the Acquisition window (acqi program).

Examples: iobspulse("pulse"); 
iobspulse("pw"); 

ioffset Change offset frequency with IPA 

Applicability: UNITYINOVA systems 

Syntax: ioffset(frequency,device,label) 
double frequency; /* offset frequency */
int device; /* OBSch, DECch, DEC2ch, or DEC3ch */
char *label; /* slider label in acqi */

Description: Functions the same as offset except that ioffset generates interactive 
parameter adjustment (IPA) information when gf or go('acqi') is entered. 
If go is entered, ioffset is the same as offset.

Arguments: frequency is the new offset frequency of the device specified.

device is OBSch (observe transmitter) or DECch (first decoupler). device 
can also be DEC2ch (second decoupler) or DEC3ch (third decoupler).

label is the short character string to be given to the slider when displayed in 
the Acquisition window (acqi program).

Examples: ioffset(tof,OBSch,"tof"); 

ipulse Pulse observe transmitter with IPA 

Applicability: UNITYINOVA systems 

Syntax: ipulse(width,phase,label) 
double width; /* pulse length in sec */
codeint phase; /* real-time variable for phrase */
char *label; /* slider label in acqi */

Description: Functions the same as pulse(width,phase) statement except that 
ipulse generates interactive parameter adjustment (IPA) information when 
gf or go('acqi') is entered. If go is entered, ipulse is the same as 
pulse.

Arguments: width specifies the duration, in seconds, of the pulse.

phase sets the phase of the pulse. The value must be a real-time variable (v1 
to v14, oph, etc.).

label is the short character string to be given to the slider when displayed in 
the Acquisition window (acqi program).

Examples: ipulse(pw,v4,"pulse"); 
ipulse(pw,v5,"pw"); 

Related: obspulse Pulse observe transmitter with amplifier gating

Related: offset Change offset frequency of transmitter or decoupler

Related: pulse Pulse observe transmitter with amplifier gating



Chapter 3. Pulse Sequence Statement Reference

194 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

ipwrf Change transmitter or decoupler fine power with IPA 

Applicability: UNITYINOVA systems 

Syntax: ipwrf(power,device,label) 
double power; /* new fine power level */
int device; /* OBSch, DECch, DEC2ch, DEC3ch */
char *label; /* slider label in acqi */

Description: Functions the same as rlpwrf statement except that ipwrf generates 
interactive parameter adjustment (IPA) information when gf or go('acqi') 
is entered. If go is entered, ipwrf is ignored by the pulse sequence; use 
rlpwrf for this purpose. Do not execute rlpwrf and ipwrf together 
because they cancel each other's effect.

Arguments: power is the new fine power level. It can range from 0.0 to 4095.0 (60 dBon 
UNITYINOVA, about 6 dB on other systems).

device is OBSch (observe transmitter) or DECch (first decoupler). For the 
UNITYINOVA onlydevice can also be DEC2ch (second decoupler) or DEC3ch 
(third decoupler).

label is the short character string to be given to the slider when displayed in 
the Acquisition window (acqi program).

Examples: ipwrf(powr,OBSch,"fpower"); 
ipwrf(2000.0,DECch,"dpwrf"); 

ipwrm Change transmitter or decoupler lin. mod. power with IPA 

Applicability: UNITYINOVA systems 

Syntax: ipwrm(value,device,label) 
double value; /* new linear modulator power level */
int device; /* OBSch, DECch, DEC2ch, or DEC3ch */
char *label; /* slider label in acqi */

Description: Functions the same as rlpwrm statement except that ipwrm generates 
interactive parameter adjustment (IPA) information when gf or go('acqi') 
is entered. If go is entered, ipwrm is ignored by the pulse sequence; use 
rlpwrm for this purpose. Do not execute rlpwrm and ipwrm together as they 
cancel each other's effect.

Arguments: value is the new linear modulator power level. It can range from 0.0 to 
4095.0(60 dB on UNITYINOVA, about 6 dB on other systems).

device is OBSch (observe transmitter) or DECch (first decoupler). On the 
UNITYINOVA only device can also be DEC2ch (second decoupler) or DEC3ch 
(third decoupler).

label is the short character string to be given to the slider when displayed in 
the Acquisition window (acqi program).

Examples: ipwrm(power,OBSch,"fpower"); 
ipwrm(2000.0,DECch,"dpwrm"); 

irgpulse Pulse observe transmitter with IPA 

Applicability: UNITYINOVA systems 

Syntax: irgpulse(width,phase,RG1,RG2,label) 

Related: rlpwrf Set transmitter or decoupler fine power

Related: rlpwrm Set transmitter or decoupler linear modulator power



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 195

double width; /* pulse length in sec */
codeint phase; /* real-time variable for phase */
double RG1; /* gating delay before pulse in sec */
double RG2; /* gating delay after pulse in sec */
char *label; /* slider label in acqi */

Description: Functions the same as the rgpulse statement except that irgpulse 
generates interactive parameter adjustment (IPA) information when gf or 
go('acqi') is entered. If go is entered, irgpulse is the same as 
rgpulse.

Arguments: width specifies the duration, in seconds, of the observe transmitter pulse.

phase sets the observe transmitter phase. It must be a real-time variable.

RG1 is the time, in seconds, the amplifier is gated on prior to the start of the 
pulse.

RG2 is the time, in seconds, the amplifier is gated off after the end of the pulse.

label is the short character string to be given to the slider when displayed in 
the Acquisition window (acqi program).

Examples: irgpulse(pw,v3,rof1,rof2,"rgpul"); 
irgpulse(pw,v7,rof1,rof2,"pw"); 

L

lk_hold Set lock correction circuitry to hold correction

Syntax: lk_hold() 

Description: Makes the lock correction circuitry hold the correction to the z0 constant, 
thereby ignoring any influence on the lock signal such as gradient or pulses at 
2H frequency. The correction remains in effect until the statement lk_sample 
is called or until the end of an experiment. If an acquisition is aborted, the lock 
correction circuitry will be reset to sample the lock signal.

lk_sample Set lock correction circuitry to sample lock signal

Syntax: lk_sample() 

Related: rgpulse Pulse observe transmitter with amplifier gating

Top A B C D E G H I L M O P R S T V W X Z

lk_hold Set lock correction circuitry to hold correction 

lk_sample Set lock correction circuitry to sample lock signal 

loadtable Load table elements from table text file 

loop Start loop 

loop_check Check that number of FIDs is consistent with number of slices, etc. 



Chapter 3. Pulse Sequence Statement Reference

196 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Description: Makes the lock correction circuitry continuously sample the lock signal and 
correct z0 with the time constant as set by the parameter lockacqtc. The 
correction remains in effect until the statement lk_hold is called.

loadtable Load table elements from table text file 

Syntax: loadtable(file) 
char *file; /* name of table file */

Description: Loads table elements from a table file (a UNIX text file). It can be called 
multiple times within a pulse sequence but make sure that the same table name 
is not used more than once within all the table files accessed by the sequence. 
Table values can be greater than, equal to, or less than zero.

Arguments: file is the name of a table file in a user’s private tablib or in the system 
tablib.

Examples: loadtable("tabletest"); 

loop Start loop

Syntax: loop(count,index) 
codeint count /* number of times to loop */
codeint index /* real-time variable to use during loop */

Description: Starts a loop to execute statements within the pulse sequence. The loop is ended 
by the endloop statement. 

Arguments: count is a real-time variable used to specify the number of times through the 
loop. count can be any positive number, including zero. 

index is a real-time variable used as a temporary counter to keep track of the 
number of times through the loop. The value must not be altered by any 
statements within the loop. 

n is the same value (1, 2, or 3) as used in the corresponding endloop 
statement.

Examples: (1) initval(5.0,v1); /* set first loop count */
loop(v1,v10);
dbl(ct,v2); /* set second loop count */

loop(v2,v9);
rgpulse(p1,v1,0.0,0.0);

endloop(v9);
delay(d2);

endloop(v10); 

(2) loop(2,5.0,v9); 

Related: getelem Retrieve an element from a table
setautoincrement Set autoincrement attribute for a table 
setdivnfactor Set divn-return attribute and divn-factor for AP table 
setreceiver Associate the receiver phase cycle with a table 
settable Store an array of integers in a real-time AP table 

Related: initval Initialize real-time variable to specified value
endloop End loop
msloop Multislice loop



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 197

loop_check Check that number of FIDs is consistent with number of slices, etc.

Syntax: loop_check

Description: Checks that the number of FIDs in a compressed acquisition (nf) is consistent 
with the number of slices (ns), number of echoes (ne), number of phase 
encoding steps in the various dimensions (nv, nv2, nv3), and seqcon. 

M

 

magradient Simultaneous gradient at the magic angle

Applicability: UNITYINOVA systems.

Syntax: magradient(gradlvl) 
double gradlvl; /* gradient amplitude in G/cm */

Description: Applies a simultaneous gradient on the x, y, and z axes at the magic angle to B0. 
Information from a gradient table is used to scale and set values correctly. The 
gradients are left at the given levels until they are turned off. To turn off the 
gradients, add another magradient statement with gradlvl set to zero or 
insert the statement zero_all_gradients. 

Arguments: gradlvl is the gradient amplitude, in gauss/cm.

Examples: magradient(3.0);
pulse(pw,oph);
delay(0.001 - pw);
zero_all_gradients(); 

Top A B C D E G H I L M O P R S T V W X Z

magradient Simultaneous gradient at the magic angle 

magradpulse Gradient pulse at the magic angle 

mashapedgradient Simultaneous shaped gradient at the magic angle 

mashapedgradpulse Simultaneous shaped gradient pulse at the magic angle 

mod2 Find integer value modulo 2 

mod4 Find integer value modulo 4 

modn Find integer value modulo n 

msloop Multislice loop 

mult Multiply integer values 

Related: magradpulse Simultaneous gradient pulse at the magic angle
mashapedgradient Simultaneous shaped gradient at the magic angle
mashapedgradpulse Simultaneous shaped gradient pulse at the magic angle
vagradient Variable angle gradient
vagradpulse Variable angle gradient pulse
vashapedgradient Variable angle shaped gradient
vashapedgradpulse Variable angle shaped gradient pulse
zero_all_gradients Zero all gradients



Chapter 3. Pulse Sequence Statement Reference

198 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

magradpulse Gradient pulse at the magic angle

Applicability: UNITYINOVA systems.

Syntax: magradpulse(gradlvl,gradtime) 
double gradlvl; /* gradient amplitude in G/cm */
double gradtime; /* gradient time in sec */

Description: Applies a simultaneous gradient pulse on the x, y, and z axes at the magic angle 
to B0. Information from a gradient table is used to scale and set values correctly.

magradpulse differs from magradient in that the gradients are turned off 
after gradtime seconds. Use magradpulse if there are no other actions 
while the gradients are on. magradient is used if there are actions to be 
performed while the gradients are on. 

Arguments: gradlvl is the gradient pulse amplitude, in gauss/cm.

gradtime is the time, in seconds, to apply the gradient.

Examples: magradpulse(3.0,0.001); 

mashapedgradient Simultaneous shaped gradient at the magic angle

Applicability: UNITYINOVA systems.

Syntax: mashapedgradient(pattern,gradlvl,gradtime,loops,wait) 
char *pattern; /* name of gradient shape text file */
double gradlvl; /* gradient amplitude in G/cm */
double gradtime; /* gradient time in seconds */
int loops; /* number of waveform loops */
int wait; /* WAIT or NOWAIT*/

Description: Applies a simultaneous gradient with shape pattern and amplitude 
gradlvl on the x, y, and z axes at the magic angle to B0. Information is used 
from a gradient table to scale and set the values correctly. 
mashapedgradient leaves the gradients at the given levels until they are 
turned off. To turn off the gradients, add another mashapedgradient 
statement with gradlvl set to zero or include the zero_all_gradients 
statement. 

mashapedgradpulse differs from mashapedgradient in that the 
gradients are turned off after gradtime seconds. mashapedgradient is 
used if there are actions to be performed while the gradients are on. 
mashapedgradpulse is best when there are no other actions required while 
the gradients are on.

Arguments: pattern is the name of a text file describing the shape of the gradient. The 
text file is located in $vnmrsystem/shapelib or in the user directory 
$vnmruser/shapelib.

gradlvl is the gradient amplitude, in gauss/cm.

gradtime is the gradient application time, in seconds.

Related: magradient Simultaneous gradient at the magic angle
mashapedgradient Simultaneous shaped gradient at the magic angle
mashapedgradpulse Simultaneous shaped gradient pulse at the magic angle
vagradient Variable angle gradient
vagradpulse Variable angle gradient pulse
vashapedgradient Variable angle shaped gradient
vashapedgradpulse Variable angle shaped gradient pulse
zero_all_gradients Zero all gradients



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 199

loops is a value from 0 to 255 to loop the selected waveform. Gradient 
waveforms do not use this field, and loops is set to 0.

wait is a keyword, either WAIT or NOWAIT, that selects whether or not a delay 
is inserted to wait until the gradient is completed before executing the next 
statement.

Examples: mashapedgradient("ramp_hold",3.0,trise,0,NOWAIT);
pulse(pw,oph);
delay(0.001-pw-2*trise);
mashapedgradient("ramp_down",3.0,trise,0,NOWAIT); 

mashapedgradpulse Simultaneous shaped gradient pulse at the magic angle

Applicability: UNITYINOVA systems.

Syntax: mashapedgradpulse(pattern,gradlvl,gradtime,theta,ph) 
char *pattern; /* name of gradient shape text file */
double gradlvl; /* gradient amplitude in G/cm */
double gradtime; /* gradient time in sec */

Description: Applies a simultaneous gradient with shape pattern and amplitude 
gradlvl on the x, y, and z axes at the magic angle to B0. 
mashapedgradpulse assumes that the gradient pattern zeroes the gradients 
at its end and so it does not explicitly zero the gradients. Information from a 
gradient table is used to scale and set values correctly.

mashapedgradpulse is used if there are no other actions required when the 
gradients are on. mashapedgradient is used if there are actions to be 
performed while the gradients are on.

Arguments: pattern is the name of a text file describing the shape of the gradient. The 
text file is located in $vnmrsystem/shapelib or in the user directory 
$vnmruser/shapelib.

gradlvl is the gradient amplitude, in gauss/cm.

gradtime is the gradient application time, in seconds.

Examples: mashapedgradpulse("hsine",3.0, 0.001); 

Related: magradient Simultaneous gradient at the magic angle
magradpulse Simultaneous gradient pulse at the magic angle
mashapedgradpulse Simultaneous shaped gradient pulse at the magic angle
vagradient Variable angle gradient
vagradpulse Variable angle gradient pulse
vashapedgradient Variable angle shaped gradient
vashapedgradpulse Variable angle shaped gradient pulse 
zero_all_gradients Zero all gradients

Related: magradient Simultaneous gradient at the magic angle
magradpulse Simultaneous gradient pulse at the magic angle
mashapedgradient Simultaneous shaped gradient at the magic angle
vagradient Variable angle gradient
vagradpulse Variable angle gradient pulse
vashapedgradient Variable angle shaped gradient
vashapedgradpulse Variable angle shaped gradient pulse
zero_all_gradients Zero all gradients



Chapter 3. Pulse Sequence Statement Reference

200 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

mod2 Find integer value modulo 2

Syntax: mod2(vi,vj) 
codeint vi; /* variable for starting value */
codeint vj; /* variable for result */

Description: Sets the value of vj equal to vi modulo 2.

Arguments: vi is the starting integer value and vj is the value of vi modulo 2 (the 
remainder after vi is divided by 2). Both arguments must be real-time variables 
(v1 to v14, etc.).

Examples: mod2(v3,v5); 

mod4 Find integer value modulo 4

Syntax: mod4(vi,vj) 
codeint vi; /* variable for starting value */
codeint vj; /* variable for result */

Description: Sets the value of vj equal to vi modulo 4.

Arguments: vi is the starting integer value and vj is the value of vi modulo 4 (the 
remainder after vi is divided by 4). Both arguments must be real-time variables 
(v1 to v14, etc.).

Examples: mod4(v3,v5); 

modn Find integer value modulo n 

Syntax: modn(vi,vj,vk) 
codeint vi; /* real-time variable for starting value */
codeint vj; /* real-time variable for modulo number */
codeint vk; /* real-time variable for result */

Description: Sets the value of vk equal to vi modulo vj. 

Arguments: vi is the starting integer value, vj is the modulo value, and vk is vi modulo 
vj (the remainder after vi is divided by vj). All arguments must be real-time 
variables (v1 to v14, etc.).

Examples: modn(v3,v5,v4); 

msloop Multislice loop

Applicability: UNITYINOVA systems.

Syntax: msloop(state,max_count,apv1,apv2) 
char state; /* compressed or standard */
double max_count; /* initializes apv1 */

Related: add Add integer values
assign Assign integer values
dbl Double an integer value
decr Decrement an integer value
divn Divide integer values 
hlv Half the value of an integer
incr Increment an integer value
mod4 Find integer value modulo 4
modn Find integer value modulo n 
mult Multiply integer values 
sub Subtract integer values



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 201

codeint apv1; /* maximum count */
codeint apv2; /* current counter value */

Description: Provides a sequence-switchable loop that can use real-time variables in what is 
known as a compressed loop or it can use the standard arrayed features of PSG. 
In imaging sequences, msloop uses the second character of the seqcon string 
parameter (seqcon[1]) for the state argument. msloop is used in 
conjunction with endmsloop.

Arguments: state is either 'c' to designate the compressed mode, or 's' to designate 
the standard arrayed mode.

max_count initializes apv1. If state is 'c', this value should equal the 
number of slices. If state is 's', this value should be 1.0.

apv1 is real-time variable that holds the maximum count.

apv2 is a real-time variable that holds the current counter value. If state is 
'c', apv2 counts from 0 to max_count-1. If state is 's', apv2 is set 
to zero. 

Examples: msloop(seqcon[1],ns,v11,v12);
...
poffset_list(pss,gss,ns,v12);
...
acquire(np,1.0/sw);
...

endmsloop(seqcon[1],v12); 

mult Multiply integer values 

Syntax: mult(vi,vj,vk) 
codeint vi; /* real-time variable for first factor */
codeint vj; /* real-time variable for second factor */
codeint vk; /* real-time variable for product */

Description: Sets the value of vk equal to the product of the integer values vi and vj.

Arguments: vi is an integer value, vj is another integer value, and vk is the product of vi 
and vj. All arguments must be real-time variables (v1 to v14 etc.).

Examples: mult(v3,v5,v4); 

Related: endmsloop End multislice loop
loop Start loop
peloop Phase-encode loop

Related: add Add integer values
assign Assign integer values
dbl Double an integer value
decr Decrement an integer value
divn Divide integer values 
hlv Half the value of an integer
incr Increment an integer value
mod2 Find integer value modulo 2
mod4 Find integer value modulo 4
modn Find integer value modulo n 
sub Subtract integer values



Chapter 3. Pulse Sequence Statement Reference

202 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

O

 

obl_gradient Execute an oblique gradient

Applicability: UNITYINOVA systems.

Syntax: obl_gradient(level1,level2,level3) 
double level1,level2,level3; /* gradient values in G/cm */

Description: Defines an oblique gradient with respect to the magnet reference frame. This 
statement is basically the same as the statement oblique_gradient except 
that obl_gradient uses the parameters psi, phi, and theta in the 
parameter set rather than setting them directly. It has no return value.

The pulse sequence generation aborts if the DACs on a particular gradient are 
overrun after the angles and amplitude have been resolved.

Arguments: level1, level2, level3 are gradient values, in gauss/cm.

Examples: obl_gradient(0.0,0.0,gss); 
obl_gradient(gro,0.0,0.0); 

oblique_gradient Execute an oblique gradient

Applicability: UNITYINOVA systems.

Syntax: oblique_gradient(level1,level2,level3,psi,phi,theta) 
double level1,level2,level3; /* gradient values in G/cm */

Top A B C D E G H I L M O P R S T V W X Z

obl_gradient Execute an oblique gradient 

oblique_gradient Execute an oblique gradient 

obl_shapedgradient Execute a shaped oblique gradient 

obl_shaped3gradient Execute a shaped oblique gradient

oblique_shapedgradient Execute a shaped oblique gradient 

obsblank Blank amplifier associated with observe transmitter 

obsoffset Change offset frequency of observe transmitter 

obspower Change observe transmitter power level, lin. amp. systems 

obsprgoff End programmable control of observe transmitter 

obsprgon Start programmable control of observe transmitter 

obspulse Pulse observe transmitter with amplifier gating 

obspwrf Set observe transmitter fine power 

obsstepsize Set step size for observe transmitter 

obsunblank Unblank amplifier associated with observe transmitter 

offset Change offset frequency of transmitter or decoupler 

offsetlist Calculate list of frequency offsets for observe channel from 
position array and gradient value

offsetglist Calculate list of frequency offsets for observe channel from 
position array and gradient value array



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 203

double psi,phi,theta; /* Euler angles in degrees */

Description: Defines an oblique gradient with respect to the magnet reference frame. It has 
no return value. The gradient amplitudes (level1,level2,level3) are 
put through a coordinate transformation matrix using psi, phi, and theta to 
determine the actual x, y, and z gradient levels. These are then converted into 
DAC values and set with their corresponding gradient statements. For more 
coordinate system information, refer to the manual VnmrJ Imaging, User 
Guide.

The pulse sequence generation aborts if the DACs on a particular gradient are 
overrun after the angles and amplitude have been resolved.

Arguments: level1, level2, level3 are gradient values, in gauss/cm.

psi is an Euler angle, in degrees, with a range of –90 to +90.

phi is an Euler angle, in degrees, with the range of –180 to +180.

theta is an Euler angle, in degrees, with the range –90 to +90.

Examples: oblique_gradient(gvox1,0,0,vpsi,vphi,vtheta); 

obl_shapedgradient Execute a shaped oblique gradient

Applicability: UNITYINOVA systems.

Syntax: UNITYINOVA Systems
obl_shapedgradient(pat1,pat2,pat3,

width,lvl1,lvl2,lvl3,loops,wait) 
char *pat1,*pat2,*pat3; /* names of gradient shapes */
double width; /* gradient length in sec */
double lvl1,lvl2,lvl3; /* gradient values in G/cm */
int loops; /* times to loop waveform */
int wait; /* WAIT or NOWAIT */

Description: Defines a shaped oblique gradient with respect to the magnet reference frame.

The pulse sequence generation aborts if the DACs on a particular gradient are 
overrun after the angles and amplitude have been resolved.

Arguments: pat, pat1, pat2, and pat3 are names of gradient shapes. 

width is the length of the gradient, in seconds.

level1, level2, level3 are gradient values, in gauss/cm.

loops is the number of times, from 1 to 255, to loop the waveform.

wait is a keyword, either WAIT or NOWAIT, that selects whether or not a 
delay is inserted to stop until the gradient has completed before executing the 
next statement. 
 

Examples: UNITYINOVA systems
obl_shapedgradient("ramp_hold","","",

trise,gro,0.0,0.0,1,NOWAIT);

oblique_shapedgradient Execute a shaped oblique gradient

Applicability: UNITYINOVA systems.

Syntax: oblique_shapedgradient(pat1,pat2,pat3,width,lvl1,

lvl2,lvl3,psi,phi,theta,loops,wait) 
char *pat1,*pat2,*pat3; /* names of gradient shapes */
double width; /* gradient length in sec */



Chapter 3. Pulse Sequence Statement Reference

204 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

double lvl1,lvl2,lvl3; /* gradient values in G/cm */
double psi,phi,theta; /* Euler angles in degrees */
int loops; /* times to loop waveform */
int wait; /* WAIT or NOWAIT */

Description: Defines a shaped oblique gradient with respect to the magnet reference frame. 
The gradient patterns (pat1,pat2,pat3) and the gradient amplitudes 
(lvl1,lvl2,lvl3) are put through a coordinate transformation matrix using 
psi, phi, and theta to determine the actual x, y, and z gradient levels. 

pat1 and lvl1 correspond to the logical read-out axis.
pat2 and lvl2 correspond to the logical phase-encode axis.
pat3 and lvl3 correspond to the logical slice-select axis.

Patterns are read in; scaled according to their respective amplitudes; rotated into 
x, y, and z patterns; rescaled; converted to DAC values; and written out to 
temporary files shapedgradient_x, shapedgradient_y, and 
shapedgradient_z in the user’s shapelib directory; and set with their 
corresponding shapedgradient statements. If an axis does not have a 
pattern, use empty quotes ("") to indicate a null pattern. The patterns must have 
the same number of points, or an integral multiple number of points.

The pulse sequence generation aborts if the DACs on a particular gradient are 
overrun after the angles and amplitude have been resolved.

Arguments: pat1, pat2, pat3 are names of gradient shapes. 

width is the length of the gradient, in seconds.

lvl1, lvl2, lvl3 are gradient values, in gauss/cm.

psi is an Euler angle, in degrees, with a range of –90 to +90.

phi is an Euler angle, in degrees, with the range –180 to +180.

theta is an Euler angle, in degrees, with the range –90 to +90.

loops is the number of times, from 1 to 255, to loop the waveform.

wait is a keyword, either WAIT or NOWAIT, that selects whether or not a 
delay is inserted to stop until the gradient has completed before executing the 
next statement.

WAIT or NOWAIT adds extra pulse sequence programming flexibility for 
imaging experiments. It allows performing other pulse sequence events during 
the gradient pulse. Because oblique_shapedgradient “talks” to the x, y, 
and z gradient axes, NOWAIT cannot be used to produce simultaneous oblique 
gradient pulses, even if they are orthogonal. In the following example,

oblique_shapedgradient(patx,tdelta,gdiff,

0.0,0.0, 0.0,0.0,0.0, 1,NOWAIT); 

oblique_shapedgradient(paty,tdelta 0.0,gdiff,

0.0,0.0,0.0,0.0, 1,NOWAIT); 

oblique_shapedgradient(patz,tdelta,0.0,0.0,gdiff,

0.0,0.0,0.0, 1,WAIT); 

the first two function calls set up all three gradients. In both cases, after a few 
microseconds, the gradient hardware is reset by the third function call, which is 
the only call fully executed. Even though the third call is executed, expect 
negative side-effects from the first two suppressed calls.

Examples: oblique_shapedgradient("ramp_hold","","",trise,gvox1,

0,0,vpsi,vphi,vtheta,1,NOWAIT); 



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 205

obsblank Blank amplifier associated with observe transmitter

Syntax: obsblank() 

Description: Disables the amplifier for the observe transmitter. This statement is generally 
used after a call to obsunblank. 

obsoffset Change offset frequency of observe transmitter

Syntax: obsoffset(frequency) 
double frequency; /* offset frequency */

Description: Changes the offset frequency, in Hz, of the observe transmitter (parameter tof). 
It is functionally the same as offset(frequency,OBSch).

• Systems with rf types A or B: the frequency typically changes between 10 
to 30 μs, but 100 μs is automatically inserted into the sequence by the 
offset statement so that the time duration of offset is constant and not 
frequency-dependent. 

• Systems with rf type C: which necessarily have PTS frequency 
synthesizers, the frequency shift time is 15.05 μs for standard, non-latching 
synthesizers and 21.5 μs for the latching synthesizers with the overrange/
under-range option.

• UNITYINOVA, the frequency shift time is 4 μs.

• MERCURYplus/-Vx, this statement inserts a 86.4-μs delay, although the 
actual switching of the frequency takes 1 μs.

• Systems with an Output board (and only those systems): all offset 
statements by default are preceded internally by a 0.2-μs delay (see the 
apovrride statement for more details).

Arguments: frequency is the offset frequency desired for the observe channel.

Examples: obsoffset(to); 

obspower Change observe transmitter power level

Applicability: UNITYINOVA systems with linear amplifiers.

Syntax: obspower(power) 
double power; /* new coarse power level */

Description: Changes observe transmitter power. This statement is functionally the same as 
rlpower(value,OBSch).

Arguments: power sets the power level by assuming values from 0 (minimum power) to 63 
(maximum power) on channels with a 63-dB attenuator or from –16 (minimum 
power) to 63 (maximum power) on channels with a 79-dB attenuator.

Related: decunblank Unblank amplifier associated with first decoupler
obsunblank Unblank amplifier associated with observe transmitter
rcvroff Turn off receiver
rcvron Turn on receiver

Related: decoffset Change offset frequency of first decoupler
dec2offset Change offset frequency of second decoupler
dec3offset Change offset frequency of third decoupler
offset Change offset frequency of transmitter or decoupler



Chapter 3. Pulse Sequence Statement Reference

206 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

CAUTION: Be careful when using values of obspower greater than 49 (about 2 
watts). Performing continuous decoupling or long pulses at power 
levels greater than this can result in damage to the probe. Use config 
to set a safety maximum for the tpwr, dpwr, dpwr2, and dpwr3 
parameters.

obsprgoff End programmable control of observe transmitter 

Applicability: UNITYINOVA systems with a waveform generator on the observe transmitter 
channel.

Syntax: obsprgoff() 

Description: Terminates any programmable phase and amplitude control on the observe 
transmitter started by the obsprgon statement under waveform control.

obsprgon Start programmable control of observe transmitter 

Applicability: UNITYINOVA systems with a waveform generator on the observe transmitter 
channel.

Syntax: obsprgon(pattern,90_pulselength,tipangle_resoln) 
char *pattern; /* name of .DEC text file */
double 90_pulselength; /* 90-deg pulse length, in sec */
double tipangle_resoln; /* tip-angle resolution */

Description: Executes programmable phase and amplitude control on the observe transmitter 
under waveform control. It returns the number of 12.5-ns ticks (as an integer 
value) in one cycle of the decoupling pattern. Explicit gating of the observe 
transmitter with xmtron and xmtroff is generally required. Arguments can 
be variables (which requires appropriate getval and getstr statements) to 
permit changes via parameters (see second example).

Arguments: pattern is the name of the text file (without the .DEC file suffix) in the 
shapelib directory that stores the decoupling pattern.
90_pulselength is the pulse duration, in seconds, for a 90° tip angle on the 
observe transmitter.
tipangle_resoln is the resolution in tip-angle degrees to which the 
decoupling pattern is stored in the waveform generator. 

Examples: obsprgon("waltz16",pw90,90.0); 

obsprgon("modulation",pp90,dres);

ticks=obsprgon("waltz16",pw90,90.0); 

obspulse Pulse observe transmitter with amplifier gating

Syntax: obspulse() 

Description: A special case of the rgpulse(width,phase,RG1,RG2) statement, in 
which width is preset to pw and phase is preset to oph. Thus, obspulse 

Related: decpower Change first decoupler power
dec2power Change second decoupler power
dec3power Change third decoupler power
rlpower Change power level

Related: decprgon Start programmable decoupling on first decoupler 
dec2prgon Start programmable decoupling on second decoupler 
obsprgoff End programmable control of observe transmitter 



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 207

is exactly equivalent to rgpulse(pw,oph,rof1,rof2). Note that 
obspulse has nothing whatsoever to do with data acquisition, despite its 
name. Except in special cases, data acquisition begins at the end of the pulse 
sequence.

obspwrf Set observe transmitter fine power 

Applicability: UNITYINOVA systems.

Syntax: obspwrf(power) 
double power; /* new fine power level for OBSch */

Description: Changes observe transmitter fine power. This statement is functionally the same 
as rlpwrf(value,OBSch).

Arguments: value is the fine power desired.

Examples: obspwrf(4.0); 

obsstepsize Set step size for observe transmitter

Syntax: obsstepsize(step_size) 
double step_size; /* small-angle phase step size */

Description: Sets the step size of the observe transmitter. This statement is functionally the 
same as stepsize(base,OBSch).

Arguments: step_size is the phase step size desired and is a real number or a variable. 

Examples: obsstepsize(30.0); 

obsunblank Unblank amplifier associated with observe transmitter

Syntax: obsunblank() 

Description: Explicitly enables the amplifier for the observe transmitter. obsunblank is 
generally followed by a call to obsblank.

Related: pulse Pulse observe transmitter with amplifier gating 
rgpulse Pulse observe transmitter with amplifier gating
simpulse Pulse observe, decoupler channels simultaneously
sim3pulse Simultaneous pulse on 2 or 3 rf channels 

Related: decpwrf Set first decoupler fine power
dec2pwrf Set second decoupler fine power
dec3pwrf Set third decoupler fine power
rlpwrf Set transmitter or decoupler fine power

Related: decstepsize Set step size of first decoupler
dec2stepsize Set step size of second decoupler
dec3stepsize Set step size of third decoupler
stepsize Set small-angle phase step size,

Related: decblank Blank amplifier associated with first decoupler
decunblank Unblank amplifier associated with first decoupler
obsblank Blank amplifier associated with observe transmitter
rcvroff Turn off receiver
rcvron Turn on receiver



Chapter 3. Pulse Sequence Statement Reference

208 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

offset Change offset frequency of transmitter or decoupler

Use obsoffset, decoffset, dec2offset, or dec3offset, as appropriate, in 
place of this statement.

Applicability:

Syntax: offset(frequency,device) 
double frequency; /* frequency offset */
int device; /* OBSch, DECch, DEC2ch, or DEC3ch */

Description: Changes the offset frequency of the observe transmitter (parameter tof), first 
decoupler (dof), second decoupler (dof2), or third decoupler (dof3). 

Arguments: frequency is the offset frequency desired.

device is OBSch (observe transmitter) or DECch (first decoupler). device 
can also be DEC2ch (second decoupler) or DEC3ch (third decoupler).

Examples: offset(do2,DECch);
offset(to2,OBSch);
delay(d2);
offset(tof,OBSch);

P

Related: decoffset Change offset frequency of first decoupler
dec2offset Change offset frequency of second decoupler
dec3offset Change offset frequency of third decoupler
obsoffset Change offset frequency of observe transmitter
ioffset Change offset frequency with IPA 

Top A B C D E G H I L M O P R S T V W X Z

pbox_ad180 Generate adiabatic 180 deg. shapes using Pbox 

pbox_mix Generate mixing shapes using Pbox. 

pboxHT_F1 Generate arbitrary Hadamard encoded shapes in F1 using Pbox 

pboxHT_F1e Generate Hadamard encoded excitation shapes in F1 using Pbox 

pboxHT_F1i Generate Hadamard encoded inversion shapes in F1 using Pbox 

pboxHT_F1s Generate Hadamard encoded sequential inversion shapes 

pboxHT_F1r Generate Hadamard encoded refocusing shapes in F1 using Pbox 

pe_gradient Oblique gradient with phase encode in one axis 

pe2_gradient Oblique gradient with phase encode in two axes 

pe3_gradient Oblique gradient with phase encode in three axes 

pe_shapedgradient Oblique shaped gradient with phase encode in one axis 

pe2_shapedgradient Oblique shaped gradient with phase encode in two axes 

pe3_shapedgradient Oblique shaped gradient with phase encode in three axes 

peloop Phase-encode loop 

phase_encode_gradient Oblique gradient with phase encode in one axis 



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 209

pbox_ad180 Generate adiabatic 180 deg. shapes using Pbox

Applicability: UNITYINOVA systems.

Syntax: pbox_ad180(waveform, ref_pw90, ref_pwr) 
char *waveform;
double ref_pw90;
int ref_pwr;

Description: Generates adiabatic 180 degree pulses for Pbox experiments.

Arguments: The pulse shape is defined by the argument waveform containing the 
waveform name as defined by the cawurst inversion pulse. The ref_pwr is the 
reference power level in dB and ref_pw90 is the reference 90 degree pulse 
duration in microseconds.

Examples: static shape ad180; 
ad180 = pbox_ad180("ad180", pwx, pwxlvl); 

pbox_mix Generate mixing shapes using Pbox.

Applicability: UNITYINOVA systems.

Syntax: pbox_mix(mix_pattern, waveform, mix_pwr, ref_pw90, 
ref_pwr) 
char *mix_pattern, *waveform; 
double ref_pw90;
int mix_pwr, ref_pwr;

Description: Generates decoupling mixing pulses for Pbox experiments.

Arguments: The pulse shape is defined by the argument waveform containing the 
waveform name as defined in the wavelib/mixing directory by the 
mix_pattern parameter. The mix_pwr parameter is the mixing pattern 
power level in dB. The ref_pwr parameter is the reference power level in dB 
and ref_pw90 is the reference 90 degree pulse duration in us.

Examples: static shape hhmix;
hhmix = pbox_mix("HHmix", "DIPSI2", mixpwr, pw*compH, 
tpwr);

phase_encode3_gradient Oblique gradient with phase encode in three axes 

phase_encode_shapedgradient Oblique shaped gradient with PE in one axis 

phase_encode3_shapedgradient Oblique shaped gradient with PE in three axes 

poffset (Inova system) Set frequency based on position 

poffset_list Set frequency from position list 

position_offset Set frequency based on position 

position_offset_list Set frequency from position list 

power Change power level 

psg_abort Abort the PSG process 

pulse Pulse observe transmitter with amplifier gating 

putCmd Send a command to VnmrJ from a pulse sequence 

pwrf Change transmitter or decoupler fine power 

pwrm Change transmitter or decoupler linear modulator power 



Chapter 3. Pulse Sequence Statement Reference

210 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

pboxHT_F1 Generate arbitrary Hadamard encoded shapes in F1 using Pbox

Applicability: UNITYINOVA systems.

Syntax: pboxHT_F1(waveform, ref_pw90, ref_pwr, type) 
char *waveform, type; 
double ref_pw90; 
int ref_pwr; 

Description: Generates arbitrary pulses for Hadamard experiments according to the 
Hadamard matrix size defined by ni. 

Arguments: The pulse shape is defined by the argument waveform containing the waveform 
name as defined in the appropriate wavelib/ directory. The ref_pwr is the 
reference power level in dB and ref_pw90 is the reference 90 degree pulse 
duration in µs. Parameter type defines the shape type and can take values of 
'e' (excitation pulses), 'i' (inversion pulses), 'r' (refocusing pulses) and 
's' (sequential inversion pulses). 

Examples: pboxHT_F1(“rsnob”, pwH*compH, pwHlvl, 'r'); 

pboxHT_F1e Generate Hadamard encoded excitation shapes in F1 using Pbox

Applicability: UNITYINOVA systems.

Syntax: pboxHT_F1e(waveform, ref_pw90, ref_pwr) 
char *waveform; 
double ref_pw90; 
int ref_pwr; 

Description: Generates excitation pulses for Hadamard experiments according to the 
Hadamard matrix size defined by ni. The pulse element is applied with zero 
phase if the Hadamard matrix element is ‘+’ and with 180-degree phase if the 
Hadamard matrix element is ‘–‘. 

Arguments: The pulse shape is defined by the argument waveform containing the 
waveform name as defined in wavelib. The ref_pwr is the reference power 
level in dB and ref_pw90 is the reference 90 degree pulse duration in µs. 

Examples: pboxHT_F1e(“esnob”, pwH*compH, pwHlvl); 

pboxHT_F1i Generate Hadamard encoded inversion shapes in F1 using Pbox

Applicability: UNITYINOVA systems.

Syntax: pboxHT_F1i(waveform, ref_pw90, ref_pwr) 
char *waveform; double ref_pw90; 
int ref_pwr; 

Related: pboxHT_F1e Generate Hadamard encoded excitation shapes in F1 using Pbox
pboxHT_F1s Generate Hadamard encoded sequential inversion shapes in F1 

using Pbox
pboxHT_F1r Generate Hadamard encoded refocusing shapes in F1 using Pbox
pboxHT_F1i Generate Hadamard encoded inversion shapes in F1 using Pbox

Related: pboxHT_F1i Generate Hadamard encoded inversion shapes in F1 using Pbox
pboxHT_F1s Generate Hadamard encoded sequential inversion shapes in F1 

using Pbox
pboxHT_F1r Generate Hadamard encoded refocusing shapes in F1 using Pbox
pboxHT_F1 Generate Hadamard encoded arbitrary shapes in F1 using Pbox



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 211

Description: Generates inversion pulses for Hadamard experiments according to the 
Hadamard matrix size defined by ni. The pulses elements are encoded 
according to the ‘on/off’ principle, where the pulse element is applied if the 
Hadamard matrix element is ‘+’ and is not applied if the Hadamard matrix 
element is ‘–’.

Arguments: The pulse shape is defined by the argument waveform containing the waveform 
name as defined in wavelib. The ref_pwr is the reference power level in dB 
and ref_pw90 is the reference 90 degree pulse duration in µs. 

Examples: pboxHT_F1i(“gaus180”, pwC*compC, pwClvl); 

pboxHT_F1s Generate Hadamard encoded sequential inversion shapes

Applicability: UNITYINOVA systems.

Syntax: pboxHT_F1s(waveform, ref_pw90, ref_pwr) 
char *waveform; 
double ref_pw90; 
int ref_pwr; 

Description: Generates inversion pulses for Hadamard experiments according to the 
Hadamard matrix size defined by ni. The pulse elements are encoded 
sequentially (inversion of individual sites is carried out sequentially rather than 
simultaneously) according to the ‘on/off’ principle, where the pulse element is 
applied if the Hadamard matrix element is ‘+’ and is not applied if the 
Hadamard matrix element is ‘–’. 

Arguments: The pulse shape is defined by the argument waveform containing the waveform 
name as defined in wavelib. The ref_pwr is the reference power level in 
dB and ref_pw90 is the reference 90 degree pulse duration in µs. 

Examples: pboxHT_F1s(“gaus180”, pwC*compC, pwClvl); 

pboxHT_F1r Generate Hadamard encoded refocusing shapes in F1 using Pbox

Applicability: UNITYINOVA systems.

Syntax: pboxHT_F1r(waveform, ref_pw90, ref_pwr) 
char *waveform; 
double ref_pw90; 
int ref_pwr; 

Description: Generates refocusing pulses for Hadamard experiments according to the 
Hadamard matrix size defined by ni. The pulse element is applied with zero 
phase if the Hadamard matrix element is ‘+’ and with 90-degree phase if the 
Hadamard matrix element is ‘–’. 

Related: pboxHT_F1e Generate Hadamard encoded excitation shapes in F1 using Pbox
pboxHT_F1s Generate Hadamard encoded sequential inversion shapes in F1 

using Pbox
pboxHT_F1r Generate Hadamard encoded refocusing shapes in F1 using Pbox
pboxHT_F1 Generate Hadamard encoded arbitrary shapes in F1 using Pbox

Related: pboxHT_F1e Generate Hadamard encoded excitation shapes in F1 using Pbox
pboxHT_F1i Generate Hadamard encoded inversion shapes in F1 using Pbox
pboxHT_F1r Generate Hadamard encoded refocusing shapes in F1 using Pbox
pboxHT_F1 Generate Hadamard encoded arbitrary shapes in F1 using Pbox



Chapter 3. Pulse Sequence Statement Reference

212 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

The pulse shape is defined by the argument waveform containing the waveform name as 
defined in wavelib/refocusing directory. The ref_pwr is the reference power 
level in dB and ref_pw90 is the reference 90 degree pulse duration in µs. 

Examples: pboxHT_F1r(“rsnob”, pwH*compH, pwHlvl); 

pe_gradient Oblique gradient with phase encode in one axis

Applicability: NOVA systems.

Syntax: pe_gradient(stat1,stat2,stat3,step2,vmult2) 
double stat1,stat2,stat3; /* static gradient components */
double step2; /* variable gradient stepsize */
codeint vmult2; /* real-time math variable */

Description: Oblique gradient levels with one phase encode. The phase encode gradient is 
associated with the second axis of the logical frame. This corresponds to the 
convention read, phase, slice for the functions of the logical frame axes. 

On UNITYINOVA systems pe_gradient is same as the statement 
phase_encode_gradient except the Euler angles are read from the 
default set for imaging. lim2 is automatically set to half the nv (number of 
views) where nv is usually the number of phase encode steps.

Pulse sequence generation aborts if the DACs on a particular gradient are 
overrun after the angles and amplitude have been resolved.

Arguments: stat1, stat2, stat3 are values, in gauss/cm, of the components for the 
static portion of the gradient in the logical reference frame.

step2 is the value, in gauss/cm, of the component for the step size change in 
the variable portion of the gradient.

vmult2 is a real-time math variable (v1 to v14, ct, zero, one, two, 
three) or reference to tables (t1 to t60), whose associated values vary 
dynamically in a manner controlled by the user.

Examples: pe_gradient(0.0,–sgpe*nv/2.0,gss,sgpe,v6); 

pe2_gradient Oblique gradient with phase encode in two axes

Applicability: UNITYINOVA systems.

Syntax: pe2_gradient(stat1,stat2,stat3,step2,step3,vmult2,vmult3) 
double stat1,stat2,stat3; /* static gradient components */
double step2,step3; /* variable gradient stepsize */
codeint vmult2,vmult /* real-time math variables */

Description: Sets only two oblique phase encode gradients. 

Pulse sequence generation aborts if the DACs on a particular gradient are 
overrun after the angles and amplitude have been resolved.

Arguments: stat1, stat2, stat3 are values, in gauss/cm, of the components for the 
static portion of the gradient in the logical reference frame.

Related: pboxHT_F1e Generate Hadamard encoded excitation shapes in F1 using Pbox
pboxHT_F1i Generate Hadamard encoded inversion shapes in F1 using Pbox
pboxHT_F1s Generate Hadamard encoded sequential inversion shapes in F1 

using Pbox
pboxHT_F1 Generate Hadamard encoded arbitrary shapes in F1 using Pbox

Related: phase_encode_gradient Oblique gradient with phase encode in 1 axis



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 213

step2, step3 are values, in gauss/cm, of the components for the step size 
change in the variable portion of the gradient.

vmult2, vmult3 are real-time math variables (v1 to v14, ct, zero, one, 
two, three) or references to tables (t1 to t60), whose associated values vary 
dynamically in a manner controlled by the user.

Examples: pe2_gradient(gro,sgpe*nv/2.0,sgpe2*nv2/2.0,

sgpe,sgpe2,v6,v8); 

pe3_gradient Oblique gradient with phase encode in three axes

Applicability: UNITYINOVA systems.

Syntax: pe3_gradient(stat1,stat2,stat3,step1,step2,step3,

vmult1,vmult2,vmult3) 
double stat1,stat2,stat3; /* static gradient components */
double step1,step2,step3; /* gradient step sizes */
codeint vmult1,vmult2,vmult3; /* real-time variables */

Description: Three oblique phase encode gradients. 

pe_gradient is same as phase_encode3_gradient except the Euler 
angles are read from the default set for imaging. lim1, lim2, and lim3 are 
set to nv/2, nv2/2, and nv3/2, respectively. 

Pulse sequence generation aborts if the DACs on a particular gradient are 
overrun after the angles and amplitude have been resolved.

Arguments: stat1, stat2, stat3 are values, in gauss/cm, of the components for the 
static portion of the gradient in the logical reference frame.

step1, step2, step3 are values, in gauss/cm, of the components for the step 
size change in the variable portion of the gradient.

vmult1, vmult2, vmult3 are real-time math variables (v1 to v14, ct, 
zero, one, two, three) or references to AP tables (t1 to t60) whose 
associated values vary dynamically in a manner controlled by the user.

Examples: pe3_gradient(gro,sgpe*nv/2.0,sgpe2*nv2/2.0,0.0, \ 
sgpe,sgpe2,zero,v6,v8); 

pe_shapedgradient Oblique shaped gradient with phase encode in one axis

Applicability: UNITYINOVA systems.

Syntax: UNITYINOVA systems 
pe_shapedgradient(pattern,width,

stat1,stat2,stat3,step2,vmult2,wait,tag)
char *pattern; /* name of gradient shape file */
double width; /* width of gradient in sec */
double stat1,stat2,stat3; /* static gradient components */
double step2; /* variable gradient step size */
codeint vmult2; /* real-time math variable */
int wait; /* WAIT or NOWAIT */
int tag; /* tag to a gradient element */

Description: Static oblique shaped gradient one phase encode shaped gradient. 

Pulse sequence generation aborts if the DACs on a particular gradient are 
overrun after the angles and amplitude have been resolved.

Related: pe3_gradient Oblique gradient with phase encode in 3 axes



Chapter 3. Pulse Sequence Statement Reference

214 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

On UNITYINOVA systems pe_shapedgradient is same as 
phase_encode_shapedgradient except in pe_shapedgradient 
the Euler angles are read from the default set for imaging. lim2 is 
automatically set to nv/2, where nv is usually the number of phase encode 
steps.

Arguments: pattern is the name of a gradient shape file.

width is the length, in seconds, of the gradient.

stat1, stat2, stat3 are values, in gauss/cm, of the components for the 
static portion of the gradient in the logical reference frame.

step2 is the value, in gauss/cm, of the component for the step size change in 
the variable portion of the gradient.

vmult2 is a real-time math variable (v1 to v14, ct, zero, one, two, 
three) or reference to tables (t1 to t60) whose associated values vary 
dynamically in a manner controlled by the user.

wait is a keyword, either WAIT or NOWAIT, that selects whether or not a 
delay is inserted to wait until the gradient has completed before executing the 
next statement. 

tag is a unique integer that “tags” the gradient element from any other gradient 
elements used in the sequence. These tags are used for variable amplitude 
pulses.

pe2_shapedgradient Oblique shaped gradient with phase encode in two axes

Applicability: UNITYINOVA systems.

Syntax: pe2_shapedgradient(pattern,width,stat1,stat2,stat3,
step2,step3,vmult2,vmult3) 
char *pattern; /* name of gradient shape file */
double width; /* length of gradient in sec */
double stat1,stat2,stat3; /* static gradient components */
double step2,step3; /* variable gradient step size */
codeint vmult2,vmult3; /* real-time math variables */

Description: Sets two oblique phase encode shaped gradients; otherwise, this statement is the 
same as pe3_shapedgradient. 

Pulse sequence generation aborts if the DACs on a particular gradient are 
overrun after the angles and amplitude have been resolved.

Arguments: pattern is the name of a gradient shape file.

width is the length, in seconds, of the gradient.

stat1, stat2, stat3 are values, in gauss/cm, of the components for the 
static portion of the gradient in the logical reference frame.

step2, step3 are values, in gauss/cm, of the components for the step size 
change in the variable portion of the gradient.

vmult2, vmult3 are real-time math variables (v1 to v14, ct, zero, 
one, two, three) or references to tables (t1 to t60) whose associated 
values vary dynamically in a manner controlled by the user.

.

Related: pe3_shapedgradient Oblique shaped gradient with phase encode in 3 axes



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 215

pe3_shapedgradient Oblique shaped gradient with phase encode in three axes

Applicability: UNITYINOVA systems.

Syntax: pe3_shapedgradient(pattern,width,stat1,stat2,stat3,
step1,step2,step3,vmult1,vmult2,vmult3) 
char *pattern; /* name of gradient shape file */
double width; /* width of gradient in sec */
double stat1,stat2,stat3; /* static gradient components */
double step1,step2,step3; /* var. gradient components */
codeint vmult1,vmult2,vmult3; /* real-time variables */

Description:  

On UNITYINOVA systems pe3_shapedgradient is same as 
phase_encode3_shapedgradient except the Euler angles are read 
from the default set for imaging. The lim1, lim2, and lim3 arguments in 
phase_encode3_shapedgradient are set to
nv/2, nv2/2, and nv3/2, respectively.

Pulse sequence generation aborts if the DACs on a particular gradient are 
overrun after the angles and amplitude have been resolved.

Arguments: pattern is the name of a gradient shape file.

width is the length, in seconds, of the gradient.

stat1, stat2, stat3 are values, in gauss/cm, of the components for the 
static portion of the gradient in the logical reference frame.

step1, step2, step3 are values, in gauss/cm, of the components for the step 
size change in the variable portion of the gradient.

vmult1, vmult2, vmult3 are real-time math variables (v1 to v14, ct, 
zero, one, two, three) or references to tables (t1 to t60) whose 
associated values vary dynamically in a manner controlled by the user.

wait is a keyword, either WAIT or NOWAIT, that selects whether or not a 
delay is inserted to wait until the gradient has completed before executing the 
next statement. 

peloop Phase-encode loop

Applicability: UNITYINOVA systems.

Syntax: peloop(state,max_count,apvl,apv2) 
char state; /* compressed or standard */
double max_count; /* initializes apv1 */
codeint apv1; /* maximum count */
codeint apv2; /* current counter value */

Description: Provides a sequence-switchable loop that can use real-time variables in what is 
known as a compressed loop, or it can use the standard arrayed features of PSG. 
In the imaging sequences it uses the third character of the seqcon string 
parameter seqcon[2] for the state argument. The statement is used in 
conjunction with the endpeloop statement.

peloop differs from msloop in how it sets the apv2 variable in standard 
arrayed mode (state is 's'). In standard arrayed mode, apv2 is set to 
nth2D–1 if max_count is greater than zero. nth2D is a PSG internal 
counting variable for the second dimension. When in the compressed mode, 
apv2 counts from zero to max_count–1.

Arguments: state is either 'c' to designate the compressed mode, or 's' to designate 
the standard arrayed mode.



Chapter 3. Pulse Sequence Statement Reference

216 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

apv1 is a real-time variable that holds the maximum count.

apv2 is a real-time variable that holds the current counter value. If state is 
's' and max_count is greater than zero, apv2 is set to nth2D–1; 
otherwise, it is set to zero.

Examples: peloop(seqcon[2],nv,v5,v6);
msloop(seqcon[1],nv,v11,v12);

...
poffset_list(pss,gss,ns,v12):
...
pe_gradient(gror,-0.5*sgpe*nv,gssr,sgpe,v6);
...
acquire(np,1.0/sw);

...
endmsloop(seqcon[1],v12);

endpeloop(seqcon{2},v6; 

phase_encode_gradient Oblique gradient with phase encode in one axis

Applicability: UNITYINOVA systems.

Syntax: phase_encode_gradient(stat1,stat2,stat3,step2, 
vmult2,lim2,ang1, ang2, ang3) 

double stat1,stat2,stat3; /* static gradient components */
double step2; /* variable gradient stepsize */
codeint vmult2; /* real-time math variable */
double lim2; /* max. gradient value step */
double ang1,ang2,ang3; /* Euler angles in degrees */

Description: Sets static oblique gradient levels plus one oblique phase encode gradient. The 
phase encode gradient is associated with the second axis of the logical frame. 
This corresponds to the convention: read, phase, slice for the functions of the 
logical frame axes. It has no return value.

Pulse sequence generation aborts if the DACs on a particular gradient are 
overrun after the angles and amplitude have been resolved.

Arguments: stat1, stat2, stat3 are values, in gauss/cm, of the components for the 
static portion of the gradient in the logical reference frame.

step2 is the value, in gauss/cm, of the component for the step size change in 
the variable portion of the gradient.

vmult2 is a real-time math variable (v1-v14, ct, zero, one, two, three) 
or reference to tables (t1 to t60), whose associated values vary dynamically 
in a manner controlled by the user.

lim2 is a value representing the dynamic step that will generate the maximum 
gradient value for each component. This provides error checking in pulse 
sequence generation and is normally nv/2.

ang1 is Euler angle psi, in degrees, with the range –90 to +90.

ang2 is Euler angle phi, in degrees, with the range –180 to +180.

ang3 is Euler angle theta, in degrees, with the range –90 to +90.

Related: endpeloop End phase-encode loop
loop Start loop
msloop Multislice loop



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 217

phase_encode3_gradient Oblique gradient with phase encode in three axes

Applicability: UNITYINOVA systems.

Syntax: phase_encode3_gradient(stat1,stat2,stat3,

step1,step2,step3,vmult1,vmult2,vmult3,

lim1,lim2,lim3,ang1,ang2,ang3) 
double stat1,stat2,stat3; /* static gradient components */
double step1,step2,step3; /* var. gradient stepsize */
codeint vmult1,vmult2,vmult3; /* real-time variables */
double lim1,lim2,lim3; /* max. gradient value steps */
double ang1,ang2,ang3; /* Euler angles in degrees */

Description: Sets three oblique phase encode gradients. It has no return value.

Pulse sequence generation aborts if the DACs on a particular gradient are 
overrun after the angles and amplitude have been resolved.

Arguments: stat1, stat2, stat3 are values, in gauss/cm, of the components for the 
static portion of the gradient in the logical reference frame.

step1, step2, step3 are values, in gauss/cm, of the components for the step 
size change in the variable portion of the gradient.

vmult1, vmult2, vmult3 are real-time math variables (v1 to v14, ct, 
zero, one, two, three) or references to tables (t1 to t60) whose associated 
values vary dynamically in a manner controlled by the user.

lim1, lim2, lim3 are values representing the dynamic step that will generate 
the maximum gradient value for each component. This provides error checking 
in pulse sequence generation and is normally nv/2.

ang1 is Euler angle psi, in degrees, with the range –90 to +90.

ang2 is Euler angle phi, in degrees, with the range –180 to +180.

ang3 is Euler angle theta, in degrees, with the range –90 to +90.

Examples: phase_encode3_gradient(0,0,0,0,0,2.0*gcrush/ne, \ 
zero,zero,v12,0,0,0,psi,phi,theta); 

phase_encode_shapedgradient Oblique shaped gradient with PE in one axis

Applicability: UNITYINOVA systems.

Syntax: phase_encode_shapedgradient(pattern,width,stat1,stat2,stat3,step2,

vmult2,lim2,ang1,ang2,ang3,vloops,wait,tag) 
char *pattern; /* name of gradient shape file */
double width; /* width of gradient in sec */
double stat1,stat2,stat3; /* static gradient components */
double step2; /* var. gradient step size */

Related: oblique_gradient Execute an oblique gradient
oblique_shapedgradient Execute a shaped oblique gradient
pe_gradient Oblique gradient with PE on 1 axis
phase_encode_shapedgradient Oblique sh. gradient with PE on 1 axis
phase_encode3_gradient Oblique gradient with PE on 3 axes
phase_encode3_shapedgradient Oblique sh. gradient with PE on 3 axes

Related: pe3_gradient Oblique gradient with PE in 3 axes
phase_encode_shapedgradient Oblique sh. gradient with PE on 1 axis
phase_encode3_shapedgradient Oblique sh. gradient with PE on 3 axes



Chapter 3. Pulse Sequence Statement Reference

218 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

codeint vmult2; /* real-time math variable */
double lim2; /* max. gradient value steps */
double ang1,ang2,ang3; /* Euler angles in degrees */
codeint vloops; /* number of loops */
int wait; /* WAIT or NOWAIT */
int tag; /* tag to a gradient element */

Description: Sets static oblique shaped gradients plus one oblique phase encode shaped 
gradient. The phase encode gradient is associated with the second axis of the 
logical frame. This corresponds to the convention: read, phase, slice for the 
functions of the logical frame axes. One gradient shape is used for all three axes. 
It has no return value.

Pulse sequence generation aborts if the DACs on a particular gradient are 
overrun after the angles and amplitude have been resolved.

Arguments: pattern is the name of a gradient shape file.

width is the length, in seconds, of the gradient.

stat1, stat2, stat3 are values, in gauss/cm, of the components for the 
static portion of the gradient in the logical reference frame.

step2 is the value, in gauss/cm, of the component for the step size change in 
the variable portion of the gradient.

vmult2 is a real-time math variable (v1 to v14, ct, zero, one, two, 
three) or reference to tables (t1 to t60) whose associated values vary 
dynamically in a manner controlled by the user.

lim2 is the value representing the dynamic step that will generate the 
maximum gradient value for the component. This provides error checking in 
pulse sequence generation and is normally nv/2.

ang1 is the Euler angle psi, in degrees, with the range of –90 to +90.

ang2 is the Euler angle phi, in degrees, with the range of –180 to +180.

ang3 is the Euler angle theta, in degrees, with the range of –90 to +90.

vloops is a real-time math variable (v1 to v14, ct, zero, one, two, 
three) or references to tables (t1 to t60) that dynamically sets the number 
of times to loop the waveform.

wait is a keyword, either WAIT or NOWAIT, that selects whether or not a 
delay is inserted to wait until the gradient has completed before executing the 
next statement. 

tag is a unique integer that “tags” the gradient element from any other 
gradient elements used in the sequence. These tags are used for variable 
amplitude pulses.

phase_encode3_shapedgradient Oblique shaped gradient with PE in three axes

Applicability: UNITYINOVA systems.

Syntax: phase_encode3_shapedgradient(pattern,width,stat1,stat2,stat3,

step1,step2,step3,vmult1,vmult2,vmult3,

lim1,lim2,lim3,ang1,ang2,ang3,loops,wait) 

Related: oblique_gradient Execute an oblique gradient
oblique_shapedgradient Execute a shaped oblique gradient
pe_shapedgradient Oblique sh. gradient with PE in 1 axis
phase_encode3_shapedgradient Oblique sh. gradient with PE on 3 axes



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 219

char *pattern; /* name of gradient shape file */
double width; /* width of gradient in sec */
double stat1,stat2,stat3; /* static gradient components */
double step1,step2,step3; /* var. gradient step sizes */
codeint vmult1,vmult2,vmult3; /* real-time variables */
double lim1,lim2,lim3; /* max. gradient value steps */
double ang1,ang2,ang3; /* Euler angles in degrees */
int loops; /* number of times to loop */
int wait; /* WAIT or NOWAIT */

Description: Sets three oblique phase encode shaped gradient. Note that this statement has a 
loops argument that is an integer, as opposed to the vloops argument in 
phase_encode_shapedgradient. It has no return value.

Pulse sequence generation aborts if the DACs on a particular gradient are 
overrun after the angles and amplitude have been resolved.

Arguments: pattern is the name of the gradient shape file.

width is the length, in seconds, of the gradient.

stat1, stat2, stat3 are values, in gauss/cm, of the components for the 
static portion of the gradient in the logical reference frame.

step1, step2, step3 are values, in gauss/cm, of the components for the step 
size change in the variable portion of the gradient.

vmult1, vmult2, vmult3 are real-time math variables (v1 to v14, ct, 
zero, one, two, three) or references to tables (t1 to t60) whose associated 
values vary dynamically in a manner controlled by the user.

lim1, lim2, lim3 are values representing the dynamic step that will generate 
the maximum gradient value for each component. This provides error checking 
in pulse sequence generation and is normally nv/2.

ang1 is the Euler angle psi, in degrees, with the range of –90 to +90.

ang2 is the Euler angle phi, in degrees, with the range of –180 to +180.

ang3 is the Euler angle theta, in degrees, with the range of –90 to +90.

loops is non-real-time integer value, from 1 to 255, that sets the number of 
times to loop the waveform. 

wait is a keyword, either WAIT or NOWAIT, that selects whether or not a 
delay is inserted to wait until the gradient has completed before executing 
the next statement. 

phaseshift Set phase-pulse technique, rf type A or B 

Applicability: Systems with rf type A or B (MERCURYplus/-Vx systems are rf type E or F).

Syntax: phaseshift(base,multiplier,device) 
double base; /* base small-angle phase shift */
codeint multiplier; /* real-time variable */
int device; /* channel, TODEV or DODEV */

Description: Implements the “phase-pulse” technique.

Arguments: base is a real number, expression, or variable representing the base phase shift 
in degrees. Any value is acceptable.

Related: pe3_shapedgradient Oblique sh. gradient with PE in 3 axes
phase_encode_shapedgradient Oblique sh. gradient with PE on 1 axis
phase_encode3_gradient Oblique gradient with PE in 3 axes



Chapter 3. Pulse Sequence Statement Reference

220 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

multiplier is a real-time variable (v1 to v14, ct, etc.). The value must be 
positive. The actual phase shift is ((base*multiplier)mod360).

device is TODEV (observe transmitter) or DODEV (first decoupler). 

Examples: phaseshift(60.0,ct,TODEV); 
phaseshift(–30.0,v1,DODEV); 

poffset Set frequency based on position

Applicability: UNITYINOVA systems.

Syntax: poffset(position,level) 
double position; /* slice position in cm */
double level; /* gradient level in G/cm */

Description: Sets the rf frequency from position and conjugate gradient values. poffset is 
functionally the same as position_offset except that poffset takes the 
value of resfrq from the resto parameter and always assumes the device is 
the observe transmitter.

Arguments: position is the slice position, in cm.

level is the gradient level, in gauss/cm, used in the slice selection process.

Examples: poffset(pss[0],gss); 

poffset_list Set frequency from position list

Applicability: UNITYINOVA systems.

Syntax: poffset_list(posarray,grad,nslices,apv1) 
double position_array[]; /* position values in cm */
double level; /* gradient level in G/cm */
double nslices; /* number of slices */
codeint vi; /* variable or table */

Description: Sets the rf frequency from a position list, conjugate gradient value, and dynamic 
math selector. poffset_list is functionally the same as 
position_offset_list except that poffset_list takes the value of 
resfrq from the resto parameter, assumes the device is the observe 
transmitter device OBSch, and assumes that the list number is zero.

Arguments: position_array is a list of position values, in cm.

level is the gradient level, in gauss/cm, used in the slice selection process.

nslices is the number of slices or position values.

vi is a dynamic real-time variable (v1 to v14) or table (t1 to t60).

Examples: poffset_list(pss,gss,ns,v8); 

position_offset Set frequency based on position

Syntax: position_offset(pos,grad,resfrq,device) 
double pos; /* slice position in cm */
double grad; /* gradient level in G/cm */
double resfrq; /* resonance offset in Hz */

Related: position_offset Set frequency based on position

Related: getarray Retrieves all values of an arrayed parameter
position_offset_list Set frequency from position list



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 221

int device; /* OBSch, DECch, DEC2ch, or DEC3ch */

Description: Sets the rf frequency from position and conjugate gradient values. It has no 
return value.

Arguments: pos is the slice position, in cm.

grad is the gradient level, in gauss/cm, used in the slice selection process.

resfrq is the resonance offset value, in Hz, for the nucleus of interest.

device is OBSch (observe transmitter) or DECch (first decoupler). device 
can also be DEC2ch (second decoupler) or DEC3ch (third decoupler).

Examples: position_offset(pos1,gvox1,resto,OBSch); 

position_offset_list Set frequency from position list

Applicability:  UNITYINOVA systems.

Syntax: position_offset_list(posarray,grad,nslices, \ 
resfrq,device,list_number,apv1) 

double posarray[]; /* position values in cm */
double level; /* gradient level in G/cm */
double nslices; /* number of slices */
double resfrq; /* resonance offset in Hz */
int device; /* OBSch, DECch, DEC2ch, or DEC3ch */
int list_number; /* number for global list */
codeint vi; /* real-time variable or table */

Description: Sets the rf frequency from a position list, conjugate gradient value, and dynamic 
math selector. The dynamic math selector (apv1) holds the index for required 
slice offset value as stored in the array. The arrays provided to this statement 
must count zero up; that is, array[0] must have the first slice position and 
array[ns-1] the last. It has no return value.

Arguments: position_array is a list of position values, in cm.

level is the gradient level, in gauss/cm, used in the slice selection process.

nslices is the number of slices or position values.

resfrq is the resonance offset, in Hz, for the nucleus of interest.

device is OBSch (observe transmitter) or DECch (first decoupler). device 
can also be DEC2ch (second decoupler) or DEC3ch (third decoupler).

list_number is a value for identifying a global list. The first global list must 
begin at zero and each created list must be incremented by one.

vi is a dynamic real-time variable (v1 to v14) or table (t1 to t60).

power Change power level 

Applicability: Systems with linear amplifiers. Use the statements obspower, decpower, 
dec2power, or dec3power, as appropriate, in preference to power.

Syntax: power(power,device) 

Related: poffset Set frequency based on position
position_offset_list Set frequency from position list

Related: getarray Retrieves all values of an arrayed parameter
poffset_list Set frequency from position list
position_offset Set frequency based on position



Chapter 3. Pulse Sequence Statement Reference

222 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

int power; /* new value for coarse power control */
int device; /* OBSch, DECch, DEC2ch, or DEC3ch */

Description: Changes transmitter or decoupler power by assuming values of 0 (minimum 
power) to 63 (maximum power) on channels with a 63-dB attenuator or –16 
(minimum power) to 63 (maximum power) on channels with a 79-dB 
attenuator. On systems with an Output board, by default, power statements are 
preceded internally by a 0.2-μs delay (see the apovrride statement for more 
details).

Arguments: power is the power desired. It must be stored in a real-time variable (v1-v14, 
etc.), which means it cannot be placed directly in the power statement. This 
allows the power to be changed in real-time or from pulse to pulse. Setting the 
power argument is most commonly done using initval (see the example). 
To avoid consuming a real-time variable, use the rlpower statement instead 
of the power statement. 

device is OBSch (observe transmitter) or DECch (first decoupler). device 
can also be DEC2ch (second decoupler) or DEC3ch (third decoupler).

CAUTION: On systems with linear amplifiers, be careful when using values of 
power greater than 49 (about 2 watts). Performing continuous 
decoupling or long pulses at power levels greater than this can result 
in damage to the probe. Use config to set a safety maximum for the 
tpwr, dpwr, dpwr2, and dpwr3 parameters.

Examples: pulsesequence()
{
double newpwr;
newpwr=getval("newpwr");
initval(newpwr,v2);
power(v2,OBSch);
...

} 

psg_abort Abort the PSG process

Syntax: psg_abort(int_error) 

Description: psg_abort aborts the PSG process. The acquisition will not start. the error 
argument is typically 1.

pulse Pulse observe transmitter with amplifier gating

Syntax: pulse(width,phase) 
double width; /* pulse length in sec */
codeint phase; /* real-time variable for phase */

Description: Turns on a pulse the same as the rgpulse(width,phase,RG1,RG2) 
statement, but with RG1 and RG2 set to the parameters rof1 and rof2, 

Related: decpower Change first decoupler power
dec2power Change second decoupler power
dec3power Change third decoupler power
initval Initialize a real-time variable to a specified value
obspower Change observe transmitter power
pwrf Change transmitter or decoupler fine power 
rlpower Change transmitter or decoupler power, linear amplifier 
rlpwrf Set transmitter or decoupler fine power 



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 223

respectively. Thus, pulse is a special case of rgpulse where the “hidden” 
parameters rof1 and rof2 remain “hidden.” 

Arguments: width specifies the width of the observe transmitter pulse.

phase sets the phase and must be a real-time variable. 

Examples: pulse(pw,v2); 

putCmd Send a command to VnmrJ from a pulse sequence

Applicability: UNITYINOVA systems.

Syntax: putCmd(char *format, ...)

Description: The putCmd function allows execution of any Magical expression from a pulse 
sequence. For example,

     putCmd("setvalue('d1',%g,'processed')",d1);

updates the d1 parameter in the experiment processed parameter tree. The 
arguments to putCmd are analogous to those for printf. The first argument 
to putCmd is like the printf format string.

The go('check') command will execute the pulse sequence and any 
putCmd statements. It will not, however, start an acquisition.

Using putCmd to update a parameter used as part on an acquisition requires the 
use of setvalue to change the parameter in the processed tree and also in the 
current tree.

For example:

putCmd("setvalue('d1',%g,'processed') 

setvalue('d1',%g,'current')",d1,d1);

The integer checkflag indicates whether go('check') was called, or not. 
If the putCmd is only used when go('check') is used, then it is okay to use 
something like:

if (checkflag) 
putCmd("d1=%g",d1);

Some parameters are defined as subtype pulse. Examples are pw, p1, etc. A 
consequence of this is that the values entered in VnmrJ are multiplied by 1e-6 
in PSG. Entering pw? from the VnmrJ command line might return 6.4. In PSG, 
the value of pw will be 6.4e-6. Therefore, the appropriate putCmd in this case 
is:

putCmd("pw=%g", pw*1e6)

The internal PSG variable is converted back to microseconds for use with 
putCmd. If an arrayed experiment is done, the putCmd function is only active 
for the first increment. Any Magical expression can be used in putCmd. For 
example:

Related: dps_show Draw delay or pulses in a sequence for graphical display
obspulse Pulse observe transmitter with IPA 
irgpulse Pulse observe transmitter with IPA 
obspulse Pulse observe transmitter with amplifier gating
rgpulse Pulse observe transmitter with amplifier gating
simpulse Pulse observe, decoupler channels simultaneously
sim3pulse Simultaneous pulse on 2 or 3 rf channels 



Chapter 3. Pulse Sequence Statement Reference

224 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

putCmd("banner('acquisition started')");
putCmd("dps"); 

pwrf Change transmitter or decoupler fine power 

Applicability: UNITYINOVA systems 

Use obspwrt, decpwrf, declpwrf, or dec3pwrf.

Syntax: pwrf(power,device) 
int power; /* new value for fine power control */
int device; /* OBSch, DECch, DEC2ch, or DEC3ch */

Description: Changes the fine power of the device specified by adjusting the optional fine 
attenuators. Do not execute pwrf and ipwrf together because they will cancel 
each other's effect.

Arguments: power is the fine power desired. It must be a real-time variable (v1 to v14, 
etc.), which means it cannot be placed directly in the pwrf statement. It can 
range from 0 to 4095 (60 dB on UNITYINOVA, about 6 dB on other systems). 

device is OBSch (observe transmitter) or DECch (first decoupler). On the 
UNITYINOVA only, device can also be DEC2ch (second decoupler) or DEC3ch 
(third decoupler).

Examples: pwrf(v1,OBSch); 

pwrm Change transmitter or decoupler linear modulator power 
UNITYINOVA systems only. Use of statements obspwrf, decpwrf, 
dec2pwrf, or dec3pwrf, as appropriate, is preferred.

Syntax: pwrm(power,device) 
int power; /* new value for fine power control */
int device; /* OBSch, DECch, DEC2ch, or DEC3ch */

Description: Changes the linear modulator power of the device specified by adjusting the 
optional fine attenuators. Do not execute pwrm and ipwrm together because 
they will cancel each other's effect.

Arguments: power is the linear modulator power desired. It must be a real-time variable 
(v1 to v14, etc.), which means the power level as an integer cannot be placed 
directly in the pwrm statement. power can range from 0 to 4095 (60 dB on 
UNITYINOVA).

device is OBSch (observe transmitter) or DECch (first decoupler). device 
can also be DEC2ch (second decoupler) or DEC3ch (third decoupler).

Examples: pwrm(v1,OBSch); 

Related: ipwrf Change transmitter or decoupler fine power
power Change transmitter or decoupler power, linear amp. system
rlpwrf Set transmitter or decoupler fine power 

Related: decpwrf Set first decoupler fine power
dec2pwrf Set second decoupler fine power
dec3pwrf Set third decoupler fine power
ipwrf Change transmitter or decoupler fine power with IPA
ipwrm Change transmitter or decoupler linear modulator power 
obspwrf Set observe transmitter fine power
rlpwrm Set transmitter or decoupler linear modulator power 



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 225

R

 

rcvroff Turn off receiver gate and amplifier blanking gate

Syntax: rcvroff() 

Description: The receiver is normally off during the pulse sequence and iis turned on only 
during acquisition. The rcvroff statement also unblanks, or enables, the 
observe transmitter.

Receiver gating is normally controlled automatically by decpulse, 
decrgpulse, dec2rgpulse, dec3rgpulse, obspulse, pulse, and 
rgpulse. At the end of each of these statements, the receiver is automatically 
turned back on if and only if the receiver has not been previously turned off 
explicitly by a rcvroff statement. In all cases, the receiver is implicitly turned 
back on immediately prior to data acquisition.

rcvron Turn on receiver gate and amplifier blanking gate

Syntax: rcvron() 

Description: The receiver is normally off during the pulse sequence. It is turned on only 
during acquisition. On other systems, rcvron provides explicit receiver gating 
in the pulse sequence. The rcvron statement also blanks, or disables, the 
observe transmitter

Top A B C D E G H I L M O P R S T V W X Z

rcvroff Turn off receiver gate and amplifier blanking gate 

rcvron Turn on receiver gate and amplifier blanking gate 

readuserap Read input from user AP register 

recoff Turn off receiver gate only 

recon Turn on receiver gate only 

rgpulse Pulse observe transmitter with amplifier gating 

rgradient Set gradient to specified level 

rlpower Change power level 

rlpwrf Set transmitter or decoupler fine power (obsolete) 

rlpwrm Set transmitter or decoupler linear modulator power 

rotate Sets the standard oblique rotation angles

rot_angle Sets user defined oblique rotation angles

rot_angle_list Set user defined oblique rotation angles from a previously defined list

rotorperiod Obtain rotor period of MAS rotor 

rotorsync Gated pulse sequence delay from MAS rotor position 

Related: rcvron Turn on receiver gate and amplifier blanking gate
recoff Turn off receiver only
recon Turn on receiver only



Chapter 3. Pulse Sequence Statement Reference

226 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Receiver gating is normally controlled automatically by obspulse, pulse, 
and rgpulse, decpulse, decrgpulse, dec2rgpulse, and 
dec3rgpulse. At the end of each of these statements, the receiver is 
automatically turned back on if and only if the receiver has not been previously 
turned off explicitly by a rcvroff statement. In all cases, the receiver is 
implicitly turned back on immediately prior to data acquisition.

The rcvron statement automatically executes a delay of rof3 before turning 
on the receiver. If rof3 is not defined then a delay of 2.0 μs is used. Usually 
the delay protects the receiver from being turned on immediately after an 
rgpulse statement but rof3 can be set to zero in other circumstances where it 
does not immediately follow a pulse. 

readuserap Read input from user AP register

Applicability: UNITYINOVA systems 

Syntax: readuserap(vi) 
codeint vi; /* index to value read in user AP register */

Description: Reads input from user AP bus register 3 to a real-time variable. The user can 
then act on this information using real-time math and real time control 
statements while the pulse sequence is running. Register 3 is lines 1 to 8 of the 
USER AP connector J8212 on the Breakout panel on the rear of the left console 
cabinet. This register interfaces to a bidirectional TTL-compatible 8-bit buffer, 
which has a 100-ohm series resistor for circuit protection. 

readuserap stops parsing acodes (acquisition codes) until the lines in the 
buffer have been read and the value placed in to the specified real-time variable. 
In order for the parser to parse and stuff more words into the FIFO before 
underflowing, the readuserap statement puts in a 500 μs delay after reading 
the input. However, depending on what is to be done after reading the lines, a 
longer delay may be needed to avoid FIFO underflow.

If an error occurs in reading, a warning message is sent to the host and a value 
of –1 is returned to the real-time variable.

Arguments: vi is a real-time variable (v1 to v14, etc.) that indexes a signed or unsigned 
number read from user AP register 3.

Examples: /* Check a value read in from input register and */
/* execute a pulse if it is the expected value. */
double testval;
testval=getval(testval) /* set value to check */
initval(testval,v2);
loop(two,v1); /* reset below makes loop go */

readuserap(v1); /* until expected value reads in */
delay(d2);
sub(v1,v2,v3);
ifzero(v3);

pulse(pw,oph);
assign(one,v1);

elsenz(v3)
assign(zero,v1); /*reset counter*/

Related: rcvroff Turn off receiver gate and amplifier blanking gate
recoff Turn off receiver gate only
recon Turn on receiver gate only



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 227

endif(v3);
endloop(v1); 

recoff Turn off receiver gate only

Applicability: UNITYINOVA systems.

Syntax: recoff() 

Description: Receiver gating has been decoupled from amplifier blanking. The recoff 
statement is similar to the rcvroff statement in that it defaults the receiver off 
throughout the pulse sequence; however, unlike rcvroff, the recoff 
statement only affects the receiver gate and does not affect the amplifier 
blanking gate. In all cases, the receiver is turned off when applying pulses and 
turned on during acquisition. The default state of the receiver is off (except for 
whole body systems and for imaging pulses sequences that have the 
initparms_sis statement at the beginning).

recon Turn on receiver gate only

Applicability:  UNITYINOVA systems.

Syntax: recon() 

Description: Receiver gating has been decoupled from amplifier blanking. The recoff 
statement is similar to the rcvron statement in that it defaults the receiver on 
throughout the pulse sequence; however, unlike rcvron, the recon statement 
only affects the receiver gate and does not affect the amplifier blanking gate. In 
all cases, the receiver is turned off when applying pulses and turned on during 
acquisition. The default state of the receiver is off (except for whole body 
systems and for imaging pulses sequences that have the initparms_sis 
statement at the beginning).

rgpulse Pulse observe transmitter with amplifier gating

Syntax: rgpulse(width,phase,RG1,RG2) 
double width; /* length of pulse in sec */
codeint phase; /* real-time variable for phase */
double RG1; /* gate delay before pulse in sec */
double RG2; /* gate delay after pulse in sec */

Description: Pulses the observe transmitter with amplifier gating. The amplifier is gated on 
prior to the start of the pulse by RG1 sec and gated off RG2 sec after the end of 
the pulse. The total length of this event is therefore not simply width, but 
width+RG1+RG2.

Related: setuserap Set user AP register
vsetuserap Set user AP register using real-time variable

initparms_sis Initialize parameters for spectroscopy imaging sequences
Related: rcvroff Turn off receiver gate and amplifier blanking gate

rcvron Turn on receiver gate and amplifier blanking gate
recon Turn on receiver gate only

initparms_sis Initialize parameters for spectroscopy imaging sequences
Related: rcvroff Turn off receiver gate and amplifier blanking gate

rcvron Turn on receiver gate and amplifier blanking gate
recoff Turn off receiver gate only



Chapter 3. Pulse Sequence Statement Reference

228 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

The amplifier gating times RG1 and RG2 may be specified explicitly. The 
parameters rof1 and rof2 are often used for these times. These parameters 
are normally “hidden” parameters, not displayed on the screen and entered by 
the user. Their values can be interrogated by entering the name of the parameter 
followed by a question mark (e.g., rof1?). 

Arguments: width specifies the duration, in seconds, of the observe transmitter pulse.

phase sets the observe transmitter phase and must be a real-time variable.

RG1 is the time, in seconds, the amplifier is gated on prior to the start of the 
pulse (typically 10 μs for 1H/19F, 40 μs for other nuclei, and 2 μs for the 
MERCURYplus/-Vx).

RG2 is the time, in seconds, before the amplifier is gated off after the end of the 
pulse (typically 10 μs on the MERCURYplus/-Vx, and about 5 μs on other 
systems).

Examples: rgpulse(pw,v1,rof1,rof2); 
rgpulse(2.0*pw,v2,1.0e–6,0.2e–6); 

rgradient Set gradient to specified level 

Applicability: Systems with imaging or PFG modules.

Syntax: rgradient(channel,value) 
char channel; /* gradient 'x', 'y', or 'z' */
double value; /* amplitude of gradient amplifier */

Description: Sets the gradient current amplifier to specified value. In imaging, rgradient 
sets a gradient to a specified level in DAC units.

Arguments: channel specifies the gradient to set. It uses one of the characters 'X', 'x', 
'Y', 'y', 'Z' or 'z'. In imaging, channel can be 'gread', 'gphase', 
or 'gslice'.

value specifies the gradient level by a real number (a DAC setting in imaging) 
from –4096.0 to 4095.0 for the Performa I PFG module, and from –32768.0 to 
32767.0 for the Performa II PFG module.

Examples: rgradient('z',1327.0); 

rlpower Change power level

Applicability: Systems with linear amplifiers. This statement is due to be eliminated in future 
versions of VnmrJ software. Although it is still functional, you should not write 
pulse sequences using it and should replace it in existing sequences with Use 
obspower, decpower, dec2power, or dec3power, as appropriate.

Syntax: rlpower(power,device) 

Related: obspulse Pulse observe transmitter with amplifier gating
pulse Pulse observe transmitter with amplifier gating
simpulse Pulse observe, decoupler channels simultaneously
sim3pulse Simultaneous pulse on 2 or 3 rf channels 

Related: dps_show Draw delay or pulses in a sequence for graphical display
getorientation Read image plane orientation
shapedgradient Generate shaped gradient 
vgradient Set gradient to a level determined by real-time math 
zgradpulse Create a gradient pulse on the z channel 



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 229

double power; /* new level for coarse power */
int device; /* OBSch, DECch, DEC2ch, or DEC3ch */

Description: Changes transmitter or decoupler power the same as the power statement but 
avoids consuming a real-time variable for the value. On systems with the Output 
board (and only on these systems), by default, rlpower statements are 
preceded internally by a 0.2-μs delay (see the apovrride statement for more 
details).

Arguments: power sets the power level by assuming values of 0 (minimum power) to 63 
(maximum power) on channels with a 63-dB attenuator or –16 (minimum 
power) to 63 (maximum power) on channels with a 79-dB attenuator.

device is OBSch (observe transmitter) or DECch (first decoupler). device 
can also be DEC2ch (second decoupler) or DEC3ch (third decoupler).

CAUTION: On systems with linear amplifiers, be careful when using values of 
rlpower greater than 49 (about 2 watts). Performing continuous 
decoupling or long pulses at power levels greater than this can result 
in damage to the probe. Use config to set a safety maximum for the 
tpwr, dpwr, dpwr2, and dpwr3 parameters.

Examples: (1) pulsesequence()
{
double satpwr;
satpwr=getval("satpwr");
...
rlpower(satpwr,OBSch);
...

} 

(2) rlpower(63.0,OBSch); 

rlpwrf Set transmitter or decoupler fine power (obsolete)

Description: Use obspwrf, decpwrf, dec2pwrf, or dec3pwrf, as appropriate.

Description: Do not write any new pulse sequences using this statement and should replace 
it in existing sequences. Changes transmitter or decoupler fine power the same 
as the pwrf statement, except rlpwrf uses a real-number variable for the 
power level desired instead of consuming a real-time variable for the level.

rlpwrm Set transmitter or decoupler linear modulator power 

Applicability: UNITYINOVA systems.

Related: decpower Change first decoupler power
dec2power Change second decoupler power
dec3power Change third decoupler power
obspower Change observe transmitter power
power Change transmitter or decoupler power, linear amp. sys. 
rlpwrf Set transmitter or decoupler fine power 

Related: decpwrf Set first decoupler fine power
dec2pwrf Set second decoupler fine power
dec3pwrf Set third decoupler fine power
ipwrf Change transmitter or decoupler fine power with IPA
obspwrf Set observe transmitter fine power
power Change transmitter or decoupler power, lin. amp. sys. 
pwrf Change transmitter or decoupler fine power 



Chapter 3. Pulse Sequence Statement Reference

230 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Syntax: rlpwrm(power,device) 
double power; /* new level for lin. mod. power */
int device; /* OBSch, DECch, DEC2ch, or DEC3ch */

Description: Changes transmitter or decoupler linear modulator power the same as the pwrm 
statement, but to avoid using real-time variables, rlpwrm uses a C variable of 
type double as the argument for the amount of change.

Arguments: power is the linear modulation (fine) power desired.

device is OBSch (observe transmitter), DECch (first decoupler), DEC2ch 
(second decoupler), or DEC3ch (third decoupler). 

Examples: rlpwrm(4.0,OBSch); 

rotate Sets the standard oblique rotation angles

Description: Sets the standard oblique rotation angles psi, phi, and theta for gradient rotation. 

Syntax: rotate( )

Examples: rotate( );

rot_angle Sets user defined oblique rotation angles

Description: Sets user defined oblique rotation Euler angles ang1, ang2, and ang3 for 
gradient rotation. 

Syntax: rot_angle(ang1, ang2, ang3) 

Arguments: ang1, ang2, and ang3 are the user defined oblique rotation Euler angles in 
degrees.

Examples: rot_angle(ang1, ang2, ang3);

rotorperiod Obtain rotor period of MAS rotor 

Applicability: Systems with MAS (magic-angle spinning) rotor synchronization hardware.

Description: Obtains the rotor period. 

Syntax: rotorperiod(period) 
codeint period; /* variable to hold rotor period */

Arguments: period is a real-time variable into which is placed the rotor period as an 
integer in units of 100 ns. For example, for rotorperiod(v4), if v4 
contains the value 1700, the rotor period is 170 μs and the rotor speed is 1E+7 
/ 1700 = 5882 Hz.

Examples: rotorperiod(v4); 

rotorsync Gated pulse sequence delay from MAS rotor position 

Applicability: Systems with MAS (magic-angle spinning) rotor synchronization hardware.

Syntax: rotorsync(rotations) 
codeint rotations; /* variable for turns to wait */

Related: ipwrm Change transmitter or decoupler lin. mod. power with IPA
pwrm Change transmitter or decoupler linear modulator power

Related: rotorsync Gated pulse sequence delay from MAS rotor position
xgate Gate pulse sequence from an external event 



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 231

Description: Inserts a variable-length delay that allows synchronizing the execution of the 
pulse sequence with a particular orientation of the sample rotor. When the 
rotorsync statement is encountered, the pulse sequence is stopped until the 
number of rotor rotations has occurred.

Arguments: rotations is a real-time variable that specifies the number of rotor rotations 
to occur before restarting the pulse sequence.

Examples: rotorsync(v6); 

S

Related: rotorperiod Obtain rotor period of MAS rotor 
xgate Gate pulse sequence from an external event 

Top A B C D E G H I L M O P R S T V W X Z

setautoincrement Set autoincrement attribute for a table 

setdivnfactor Set divn-return attribute and divn-factor for AP table 

setreceiver Associate the receiver phase cycle with a table 

setstatus Set status of observe transmitter or decoupler transmitter 

settable Store an array of integers in a real-time AP table 

setuserap Set user AP register 

shapedpulse Perform shaped pulse on observe transmitter 

shaped_pulse Perform shaped pulse on observe transmitter 

shapedgradient Generate shaped gradient pulse 

shaped2Dgradient Generate arrayed shaped gradient pulse 

shapedincgradient Generate dynamic variable gradient pulse 

shapedvgradient Generate dynamic variable shaped gradient pulse 

simpulse Pulse observe and decouple channels simultaneously 

sim3pulse Pulse simultaneously on 2 or 3 rf channels 

sim4pulse Simultaneous pulse on four channels 

simshaped_pulse Perform simultaneous two-pulse shaped pulse 

sim3shaped_pulse Perform a simultaneous three-pulse shaped pulse 

sli Set SLI lines 

sp#off Turn off specified spare line (Inova #=1 to 5)

sp#on Turn on specified spare line (Inova #=1 to 5)

spinlock Control spin lock on observe transmitter 

starthardloop Start hardware loop 

status Change status of decoupler and homospoil 

statusdelay Execute the status statement with a given delay time 

stepsize Set small-angle phase step size 

sub Subtract integer values 



Chapter 3. Pulse Sequence Statement Reference

232 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

setautoincrementSet autoincrement attribute for a table 

Syntax: setautoincrement(table) 
codeint table; /* real-time table variable */

Description: Sets the autoincrement attribute in a table. The index into the table is set to 0 at 
the start of an FID acquisition and is incremented after each access into the 
table. Tables using the autoincrement feature cannot be accessed within a 
hardware loop.

Arguments: table is the name of the table (t1 to t60).

Examples: setautoincrement(t9); 

setdivnfactor Set divn-return attribute and divn-factor for table 

Syntax: setdivnfactor(table,divn_factor) 
codeint table; /* real-time table variable */
int divn_factor; /* number to compress by */

Description: Sets the divn-return attribute and divn-factor for a table. The actual index into 
the table is now set to (index/divn-factor). {0 1}2 is therefore translated by the 
controller, not by PSG (pulse sequence generation), into 0 0 1 1. The divn-return 
attribute results in a divn-factor-fold compression of the table.

Arguments: table specifies the name of the table (t1 to t60).

divn_factor specifies the divn-factor for the table.

Examples: setdivnfactor(t7,4); 

setreceiver Associate the receiver phase cycle with a table 

Syntax: setreceiver(table) 
codeint table; /* real-time table variable */

Description: Assigns the ctth element of a table to the receiver variable oph. If multiple 
setreceiver statements are used in a pulse sequence, or if the value of oph 
is changed by real-time math statements such as assign, add, etc., the last 
value of oph prior to the acquisition of data determines the value of the receiver 
phase.

Arguments: table specifies the name of the table (t1 to t60).

Examples: setreceiver(t18); 

Related: getelem Retrieve an element from a table
loadtable Load table elements from table text file 
setdivnfactor Set divn-return attribute and divn-factor for table 
setreceiver Associate the receiver phase cycle with a table 
settable Store an array of integers in a real-time table 

Related: getelem Retrieve an element from a table
loadtable Load table elements from table text file 
setautoincrement Set autoincrement attribute for a table 
setreceiver Associate the receiver phase cycle with a table 
settable Store an array of integers in a real-time table 



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 233

setstatus Set status of observe transmitter or decoupler transmitter 

Applicability: UNITYINOVA systems.

Syntax: setstatus(channel,on,mode,sync,mod_freq) 
int channel; /* OBSch, DECch, DEC2ch, or DEC3ch */
int on; /* TRUE (=on) or FALSE (=off) */
char mode; /* 'c', 'w', 'g', etc. */
int sync; /* TRUE (=synchronous) or FALSE */
double mod_freq; /* modulation frequency */

Description: Sets the status of a transmitter independent of the status statement, thus 
overriding decoupler parameters such as dm and dmm. Since the setstatus 
statement is part of the pulse sequence, it has no effect when only an su 
command is executed. It is the only way the observe transmitter can be 
modulated. See also: “Amplifier Channel Blanking and Unblanking,” page 75

Arguments: channel is OBSch (observe transmitter), DECch (first decoupler), DEC2ch 
(second decoupler), or DEC3ch (third decoupler).

on is TRUE (turn on decoupler) or FALSE (turn off decoupler).

mode is one of the following values for a decoupler mode (for further 
information on decoupler modes, refer to the description of the dmm parameter 
in the manual Command and Parameter Reference):

• 'c' sets continuous wave (CW) modulation.

• 'f' sets fm-fm modulation (swept-square wave).

• 'g' sets GARP modulation.

• 'm' sets MLEV-16 modulation.

• 'p' sets programmable pulse modulation (i.e., waveform).

• 'r' sets square wave modulation.

• 'u' (UNITYINOVA only) sets user-supplied modulation from external 
hardware.

• 'w' sets WALTZ-16 modulation.

• 'x' sets XY32 modulation.

sync is TRUE (decoupler is synchronous) or FALSE (decoupler is 
asynchronous).

mod_freq is the modulation frequency.

Examples: setstatus(DECch,TRUE,'w',FALSE,dmf); 
setstatus(DEC2ch,FALSE,'c',FALSE,dmf2); 

settable Store an array of integers in a real-time table 

Syntax: settable(tablename,numelements,intarray) 
codeint tablename; /* real-time table variable */

Related: getelem Retrieve an element from a table 
loadtable Load table elements from table text file 
setautoincrement Set autoincrement attribute for a table 
setdivnfactor Set divn-return attribute and divn-factor for table 
settable Store an array of integers in a real-time table 

Related: status Change status of decoupler and homospoil



Chapter 3. Pulse Sequence Statement Reference

234 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

int numelements; /* number in array */
int *intarray; /* pointer to array of elements */

Description: Stores an integer array in a real-time table. The autoincrement or divn-return 
attributes can be subsequently associated with a table defined by settable by 
using setautoincrement and setdivnfactor.

Arguments: table is the name of the table (t1 to t60).

number_elements is the size of the table.

intarray is a C array that contains the table elements, which can range from 
–32768 to 32767. Before calling settable, this array must be predefined and 
predimensioned in the pulse sequence using C statements. 

Examples: settable(t1,10,int_array); 

setuserap Set user AP register

Applicability: UNITYINOVA systems 

Syntax: setuserap(value,register) 
real value; /* value sent to user AP register */
int register; /* AP bus register number: 0, 1, 2, or 3 */

Description: Sets a value in one of the four 8-bit AP bus registers that provide an output 
interface to user devices. The outputs of these registers go to the USER 
AP connectors J8212 and J8213, located on the back of the left console cabinet. 
These outputs have a 100-ohm series resistor for circuit protection.

Arguments: value is a signed or unsigned number (real or integer) to output to the 
specified user AP register. The number is truncated to an 8-bit byte.

register is the AP register number, mapped to output lines as follows: 

• Register 0 is J8213, lines 9 to 16.

• Register 1 is J8213, lines 1 to 8.

• Register 2 is J8212, lines 9 to 16.

• Register 3 is J8212, lines 1 to 8.

Examples: setuserap(127.0,0); 

shapedpulse Perform shaped pulse on observe transmitter 

Applicability: This statement is due to be eliminated in future versions of VnmrJ software. 
Although it is still functional, you should not write any new pulse sequences 
using it and should replace it in existing sequences with shaped_pulse, 
which functions exactly the same as shapedpulse. 

shaped_pulse Perform shaped pulse on observe transmitter 

Applicability: UNITYINOVA systems with a waveform generator on the observe transmitter 
channel.

Related: getelem Retrieve an element from a table
loadtable Load AP table elements from table text file 
setautoincrement Set autoincrement attribute for a table 
setdivnfactor Set divn-return attribute and divn-factor for table 
setreceiver Associate the receiver phase cycle with a table 

Related: readuserap Read input from user AP register
vsetuserap Set user AP register using real-time variable



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 235

Syntax: shaped_pulse(pattern,width,phase,RG1,RG2) 
char *pattern; /* name of .RF text file */
double width; /* width of pulse in sec */
codeint phase; /* real-time variable for phase */
double RG1; /* gating delay before pulse in sec */
double RG2; /* gating delay after pulse in sec */

Description: Performs a shaped pulse on the observe transmitter.

When using the waveform, the shapes are downloaded into the controller before 
the start of an experiment. The minimum pulse length is and stepsize is 50 ns. 
If the length is less than 50 ns, the pulse is not executed.
UNITYINOVA Systems:

These systems use the waveform generator if it is configured on the channel. 
Systems without a waveform generator on the channel use the linear attenuator 
and the small-angle phase shifter are used to effectively perform an 
apshaped_pulse statement. 
UNITYINOVA Systems address and start the shape when shaped_pulse is 
called. The overhead at the start and end of the shaped pulse varies with the 
system:

• UNITYINOVA: 1 μs (start), 0 (end)

• System with Acquisition Controller board: 10.75 μs (start), 4.3 μs (end)

• System with Output board: 10.95 μs (start), 4.5 μs (end)
UNITYINOVA Systems, using the linear attenuator and the small-angle phase 
shifter to generate a shaped pulse, create AP tables for amplitude and phase on 
the fly when the shaped_pulse statement is called. It also uses the real-
time variables v12 and v13 to control the execution of the shape. It does 
not use AP table variables. For timing and more information, see the description 
of apshaped_pulse. Note that if using AP tables with shapes that have a 
large number of points, the FIFO can become overloaded with words generating 
the pulse shape and FIFO Underflow errors can result.

Arguments: file is the name of a text file in the shapelib directory that stores the rf 
pattern (leave off the .RF file extension).

width is the duration, in seconds, of the pulse on the observe transmitter.

phase is the phase of the pulse and must be a real-time variable.

RG1 is the delay, in seconds, between gating the amplifier on and gating the 
observe transmitter on (the phase shift occurs at the beginning of this delay).

RG2 is the delay, in seconds, between gating the observe transmitter off and 
gating the amplifier off.

Examples: shaped_pulse("gauss",pw,v1,rof1,rof2); 

shapedgradient Generate shaped gradient pulse

Applicability: Systems with waveform generation on imaging or PFG module.

Syntax: shapedgradient(pattern,width,amp,channel,loops,wait) 
char *pattern; /* name of shape text file */

Related: decshaped_pulse Shaped pulse on first decoupler 
dec2shaped_pulse Shaped pulse on second decouple r
simshaped_pulse Simultaneous two-pulse shaped pulse 
sim3shaped_pulse Simultaneous three-pulse shaped pulse



Chapter 3. Pulse Sequence Statement Reference

236 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

double width; /* length of pulse */
double amp; /* amplitude of pulse */
char channel; /* gradient channel 'x', 'y', or 'z' */
int loops; /* number of loops */
int wait; /* WAIT or NOWAIT */

Description: Operates the selected gradient channel to provide a gradient pulse to the 
selected set of gradient coils. The pulse has a pulse shape determined by the 
arguments name, width, amp, and loops. Unlike the shaped rf pulses, the 
shaped gradient leaves the gradients at the last value in the gradient pattern 
when the pulse completes.

Arguments: pattern is the name of a text file without a.GRD extension to describe the 
shape of the pulse. The text file with a.GRD extension should be located in 
$vnmrsystem/shapelib or in the users directory $vnmruser/
shapelib. 

width is the requested length of the pulse in seconds. The pulse length is 
affected by two factors: (1) the minimum time of every element in the shape 
file must be at least 10 μs long, and (2) the time for every element must be a 
multiple of 50 ns. If the width of the pulse is less than 10 μs times the number 
of steps in the shape, a warning message is generated. The shaped gradient 
software rounds each element to a multiple of 50 ns. If the requested width 
differs from the actual width by more than 2%, a warning message is displayed.

amp is a value that scales the amplitude of the pulse. Only the integer portion 
of the value is used and it ranges from 32767 to –32767; where 32767 is full 
scale and –32767 is negative full scale.

channel selects the gradient coil channel desired and should evaluate to the 
characters 'x', 'y', or 'z'. (Be sure not to confuse the characters 'x', 'y', 
or 'z' with the strings "x", "y", or "z".) 

loops is a value, from 1 to 255, that allows the user to loop the selected 
waveform. Note that the given value is the number of loops to be executed and 
that the values 0 and 1 cause the pattern to execute once. 

wait is a keyword, either WAIT or NOWAIT, that selects whether or not a delay 
is inserted to wait until the gradient is completed before executing the next 
statement. The total time it will wait is width*loops. If loops is supplied as 
0, it will be counted as 1 when determining its total time.

Examples: The line:
#define POVR 1.2e-5 /* shaped pulse overhead=12 us */
is required for UNITYINOVA systems.
UNITYINOVA:

shapedgradient("hsine",0.02,32767,'y',1,NOWAIT); 

#include "standard.h"
#define POVR 1.2e-5 /* shaped pulse overhead=12 us */
pulsesequence()
{
...
for (i=-32000; i<=32000; i+16000)
{
shapedgradient("hsine",pw+d3+rx1+rx2,i,'x', \

1,NOWAIT);
shapedpulse("sinc",pw,oph,rx1,rx2);
delay(d3);



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 237

}
/* This step sets a square gradient from a low value */
/* to a high value while executing a shaped pulse */
/* and a delay during each gradient value. */
...
} 

shaped2Dgradient Generate arrayed shaped gradient pulse

Applicability: Systems with imaging or PFG module.

Syntax: shaped2Dgradient(pattern,width,amp,channel, \ 
loops,wait,tag) 

char *pattern; /* name of pulse shape text file */
double width; /* length of pulse */
double amp; /* amplitude of pulse */
char channel; /* gradient channel 'x', 'y', or 'z' */
int loops; /* number of loops */
int wait; /* WAIT or NOWAIT */
int tag; /* unique number for gradient element */

Description: Operates the selected gradient channel to provide a gradient pulse to the 
selected set of gradient coils. This statement is basically the same as the 
shapedgradient statement except that shaped2Dgradient is tailored 
to be used in pulse sequences where the amplitude is arrayed (imaging 
sequences). 

Arguments: pattern is the name of a text file without a.GRD extension that describes the 
shape of the pulse. The text file with a.GRD extension should be located in 
$vnmrsystem/shapelib or in the users directory $vnmruser/
shapelib.

width is the requested length of the pulse in seconds. The width of the pulse 
is affected by: (1) (UNITYINOVA only) the minimum time of every element in the 
shape file must be at least 200 ns long, and (2) (UNITYINOVA) the time for every 
element must be a multiple of 50 ns. If the width of the pulse is less than 10 
μs times the number of steps in the shape, a warning message is generated. The 
shaped gradient software will round each element to a multiple of 50 ns. If the 
requested width differs from the actual width by more than 2%, a warning 
message is displayed.

amp is a value that scales the amplitude of the pulse. Only the integer portion 
of the value is used and it ranges from 32767 to –32767; where 32767 is full 
scale and –32767 is negative full scale.

channel selects the gradient coil channel desired and should evaluate to the 
characters 'x', 'y', or 'z'. (Be sure not to confuse the characters 'x', 'y', 
or 'z' with the strings "x", "y", or "z".) 

loops is a value, from 1 to 255, that allows the user to loop the selected 
waveform. Note that the given value is the number of loops to be executed and 
that the values 0 and 1 cause the pattern to execute once. 

Related: dps_show Draw delay or pulses in a sequence for graphical display
rgradient Set gradient to a specified level
shapedgradient Provide shaped gradient pulse to gradient channel
shaped2Dgradient Arrayed shaped gradient function
vgradient Set gradient to a level determined by real-time math



Chapter 3. Pulse Sequence Statement Reference

238 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

UNITYINOVA only: A digital hardware bug affecting looping requires that all 
patterns be carefully constructed to achieve the desired results. 

wait is a keyword, either WAIT or NOWAIT, that selects whether or not a delay 
is inserted to wait until the gradient is completed before executing the next 
element. The total time it will wait is width*loops. 

tag is a unique integer that “tags” the gradient element from any other gradient 
elements used in the sequence.

Examples: #include "standard.h"
pulsesequence()
{
...
shaped2Dgradient("hsine",d3,0.0-gpe,'x',0,NOWAIT,1);
delay(d3);
shaped2Dgradient("hsine",d4,gpe,'y',0,NOWAIT,2);
...
} 

shapedincgradient Generate dynamic variable gradient pulse

Applicability: Systems with imaging or PFG module.

Syntax: shapedincgradient(channel,pattern,width, \ 
a0,a1,a2,a3,x1,x2,x3,loops,wait) 

char channel; /* gradient channel 'x', 'y', or 'z' */
char *pattern; /* name of pulse shape text file */
double width; /* length of pulse */
double a0,a1,a2,a3; /* coefficients to determine level */
codeint x1,x2,x3; /* variables to determine level */
int loops; /* number of loops */
int wait; /* WAIT or NOWAIT */

Description: Provides a dynamic, variable shaped gradient pulse controlled using the real-
time math functions. The statement drives the chosen gradient with the 
specified pattern, scaled to the level defined by the formula:

level = a0 + a1*x1 + a2*x2 + a3*x3

The pulse has a pulse shape determined by the pattern, width, and loops 
arguments, as well as the calculation of level.

Unlike the shaped rf pulses, the shapedincgradient will leave the 
gradients at the last value in the gradient pattern when the pulse completes. The 
range of the gradient level is –32767 to +32767. If the requested level lies 
outside the legal range, it is clipped at the appropriate boundary value. Note that, 
while each variable in the calculation of level must fit in a 16-bit integer, 
intermediate sums and products in the calculation are done with double 
precision, 32-bit integers.

The following error messages are displayed if the requested shape cannot be 
found or if a width of zero is specified.:

shapedincgradient: x[i] illegal RT variable: xi or 
shapedincgradient: no match!

Related: dps_show Draw delay or pulses in a sequence for graphical display
rgradient Set gradient to a specified level
shapedgradient Provide shaped gradient pulse to gradient channel
vgradient Set gradient to a level determined by real-time math



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 239

Arguments: channel selects the gradient coil channel desired and should evaluate to the 
characters 'x', 'y', or 'z'. (Be careful not to confuse the characters 'x', 
'y', or 'z' with the strings "x", "y", or "z".)

pattern is the name of a text file without a.GRD extension to describe the 
shape of the pulse. The text file with a.GRD extension should be located in 
$vnmrsystem/shapelib or in the users directory $vnmruser/
shapelib.

width is the requested length of the pulse in seconds. The width of the pulse 
is affected by two factors: (1) the minimum time of every element in the shape 
file must be at least 10 μs, and (2) the time for every element must be a multiple 
of 50 ns. If the width of the pulse is less than 10 μs times the number of steps in 
the shape), a warning message is generated. The shapedincgradient 
software will round each element to a multiple of 50 ns. If the requested width 
differs from the actual width by more than 2%, a warning message is displayed.

a0, a1, a2, a3, x1, x2, x3 are values used in the calculation of “level.”

loops is a value, from 1 to 255, that allows the user to loop the selected 
waveform. Note that the given value is the number of loops to be executed and 
that the values 0 and 1 cause the pattern to execute once. 
UNITYINOVA only: A digital hardware bug affecting looping requires that all 
patterns be carefully constructed to achieve the desired results. 

wait is a keyword, either WAIT or NOWAIT, that selects whether or not a 
delay is inserted to wait until the gradient is completed before executing the next 
element. The total time it will wait is width*loops. If loops is supplied as 
0, it will be counted as 1 when determining its total time.

shapedvgradient Generate dynamic variable shaped gradient pulse

Applicability: Systems with imaging or PFG module.

Syntax: shapedvgradient(pattern,width,amp_const, \ 
amp_incr,amp_vmult,channel,vloops,wait,tag) 

char *pattern; /* name of pulse shape text file */
double width; /* length of pulse */
double amp_const; /* sets amplitude of pulse */
double amp_incr; /* sets amplitude of pulse */
codeint amp_vmult; /* sets amplitude of pulse */
char channel; /* gradient channel 'x', 'y', or 'z' */
codeint vloops; /* variable for number of loops */
int wait; /* WAIT or NOWAIT */
int tag; /* unique number for gradient element */

Description: Operates the selected gradient channel to provide a shaped gradient pulse to the 
selected set of gradient coils. This statement is tailored to provide a dynamic 
variable shaped gradient level controlled using the system real-time math 
functions and real-time looping. The statement drives the chosen gradient shape 
to the level defined by the formula:

amplitude = amp_const + amp_incr*amp_vmult

Related: getorientation Read image plane orientation
rgradient Set gradient to a specified level
shapedgradient Provide shaped gradient pulse to gradient channel
shaped2Dgradient Generate arrayed shaped gradient pulse 
vgradient Set gradient to a level determined by real-time math



Chapter 3. Pulse Sequence Statement Reference

240 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

The range of the gradient amplitude is–32767 to +32767, where 32767 is full 
scale and –32767 is negative full scale.

If the requested level lies outside this range, it is truncated to the appropriate 
boundary value. Note that the vloops argument is also controlled by a real-
time AP math variable. Unlike the shaped rf pulses, the shaped gradient leaves 
the gradients at the last value in the gradient pattern when the pulse completes.

Arguments: name is the name of a text file without a.GRD extension to describe the shape 
of the pulse. The text file with a.GRD extension should be located in 
$vnmrsystem/shapelib or in the user’s directory $vnmruser/
shapelib.

width is the requested length of the pulse in seconds. The width of the pulse 
is affected by two factors: (1) the minimum time of every element in the shape 
file must be at least 10 μs, and (2) the time for every element must be a multiple 
of 50 ns. If width is less than 10 μs times the number of steps in the shape, a 
warning message is generated. The shaped gradient software will round each 
element to a multiple of 50 ns. If the requested width differs from the actual 
width by more than 2%, a warning message is displayed.

amp_const, amp_incr, and amp_vmult scale the amplitude of the pulse 
according to the formula above. amp_const and amp_incr can be values of 
type double or integer. amp_vmult must be a real-time AP math variable (v1 
to v14) or a table pointer (t1 to t60). The amplitude ranges are also given 
above.

channel selects the gradient coil channel desired and should evaluate to the 
characters 'x', 'y’, or 'z'. (Be careful not to confuse the characters 'x', 
'y', or 'z' with the strings "x", "y", or "z".) 

vloops allows the user to loop the selected waveform. Values range from 1 to 
255. This also must be a real-time math variable (v1 to v14) or a table pointer 
(t1 to t60). Do not use 0 for vloops, because this may cause inconsistencies 
when WAIT is selected for the wait_4_me argument. 
UNITYINOVA only: A digital hardware bug affecting looping requires that all 
patterns be carefully constructed to achieve the desired results. 

wait is a keyword, either WAIT or NOWAIT, that selects whether or not a 
delay is inserted to wait until the gradient is completed before executing the next 
element. The total time it will wait is width*vloops. It uses the incdelay 
statement when waiting for the gradient pulse to complete.

tag is a unique integer that “tags” this gradient statement from any other 
gradient statement used in the sequence.

Examples: #include "standard.h"
pulsesequence()
{
...
char gphase, gread, gslice;
...
amplitude=(int)(0.5*ni*gpe);
stat=getorientation(&gread,&gphase,&gslice,"orient")
;
...
initval(1.0,v1);
initval(nf,v9);
loop(v9,v5);



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 241

...
shapedvgradient("hsine",d3,amplitude,igpe, \

v5,gphase,v1,NOWAIT,1);
...
endloop(v5);
...
} 

simpulse Pulse observe and decouple channels simultaneously

Syntax: simpulse(obswidth,decwidth,obsphase,decphase, \
RG1,RG2) 

double obswidth, decwidth; /* pulse lengths in sec */
codeint obsphase,decphase; /* variables for phase */
double RG1; /* gating delay before pulse */
double RG2; /* gating delay after pulse */

Description: Gates the observe and decoupler channels. The shorter of the two pulses is 
centered on the longer pulse, while the amplifier gating occurs before the start 
of the longer pulse (even if it is the decoupler pulse) and after the end of the 
longer pulse. 

The absolute difference in the two pulse widths must be greater than or equal to 
0.1 μs; otherwise, a timed event of less than the minimum value (0.05 μs) would 
be produced:

• if the difference is less than 0.1 μs, the pulses are made equally long. 

• If the difference is from 0.1 to 0.2 μs, the difference is made 0.2 μs. 

• If the difference is larger than 0.2 μs, the difference is made as close as the 
timing resolution allows (0.0125 μs).

Excluding UNITYINOVA systems: the minimum time is 0.2 μs; thus, the times are 
doubled (the difference must be 0.4 μs, resolution is 0.025 μs).

Arguments: obswidth and decwidth are the duration, in sec, of the pulse on the observe 
transmitter and first decoupler, respectively.

obsphase and decphase are the phase of the pulse on the observe 
transmitter and the first decoupler, respectively. Each must be a real-time 
variable.

RG1 is the delay, in seconds, between gating the amplifier on and gating the first 
rf transmitter on (all phase shifts occur at the beginning of this delay).

RG2 is the delay, in seconds, between gating the final rf transmitter off and 
gating the amplifier off.

Examples: simpulse(pw,pp,v1,v2,0.0,rof2); 

Related: incdelay Set real-time incremental delay
rgradient Set gradient to specified level
shapedgradient Generate shaped gradient pulse
shaped2Dgradient Generate arrayed shaped gradient pulse
vgradient Generate dynamic variable gradient pulse

Related: decpulse Pulse the decoupler transmitter
decrgpulse Pulse decoupler transmitter with amplifier gating
dps_show Draw delay or pulses in a sequence for graphical display
rgpulse Pulse observe transmitter with amplifier gating



Chapter 3. Pulse Sequence Statement Reference

242 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

sim3pulse Pulse simultaneously on 2 or 3 rf channels 

Applicability: UNITYINOVA systems with two or more independent rf channels.

Syntax: sim3pulse(pw1,pw2,pw3,phase1,phase2,phase3,RG1,RG2) 
double pw1,pw2,pw3; /* pulse lengths in sec */
codeint phase1,phase2,phase3; /* variables for phases */
double RG1; /* gating delay before pulse */
double RG2; /* gating delay after pulse */

Description: Performs a simultaneous, three-pulse pulse on three independent rf channels. A 
simultaneous, two-pulse pulse on the observe transmitter and second decoupler 
can also be performed by setting the pulse length for the first decoupler to 0.0 
(see the second example for how this is done). 

Timing limitations connected with the difference in pulse widths are covered in 
the description of simpulse.

Arguments: pw1, pw2, and pw3 are the pulse length, in seconds, of channels OBSch, 
DECch, and DEC2ch, respectively.

phase1, phase2, and phase3 are the phases of the corresponding pulses. 
These must be real-time variables (v1 to v14, oph, etc.).

RG1 is the delay, in seconds, between gating the amplifier on and gating the first 
rf transmitter on (all phase shifts occur at the beginning of this delay).

RG2 is the delay, in seconds, between gating the final rf transmitter off and 
gating the amplifier off.

Examples: sim3pulse(pw,p1,p2,oph,v10,v1,rof1,rof2); 
sim3pulse(pw,0.0,p2,oph,v10,v1,rof1,rof2); 

sim4pulse Simultaneous pulse on four channels 

Applicability: UNITYINOVA systems with two or more independent rf channels.

Syntax: sim4pulse(pw1,pw2,pw3,pw4,phase1,phase2, \ 
phase3,phase4,RG1,RG2) 

double pw1,pw2,pw3,pw4; /* pulse length in sec */
codeint phase1,phase2; /* variables for phase */
codeint phase3,phase4; /* variables for phase */
double RG1; /* gating delay before pulse */
double RG2; /* gating delay after pulse */

Description: Allows for simultaneous pulses on up to four different channels. If any of the 
pulses are set to 0.0, no pulse is executed on that channel.

Timing limitations connected with the difference in pulse widths is covered in 
the description of simpulse.

Arguments: pw1, pw2, pw3, and pw4 are the pulse length, in seconds, of channels OBSch, 
DECch, DEC2ch, and DEC3ch, respectively.

sim3pulse Simultaneous pulse on 2 or 3 rf channels 
sim4pulse Simultaneous pulse on four channels 

Related: decpulse Pulse the decoupler transmitter
decrgpulse Pulse decoupler transmitter with amplifier gating
dps_show Draw delay or pulses in a sequence for graphical display
rgpulse Pulse observe transmitter with amplifier gating
simpulse Pulse observe, decoupler channels simultaneously
sim4pulse Simultaneous pulse on four channels 



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 243

phase1, phase2, phase3, and phase4 are the phases of the corresponding 
pulses. Each must be real-time variable (v1-v14, oph, etc.)

RG1 is the delay, in seconds, between gating on the amplifier and turning on the 
first transmitter (all phases set at beginning of RG1, even if pwn is 0.0).

RG2 is the delay, in seconds, between the final transmitter off and gating the 
amplifier off.

Examples: sim4pulse(pw,2*pw,p1,2*p1,oph,v3,ZERO,TWO,tof1,rof1); 
sim4pulse(pw,0.0,0.0,2*p1,oph,ZERO,ZERO,TWO,rof1,rof1); 

simshaped_pulse Perform simultaneous two-pulse shaped pulse 

Applicability: UNITYINOVA Systems with a waveform generator on two or more rf channels.

Syntax: simshaped_pulse(obsshape,decshape,obswidth, \
decwidth,obsphase,decphase,RG1,RG2) 

char *obsshape,*decshape; /* names of .RF shape files */
double obswidth, decwidth; /* pulse lengths in sec */
codeint obsphase,decphase; /* variables for phase */
double RG1; /* gating delay before pulse */
double RG2; /* gating delay after pulse */

Description: Performs a simultaneous, two-pulse shaped pulse on the observe transmitter and 
the first decoupler under waveform control.

If either obswidth or decwidth is 0.0, no pulse occurs on the corresponding 
channel. If both obswidth and decwidth are non-zero and either 
obsshape or decshape is set to the null string (''), then a rectangular pulse 
occurs on the channel with the null shape name. If either the pulse width is zero 
or the shape name is the null string, then a waveform is not required on that 
channel.
UNITYINOVA:

The overhead at the start and end of the two-pulse shaped pulse varies with the 
system:

• UNITYINOVA: 1.45 μs (start), 0 (end).

• Systems with an Acquisition Controller board: 21.5 μs, 8.6 μs.

• Systems with an Output board: 21.7 μs, 8.8 μs.

These values hold regardless of the values for the arguments obswidth and 
decwidth. 

Arguments: obsshape is the name of the text file in the shapelib directory that contains 
the rf pattern to be executed on the observe transmitter.

decshape is the name of the text file in the shapelib directory that contains 
the rf pattern to be executed on the first decoupler.

obswidth is the length of the pulse, in seconds, on the observe transmitter.

decwidth is the length of the pulse, in seconds, on the first decoupler.

obsphase is the phase of the pulse on the observe transmitter. The value must 
be a real-time variable (v1 to v14, oph, etc.).

Related: rgpulse Pulse observe channel with amplifier gating
simpulse Pulse observe and decoupler channel simultaneously
sim3pulse Pulse simultaneously on 2 or 3 channels



Chapter 3. Pulse Sequence Statement Reference

244 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

decphase is the phase of the pulse on the first decoupler. The value must be 
a real-time variable (v1 to v14, oph, etc.).

RG1 is the delay, in seconds, between gating the amplifier on and gating the first 
rf transmitter on (all phase shifts occur at the beginning of this delay).

RG2 is the delay, in seconds, between gating the final rf transmitter off and 
gating the amplifier off.

Examples: simshaped_pulse("gauss","hrm180",pw,p1,v2,v5, \
rof1,rof2); 

sim3shaped_pulsePerform a simultaneous three-pulse shaped pulse 

Applicability: UNITYINOVA systems with a waveform generator on three or more rf channels.

Syntax: sim3shaped_pulse(obsshape,decshape,dec2shape, \ 
obswidth,decwidth,dec2width,obsphase, \ 
decphase,dec2phase,RG1,RG2) 

char *obsshape; /* name of obs .RF file */
char *decshape; /* name of dec .RF file */
char *dec2shape; /* name of dec2 .RF file */
double obswidth; /* obs pulse length in sec */
double decwidth; /* dec pulse length in sec */
double dec2width; /* dec2 pulse length in sec */
codeint obsphase; /* obs real-time var. for phase */
codeint decphase; /* dec real-time var. for phase */
codeint dec2phase; /* dec2 real-time var for phase */
double RG1; /* gating delay before pulse in sec */
double RG2; /* gating delay after pulse in sec */

Description: Performs a simultaneous, three-pulse shaped pulse under waveform control on 
three independent rf channels. 

sim3shaped_pulse can also be used to perform a simultaneous two-pulse 
shaped pulse on any combination of three rf channels. This can be achieved by 
setting one of the pulse lengths to the value 0.0 (see the second example for an 
illustration of how this is done).

If any of the shape names are set to the null string (''), then a rectangular pulse 
occurs on the channel with the null shape name. If either the pulse width is zero 
or the shape name is the null string, then a waveform is not required on that 
channel.
UNITYINOVA: 

The overhead at the start and end of the shaped pulse varies:

• UNITYINOVA: 1.95 μs (start), 0 (end).

• Systems with an Acquisition Controller board: 32.25 μs, 12.9 μs.

• Systems with an Output board: 32.45 μs, 13.1 μs.

These values hold regardless of the values of the arguments obswidth, 
decwidth, and dec2width.

Arguments: obsshape is the name of the text file in the shapelib directory that contains 
the rf pattern to be executed on the observe transmitter.

Related: decshaped_pulse Shaped pulse on first decoupler 
dec2shaped_pulse Shaped pulse on second decoupler 
shaped_pulse Shaped pulse on observe transmitter 
sim3shaped_pulse Simultaneous three-pulse shaped pulse 



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 245

decshape is the name of the text file in the shapelib directory that contains 
the rf pattern to be executed on the first decoupler.

dec2shape is the name of the text file in the shapelib directory that 
contains the rf pattern to be executed on the second decoupler.

obswidth is the length of the pulse, in seconds, on the observe transmitter.

decwidth is the length of the pulse, in seconds, on the first decoupler.

dec2width is the length of the pulse, in seconds, on the second decoupler.

obsphase is the phase of the pulse on the observe transmitter. The value must 
be a real-time variable (v1 to v14, oph, etc.).

decphase is the phase of the pulse on the first decoupler. The value must be 
a real-time variable (v1 to v14, oph, etc.).

dec2phase is the phase of the pulse on the second decoupler. The value must 
be a real-time variable (v1 to v14, oph, etc.).

RG1 is the delay, in seconds, between gating the amplifier on and gating the first 
rf transmitter on (all phase shifts occur at the beginning of this delay).

RG2 is the delay, in seconds, between gating the final rf transmitter off and 
gating the amplifier off.

Examples: sim3shaped_pulse("gauss","hrm180","sinc",pw,p1,p2, \
v2,v5,v6,rof1,rof2); 

sim3shaped_pulse("dumy","hrm180","sinc",0.0,p1,p2, \
v2,v5,v6,rof1,rof2); 

sli Set SLI lines

Applicability: UNITYINOVA systems.

Syntax: sli(address,mode,value) 
int address; /* SLI board address */
int mode; /* SLI_SET, SLI_OR, SLI_AND, SLI_XOR */
unsigned value; /* bit pattern */

Description: Sets lines on the SLI board. It has no return value. Systems with imaging 
capability and the Synchronous Line Interface (SLI) board, an option that 
provides an interface to custom user equipment.The board contains 32 TTL-
compatible logic signals that can be set by these functions. Each line has an 
LED indicator and a 100-ohm series resistor for circuit protection. The lines are 
accessible through the 50-pin ribbon connector J4 on the front edge of the SLI 
board. The pin assignments are as follows:

• Pins 1 and 49 are a +5 V supply through 100-ohm series resistor (enabled 
by installing jumper J3L)

• Pins 3 to 10 control bits 0 to 7

• Pins 12 to 19 control bits 8 to 15

• Pins 21 to 28 control bits 16 to 23

• Pins 41 to 48 control bits 24 to 31

• Pins 2, 11, 20, 29, 40, and 50 are ground

Related: decshaped_pulse Shaped pulse on first decoupler
dec2shaped_pulse Shaped pulse on second decoupler 
shaped_pulse Shaped pulse on observe transmitter 
simshaped_pulse Simultaneous two-pulse shaped pulse 



Chapter 3. Pulse Sequence Statement Reference

246 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

sli has a pre-execution delay of 10.950 μs but no post-execution delay. The 
delay is composed of a 200-ns startup delay.
UNITYINOVA: with 5 AP bus cycles (1 AP bus cycle = 2.150 μs).

The logic levels on the SLI lines are not all set simultaneously. The four bytes 
of the 32 bit word are set consecutively, the low-order byte first. The delay 
between setting of consecutive bytes is 1 AP bus cycle ±100 ns. (This 100-ns 
timing jitter is non-cumulative.)

The error message Illegal mode: n is caused by the mode argument not 
being one of SLI_SET, SLI_OR, SLI_XOR, or SLI_AND.

Arguments: address is the address of the SLI board in the system. It must match the 
address specified by jumper J7R on the board. Note that the jumpers 19-20 
through -2 specify bits 2 through 11, respectively. Bits 0 and 1 are always zero. 
An installed jumper signifies a “one” bit, and a missing jumper a “zero”. The 
standard addresses for the SLI in the VME card cage:

• Digital (left) side is C90 (hex) = 3216

• Analog (right) side is 990 (hex) = 2448

mode determines how to combine the specified value with the current output of 
the SLI to produce the new output. The four possible modes:

• SLI_SET is to load the new value directly into the SLI

• SLI_OR is to logically OR the new value with the old

• SLI_AND is to logically AND the new value with the old

• SLI_XOR is to logically XOR the new value with the old

value (as modified by the mode argument) specifies the bit pattern to be set 
in the SLI board. This should be a non-negative number, between 0 (all lines 
low) and 232–1 (all lines high).

Examples: pulsesequence()
{
...
int SLIaddr; /* Address of SLI board */
unsigned SLIbits; /* 32 bits of SLI line settings */
...
SLIbits = getval("sli");
SLIaddr = getval("address");
...
sli(SLIaddr, SLI_SET, SLIbits);
...
} 

Note that sli and address are not standard parameters, but need to be 
created by the user if they are mentioned in a user pulse sequence (for 
details, see the description of the create command).

sp#off Turn off specified spare line (Inova #=1 to 5)

Applicability: UNITYINOVA systems.

Syntax: sp1off() to sp3off()

Related: sp#on Turn on specified spare line
sp#off Turn off specified spare line 
vsli Set SLI lines from real-time variable



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 247

Description: Turns off the specified user-dedicated spare line connector (sp1off for 
SPARE 1, sp2off for SPARE 2, etc.) for high-speed device control.

• UNITYINOVA has five spare lines available from the Breakout panel on the 
back of the left console cabinet. 

Examples: sp1off(); 
sp3off(); 

sp#on Turn on specified spare line (Inova #=1 to 5)

Applicability: UNITYINOVA systems.

Syntax: sp1on() to sp3on()

Description: Turns on the specified user-dedicated spare line connector (sp1on for SPARE 
1, sp2on for SPARE 2, etc.) for high-speed device control. Each spare line 
changes from low to high when turned on.

• UNITYINOVA has five spare lines available from the Breakout panel on the 
back of the left console cabinet. 

Examples: sp1on(); 
sp3on(); 

spinlock Control spin lock on observe transmitter 

Applicability: UNITYINOVA Systems with a waveform generator on the observe transmitter 
channel.

Syntax: spinlock(pattern,90_pulselength,tipangle_resoln, \ 
phase,ncycles) 

char *pattern; /* name of .DEC text file */
double 90_pulselength; /* 90-deg pulse length of channel */
double tipangle_resoln;/* resolution of tip angle */
codeint phase; /* phase of spin lock */
int ncylces; /* number of cycles to execute */

Description: Executes a waveform-controlled spin lock on the observe transmitter. Both the 
rf gating and the mixing delay are handled within this function. Arguments can 
be variables (which require the appropriate getval and getstr statements) 
to permit changes via parameters (see the second example).

Arguments: pattern is the name of the text file in the shapelib directory that stores the 
decoupling pattern (leave off the .DEC file extension).

90_pulselength is the pulse duration for a 90° tip angle on the observe 
transmitter.

tipangle_resoln is the resolution in tip-angle degrees to which the 
decoupling pattern is stored in the waveform generator.

phase is the phase angle of the spin lock. It must be a real-time variable (v1 
to v14, oph, etc.).

ncycles is the number of times that the spin-lock pattern is to be executed. 

Examples: spinlock("mlev16",pw90,90.0,v1,50); 
spinlock(locktype,pw,resol,v1,cycles); 

Related: decspinlock First decoupler spin lock waveform control
dec2spinlock Second decoupler spin lock waveform control 
dec3spinlock Third decoupler spin lock waveform control 



Chapter 3. Pulse Sequence Statement Reference

248 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

starthardloop Start hardware loop 

Syntax: starthardloop(vloop) 
codeint vloop; /* real-time variable for loop count */

Description: Starts a hardware loop. The number of repetitions of the hardware loop must be 
two or more. If the number of repetitions is 1, the hardware looping feature is 
not activated. A hardware loop with a count equal to 0 is not permitted and 
generates an error. Depending on the pulse sequence, additional code may be 
needed to trap for this condition and skip the starthardloop and 
endhardloop statements if the count is 0.

Only instructions that require no further intervention by the acquisition 
computer (pulses, delays, acquires, and other scattered instructions) are allowed 
in a hard loop. Most notably, no real-time math statements are allowed, thereby 
precluding any phase cycle calculations. The number of events included in the 
hard loop, including the total number of data points if acquisition is performed, 
is subject to the following limitations:

• 2048 or less for the Data Acquisition Controller board, Pulse Sequence 
Controller board, or MERCURYplus/-Vx STM/Output board.

• 1024 or less for the Acquisition Controller board.

• 63 or less for the Output board (see the description section of the acquire 
statement for further information about these boards). 

In all cases, the number of events must be greater than one. No nesting of hard 
loops is allowed.

For the Output board, a hardware loop must be preceded by some timed event 
other than an explicit acquisition or another hardware loop. If two hardware 
loops must follow one another, it will therefore be necessary to insert a 
statement like delay(0.2e–6) between the first endhardloop and the 
second starthardloop. With only a single hardware loop, there is no timing 
limitation on the length of a single cycle of the loop. With two hardware loops 
(such as a loop of pulses and delays followed by an implicit acquisition), the 
first hardware loop must have a minimum cycle length of approximately 80 μs. 
With three or more hardware loops, loops that are not the first or last must have 
a minimum cycle length of about 100 μs.

For the Data Acquisition Controller, Pulse Sequence Controller, Acquisition 
Controller, and MERCURYplus/-Vx STM/Output boards, there are no timing 
restrictions between multiple, back-to-back hard loops. There is one subtle 
restriction placed on the actual duration of a hard loop if back-to-back hard 
loops are encountered: the duration of the ith hard loop must be N(i+1) * 0.4 μs, 
where N(i+1) is the number of events occurring in the (i+1)th hard loop.

Arguments: vloop is the number of hardware loop repetitions. It must be a real-time 
variable (v1 to v14, ct, etc.) and not an integer, a real number, or a regular 
variable.

Examples: starthardloop(v2); 

status Change status of decoupler and homospoil (z-shim coil)

Applicability: UNITYINOVA systems.

Syntax: status(state) 
int state; /* index: A, B, C, ..., Z */

Related: acquire Explicitly acquire data
endhardloop End hardware loop 



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 249

Description: Controls decoupler and homospoil gating. Parameters controlled by status 
are dm (first decoupler mode), dmm (first decoupler modulation mode), dm2 
(second decoupler mode), dm3 (third decoupler mode), dmm2 (second 
decoupler modulation mode), and dmm3 (third decoupler modulation mode). 

Each of these parameters can have multiple states: status(A) sets each 
parameter to the state described by the first letter of its value, status(B) uses 
the second letter, etc. If a pulse sequence has more status statements than there 
are status modes for a particular parameter, control reverts to the last letter of 
the parameter value. Thus if dm='ny', status(C) will look for the third 
letter, find none, and then use the second letter (y) and turn the decoupler on 
(actually, leave the decoupler on). 

The states do not have to increase monotonically during a pulse sequence. It is 
perfectly possible to write a pulse sequence that starts with status(A), goes 
later to status(B), then goes back to status(A), then to status(C), 
etc.

Homospoil is treated slightly differently than the decoupler. If a particular 
homospoil code letter is 'y', delays coded as hsdelay that occur during the 
time the status corresponds to that code letter will begin with a homospoil 
pulse, the duration of which is determined by the parameter hst. Thus if 
hs='ny', all hsdelay delays that occur during status(B) will begin with 
a homospoil pulse. The final status always occurs during acquisition, at which 
time a homospoil pulse is not permitted. Thus, if a particular pulse sequence 
uses status(A), status(B), and status(C), dm and other decoupler 
parameters can have up to three letters, but hs has only two, because having 
hs='y' during status(C) is meaningless and is consequently ignored. See 
also: “Amplifier Channel Blanking and Unblanking,” page 75
UNITYINOVA Systems and all systems with class C amplifiers to switch from low-
power to high-power decoupling, insert dhpflag=TRUE; or 
dhpflag=FALSE; in a pulse sequence just before a status statement.

Arguments: state sets the status mode to A, B, C, ..., or Z.

Examples: status(A); 

statusdelay Execute the status statement with a given delay time

Applicability:  UNITYINOVA systems.

Syntax: statusdelay(state,time) 
int state; /* index: A, B, C, ..., Z */
double time; /* delay time, in sec. */

Description: Executes the status statement and delays for the time provided as an 
argument. statusdelay allows the user to specify a defined period of time 
for the status statement to execute.
UNITYINOVA:

The current status statement takes a variable amount of time to execute, 
which depends on the number of rf channels configured in the system, the 
previous status state of each decoupler channel, and the new status state of each 
decoupler channel. This time is small (on the order of a few microseconds 

Related: hsdelay Delay specified time with possible homospoil pulse
setstatus Set status of observe transmitter or a decoupler transmitter 
statusdelay Execute the status statement with a given delay time



Chapter 3. Pulse Sequence Statement Reference

250 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

without programmable decoupling to tens of microseconds with programmable 
decoupling) but can be significant in certain experiments. 

If the amount of time given as an argument is not long enough to account for the 
overhead delays of status; the pulse sequence will still run, but a warning 
message will be generated to let the user know of the discrepancy.

The following table lists the maximum amount of time per channel for the 
status statement to execute is 2.5 microseconds.  

Arguments: state specifies the status mode as A,B,C,...,Z.

time specifies the delay time, in seconds.

Examples: statusdelay(A,d1); 
statusdelay(B,0.000010); 

stepsize Set small-angle phase step size

Applicability: UNITYINOVA systems with rf type C or D and MERCURYplus/-Vx. This statement 
is due to be eliminated in future versions of VnmrJ software. Although it is still 
functional, you should not write any pulse sequences using it and should replace 
it in existing sequences with Use obsstepsize, decstepsize, 
dec2stepsize, or dec3stepsize, as appropriate.

Syntax: stepsize(step_size,device) 
double step_size; /* step size of phase shifter */
int device; /* OBSch, DECch, DEC2ch, or DEC3ch */

Description: Sets the step size of the small-angle phase increment for a particular device. The 
phase information into statements decpulse, decrgpulse, 
dec2rgpulse, dec3rgpulse, pulse, rgpulse, and simpulse is still 
expressed in units of 90°.

Arguments: step_size is a real number or a variable for the phase step size desired.

device is OBSch (observe transmitter) or DECch (first decoupler). device 
can also be DEC2ch (second decoupler) or DEC3ch (third decoupler). The 
step_size phase shift selected is active only for the xmtrphase statement 
if device is OBSch, only for the dcplrphase statement if device is 
DECch, only for the dcplr2phase statement if device is DEC2ch, or only 
for the dcplr3phase statement if the device is DEC3ch.

Examples: stepsize(30.0,OBSch); 
stepsize(step,DEC2ch); 

Without programmable 
decoupling (μs)

 With programmable 
decoupling (μs)

2.5 2.5

Related: status Change status of decoupler and homospoil

Related: dcplrphase Set small-angle phase of first decoupler,
dcplr2phase Set small-angle phase of second decoupler, 
dcplr3phase Set small-angle phase of third decoupler, 
decstepsize Set step size of first decoupler
dec2stepsize Set step size of second decoupler
dec3stepsize Set step size of third decoupler
obsstepsize Set step size of observe transmitter
xmtrphase Set small-angle phase of observe transmitter, rf type C 



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 251

sub Subtract integer values

Syntax: sub(vi,vj,vk) 
codeint vi; /* real-time variable for minuend */
codeint vj; /* real-time variable for subtrahend */
codeint vk; /* real-time variable for difference */

Description: Sets the value of vk equal to vi–vj.

Arguments: vi is the integer value of the minuend, vj is the integer value of the subtrahend, 
and vk is the difference of vi and vj. Each argument must be a real-time 
variable (v1 to v14, oph, etc.).

Examples: sub(v2,v5,v6); 

T

text_error Send a text error message to VnmrJ

Syntax: text_error(char *format, ...) 

Related: add Add integer values
assign Assign integer values
dbl Double an integer value
decr Decrement an integer value
divn Divide integer values 
hlv Half the value of an integer
incr Increment an integer value
mod2 Find integer value modulo 2
mod4 Find integer value modulo 4
modn Find integer value modulo n 
mult Multiply integer values 

Top A B C D E G H I L M O P R S T V W X Z

text_error Send a text error message to VnmrJ 

text_message Send a message to VnmrJ 

tsadd Add an integer to AP table elements 

tsdiv Divide an integer into AP table elements 

tsmult Multiply an integer with AP table elements 

tssub Subtract an integer from AP table elements 

ttadd Add a table to a second table 

ttdiv Divide a table into a second table 

ttmult Multiply a table by a second table 

ttsub Subtract a table from a second table 

txphase Set quadrature phase of observe transmitter 



Chapter 3. Pulse Sequence Statement Reference

252 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Description: Sends an error message to VnmrJ and writes the message into the file 
userdir+'/psg.error'.

text_message Send a message to VnmrJ

Syntax: text_message(char *format, ...) 

Description: Sends a message to VnmrJ. text_message is like warn_message, except it does 
not cause the beep to occur.

tsadd Add an integer to table elements 

Syntax: tsadd(table,scalarval,moduloval) 
codeint table; /* real-time table variable */
int scalarval; /* integer added */
int moduloval; /* modulo value of result */

Description: A run-time scalar operation that adds an integer to elements of a table.

Arguments: table specifies the name of the table (t1 to t60).

scalarval is an integer to be added to each element of the table. 

moduloval is the modulo value taken on the result of the operation if 
moduloval is greater than 0. 

Examples: tsadd(t31,4,4); 

tsdiv Divide an integer into table elements 

Syntax: tsdiv(table,scalarval,moduloval) 
codeint table; /* real-time table variable */
int scalarval; /* integer divisor */
int moduloval; /* modulo value of result */

Description: A run-time scalar operation that divides an integer into the elements of an table.

Arguments: table specifies the name of the table (t1 to t60).

scalarval is an integer to be divided into each element of the table. 
scalarval must not equal 0; otherwise, an error is displayed and PSG aborts.

moduloval is the modulo value taken on the result of the operation if 
moduloval is greater than 0. 

Examples: tsdiv(t31,4,4); 

tsmult Multiply an integer with table elements 

Syntax: tsmult(table,scalarval,moduloval) 
codeint table; /* real-time table variable */
int scalarval; /* integer multiplier */
int moduloval; /* modulo value of result */

Related: tsdiv Divide an integer into table elements
tsmult Multiply an integer with table elements 
tssub Subtract an integer from table elements 

Related: tsadd Add an integer to table elements
tsmult Multiply an integer with table elements 
tssub Subtract an integer from table elements 



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 253

Description: A run-time scalar operation that multiplies an integer with the elements of a 
table. 

Arguments: table specifies the name of the table (t1 to t60).

scalarval is an integer to be multiplied with each element of the table. 

moduloval is the modulo value taken on the result of the operation if 
moduloval is greater than 0. 

Examples: tsmult(t31,4,4); 

tssub Subtract an integer from table elements 

Syntax: tssub(table,scalarval,moduloval) 
codeint table; /* real-time table variable */
int scalarval; /* integer subtracted */
int moduloval; /* modulo value of result */

Description: A run-time scalar operation that subtracts an integer from the elements of a 
table.

Arguments: table specifies the name of the table (t1 to t60).

scalarval is an integer to be subtracted from each element of the table.

moduloval is the modulo value taken on the result of the operation if 
moduloval is greater than 0. 

Examples: tssub(t31,4,4); 

ttadd Add a table to a second table 

Syntax: ttadd(table_dest,table_mod,moduloval) 
codeint table_dest; /* real-time table variable */
codeint table_mod; /* real-time table variable */
int moduloval; /* modulo value of result */

Description: A run-time vector operation that adds one table to a second table.

Arguments: tablenamedest is the name of the destination table (t1 to t60).

table_mod is the name of the table (t1 to t60) that modifies table_dest. 
Each element in table_dest is modified by the corresponding element in 
table_mod and the result is stored in table_dest. The number of elements 
in table_dest must be greater than or equal to the number of elements in 
table_mod.

moduloval is the modulo value taken on the result of the operation if 
moduloval is greater than 0. 

Examples: ttadd(t28,t42,6); 

Related: tsadd Add an integer to table elements
tsdiv Divide an integer into table elements 
tssub Subtract an integer from table elements 

Related: tsadd Add an integer to table elements
tsdiv Divide an integer into table elements 
tsmult Multiply an integer with table elements 

Related: ttdiv Divide a table into a second table



Chapter 3. Pulse Sequence Statement Reference

254 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

ttdiv Divide a table into a second table 

Syntax: ttdiv(table_dest,table_mod,moduloval) 
codeint table_dest; /* real-time table variable */
codeint table_mod; /* real-time table variable */
int moduloval; /* modulo value of result */

Description: A run-time vector operation that divides one table into a second table.

Arguments: table_dest is the name of the destination table (t1 to t60).

table_mod is the name of the table (t1 to t60) that modifies table_dest. 
Each element in table_dest is modified by the corresponding element in 
table_mod and the result is stored in table_dest. The number of elements 
in table_dest must be greater than or equal to the number of elements in 
table_mod. No element in table_mod can equal 0.

moduloval is the modulo value taken on the result of the operation if 
moduloval is greater than 0. 

Examples: ttdiv(t28,t42,6); 

ttmult Multiply a table by a second table 

Syntax: ttmult(table_dest,table_mod,moduloval) 
codeint table_dest; /* real-time table variable */
codeint table_mod; /* real-time table variable */
int moduloval; /* modulo value of result */

Description: A run-time vector operation that multiplies one table by a second table.

Arguments: table_dest is the name of the destination table (t1 to t60).

table_mod is the name of the table (t1 to t60) that modifies table_dest. 
Each element in table_dest is modified by the corresponding element in 
table_mod and the result is stored in table_dest. The number of elements 
in table_dest must be greater than or equal to the number of elements in 
table_mod.

moduloval is the modulo value taken on the result of the operation if 
moduloval is greater than 0. 

Examples: ttmult(t28,t42,6); 

ttsub Subtract a table from a second table 

Syntax: ttsub(table_dest,table_mod,moduloval) 
codeint table_dest; /* real-time table variable */
codeint table_mod; /* real-time table variable */
int moduloval; /* modulo value of result */

ttmult Multiply a table by a second table 
ttsub Subtract a table from a second table 

Related: ttadd Add a table to a second table
ttmult Multiply a table by a second table 
ttsub Subtract a table from a second table 

Related: ttadd Add a table to a second table
ttdiv Divide a table into a second table 
ttsub Subtract a table from a second table 



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 255

Description: A run-time vector operation that subtracts one table from a second table.

Arguments: table_dest is the name of the destination table (t1 to t60).

table_mod is the name of the table (t1 to t60) that modifies table_dest. 
Each element in table_dest is modified by the corresponding element in 
table_mod and the result is stored in table_dest. The number of elements 
in table_dest must be greater than or equal to the number of elements in 
table_mod.

moduloval is the modulo value taken on the result of the operation if 
moduloval is greater than 0. 

Examples: ttsub(t28,t42,6); 

txphase Set quadrature phase of observe transmitter

Syntax: txphase(phase) 
codeint phase; /* variable for quadrature phase */

Description: Sets the observe transmitter quadrature phase to the value referenced by the 
real-time variable so that the transmitter phase is changed independently from a 
pulse. This may be useful to “preset” the transmitter phase at the beginning of a 
delay that precedes a particular pulse. For example, in the sequence 
txphase(v2); delay(d2); pulse(pw,v2);, the transmitter phase is 
changed at the start of the d2 delay. In a “normal” sequence, an rof1 time 
precedes the pulse in which the transmitter phase is changed.

Arguments: phase is the quadrature phase for the observe transmitter. It must be a real-time 
variable (v1 to v14, oph, ct, etc.).

Examples: txphase(v3); 

V

Related: ttadd Add a table to a second table
ttdiv Divide a table into a second table 
ttmult Multiply a table by a second table 

Related: decphase Set quadrature phase of first decoupler
dec2phase Set quadrature phase of second decoupler 
dec3phase Set quadrature phase of third decoupler 

Top A B C D E G H I L M O P R S T V W X Z

vagradient Variable angle gradient 

vagradpulse Variable angle gradient pulse 

var_active Checks if the parameter is being used 

vashapedgradient Variable angle shaped gradient 

vashapedgradpulse Variable angle shaped gradient pulse 

vdelay Set delay with fixed timebase and real-time count 



Chapter 3. Pulse Sequence Statement Reference

256 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

vagradient Variable angle gradient 

Syntax: vagradient(gradlvl,theta,phi) 
double gradlvl; /* gradient amplitude in G/cm */
double theta; /* angle from z axis in degrees */
double phi; /* angle of rotation in degrees */

Description: Applies a gradient of amplitude gradlvl at an angle theta from the z axis 
and rotated about the xy plane at an angle phi. Information from a gradient 
table is used to scale and set the values correctly.The values applied to each 
gradient axis are as follows:

x = gradlvl * (sin(phi)*sin(theta))
y = gradlvl * (cos(phi)*sin(theta))
z = gradlvl * (cos(theta))

vagradient leaves the gradients at the given levels until they are turned off. 
To turn off the gradients, add a vagradient statement with gradlvl set to 
zero or include the zero_all_gradients statement. 

vagradient is used if there are actions to be performed while the gradients 
are on. vagradpulse is simpler to use if there are no other actions performed 
while the gradients are on.

Arguments: gradlvl is the gradient amplitude, in gauss/cm.

theta defines the angle, in degrees, from the z axis.

phi defines the angle of rotation, in degrees, about the xy plane.

Examples: vagradient(3.0, 54.7, 0.0);
pulse(pw,oph);
delay(0.001 - pw);
zero_all_gradients(); 

vagradpulse Variable angle gradient pulse

Applicability: UNITYINOVA systems.

Syntax: vagradpulse(gradlvl,gradtime,theta,phi) 
double gradlvl; /* gradient amplitude in G/cm */
double gradtime; /* gradient time in sec */
double theta; /* angle from z axis in degrees */

vdelay_list Get delay value from delay list with real-time index 

vfreq Select frequency from table 

vgradient Set gradient to a level determined by real-time math 

voffset Select frequency offset from table 

vsetuserap Set user AP register using real-time variable 

Related: magradient Simultaneous gradient at the magic angle
magradpulse Simultaneous gradient pulse at the magic angle
mashapedgradient Simultaneous shaped gradient at the magic angle
mashapedgradpulse Simultaneous shaped gradient pulse at the magic angle
vagradpulse Variable angle gradient pulse
vashapedgradient Variable angle shaped gradient 
vashapedgradpulse Variable angle shaped gradient pulse
zero_all_gradients Zero all gradients



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 257

double phi; /* angle of rotation in degrees */

Description: Applies a gradient pulse of amplitude gradlvl at an angle theta from the z 
axis and rotated about the xy plane at an angle phi. Information from a gradient 
table is used to scale and set the values correctly. The values applied to each 
gradient axis are as follows:

x = gradlvl * (sin(phi)*sin(theta))
y = gradlvl * (cos(phi)*sin(theta))
z = gradlvl * (cos(theta))

The gradients are turned off after gradtime seconds.

vagradpulse is simpler to use if there are no other actions while the 
gradients are on. vagradient is used if there are actions to be performed 
while the gradients are on.

Arguments: gradlvl is the gradient amplitude, in gauss/cm.

gradtime is the time, in seconds, to apply the gradient.

theta is the angle, in degrees, from the z axis

phi is the angle of rotation, in degrees, about the xy plane.

Examples: vagradpulse(3.0,0.001,54.7,0.0); 

var_active Checks if the parameter is being used

Syntax: var_active

Description: Checks if the parameter is active (returns 1) or inactive (returns 0). Applies to 
numbers, not strings. “Inactive” means that the parameter is not being used. If 
the parameter is a number, it can be set to 'n' to make it “inactive.” For example, 
setting fn=256 or fn='n'. If the parameter does not exist, var_active is 
0.

vashapedgradientVariable angle shaped gradient

Applicability: UNITYINOVA systems.

Syntax: vashapedgradient(pattern,gradlvl,gradtime,theta, \ 
phi,loops,wait) 

char* pattern; /* name of gradient shape text file */
double gradlvl; /* gradient amplitude in G/cm */
double gradtime; /* time to apply gradient in sec */
double theta; /* angle from z axis in degrees */
double phi; /* angle of rotation in degrees */
int loops; /* number of waveform loops */
int wait; /* WAIT or NOWAIT */

Related: magradient Simultaneous gradient at the magic angle
magradpulse Simultaneous gradient pulse at the magic angle
mashapedgradient Simultaneous shaped gradient at the magic angle
mashapedgradpulse Simultaneous shaped gradient pulse at the magic angle
vagradient Variable angle gradient
vashapedgradient Variable angle shaped gradient
vashapedgradpulse Variable angle gradient pulse
zero_all_gradients Zero all gradients



Chapter 3. Pulse Sequence Statement Reference

258 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Description: Applies a gradient shape pattern with an amplitude gradlvl at an angle 
theta from the z axis and rotated about the xy plane at an angle phi. 
Information from a gradient table is used to scale and set the values correctly. 
The amplitudes applied to each gradient axis are as follows:

x = gradlvl * (sin(phi)*sin(theta))
y = gradlvl * (cos(phi)*sin(theta))
z = gradlvl * (cos(theta))

vashapedgradient leaves the gradients at the given levels until they are 
turned off. To turn off the gradients, add another vashapedgradient 
statement with gradlvl set to zero or insert a zero_all_gradients 
statement. Note that vashapedgradient assumes the gradient pattern 
zeroes the gradients at its end, and it does not explicitly zero the gradients.

vashapedgradient is used if there are actions to be performed while the 
gradients are on, 

Arguments: pattern is a text file that describes the shape of the gradient. The text file is 
located in $vnmrsystem/shapelib or in the users directory 
$vnmruser/shapelib.

gradlvl is the gradient amplitude, in gauss/cm.

gradtime is the time, in seconds, to apply the gradient.

theta is the angle, in degrees, from the z axis.

phi is the angle of rotation, in degrees, about the xy plane.

loops is a value from 0 to 255 to loop the selected waveform. Gradient 
waveforms do not use this field and it should be set to 0.

wait is a keyword, either WAIT or NOWAIT, that selects whether or not a delay 
is inserted to wait until the gradient is completed before executing the next 
statement.

Examples: vashapedgradient("ramp_hold",3.0,trise,54.7, \
0.0,0,NOWAIT);

pulse(pw,oph);
delay(0.001-pw-2*trise);
vashapedgradient("ramp_down",3.0,trise,54.7, \

0.0,0,NOWAIT); 

vashapedgradpulse Variable angle shaped gradient pulse

Applicability: UNITYINOVA systems.

Syntax: vashapedgradpulse(pattern,gradlvl,gradtime, \ 
theta,phi) 

char *pattern; /* gradient shape text file */
double gradlvl; /* gradient amplitude in G/cm */
double gradtime; /* gradient time in seconds */

Related: magradient Simultaneous gradient at the magic angle
magradpulse Simultaneous gradient pulse at the magic angle
mashapedgradient Simultaneous shaped gradient at the magic angle
mashapedgradpulse Simultaneous shaped gradient pulse at the magic angle
vagradient Variable angle gradient
vagradpulse Variable angle gradient pulse
vashapedgradpulse Variable angle shaped gradient pulse
zero_all_gradients Zero all gradients



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 259

double theta; /* angle from z axis in degrees */
double phi; /* angle of rotation in degrees */

Description: Applies a gradient shape pattern with an amplitude gradlvl at an angle 
theta from the z axis and rotated about the xy plane at an angle phi. 
Information from a gradient table is used to scale and set the values correctly. 
The amplitudes applied to each gradient axis are as follows:

x = gradlvl * (sin(phi)*sin(theta))
y = gradlvl * (cos(phi)*sin(theta))
z = gradlvl * (cos(theta))

The gradient are turned off after gradtime seconds. Note that 
vashapedgradpulse assumes that the gradient pattern zeroes the gradients 
at its end and does not explicitly zero the gradients.

vashapedgradpulse is simpler to use then the vashapedgradient 
statement if there are no other actions while the gradients are on. 
vashapedgradient is used when there are actions to be performed while 
the gradients are on.

Arguments: pattern is a text file that describes the shape of the gradient. The text file is 
located in $vnmrsystem/shapelib or in the user directory $vnmruser/
shapelib.

gradlvl is the gradient amplitude, in gauss/cm.

gradtime is the time, in seconds, to apply the gradient.

theta is the angle, in degrees, from the z axis.

phi is the angle of rotation, in degrees, about the xy plane.

Examples: vashapedgradpulse("hsine",3.0,0.001,54.7,0.0); 

vdelay Set delay with fixed timebase and real-time count

Applicability: UNITYINOVA systems.

Syntax: vdelay(timebase,count) 
int timebase; /* NSEC, USEC, MSEC, or SEC */
codeint count; /* real-time variable for count */

Description: Sets a delay for a time period equal to the product of the specified timebase 
and the count.

Arguments: timebase is one of the four defined time bases: NSEC (described below), 
USEC (microseconds), MSEC (milliseconds), or SEC (seconds).

count is a real-time variable (v1 to v14). For predictable acquisition, the real-
time variable should have a value of 2 or more.

If timebase is set to NSEC, the delay depends on which acquisition controller 
board is used on the system (see the description section of the acquire 
statement for further information about these boards.):

Related: magradient Simultaneous gradient at the magic angle
magradpulse Simultaneous gradient pulse at the magic angle
mashapedgradient Simultaneous shaped gradient at the magic angle
mashapedgradpulse Simultaneous shaped gradient pulse at the magic angle
vagradient Variable angle gradient
vagradpulse Variable angle gradient pulse
vashapedgradient Variable angle shaped gradient
zero_all_gradients Zero all gradients



Chapter 3. Pulse Sequence Statement Reference

260 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

• Systems with a Data Acquisition Controller board:

The minimum delay is a count of 0 (100 ns), and a count of n corresponds 
to a delay of (100 + (12.5*n)) ns. For example, vdelay(NSEC,v1), when 
v1=4, gives a delay of (100 + (12.5*4)) ns or 150 ns.

• Systems with a Pulse Sequence Controller board or an Acquisition 
Controller board:

The minimum delay is a count of 2 (200 ns). A count greater than 2 is the 
minimum delay plus the resolution (25 ns) of the board. For example, 
vdelay(NSEC,v1), when v1=4, gives a delay of (200 + 25) ns or 225 ns.

• Systems with Output boards

The minimum delay is a count of 2 (200 ns). A count greater than 2 is the 
minimum delay plus the resolution (100 ns) of the board. For example, 
vdelay(NSEC,v1), when v1=4, gives a delay of (200 + 100) ns or 300 
ns.

Examples: vdelay(USEC,v3); 

vdelay_list Get delay value from delay list with real-time index

Applicability: UNITYINOVA systems.

Syntax: vdelay_list(list_number,vindex) 
int list_number; /* same index as create_delay_list */
codeint vindex; /* real time variable */

Description: Provides a means of indexing into previously created delay lists using a real-
time variable or a table. The indexing into the list is from 0 to N–1, where N is 
the number of items in the list. The delay table has to have been created with the 
create_delay_list statement. It has no return value.

Arguments: tlist_number is the number between 0 and 255 for each list. This number 
must match the list_number used when creating the table.

vindex is a real-time variable (v1 to v14) or a table (t1 to t60).

Examples: pulsesequence()
{
...
int noffset, ndelay, listnum;
double offsets1[256],offsets2[256],delay[256];
...
/* initialize offset and delay lists */
create_offset_list(offsets1,noffset,OBSch,0);
create_delay_list(delay,ndelay,1);
create_offset_list(offsets2,noffset,DECch,2);
...
voffset(0,v4); /* get v4 from observe offset list */

Related: create_delay_list Create table of delays
delay Delay for a specified time 
hsdelay Delay specified time with possible homospoil pulse
incdelay Real time incremental delay 
initdelay Initialize incremental delay
vfreq Select frequency from table
voffset Select frequency offset from table
vdelay_list Get delay value from delay list with real-time index



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 261

vdelay_list(1,v5); /* get v5 from delay list */
voffset(2,v4); /* get v4 from decouple offset list */
...
} 

vfreq Select frequency from table

Applicability: UNITYINOVA systems.

Syntax: vfreq(list_number,vindex) 
int list_number; /* same index as for create_freq_list */
codeint vindex; /* real-time variable */

Description: Provides a means of indexing into previously created frequency lists using a 
real-time variable or a table. The indexing into the list is from 0 to N–1, where 
N is the number of items in the list. The frequency table must have been created 
with the create_freq_list statement. It has no return value.

Arguments: list_number is the number between 0 and 255 for each list. This number 
must match the list_number used when creating the table.

vindex is a real-time variable (v1 to v14) or a table (t1 to t60).

Examples: See the example for the vdelay statement.

vgradient Set gradient to a level determined by real-time math

Applicability: UNITYINOVA systems with PFG modules. Not applicable to MERCURYplus/-Vx.

Syntax: vgradient(channel,intercept,slope,mult) 
char channel; /* gradient channel 'x', 'y' or 'z' */
int intercept; /* initial gradient level */
int slope; /* gradient increment */
codeint mult; /* real-time variable */

Description: Provides a dynamic variable gradient controlled using the real-time math 
functions. It has no return value. The statement drives the chosen gradient to the 
level defined by the formula:

level = intercept + slope*mult.

The gradient level ranges from –2047 to +2047 for systems with 12-bit DACs, 
or from –32767 to +32767 for gradients using the waveform, which have 16- bit 
DACs. If the requested level lies outside this range, it is rounded to the 
appropriate boundary value.

After vgradient, the action of the gradient is controlled by the gradient 
power supply. The gradient level is ramped at the preset slew rate (2047 DAC 

Related: create_delay_list Create table of delays
delay Delay for a specified time 
hsdelay Delay specified time with possible homospoil pulse
incdelay Real time incremental delay 
initdelay Initialize incremental delay
vfreq Select frequency from table
voffset Select frequency offset from table
vdelay Set delay with fixed timebase and real-time count

Related: create_freq_list Create table of frequencies
vdelay Select delay from table
voffset Select frequency offset from table



Chapter 3. Pulse Sequence Statement Reference

262 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

units per millisecond) to the value requested by vgradient. This fact 
becomes a concern when using vgradient in a loop with a delay element, in 
order to produce a modulated gradient. The delay element should be sufficiently 
long so as to allow the gradient to reach the assigned value:

Arguments: channel specifies the gradient to be set and is one of the characters 'X', 
'x', 'Y', 'y', 'Z', or 'z'. In imaging, channel can also be 'gread', 
'gphase', or 'gslice'.

intercept and slope are integers. In imaging, intercept is the initial 
gradient DAC setting and slope is the gradient DAC increment.

mult is a real-time variable (v1 to v14, etc.). In imaging, mult is set so that 
intercept+slope*mult is the output.

Examples: (1) mod2(ct,v10); /* v10 is 0,1,0,1,0,1,... */
vgradient('z',0,2000,v10);

/* z gradient is 0,2000,0,2000,... */
delay(d2); /* delay for duration d2 */
rgradient('z',0.0); /* gradient turned off */

(2) mod4(ct,v10);
/* v10 is 0,1,2,3,4,0,1,2,3,4,... */

vgradient('z',-5000.0,2500.0,v10);
/* z is –5000,–2500,0,2500 */ 

(3) pulsesequence()
{
...
char gphase, gread, gslice;
int amplitude, igpe, stat;
double gpe;
...
gpe = getval("gpe");
amplitude = (int)(0.5*ni*gpe);
igpe = (int)gpe;
stat = 
getorientation(&gread,&gphase,&gslice,"orient");
...
initval(nf,v9);
loop(v9,v5);

...
vgradient(gphase,amplitude,igpe,v5);
...

endloop(v5);
...
}

Related: dps_show Draw delay or pulses in a sequence for graphical display
getorientation Read image plane orientation
rgradient Set gradient to specified level 
shapedgradient Provide shaped gradient pulse to gradient channel
shaped2Dgradient Generate arrayed shaped gradient pulse
shapedvgradient Generate dynamic variable shaped gradient pulse
zgradpulse Create a gradient pulse on the z channel 

delay
new_level old_level–

2047
--------------------------------------------------------- risetime×≥



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 263

voffset Select frequency offset from table

Applicability: UNITYINOVA systems.

Syntax: voffset(list_number,vindex) 
int list_number; /* number of list */
codeint vindex; /* real-time or table variable */

Description: Provides a means of indexing into previously created frequency offset lists 
using a real-time variable or a table. The indexing into the list is from 0 to N–1, 
where N is the number of items in the list. The offset table has to have been 
created with the create_offset_list statement. It has no return value.

Arguments: list_number is the number between 0 and 255 for each list. This number 
must match the list_number used when creating the table.

vindex is a real-time variable (v1 to v14) or a table (t1 to t60).

Examples: See the example for the vdelay statement.

vsetuserap Set user AP register using real-time variable

Applicability: UNITYINOVA systems.

Syntax: vsetuserap(vi,register) 
codeint vi; /* variable output to AP bus register */
int register; /* AP bus register: 0, 1, 2, or 3 */

Description: Sets one of the four 8-bit AP bus registers that provide an output interface to 
custom user equipment. The outputs of these registers go the USER AP 
connectors J8212 and J8213, located on the back of the left console cabinet. The 
outputs have a 100-ohm series resistor for circuit protection.

Arguments: vi is an index to a real-time variable that contains a signed or unsigned real 
number or integer to output to the specified user AP register.

register is the AP register number, mapped to output lines as follows: 

• Register 0 is J8213, lines 9 to 16.

• Register 1 is J8213, lines 1 to 8.

• Register 2 is J8212, lines 9 to 16.

• Register 3 is J8212, lines 1 to 8.

Examples: vsetuserap(v1,1); 

W

Related: create_offset_list Create table of frequency offsets
vdelay Select delay from table
vfreq Select frequency from table

Related: readuserap Read input from user AP register
setuserap Set user AP register

Top A B C D E G H I L M O P R S T V W X Z



Chapter 3. Pulse Sequence Statement Reference

264 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

warn_message Send a warning message to VnmrJ

Syntax: warn_message(char *format, ...) 

Description: Sends an warning message to VnmrJ and causes a beep.

X

 

xgate Gate pulse sequence from an external event 

Applicability: UNITYINOVA systems.

Syntax: xgate(events) 
double events; /* number of external events */

Description: Halts the pulse sequence. When the number of external events have occurred, 
the pulse sequence continues.

Arguments: events is the number of external events.

Examples: xgate(2.0); 
xgate(events); 

xmtroff Turn off observe transmitter 

Syntax: xmtroff() 

Description: Explicitly gates off the observe transmitter in the pulse sequence. 

xmtron Turn on observe transmitter 

Syntax: xmtron() 

warn_message Send a warning message to VnmrJ 

Top A B C D E G H I L M O P R S T V W X Z

xgate Gate pulse sequence from an external event 

xmtroff Turn off observe transmitter 

xmtron Turn on observe transmitter 

xmtrphase Set transmitter small-angle phase 

Related: rotorperiod Obtain rotor period of MAS rotor
rotorsync Gated pulse sequence delay from MAS rotor position 

Related: xmtron Turn on observe transmitter



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 265

Description: Explicitly gates on the observe transmitter in the pulse sequence. Transmitter 
gating is handled automatically by the statements obspulse, pulse, 
rgpulse, shaped_pulse, simpulse, sim3pulse, 
simshaped_pulse, sim3shaped_pulse, and spinlock.

The obsprgon statement generally needs to be enabled with an explicit 
xmtron statement and followed by a xmtroff call.

xmtrphase Set transmitter small-angle phase

Syntax: xmtrphase(multiplier) 
codeint multiplier; /* real-time AP variable */

Description: Sets the phase of transmitter in units set by the obsstepsize statement. The 
small-angle phaseshift is a product of multiplier and the preset step size for 
the transmitter. If stepsize has not been used, the default step size is 90°.

If the product of the step size set by the stepsize statement and 
multiplier is greater than 90°, the sub-90° part is set by xmtrphase. 
Carryovers that are multiples of 90° are automatically saved and added in at the 
time of the next 90° phase selection (such as at the time of the next pulse or 
decpulse). 

xmtrphase should be distinguished from txphase. xmtrphase is needed 
any time the transmitter phase shift is to be set to a value that is not a multiple 
of 90°. txphase is optional and rarely is needed.

Arguments: multiplier is a small-angle phaseshift multiplier and must be an real-time 
variable.

Examples: xmtrphase(v1); 

Z

zero_all_gradients Zero all gradients

Syntax: zero_all_gradients() 

Description: Sets the gradients in the x, y, and z axes to zero.

Related: xmtroff Turn on observe transmitter

Related: dcplrphase Set small-angle phase of first decoupler
dcplr2phase Set small-angle phase of second decoupler
dcplr3phase Set small-angle phase of third decoupler
stepsize Set small-angle phase step size

Top A B C D E G H I L M O P R S T V W X Z

zero_all_gradients Zero all gradients 

zgradpulse Create a gradient pulse on the z channel 



Chapter 3. Pulse Sequence Statement Reference

266 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Examples: vagradient(3.0, 54.7, 0.0); 
delay(0.001);
zero_all_gradients(); 

zgradpulse Create a gradient pulse on the z channel 

Applicability: UNITYINOVA systems with PFG module.

Syntax: zgradpulse(value,delay) 
double value; /* amplitude of gradient on z channel */
double delay; /* length of gradient in sec */

Description: Creates a gradient pulse on the z channel with amplitude and duration given by 
the arguments. At the end of the pulse, the gradient is set to 0.

Arguments: value is the amplitude of the pulse. It is a real number between –32768 and 
32767.

delay is any delay parameter, such as d2.

Examples: zgradpulse(1234.0,d2); 

Related: vagradient Variable angle gradient
vagradpulse Variable angle gradient pulse
vashapedgradient Variable angle shaped gradient
vashapedgradpulse Variable angle shaped gradient pulse

Related: dps_show Draw delay or pulses for graphical display of a sequence
rgradient Set gradient to specified level 
vgradient Set gradient to level determined by real-time math 



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 267

Chapter 4. Linux Level Programming

Sections in this chapter:

• 4.1 “Linux and VnmrJ,” this page 

• 4.2 “Linux Reference Guide,” page 267 

• 4.3 “Linux Commands Accessible from VnmrJ,” page 270 

• 4.4 “Background VNMR,” page 270 

• 4.5 “Shell Programming,” page 272 

Hundreds of books written on every aspect and level of UNIX and much of it also applies 
to Linux, the open-source version of UNIX. This manual does not replace that material.

4.1 Linux and VnmrJ
The VnmrJ software is a complete NMR work environment and VnmrJ users do not need 
to work directly with the operating system aside from login, logout, and starting VnmrJ. 
The operating system runs the workstation at all times. The user starts VnmrJ by clicking 
on the VnmrJ icon after completing the login procedure. Operators assigned to a Walkup 
account remain within the VnmrJ environment and use the VnmrJ switch operator function 
and login screen.

Linux provides “tools” to perform almost anything short of complex mathematical 
manipulations, search through your files, sort line lists, report who is on the system, run a 
program unattended, and more. Use the on line help provided with Linux and other 
published third party references to learn about these tools.

4.2 Linux Reference Guide
• “Command Entry,” page 268

• “File Names,” page 268

• “File Handling Commands,” page 268

• “Directory Names,” page 268

• “Directory Handling Commands,” page 268

• “Text Commands,” page 269

• “Other Commands,” page 269

• “Special Characters,” page 269

This is a brief overview of the operating system and its associated commands. 



Chapter 4. Linux Level Programming

268 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Command Entry

File Names 

File Handling Commands

Directory Names 

Directory Handling Commands

Single command entry commandname

Command names  Generally lowercase, case-sensitive

Multiple command separator ; (semicolon) or new line

Arguments  commandname arg1 arg2

Typical (shorthand names usually used)  /vnmr/fidlib/fid1d

Level separator  / (forward slash)

Individual filenames  Any number of characters (256 unique)

Characters in filenames  Underline, period often used

First character in filename  First character unrestricted

Delete (unlink) a file(s)  rm filenames

Copy a file  cp filename newfilename

Rename a file  mv filename newfilename

Make an alias (link)  ln target linkname

Sort files  sort filenames

Tape backup  tar 

Package files zip 

Home directory for each user  Directory assigned by administrator

Working directory  Current directory user is in

Shorthand for current directory . (single period)

Shorthand for parent directory .. (two periods)

Shorthand for home directory  ~ (tilde character)

Root directory  / (forward slash)

Create (or make) a directory  mkdir directoryname

Rename a directory  mv dirname newdirname

Remove an empty directory  rmdir directoryname

Delete directory and all files in it  rm –r directoryname

List files in a directory, short list  ls directoryname 

List files in a directory, long list  ls –l directoryname 

Copy file(s) into a directory  cp filenames directoryname

Move file(s) into a directory  mv filenames directoryname



4.2 Linux Reference Guide

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 269

Text Commands

Other Commands 

Special Characters

Show current directory  pwd 

Change current directory  cd newdirectoryname 

Edit a text file using vi editor  vi filename

Edit a text file using ed editor  ed filename

Edit a text file using textedit editor  textedit filename

Display first part of a file  head filename

Display last part of a file  tail filename

Concatenate and display files  cat filenames

Compare two files  cmp filename1 filename2

Compare two files deferentially  diff filename1 filename2

Print file(s) on line printer  lp filenames

Search file(s) for a pattern  grep expression filenames

Find spelling errors  spell filename

Pattern scanning and processing  awk pattern filename

Change file protection mode  chmod newmode filename

Display current date and time  date

Summarize disk usage  du –k

Report free disk space  df –k filesystem

Kill a background process  kill process-id

Sign onto system  login username

Send mail to other users  mail

Print out UNIX manual entry  man commandname

Process status  ps

Convert quantities to another scale  units

Who is on the system  w

System identification  uname -a

Send output into named file  > filename

Append output into named file  >> filename

Take input from named file < filename

Send output from first command to input of second command (pipe)  | (vertical bar)

Wildcard character for a single character in filename operations  ?

Wildcard character for multiple characters in filename operations  *

Run program in background  &

Abort the current process  Control-C

Logout or end of file  Control-D



Chapter 4. Linux Level Programming

270 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

4.3 Linux Commands Accessible from VnmrJ
• “Opening a Text Editor from VnmrJ,” page 270

• “Opening a Shell from VnmrJ,” page 270

Several commands are accessible directly from VnmrJ, including the vi, edit, shell, 
shelli, and w commands. 

Opening a Text Editor from VnmrJ

Entering vi(file) or edit(file) from VnmrJ opens a text editor screen for editing 
the name of the file given in the argument (e.g., vi('myfile')). Exiting from the editor 
closes the editing window.

A useful Linux and UNIX editing program is vi. The UINIX text editors, ed and 
textedit, and the Linux gedit that are easier to learn than vi, but vi is the most 
widely used Linux and UNIX text editors because of its many features. A text editor is 
necessary to prepare or edit text files, such as macros, menus, and pulse sequences (short 
text files such as those used to annotate spectra are usually edited in simpler ways).

Opening a Shell from VnmrJ

Entering the shell command from VnmrJ without any argument opens a normal Linux 
or UNIX shell. Entering shell with the syntax:

shell(command)<:$var1,$var2,...> 

executes the operating system command given, displays any text lines generated, and 
returns control to VnmrJ when finished. The results of the command line are returned to the 
variables $var1,$var2,... if return arguments are present. Each variable receives a 
single display line.

shell calls involving pipes (|) or input redirection (<) require either an extra pair of 
parentheses or the addition of; cat to the shell command string, for example:

shell('(ls –t|grep May)'):$list
shell('ls –t|grep May; cat'):$list

To display information about who is on to the operating system, enter the w command from 
VnmrJ.

4.4 Background VNMR
• “Running VNMR Command as a Linux Background Task,” page 270

• “Running VNMR Processing in the Background,” page 271

Running VNMR commands and processing as a Linux or UNIX background task are 
possible using vbg commands from Linux or UNIX.

Running VNMR Command as a Linux Background Task

VNMR commands can be executed as a Linux background task by using the command
Vnmr –mback <–n#> command_string <&>



4.4 Background VNMR

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 271

where –mback is a keyword (entered exactly as shown), –n# sets that processing will 
occur in experiment # (e.g., –n2 sets experiment 2), and command_string is a VNMR 
command or macro. If –n# is omitted, processing occurs in experiment 1. If more than one 
command is to be executed, place double quote marks around the command string, e.g.,
"printon dg printoff"

Linux background operation (&) is possible, as in Vnmr –mback wft2da &. Usually 
it is a good idea to use redirection (> or >>) with background processing:
Vnmr –mback –n3 wft2da > vnmroutput &

The vbg shell script is also available to run VNMR processing in the background.

All text output, both normal text window output and the typical two-letter prompts that 
appear in the upper right (“FT”, “PH”, etc.), are directed to the UNIX output window.

Note the following characteristics of the Vnmr command:

• Full multiuser protection is implemented. If user vnmr1 is logged in and using 
experiment 1, and another person logs in as vnmr1 from another terminal and tries to 
use the background Vnmr, the second vnmr1 receives the message “experiment 
1 locked” if that person tries to use experiment 1. The second user can use other 
experiments, however.

• Pressing Control-C does not work: typing the command shown cannot be abort it with 
Control-C.

• Operation within VNMR is possible using the shell command, e.g.,

shell('Vnmr –mback –n2 wftda')

• Plotting is possible; e.g., 

Vnmr –mback –n3 "pl pscale pap page"

• Printing is possible; e.g., 

Vnmr –mback "printon dg printoff"

Running VNMR Processing in the Background

The vbg shell script runs VNMR processing in the background. The main requirements are 
that vbg must be run from within a shell and that no foreground or other background 
processes can be active in the designated experiment. Open a terminal window and start 
vbg in the following form:
vbg # command_string <prefix>

where # is the number of an experiment (from 1 to 9) in the user's directory in which the 
background processing is to take place, command_string is one or more VNMR 
commands and macros to be executed in the background (double quotes surrounding the 
string are mandatory), and prefix is the name of the log file, making the full log file name 
prefix_bgf.log (e.g., to perform background plotting from experiment 3, enter vbg 
3 "vsadj pl pscale pap page" plotlog). 

The default log file name is #_bgf.log, where # is the experiment number. The log file 
is placed in the experiment in which the background processing takes place. Refer to the 
Command and Parameter Reference for more information on vbg.



Chapter 4. Linux Level Programming

272 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

4.5 Shell Programming
• “Shell Variables and Control Formats,” page 272

• “Shell Scripts,” page 272

The shell executes commands given either from a terminal or contained in a file. Files 
containing commands and control flow notation, called shell scripts, can be created, 
allowing users to build their own commands. This section provides a very short overview 
of such programming; refer to the Linux and UNIX literature for more information.

Shell Variables and Control Formats

As a programming language, the shell provides string-valued variables: $1, $2,.... The 
number of variables is available as $# and the file being executed is available as $0. 
Control flow is provided by special notation, including if, case, while, and for. The 
following format is used:

Shell Scripts

The following shell scripts show two ways a shell script might be written for the same 
command. In both scripts, the command name lower is selected by the user and the intent 
of the command is to convert a file to lower case, but the scripts differ in features.

The first script:
: lower --- command to convert a file to lower case
: usage lower filename
: output filename.lower
tr '[A-Z]' '[a-z]' < $1 > $1.lower

The second script:
: lower --- a command to convert a file to lower case
: usage lower filename or lower inputfile outputfile
: output filename.lower or output file
case $# in

1) tr '[A-Z]' '[a-z]' <$1 > $1.lower;;
2) tr '[A-Z]' '[a-z]' <$1 > $2;;
*) echo "Usage: lower filename or lower \

inputfile outputfile";;
esac

In the first script, only one form of input is allowed, but in the second script, not only is a 
second form of input allowed but a prompt explaining how to use lower appears if the user 
enters lower without any arguments. Notice that in both scripts a colon is used to identify 
lines containing comments (and that each script is carefully commented).

if command-list (not Boolean)
then command-list
else command-list
fi

case word in
pattern) command-list;;
...
esac

while command-list
do command-list
done

for name (in w1 w2)
do command-list
done



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 273

Chapter 5. Parameters and Data

Sections in this chapter:

• 5.1 “VnmrJ Data Files,” this page 

• 5.2 “FDF (Flexible Data Format) Files,” page 280 

• 5.3 “Reformatting Data for Processing,” page 285 

• 5.4 “Creating and Modifying Parameters,” page 288

• 5.5 “Modifying Parameter Displays in VNMR,” page 294 

• 5.6 “User-Written Weighting Functions,” page 297 

• 5.7 “User-Written FID Files,” page 300 

5.1 VnmrJ Data Files
• “Binary Data Files,” page 273

• “Data File Structures,” page 275

• “VnmrJ Use of Binary Data Files,” page 278

• “Storing Multiple Traces,” page 279

• “Header and Data Display,” page 280

VnmrJ data files use only two basic formats:

• Binary format – Stores FIDs and transformed spectra. Binary files consist of a file 
header describing the details of the data stored in the file followed by the spectral data 
in integer or floating point format. 

• Text format – Stores all other forms of data, such as line lists, parameters, and all forms 
of reduced data obtained by analyzing NMR spectra. The advantage of storing data in 
text format is that it can be easily inspected and modified with a text editor and can be 
copied from one computer to another with no major problems. The text on Sun systems 
use the ASCII format in which each letter is stored in one byte. 

Binary Data Files

Binary data files are used in the VnmrJ file system to store FIDs and the transformed 
spectra. FIDs and their associated parameters are stored as filename.fid files. A 
filename.fid file is always a directory file containing the following individual files:

• filename.fid/fid is a binary file containing the FIDs.

• filename.fid/procpar is a text file with parameters used to obtain the FIDs.

• filename.fid/text is a text file.



Chapter 5. Parameters and Data

274 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

In experiments, binary files store FIDs and spectra. In non-automation experiments, the 
FID is stored within the experiment regardless of what the parameter file is set to. The 
path ~username/vnmrsys/expn/acqfil/fid is the full UNIX path to that file. 
FIDs are stored as either 16- or 32-bit integer binary data files, depending on whether the 
data acquisition was performed with dp='n' or dp='y', respectively.

After an Fourier transform, the experiment file expn/datdir/data contains the 
transformed spectra stored in 32-bit floating point format. This file always contains 
complex numbers (pairs of floating point numbers) except if pmode='' was selected in 
processing 2D experiments. To speed up the display, VnmrJ stores also the phased spectral 
information in expn/datdir/phasefile, where it is available only after the first 
display of the data. In arrayed or 2D experiments, phasefile contains only those traces 
that have been displayed at least once after the last FT or phase change. Therefore, a user 
program to access that file can only be called after a complete display of the data.

The directory file expn for current experiment n contains the following files:

• expn/curpar is a text file containing the current parameters.

• expn/procpar is a text file containing the last used parameters.

• expn/text is a text file.

• expn/acqfil/fid is a binary file that stores the FIDs.

• expn/datdir/data is a binary file with transformed complex spectrum.

• expn/datdir/phasefile is a binary file with transformed phased spectrum.

• expn/sn is saved display number n.

To access information from one of the experiment files of the current experiment, the user 
must be sure that each of these files has been written to the disk. The problem arises because 
VnmrJ tries to keep individual blocks of the binary files in the internal buffers as long as 
possible to minimize disk accesses. This buffering in memory is not the same as the disk 
cache buffering that the UNIX operating system performs. The command flush can be 
used in VnmrJ to write all data buffers into disk files (or at least into the disk cache, where 
it is also available for other processes). The command fsave can be used in VnmrJ to 
write all parameter buffers into disk files.

The default directory for the 3D spectral data is curexp/datadir3d. The output 
directory for the extracted 2D planes is the same as that for the 3D spectral data, except that 
2D uses the /extr subdirectory and 3D uses the /data subdirectory. Within the 3D data 
subdirectory /data are the following files and further subdirectories:

• data1 to data# are the actual binary 3D spectral data files. If the option nfiles is 
not entered, the number of data files depends upon the size of the largest 2D plane and 
the value for the UNIX environmental parameter memsize.

• info is a directory that stores the 3D coefficient text file (coef), the binary 
information file (procdat), the 3D parameter set (procpar3d), and the automation 
file (auto). The first three files are created by the set3dproc() command within 
VnmrJ. The last file is created by the ft3d program.

• log is a directory that stores the log files produced by the ft3d program. The file f3 
contains all the log output for the f

3
 transform. For the f

2
 and f

1
 transforms, there are 

two log file for each data file, one for the f
2
 transform (f2.#) and one for the f

1
 

(f1.#). The file master contains the log output produced by the master ft3d 
program.



5.1 VnmrJ Data Files

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 275

Data File Structures

A data file header of 32 bytes is placed at the beginning of a VnmrJ data file. The header 
contains information about the number of blocks and their size. It is followed by one or 
more data blocks. At the beginning of each block, a data block header is stored, which 
contains information about the data within the individual block. A typical 1D data file, 
therefore, has the following form:
data file header

header for block 1

data of block 1

header for block 2

data of block 2

. . .

The data headers allow for 2D hypercomplex data that may be phased in both the f1 and f2 
directions. To accomplish this, the data block header has a second part for the 2D 
hypercomplex data. Also, the data file header, the data block header, and the data block 
header used with all data have been slightly revised. The new format allows processing of 
FIDs obtained with earlier versions of VnmrJ.The 2D hypercomplex data files with 
datafilehead.nbheaders=2 have the following structure:
data file header

header for block 1

second header for block 1

data of block 1

header for block 2

second header for block 2

data of block 2

. . .

All data in this file is contiguous. The byte following the 32nd byte in the file is expected 
to be the first byte of the first data block header. If more than one block is stored in a file, 
the first byte following the last byte of data is expected to be the first byte of the second 
data block header. Note that these data blocks are not disk blocks; rather, they are a 
complete data group, such as an individual trace in a experiment. For non-arrayed 1D 
experiments, only one block will be present in the file.

Details of the data structures and constants involved can be found in the file data.h, 
which is provided as part of the VnmrJ source code license. The C specification of the file 
header is the following:
struct datafilehead

/* Used at start of each data file (FIDs, spectra, 2D) */

{
long nblocks; /* number of blocks in file */

long ntraces; /* number of traces per block */

long np; /* number of elements per trace */

long ebytes; /* number of bytes per element */

long tbytes; /* number of bytes per trace */

long bbytes; /* number of bytes per block */

short vers_id; /* software version, file_id status bits */

short status; /* status of whole file */

long nbheaders; /* number of block headers per block */

};

The variables in datafilehead structure are set as follows:

• nblocks is the number of data blocks present in the file.



Chapter 5. Parameters and Data

276 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

• ntraces is the number of traces in each block.

• np is the number of simple elements (16-bit integers, 32-bit integers, or 32-bit floating 
point numbers) in one trace. It is equal to twice the number of complex data points.

• ebytes is the number of bytes in one element, either 2 (for 16-bit integers in single 
precision FIDs) or 4 (for all others). 

• tbytes is set to (np*ebytes).

• bbytes is set to (ntraces*tbytes + nbheaders*sizeof(struct 
datablockhead)). The size of the datablockhead structure is 28 bytes.

• vers_id is the version identification of present VnmrJ.

• nbheaders is the number of block headers per data block.

• status is bits as defined below with their hexadecimal values.
All other bits must be zero.

Bits 0–6: file header and block header status bits (bit 6 is unused):

* If S_FLOAT=0, S_32=0 for 16-bit integer, or S_32=1 for 32-bit integer.
If S_FLOAT=1, S_32 is ignored.

Bits 7–14: file header status bits (bits 10 and 15 are unused):

Block headers are defined by the following C specifications:

struct datablockhead

/* Each file block contains the following header */

{

short scale; /* scaling factor */

short status; /* status of data in block */

short index; /* block index */

short mode; /* mode of data in block */

long ctcount; /* ct value for FID */

float lpval; /* f2 (2D-f1) left phase in phasefile */

float rpval; /* f2 (2D-f1) right phase in phasefile */

float lvl; /* level drift correction */

float tlt; /* tilt drift correction */

};

0 S_DATA 0x1 0 = no data, 1 = data 

1 S_SPEC 0x2 0 = FID, 1 = spectrum

2 S_32 0x4 *

3 S_FLOAT 0x8 0 = integer, 1 = floating point

4 S_COMPLEX 0x10 0 = real, 1 = complex

5 S_HYPERCOMPLEX 0x20 1 = hypercomplex

7 S_ACQPAR 0x80 0 = not Acqpar, 1 = Acqpar 

8 S_SECND 0x100 0 = first FT, 1 = second FT

9 S_TRANSF 0x200 0 = regular, 1 = transposed

11 S_NP 0x800 1 = np dimension is active

12 S_NF 0x1000 1 = nf dimension is active

13 S_NI 0x2000 1 = ni dimension is active

14 S_NI2 0x4000 1 = ni2 dimension is active



5.1 VnmrJ Data Files

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 277

status is bits 0–6 defined the same as for file header status. Bits 7–11 are defined 
below (all other bits must be zero):

Additional data block header for hypercomplex 2D data:

struct hypercmplxbhead

{

short s_spare1; /* short word: spare */

short status; /* status word for block header */

short s_spare2; /* short word: spare */

short s_spare3; /* short word: spare */

long l_spare1; /* long word: spare */

float lpval1; /* 2D-f2 left phase */

float rpval1; /* 2D-f2 right phase */

float f_spare1; /* float word: spare */

float f_spare2; /* float word: spare */

};

Main data block header mode bits 0–15:

Bits 0–3: bit 3 is currently unused

Bits 4–7: bit 7 is currently unused

Bits 8–11: bit 11 is currently unused

Bits 12–15: bit 15 is currently unused

Usage bits for additional block headers (hypercmplxbhead.status)

The actual FID data is typically stored as pairs floating-point numbers. The first represents 
the real part of a complex pair and the second represents the imaginary component. In 
phase-sensitive 2D experiments, “X” and “Y” experiments are similarly interleaved. The 

7 MORE_BLOCKS 0x80 0 = absent, 1 = present 

8 NP_CMPLX 0x100 0 = real, 1 = complex

9 NF_CMPLX 0x200 0 = real, 1 = complex

10 NI_CMPLX 0x400 0 = real, 1 = complex

11 NI2_CMPLX 0x800 0 = real, 1 = complex

0 NP_PHMODE 0x1 1 = ph mode 

1 NP_AVMODE 0x2 1 = av mode

2 NP_PWRMODE 0x4 1 = pwr mode

4 NF_PHMODE 0x10 1 = ph mode 

5 NF_AVMODE 0x20 1 = av mode

6 NF_PWRMODE 0x40 1 = pwr mode

8 NI_PHMODE 0x100 1 = ph mode 

9 NI_AVMODE 0x200 1 = av mode

10 NI_PWRMODE 0x400 1 = pwr mode

12 NI2_PHMODE 0x8 1 = ph mode 

13 NI2_AVMODE 0x100 1 = av mode

14 NI2_PWRMODE 0x2000 1 = pwr mode

U_HYPERCOMPLEX 0x2 1 = hypercomplex block structure



Chapter 5. Parameters and Data

278 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

format of the data points and the organization as complex pairs must be specified in the data 
file header.

VnmrJ Use of Binary Data Files

The following example of a simple Fourier transform (performed with the command ft) 
followed by the display of the spectrum illustrates how VnmrJ uses individual binary data 
files. 

1. Copy processing parameters from curpar into procpar.

2. If a FID is not in the fid file buffer, open the fid file (if not already open) and load 
it into buffer.

3. Initialize the data file with the proper size (using parameter fn).

4. Store the FID in the data file buffer.

5. Apply dc drift correction and first point correction.

6. Apply weighting function, if requested.

7. Zero fill data, if required.

8. Fourier transform data in data file buffer.

The data file buffer now contains the complex spectrum. Unless other FTs are done, which 
use up more memory space than assigned to the data file buffer, the data is not automatically 
written to the file expn/datdir/data at this time. Joining a different experiment or the 
command flush would perform such a write operation.

The ds command takes the following steps in displaying the spectrum:

1. If data is not in phasefile buffer or if the phase parameters have changed, ds 
tries to open the phase file (if not already open) and load data into the buffer (if it is 
there). If ds is unsuccessful, the data must be phased:

a. If the data is not in the data file buffer, ds opens the data file (if not already 
open) and loads it into the buffer.

b. ds initializes the phasefile buffer with the proper size (using the same 
parameter fn as used for last FT).

c. ds calculates the phased (or absolute value) spectrum and stores it in the 
phasefile buffer.

2. ds calculates the display and displays the spectrum.

The phasefile buffer now contains the phased spectrum. Unless other displays are 
done, which use up more memory space than assigned to the phasefile buffer, the data 
is not automatically written to the file expn/datdir/phasefile at this time. Joining 
a different experiment or entering the command flush would perform such a write 
operation.

Depending on the nature of the data processing, the two files data and phasefile will 
contain different information, after each of the following processes:

• 1D FT – data contains a complex spectrum, which can be used for phased or absolute 
value displays.

• 1D display – phasefile contains either phased or absolute value data, depending on 
which type of display had been selected.



5.1 VnmrJ Data Files

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 279

• 2D FID display – data contains the complex FIDs, floated and normalized for 
different scaling during the 2D acquisition. phasefile contains the absolute value 
or phased equivalent of this FID data.

• The first FT in a 2D experiment – data contains the once-transformed spectra. This 
is equivalent to the interferograms, if the data is properly reorganized (see f1 and f2 
traces in “Storing Multiple Traces,” page 279). If a display is done now, phasefile 
contains phased (or absolute value) half-transformed spectra or interferograms.

• The second FT in a 2D experiment – data contains the fully transformed spectra, and 
after a display, phasefile contains the equivalent phased or absolute-value spectra. 

Storing Multiple Traces

Arrayed experiments are handled in VnmrJ by storing the multiple traces of arrayed 
experiments in one file. To allow this, the file is divided into several blocks, each containing 
one trace. Therefore, in an arrayed experiment, the files fid, data, and phasefile 
typically contain the same number of blocks. The number of traces in an arrayed 
experiment is identical to the parameter arraydim. The only complication when working 
with such data files in arrayed experiments might be that there are “holes” in such files. The 
holes occur if not all FIDs are transformed or displayed. They do not present a problem as 
long as a user program just uses a “seek” operation to position the file pointer at the right 
point in the file and does not try to read traces that have never been calculated.

A 2D experiment resembles a special case of an arrayed experiment that is complicated by 
the fact that the data often has to be transposed. The directly acquired arrayed FIDs are 
Fourier transformed creating an array of spectra that are transposed and become the FIDs 
used for the second dimension Fourier transform. After the second FT, the user might want 
to work on traces in either the f1 or f2 direction. Furthermore, some types of symmetrization 
and baseline correction algorithms may have to work on traces in both directions at the 
same time. The situation is complicated by the fact that the “in place” matrix transposition 
of large data sets is a very complex operation, requiring many disk accesses and can 
therefore not be used in a system that has to transform large non-symmetric data sets in a 
short time.

“Out of place” transpositions are not acceptable for large data sets because they double the 
disk space requirements of the large 2D experiments. Therefore, VnmrJ software uses a 
storage format in the 2D data file that allows access to both rows and columns at the same 
time. Because of the proprietary nature and complexity of the algorithm involved, it is not 
presented here. The storage format is used only in datdir/data. 

2D FIDs are stored the same way as 1D FIDs. Transformed 2D data is stored in data in 
large blocks of typically 256K bytes.This means that multiple traces are combined to form 
a block. Within one block, the data is not stored as individual traces but is scrambled to 
make access to rows and columns as fast as possible.

Phased 2D data is stored in phasefile in the same large blocks as in data, but the traces 
within each block are stored sequentially in their natural order. Both traces along f1 and f2 
are stored in the same file. The first block(s) contain traces number 1 to fn along the f1 
axis; the next block(s) contains traces number 1 to fn1 along the f2 axis. Note again, that 
phasefile will only contain data if the corresponding display operation has been 
performed. Therefore, in most typical situations, where only a display along one of the two 
2D axes is done, phasefile will contain only the block(s) for the traces along f1 or a 
'hole' followed by the block(s) for the traces along f2. Furthermore, in large 
2D experiments, where multiple blocks must be used to store the whole data, only a 'full' 
display will ensure that all blocks were actually calculated.



Chapter 5. Parameters and Data

280 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Header and Data Display

The VnmrJ commands ddf, ddff, and ddfp display file headers and data. ddf displays 
the data file in the current experiment. Without arguments, only the file header is displayed. 
Using ddf<(block_number,trace_number,first_number)>, ddf displays a 
block header and part of the data of that block is displayed. block_number is the block 
number, default 1. trace_number is the trace number within the block, default 1. 
first is the first data element number within the trace, default 1.

The ddff command displays the FID file in the current experiment and the ddfp 
command displays the phase file in the current experiment. Without any arguments, both 
display only the file header. Using the same arguments as the ddf command, ddff and 
ddfp display a block header and part of the data of that block is displayed. The mstat 
command displays statistics of memory usage by VnmrJ commands.

5.2 FDF (Flexible Data Format) Files
• “File Structures and Naming Conventions,” page 280

• “File Format,” page 281

• “Header Parameters,” page 282

• “Transformations,” page 284

• “Creating FDF Files,” page 284

• “Splitting FDF Files,” page 285

The FDF file format was developed to support the ImageBrowser, chemical shift imaging 
(CSI), and single-voxel spectroscopy (SVS) applications. When these applications were 
under development, the current VnmrJ file formats for image data were not easily usable 
for the following reasons:

• The data and parameters describing the data were separated into two files. If the files 
were ever separated, there would be no way to use or understand the data.

• The data file had embedded headers that were not needed and provided no useful 
purpose.

• There was no support or structure for saving multislice data sets or a portion of a 
multislice data set as image files.

FDF was developed to make it similar to VnmrJ formats, with parameters in an easy-to-
manipulate ASCII format and a data header that is not fixed so that parameters can be 
added. This format makes it easy for users and different applications to manipulate the 
headers and add needed parameters without affecting other applications.

File Structures and Naming Conventions

Several file structure and naming conventions have been developed for more ease in using 
and interpreting files. Applications should not assume certain names for certain file; 
however, specific applications may assume default names when outputting files.

Directories

The directory-naming convention is <name>.dat. The directory can contain a parameter 
file and any number of FDF files. The name of the parameter file is procpar, a standard 
VnmrJ name.



5.2 FDF (Flexible Data Format) Files

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 281

File Names

Each type of file has a different name in order to make the file more recognizable to the 
user. For image files, the name is image[nnnn].fdf, where nnnn is a numeric string 
from 0000 to 9999. For volumes, the name is volume[nnnn].fdf, where nnnn is also 
a numeric string from 0000 to 9999. Programs that read FDF files should not depend on 
these names because they are conventions and not definitions.

Compressed Files 

Although not implemented at this time, compression will be supported for the data 
portion of the file. The headers will not be compressed. A field will be put in the header 
to define the compression method or to identify the command to uncompress the data.

File Format

The format of an FDF file consists of a header and data:

• Listing 8 is an example of an FDF header. The header is in ASCII text and its fields are 
defined by a data definition language. Using ASCII text makes it easy to decipher the 
image content and add new fields, and is compatible with the ASCII format of the 
procpar file. The fields in the data header can be in any order except for the magic 
number string, which are the first characters in the header, and the end of header 
character <null>, which must immediately precede the data. The fields have a C-style 
syntax. A correct header can be compiled by the C compiler and should not result in 
any errors. 

• The data portion is binary data described by fields in the header. It is separated from 
the header by a null character. 

#!/usr/local/fdf/startup 
int rank=2; 
char *spatial_rank="2dfov"; 
char *storage="float"; 
int bits=32; 
char *type="absval"; 
int matrix[]={256,256}; 
char *abscissa[]={"cm","cm"}; 
char *ordinate[]={"intensity"}; 
float span[]={-10.000000,-15.000000}; 
float origin[]={5.000000,6.911132}; 
char *nucleus[]=("H1", "H1"}; 
float nucfreq[]={200.067000,200.067000}; 
float location[]={0.000000,-0.588868,0.000000}; 
float roi[]={10.000000,15.000000,0.208557}; 
float orientation[]={0.000000,0.000000,1.000000,-1.000000, 
0.000000,0.000000,0.000000,1.000000,0.000000};
checksum=0787271376;

<zero>

Listing 8. Example of an FDF Header



Chapter 5. Parameters and Data

282 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Header Parameters

The fields in the data header are defined in this section.

Magic Number

The magic number is an ASCII string that identifies the file as a FDF file. The first two 
characters in the file must be #!, followed by the identification string. Currently, the string 
is #!/usr/local/fdf/startup.

Data Set Dimensionality or Rank Fields

These entries specify the data organization in the binary portion of the file. 

• rank is a positive integer value (1, 2, 3, 4,...) giving the number of dimensions in the 
data file (e.g., int rank=2;).

• matrix is a set of rank integers giving the number of data points in each dimension 
(e.g., for rank=2, float matrix[]={256,256};)

• spatial_rank is a string ("none", "voxel", "1dfov", "2dfov", "3dfov") 
for the type of data (e.g., char *spatial_rank="2dfov";).

Data Content Fields

The following entries define the data type and size.

• storage is a string ("integer", "float") that defines the data type (e.g., char 
*storage="float";).

• bits is an integer (8, 16, 32, or 64) that defines the size of the data (e.g.,
float bits=32;).

• type is a string ("real", "imag", "absval", "complex") that defines the 
numerical data type (e.g., char *type="absval";).

Data Location and Orientation Fields

The following entries define the user coordinate system and specify the size and position 
of the region from which the data was obtained. Figure 4 illustrates the coordinate system. 
Vectors that correspond to header parameters are shown in boldface.

• orientation specifies the orientation of the user reference frame (x, y, z) with 
respect to the magnet frame (X, Y, Z). orientation is given as a set of nine 
direction cosines, in the order:

, , , , , , , ,  
where:

and

The value is written as nine floating point values grouped as three triads (e.g., float 
orientation[]={0.0,0.0,1.0,-1.0,0.0,0.0,0.0,1.0,0.0};).

d11 d12 d13 d21 d22 d23 d31 d32 d33

x d11X d12Y d13Z+ +=

y d21X d22Y d23Z+ +=

z d31X d32Y d33Z+ +=

X d11x d21y d31z+ +=

Y d12x d22y d32z+ +=

Z d13x d23y d33z+ +=



5.2 FDF (Flexible Data Format) Files

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 283

• location is the position of the center of the acquired data volume relative to the 
center of the magnet, in the user’s coordinate system. The position is given in 
centimeters as a triple (three floating point values) of x, y, z distances
(e.g., float location[]={10.0,15.0,0.208};).

• roi is the size of the acquired data volume (three floating point values), in 
centimeters, in the user’s coordinate frame, not the magnet frame (e.g., 
float roi[]={10.0,15.0,0.208};). Do not confuse this roi with ROIs that 
might be specified inside the data set. 

Data Axes

The data axes entries specify the user coordinates of data points. These axes do not tell how 
to orient the display of the data, but only what to call the coordinates of a given datum. 
There are no standard header entries to specify the orientation of the data display. Currently, 
data is always displayed or plotted in the same order that it is stored. The fastest data 
dimension is plotted horizontally from left to right; the next dimension is plotted vertically 
from top to bottom.

• origin is a set of rank floating point values giving the user coordinates of the first 
point in the data set (e.g., float origin[]={5.0,6.91};).

• span is a set of rank floating point values for the signed length of each axis, in user 
units. A positive value means the value of the particular coordinate increases going 
away from the first point (e.g., float span[]={–10.000,–15.000};).

• abscissa is a set of rank strings ("hz", "s", "cm", "cm/s", "cm/s2", 
"deg", "ppm1", "ppm2", "ppm3") that identifies the units that apply to each 
dimension (e.g., char *abscissa[]={"cm","cm"};).

y 

x 
Y

XZ

x
y

z

d12 d11d13Magnet reference frame

User reference frame

Direction Cosines
for x axis

(X, Y, Z)

(x, y, z)

Origin of user
coordinate system
(on the midplane 

Center of
slice

First voxel in data set

origin
location

span–
2

-----------------

Data Slice

(always displayed at 
upper-left of screen)

(orientation)

of slice)

Figure 4. Magnet Coordinates as Related to User Coordinates. 



Chapter 5. Parameters and Data

284 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

• ordinate is a string ("intensity", "s", "deg") that gives the units that apply 
to the numbers in the binary part of the file (e.g., 
char *ordinate[]={"intensity"};).

Nuclear Data Fields

Data fields may contain data generated by interactions between more than one nucleus 
(e.g., a 2D chemical shift correlation map between protons and carbon). Such data requires 
interpreting the term “ppm” for the specific nucleus, if ppm to frequency conversions are 
necessary, and properly labeling axes arising from different nuclei. To properly interpret 
ppm and label axes, the identity of the nucleus in question and the corresponding nuclear 
resonance frequency are needed. These fields are related to the abscissa values 
"ppm1", "ppm2", and "ppm3" in that the 1, 2, and 3 are indices into the nucleus and 
nucfreq fields. That is, the nucleus for the axis with abscissa string "ppm1" is the 
first entry in the nucleus field.

• nucleus is one entry ("H1", "F19", same as VnmrJ tn parameter) for each rf 
channel (e.g., char *nucleus[]={"H1","H1"};).

• nucfreq is the nuclear frequency (floating point) used for each rf channel (e.g., 
float nucfreq[]={200.067,200.067};).

Miscellaneous Fields
• checksum is the checksum of the data. Changes to the header do not affect the 

checksum. The checksum is a 32-bit integer, calculated by the gluer program (e.g., 
int checksum=0787271376;).

• compression is a string with either the command needed to uncompress the data or 
a tag giving the compression method. This field is not currently implemented.

End of Header

A character specifies the end of the header. If there is data, it immediately follows this 
character. The data should be aligned according to its data type. For single precision 
floating point data, the data is aligned on word boundaries. Currently, the end of header 
character is <zero> (an ASCII “NUL”).

Transformations

By editing some of the header values, it is possible to make a program that reads FDF data 
files to perform simple transformations. For example, to flip data left-to-right, set:
span'0=–span0
origin'0=origin0–span'0 

Creating FDF Files

To generate files in the FDF format, the following macros are available to write out single 
or multislice images:

• For the current imaging software—including sequences sems, mems, and flash—use 
the macro svib(directory<,'f'|'m'|'i'|'o'>), where directory is 
the directory name desired (.dat is appended to the name), 'f' outputs data in 
floating point format (this is the default), 'm' or 'i' outputs data as 12-bit integer 
values in 16-bit words, and 'b' outputs data in 8-bit integer bytes.



5.3 Reformatting Data for Processing

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 285

• For older style SIS imaging sequences and microimaging sequences, use the macro 
svsis(directory<,'f'|'m'>), where directory, 'f', and 'm' are 
defined the same as svib.

Raw data from the FID file of the current experiment can be saved as an FDF file with the 
svfdf(directory) macro, where directory is the name of the directory in which 
to store the files (.dat is appended to the name). Data is saved in multiple files, with one 
trace per file. The files are named fid0001.fdf, fid0002.fdf, etc. The procpar 
file from the current experiment is also saved in the same directory. 

Another way to create the FDF files is to edit or create a header defining a set of data with 
no headers and attach it to the data file with the fdfgluer program. Use the syntax 
fdfgluer header_file <data_file <output_file>> (from UNIX only). 
This program takes a header_file and a data_file and puts them together to form 
an FDF file. It also calculates a checksum and inserts it into the header. If the data_file 
argument is not present, fdfgluer assumes the data is input from the standard input, and 
if the output_file name is not present, fdfgluer puts the FDF file to the standard 
output. 

Splitting FDF Files

The fdfsplit command takes an FDF file and splits it into its data and header parts. The 
syntax is fdfsplit fdf_file data_file header_file (from UNIX only). If 
the header still has a checksum value, that value should be removed.

5.3 Reformatting Data for Processing
• “Standard and Compressed Formats,” page 286

• “Compress or Decompress Data,” page 287

• “Move and Reverse Data,” page 287

• “Table Convert Data,” page 287

• “Reformatting Spectra,” page 287

Sometimes, data acquired in an experiment has to be reformatted for processing. This is 
especially true for in-vivo imaging experiments where time is critical in getting the data so 
experiments are designed to acquire data quickly but not necessarily in the most desirable 
format for processing. Reformatting data can also occur in other applications because of a 
particular experimental procedure.

The VnmrJ processing applications ft2d and ft3d can accept data in standard, 
compressed, or compressed-compressed (3D) data formats. There are a number of routines 
that allow users to reformat their data into these formats for processing. The reformatting 
routines allow users to compress or uncompress their data (flashc), move data around 
between experiments and into almost any format (mf, mfblk, mfdata, mftrace), 
reverse data while moving it (rfblk, rfdata, rftrace), or use a table of values, in this 
case a table stored in tablib, to sort and reformat scans of data (tabc, tcapply).

In this section, standard and compressed data are defined, reformatting options are 
described, and several examples are presented. Table 40 summarizes the reformatting 
commands described in this section. Note that the commands rsapply, tcapply, 
tcclose, and tcopen are for 2D spectrum data; the remaining commands in the table 
are for FID data.



Chapter 5. Parameters and Data

286 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Standard and Compressed Formats

The terms standard and compressed data formats have the following meaning:

• standard — the data was acquired using the arrayed parameters ni and ni2, which 
specify the number of increments in the second and third dimensions.

• compressed — the data was acquired using parameter nf to specify the increments in 
the second dimension. 

For multislice imaging, standard means using ni to specify the phase-encode increments 
and nf to specify the number of slices and compressed means using nf to specify the 
phase-encode increments while arraying the slices. 

• Compressed-compressed — uses nf to specify the phase-encode increments and slices 
for 2D or to specify the phase-encode increments in the second and third dimensions 
for 3D. In compressed-compressed data sets, nf can be set to nv*ns or nv*nv2, 
where nv is the number of phase-encode increments in the second dimension, nv2 is 
the number of phase-encode increments in the third dimension, and ns is the number 
of slices.

To give another view of data formats, which will help when using the “move FID” 
commands, each ni increment or array element is stored as a data block in a FID file and 
each nf FID is stored as a trace within a data block in a FID file.

Table 40. Commands for Reformatting Data

Commands
flashc* Convert compressed 2D data to standard 2D format
mf(<from_exp,>to_exp) Move FIDs between experiments
mfblk* Move FID block
mfclose Close memory map FID
mfdata* Move FID data
mfopen(<src_expno,>dest_expno) Memory map open FID file
mftrace* Move FID trace
rfblk* Reverse FID block
rfdata* Reverse FID data
rftrace* Reverse FID trace
rsapply Reverse data in a spectrum
tabc<(dimension)> Convert data in table order to linear order
tcapply<(file)> Apply table conversion reformatting to data
tcclose Close table conversion file
tcopen<(file)> Open table conversion file
* flashc<('ms'|'mi'|'rare'<,traces><,echoes>)

mfblk(<src_expno,>src_blk_no,dest_expno,dest_blk_no)
mfdata(<src_expno,>,src_blk_no,src_start_loc,dest_expno, \

dest_blk_no,dest_start_loc,num_points)
mftrace(<src_expno,>src_blk_no,src_trace_no,dest_expno

dest_blk_no,dest_trace_no)
rfblk(<src_expno,>src_blk_no,dest_expno,dest_blk_no)
rfdata(<src_expno,>src_blk_no,src_start_loc,dest_expno, \

dest_blk_no,dest_start_loc,num_points)
rftrace(<src_expno,>src_blk_no,src_trace_no,dest_expno, \

dest_blk_no,dest_trace_no)



5.3 Reformatting Data for Processing

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 287

Compress or Decompress Data 

The most common form of reformatting for imaging has been to use the flashc command 
to convert compressed data sets to standard data sets in order to run ft2d on the data. With 
the implementation of ft2d('nf',<index>), flashc is no longer necessary. 
However, use of flashc is still necessary for converting compressed-compressed data to 
compressed or standard formats.

Move and Reverse Data

The commands mf, mfblk, mfdata, and mftrace are available to move data around in 
a FID file or to move data from one experiment FID file to another experiment FID file. 
These commands give users more control in reformatting their data by allowing them to 
move entire FID files, individual blocks within a FID file, individual traces within a block 
of a FID file, or sections of data within a block of a FID file.

To illustrate the use of the “move FID” commands, Listing 9is an example with code from 
a macro that moves a 3D dataset from an arrayed 3D dataset to another experiment that runs 
ft3d on the data. The $index variable is the array index. It works on both compressed-
compressed and compressed 3D data.

The “reverse FID” commands rfblk, rftrace, and rfdata are similar to their 
respective mfblk, mftrace, and mfdata commands, except that rfblk, rftrace, 
and rfdata also reverse the order of the data. The rfblk, rftrace, and rfdata 
commands were implemented to support EPI (Echo Planar Imaging) processing. Listing 10 
is an example of using these commands to reverse every other FID echo for EPI data. Note 
that the mfopen and mfclose commands can significantly speed up the data 
reformatting by opening and closing the data files once, instead of every time the data is 
moved. The rfblk, rftrace, and rfdata commands can also be used with the “move 
FID” commands. 

CAUTION: For speed reasons, the “move FID” and “reverse FID” commands work 
directly on the FID and follow data links. These commands can modify 
data returned to an experiment with the rt command. To avoid 
modification, enter the following sequence of VnmrJ commands 
before manipulating the FID data:
cp(curexp+'/acqfil/fid',curexp+'/acqfil/fidtmp')
rm(curexp+'/acqfil/fid')
mv(curexp+'/acqfil/fidtmp',curexp+'/acqfil/fid')

Table Convert Data

VnmrJ supports reconstructing a properly ordered raw data set from any arbitrarily ordered 
data set acquired under control of an external AP table. The data must have been acquired 
according to a table in the tablib directory. The command for table conversion is tabc.

Reformatting Spectra 

The commands rsapply, to reverse a spectrum, and tcapply, to reformat a 2D set of 
spectra using a table, support reformatting of spectra within a 2D dataset. The types of 
reformatting are the reversing of data within a spectrum and the reformatting of arbitrarily 
ordered 2D spectrum by using a table. These commands do not change the original FID 
data, and they may provide some speed improvement over the similar commands that 
operate on FID data. For 2D data, an ft1d command should be applied to the data, 



Chapter 5. Parameters and Data

288 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

followed by the desired reformatting, and then an ft2d command to complete the 
processing.  

5.4 Creating and Modifying Parameters
• “Parameter Types and Trees,” page 289

• “Tools for Working with Parameter Trees,” page 289

• “Format of a Stored Parameter,” page 292

VnmrJ parameters and their attributes are created and modified with the commands covered 
in this section. The parameter trees used by these commands are Linux files containing the 
attributes of a parameter as formatted text. 

Listing 9. Code from a “Move FID” Macro

if ($seqcon[3] = 'c') and ($seqcon[4] = 'c') then 
"****  Compressed-compressed 3d ****" 
$arraydim = arraydim 
if ($index > $arraydim) then

write('error','Index greater than arraydim.')  
abort 

endif 
mfblk($index,$workexp,1)
jexp($workexp) 
setvalue('arraydim',1,'processed')
setvalue('arraydim',1,'current') 
setvalue('array','','processed') 
setvalue('array','','current')
ft3d
jexp($cexpn)

else if ($seqcon[3] = 'c') and ($seqcon[4] = 's') then
"****  Compressed 3d ****" 
if (ni < 1.5) then

write('error','seqcon, ni mismatch check parameters.')
abort 

endif 
$arraydim = arraydim/ni 
if ($index > $arraydim) then

write('error','Index greater than arraydim.') 
abort

endif 
$i = 1 
$k = $index
while ($i <= ni) do

mfblk($k,$workexp,$i)
$k = $k + $arraydim
$i = $i + 1

endwhile 
jexp($workexp)
setvalue('arraydim',ni,'processed')
setvalue('arraydim',ni,'current')
setvalue('array','','processed') 
setvalue('array','','current') 
ft3d 
jexp($cexpn)



5.4 Creating and Modifying Parameters

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 289

Parameter Types and Trees

The types of parameters that can be created are 'real', 'string', 'delay', 
'frequency', 'flag', 'pulse', and 'integer (default is 'real'). In brief, the 
meaning of these types are as follows (for more detail, refer to the description of the 
create command in the VnmrJ Command and Parameter Reference):

The four parameter tree types are 'current', 'global', 'processed', and 
'systemglobal' (the default is 'current'):

Tools for Working with Parameter Trees

Table 41 lists commands for creating, modifying, and deleting parameters.

'real' any positive or negative value, and can be positive or negative.

'string' composed of characters, and can be limited to selected words by 
enumerating the possible values with the command 
setenumeral. 

'delay' a value between 0 and 8190, in units of seconds.

'frequency' positive real number values.

'flag' composed of characters, similar to the 'string' type, but can be 
limited to selected characters by enumerating the possible values with 
the command setenumeral.
If enumerated values are not set, the
'string' and 'flag' types are identical.

'pulse'  value between 0 and 8190, in units of microseconds.

'integer' composed of integers (0, 1, 2, 3,...),

'current' contains the parameters that are adjusted to set up an experiment. The 
parameters are from the file curpar in the current experiment. 

'global' contains user-specific parameters from the file global in the 
vnmrsys directory of the present UNIX user. 

'processed' contains the parameters with which the data was obtained. These 
parameters are from the file procpar in the current experiment. 

'systemglobal' contains instrument-specific parameters from the text file 

/vnmr/conpar. The config program is used to define most of these parameters. 
All users have the same systemglobal tree.

Listing 10. Example of Command Reversing Data Order

"***************************************************************
" epirf(<blkno>) - macro to reverse every other FID
" block & trace indicies start at 1 for rfblk,rftrace,rfdata **
"***************************************************************
mfopen
$i=2
while ($i <= nv) do

rftrace($1,$i)
$i = $i + 2 

endwhile
mfclose



Chapter 5. Parameters and Data

290 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

To Create a New Parameter

Use create(parameter<,type<,tree>>) to create a new parameter in a 
parameter tree with the name specified by parameter. For example, entering 
create('a','real','global') creates a new real-type parameter a in the global 
tree. type can be 'real', 'string', 'delay', ' frequency', 'flag', 
'pulse', or 'integer'. If the type argument is not entered, the default is 'real'. 
tree can be 'current', 'global', 'processed', or 'systemglobal'. If the 
tree argument is not entered, the default is 'current'. See the section above for a 
description of parameter types and trees. Note that these same arguments are used with all 
the commands appearing in this section.

To Get the Value of a Parameter

The value of most parameters can be accessed simply by using their name in an expression; 
for example, sw? or r1=np accesses the value of sw and np, respectively. However, 
parameters in the processed tree cannot be accessed this way. Use 
getvalue(parameter<,index><,tree>) to get the value of any parameter, 
including the value of a parameter in a processed tree. To make this easier, the default value 
of tree is 'processed'. The index argument is the number of a single element in an 
arrayed parameter (the default is 1).

To Edit or Set Parameter Attributes

Use paramvi(parameter<,tree>) to open the file for a parameter in the vi text 
editor to edit the attributes. To open a parameter file with an editor other than vi, use 
paramedit(parameter<,tree>). Refer to entry for paramedit in the VnmrJ 

Table 41. Commands for Working with Parameter Trees

Commands
create(parameter<,type<,tree>>) Create a new parameter in parameter tree
destroy(parameter<,tree>) Destroy a parameter
destroygroup(group<,tree>) Destroy parameters of a group in a tree
display(parameter|'*'|'**'<,tree>) Display parameters and their attributes
fread(file<,tree<,'reset'|'value'>>) Read in parameters from a file into a tree
fsave(file<,tree>) Save parameters from a tree to a file
getvalue(parameter<,index><,tree>) Get value of parameter in a tree
groupcopy(from_tree,to_tree,group) Copy group parameters from tree to tree
paramvi(parameter<,tree>) Edit parameter and its attributes using vi 
prune(file) Prune extra parameters from current tree
setdgroup(parameter,dgroup<,tree>) Set the Dgroup of a parameter in a tree
setenumeral* Set values of a string parameter in a tree
setgroup(parameter,group<,tree>) Set group of a parameter in a tree
setlimit* Set limits of a parameter in a tree
setprotect* Set protection mode of a parameter
settype(parameter,type<,tree>) Change type of a parameter
setvalue* Set value of any parameter in a tree
* setenumeral(parameter,N,enum1,enum2,...enumN<,tree>)

setlimit(parameter,maximum,minimum,step_size<,tree>) or 
setlimit(parameter,index<,tree>)

setprotect(parameter,'set'|'on'|'off',value<,tree>)
setvalue(parameter,value<,index><,tree>)



5.4 Creating and Modifying Parameters

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 291

Command and Parameter Reference for information on how to select a text editor other 
than vi. The format of a stored parameter is described in the next section.

Several parameter attributes can be set by the following commands:

• setlimit(parameter,maximum,minimum,step_size<,tree>) sets 
the maximum and minimum limits and stepsize of a parameter. 

• setlimit(parameter,index<,tree>) sets the maximum and minimum 
limits and the stepsize, but obtains the values from the index-th entry of a table in 
conpar.

• setprotect(parameter,'set'|'on'|'off',bit_vals<,tree>) 
sets the protection bits associated with a parameter. The keyword 'set' causes the 
current protection bits to be replaced with the set specified by bit_vals (listed in 
the VnmrJ Command and Parameter Reference). 'on' causes the bits specified in 
bit_vals to be turned on without affecting other protection bits. 'off' causes the 
bits specified in bit_vals to be turned off without affecting other protection bits.

• settype(parameter,type<,tree>) changes the type of an existing 
parameter. A string parameter can be changed into a string or flag type, or a real 
parameter can be changed into a real, delay, frequency, pulse, or integer type.

• setvalue(parameter,value<,index><,tree>) sets the value of any 
parameter in a tree. setvalue bypasses normal range checking for parameter entry. 
It also bypasses any action that would be invoked by the parameter's protection bits.

• setenumeral(parameter,N,enum1,enum2,...,enumN<,tree>) sets 
possible values of a string-type or flag-type parameter in a parameter tree.

• setgroup(parameter,group<,tree>) sets the group (also called the 
Ggroup) of a parameter in a tree. The group argument can be 'all', 'sample', 
'acquisition', 'processing', 'display', or 'spin'.

• setdgroup(parameter,dgroup<,tree>) sets the Dgroup of a parameter in 
a tree. The dgroup argument is an integer. The usage of setdgroup is set by the 
application. Only the experimental user interface uses this command currently.

To Display a Parameter

Use display(parameter|'*'|'**'<,tree>)to display one or more parameters 
and their attributes from a parameter tree. The first argument can be one of the following 
three options: a parameter name (to display the attributes of that parameter, '*' (to display 
the name and value of all parameters in a tree), or '**' (to display the attributes of all 
parameters in a tree. The results are displayed in the Process tab, Text Output.

To Move Parameters

Use groupcopy(from_tree,to_tree,group) to copy a set of parameters of a 
group from one parameter tree to another (it cannot be the same tree). group is the same 
keywords as used with setgroup.

The fread(file<,tree<,'reset'|'value'>>) command reads in parameters 
from a file and loads them into a tree. The keyword 'reset' causes the tree to be cleared 
before the new file is read; 'value' causes only the values of the parameters in the file 
to be loaded. The fsave(file<,tree>) command writes parameters from a 
parameter tree to a file for which the user has write permission. It overwrites any file that 
exists. 



Chapter 5. Parameters and Data

292 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

To Destroy a Parameter

The destroy(parameter<,tree>) command removes a parameter from a 
parameter tree while the destroygroup(group<,tree>) command removes 
parameters of a group from a parameter tree. The group argument uses the same keywords 
as used with the setgroup command. If the destroyed parameter was an array, the array 
parameter is automatically updated.

To remove leftover parameters from previous experimental setups, use prune instead. The 
prune(file) command destroys parameters in the current parameter tree that are not 
also defined in the parameter file specified.

Format of a Stored Parameter

To use the create command to create a new parameter, or to use the paramvi and 
paramedit commands to edit a parameter and its attributes, requires knowledge of the 
format of a stored parameter. If an error in the format is made, the parameter may not load. 
This section describes the format in detail.

The stored format of a parameter is made up of three or more lines:

•  Line 1 contains the attributes of the parameter and has the following fields (given in 
same order as they appear in the file):

name the parameter name, which can be any valid string.

subtype an integer value for the parameter type: 0 (undefined), 1 (real), 2 
(string), 3 (delay), 4 (flag), 5 (frequency), 6 (pulse), 7 (integer).

basictype  an integer value: 0 (undefined), 1 (real), 2 (string).

maxvalue a real number for the maximum value that the parameter can contain, or 
an index to a maximum value in the parameter parmax (found in /
vnmr/conpar). Applies to both string and real types of parameters.

minvalue a real number for the minimum value that the parameter can contain or 
an index to a minimum value in the parameter parmin (found in /
vnmr/conpar). Applies to real types of parameters only.

stepsize i a real number for the step size in which parameters can be entered or 
index to a step size in the parameter parstep (found in /vnmr/
conpar). If stepsize is 0, it is ignored. Applies to real types only.

Ggroup an integer value: 0 (ALL), 1 (SAMPLE), 2 (ACQUISITION), 3 
(PROCESSING), 4 (DISPLAY), 5 (SPIN). 

Dgroup an integer value. The specific application determines the usage of this 
integer.

protection a 32-bit word made up of the following bit masks, which are summed to 
form the full mask:

Bit Value Description

0 1 Cannot array the parameter

1 2 Cannot change active/not active status

2 4 Cannot change the parameter value

3 8 Causes _parameter macro to be executed (e.g., if parameter 
is named sw, the macro _sw is executed when sw is changed)

4 16 Avoids automatic redisplay

5 32 Cannot delete parameter



5.4 Creating and Modifying Parameters

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 293

active is an integer value: 0 (not active), 1 (active).

intptr is not used (generally set to 64).

• Line 2, or the group of lines starting with line 2, list the values of the parameter. The 
first field on line 2 is the number of values the parameter is set to. The format of the 
rest of the fields on line 2 and subsequent lines, if any, depends on the value of 
basictype set on line 1 and the value entered in the first field on line 2:

If basictype is 1 (real) and first value on line 2 is any number, all parameter values 
are listed on line 2, starting in the second field. Each value is separated by a space.

If basictype is 2 (string) and first value on line 2 is 1, the single string value of the 
parameter is listed in the second field of line 2, inside double quotes.

If basictype is 2 (string) and first value on line 2 is greater than 1, the first array 
element is listed in the second field on line 2 and each additional element is listed on 
subsequent lines, one value per line. Strings are surrounded by double quotes.

• Last line of a parameter file lists the enumerable values of a string or flag parameter. 
This specifies the possible values the string parameter can be set to. The first field is 
the number of enumerable values. If this number is greater than 1, all of the values are 
listed on this line, starting in the second field.

For example, here is how a typical real parameter file, named a, is interpreted (the numbers 
in parentheses are not part of the file but are line references in the interpretation):
(1) a 31 1e+30 -1e+30 0 0 1 0 1 64

(2) 24.126400

(3) 0

This file is made up of the following lines:

1. The parameter has the name a, subtype is 3 (delay), basictype is 1 (real), maximum 
size is 1e+30, minimum size is –1e+30, stepsize is 0, Ggroup is 0 (ALL), Dgroup is 
1 (ACQUISITION), protection is 0 (cannot array the parameter), active is 1 (ON), 
and intptr is 64 (not used). 

2. Parameter a has 1 value, the real number 24.126400.

3. Parameter a has 0 enumerable values.

As another example, here are the values in a file for the parameter tof:
(1) tof 5 1 7 7 7 2 1 8202 1 64

(2) 1 1160

(3) 0

The tof file is made up of the following lines:

6 64 System parameter for spectrometer or data station

7 128 Cannot copy parameter from tree to tree

8 256 Cannot set array parameter

9 512 Cannot set parameter enumeral values

10 1024 Cannot change the parameter's group

11 2048 Cannot change protection bits

12 4096 Cannot change the display group

13 8192 Take max, min, step from /vnmr/conpar parameters 
parmax, parmin, parstep.

Bit Value Description



Chapter 5. Parameters and Data

294 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

1. The parameter has the name tof, subtype is 5 (frequency), and basictype is 1 (real). 
To read the next 3 values, we must jump to the protection field. Because the 
protection word value is 8202, which is 8192 + 8 + 2, then bit 13 (8192), bit 3 (8), 
and bit 1 (2) bitmasks are set. Because bit 13 is set, the maximum size, minimum 
size, and stepsize values (each is 7) are indices into the 7th array value in the 
parameters parmax, parmin, and parstep, respectively, in the file conpar. 
Because bit 3 is set, this causes a macro to be executed. The bit 1 bitmask (2) is also 
set, which means the active/not active status of the parameter cannot be changed. For 
the remaining fields, Ggroup is 2 (ACQUISITION), Dgroup is 1 (ACQUISITION), 
active is 1 (ON), and intptr is 64 (not used).

2. Parameter tof has 1 value, the real number 1160.

3. Parameter tof has 0 enumerable values.

The following file is an example of a multi element array character parameter, beatles:
(1) beatles 2 2 8 0 0 2 1 0 1 64 

(2) 4 john 

(3) paul 

george 

ringo 

(4) 0 

The beatles file is made up of the following lines:

1. The parameter has the name of beatles, subtype is 2 (string), basictype is 2 
(string), 8 0 0 is max min step (not really used for strings), Ggroup is 2 (acquisition), 
Dgroup is 1 (ALL), protection is 0, active is 1 (ON), 64 is a terminating number.

2. There are four elements to this variable; therefore, it is arrayed. john is the first 
element in the array.

3. paul, george, and ringo are the other three elements in the array.

4. 0 (zero) is the terminating line.

5.5 Modifying Parameter Displays in VNMR
• “Display Template,” page 294

• “Conditional and Arrayed Displays,” page 296

• “Output Format,” page 297

The VNMR plotting commands and macros— ap,pap—are controlled by template 
parameters specifying the content and form of the information plotted. The template 
parameters have the same name as the respective command or macro; for example, the plot 
created by the ap command is controlled by the parameter ap in the experiment’s current 
parameter set. 

Enter paramvi('ap') to use the vi text editor to modify an existing template 
parameter, such as ap, or enter paramedit('ap') to use the text editor set by the 
environmental variable vnmreditor.

Display Template

A plot template can have a single string or multiple strings. The first number on the second 
line of a stored parameter indicates the number of string templates. If the number is 1, the 
display template is a single string; otherwise, a value greater than 1 indicates the template 



5.5 Modifying Parameter Displays in VNMR

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 295

is multiple strings. Figure 5 shows an example of a single-string display template (actually 
the parameter ap) and the resulting plot.

In a single-string template, the string always starts with a double quote and then repeats the 
following information for each column in the plot:

• Column number (e.g., 2)

• Condition for plot of column (optional, e.g., “4(ni)”, see “Conditional and Arrayed 
Displays,” page 296).

• Colon

• Column title (e.g., 2D ACQUISITION)

• Colon

• Parameters to appear in column, separated by commas (for notation, see “Conditional 
and Arrayed Displays,” page 296)

• Semicolon 

At the end of the string is another double quote. Spaces cannot appear anywhere in the 
string template except as part of a column title. 

Column titles are often in upper case, but need not be, and are limited to 19 characters. 
More than one title can appear in the same column (such as shown above, SAMPLE and 
DECOUPLING are both in column 2). 

Parameters listed in “plain” form (e.g., tn,date,math) are printed either as strings or in 
a form in which the number of decimal places plotted varies depending on the value of the 
parameter. 

To plot a specific number of digits past the decimal place, the desired number is placed 
following a colon (e.g., sfrq:3,at:3,sw:0). Extra commas can be inserted to skip 
rows within a column (e.g., math,,werr,wexp,).

The maximum number of columns is 4; each column can have 17 lines of output. Since this 
includes the title(s), fewer than 17 parameters can be displayed in any one column. The 
entire template is limited to 1024 characters or less. 

As an alternative to a single-string template, which tends to be difficult to read, a template 
can written as multiple strings, each enclosed in double quotes. The first number indicates 
the number of strings that follow. Each string must start with a column number. Figure 6 
contains the plot template for the parameter dg2, which is a typical example of a multiple-
string template

Figure 5. Single-String Display Template with Output

ap 2 2 1023 0 0 4 1 6 1 64

1 
“1:SAMPLE:date,solvent,file;1:ACQUISITION:sw:1,at:3,np:0,fb:0,bs(bs):0,ss(ss):0,
d1:3,d2(d2):6,nt:0,ct:0;1:TRANSMITTER:tn,sfrq:3,tof:1,tpwr:0,pw:3,p1(p1):3;1:DE
COUPLER:dn,dof:1,dm,dmm,dpwr:0,dmf:0;2:SPECIAL:temp:1,gain:0,spin:0,hst:3,p
w90:3,alfa:3;2:FLAGS:il,in,dp,hs;2:PROCESSING:lb(lb):2,sb(sb):3,sbs(sb):3,gf(gf):
3,gfs(gf):3,awc(awc):3,lsfid(lsfid):0,lsfrq(lsfrq):1,phfid(phfid):1,fn:0;2:DISPLAY:sp:
1,wp:1,rfl:1,rfp:1,rp:1,lp:1;2:PLOT:wc:0,sc:0,vs:0,th:0,aig*,dcg*,dmg*;”

0 



Chapter 5. Parameters and Data

296 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

The conditional statement in this example (e.g., “(numrfch >2)”) is covered in 
“Conditional and Arrayed Displays,” page 296.

The title field can contain a string variable besides a literal. If the variable is a real variable, 
or not present, or equal to the null string, the variable itself is used as the title (e.g., 
mystrvar[1]='Example Col 1' and mystrvar[2]='Example Col 2').

Conditional and Arrayed Displays

Use of parentheses allows the conditional display of an entire column and/or individual 
parameters. If the real parameter within parentheses is not present, or is equal to 0 or to 
'n', then the associated parameter or section is not displayed. In the case of string 
parameters, if the real number is not present, or is equal to the NULL string or the character 
'n', then the associated parameter or section is not displayed. The following examples 
from the dg template above demonstrate this format:

• p1(p1):1 means display parameter p1 only when p1 is non-zero.

• sbs(sb):3 means display sbs only when sb is active (not equal to ‘n’).

• 4(ni):2D PROCESSING: means display entire “2D PROCESSING” section only 
when parameter ni is active and non-zero.

Note that if a parameter is arrayed, the display status is derived from the first value of the 
array. Thus, if p1 is arrayed and the first value is 0, p1 will not appear; if the first value is 
non-zero, p1 will appear, with “arrayed” as its parameter value.

Similarly, a multiple variable expression can also be placed within the parentheses for 
conditional plot of parameters. Each expression must be a valid MAGICAL II expression 
(see “Programming with MAGICAL,” page 27) and must be written so there is no space 
between the last character of the expression and the closing parenthesis “)”. 

In summary, if a single variable expression is placed in the parentheses, it is FALSE under 
the following conditions:

• Variable does not exist.

• Variable is real and equals 0 or is marked inactive.

• Variable is a string variable equal to the NULL string or equal to the character 'n'.

Multiple variable expressions are evaluated the same as in MAGICAL II. If a variable does 
not exist, it is considered an error. 

Examples of multiple parameter expressions include the following:

• 2(numrfch>2):2nd DECOUPLING: means display entire “2nd DECOUPLING” 
section only when numrfch (number of rf channels) is greater than 2.

Figure 6. Multiple-String Display Template



5.6 User-Written Weighting Functions

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 297

• 3((myflag <> 'n') or ((myni > ni) and (mysw < sw))):My 
Section: means display entire “My Section” section only when myflag is not 
equal to 'n' or when myni is greater than ni and mysw is less than sw.

The asterisk (...*) is a “special parameter” designator that allows the value of a series of 
string parameters to be displayed in a single row without names. This is more commonly 
used with the parameters aig, dcg, and dmg, for example:
aig*,dcg*,dmg*

For tabular output of arrayed parameters, square brackets ([...]) are used. For example:
1:Sample Table Output:[pw,p1,d1,d2];

Notice that all parameters in the column must be in the brackets; thus, the following is 
illegal:
1:Sample Table Output:[pw,p1,d1],d2;

Since arrayed variables are normally displayed with da, this format is rarely needed.

The field width and digit field options can be used to clean up the display. The first number 
after the colon is the field width. The next colon is the digit field. For example:
1:Sample Table Output:[pw:6:2,p1:6:2,d1:10:6,d2:10:6];

Here, the parameters pw and p1 are plotted in 6 columns with 2 places after the decimal 
point, while d1 and d2 are displayed in 10 columns with 6 places after the decimal point.

Output Format

For plot, each parameter and value occupies 20 characters of space:

• Characters 1 to 8 are the name of the parameter. Parameters with names longer than 8 
characters are permitted within VnmrJ itself but cannot be printed with pap.

• Character 9 is always blank. 

• Characters 10 to 18 are used for the parameter value. Any parameter value exceeding 
9 characters (a file name is a common example) is continued on the next line; in this 
case, character 19 is a tilde “~”, which is used to show continuation.

•  Character 20 is always blank.

For printing with the pap command, which uses the ap parameter template, a “da” listing 
is printed starting in column 3, so that the template will typically specify only two columns 
of output. ap can specify more than two columns, but if any parameter is arrayed, the listing 
of that parameter will overwrite the third column. For printing, the maximum number of 
lines in each column is 64.

5.6 User-Written Weighting Functions
• “Writing a Weighting Function,” page 298

• “Compiling the Weighting Function,” page 299

The parameter wtfile can be set to the name of the file containing a user-written 
weighting function. If the parameter wtfile (or wtfile1 or wtfile2) does not exist, 
it can be created with the commands 
create('wtfile','flag') 
setgroup('wtfile','processing') 
setlimit('wtfile',15,0,0).



Chapter 5. Parameters and Data

298 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

If wtfile exists but wtfile='' (two single quotes), VnmrJ does not look for the file: 
wtfile is inactive. To enable user-written weighting functions, set 
wtfile=filename, where filename is the name of the executable weighting 
function (enclosed in single quotes) that was created by compiling the weighting function 
source code with the shell script wtgen (a process described in the next section).

VnmrJ first checks if filename exists in wtlib subdirectory of the user’s private 
directory. If the file exists there, VnmrJ then checks if the file filename.wtp, which 
may contain the values for up to ten internal weighting parameters, exists in the current 
experiment directory. If filename.wtp does not exist in the current experiment 
directory, the ten internal weighting parameters are set to 1. 

VnmrJ executes the filename program, using the optional file filename.wtp as the 
source for parameter input. The output of the program is the binary file filename.wtf 
in the current experiment directory. This binary file contains the weighting vector that will 
be read in by VnmrJ. The total weighting vector used by VnmrJ is a vector-vector product 
of this external, weighting vector and the internal VnmrJ weighting vector, the latter being 
calculated from the parameters lb, gf, gfs, sb, sbs, and awc. The parameter awc still 
provides an overall additive contribution to the total weighting vector. Although the 
external weighting vector cannot be modified with wti, the total weighting vector can be 
modified with wti by modifying the internal VnmrJ weighting vector. Note that only a 
single weighting vector is provided for both halves of the complex data set—real and 
imaginary data points of the complex pair are always weighted by the same factor.

If the filename program does not exist in a user's wtlib subdirectory, VnmrJ looks for 
a text file in the current experiment directory with the name filename. This file contains 
the values for the external weighting function in floating point format (for example, 0.025, 
but not 2.5e–2) with one value per line. If the number of weighting function values in this 
file is less than the number of complex FID data points (that is, np/2), the user-weighting 
function is padded out to np/2 points using the last value in the filename text file.

Writing a Weighting Function

Weighting functions must follow this format, similar to pulse sequence programs:
#include "weight.h"

wtcalc(wtpntr, npoints, delta_t)

int npoints; /* number of complex data points */

float *wtpntr, /* pointer to weighting vector */

delta_t; /* dwell time */

{

... /* user-written part */

}

The variable wtpntr is a pointer and must be dealt with differently than an ordinary 
variable such as delta_t. wtpntr contains the address in memory of the first element 
of the user-calculated weighting vector; *wtpntr is the value of that first element. The 
statement *wtpntr++=x implies that *wtpntr is set equal to x and the pointer wtpntr 
is subsequently incremented to the address of the next element in the weighting vector.

The following examples show the filename program set by wtfile=filename

• Source file filename.c in a user’s vnmrsys/wtlib directory:

#include "weight.h"

wtcalc(wtpntr, npoints, delta_t)

int npoints; /* number of complex data points */



5.6 User-Written Weighting Functions

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 299

float *wtpntr, /* pointer to weighting vector */

delta_t; /* dwell time */

{

int i;

for (i = 0; i < npoints; i++)

*wtpntr++ = (float) (exp(–(delta_t*i*wtconst[0])));

/* wtconst[0] to wtconst[9] are 10 internal weighting */

/* parameters with default values of 1 and type float. */

}

• Optional parameter file filename.wtp in the current experiment directory:

0.35 /* value placed in wtconst[0] */

–2.4 /* value placed in wtconst[1] */

... /* etc. */

• Text file filename in the current experiment directory:

0.9879 /* value of first weighting vector element */

0.8876 /* value of second weighting vector element */

–0.2109 /* value of third weighting vector element */

0.4567 /* value of fourth weighting vector element */

... /* etc. */

0.1234 /* value of last weighting vector element */

Compiling the Weighting Function

The macro/shellscript wtgen is used to compile filename as set by parameter wtfile 
into an executable program. The source file is filename.c stored in a user’s vnmrsys/
wtlib directory. The executable file is in the same directory and has the same name as the 
source file but with no file extension. The syntax is for wtgen is wtgen(file<.c>) 
from VnmrJ or wtgen file<.c> from a shell.

The wtgen macro allows the compilation of a user-written weighting function that 
subsequently can be executed from within VnmrJ. The shellscript wtgen can be run from 
within a shell by typing the name of the shellscript file name, where the .c file extension 
is optional. wtgen can also be run from within VnmrJ by executing the macro wtgen with 
the file name in single quotes. 

The following functions are performed by wtgen:

1. Checks for the existence of the bin subdirectory in the VnmrJ system directory and 
aborts if the directory is not found.

2. Checks for files usrwt.o and weight.h in the bin subdirectory and aborts if 
either of these two files cannot be found there.

3. Checks for the existence of the user's directory and creates this directory if it does 
not already exist.

4. Establishes in the wtlib directory soft links to usrwt.o and weight.h in the 
directory /vnmr/bin.

5. Compiles the user-written weighting function, which is stored in the wtlib 
directory, link loads it with usrwt.o, and places the executable program in the 



Chapter 5. Parameters and Data

300 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

same directory. Any compilation and/or link loading errors are placed in the file 
name.errors in wtlib.

6. Removes the soft links to usrwt.o and weight.h in the bin subdirectory of 
the VnmrJ system directory.

The name of the executable program is the same as that for the source file without a file 
extension. For example, testwt.c is the source file for the executable file testwt.

5.7 User-Written FID Files
User the command makefid(input_file <,element_number,format>) to 
introduce computed data in the experiment. The required input_file argument is the 
name of a file containing numeric values, two per line. The first value is assigned to the X 
(or real) channel; the second value on the line is assigned to the Y (or imaginary) channel. 
Arguments specifying the element number and the format are optional and may be entered 
in either order. 

The argument element_number is any integer larger than 0. If this element already 
exists in your FID file, the program will overwrite the old data. If not entered, the default 
is the first element or FID. format is a character string with the precision of the resulting 
FID file and can be specified by one of the following:

If an FID file already exists, format is the precision of data in that file. Otherwise, the 
default for format is 32 bits.

The number of points comes from the number of numeric values read from the file. 
Remember it reads only two values per line. 

If the current experiment already contains a FID, the format and the number of points from 
that present in the FID file can not be changed. Use the command rm(curexp+'/
acqfil/fid') to remove the FID.

The makefid command does not look at parameter values when establishing the format 
of the data or the number of points in an element. Thus, if the FID file is not present, it is 
possible for makefid to write a FID file with a header that does not match the value of dp 
or np. Use the setvalue command if any changes are needed since the active value is in 
the processed tree.

The makefid command can modify data returned to an experiment by the rt command. 
To avoid this, enter the following sequence of VnmrJ commands on the saved data before 
running makefid:
cp(curexp+'/acqfil/fid',curexp+'/acqfil/fidtmp')
rm(curexp+'/acqfil/fid')
mv(curexp+'/acqfil/fidtmp',curexp+'/acqfil/fid') 

The command writefid(textfile<,element_number>) writes a text file using 
data from the selected FID element The default element number is 1. The program writes 
two values per line—the first is the value from the X (or real) channel, and the second is 
the value from the Y (or imaginary) channel.

'dp=n' single precision (16-bit) data

'dp=y' double precision (32-bit) data

'16-bit' single precision (16-bit) data

'32-bit' double precision (32-bit) data



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 301

Chapter 6. Panels, Toolbars, and Menus

Sections in this chapter:

• 6.1 “Parameter Panel Features,” page 301

• 6.2 “Using the Panel Editor,” page 301 

• 6.3 “Panel Elements,” page 307

• 6.4 “Creating a New Panel,” page 323

• 6.5 “Graphical Toolbar Menus,” page 327

6.1 Parameter Panel Features
The parameter panels in VnmrJ are built using xml files. The panel items may display 
strings, expressions, and parameter values. Some parameter panels are general and are 
shared with all pulse sequences and some are customized to meet the requirements of 
individual pulse sequences.

The liquids and solids interfaces use panels in the Start, Acquire, and Process folders. The 
imaging interface has an additional folder labeled Image. The LC-NMR interface has an 
additional folder labeled LC/MS. Panels are selected by clicking on the tab at the top of the 
window. Each panel contains a number of pages, and the pages are selected by clicking on 
the page tab at the left.

Panels in the experimental, walkup, and LC-NMR interfaces use the name of the pulse 
sequence, seqfil. Imaging interface panels utilize the parameter layout to select 
which panels are displayed. The imaging gems protocol sets layout = 'gems'. The 
parameter can be set to layout = seqfil. Using the layout parameter facilitates 
sequence development since a panel does not have to be created because a sequence is 
recompiled under a different name.

6.2 Using the Panel Editor
• “Starting the Panel Editor,” page 301

• “Editing Existing Panel Elements,” page 303

• “Adding and Removing Panel Elements,” page 304

• “Saving Panel Changes,” page 305

• “Exiting the Panel Editor,” page 307

Starting the Panel Editor

1. Click on Edit on the main menu.



Chapter 6. Panels, Toolbars, and Menus

302 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

2. Select Parameter Pages… to display the panel editor window, see Figure 7.

The current page is displayed in the edit mode with a grid, see Figure 8.

3. Click on Tools.

4. Select to Locator to display the locator panel, Figure 8, and the basic elements used 
to build a panel.

Figure 7. Panel Editor Window

Locator displays basic panel elements

Panel pages are 

Panel grouping of parameters
outlined in blue

displayed with a 

Current locator
sorting statement

default grid size of 10

Figure 8. Panel and Locator when Panel Editor is Open

Page tab of selected panel

Folder tab of selected folder



6.2 Using the Panel Editor

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 303

Editing Existing Panel Elements
• “Selecting a Panel Element,” page 303

• “Viewing or Changing a Panel Element Attribute,” page 303

• “Changing the Grid Size,” page 304

• “Editing Styles,” page 304

• “Saving Element or Group Changes,” page 305

Selecting a Panel Element

Select a panel element as follows:

1. Double-click on an element (button, toggle, group, etc.) to select it. 

The selected element is highlighted in yellow and is ready for editing. 

2. Double-click on an empty area within the group to select a group. 

3. Double-click on an empty area within the page to select a page. 

4. Double-click on an empty area outside a page to select a folder. 

Expand the panel display area until it is larger than the page if there is no area outside 
the page.

Viewing or Changing a Panel Element Attribute 

The panel editor displays the attributes of a selected element. A list of elements and their 
attributes is given in 6.3 “Panel Elements,” page 307. The panel editor can also set the 
following attributes: 

Location – Move an element to a new location using one of the following methods:

1. Drag the element to the desired location with the mouse.

2. Use the arrow keys to move the element to the new location.

3. Enter the position in the entry boxes X (horizontal) and Y (vertical) in pixels. The 
top left corner is X=0, Y=0.

Size – Resize an element using one of the following methods:

1. Drag the edges of the element with the mouse.

2. Hold the control key down and resize the element using the arrow keys.

Style –The Style drop-down 
menu sets the font, style, size, 
and color of the element.

Background color – The 
Background Color drop-down 
menu sets the background color 
of the element.



Chapter 6. Panels, Toolbars, and Menus

304 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

3. Enter the size in the entry boxes W (Width) and W (Height) in pixels.

Changing the Grid Size

The default grid size is 10. The grid size can be changed as follows:

1. Enter a new value in the field next to Grid Size, see Figure 7.

2. Press Enter.

Editing Styles

Clicking on the Edit Styles button opens the Display Options editor.

The editor is used for setting the styles of panel elements. Changing the font, style, size, or 
color in Display Options changes all elements in the interface of that style. 

Adding and Removing Panel Elements
• “Selecting an Element from the Locator,” page 304

• “Copying an Element to Another Location on the Same Page,” page 304

• “Copying an Element Between Pages Within a Folder,” page 304

• “Creating a New Page from the Locator,” page 304

• “Removing Panel Items,” page 305

Selecting an Element from the Locator

1. Select an element in the Locator.

2. Drag the element from the locator to the desired position on the page.

Copying an Element to Another Location on the Same Page

1. Select an existing element or group of elements by double-clicking it (make sure the 
borders are highlighted).

2. Hold the control key down and drag it to the new location–a new element is 
automatically created.

Copying an Element Between Pages Within a Folder

1. Select an existing element or group of elements on a page by double-clicking it 
(make sure that the borders are highlighted).

2. Hold the control key down and drag it to a location outside the page. Use the arrow 
keys to move the copy outside the page if the area outside the page cannot be viewed.

3. Select a new page to the left in the page tab list.

4. Move the copied element within the new page.

Creating a New Page from the Locator 

1. Select Show all elements in the Locator.

2. Find the page element in the Locator.

Opens the display options editor.



6.2 Using the Panel Editor

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 305

3. Drag the page element into the parameter panel or into the tab list to the left of the 
parameter panel in the appropriate folder.

New Page appears as the tab on the left.

4. Change the position and size of the page using one of the following methods:

• Use the mouse buttons to click on an edge or corner and drag the page to a new 
size.

• Use the ctrl-arrow keys to resize the page.

• Type in values for width (W) and height (H) in the template editor.

Copying an Existing Page from the Locator

1. Set the columns of the locator to show type, directory, and filename.

2. Find the desired page in the Locator.

3. Drag the desired page into the tab list to the left of the panels in the appropriate 
folder. 

The page will appear as a new tab in the list.

Removing Panel Items

1. Select the panel element, group, page, or folder to remove by double-clicking on it.

2. Click the Clear button at the lower right corner of the template editor.

The item can also be dragged to the trash.

Saving Panel Changes
• “Saving Element or Group Changes,” page 305

• “Saving Page Changes,” page 306

• “Saving Folder Changes,” page 306

Saving Element or Group Changes

1. Double-click on an element or group.

The Save button is followed by the element type, an entry field for specifying the 
name of the saved element, and is grayed out until a name is specified. 

2. Enter a name and press Enter.

The group, including all elements within the group, is saved when saving a group. 

3. Select a choice from the Type menu to set the element type. 

The element type may be used for searching for all elements of this type in the 
Locator. It does not impose any restrictions on the use of the element. 

4. Press the Save button to save the element or group.

Removes all items from the page or folder, or deletes the selected item or group 
(highlighted with yellow border).

Saves the element or group under the name in the panelitems directory. 
The page then has a reference to the named item within it.



Chapter 6. Panels, Toolbars, and Menus

306 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

5. To reload an element or group from disk, press the Load button.

Note: A panel item may be saved in one folder using this method and copied into another 
folder by dragging it from the Locator.

Saving Page Changes

1. Double-click on an empty space within a page, or click on a tab on the left to select 
a page. 

The Save button is followed by Page, an entry field for specifying the page name, 
and is grayed out if no name is specified. 

2. Enter a name and press Enter. 

3. Select a choice from the Dir menu, Figure 9, for the 
directory to save the page in. 

Selecting a pulse sequence name or layout saves the 
page in a directory for the pulse sequence or layout. 
Saving to a default directory makes it available to all 
sequences. 

The default directory is default_name if the file DEFAULT exists in the directory 
and contains set default default_name. Otherwise, the default directory 
will be default. The directory for many 2D liquids sequences is default2d.

4. Select a choice from the Type menu, Figure 10, to set the 
page type. 

The page type is used for searching for all pages of this 
type in the Locator. It does not impose any restrictions on 
the use of the page. 

5. Press the Save button to save the page in the layout 
directory. 

6. Press the Load button to reload a page from disk. 

Saving Folder Changes

1. Double-click on the area outside a page. Expand the panel display area until larger 
than the page if no area is available. 

The Save button is followed by Folder and an entry field for specifying the folder 
name. The folder name must be one of the system types: sample, acq, proc, or 
aip if Imaging. 

2. Select a directory to save the folder in from the Dir menu. 

The folder is saved in a directory for the pulse sequence or layout if a pulse sequence 
name or layout is selected. Select default to save it in the default directory available 
to all sequences. 

The default directory is default_name if the file DEFAULT exists in the directory 
and has contents set default default_name. Otherwise, the default 
directory will be default. 

3. Select a choice from the Type menu to set the folder type. 

Loads the element or group using the file name in the element or group 
entry field.

Figure 9. Dir Menu

Figure 10. Type Menu



6.3 Panel Elements

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 307

The folder type may be used for searching for all folders of this type in the Locator. 
It does not impose any restrictions on the use of the folder. 

4. Press the Save button to save the folder specifying the order of pages in it. 

5. Press the Load button to reload a folder from disk. 

Exiting the Panel Editor

Use one of the following options to exit the panel editor:

• Exit and temporarily save changes as follows:

Click the Close button. 

Changes are saved and retained only for the current VnmrJ session. Changes are lost 
when VnmrJ is exited. 

• Exit, apply the changes to the current VnmrJ session, save the changes for the next 
VnmrJ session, or abandon the changes as follows:

1. Double-click on an element or group.

The Save button is followed by the element type and an entry field for specifying the 
name of the saved element. The Save button is grayed out until a name is specified. 

2. Enter a name and press Enter.

The group, including all elements within the group, is saved when saving a group. 

3. Select a choice from the Type menu to set the element type. 

The element type may be used for searching for all elements of this type in the 
Locator. It does not impose any restrictions on the use of the element. 

4. Do one of the following:

• Press the Save button to save the element or group.

• Exit and make no changes:

Click the Abandon button to exit and make no changes. 

5. Press the Load button to reload an element or group from disk.

6. Click the Close button to exit the panel editor.

6.3 Panel Elements
• “Element Style,” page 308

• “Panel Element Attributes,” page 308

Closes the panel editor; unsaved changes retained only for the current 
VnmrJ session. Changes are not saved when VnmrJ is exited.

Saves the element or group under the mane in the panel items 
directory. The page is referenced to the named item within it.

Exits the panel editor, discards unsaved changes, and 
reloads previously saved pages.

Loads the element or group using the file name in the element or group 
entry field.



Chapter 6. Panels, Toolbars, and Menus

308 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

• “Panel Elements,” page 309

• “Advanced Panel Elements,” page 319

Element Style

The font style (plain, bold, italic, bold-italic), size, font, and color that is selected in the 
Style section at the top of the panel editor window determines the appearance of the text 
associated with the element. The specifics of an element style can be modified by clicking 
Edit Styles in the panel editor window or by selecting Display Options… from the top 
menu Edit.

Changing the appearance of a given style will immediately affect any existing elements that 
use that style.

Panel Element Attributes

Commonly used panel element attributes are listed in Table 42. 

Table 42. Common Attributes of Panel Elements

Attribute Description

Label of item Text label of item.

Icon of item Icon of item. This is used only for some elements (button, label). 

Label justification Justification of label of item. Choices are Left, Right, Center. 

Vnmr variables VNMR parameters that can change the Value of item, Enable condition, or 
Show condition of the item.

Value of item The value of the item. This string is a MAGICAL expression that sets the 
value of $VALUE. The value of some items (checkbox, radio, toggle) can 
be either true (1) or false (0). Other items (comboboxbutton, menu, 
selmenu) match a value from the Value of choices. For still other items 
(entry, textmessage) it is a number or string to display. 

Decimal Places The number of decimal places to truncate to in a real expression in Value of 
item. 

Vnmr command The command sent when the item is executed or selected. This string is a 
MAGICAL expression that can use $VALUE, which is read from the value 
entered in or set by the item. 

Vnmr command2 The command sent when the item is deselected. This is used only by some 
items (checkbox, radio, toggle). 

Enable condition The expression that determines whether an item is active or not. This string 
is a MAGICAL expression that sets $ENABLE or $VALUE, which can 
evaluate to either active (1), inactive (0), or disabled (-1). A disabled item 
does not allow the item to change the parameter value, while an inactive 
item simply changes the background color but still allows parameter entry. 

Label of choices Text labels used in a menu or comboboxbutton. 

Value of choices Values in a menu or comboboxbutton used to set the Vnmr command. 

Status parameter Parameter from the acquisition or hardware status. A status parameter can 
change the item or value of the item to display. Status parameters cannot be 
used in combination with MAGICAL expressions. They are mutually 
exclusive from Vnmr variables.The status parameter is any of the names 
listed by the command Infostat.

Show condition The expression which determines whether a group is shown or not. This 
string is a MAGICAL expression that sets the value of $SHOW or 
$VALUE, which evaluates to show (1) or hide (0). 



6.3 Panel Elements

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 309

Panel Elements
• “Basic Panel Elements,” page 309

• “Advanced Panel Elements,” page 319

Basic Panel Elements

.

A button causes an action to occur in VnmrJ. The command behind a button is anything 
that can be written in a macro or entered on the command line.

The button attributes are:

Example: the Acquire Profile button in the sems layout is a button.

Vnmr command 
on show

In a group, the command sent when the group is shown. This string is a 
MAGICAL expression. 

Vnmr command 
on hide

The command sent when the group is hidden. This string is a MAGICAL 
expression. 

Editable Sets whether or not text may be entered in the item (yes or no). 

• “Button,” page 309 • “Comboboxbutton,” page 310

• “Check,” page 310 • “Entry field,” page 311

• “Group,” page 311 • “Label,” page 313

• “Menu,” page 313 • “Parameter,” page 314

• “Radio button,” page 315 • “Scroll,” page 316

• “Selmenu,” page 316 • “Slider,” page 316

• “Spinner,” page 317 • “Textmessage,” page 318

• “Toggle button,” page 318

Button

Label of item Icon of item

Enable condition Vnmr command

Background color

Vnmr variables— en-/disable a button based on the parameter value.

Status parameter—en-/disable a button based on the status parameter value. 

Enable status values— list of status parameter values that enable the button.

Attribute Value

Label of item Acquire Profile

Icon of item

Vnmr variables

Enable condition

Vnmr command au

Status variables

Table 42. Common Attributes of Panel Elements

Attribute Description



Chapter 6. Panels, Toolbars, and Menus

310 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

.

The check box element selects and de-selects some mode or state, often as a yes or no 
selection. It is presented as a small square box to the left of a label.

The attributes of a check box are:

Inversion Recovery is a check box example:

The commands in the Vnmr command and Vnmr command2 fields are executed when 
the check box is selected or deselected. The parameter ir is set to y when the box is 
selected, and when the box is deselected, ir is set to n. 

The Value of element field determines, based on the current value of ir, whether the check 
box is shown as selected or deselected. Thus, this element needs to "listen to" the parameter 
ir, which requires ir to be in the Vnmr variables list. 

Vnmr command and the Value of element must be consistent. 

Comboboxbutton

The comboboxbutton button provides a number of choices using a drop-down menu. 
Selecting an option from the menu sets the menu item. Clicking on the button executes the 
Vnmr command specified in the menu. 

The attributes of a comboboxbutton are

An example is a comboboxbutton that displays the number of complex transform points 
fn/2:

Enable status values

Background color transparent

Check

Value of element — the check box is checked if 
$VALUE evaluates to a positive integer.

Enable condition

Vnmr command Vnmr command2

Label of Item Inversion Recovery

Vnmr variables: ir

Value of element: $VALUE = (ir='y')

Vnmr command: ir='y'

Vnmr command2: ir='n'

Label of item Vnmr variables

Value of item Enable condition

Vnmr command Label of Choices

Value of Choices Editable

Attribute Value

Vnmr variables fn

Value of item $VALUE = fn/2

Enable condition on('fn'):$ENABLE

Vnmr command fn = $VALUE * 2

Attribute Value

Label of item Acquire Profile



6.3 Panel Elements

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 311

.

Use the entry element to directly enter values for VnmrJ parameters.

The entry field attributes are:

The number of transients or averages, nt, is an example:

The entry field created in the above example functions as follows after exiting the editor:

Enter a value into the entry field, e.g., 4. 

Enter a list of values into an entry field a parameter that can be arrayed 
(nt=1,1,1,1,1). The value is displayed as the string array.

String parameters require enclosing the $VALUE with quotes: n1='$VALUE. All math 
functions must be done to a value prior to assigning it to a VnmrJ parameter, for example 
te in the imaging interface: 

Vnmr Command: te = $VALUE/1000

Entering a list of values for te in this case, e.g., 10, 20, 30, 40, results in dividing only the 
last value by 1000 and te array ends up with the values 10, 20, 30, 0.04. Enclose $VALUE 
in square brackets, [] to force the math to be applied to all entered values.

Vnmr Command: te = [$VALUE]/1000

The value is correctly divided by 1000 for all entered values. 

This is only an issue for entry fields which allow arbitrary values. The options for the 
entered value are predefined for menus, checkboxes, etc.

Groups are used to delineate a collection of basic elements that are connected. There are 
three types of groups: Major, Minor, and Convenience.

Label of Choices "64" "128" "256" "512" "1024" "2048"

Value of Choices "64" "128" "256" "512" "1024" "2048"

Editable Yes

Entry field

Vnmr Variables Value of item

Enable condition Vnmr Command

Decimal places Disable style

Status parameter

Attribute Value

Vnmr Variables: nt

Value of item: $VALUE = nt

Enable condition

Vnmr Command: nt = $VALUE '

Decimal places:

Disable style:

Status parameter:

Group



Chapter 6. Panels, Toolbars, and Menus

312 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Group attributes are:

Major groups are outlined with a visible border and can have a label associated at the top 
of the group. The major group width is restricted to a multiple of 70 pixels, and the group 
has an automatic margin of 5 pixels inside all edges. Major groups cannot contain major 
groups.

Minor groups only appear inside major groups, cannot be nested, or contain major groups. 
The left alignment and width snaps to the grid size. A label given to a minor group is not 
displayed.

Convenience groups are simply used to make editing pages easier and have no visible effect 
on the page. They can be used anywhere and have no restrictions on alignment. They are 
independent of the hierarchical restrictions placed on other types of groups. 

Major and minor groups may also be mutable. Their contents can change depending on 
other parameters. Multiple layers are available. Set the number of layers greater than one 
to enable this property. Use the editor to select the current active for editing. Mutable 
groups have a distinctive look.

Populate a group by first placing the group on the page, sizing it to hold all the elements to 
be added to it, and placing the individual elements inside the group.

A group cannot be created around existing elements. Placing a new (empty) group on top 
of existing elements gives the appearance of placing those elements in the group but none 
of the elements can be selected because they are behind the group. A group cannot be 
resized to encompass neighboring elements. Place elements inside a group by moving the 
elements into the group one by one. 

An element within a group cannot be resized so that the element extends beyond the group. 
An element that extends beyond the group is no longer considered part of the group and it 
cannot be selected from within the group. The element must reside inside the group. The 
group cannot be moved or resized to cover the element.

Groups can be hidden using Show Condition false. False is a negative integer or 0; true is 
a positive integer. For example, a group might only be suitable for display if the parameter 
relax is set to 'y'. In this case, the value of the Show Condition can be calculated by a 
MAGICAL expression, for example:

"if relax='y' then $SHOW=1 else $SHOW=0 endif" 
alternatively
''$SHOW=(relax='y')''

For this attribute, $SHOW is equivalent to $VALUE, and either may be used. 

The same space on the page can be used for different groups having a functionality 
determined by the value of a parameter. Editing this type of group is best done by separating 
the groups on the page and at the end of the editing process repositioning the groups on top 
of one another. It is important, in this case, that the groups not fit within each other. 
Convenience groups can be nested and "hidden" within each other, if desired.

Label of item Vnmr variables

Show condition Vnmr Command on Show

Vnmr Command on Hide Type

Number of Layers Edit Layer

Background Color Tab to this Group Disabled

Override Panel Enabled



6.3 Panel Elements

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 313

Groups can have multiple layers, hidden or shown, depending on the show condition for a 
particular layer. Number of Layers sets the number of layers in a group. Edit Layer is the 
number of the layer being edited between 1 and the number of layers.

.

The label element is a non-interactive label with a pre-defined text. Labels are typically 
used to give a title, or a description of some other field.

Example: Transform size in front of an entry field for entering the number of transformed 
points. 

The attributes of a label are:

An example is:

.

The menu element gives a number of choices in a drop-down menu. Selecting an option 
from the menu executes the specified Vnmr command, and displays the last selected option 
in the menu.

The attributes of a menu are:

The menu for np where the value displayed is the number of complex pairs, i.e., np/2 is 
an example:

The menu displays and returns the number of complex pairs and the value of np is adjusted 
through multiplying and dividing by 2. To illustrate that the "Label of choices" and "Value 

Label

Label of item Icon of item

Vnmr variables Used for setting the Enable condition

Enable condition Changes label’s appearance, but can not make it 
invisible. Put the label in a group and set the show 
condition on the group to make the label invisible.

Label justification

Attribute Value

Label of item Transform size

Icon of item

Vnmr variables

Enable condition

Label justification Left

Menu

Value of element Enable condition

Vnmr command Label of choices

Value of choices Editable

Attribute Value

Vnmr variables np

Value of element $VALUE = np/2

Vnmr command np = $VALUE*2

Label of choices "32" "64" "128" "256" "512" "1024"

Value of choices "32" "64" "128" "256" "512" "1024"



Chapter 6. Panels, Toolbars, and Menus

314 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

of choices" do not need to be identical, an alternative implementation would be to have the 
menu return the number of data points but display the number of complex pairs:

A value not included in the list of choices can be typed in if the menu is editable.The typed- 
in value is added to the list of label choices and to the list of value choices.

.

The parameter element offers a combination of a label, a checkbox, an entry field, and a 
menu (typically used for selecting the units of the parameter in question). Each of these sub-
elements is optional. The elements within a parameter are:

Entry Size and Unit Size establish the size of the label box, and Units Label adds the desired 
units description at the end of the box.

The label and menu have the same font.

The following example uses fixed units. Type Label.

Attribute Value

Value of element $VALUE = np

Vnmr command np = $VALUE

Label of choices "32" "64" "128" "256" "512" "1024"

Value of choices "64" "128" "256" "512" "1024" "2048"

Parameter

Parameter element function Description

Label Style permits changing font and units.

Check box Enables or disables selected conditions.

Entry field Enter a value with optional decimal places

Units Label for parameter units. Selected from a menu is 
optional.

Attribute Value

Parameter Name: temp

Label of item: Temperature

Enable Condition: vnmrinfo('get','tempExpControl'):$tc=0 
then $ENABLE=-1 else on 
('temp'):$ENABLE endif

Vnmr variables: temp tin

Checkbox Enable 
Condition:

vnmrinfo('get','tempExpControl'):$tc 
$ENABLE=$tc*2-1

Checkbox Value: on('temp'):$VALUE

Checkbox Vnmr 
Command:

on('temp') tin=Y

Checkbox Vnmr 
Command2:

off('temp') tin='n'

Entry value: $VALUE=temp

Entry size: 80

Entry Vnmr Command: temp=$VALUE tin=Y

Entry Decimal Places: 1

Entry Disable Styles: Grayed out



6.3 Panel Elements

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 315

Menu units are included in the following parameter example:

.

Radio buttons are used when a few mutually exclusive choices are available for a particular 
state. Whenever one option is selected, the others are deselected. If there are more than 3-
4 choices, a menu is a better element to use.

A collection of radio buttons related to a particular parameter must be within a single group 
to separate them from other sets of radio buttons, even if the groups of radio buttons use 
different parameters. The radio buttons must be explicitly programmed to be mutually 
exclusive.

The attributes of a radio button are:

Units Enable: Label

Units size: 30

Units Label: C

Units value:

Units Vnmr Command:

Menu Choice Label:

Menu Choice Value:

Attribute Value

Parameter Name: d1

Label of item: Relaxation Delay

Enable Condition: $SHOW=1

Vnmr variables: d1

Checkbox Enable Condition :

Checkbox Value:

Checkbox Vnmr Command:

Checkbox Vnmr Command2:

Entry value: vnmrunits('get','d1'):$VALUE

Entry size: 50

Entry Vnmr Command: vnmrunits('set','d1',$VALUE)

Entry Decimal Places: 2

Entry Disable Styles: Grayed out

Units Enable: Menu

Units size: 10

Units Label:

Units value: parunits('get','d1'):$VALUE

Units Vnmr Command: parunits('set','d1','$VALUE')

Menu Choice Label: 's''ms''us'

Menu Choice Value: 'sec''ms''us'

Radio button

Label of item Vnmr variables

Value of element Enable condition

Vnmr command Vnmr command2



Chapter 6. Panels, Toolbars, and Menus

316 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

An example of two radio buttons is the selection of either chess or wet water suppression 
method in the steam protocol. The chess and wet buttons have the following attributes:

Vnmr command2 is not used.

This example also shows an example of using the Enable condition to gray out the radio 
button if water suppression (ws) is turned off altogether (ws = 'n').

.

The scroll element adjusts a parameter with increment and decrement buttons (typically up 
and down arrow scroll buttons respectively). The parameter’s current value is displayed to 
the left of the scroll buttons. Each click of the left mouse button on an arrow selects a new 
value for the parameter in the direction implied by the button to the current parameter. 
Changes in the parameter, from value to value, do not have to be equally spaced. The 
parameter value can be a number or a string. The “Spinner,” page 317, is similar and does 
require a defined step size.

The attributes of a scroll are:

An example is the selection of a decoupling modulation mode from a defined list:

.

The selmenu (select menu) element is similar to a menu and gives a number of choices in 
a drop-down menu. The difference between a menu and a selmenu is that the selmenu 
always displays the same text (the "Label"), regardless of what was last selected. The 
exception to this is if the selmenu is "Editable", in which case it displays the last selected 
option.

The attributes of a selmenu are the same as for a menu.

.

The slider element adjusts a parameter with a slider. The current value of the parameter is 
displayed to the left of the slider. The value is incremented by clicking the left mouse button 

Attribute Chess WET

Vnmr variables wss wss

Value of element $VALUE=(wss='chess') $VALUE=(wss='wet')

Enable condition $VALUE=(ws='y') $VALUE=(ws='y')

Vnmr command wss='chess' wss='wet'

Scroll

Vnmr variables Value of element

Enable condition Vnmr command

Value of choices

Attribute Value

Vnmr variables dmm

Value of element $VALUE = dmm

Enable condition

Vnmr command dmm = '$VALUE'

Value of choices "ccc" "ccw" "ccg"

Selmenu

Slider



6.3 Panel Elements

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 317

or decremented by clicking the right mouse button in the scale or dragging the slider to the 
right (increase) or to the left (decrease). The value can also be set by entering it in the entry 
box to the left of the slider.

The attributes of a slider are:

The limits parameter is a Vnmr parameter name used to control the range of the slider.

The Min/Max displayed value entries control the range of the slider. These entries are 
inactive when there is an entry in the status parameter box and the limits box.

The Coarse/Fine adjustment values establish how much the value changes when the slider 
is moved by clicking the right or left mouse button in the scale. 

Ms between updates while dragging establishes the delay in reacting to the slider.

Example:

.

The spinner element applies a defined step size change to the value of a parameter using 
increment and decrement buttons (typically up and down arrow buttons). The range of 
values is set by the minimum and maximum displayed value attributes. The “Scroll,” page 
316, is similar but does not require a defined step size. 

The attributes of a spinner are:

Vnmr variables Value of element

Enable condition Vnmr command

Status parameter Limits parameter

Min displayed value Max displayed value

Coarse adjustment value Fine adjustment value

Number of digits to display Ms between updates while dragging

Attribute Value

Vnmr variables

Value of element

Enable condition

Vnmr command setshim ('Z0',$VALUE)

Status parameter Z0

Limits parameter Z0

Min displayed value

Max displayed value

Coarse adjustment value 10

Fine adjustment value 1

Number of digits to display 6

Ms between updates while 
dragging

0

Spinner

Vnmr variables Value of item

Enable condition Vnmr command

Status parameter Limits parameter

Min displayed value Max displayed value

Mouse click adjustment value



Chapter 6. Panels, Toolbars, and Menus

318 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Example:

.

The textmessage element displays a non-interactive label that displays an expression and 
the current value of the expression. The display is updated if the expression’s value 
changes. The expression can not be changed using this element. 

The attributes of a textmessage are:

Example

.

A toggle button is used to execute one action when the button is selected and another action 
when the button is de-selected. Clicking the toggle button runs an action, and the button 
changes to appear pressed in. Clicking the button again runs the other action, and the button 
is released. An example of such a toggle button is FID shimming, which starts FID shim 
acquisition until the button is clicked a second time to abort acquisition.

A different use for a toggle button is in switching between two mutually exclusive states, 
such as inserting or ejecting a sample. To this usage, two or more toggle buttons are placed 
within a group.

The attributes of a toggle button are:

Attribute Value

Vnmr variables vtairflow

Value of item $VALUE = vtairflow

Enable condition $SHOW = (vtairflow>6)

Vnmr command

Status parameter

Limits parameter

Min displayed value 7.0

Max displayed value 25.0

Mouse click adjustment value 1.0

Textmessage

Status parameter to display Vnmr Variables

Enable condition Vnmr expression to display

Number of digits

Attribute Value

Status parameter to display

Vnmr Variables np

Enable condition

Vnmr expression to display $VALUE = np/2

Number of digits 0

Toggle button

Label of item Vnmr variables

Value of item Enable condition

Vnmr command (executed when the button is selected)

Vnmr command2 (executed when the button is deselected)



6.3 Panel Elements

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 319

Example:

Advanced Panel Elements

The advanced panel elements are described here and are accessed using the Locator.

Dial

The attributes of a dial are:

Example:

Status variables Selecting status values

Enabling status values

Button 1 Button 2

Label of item Insert Eject

Vnmr variables

Value of item

Enable condition

Vnmr command

Vnmr command2

Status variables air air

Selecting status values insert eject

Enabling status values eject insert

• “Dial,” page 319 • “Filemenu,” page 320

•  “Page,” page 320 • “Shimbutton,” page 321

• “Selfilemenu,” page 321 • “Shimset,” page 322

• “Statusbutton,” page 322 • “Textfile,” page 323

A dial is a non-interactive display of the value of any parameter. It is 
typically used to display the FID area while shimming or setting the 
lock. A parameter can not be set using the dial. 

Vnmr variables Value of item

Enable condition Status variable

Min value Max value

Max value elastic Number of hands

Digital readout Show max value

Max marker color Show pic slice

Show color bars

Attribute Value

Vnmr variables fidarea

Value of item $VALUE = fidarea

Enable condition

Status variable

Min value 0.0

Max value 1000.0



Chapter 6. Panels, Toolbars, and Menus

320 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Filemenu

A filemenu is used when the choices and values associated with a menu are given in a file. 
This is useful for having a dynamic menu, where entries may be added or removed 
(typically by macros) during a session. The filemenu contains pairs of strings on multiple 
lines. Spaces in strings are contained within double quotes.

The attributes of a filemenu are:

An example of a filemenu is the orientation menu in Plan page in the Imaging interface, 
where the orientation of previously acquired data is dynamically added to the orientation 
menu during a study:

Page

The page element has the same attributes as a group element, with a size of a whole page 
and "Tab to this Group" enabled. The page size may be changed for particular use. The 
position of the page should always be X=0 Y=0. See the description of the group element 
for further details. 

Page attributes are:

Max value elastic no

Number of hands 2

Digital readout yes

Show maximum value yes

Max marker color GraphForeground

Show pie slice yes

Show color bars yes

Label of item Selection variables

Content variables Value of item

Enable condition Vnmr command

Menu source Menu type

Show dot files

Attribute Value

Label of item

Selection variables orient planValue

Content variables sqdir studyid

Value of item $VALUE = planValue

Enable condition

Vnmr command iplanType = 0 planValue='$VALUE' 
setgplan('$VALUE')

Menu source $VALUE=sqdir+'/plans'

Menu type file

Show dot files yes

Label of item Vnmr variables

Show condition Vnmr Command on Show

Type Vnmr Command on Hide

Number of Layers Edit Layer



6.3 Panel Elements

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 321

Selfilemenu

The selfilemenu element is similar to a filemenu and gives a number of choices in a drop-
down menu. However, the difference between a filemenu and a selfilemenu is that the 
selfilemenu always displays the same text (the Label), regardless of what was last selected. 
The exception to this is if the selfilemenu is "Editable", in which case it displays the last 
selected option.

The attributes of a selfilemenu are the same as for a filemenu.

.

This button is typically used to adjust the shims. It can be used for any numerical Vnmr or 
status parameter.

A shimbutton displays a text (the "Label"), the current value of the parameter, and a step 
size. The parameter value is adjusted in steps by clicking the mouse buttons: left and right 
mouse button to increase and decrease the parameter value, respectively. The value can be 
entered directly by holding the shift key while clicking on the value with the left mouse 
button. The step size can be changed by clicking the middle mouse button (goes through 3 
values), or a new step size can be entered by holding the shift key while clicking the middle 
mouse button.

The attributes of a shimbutton are:

Example:

Background Color Tab to this Group Enabled

Override Panel Enabled

Shimbutton

Vnmr variables Value of item

Label Vnmr command

Status variable Limits parameter

Min allowed value Max allowed value

Pointy style Rocker style

Arrow feedback Arrow color

Values wrap around

Attribute Value

Vnmr variables

Value of item

Label Z0

Vnmr command setshim ('Z0',$VALUE)

Status parameter Z0

Limits parameter Z0

Min allowed value

Max allowed value

Pointy style False

Rocker style True

Arrow feedback True

Arrow color GraphForeground

Values wrap around False



Chapter 6. Panels, Toolbars, and Menus

322 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Shimset

The shimset element brings up an entire set of shimbuttons, corresponding to the shim 
hardware.

The attributes of a shimset are:

.

A status button brings up a popup window that shows the temporal change in a given 
parameter.

The attributes of a statusbutton are:

Example of the FID shim button.

Border type Freeze layout

Vnmr shim set parameter Vnmr shim set value

Shim setting command Status parameter for shim

Vnmr variables for shim Vnmr expression for shim

Statusbutton

Status Title Chart Window Title

Status Color Chart Max Points

Status Variable Display Value

Vnmr variables Min value

Value of item Max value

Vnmr command Chart Show Range

Vnmr command2 Chart Background Color

Chart Foreground Color

Attribute Value

Status Title FID Shim

Status Color fg

Status Variable

Vnmr variables fidarea

Value of item $VALUE=fidarea

Vnmr command fid_scan

Vnmr command2 aa('exit FID shim')



6.4 Creating a New Panel

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 323

Textfile

The textfile window displays the text file corresponding to the file path value. The file 
contents can change and the display updates whenever a file name variable updates. For 
example, if n1 is listed as a file name variable, setting n1 = n1 will update the display.

The attributes of a textfile are:

6.4 Creating a New Panel
• “Writing Commands,” page 323

• “Creating a New Panel Layout,” page 324

• “Creating a New Page,” page 324

• “Defining and Populating a Page,” page 325

• “Saving and Retrieving a Panel Element,” page 325

• “Files Associated with Panels,” page 326

Writing Commands

The panel editor uses the MAGICAL command syntax and a special variable, $VALUE, 
that is a local variable for each attribute associated with a panel element.

The variable, $VALUE, holds the value of the entry in an entry field. The value in the entry 
field may be a real or string value, the output evaluation of a boolean expression (1, or 0), 
or the result from the evaluation of an expression. A string variable, in an expression, is set 
in single quotes, for example: p1pat = '$VALUE'. Other local panel variables are 
$SHOW and $ENABLE, see Table 42, page 308.

Chart Window Title FID Shim area

Chart Max Points 200

Display Value no

Min value 0

Max value 1000

Chart Show Range True

Chart Background Color StdPar

Chart Foreground Color StdPar

File name variables Value of file path

Vnmr command Enable condition

Editable Wrap lines



Chapter 6. Panels, Toolbars, and Menus

324 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Creating a New Panel Layout

A new layout is created using either a blank panel or an existing layout that is similar to the 
desired new panel. Use an existing layout (existing user layouts are located in ~/
vnmrsys/templates/layout) by copying an existing user layout and giving it a new 
name or by copying an existing system layout to the user directory and renaming the copied 
layout. An example:

cp -r /vnmr/imaging/templates/layout/gems ~/vnmrsys/
templates/layout/mygems 

1. Load the protocol, pulse sequence, and or parameter set that will use the new layout. 

2. Set seqfil or layout='mygems'.

The current panels are edited if seqfil or layout is not set to the new name.

3. Open the panel editor: 

a. Click on Edit on the main menu.

b. Select Parameter Pages. 

4. Modify any page.

5. Double click within a page or select the tab to the left. 

The selected page border is highlighted in yellow.

6. Click the Save button and save the page. 

Save the entire folder if new pages were created: 

a. Select the folder by double-clicking in the area outside the page grid. 

Nothing is high-lighted in yellow and at the bottom of the panel editor 
window the button Save is followed by the word Folder and an entry field. 

b. Click on the Save button.

The folders (three for liquids and four for imaging) must be named: Start, Acquire, Process, 
Image (imaging only), and LC/MS (LC-NMR only and uses the file LcMs.xml). Arbitrary 
names cannot be used. The name of the file that governs the Start folder is always 
sample.xml, the Acquire folder acq.xml, the Process folder proc.xml, and for the fourth 
folder in the imaging interface aip.xml (advanced imaging processing).

Varian standard imaging pages use the following convention:

• Pages in the Start folder start with samp

• Pages in the Acquire folder with acq

• Pages in the Process folder with proc 

• Pages in the Image folder with aip

Press the Clear button outside the current page to delete all pages in the current folder. 
Click the Abandon button to reload the folder and pages from disk before clicking the Save 
button if the Clear button is clicked by error. See 6.2 “Using the Panel Editor,” page 301 
for details.

Creating a New Page

1. Select Show all elements in the Locator.

2. Find the page element. 



6.4 Creating a New Panel

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 325

3. Drag the page element into the tab list to the left of the panels in the appropriate 
folder.

The New Page appears as the tab on the left. 

4. Change the size of the page by using one of the following:

• The mouse buttons and clicking on a corner and dragging the page to a new size.

• Use the ctrl-arrow keys to resize the page. 

• Type in values for size W(idth) and H(eight).

Defining and Populating a Page

1. Save the page. 

Select the entire page by double-clicking somewhere within the page frame, but not 
on any of the elements within the page. The entire page frame is highlighted in 
yellow. At the bottom of the panel editor window, the name of the page is shown in 
an entry field to the right of the Save button.

2. Click the Save button and save the page.

The keyword Page appears between the Save button and the entry field. Use either 
the original name (already shown) or enter a new name. The page Type is provided 
for refining a search of pages for future use.

Undo any changes made since the most recent save by clicking on the Load button to reload 
the file that is saved on disk. 

The Clear button deletes the current page in the folder. Click the Abandon button to reload 
the page from the disk before clicking the Save button or closing the editor if the Clear 
button is clicked on by mistake.

Saving and Retrieving a Panel Element

Save and retrieve a panel element for use in a different panel as follows: 

1. Double-click on an element.

The Save button is followed by the element type and an entry field for specifying the 
name of the saved element.

2. Enter a name and press Enter.

Saving a group saves the group and all elements within the group. 

3. Set the element type from the menu (acquisition, advanced, basic, display, imaging, 
plotting, processing, and sample) for easy Locator search.

Type



Chapter 6. Panels, Toolbars, and Menus

326 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

4. To retrieve a saved element, use the Locator to find the element (try sorting 
alphabetically by name or by type) and drag it on to the desired page. 

5. Saving an individual element is merely a tool to save and retrieve an element for use 
in a different panel.

Files Associated with Panels

See Table 43 for panels and locations.

The panel search path is defined in Applications dialog in the Edit menu, in directories 
allowed by the VnmrJ administrator under appdir. The default is in the user's home 
directory in vnmrsys/templates/layout, then optionally an application-dependent 
directory (e.g. /vnmr/imaging/templates/layout), and finally /vnmr/
templates/layout. 

Panels are first searched for in the pulse sequence directory, then in the default directory. If 
the file DEFAULT exists in the pulse sequence or layout directory and has contents set 
default default_name, an additional default directory of default_name will be 
searched.

Search path example:

COSY panels in the walkup interface, with a DEFAULT file of set default 
default2d. 

1. ~/vnmrsys/templates/layout/COSY 

2. /vnmr/walkup/templates/layout/COSY 

3. /vnmr/templates/layout/COSY 

4. ~/vnmrsys/templates/layout/default2d 

5. /vnmr/walkup/templates/layout/default2d 

6. /vnmr/templates/layout/default2d 

7. ~/vnmrsys/templates/layout/default 

8. /vnmr/walkup/templates/layout/default 

9. /vnmr/templates/layout/default 

Panel elements and groups are saved in templates/vnmrj/panelitems in either 
vnmrsys or /vnmr. 

Table 43. Panels and Locations

Panel owner Panel Location Comment

VnmrJ Experimental /vnmr/templates/
layout

Named according to the pulse 
sequence name and used by all 
interfaces.

Walkup /vnmr/walkup/
templates/layout

Walkup panels not shared with the 
experimental interface.

User user defined ~user/vnmrsys/
templates/layout

User panels named according to the 
pulse sequence name or layout.



6.5 Graphical Toolbar Menus

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 327

Sizing Panels

The panel size is determined by the number of pixels on the page when the page is created. 
Scroll bars appear automatically if the panel size is reduced and all the elements in the panel 
cannot be displayed. Scroll bars also appear automatically when the text is too long to be 
displayed in elements that support scroll bars. The Textfile element is an example. Some 
elements that contain text do not support scroll bars and display a portion of the text with 
an … to indicate that not all the text is displayed. 

The default environment variable setting for VnmrJ is squish=1.0 to maintain the size 
of the font when vnmrj is resized. Set VnmrJ to automatically resize the fonts as follows:

1. Login as the system administrator, typically vnmr1.

2. Open a terminal window.

3. Enter cd /vnmr/bin 

4. Enter cp vnmrj vnmrj.backup 

5. Edit the /vnmr/bin/vnmrj script and set the parameter squish=0.5 to 
automatically resize the fonts. Use vi or any ASCII text editor provided with the 
operating system.

6. Save the change and exit the editor.

7. Restart VnmrJ to make VnmrJ read the new value of the parameter. 

6.5 Graphical Toolbar Menus
• “Editing the Toolbar Menu,” page 327

• “Graphics Toolbar Parameters,” page 328

• “Icons,” page 328

• “Menu File Description Example, dconi,” page 328

Editing the Toolbar Menu

The graphics toolbar menu is invoked with the command menu(filename) and 
filename is the name of a file in the directory menujlib that exists in any of the 
following locations:

• /vnmr 

• $HOME/vnmrsys 

• any appdir accessible path.

Menus and toolbars are a special form of macro containing other macros. The definitions 
are plain text files and can be edited using vi or any ASCII text editor supplied with the 
operating system.



Chapter 6. Panels, Toolbars, and Menus

328 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

Graphics Toolbar Parameters

Each button displayed in the graphics toolbar menu is specified by three attributes that are 
set by the index of three arrayed global parameters: micon, mlabel, and mstring. The 
following global parameters are associated with the Graphic Toolbar menus:

Icons

VnmrJ icons available to all users are .gif files located in: /vnmr/iconlib 

Size all button icons to 24x24 pixels. Use any graphics editor that can create a .gif file. 

Menu File Description Example, dconi

The following is a line by line description of the dconi menu file.

The line numbers in the listing for the dconi menu file are for reference only and are not 
part of the file. 

The header contains comments and file history. It is not required but it is good practice to 
provide this or similar information when creating new or editing existing menu files.

Line 1 is the first line of the menu and checks the graphics mode display. 

Lines 2 through 9 establish the conditions for displaying the dconi menu.

Lines 10 through 12 initialize the mlabel, micon, and mstring to null strings to clear 
any traces of a previous menu.

Button 1

Lines 14 through 22 establish the first button ($vjm=1) as a toggle between the cursor and 
box modes (crmode='b'). The temporary parameter $vjm is used as button index.

Line 16 sets the label for the button to Cursor (mlabel[$vjm]='Cursor') and the 
icon to 2D1cur.gif (micon[$vjm]='2D1cur.gif') when the cursor operation is 
in the box mode (crmode='b'). 

Parameter Description

micon Saves the name of the GIF file associated with the button in micon[i]. This 
parameter is typically arrayed with one icon for each button and is set when a 
menu is called. A noicon.gif is used if an icon does not exist.

mlabel Stores the tooltip for a menu button. This parameter is typically arrayed 
with one tooltip for each button in the menu. This parameter is set 
whenever a menu is called.

mlabel[i] contains the tooltip for the ith button. 

mstring Stores command or macro strings to be executed when a VnmrJ menu 
button is clicked. Usually the mstring parameter is arrayed, with one 
string for each button in the menu. The string can be any string of 
commands that can otherwise appear in a macro or on the command 
line. This parameter is set whenever a menu is called.

The following rules apply:
— No new lines (that is, carriage returns) in the text string.

— Single quotes in the text string must be replaced by reverse single quotes 
(`...`) or by the escape sequence back slash with single quote (\'...).

— The length for the text string is subject to a maximum. A menu string can 
simply contain the name of a macro.



6.5 Graphical Toolbar Menus

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 329

Clicking on the button changes the button to Box (mlabel[$vjm]='Box') and the icon 
to 2D2cur.gif (micon[$vjm]='2D2cur.gif') when the it is in the cursor mode

Line 22 specifies the command to toggle dconi between modes:
mstring[$vjm]='dconi('toggle')' 

Button 2

Line 24 through 28 establish the next button ($vjm=$vjm+1) and the mlabel, micon, 
and mstring strings are set to define the name, icon, and vnmrj command string.

Buttons 3 through 7

Line 29 through 53 increment the index to the next buttons ($vjm=$vjm+1) and the 
mlabel, micon, and mstring strings are set to define the name, icon, and command 
string.

Button 8

The button (lines 54 through 57) is similar to buttons 2 through 7 with the inclusion of 
conditional statement in the parameter mstring on line 56.

Buttons 9 through 11

The buttons (lines 59 through 72) are similar to buttons 2 through 8.

Buttons 12 and 13

Line 74 is the if part of an if then else endif condition that reads the value of 
the parameter appmode.

Lines 75 through 84 are the then part of the if then else endif statement.

Lines 76 through 83 specify button attributes for display scaling if the statement in line 74 
is true. 

Line 85 is the else part of an if then else endif statement.

Lines 86 through 95 specify button attributes for display scaling if the statement in line 74 
is false. 

Line 96 is endif part of an if then else endif condition.

Button 14

This button (lines 98 through 101) is similar to buttons 2 through 7. 

Button 15

This button (lines 103 through 108) is optional displayed depending upon the value of the 
parameter appmode. The construct is similar to Button 12 without the else statement.

Button 16

The return button action (lines 103 through 108) is determined by the conditions set in lines 
113, 116, and 119 as part of a nested set of if then else endif statements.

Line 122 is the endif statement associated with the initial if then else on lines 2 
through 9.



Chapter 6. Panels, Toolbars, and Menus

330 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

"@(#)dconi 5.9 03/08/07 Copyright (c) 1991-2007 
Varian, Inc. All Rights Reserved."
"  *********************************  "

"  ****  M E N U :   D C O N I  ****  "

"  *********************************  "

Line 
number

1 graphis:$vjmgd

2 if (($vjmgd <> ’dconi’) and ($vjmgd <> ’dpcon’) 

3 and ($vjmgd <> ’dcon’) and ($vjmgd <> ’ds2d’)) then

4   if (lastmenu<>’’) then

5     menu(lastmenu) lastmenu=’’

6   else

7     menu(’display_2D’)

8   endif

9 else

10 mlabel=’’

11 mstring=’’

12 micon=’’

13

14 $vjm=1

15 if (crmode = ’b’) then

16   mlabel[$vjm]=’Cursor’

17   micon[$vjm]=’2D1cur.gif’

18 else

19   mlabel[$vjm]=’Box’

20   micon[$vjm]=’2D2cur.gif’

21 endif

22 mstring[$vjm]=’dconi(‘toggle‘)’

23

24 $vjm=$vjm+1

25 mlabel[$vjm]=’Show Full Spectrum’

26 micon[$vjm]=’2Dfull.gif’

27 mstring[$vjm]=’mfaction(\’mfzoom\’,0)’

28

29 $vjm=$vjm+1

30 mlabel[$vjm]=’Zoom in’

31 micon[$vjm]=’1Dexpand.gif’

32 mstring[$vjm]=’mfaction(\’mfzoom\’,1)’

33

34 $vjm=$vjm+1

35 mlabel[$vjm]=’Zoom out’

36 micon[$vjm]=’1Dzoomout.gif’

37 mstring[$vjm]=’mfaction(\’mfzoom\’,-1)’

38



6.5 Graphical Toolbar Menus

01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 331

39 $vjm=$vjm+1

40 mlabel[$vjm]=’Zoom mode’

41 mstring[$vjm]=’setButtonMode(2)’

42 micon[$vjm]=’ZoomMode.gif’

43

44 $vjm=$vjm+1

45 mlabel[$vjm]=’Pan & Stretch Mode’

46 mstring[$vjm]=’setButtonMode(3)’

47 micon[$vjm]=’1Dspwp.gif’

48

49 $vjm=$vjm+1

50 mlabel[$vjm]=’Trace’

51 mstring[$vjm]=’dconi(‘trace‘)’

52 micon[$vjm]=’2Dtrace.gif’

53

54 $vjm=$vjm+1

55 mlabel[$vjm]=’Show/Hide Axis’

56 mstring[$vjm]=’if(mfShowAxis=1) then mfShowAxis=0 else 
mfShowAxis=1 endif repaint’

57 micon[$vjm]=’1Dscale.gif’

58

59 $vjm=$vjm+1

60 mlabel[$vjm]=’Projections’

61 mstring[$vjm]=’newmenu(‘dconi_proj‘) dconi(‘restart‘)’

62 micon[$vjm]=’2Dvhproj.gif’

63

64 $vjm=$vjm+1

65 mlabel[$vjm]=’Redraw’

66 mstring[$vjm]=’dconi(‘again‘)’

67 micon[$vjm]=’recycle.gif’

68

69 $vjm=$vjm+1

70 mlabel[$vjm]=’Rotate’

71 mstring[$vjm]=’if trace=‘f2‘ then trace=‘f1‘ else 
trace=‘f2‘ endif dconi(‘again‘)’

72 micon[$vjm]=’2Drotate.gif’

73

74 if appmode=’imaging’ then

75

76 $vjm=$vjm+1

77 mlabel[$vjm] = ’Scale +7%’

78 mstring[$vjm] = ’vs2d=vs2d*1.07 dconi(‘redisplay‘)’

79 micon[$vjm]=’2Dvs+20.gif’

80 $vjm=$vjm+1

81 mlabel[$vjm] = ’Scale -7%’

82 mstring[$vjm] = ’vs2d=vs2d/1.07 dconi(‘redisplay‘)’



Chapter 6. Panels, Toolbars, and Menus

332 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

83 micon[$vjm]=’2Dvs-20.gif’

84

85 else

86

87 $vjm=$vjm+1

88 mlabel[$vjm] = ’Scale +20%’

89 mstring[$vjm] = ’vs2d=vs2d*1.2 dconi(‘again‘)’

90 micon[$vjm]=’2Dvs+20.gif’

91 $vjm=$vjm+1

92 mlabel[$vjm] = ’Scale -20%’

93 mstring[$vjm] = ’vs2d=vs2d/1.2 dconi(‘again‘)’

94 micon[$vjm]=’2Dvs-20.gif’

95

96 endif

97

98 $vjm=$vjm+1

99 mlabel[$vjm]=’Phase2D’

100 mstring[$vjm]=’newmenu(‘dconi_phase‘) dconi(‘trace‘)’

101 micon[$vjm]=’1Dphase.gif’

102

103 if appmode<>’imaging’ then

104   $vjm=$vjm+1

105   mlabel[$vjm]=’Peak Picking’

106   mstring[$vjm]=’newmenu(‘ll2d‘) dconi(‘restart‘)’

107   micon[$vjm]=’2Dpeakmainmenu.gif’

108 endif

109

110 $vjm=$vjm+1

111 mlabel[$vjm]=’Return’

112 micon[$vjm]=’return.gif’

113 if (lastmenu<>’’) then

114   mstring[$vjm]=’menu(lastmenu) lastmenu=‘‘’

115 else

116   if appmode=’imaging’ then

117     mstring[$vjm]=’menu(‘main‘)’

118   else

119     mstring[$vjm]=’menu(‘display_2D‘)’

120   endif

121 endif

122 endif



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 333

Appendix A. Status Codes

Codes marked with an asterisk (*) are not used on MERCURYplus/-Vx systems. Codes 
marked with a double asterisk (**) apply only to Whole Body Imaging systems.

Table 44. Acquisition Status Codes 

Done 11. FID complete

codes: 12. Block size complete (error code indicates bs number completed)

13. Soft error

14. Warning

15. Hard error

16. Experiment aborted

17. Setup completed (error code indicates type of setup completed)

101. Experiment complete

102. Experiment started

Error 
codes:

Warnings

101. Low-noise signal

102. High-noise signal

103. ADC overflow occurred

104. Receiver overflow occurred*

Soft errors

200. Maximum transient completed for single precision data

201. Lost lock during experiment (LOCKLOST)

300. Spinner errors:

301. Sample fails to spin after 3 attempts to reposition (BUMPFAIL)

302. Spinner did not regulate in the allowed time period (RSPINFAIL)*

303. Spinner went out of regulation during experiment (SPINOUT)*

395. Unknown spinner device specified (SPINUNKNOWN)*

396. Spinner device is not powered up (SPINNOPOWER)*

397. RS-232 cable not connected from console to spinner (SPINRS232)*

398. Spinner does not acknowledge commands (SPINTIMEOUT)*

400. VT (variable temperature) errors:

400. VT did not regulate in the given time vttime after being set

401. VT went out of regulation during the experiment (VTOUT)

402. VT in manual mode after auto command (see Oxford manual)*

403. VT safety sensor has reached limit (see Oxford manual)*

404. VT cannot turn on cooling gas (see Oxford manual)*

405. VT main sensor on bottom limit (see Oxford manual)*



334 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

406. VT main sensor on top limit (see Oxford manual)*

407. VT sc/ss error (see Oxford manual)*

408. VT oc/ss error (see Oxford manual)*

495. Unknown VT device specified (VTUNKNOWN)*

496. VT device not powered up (VTNOPOWER)*

497. RS-232 cable not connected between console and VT (VTRS232)*

498. VT does not acknowledge commands (VTTIMEOUT)

500. Sample changer errors:

501. Sample changer has no sample to retrieve

502. Sample changer arm unable to move up during retrieve

503. Sample changer arm unable to move down during retrieve

504. Sample changer arm unable to move sideways during retrieve

505. Invalid sample number during retrieve

506. Invalid temperature during retrieve

507. Gripper abort during retrieve

508. Sample out of range during automatic retrieve

509. Illegal command character during retrieve*

510. Robot arm failed to find home position during retrieve*

511. Sample tray size is not consistent*

512. Sample changer power failure during retrieve*

513. Illegal sample changer command during retrieve*

514. Gripper failed to open during retrieve*

515. Air supply to sample changer failed during retrieve*

525. Tried to insert invalid sample number*

526. Invalid temperature during sample changer insert*

527. Gripper abort during insert*

528. Sample out of range during automatic insert

529. Illegal command character during insert*

530. Robot arm failed to find home position during insert*

531. Sample tray size is not consistent*

532. Sample changer power failure during insert*

533. Illegal sample changer command during insert*

534. Gripper failed to open during insert*

535. Air supply to sample changer failed during insert*

593. Failed to remove sample from magnet*

594. Sample failed to spin after automatic insert

595. Sample failed to insert properly

596. Sample changer not turned on

597. Sample changer not connected to RS-232 interface

598. Sample changer not responding*

600. Shimming errors:

601. Shimming user aborted*

602. Lost lock while shimming*

604. Lock saturation while shimming*

Table 44. Acquisition Status Codes  (continued)



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 335

608. A shim coil DAC limit hit while shimming*

700. Autolock errors:

701. User aborted (ALKABORT)*

702. Autolock failure in finding resonance of sample (ALKRESFAIL)

703. Autolock failure in lock power adjustment (ALKPOWERFAIL)*

704. Autolock failure in lock phase adjustment (ALKPHASFAIL)*

705. Autolock failure, lost in final gain adjustment (ALKGAINFAIL)*

800. Autogain errors.

801. Autogain failure, gain driven to 0, reduce pw (AGAINFAIL)

Hard errors

901. Incorrect PSG version for acquisition

902. Sum-to-memory error, number of points acquired not equal to np

903. FIFO underflow error (a delay too small?)*

904. Requested number of data points (np) too large for acquisition*

905. Acquisition bus trap (experiment may be lost)*

1000. SCSI errors:

1001. Recoverable SCSI read transfer from console*

1002. Recoverable SCSI write transfer from console**

1003. Unrecoverable SCSI read transfer error*

1004. Unrecoverable SCSI write transfer error*

1100. Host disk errors:

1101. Error opening disk file (probably a UNIX permission problem)*

1102. Error on closing disk file*

1103. Error on reading from disk file*

1104. Error on writing to disk file*

1400–1500. RF Monitor errors:

1400. An RF monitor trip occurred but the error status is OK **

1401. Reserved RF monitor trip A occurred **

1402. Reserved RF monitor trip B occurred **

1404. Excessive reflected power at quad hybrid **

1405. STOP button pressed at operator station **

1406. Power for RF Monitor board (RFM) failed **

1407. Attenuator control or read back failed **

1408. Quad reflected power monitor bypassed **

1409. Power supply monitor for RF Monitor board (RFM) bypassed **

1410. Ran out of memory to report RF monitor errors **

1411. No communication with RF monitor system **

1431. Reserved RF monitor trip A1 occurred on observe channel **

1432. Reserved RF monitor trip B1 occurred on observe channel **

1433. Reserved RF monitor trip C1 occurred on observe channel **

1434. RF Monitor board (PALI/TUSUPI) missing on observe channel **

1435. Excessive reflected power on observe channel **

1436. RF amplifier gating disconnected on observe channel **

1437. Excessive power detected by PALI on observe channel **

Table 44. Acquisition Status Codes  (continued)



336 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708

1438. RF Monitor system (TUSUPI) heartbeat stopped on observe channel **

1439. Power supply for PALI/TUSUPI failed on observe channel **

1440. PALI asserted REQ_ERROR on observe channel (should never occur) **

1441. Excessive power detected by TUSUPI on observe channel **

1442. RF power amp: overdrive on observe channel **

1443. RF power amp: excessive pulse width on observe channel **

1444. RF power amp: maximum duty cycle exceeded on observe channel **

1445. RF power amp: overheated on observe channel **

1446. RF power amp: power supply failed on observe channel **

1447. RF power monitoring disabled on observe channel **

1448. Reflected power monitoring disabled on observe channel **

1449. RF power amp monitoring disabled on observe channel **

1451. Reserved RF monitor trip A2 occurred on decouple channel **

1452. Reserved RF monitor trip B2 occurred on decouple channel **

1453. Reserved RF monitor trip C2 occurred on decouple channel **

1454. RF Monitor board (PALI/TUSUPI) missing on decouple channel **

1455. Excessive reflected power on decouple channel **

1456. RF amplifier gating disconnected on decouple channel **

1457. Excessive power detected by PALI on decouple channel **

1458. RF Monitor system (TUSUPI) heartbeat stopped on decouple channel **

1459. Power supply for PALI/TUSUPI failed on decouple channel **

1460. PALI asserted REQ_ERROR on decouple channel (should never occur) **

1461. Excessive power detected by TUSUPI on decouple channel **

1462. RF power amp: overdrive on decouple channel **

1463. RF power amp: excessive pulse width on decouple channel **

1464. RF power amp: maximum duty cycle exceeded on decouple channel **

1465. RF power amp: overheated on decouple channel **

1466. RF power amp: power supply failed on decouple channel **

1467. RF power monitoring disabled on decouple channel **

1468. Reflected power monitoring disabled on decouple channel **

1469. RF power amp monitoring disabled on decouple channel **

1501. Quad reflected power too high **

1502. RF Power Monitor board not responding **

1503. STOP button pressed on operator’s station **

1504. Cable to Operator’s Station disconnected **

1505. Main gradient coil over temperature limit **

1506. Main gradient coil water is off **

1507. Head gradient coil over temperature limit **

1508. RF limit read back error **

1509. RF Power Monitor Board watchdog error **

1510. RF Power Monitor Board self test failed **

1511. RF Power Monitor Board power supply failed **

1512. RF Power Monitor Board CPU failed **

1513. ILI Board power failed **

Table 44. Acquisition Status Codes  (continued)



01-999379-00 A 0708 VnmrJ 2.2 MI User Programming 337

1514. SDAC duty cycle too high **

1515. ILI Spare #1 trip **

1516. ILI Spare #2 trip **

1517. Quad hybrid reflected power monitor BYPASSED **

1518. SDAC duty cycle limit BYPASSED **

1519. Head Gradient Coil errors BYPASSED **

1520. Main Gradient Coil errors BYPASSED **

1531. Channel 1 RF power exceeds 10s SAR limit **

1532. Channel 1 RF power exceeds 5min SAR limit **

1533. Channel 1 peak RF power exceeds limit **

1534. Channel 1 RF Amp control cable error **

1535. Channel 1 RF Amp reflected power too high **

1536. Channel 1 RF Amp duty cycle limit exceeded **

1537. Channel 1 RF Amp temperature limit exceeded **

1538. Channel 1 RF Amp pulse width limit exceeded **

1539. Channel 1 RF Power Monitoring BYPASSED **

1540. Channel 1 RF Amp errors BYPASSED **

1551. Channel 2 RF power exceeds 10s SAR limit **

1552. Channel 2 RF power exceeds 5 min SAR limit **

1553. Channel 2 peak RF power exceeds limit **

1554. Channel 2 RF Amp control cable error **

1555. Channel 2 RF Amp reflected power too high **

1556. Channel 2 RF Amp duty cycle limit exceeded **

1557. Channel 2 RF Amp temperature limit exceeded **

1558. Channel 2 RF Amp pulse width limit exceeded **

1559. Channel 2 RF Power Monitoring BYPASSED **

1560. Channel 2 RF Amp errors BYPASSED **

Table 44. Acquisition Status Codes  (continued)



338 VnmrJ 2.2 MI User Programming 01-999379-00 A 0708



01-999379-00  A 0708 VnmrJ 2.2 MI User Programming 339

Index
Index

Symbols
"..." (double quotes) notation, 24, 30
# notation (pulse shaping file), 109
$ (dollar sign) notation, 28, 32
$# special input argument, 35
$0 special input argument, 35
$1, $2,... input arguments, 35
$VALUE, 323
& (ampersand) notation (UNIX), 269
'...' (single quotes) notation, 25, 28
(...) (parentheses) notation, 34
(...)# notation (AP table file), 84
* (asterisk) notation (display template), 297
+ (addition) operator, 29
+= notation (AP table file), 84
. (single period) notation (UNIX), 268
.. (double period) notation (UNIX), 268
.c file extension, 55
.fdf file extension, 281
.fid file extension, 273
/ notation (UNIX), 268
: (colon) notation, 26
; (semicolon) notation, 59
; (semicolon) notation (UNIX), 268
< notation (UNIX), 269
<...> (angled brackets) notation, 25
> notation (UNIX), 269
>> notation (UNIX), 269
? (question mark) notation (UNIX), 269
[...] notation (display template file), 297
[...] notation (square brackets), 32
[...]# notation (AP table file), 84
\ (backslash) notation, 28
\'... (backslash single quote) notation, 328
_ x macro name, 25
`...` (reverse single quotes) notation, 328
{...} (curly braces) notation, 36, 59
{...}# notation (AP table file), 84
| (vertical bar) notation (UNIX), 269
~ (tilde) notation (UNIX), 268

Numerics
1D data file, 275
1D display, 278
1D Fourier transform, 278
2D data file, 279
2D FID display, 279
2D FID storage, 279
2D hypercomplex data, 275
2D phased data storage, 279
2D plane of a 3D data set, 40
2D plane selection without display, 40
2D pulse sequence in standard form, creating, 123
2D, 3D, and 4D data sets, 122
3D coefficient text file, 274
3D parameter set, 274
3D pulse sequence in standard form, creating, 123
3D spectral data default directory, 274
4D pulse sequence in standard form, creating, 123
63-dB attenuator, 71, 116
79-dB attenuator, 71, 116

A
abort command, 38
abort current process (UNIX), 269
abortoff command, 38
aborton command, 38
abs command, 43
abs macro, 38
A-codes, 80
acos command, 43
acq_errors file, 60
acqi command, 46, 99, 102
Acqstat command, 46
acqstatus parameter, 60
acquire data explicitly, 140
acquire data points, 105
acquire statement, 105, 106, 119
acquisition bus trap, 335
Acquisition codes, 80
Acquisition Controller boards, 141
acquisition CPU, 121
acquisition phase (AP) tables. See AP table
acquisition processor memory, 146
acquisition statements, 60
acquisition status codes, 60
acquisition time, 89
Acquisition window, 99, 102
active parameter test, 48
ADC overflow warning, 333
add AP table to second AP table, 253
add integer to AP table, 252
add integer values, 141
add statement, 78, 141
alfa parameter, 60
alias (UNIX), 268
ampersand (&) character, 269
amplifier blanking gate, 225
amplifier modes, 63
amplifiers

blanking channels, 145
duty cycle, 63
gating, 62
turn off, 145
turn on, 145

ampmode parameter, 63
analyze command, 42
analyze.inp file, 42
and operator, 30
angled brackets (< or >) notation, 21, 25
AP bus commands, 72
AP bus delay, 121, 141
AP bus delay constants, 117
AP bus instruction, 119
AP bus pulse shaping, 142, 143
AP bus registers, 76, 226, 234, 263
ap command, 294
ap parameter, 294, 297
AP table, 83

add integer to elements, 252
add to another table, 253
autoincrement attribute, 86, 232
divide by second AP table, 254
divide integer into elements, 252
divn-factor, 86
file location, 83



Index

340 VnmrJ 2.2 MI User Programming 01-999379-00  A 0708

load from file, 85
loading statements, 83
multiply by a second AP table, 254
multiply integer with elements, 252
receiver phase cycle, 232
receiver variable, 86
retrieve element, 86
scalar operations, 86
set divn-return and divn-factor, 232
statement format, 84
store integer array, 85, 233
subtract from second AP table, 254
subtract integer from elements, 253
table handling statements, 85
vector operations, 86

apa command, 40
apdelay.h file, 119, 121
apovrride statement, 72, 120, 141
applicability of statements, 55
apshaped_dec2pulse statement, 143
apshaped_decpulse statement, 142
apshaped_pulse statement, 144
arc cosine of a number, 43
arc sine of a number, 43
arc tangent of a number, 43
arc tangent of two numbers, 43
argument number, 35
arguments passed to commands and macros, 25
array defined, 31
arraydim parameter, 123, 279
arrayed experiment, 279
arrayed parameter values, 180
arrayed shaped gradient generation, 237
arrayed string variables, 33
arrayed variables, 30, 32
arraying acquisition parameters, 122
ASCII format, 273
asin command, 43
assign integer values, 144
assign statement, 78, 144
asterisk (*) character, 269, 297
asynchronous decoupling, 233
at parameter, 89
atan command, 43
atan2 command, 43
attenuators-based shaped pulses, 116
attributes of parameter, 292
attributes of variables, 31
auto file, 274
Autogain, see automatic gain
autoincrement attribute, 84, 86, 232
Autolock, see automatic lock
automatic execution of macros, 292
automatic gain

errors, 335
automatic lock

errors, 335
automatic macro execution, 26
automatic variables, 31
automation file, 274
autoscale command, 42
autoscaling, 42
average command, 43
average value of input, 43

awc parameter, 298
awk command (UNIX), 269
axis command, 46
axis labels, 46
axis parameter, 46

B
back slash single quote (\’...) notation, 328
background process (UNIX), 269
background processing, 271
backslash (\) notation, 28
backward single-quote (`...`), 28
bandinfo macro, 115
banner command, 40
beeper sound, 46
beepoff command, 46
beepon command, 46
binary files, 273
binary information file, 274
blanking amplifiers, 75, 145, 153, 205
blankingoff statement, 145
blankingon statement, 145
blankoff statement, 75, 145
blankon statement, 75, 146
block size complete, 333
block size counter, 77
block size variable, 80
Boolean expressions, 35
Boolean operations, 30
bootup macro, 25, 46, 48
box mode, 40
Breakout panel, 75, 76, 226
bs parameter, 77, 80, 81, 333
bsctr real-time variable, 77, 81
bsval real-time variable, 77, 81
buffering in memory, 274
button labels, 328

C
C loop, 118
C programming language, 55
C programming language framework, 58
cat command (UNIX), 269
cd command (UNIX), 269
cf parameter, 107
change bar, 21
change current directory, 269
channel control, 122
channel identifiers, 122
channel selection, 63
char-type variables, 59
checkpw macro, 37
checksum of FDF file data, 284
chemical shift, 49
chmod command (UNIX), 269
clear command, 41
clearapdatatable statement, 106, 146
clearing a window, 41
cmp command (UNIX), 269
coarse attenuators, 71
code table, 80
coef file, 274



01-999379-00  A 0708 VnmrJ 2.2 MI User Programming 341

Index

coherence transfer selective phase cycling, 69
colon (:) notation, 26
command entry, 268
command interpreter, 24
command output to variables, 26
command tracing, 38
comments, 30

in macros, 24
comparing two files (UNIX), 269
compilation error messages, 57
compiling source code, 56
completed transient counter, 77
complex pair of FID data, 277
compressed acquisitions, 130
compressed data format, 286
compressed files, 281
compressed loop, 201, 215
Compressed-compressed data format, 286
concatenate and display files (UNIX), 269
concatenate strings, 29
conditional execution, 178, 187
conditional statements, 24, 36
config command, 289
conpar file, 289, 292
constant delay time for changing the status, 82
constant phases, 77
constant strings, 25
constants, 28
continuous decoupling caution, 72
continuous wave (CW) modulation, 65, 233
conventions used in manual, 21
conversion units, 49
copying files (UNIX), 268
copying macros, 44
cos command, 43
cosine value of an angle, 43
COSY-NOESY sequence, 107
course power control, 71
cp command (UNIX), 268
cp parameter, 77
cr parameter, 39
crcom command, 44
create command, 290, 292
create_delay_list statement, 131, 146
create_freq_list statement, 131, 148
create_offset_list statement, 131, 148
creategtable macro, 128
creating

directories (UNIX), 269
FDF files, 284
new parameter, 290
slider in Acquisition window, 102
user macros, 44
variable without value, 31

ct variable, 77, 84
curly braces ({...}) notation, 36, 59
curpar file, 274, 278, 289
current experiment files, 274
current parameter tree, 289
current parameters text file, 274
current-type parameter tree, 289
cursor mode, 40
cursor position, 39
curve fitting, 42

D
d0 parameter, 81
d2 parameter, 77, 123
d3 parameter, 77, 123
d4 parameter, 77, 123
DANTE sequence, 116, 118
Data Acquisition Controller boards, 59, 141
data acquisition statements, 60
data block, 275
data block header, 275
data buffers, 274
data directory, 274
data file, 274, 278, 279
data file header, 275
data file in current experiment, 280
data point acquisition, 105
data portion of FDF file, 281
data transposition, 279
data.h file, 275
datablockhead structure, 276
datadir3d directory, 274
datafilehead structure, 275
date command (UNIX), 269
dbl statement, 78, 151
dc drift correction, 278
dcphase statement, 119
dcplr2phase statement, 68, 106, 119, 152
dcplr3phase statement, 68, 106, 119, 153
dcplrphase statement, 68, 106, 119, 151
ddf command, 280
ddff command, 280
ddfp command, 280
debug command, 38
DEC file suffix, 109
dec2blank statement, 75, 153
dec2off statement, 75, 155
dec2offset statement, 70, 155
dec2on statement, 75, 156
dec2phase statement, 106, 157
dec2power statement, 71, 106, 119, 158
dec2prgoff statement, 114, 120, 160
dec2prgon statement, 75, 114, 120, 161
dec2pwrf statement, 72, 106, 119, 163
dec2rgpulse statement, 65, 106, 165
dec2shaped_pulse statement, 112, 118, 120, 168
dec2spinlock statement, 115, 120, 170
dec2stepsize statement, 69, 172
dec2unblank statement, 75, 173
dec3blank statement, 75, 154
dec3off statement, 75, 155
dec3offset statement, 70, 155
dec3on statement, 75, 157
dec3phase statement, 67, 106, 158
dec3power power, 119
dec3power statement, 71, 106, 159
dec3prgoff statement, 114, 120, 160
dec3prgon program, 114
dec3prgon statement, 75, 120, 161
dec3pwrf statement, 106, 119, 163
dec3rgpulse statement, 65, 106, 166
dec3shaped_pulse statement, 112, 120, 169
dec3spinlock statement, 115, 120, 171
dec3stepsize statement, 69, 172
dec3unblank statement, 75, 173



Index

342 VnmrJ 2.2 MI User Programming 01-999379-00  A 0708

dec4offset statement, 156
dec4phase statement, 158
dec4power statement, 159
dec4rgpulse statement, 166
decblank statement, 75, 153
DECch, DEC2ch, DEC3ch devices, 148, 149
declaring variables, 32, 59
declvloff statement, 72, 106, 154
declvlon statement, 72, 106, 154
decoff statement, 74, 154
decoffset statement, 70, 155
decon statement, 74, 156
decoupler

blank associated amplifier, 75, 153
fine power, 163, 224, 229
fine power adjustment, 72
fine power with IPA, 194
full power, 154
gate channel, 241
gating, 73, 74, 249
high-power level, 162
linear modulator power, 224, 229
linear modulator power with IPA, 194
modes, 74
modulation mode, 74
normal power, 154
offset frequency, 69, 70, 155, 208
pattern type, 109
phase, 67
phase control, 68
power adjustment, 71
power level, 72, 158, 222, 229
power level switching, 71
programmable decoupling, 159, 160
pulse shaping via AP bus, 142
pulse with IPA, 186
pulse with receiver gating, 162, 164
quadrature phase, 157
set status, 233
shaped pulse, 167
simultaneous pulses, 65
small-angle phase, 151
small-angle phase step size, 250
spin lock waveform control, 170
status, 248
step size, 171
turn off, 154
turn on, 156
two-pulse shaped pulse, 113
unblank amplifier, 172
WALTZ decoupling, 67
waveforms, 111

decoupler mode, 233
decoupling, switching, 173
decphase statement, 67, 106, 157
decpower statement, 71, 106, 119, 158
decprgoff statement, 111, 114, 120, 160
decprgon statement, 74, 111, 114, 120, 160
decpulse statement, 64, 106, 162
decpwr statement, 162
decpwrf statement, 72, 106, 119, 163
decr statement, 78, 164
decrement integer value, 164
decrgpulse statement, 64, 106, 164

decshaped_pulse statement, 112, 118, 120, 167
decspinlock statement, 115, 120, 170
decstepsize statement, 69, 171
decunblank statement, 75, 172
delay

create delays table, 146
for synchronizing sample rotor, 231
initialize, 191
interincrement, 81
intertransient, 81
parameter type, 289
real-time incremental, 188
routine, 183
specified time, 173
specified time with IPA, 187
timebase fixed and real-time count, 259
with possible homospoil pulse, 185

delay statement, 61, 102, 106, 173
delay-related statements, 61
delays

initializing next for hardware shimming, 184
delcom command, 44
deleting files (UNIX), 268
deleting user macros, 44
destroy command, 292
destroygroup command, 292
device gating, 180
dg2 parameter, 295
Dgroup field, 292
Dgroup of a parameter, 291
dhp parameter, 72, 154
diff command (UNIX), 269
differentially compare files (UNIX), 269
diffusion analysis, 42
digital resolution measurement, 39
dimensioning statement, 33
directory information, 47
disk blocks, 275
disk cache buffering, 274
disk file errors, 335
display command, 291
displaying

controlling pulse sequence graphical display, 82
date and time (UNIX), 269
FID file, 280
file headers, 280
macros, 44
memory usage, 280
part of file (UNIX), 269
pulse sequences, 82

dividing an AP table into a second AP table, 254
dividing an integer into AP table elements, 252
dividing integer values, 174
divn factor, 84, 86, 232
divn statement, 174
divn-return attribute, 84, 86, 232
dll command, 26
dm parameter, 73
dm2 parameter, 74
dm3 parameter, 74
dmm parameter, 64, 73, 120, 121, 233
dmm2 parameter, 74, 120
dmm3 parameter, 74, 120
DODEV, DO2DEV, DO3DEV constants, 63



01-999379-00  A 0708 VnmrJ 2.2 MI User Programming 343

Index

dof parameter, 69
dof2 parameter, 69
dof3 parameter, 69
dollar-sign (?) notation, 28, 32
done codes, 60, 333
double integer value, 151
double quotation marks ("...") notation, 30
double-precision, 31
double-type variables, 59
dp parameter, 274
dps command, 56, 82, 174
dps_off statement, 82, 174
dps_on statement, 82, 174
dps_ps_gen command, 56
dps_show statement, 174
dps_skip statement, 177
dpwr parameter, 72, 118, 154
dpwr2 parameter, 72
dpwr3 parameter, 72
draw pulses for graphical display, 174
dres command, 39
ds command, 278
dsn command, 39
dsnmax command, 39
du command (UNIX), 269
duty cycle, 63
dynamic range of shaped pulse, 116
dynamic variable gradient pulse generation, 188, 238
dynamic variable shaped gradient pulse generation, 

239

E
echo command, 41
echo command (UNIX), 41
ed command (UNIX), 269, 270
edit command, 270
editing

macros, 26, 45
parameter attributes, 290
text files, 269

effective transient counter, 124
elsenz statement, 79, 177
Emacs editor, 27
end hardware loop, 178
end ifzero statement, 178
end loop started by loop, 178
end of file (UNIX), 269
endhardloop statement, 104, 178
endif statement, 79, 83, 178
endloop statement, 79, 104, 178, 179
endmsloop statement, 178
endpeloop statement, 179
enumeral values of a parameter, 293
env command (UNIX), 27
error codes, 60, 333
error during acquisition, 333
error macro, 36
Euler angles, 131, 230
event in a hardware loop, 104
exec command, 36, 46
executable pulse sequence code, 56
execute statements conditionally, 79
execute statements repeatedly, 79

execute succeeding statements
if argument nonzero, 177
if argument zero, 187

executing a VNMR command, 46
execution of macros and commands, 25
exists command, 46
exp command, 43
experiment files, 89
experiment increment pointers, 77
experiment-based parameters, 31
expfit command (UNIX), 42
expl command, 42
explicit acquisition, 60, 105, 140
expn directory file, 274
exponential curves, 42
exponential value of a number, 43
expressions, 34
external device interface, 130
external event gating, 264
external timebase, 108
external variables, 31
extr directory, 274
extracted 2D planes, 274

F
f3 file, 274
FALSE Boolean value, 35
FDF files

attach header to data file, 285
creating, 284
directory naming convention, 280
format, 281
header format, 281
magic number, 282
splitting data and header parts, 285
transformations of data, 284
why developed, 280

fdf files, 281
fdfgluer command, 285
fdfsplit command, 285
FID complete, 333
FID data, 277
fid file, 274, 278
fid file extension, 273
FID files, 273, 280, 300
FIFO underflow error, 335
file

binary format, 273
existence test, 46
header of binary file, 273
information, 47
protection mode (UNIX), 269
text format, 273

fine attenuators, 72
fine power, 194, 224, 229

control, 71
decoupler, 163
transmitter, 207

fine power routine, 103, 183
fine-grained pulse shaping, 118
first point correction, 278
fixpar macro, 26
flag of a parameter test, 48



Index

344 VnmrJ 2.2 MI User Programming 01-999379-00  A 0708

flag-type parameter, 289
FLASH pulse sequence, 75
flashc command, 287
flexible data format files. See FDF files
floating constant, 28
floating point, 31
float-type variables, 59
flush command, 274, 278
fm-fm modulation, 233
fn parameter, 278
focus command, 47
format command, 41
format of weighting function, 298
formatting for output, 41
forward slash notation (UNIX), 268
Fourier transform process, 278
fourth decoupler

offset frequency, 156
power level, 159
pulse with receiver gating, 166
quadrature phase, 158

fractions in integer mathematics, 78
framework for pulse sequences, 58
fread command, 291
frequency

control, 69
create frequencies table, 148
offsets table, 148
set based on position, 220
set from position list, 220, 221
set on position, 220
table indexing, 261

frequency and intensity from line list, 39
frequency limits of region, 39
frequency lists, 148
frequency offset lists, 263
frequency offset routine, 101, 183
frequency-type parameter, 289
fsave command, 274, 291
ft command, 278
ft3d command, 274

G
G_Delay general routine, 98, 102, 183
G_Offset general routine, 98, 101, 183
G_Power general routine, 98, 103, 183
G_Pulse general routine, 98, 99, 100, 102, 183
gap command, 47
GARP modulation, 233
gate pulse sequence from an external event, 264
gate statement, 180
gating control statements, 73
Gaussian pulse, 116
gcoil parameter, 128
gedit, 270
generic delay routine, 102, 183
generic pulse routine, 100, 183
getarray statement, 131, 180
getelem statement, 86, 180
getfile command, 47
getll command, 39
getorientation statement, 181
getreg command, 39

getstr statement, 58, 96, 182
getval statement, 58, 96, 182
getvalue command, 290
Ggroup, 291, 292
global file, 289
global list, 148, 149

statements, 131
global PSG parameters, 89
global variables, 31
global-type parameter tree, 289
go command, 80
gradaxis parameter, 128
gradient

control, 125
set to specified level, 228
simultaneous shaped, 198
variable angle, 256
variable angle gradient pulse, 256
variable angle shaped gradient, 257
variable angle shaped gradient pulse, 258
waveforms, 109, 111
zero all gradients, 265

gradient function, 188
gradient level set by real-time math, 261
gradient pattern file, 191
gradient pulse, 127

generation, 238
on z channel, 266
simultaneous shaped, 199

gradient statement, 131
gradtables directory, 128
gradtype parameter, 120, 125
graphical display of a sequence, 56
graphical display of pulse sequences, 82
graphical display of statements, 174
graphics display status, 47
graphis command, 47
GRD file suffix, 109
grep command (UNIX), 269
gripper abort, 334
group of parameters, 291
groupcopy command, 291

H
half value of integer, 184
half-transformed spectra, 279
hardloop nesting, 106
hardware loop, 104, 178

end of loop, 178
start of loop, 248

hardware phase control, 68
hardware shimming

iniitializing next delay, 184
hardware WALTZ decoupling, 67
hardwired 90° phase, 68
head command (UNIX), 269
header of FDF file, 281
HET2DJ pulse sequence, 123
hidden delay, 119
hidecommand command, 44
high-band nuclei, 64
high-noise signal, 333
high-speed device control, 75



01-999379-00  A 0708 VnmrJ 2.2 MI User Programming 345

Index

high-speed line propagation delay, 121
hlv statement, 78, 80, 184
HMQC experiment, 63
hom2dj.c sequence listing, 56
HOM2DJT pulse sequence, 87
home directory for user (UNIX), 268
homo parameter, 64, 65
homo2 parameter, 65
homo3 parameter, 65
homodecoupler gating, 65
homonuclear J-resolved pulse sequence, 87
homonuclear-2D-J pulse sequence, 55
homospoil gating, 73, 74, 248
homospoil pulse, 61, 185
host disk errors, 335
hs parameter, 61, 73
hsdelay statement, 61, 74, 106, 185
hst parameter, 61, 74
hwlooping.c module, 67
hypercmplxbhead structure, 277
hypercomplex 2D, 123

I
i2pul.c pulse sequence, 99
id2 pointer, 58, 77, 124
id3 pointer, 58, 77
id4 pointer, 58, 77
idecpulse statement, 65, 186
idecrgpulse statement, 65, 186
idelay statement, 61, 187
identifier, 28, 36
if, then, else, endif conditional form, 36
ifzero statement, 79, 83, 187
image file names, 281
image plane orientation, 181
imaginary component of FID data, 277
imaging module, 125
imaging-related statements, 129
implicit acquisition, 60
implicit expressions, 35
implicitly arrayed delay, 123
inactive parameter, 48
incdelay statement, 61, 188
incgradient statement, 131, 188
incr statement, 78, 189
increment an integer value, 189
increment counts, 58
increment index, 124
incremental delay, 61, 188, 191
incrementing a loop, 37
index out of bounds, 34
indices of an array, 32
indirect detection, 189
indirect detection experiments, 122
indirect statement, 189
info directory, 274
init_gradpattern statement, 132, 191
init_rfpattern statement, 132, 190
initdelay statement, 61, 191
initialize incremental delay, 191
initialize parameters for imaging sequences, 192
initialize real-time variable, 192
initialize string variable, 32

initparms_sis statement, 75
initval statement, 79, 192
input arguments, 35
input command, 41
input tools, 40
integ command, 39
integer array stored in AP table, 233
integer mathematical statements, 78
integer values

add, 141
assign, 144
decrement, 164
divide, 174
double, 151
half value, 184
increment, 189
modulo 2, 200
modulo 4, 200
modulo n, 200
multiply, 201
subtract, 251

integer-type parameter, 289
intensity of spectrum at a point, 40
interactive parameter adjustment (IPA), 98

change fine power, 194
change linear modulator power, 194
change offset frequency, 193
delay specified time, 61, 187
fine power control, 72
pulse decoupler, 65, 186
pulse transmitter, 63, 192, 193, 194

interferograms, 279
interincrement delays, 81
internal hardware delays, 119
internal variables, 76
intertransient delays, 81
int-type variables, 59
iobspulse statement, 63, 192
ioffset statement, 70, 193
IPA, See interactive parameter adjustment (IPA)
ipulse statement, 63, 193
ipwrf statement, 72, 194
ipwrm statement, 72, 194
irgpulse statement, 63, 194
ix variable, 57

J
jexp command, 31

K
keyboard entries recording, 46
keyboard focus to VNMR input window, 47
keyboard input, 41
kill command (UNIX), 269
kinetic analyses, 42

L
largest integral in region, 39
last used parameters text file, 274
latching, on PTS synthesizers, 117



Index

346 VnmrJ 2.2 MI User Programming 01-999379-00  A 0708

length command, 47
length of macros, 38
lib directory, 132
libparam.a object library, 56
libpsglib.a directory, 56, 132
library directory, 132
line frequencies and intensities, 40
line list, 32, 39
linear amplifier systems

power control, 70
power level, 221, 228
stabilization, 64

linear attenuator used for pulse shaping, 112
linear modulator power, 229
linear modulators, 72
lines in a file, 41
linewidth measurement, 39
link loading, 56
lint command (UNIX), 56
Linux

shell, 270
tools, 267

list files in a directory (UNIX), 268
listenoff command, 47
listenon command, 47
listing names of macros, 45
lists

frequency, 148
global, 148, 149
offset, 149

lk_hold statement, 106, 127, 195
lk_sample statement, 106, 127, 195, 197
llamp parameter, 32
llfrq parameter, 32
ln command, 44, 268
loading AP table elements from file, 85, 196
loading AP table statements, 83
loading macros into memory, 26, 45
loadtable statement, 83, 85, 196
local variables, 31, 32, 34
lock correction circuitry, 127

set to hold, 195
set to sample, 195

lock feedback loop, 127
lock level, 48
log directory, 274
log files, 271, 274
logarithm of a number, 44
logical frame, 131
login command, 48
login command (UNIX), 269
login macro, 25, 26, 46
login procedure, 267
logout (UNIX), 269
long-type variables, 59
lookup command, 41
loop

end, 178
multislice end, 178
multislice start, 200
phase-encode end, 179
phase-encode start, 215
start, 196
statements, 131

types, 37
loop statement, 79, 104, 118, 196
low-band nuclei, 65
low-core acquisition variables, 80
lower shell script, 272
low-noise signal, 333
lp command (UNIX), 269
ls command (UNIX), 268

M
maclib directory, 25
maclibpath parameter, 25
macro

automatic execution, 26, 292
calling a macro in a loop, 27
clear system macro, 27
concept, 23
defined, 23
directory, 25
editing, 26
execution, 25
existence test, 46
faster execution, 26
files, 25
loading into memory, 26
output to variables, 26
parsing, 26
passing information, 32
remove from memory, 27
VNMR activation, 48

macro name list, 45
macro parameter, 26
macro tracing, 38
macrocat command, 44, 45
macrocp command, 44
macrodir command, 45
macroedit macro, 26, 45
macrold command, 26, 27, 45
macrorm command, 45
macros.h file, 100
macrosyscat command, 45
macrosyscp command, 45
macrosysdir command, 45
macrosysrm command, 45
macrovi command, 26, 45
magic number, 282
MAGICAL language defined, 23
MAGICAL language features, 27
magradient statement, 197
magradpulse statement, 128, 129, 198
mail command (UNIX), 269
makefid command, 300
man command (UNIX), 269
manual directory, 60
manual entry (UNIX), 269
mark command, 40
MAS rotor, 230
mashapedgradient statement, 129, 198
mashapedgradpulse statement, 199
mathematical expression, 35
mathematical functions, 43
matrix arithmetic, 30
matrix transposition, 279



01-999379-00  A 0708 VnmrJ 2.2 MI User Programming 347

Index

maximum value of parameter, 292
maxpk macro, 37
MAXSTR dimension, 59
mean of data in regression.inp, 42
memory usage by VNMR commands, 280
memory usage statistics, 45
MEMS pulse sequence, 75
memsize parameter (UNIX), 274
menu files, 327
message display with large characters, 40
mf command, 287
mfblk command, 287
mfdata command, 287
mftrace command, 287
micon, 328
microimaging pulse sequences, 127
minimum value of parameter, 292
mixing shapes, 209
mkdir command (UNIX), 268
mlabel, 328
MLEV-16 modulation, 233
mod2 statement, 78, 200
mod4 statement, 78, 200
modn statement, 78, 200
modulation frequency, 233
modulation frequency change delay, 121
modulation mode change delays, 120
modulo 2 integer value, 200
modulo 4 integer value, 200
modulo n integer value, 200
modulo number, 78
move data in FID file, 287
move FID commands, 287
moving files into a directory, 268
MREV-type sequences, 105
msloop statement, 131, 200
mstat command, 45, 280
mstring, 328
mult statement, 78, 201
multidimensional NMR, 122
multiple command separator (UNIX), 268
multiple FID acquisition, 107
multiple trace or arrayed experiments, 279
multiply AP table by second AP table, 254
multiply integer values, 201
multiply integer with AP table elements, 252
multislice loops, 131, 200
multiuser protection, 271
mv command (UNIX), 268

N
n1-n3 parameters, 31
name replacement, 36
name.errors text file, 57
natural logarithm of a number, 44
nested macros, 38
nested multiple hardloops, 106
nf parameter, 107
ni parameter, 77
ni2 parameter, 77
ni3 parameter, 77
nll command, 40
NMR algorithms, 23

NMR language, 23
non-observe pulse, 64
notational conventions, 21
np parameter, 335
nrecords command, 41
nth2D variable, 215
null string, 31, 32
number of arguments, 35
numeric parameter value lookup, 96, 182
numreg command, 40

O
object code, 56
object file, 132
object libraries, 56
obl_gradient statement, 202
obl_shapedgradient statement, 203
oblique gradient, 202
oblique gradient statements, 131
oblique gradient with phase encode in 1 axis, 212, 

216
oblique gradient with phase encode in 2 axes, 212
oblique gradient with phase encode in 3 axes, 213, 

217
oblique shaped gradient with phase encode in 1 axis, 

136, 213, 217
oblique shaped gradient with phase encode in 2 axes, 

214
oblique shaped gradient with phase encode in 3 axes, 

215, 218
oblique_gradient statement, 131, 202
oblique_shapedgradient statement, 203
obs_mf parameter, 74
obsblank statement, 205
OBSch device, 148, 149
observe channel gating, 241
observe transmitter modulation, 233
observe transmitter power, 205
observe transmitter pulse, 62
obsoffset statement, 70, 205
obspower statement, 71, 106, 205
obsprgoff statement, 120, 206
obsprgon statement, 74, 114, 120, 206
obspulse statement, 63, 100, 106, 206
obspwrf statement, 72, 106, 119, 207
obsstepsize statement, 68, 69, 207
obsunblank statement, 207
off command, 48
offset frequency, 155, 193, 205
offset lists, 149
offset macro, 35
offset statement, 69, 101, 106, 119, 208
offset table, 263
on command, 48
one pointer, 77
operating system, 267
operators, 29
oph variable, 77, 107
order of precedence, 29
orientation of image plane, 181
Output boards, 59, 141
output from commands and macros, 26
output to various devices, 42



Index

348 VnmrJ 2.2 MI User Programming 01-999379-00  A 0708

output tools, 40
overhead delays, 131
overhead operations, 82
override internal software AP bus delay, 141

P
package files, 268
page

creating new, 324
defining, 325

panel
creating a new layout, 324
editor, 323
saving and retrieving elements, 325
search path, 326
size, 327

pap command, 297
par2d macro, 123
par3d macro, 123
par4d macro, 123
paramedit command, 290, 294
parameter

attributes, 292
create new parameter, 290
enumerable values, 293
maximum value, 292
minimum value, 292
table, 58
template, 294
trees, 288
typical parameter file, 293
values, 293

parameters
accessing the value, 290
arrayed parameter values, 180
as global variables, 31
as variables, 24
categories, 89
change type, 291
conditional display, 296
display field width, 297
display formats, 297
display values in text window, 41
editing attributes, 290
existence test, 46
get value, 290
global PSG parameters, 89
look up value, 96
plotting automatically, 40
protection bit, 25
protection bits, 291
set up for pulse sequence, 41
spectroscopy imaging sequences, 192
step size, 292
types, 289
user created, 89

parameters retrieved from a parameter file, 48
paramvi command, 290, 292, 294
parent directory (UNIX), 268
parentheses (...) notation, 34
parlib directory, 41
parmax parameter, 292
parmin parameter, 292

parsing macros, 26
parstep parameter, 292
pattern scanning and processing (UNIX), 269
Pbox, 109

mixing shapes, 209
Pbox experiments, 209
pe_gradient statement, 131, 212
pe_shapedgradient statement, 213
pe2_gradient statement, 212
pe2_shapedgradient statement, 214
pe3_gradient statement, 213
pe3_shapedgradient statement, 215
peak command, 24, 26, 40
peak width of solvent resonances, 48
peloop statement, 131, 215
Performa XYZ PFG module, 128
pexpl command, 42
PFG (pulsed field gradient), 128
phase angle, 110
phase calculation, 77
phase carryover, 69
phase control, 77
phase cycle storage, 83
phase cycling, 87
phase encode loops, 131
phase file in the current experiment, 280
phase parameter, 123
phase step size, 250
phase_encode_gradient statement, 131, 216
phase_encode_shapedgradient statement, 217
phase_encode3_gradient statement, 217
phase_encode3_shapedgradient statement, 218
phase1 integer, 123
phase1 variable, 58
phase2 parameter, 123
phase3 parameter, 123
phased 2D data storage, 279
phased spectral information, 274
phased spectrum, 278
phase-encode loop, 179, 215
phasefile file, 274, 278, 279
phase-pulse technique, 219
phase-related statements, 67
phase-sensitive 2D NMR, 123, 277
phaseshift statement, 219
phi angle, 129
phi parameter, 131
pipe, 269
plotif macro, 38
plotting curves, 42
pmode parameter, 274
poffset statement, 131, 220
poffset_list statement, 131, 220
pointer to memory, 76
pointers to constants, 77
poly0 command, 42
polynomial curves, 42
position list, 220, 221
position statements, 131
position_offset statement, 131, 220
position_offset_list statement, 131, 221
position-based frequency, 220
power control statements, 70
power level of shaped pulse, 116



01-999379-00  A 0708 VnmrJ 2.2 MI User Programming 349

Index

power statement, 71, 72, 106, 117, 118, 119, 221
power statements, back-to-back, 71
ppm of solvent resonances, 48
preacquisition and acquisition steps, 60
precedence of operators, 29
presaturation, 71
print files (UNIX), 269
probe damage caution, 72
procdat file, 274
process status (UNIX), 269
processed-type parameter tree, 289
procpar file, 274, 278, 280, 281, 289
procpar3d file, 274
program execution, 24
programmable control of transmitter, 206
programmable control statements, 114
programmable decoupling

ending, 159
starting, 160

programmable phase and amplitude control, 114
programmable pulse modulation, 233
programming

imaging pulse sequences, 127
Performa XYZ PFG module, 127

prompt for user input, 41
propagation delay, 121
protection bits, 25, 291, 292
prune command, 292
ps command (UNIX), 269
psg delay, 71
psg directory, 132
psg macro, 80
psggen shell script, 132
psglib directory, 55
psgset command, 41
psi parameter, 131
PTS synthesizers with latching, 117
pulse

non-observe, 64
pulse channels simultaneously, 241, 242
pulse control, 109
pulse decoupler, 162
pulse decoupler with IPA, 186
pulse decoupler with receiver gating, 164
pulse four channels simultaneously, 242
pulse interval time, 114
pulse observe transmitter, 62
pulse program buffer, 104
pulse routine, 183
pulse sequence control statements, 79
Pulse Sequence Controller board, 141
pulse sequence gated from external event, 264
pulse sequence generation (PSG), 57

directory, 55
statement categories, 61

pulse sequences
compiling, 56
execution control, 77
files, 55
general form, 59
graphical display, 56, 82
imaging, 127
internal hardware delays, 119
object code, 58

object file, 132
parameter set up, 41
programming, 55
synchronization, 108

pulse shape definitions, 109
pulse shaping programming, 109
pulse shaping through AP bus, 112
pulse shaping via AP bus, 118, 142, 143
pulse statement, 63, 100, 106, 222
pulse transmitter with IPA, 192, 193, 194
pulse transmitter with receiver gating, 206, 222, 227
pulse width array, 32
Pulsed Field Gradient module, 125
pulsed field gradient module, 128
pulseinfo macro, 115
pulsesequence function, 58, 80
pulsesequence.o file, 132
pulse-type parameter, 289
pulsing channels simultaneously, 65
pulsing the decoupler transmitter, 64
purge command, 27, 46
pw parameter, 63, 335
pwd command, 269
pwrf statement, 72, 106, 117, 119, 224
pwrm statement, 72, 117, 224
pwsadj macro, 114

Q
quadrature phase, 68
quadrature phase of decoupler, 157, 158
quadrature phase of transmitter, 255
quadrature phase shift, 67
question mark (?) character, 269
quotation mark ("...") notation, 24

R
r1, r2, ... r7 parameters, 31, 32
rcvroff statement, 75, 225
rcvron statement, 75, 225
read parameters from a file, 291
readlk command, 48
readuserap statement, 76
real command, 31
real component of FID data, 277
real number formatting for output, 41
real parameters, 31
real-number arguments, 59
real-time gradient statements, 131
real-time incremental delay, 61, 188
real-time statements, 80
real-time variables, 59, 76, 77, 79, 192
real-type parameter, 289, 291
real-type variables, 31
receiver

default state, 192
gating, 62, 75, 206, 222, 227
phase control, 77
phase cycle, 232
turn off, 227
turn on, 225

receiver gate, 225, 227
receiver overflow warning, 333



Index

350 VnmrJ 2.2 MI User Programming 01-999379-00  A 0708

recoff statement, 227
recon statement, 227
record macro, 46
records in file, 41
rectangular pulse, 116
recursive calls, 25
redefinition warning, 58
reference to statements, 133
reformatting data for processing, 285
reformatting spectra, 287
regions in spectrum, 40
regression analysis, 42, 43
regression.inp file, 42
removing an empty directory (UNIX), 268
removing macros, 45
removing macros from memory, 46
renaming a directory (UNIX), 268
renaming a file (UNIX), 268
repeat, until loop, 37
reserved words, 28
resto parameter, 220
retrieve element from AP table, 86, 180
retrieving individual parameters, 48
return command, 38
Return key, 21
returning a value, 38
reverse a spectrum, 287
reverse FID commands, 287
reverse order of data, 287
reverse single quotes (`...`) notation, 328
rf channels control, 122
RF file suffix, 109
RF monitor errors, 335
rf pattern file, 189
rf pulse shapes, 109
rf pulses waveforms, 109, 110
rf shape file, 110
rfblk command, 287
rfchannel parameter, 63, 122
rfdata command, 287
rftrace command, 287
RG1 and RG2 delays, 62, 64
rgpulse statement, 62, 83, 105, 106, 227
rgradient statement, 120, 126, 127, 128, 228
rinput command, 42
rlpower statement, 228
rlpwrm statement, 72, 117, 230
rm command (UNIX), 268
rmdir command (UNIX), 268
rof1 parameter, 63
rof2 parameter, 63
root directory (UNIX), 268
rot_angle, 230
rotor control statements, 108
rotor period, 108, 230
rotor position, 230
rotorperiod statement, 108, 230
rotorsync statement, 108, 230
RS-232 cable, 333
rsapply command, 287
rt command, 26, 31, 300
rtp command, 26, 31
rtv command, 26, 48
run program in background, 269

run-time statements, 80

S
sample changer

errors, 334
saved display file, 274
scalelimits macro, 42, 43
scalesw parameter, 46
scaling factors for axis, 46
SCSI errors, 335
searching a text file, 41
searching files for a pattern (UNIX), 269
second decoupler

blank associated amplifier, 153
fine power, 163
fine power adjustment, 72
gating, 75
homodecoupler gating, 65
offset frequency, 69, 70, 155
phase control, 68
power adjustment, 71
power level, 158
programmable decoupling, 160, 161
pulse shaping via AP bus, 142
pulse with receiver gating, 165
quadrature phase, 157
shaped pulse, 168
simultaneous pulses, 66
small-angle phase, 152
spin lock waveform control, 170
step size, 172
turn off, 155
turn on, 156
unblank decoupler, 173

select command, 40
semicolon (;) notation, 59
semicolon (;) notation (UNIX), 268
SEMS pulse sequence, 75
send mail to other users (UNIX), 269
send2Vnmr command (UNIX), 47
separators, 30
seqcon parameter, 131, 201
seqgen command, 56, 57, 80
seqgen command (UNIX), 56
seqlib directory, 57, 80
set2d macro, 123
set3dproc command, 274
setautoincrement statement, 86, 232
setdgroup command, 291
setdivnfactor statement, 86, 232
setenumeral command, 289, 291
setgroup command, 291
setlimit command, 31, 291
setprotect command, 291
setreceiver statement, 77, 86, 107, 232
setstatus statement, 74, 120, 121, 233
settable statement, 83, 85, 233
settype command, 291
setuserap statement, 76
setuserpsg shell script, 132
setvalue command, 291, 300
sh2pul macro, 109
shaped gradient, 258



01-999379-00  A 0708 VnmrJ 2.2 MI User Programming 351

Index

pulse generation, 235, 237, 239
variable angle, 257

shaped oblique gradient, 203
shaped pulse

decoupler, 167
delays, 121
information, 115
on transmitter, 234
simultaneous three-pulse, 244
simultaneous two-pulse, 243
time truncation error, 115
using attenuators, 116
waveform generator control, 112

shaped two-pulse experiment, 109
shaped_pulse statement, 112, 118, 120, 235
shaped2Dgradient statement, 237
shapedgradient statement, 127, 131, 235
shapedincgradient statement, 131, 238
shapedvgradient statement, 131, 239
shapelib directory, 109, 142, 235
shell command, 48, 270, 271
shell programming, Linux and Unix, 272
shell scripts, 272
shimming

errors, 334
short-type variables, 59
signal-to-noise measurement, 39
sim3pulse statement, 66, 106, 242
sim3shaped_pulse statement, 113, 120, 244
sim4pulse statement, 66, 242
simpulse statement, 65, 106, 241
simshaped_pulse statement, 120, 243
simultaneous gradient, 197
simultaneous pulses, 65, 66
simultaneous shaped gradient, 198
simultaneous shaped gradient pulse, 199
sin command, 44
sine value of angle, 44
single period notation (UNIX), 268
single quotes ('...') notation, 25, 28
size operator, 29, 32
SLI board, 245
SLI lines

setting lines, 245
sli statement, 130, 245
slider action, 103
SLIDER_LABEL attribute, 99, 102
small-angle phase increment, 68
small-angle phase of decoupler, 151, 152, 153
small-angle phase of transmitter, 265
small-angle phase shifts, 67
small-angle phase step size, 250
sn file, 274
soft loop, 104, 118
solppm command, 48
solvent resonances, 48
sort command (UNIX), 268
sort files (UNIX), 268
source code, 55, 132
sp#off statement, 75, 246
sp#on statement, 75, 247
SPARE 1 connector, 75
spare line gating, 246, 247
spare lines, 75

spectral analysis tools, 39
spectrometer control statements, 61
spectrometer differences, 55
spectroscopy imaging sequences, 192
spectrum gap, 47
spectrum intensity at a point, 40
spectrum selection without display, 40
spell command (UNIX), 269
spelling errors check (UNIX), 269
spin lock control on transmitter, 247
spin lock control statements, 115
spin lock waveform control on decoupler, 170
spinlock statement, 115, 120, 247
spinner errors, 333
sqrt operator, 29
square brackets ([...]) notation, 32
square brackets notation, 297
square root, 29
square wave modulation, 233
squish, 327
ss parameter, 77, 80
ssctr real-time variable, 77, 80
ssval real-time variable, 77, 80
standard data format, 286
standard deviation of input, 43
standard PSG variables, 58
standard.h file, 58, 100
start loop, 196
starthardloop statement, 104, 248
status of transmitter or decoupler, 233
status statement, 73, 82, 106, 120, 121, 248
statusdelay statement, 74, 82
steady-state phase cycling, 81
steady-state pulses, 80
step size

decoupler, 171
parameters, 292
transmitter, 207

steps in shaped pulse, 116
stepsize statement, 151, 250
store array in AP table, 85
stored format of a parameter, 292
storing multiple traces, 279
string command, 31
string constant, 28
string formatting for output, 41
string length, 47
string parameter value lookup, 96, 182
string parameters, 31
string template, 294
string variables, 31
strings displayed in text window, 41
string-type parameter, 289, 291
sub statement, 78, 251
substr command, 49
substring from a string, 49
subtract AP table from second AP table, 254
subtract integer from AP table elements, 253
subtract integer values, 251
sum of integer values, 141
sum-to-memory error, 335
svfdf macro, 285
svib macro, 284
svsis macro, 285



Index

352 VnmrJ 2.2 MI User Programming 01-999379-00  A 0708

swapping rf channels, 63
swept-square wave modulation, 233
synchronization of a pulse sequence, 108
synchronous decoupling, 233
Synchronous Line Interface (SLI) board, 245
sysgcoil parameter, 128
sysmaclibpath parameter, 25
system identification, 269
system macro, 45
system macro library, 25
systemglobal-type parameter tree, 289

T
T1 analyses, 42
t1–t60 table names, 84
T2 analyses, 42
T2PUL pulse sequence, 87
tabc command, 287
table names, 84
table of delays, 146
table of frequencies, 148
table of frequency offsets, 148
tablib directory, 83
tail command (UNIX), 269
tallest peak in region, 40
tan command, 44
tangent value of angle, 44
tape backup (UNIX), 268
tar command (UNIX), 268
tcapply command, 287
template parameters, 294
temporary variables, 24, 28, 31, 32
terminating a calling macro, 38
terminating zero, 98
test4acq procedure, 67
text display status, 49
text file, 274
text file lookup, 41
text format files, 273
textedit command (UNIX), 269, 270
textis command, 49
thermal shutdown, 63
theta angle, 129
theta parameter, 131
third decoupler

blank associated amplifier, 154
fine power, 163
fine power adjustment, 72
gating, 75
homodecoupler gating, 65
offset frequency, 69, 70, 155
phase control, 68
power adjustment, 71
power level, 159
programmable decoupling, 160, 161
pulse with receiver gating, 166
quadrature phase, 157
shaped pulse, 169
simultaneous pulses, 66
small-angle phase, 153
spin lock waveform control, 171
step size, 172
turn off, 155

turn on, 157
unblank amplifier, 173

three pointer, 77
three-pulse pulse, 66
three-pulse shaped pulse, 113, 244
tilde character notation (display templates), 297
tilde character notation (UNIX), 268
time increments, 59
time-sharing pulse shaping, 116
timing in a pulse sequence, 82
tip angle, 111
TODEV constant, 63
tof parameter, 69
token defined, 28
toolbar, editing, 327
total weighting vector, 298
TPPI experiments, 124
TPPI phase increments, 58
tpwr parameter, 72, 118
transformations of FDF data files, 284
transformed complex spectrum storage file, 274
transformed phased spectrum storage file, 274
transformed spectra storage files, 273
transient blocks, 77
transmitter

blanking, 205
fine power, 207, 224, 229
fine power adjustment, 72
fine power with IPA, 194
gating, 74, 111, 264
hardware control of phase, 68
linear modulator power, 224, 229
linear modulator power with IPA, 194
offset frequency, 69, 205, 208
phase control, 67, 68
power adjustment, 71
power level, 205, 222, 229
programmable control, 114, 206
pulse shaping via AP bus, 143
pulse with IPA, 192, 193, 194
pulse with receiver gating, 206, 222, 227
pulse-related statements, 62
quadrature phase, 255
set status, 233
shaped pulse, 112, 234
simultaneous pulses, 65
small-angle phase, 265
small-angle phase step size, 250
spin lock control, 115, 247
step size, 207
unblank, 207

troubleshooting
acquisition status codes, 60

troubleshooting a new sequence, 57
TRUE Boolean value, 35
trunc operator, 29
truncate real number, 29
tsadd statement, 86, 252
tsdiv statement, 86, 252
tsmult statement, 86, 252
tssub statement, 86, 253
ttadd statement, 86, 87, 253
ttdiv statement, 86, 254
ttmult statement, 86, 254



01-999379-00  A 0708 VnmrJ 2.2 MI User Programming 353

Index

ttsub statement, 86, 254
two attenuators system, 118
two periods notation (UNIX), 268
two pointer, 77
two-pulse pulse, 66
two-pulse sequence T2PUL, 87
two-pulse shaped pulse, 113, 243, 244
txphase statement, 67, 69, 106, 255, 257
type of parameter, 291
typeof operator, 29, 36
types of parameters, 289, 292

U
U+ H1 Only label, 122
uname command (UNIX), 269
unblank amplifier, 75, 172
underline prefix, 25
uniform excitation, 71
uninitialized variable, 58
unit command, 49
units command (UNIX), 269
UNIX

commands, 267
file names, 268
shell, 270
shell startup, 48
text commands, 269

updtgcoil macro, 128
user AP lines, 76
user AP register, 226, 234, 263
user library, 56, 118
user macro, 44
user macro directory, 25
user-created parameters, 89
user-customized pulse sequence generation, 132
user-written weighting function, 297

V
v1, v2, ... v14 real-time variables, 59, 77
vagradient statement, 256
vagradpulse statement, 128, 129, 256
values of a parameter, 293
variable angle gradient, 256
variable angle gradient pulse, 256
variable angle shaped gradient, 257
variable angle shaped gradient pulse, 258
variable declaration, 32, 59
variable gradient pulse generation, 238
variable shaped gradient pulse generation, 239
variable types, 31
variables using parameters, 24
vashapedgradient statement, 129, 257
vashapedgradpulse statement, 129, 258
vbg shell script (UNIX), 271
vdelay statement, 61, 259
vdelay_list statement, 131, 260
vertical bar notation (UNIX), 269
vfreq statement, 131, 261
vgradient statement, 120, 126, 131, 261
vi command (Linux and UNIX), 270
vi command (UNIX), 269
vi command (VNMR), 270

vi text editor, 290
VNMR

macros executed at startup, 46, 48
source code license, 275

Vnmr command (UNIX), 270
VNMR Command and Parameter Reference manual, 

24
vnmreditor variable (UNIX), 27
VnmrJ

background processing, 271
vnmrsys directory, 25, 57
voffset statement, 131, 263
vsadj macro, 24
vsetuserap statement, 76
vsli statement, 130
vsmult macro, 35
VT errors, 333
vttime parameter, 333

W
w command, 270
w command (UNIX), 269
WALTZ decoupling, 67
WALTZ-16 modulation, 233
warning error codes, 333
warning messages, 57
waveform generation, 233
waveform generator control, 112, 115
waveform generator delays, 121
waveform generator gate, 111
waveform initialization statements, 132
waveform resolution, VnmrS systems, 109, 131
wbs command, 60
weighting function, 278, 297, 298
werr command, 60
wexp command, 60
WFG_OFFSET_DELAY macro, 121
WFG2_OFFSET_DELAY macro, 121
WFG3_OFFSET_DELAY macro, 121
which macro, 25
while, do, endwhile loop, 37
who is on the system (UNIX), 269
wildcard character (UNIX), 269
wnt command, 60
working directory (UNIX), 268
write command, 42
writing parameter buffers into disk files, 274
wtcalc function, 298
wtf file extension, 298
wtfile parameter, 297, 299
wtfile1 parameter, 297
wtfile2 parameter, 297
wtgen shell script, 298, 299
wti command, 298
wtlib directory, 298, 299
wtp file extension, 298

X
xgate statement, 108, 264
xmtroff statement, 74, 264
xmtron statement, 74, 264
xmtrphase statement, 68, 69, 106, 119, 265



Index

354 VnmrJ 2.2 MI User Programming 01-999379-00  A 0708

XY32 modulation, 233

Z
z channel gradient pulse, 266
zero acquired data table, 106
zero all gradients, 265
zero data in acquisition processor memory, 146
zero fill data, 278
zero pointer, 77
zero_all_gradients statement, 265
zgradpulse statement, 120, 127, 128, 266
zip, 268


	Online Menu
	---------
	Overview of Contents
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Chapter 1. MAGICAL II Programming
	1.1 Working with Macros
	1.2 Programming with MAGICAL
	1.3 Relevant VnmrJ Commands

	Chapter 2. Pulse Sequence Programming
	2.1 Application Type and Execpars Programming
	2.2 Overview of Pulse Sequence Programming
	2.3 Spectrometer Control
	2.4 Pulse Sequence Statements: Phase and Sequence Control
	2.5 Real-Time AP Tables
	2.6 Accessing Parameters
	2.7 Using Interactive Parameter Adjustment
	2.8 Hardware Looping and Explicit Acquisition
	2.9 Pulse Sequence Synchronization
	2.10 Pulse Shaping
	2.11 Shaped Pulses Using Attenuators
	2.12 Internal Hardware Delays
	2.13 Indirect Detection on Fixed-Frequency Channel
	2.14 Multidimensional NMR
	2.15 Gradient Control for PFG and Imaging
	2.16 Programming the Performa XYZ PFG Module
	2.17 Imaging-Related Statements
	2.18 User-Customized Pulse Sequence Generation

	Chapter 3. Pulse Sequence Statement Reference
	A
	B
	C
	D
	E
	G
	H
	I
	L
	M
	O
	P
	R
	S
	T
	V
	W
	X
	Z

	Chapter 4. Linux Level Programming
	4.1 Linux and VnmrJ
	4.2 Linux Reference Guide
	4.3 Linux Commands Accessible from VnmrJ
	4.4 Background VNMR
	4.5 Shell Programming

	Chapter 5. Parameters and Data
	5.1 VnmrJ Data Files
	5.2 FDF (Flexible Data Format) Files
	5.3 Reformatting Data for Processing
	5.4 Creating and Modifying Parameters
	5.5 Modifying Parameter Displays in VNMR
	5.6 User-Written Weighting Functions
	5.7 User-Written FID Files

	Chapter 6. Panels, Toolbars, and Menus
	6.1 Parameter Panel Features
	6.2 Using the Panel Editor
	6.3 Panel Elements
	6.4 Creating a New Panel
	6.5 Graphical Toolbar Menus

	Appendix A. Status Codes
	Index

