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Second-order quadrupole effects on Hahn echoes in fast-rotating solids at the magic angle

Pascal P. Man
Laboratoire de Chimie des Surfaces, CNRS URA 1428, Universite´ Pierre et Marie Curie, 4 Place Jussieu, Tour 55,
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~Received 5 August 1996!

In solid-state NMR, knowledge of the quadrupole coupling constant and the asymmetry parameter from a
powder spectrum allows the determination of the true chemical shift of a line, which can be correlated with the
mean bond angle. However, broad powder patterns are distorted by the dead time of the receiver. The common
way to recover the lost signals is to apply a Hahn echo sequence. As the quadrupole interaction is a single-spin
multiple-energy level interaction, the effects of multiple-quantum~MQ! transitions during the Hahn echo
sequence are still not well understood. We apply the density-operator approach, combined with the order of
coherence description, to predicting the echo locations of half-integer quadrupole spins~I5 3

2,
5
2,

7
2, and

9
2! in a

single crystal, the amplitudes of the echoes, and the excitation conditions for obtaining quantitative results on
the spin population ratio. For these purposes, the expression of the MQ transition frequency or line shift is
derived. Between the two pulses and during the detection period, the rotation of the crystal at the magic angle
dramatically reduces the homonuclear magnetic-dipole interaction and completely removes anisotropic spectral
broadening due to the heteronuclear magnetic-dipole and the first-order quadrupole interactions; the spin
system is submitted to the true isotropic chemical shift and the second-order quadrupole interactions only
during these two periods. We treat in a unified way the Hahn echoes@including those involved in MQ-magic-
angle spinning methodology# of the central transition representing the refocusing of single-quantum and MQ
on-resonance coherences generated by the first pulse. During the pulses the crystal is assumed to be static and
only the first-order quadrupole inteaction is considered; the echo amplitudes representing the refocusing of MQ
coherences do not provide us with quantitative results on the spin population ratio. Only that associated with
the refocusing of 1Q coherence gives quantitative results when the two pulse durations are short. Application
to powders requires high-speed computer averaging of the echo amplitude versus one of the two pulse dura-
tions to extract the quadrupole parameters.@S0163-1829~97!00714-5#
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I. INTRODUCTION

Quadrupole nuclei with a half-integer spin larger than1
2

~I53
2,

5
2,

7
2, and

9
2! possess a quadrupole momentQ, which

interacts with the electric-field gradient~EFG! generated by
their surroundings.1–4 The coupling ofQ ~a property of the
nucleus! with an EFG~a property of the sample! is called the
quadrupole interactionHQ . The present paper deals with th
case whereHQ behaves as a weak perturbation of the Z
man interactionHz52v0I z with v05gB0, the coupling be-
tween the nuclear spinI and the external strong static ma
netic field B0. As a result, only the first two perturbatio
terms ofHQ are considered:~i! the first-order quadrupole
interactionH Q

(1), which is independent ofB0, and ~ii ! the
second-order quadrupole interactionH Q

(2), which is inversely
proportional toB0. Quadrupole nuclei are extensively us
to probe static and dynamic microscopic phenomena acc
panying reversible phase transitions in solids.5,6

The NMR line shape of a quadrupole nucleus depends
the sample~single crystal or powder! and the strength ofHQ .
The spectrum of a crystal consists of a central line, wh
position is not affected byH Q

(1) and 2I21 satellite lines,
whose splittings depend onH Q

(1). These lines are all shifted
by H Q

(2). In most cases, the sample is a powder and its p
der pattern provides us, via line-shape analysis,
parameters—the quadrupole coupling constante2qQ/h and
the asymmetry parameterh. These two parameters allow u
to determine the true isotropic chemical shiftdCS of a line,
550163-1829/97/55~13!/8406~19!/$10.00
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which is related to the mean bond angle in a compound7,8

Sometimes spectra obtained with several magnetic fieldsB0
are required for the line-shape analysis. The powder pat
of all the lines will be observed ifH Q

(1) is the dominant
interaction with a smalle2qQ/h value. For example,
e2qQ/h5118 kHz for27Al ~I55

2! in AlCl336H2O; the cen-
tral line is a symmetrical narrow line superimposed on
symmetrical broad powder pattern of the satellite lines.9 For
strongere2qQ/h values, the satellite-line powder pattern
difficult to detect. But rotating the sample at the magic an
um with a high spinning rate makes possible the detection
spinning sidebands of satellite lines, whose envelope
nearly identical to the powder pattern of a static sample10

WhenH Q
(2) becomes large, the powder pattern of the cen

line is mainly observed, that of the satellite lines bei
smeared out over a MHz range. Broad powder patterns
distorted by the dead time of the receiver of a spectrome
The common way to overcome this problem is to apply
Hahn echo sequence to recover the powder pattern of
central line9,11,12or that of all the lines ife2qQ/h is not too
large.13 However, the setup of experimental conditions~du-
rations, amplitudes, and phases of the two pulses, rece
phase, interpulse delay, and location of echoes! to excite the
spin system becomes acute. Missetting one of these pa
eters can prevent the observation of echoes. For insta
when the interpulse delay is shorter than the duration of
free-induction decay~FID! following the second pulse, the
echoes are masked by this FID. In contrast, when the in
8406 © 1997 The American Physical Society
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55 8407SECOND-ORDER QUADRUPOLE EFFECTS ON HAHN . . .
pulse delay becomes much longer, the echo amplitudes
considerably reduced by spin-spin relaxation phenomena

As HQ is a single-spin multiple-energy level interactio
multiple-quantum~MQ! transitions between two noncon
secutive energy levels as well as single-quantum~SQ! tran-
sitions occur simultaneously during the radio-frequency~rf!
pulses. Fortunately, the shift of the energy levels from th
of the Zeeman interaction is only affected by the inter
spin HamiltonianH of the sample. In other words, the tra
sitions between the energy levels of the spin system are
trolled by both the pulse andH. On the other hand, the spi
system evolves underH solely between the pulses and du
ing the detection period. Therefore, the presence or the
sence of pulses has a different effect on the evolution of
spin system. In the absence of pulses, one is dealing
transition frequencies between energy levels related to
positions, line shifts, and line shapes in the frequency
main. The frequency-domain studies are dominated
static11,14–18or mechanical rotation of the sample, name
magic-angle spinning~MAS!,19–24 variable-angle spinning
~VAS!,25–27 dynamic-angle spinning~DAS!,28–32 or double
rotation~DOR!.30–33In the presence of pulses, one is deali
with signal intensities, locations, and amplitudes of echoe
the time domain. Both aspects are present when the
dynamics throughout the Hahn echo sequence are desc
by the density operatorr.34–36When the latter is expresse
as a matrix in the eigenstates ofI z @see Eq.~56!#, the matrix
elementsrr ,c are referred to by two half-integer magnet
numbersr andc for row and column. The elementsrr ,r of
the main diagonal are polarizations, those of the other d
onal rr ,2r are on-resonance coherences, and the remai
elements are off-resonance coherences. An elementrr ,c is
also called an (r2c)Q coherence. The MQ transition effec
during the Hahn echo sequence are still not well understo

The fact that the quadrupole interaction can be mu
larger than the amplitudevrf of the pulses has several impl
cations, namely, the spin dynamics during the pulses ca
be described by a vector model of the magnetization in
rotating frameSobs of the rf magnetic fieldB1~5vrf/g!. Ex-
plicit calculation of the density operator taking into accou
H Q

(1) during the pulses is required. For example, the o
pulse experiment generates SQ as well as MQ transiti
but an rf coil can only detect61Q coherences, which carr
the same information. By convention the21Q coherences
have been chosen. As a result, the one-pulse experiment
not monitor the effects of MQ transitions: When the phase
the pulse is shifted bye, an (r2c)Q coherence undergoes a
apparent phase change of (r2c)«, except for the polariza-
tions, which remain unchanged.37–40 Analytical expressions
of (r2c)Q coherences forI53

2 ~Refs. 41–45!, 5
2 ~Refs. 46

and 47!, and 7
2 ~Refs. 48 and 49! are available; those forI

59
2 require numerical calculations.
In the case of a spinI5 1

2 system, when the excitation o
the spin system occurs after the spin system has rea
thermodynamic equilibrium, it is well established that t
relative intensity~integrated area of an absorption line! ratio
of two lines in a spectrum is directly related to the relati
proportion of the two site populations of the sample, wh
ever the pulse duration. We mean that the line intensity r
quantitatively describes the spin population ratio. For ha
integer quadrupole spins, consideration ofH Q

(1) during the
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pulse in the one-pulse experiment also points out the imp
tance of pulse duration on line intensity. The first maximu
of the central-line intensity as well as the associated pu
duration decrease, but both reach limiting values when
strength ofH Q

(1) increases.50,51 The p/2- andp-pulse dura-
tions are not related except in two extreme cases whereH Q

(1)

is either much stronger or much smaller thanvrf .
52–56 Fur-

thermore, only a short pulse duration generates a central
powder pattern, in agreement with that predicted by
transition-frequency calculations. Moreover, the line inte
sity is proportional to the number of spins andindependent
of the quadrupole couplingvQ .

21,53,55As a result, the line
intensity ratio is a quantitative measurement of the s
population ratio if the pulse duration is short. Longer pu
durations change the line intensities, and thus the spin po
lation ratio; in the worse case they also distort the li
shape.52,53

As the one-pulse experiment cannot monitor the M
transition effects, a two-pulse sequence such
spin-lock,40,45,57–59rotary-echo,47,60,61two pulses with a short
interpulse delay,44,61–64 Solomon echo65–70 or Hahn
echo9,13,71sequences at least is required to detect the oc
rence of MQ transitions during the first pulse. The seco
pulse converts polarizations and coherences generated b
first pulse to21Q coherences detectable by an rf coil. Th
conversion function has been derived for Solom
echoes66,70and Hahn echoes71 for static crystals. The genera
approach to determining this function for a particular s
quence remains to be discovered.

The present paper deals with the Hahn echoes of h
integer quadrupole spins, more particularly their locations
the detection period, and the excitation conditions for obta
ing quantitative results on the spin population ratio. W
choose to investigate the response of a single crystal. Ap
cation to polycrystalline samples requires high-speed co
puter averaging of the crystal response over all of its poss
orientations.64 In fact, the interactions considered betwe
the two pulses and during the detection period determine
echo locations. For example, when the secular part of
heteronuclear magnetic-dipole interactionFI z , whose ex-
pression is similar to that of the inhomogeneity ofB0 as in
the original paper of Hahn,72 is considered during these tw
periods,H Q

(1) being present throughout the experiment, t
two interactionsH Q

(1) and FI z between the two pulse
dephase all the coherences generated by the first pulse.
they refocus these coherences, via the second pulse, as
oes of the central and satellite transitions in the detec
period. These echoes are located at odd numbers of th
terpulse delay, which is about the durationTFID of the free-
induction decay of the central transition. Only the centr
transition echo, representing the refocusing of the 1Q
central-transition coherence generated by the first pulse,
vides us with quantitative results on the spin population ra
if both pulse durations are short.71 However, the homo-
nuclear magnetic-dipole interactionHD(I2I )—a many identi-
cal spin interaction—should be much smaller thanFI z ,
since its effects on the echoes are not well known. Up
now, the magnetic fieldB0 is not strong enough to allow u
to give up the investigation of the effects ofH Q

(2) on Hahn
echoes. Only some papers deal with this problem.73 Mainly
the central-transition echo was investigated74 and in the
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selective-excitation condition.75

Recently, Frydmanet al.76,77 applied the concept of MQ
spectroscopy to half-integer quadrupole spins submitted
H Q

(1), H Q
(2), and the true isotropic chemical shift Hamiltonia

HCSand rotating atum ~MQ-MAS!. They showed that a two
dimensional~2D! high-resolution SQ-MQ correlation spec
trum which is as good as that provided by the DAS meth
can be obtained. Furthermore, the two chemical shifts o
peak along the two axes of the 2D spectrum allow us
calculate the values ofe2qQ/h andh unambiguously. Rotat-
ing the sample atum with a high spinning rate reduce
HD(I -I ) considerably and cancels the anisotropic broaden
effects produced byFI z andH Q

(1), which makes possible th
investigation of the effects ofH Q

(2)1HCS. The MQ-MAS
approach77–79 also applies a two-pulse sequence but with
complex phase cycling depending on the selected MQ co
ences. Phase cycling the first pulse and the receiver allow
to select one particular pair of6(r2c)Q coherences, which
are converted to21Q coherences by the second pulse. T
central-transition echoes, representing the refocusing of
23Q coherence in a spinI53

2 system or the25Q coherence
in a spinI5 5

2 system, are located at unusual positions in
detection period. As long as the spinning rate of the ro
exceeds the central-transition linewidth of the static sam
synchronization of acquisition with sample rotation is n
required. Indeed, none of the authors applying the two-pu
MQ-MAS approach, which regularly increments the del
between the two pulses to generate a series of files, has
tioned this experimental condition.78–81However, this point
remains to be checked experimentally. Of course, in o
dimensional~1D! NMR, it is harmless if this synchronizatio
is realized, which ensures that the echo is completely re
cused and no additional rotational artifacts are introduce82

We treat in a unified way the central-transition Hahn e
oes representing the refocusing of on-resonance~SQ or MQ!
coherencesrr ,2r , generated by the first pulse. The paper
organized as follows: In Sec. II A, the expression ofHQ for
a free nucleus in the absence ofB0 is derived using the
spherical tensor notation, which allows us to describeHQ
from one coordinate frame to another using the Wigner
tation matrices. In Sec. II B, the expressions ofH Q

(1) and
H Q

(2) of a nucleus in the presence ofB0 are derived using the
Magnus expansion. Then the second-rank spherical ten
are expressed as fourth-rank ones using the Clebsch-Go
or Wigner coefficients. These expressions are used in
II C to derive the MQ transition frequencies in the laborato
frame or the MQ line shifts relative tov0 for a static crystal
and a crystal rotating at an arbitrary angle with respect toB0.
For this purpose, the reduced Wigner rotation matrix of ra
four is established. In Sec. II D are performed time-dom
calculations. The crystal is assumed to rotate atum with a
high spinning rate. As the anisotropic broadening influen
by the first-order quadrupole interaction is suppressed by
rotation, onlyH Q

(2) andHCS are considered between the tw
pulses and during the detection period. The density-oper
approach, combined with the order of coherence descript
is used to predict the echo locations of a spinI5 3

2 system.
For the spinsI5 5

2,
7
2, and

9
2, the echo locations including

those involved in the MQ-MAS methodology are given. O
the other hand, a numerical procedure for calculating
conversion functions or the echo amplitudes in the appro
to
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mation of a static crystal during the pulses is proposed.
simplicity, only H Q

(1) is considered during the pulses. Th
results show that only the echo amplitudes representing
refocusing of the 1Q on-resonance coherencer1/2,21/2 gener-
ated by the first pulse provide us with quantitative results
the spin population ratio.

II. THEORY

A. Hamiltonian of the quadrupole interaction
for a free nucleus in a uniform space

For simplicity, the Hamiltonians are expressed in angu
frequency units. Consider a free nucleus in a uniform spa
that is, the three coordinate axesx, y, andz are equivalent.
The Hamiltonian representing the quadrupole interactionHQ
of this nucleus, independent of the Cartesian coordin
frameS, is defined by1,2,4

\HQ5
eQ

6I ~2I21! (
k,j5x,y,z

Vkj@
3
2 ~ I kI j1I jI k!

2dkjI ~ I11!#, ~1!

with Vkj5(]2U/]k]j) r50. dkj is the Kronecker delta sym
bol, U is the electrostatic potential at the origin~inside the
nucleus! generated by external charges, andVkj are the Car-
tesian components of the EFG at the originV which is a
second-rank symmetrical tensor. In the principal axis sys
SPAS of the EFG,V is diagonal,

V5S VXX

0
0

0
VYY

0

0
0
VZZ

D , ~2!

with the convention:uVZZu>uVYYu>uVXXu. Furthermore, the
Laplace equationVXX1VYY1VZZ50 holds forV, because
the electric field at the nucleus is produced by char
wholly external to the nucleus. Thus, only two independ
parameters are required,

eq5VZZ , ~3!

h5
VXX2VYY

VZZ
, ~4!

the largest component and the asymmetry parameter, res
tively, with 1>h>0.

In the coordinate frameSPAS, the Cartesian tensor repre
sentation of the quadrupole interaction@Eq. ~1!# takes the
form2

\HQ5
e2qQ

4I ~2I21!
@3I Z

22I ~ I11!1h~ I X
22I Y

2 !#. ~5!

In term of the operators

I15I X1 i I Y , I25I X2 i I Y , ~6!

Eq. ~5! becomes1

\HQ5
e2qQ

4I ~2I21!
@3I Z

22I ~ I11!1 1
2h~ I1

2 1I2
2 !#. ~7!
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The passage from one coordinate frame to another is m
conveniently realized if the quadrupole interaction of a fr
nucleus is expressed as a second-rank irreducible sphe
tensor:3,83

HQ5NQ (
u522

2

~21!uV2,2uK
~2,u!, ~8a!

NQ5
eQ

2I ~2I21!\
. ~8b!

In any Cartesian coordinate frameS, the spherical tensor an
Cartesian tensor components ofV are related by3,39,83,84

V2,05
1
2A6Vzz, V2,152Vxz2 iVyz , V2,215Vxz2 iVyz ,

V2,25
1
2 ~Vxx2Vyy!1 iVxy , V2,225

1

2
~Vxx2Vyy!2 iVxy ,

~9!

and those ofK as83,85–87

K ~2,0!5 1
6A6@3I z

22I ~ I11!#,

K ~2,1!52 1
2 ~ I zI11I1I z!52 1

2 I1~2I z11!,

K ~2,21!5 1
2 ~ I zI21I2I z!5 1

2 I2~2I z21!,

K ~2,2!5 1
2 I1I1 , K ~2,22!5 1

2 I2I2 , ~10!

with I15I x1 i I y and I25I x2 i I y . These two operators ar
different from those of Eq.~6! despite the same notation. It
worth noting that the numerical factors in the components
V andK @Eqs. ~9! and ~10!# depend on the authors. Usin
Eqs. ~8!–~10!, the spherical tensor representation of t
quadrupole interaction in the coordinate frameS becomes

HQ5NQ$ 1
6A6@3I z

22I ~ I11!#V2,01
1
2 ~ I zI11I1I z!V2,21

2 1
2 ~ I zI21I2I z!V2,11

1
2 I1

2 V2,221
1
2 I2

2 V2,2%. ~11!

Expressing Eq.~11! in SPAS and comparing the result with
Eq. ~7! yield the spherical tensor components ofV in SPAS,

V2,0
PAS5 1

2A6eq, V2,61
PAS 50, V2,62

PAS 5 1
2eqh. ~12!

Sometimes, the opposite convention forh is
taken14,27,28,88,89

h5
VYY2VXX

VZZ
, ~13!

associated with the conditionuVZZu>uVXXu>uVYY. As a re-
sult, a negative sign appears in front ofh in Eqs.~5! and~7!
and in subsequent expressions containingh. In particular, the
spherical tensor components ofV in SPAS are24,88,90

V2,0
PAS5 1

2A6eq, V2,61
PAS 50, V2,62

PAS 52 1
2eqh. ~14!

In the remainder of the paper, we use the first definition oh,
Eq. ~4!.
re
e
cal

f

B. Hamiltonian of the quadrupole interaction
for a nucleus in a strong static magnetic field B0

The present paper deals with the case whereHQ can be
treated as a weak perturbation of the Zeeman interaction.
then more convenient to express interactions in the fra
Sobs rotating relative to the laboratory frameSlab with the
angular frequencyv0. Thus the spherical tensor represen
tion of HQ expressed by Eq.~8a! becomes time
dependent3,31,53

HQ~ t !5exp~ iH zt !HQ exp~2 iH zt !

5NQ (
u522

2

~21!uV2,2uK
~2,u! exp~2 iuv0t !.

~15!

As the oscillations generated by the terms exp~2iuv0t! are
very fast, we can consider only the averaged value^HQ(t)&
of HQ(t) over one Larmor periodtL52p/v0 up to first order,
using the Magnus expansion19,53

HQ05
1

tL
E
0

tL
HQ~ t !dt5NQV2,0K

~2,0!, ~16!

HQ152
i

2tL
E
0

tL
dtE

0

t

dt8@HQ~ t !,HQ~ t8!#

52
NQ
2

v0
(
uÞ0

1

u
$ 1
2V2,uV2,2u@K

~2,u!,K ~2,2u!#

1~21!uV2,0V2,2u@K
~2,0!,K ~2,u!#%. ~17!

This averaging makes the quadrupole interactionHQ(t) time
independent:^HQ(t)&5HQ01HQ1. Equation ~17! differs
slightly with that of Sunet al.31 Developing the commutator
of operators in Eq.~17! yields19

HQ152
NQ
2

v0
$ 1
4A6V2,0V2,21I1~2I z11!2

2 1
4A6V2,0V2,1I2~2I z21!21 1

2A6V2,0V2,22I1
2

3~ I z11!1 1
2A6V2,0V2,2I2

2 ~ I z21!1 1
2V2,21V2,1I z

3@4I ~ I11!28I z
221#1 1

2V2,22V2,2I z

3@2I ~ I11!22I z
221#%. ~18!

Usually, only the terms ofHQ1 that commute withI z are
considered. With this simplification,HQ0 and HQ1 are
equivalent to the first-orderH Q

(1) and the second-order term
H Q

(2) in the standard perturbation theory, respectively,19,25,27

HQ
~1!5HQ05NQ

1
6A6@3I z

22I ~ I11!#V2,0 , ~19!

HQ
~2!5HQ152

NQ
2

v0
$ 1
2V2,21V2,1@4I ~ I11!28I z

221#

1 1
2V2,22V2,2@2I ~ I11!22I z

221#%I z .

~20!
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FIG. 1. j 15 j 252, Clebsch-Gordan~Ref. 92! or Wigner coefficientŝ j 1 j 2m1m2uJM&, which can be calculated with theMATHEMATICA
function Clebsch Gordan@$ j 1 ,m1%, $ j 2 ,m2%, $J, M %#. Reading down one column in the table gives the coefficients in the expan
WJ,M5(m1m2

^ j 1 j 2m1m2uJM&Vj 1 ,m1
Vj 2 ,m2

, and reading across one row gives the coefficients inVj 1 ,m1
Vj 2 ,m2

5(J,M^ j 1 j 2m1m2uJM&WJ,M . In fact nine tables are shown.
on
o

-

r
c

a-

ch
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ch-
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Equations~19! and ~20!, derived in the rotating frameSobs,
are unchanged in the laboratory frameSlab. This is because
they commute with the Zeeman interaction. From now
we shall use the language of standard perturbation the
The first-order quadrupole interactionH Q

(1) is independent of
v0 and is an even function ofI z . In contrast, the second
order quadrupole interactionH Q

(2) is inversely proportional
to v0 and is an odd function ofI z as the heteronuclea
magnetic-dipole interactionFI z . Therefore, a strong stati
magnetic field is required to reduce the effects ofH Q

(2).
Equation~20! can be rewritten with commutators of oper
tors as32,91

HQ
~2!52

NQ
2

v0
$V2,1V2,21@K

~2,1!,K ~2,21!#

1 1
2V2,2V2,22@K

~2,2!,K ~2,22!#%. ~21!

The two sets of direct products of the spin~K ! and the EFG
~V! second-rank irreducible tensors appearing in Eq.~21! can
be expressed as the spin~L ! and the EFG~W! spherical
tensors of higher rank, respectively, using the Clebs
Gordan or Wigner coefficients92 reported in Fig. 1~Refs. 33
and 93!,

HQ
~2!52

NQ
2

v0
$ 1
70A7W4,0~17L

~3,0!26L ~1,0!!

1 1
35A35W2,0~3L

~3,0!1L ~1,0!!

2 1
10&W0,0~3L

~3,0!24L ~1,0!!%. ~22!
,
ry.

-

These coefficients can also be calculated with
MATHEMATICA function Clebsch Gordan [$ j 1 ,m1%,
$ j 2 ,m2%,$J,M %]. To obtain the expressions ofL ~1,0! and
L ~3,0!, we express once more the two productsV2,21V2,1 and
V2,22V2,2 of H Q

(2) in Eq. ~20!, as linear combinations of the
EFG ~W! spherical tensor components, using the Clebs
Gordan or Wigner coefficients. Then comparing the new
pression ofH Q

(2) with that of Eq.~22! allows us to deduce
that33

L ~1,0!5 1
5A10@ I ~ I11!2 3

4 #I z , ~23a!

L ~3,0!5 1
5A10@3I ~ I11!25I z

221#I z . ~23b!

However, the two tensor operatorsL ~1,0! andL ~3,0! are unnor-
malized. When we express them with normalized tensor
eratorsP~1,0! andP~3,0! defined by85,86

L ~1,0!5 1
5A10@ I ~ I11!2 3

4 #P~1,0!, ~24a!

L ~3,0!522P~3,0!, ~24b!

Eq. ~22! is rewritten as
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HQ
~2!52

NQ
2

v0
H 2

17

5A7
W4,0P

~3,0!2 3
35A14

5
@ I ~ I11!2 3

4 #

3W4,0P
~1,0!2

6

A35
W2,0P

~3,0!1
A14
35

@ I ~ I11!2 3
4 #

3W2,0P
~1,0!1

3&

5
W0,0P

~3,0!

1
4

5A5
@ I ~ I11!2 3

4 #W0,0P
~1,0!J . ~25!

Equations~20!, ~22!, and~25! are three ways to express th
second-order quadrupole interaction. In the next section
three tensor componentsW0,0, W2,0, andW4,0 in Eqs. ~22!
and ~25! will be related to the two quantitieseq andh.

C. Multiple-quantum line shift

The (r2c)Q transition frequency between two energ
levelsur & anduc& in Slab becomes an (r2c)Q line shift with
respect tov0 ~angular frequency ofSobs! in the spectrum. In
angular frequency unit, this (r2c)Q line shiftvr ,c is defined
by

v r ,c5^r u~HQ
~1!1HQ

~2!!ur &2^cu~HQ
~1!1HQ

~2!!uc&5v r ,c
~1!

1v r ,c
~2! . ~26!

The (r2c)Q line shift produced by the first-order quadr
pole interaction or the (r2c)Q first-order quadrupole shif
v r ,c
(1) is given by

v r ,c
~1!5NQ

1
2A6~r 22c2!V2,0 . ~27!

For symmetrical transition (c52r ) this shift is null. This
fact leads to the development of MQ-MA
techniques76–82,94–97and overtone NMR.93,98 The (r2c)Q
second-order quadrupole shiftv r ,c

(2) is given by

v r ,c
~2!52

NQ
2

v0
~r2c!H 1

70
A35

2
W4,0A

~4!

1
1

28
A14W2,0A

~2!2
1

A5
W0,0A

~0!J , ~28!

with

A~4!~ I ,r ,c!518I ~ I11!234~r 21rc1c2!25,

A~2!~ I ,r ,c!58I ~ I11!212~r 21rc1c2!23,

A~0!~ I ,r ,c!5I ~ I11!23~r 21rc1c2!. ~29!

For symmetrical transition the relationships of Eq.~29! be-
come identical to those of Amoureux.94 In the remainder of
the paper, an (r2c)Q shift is shorten as a shift for simplic
ity.

1. Static single crystal

For a static single crystal, the tensor componentV2,0 in
Eqs.~19! and ~27! is related to those expressed inSPAS by
e

V2,05 (
u522

2

V2,u
PASDu,0

~2! ~a,b,w!

5
1

2
A6eq@ 1

2 ~3 cos2b21!1 1
2h sin2b cos2a#,

~30!

the Wigner rotation matrixD ~2! ~a,b,w! can be found in text
books.83,88,99–101The first two Euler anglesa andb are the
polar angles ofB0 in SPAS @Fig. 2~a!#. The third Euler angle
w does not appear in Eq.~30!, becauseB0 is a symmetry axis
for the spins. Therefore, the first-order quadrupole inter
tion @Eq. ~19!# becomes

HQ
~1!5 1

3vQ@3I z
22I ~ I11!#, ~31!

with the quadrupole couplingvQ defined by

vQ5 3
4VQ@3 cos2b211h sin2b cos2a#, ~32a!

FIG. 2. Euler angles for static~a! and variable-angle spinning
~b!, ~c! experiments. In~a! these angles orientate the strong sta
magnetic fieldB0 in the principal-axis-system coordinate fram
SPAS of the electric-field gradient tensor;a andb are also the polar
angles ofB0. In ~b! the anglesa1, b1, andw1 orientate the spinner
in the coordinate frameSPAS and in~c! the polar anglesv r t andur
show the direction ofB0 in the coordinate frameSVAS of the spin-
ner.
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TABLE I. Principal-axis-system elements of the EFG spherical tensorW as a linear combination o
products of those of the second-rank EFG spherical tensorV, using the Clebsch-Gordon or Wigne
coefficients92 reported in Fig. 1~Refs. 31 and 33!.

k,n Wk,n
PAS

0,0 1

A5
@2~V2,2

PAS!21~V2,0
PAS!2#

A5
10

~eq!2~h213!

2,0 A14
7

@2~V2,2
PAS!22~V2,0

PAS!2#
1

A14
~eq!2~h223!

2,62 4

A14
V2,2
PASV2,0

PAS A3

7
~eq!2h

4,0 2

A70
@~V2,2

PAS!213~V2,0
PAS!2#

1

A70
~eq!2S 12 h219D

4,62 6

A42
V2,2
PASV2,0

PAS
3

2A7
~eq!2h

4,64 ~V2,2
PAS!2 1

4(eq)
2h2
t

,
of

le
-

n

of

-

ase
VQ5eqNQ5
e2qQ

2I ~2I21!\
. ~32b!

Sometimes, a minus sign appears in front ofh in Eq. ~32a!
even when the first convention forh @Eq. ~4!# is applied; this
is due to the choice of another set of Euler angles where
two anglesa and b are not the polar angles ofB0.

99 Our
quadrupole couplingvQ is equal to half the standard one1

which means that two consecutive lines in the spectrum
single crystal are separated by 2vQ , if the second-order
quadrupole interaction is zero. For polycrystalline samp
the quadrupole coupling constante2qQ/h and the asymme
try parameterh are the relevant quantities.

The tensor componentsW4,0,W2,0, andW0,0 are related to
those expressed inSPAS, Wk,n

PAS ~Table I!, by the Wigner ro-
tation matricesD (2k)~a,b,w! as

W2x,05 (
u52x

x

W2x,2u
PAS D2u,0

~2x! ~a,b,w!. ~33!

The reduced Wigner rotation matrixd~4!~b! associated with
D ~4!~a,b,w! is defined in Table II. The matrix elements ca
also be obtained using theMATHEMATICA program written
by Zare.86 Equation~28! becomes

v r ,c
~2!52

r2c

2v0
VQ

2 (
k

0,1,2

A~2k!~ I ,r ,c!

3 (
u52k

k

B2k,2u~h!D2u,0
~2k! ~a,b,w!, ~34!

with94

B0,0~h!52 1
5 ~h213!, B2,0~h!5 1

14 ~h223!,

B2,62~h!5 1
14 hA6, B4,0~h!5 1

140~h2118!,

B4,62~h!5 3
140hA10, B4,64~h!5

1

4A70
h2. ~35!
he

a

s,

2. Rotating single crystal

For a single crystal rotating at an angleur with respect to
B0, this experimental condition corresponds to that
VAS,25–27 the componentV2,0 in the first-order quadrupole
shift @Eq. ~27!# is related to those expressed inSPAS, V2,n

PAS,
by two Wigner rotation matricesD ~2!~a1,b1,w1! and
D (2)(v r t,u r ,w r) as

V2,u
VAS5 (

j522

2

V2,j
PASDj ,u

~2!~a1 ,b1 ,w1!, ~36a!

V2,05 (
u522

2

V2,u
VASDu,0

~2! ~v r t,u r ,w r !. ~36b!

The first Wigner rotation matrixD ~2!~a1,b1,w1! describes the
orientation of the spinner fixed inSPASwith the Euler angles
a1, b1, andw1 @Fig. 2~b!#. The second Wigner rotation ma
trix D (2)(v r t,u r ,w r) describes the orientation ofB0 in the
coordinate frame of the spinnerSVAS, the polar anglesv r t
andur are those ofB0 @Fig. 2~c!#. The third Euler anglewr
will not appear explicitly for the same reason as in the c
for static experiments. Equation~27! becomes

v r ,c
~1!VAS5NQ

1
2A6~r 22c2! (

u522

2

Du,0
~2! ~v r t,u r ,w r !

3 (
j522

2

V2,j
PASDj ,u

~2!~a1 ,b1 ,w1!. ~37!

Similarly the componentsW4,0,W2,0, andW0,0 in the second-
order quadrupole shift are related to those expressed inSPAS,
Wk,n

PAS ~Table I!, by two Wigner rotation matrices
D (2x)~a1,b1,w1! andD

(2x)(v r t,u r ,w r) as

W2x,u
VAS5 (

j52x

x

W2x,2j
PAS D2 j ,u

~2x!~a1 ,b1 ,w1!, ~38a!
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W2x,05 (
u522x

2x

W2x,u
VASDu,0

~2x!~v r t,u r ,w r !. ~38b!

Equation~28! becomes

v r ,c
~2!VAS52

r2c

2v0
VQ

2 (
x50

2

A~2x!~ I ,r ,c! (
u522x

2x

Du,0
~2x!

3~v r t,u r ,w r ! (
j52x

x

B2x,2j~h!D2 j ,u
~2x!~a1 ,b1 ,w1!.

~39!

The terms exp~2iuv r t! of D u,0
(2x)(v r t,u r ,w r) in Eq. ~39!

give rise to spinning sidebands in the frequency domain.
amplitude ofnth sideband depends on 1/(nv r),

102 and is
thus suppressed at high spinning rate. Under thehigh spin-
ning condition, that is, upon ignoring oscillating terms su
as exp~2iuv r t! due to the rotation of the spinner, only th
elementsD 0,0

(2x)(v r t,u r ,w r) of the Wigner rotation matrices
D (2x) remain nonzero, that is, the elements with the subsc
u50 in Eqs.~37! and ~39!. As a result, the two anglesvr t
and w1 will not appear explicitly in the expressions of th
line shift. The first- and second-order quadrupole shifts
come

v r ,c
~1!fast VAS5NQ

1
2A6~r 22c2!d0,0

~2! ~u r ! (
j522

2

V2,j
PASDj ,0

~2!

3~a1 ,b1 ,w1!, ~40a!

v r ,c
~2!fast VAS52

r2c

2v0
VQ

2 (
x50

2

A~2x!~ I ,r ,c!d0,0
~2x!

3~u r ! (
j52x

x

B2x,2j~h!D2 j ,0
~2x!~a1 ,b1 ,w1!

52
r2c

2v0
VQ

2 $A~0!~ I ,r ,c!B0,0~h!

1A~2!~ I ,r ,c!d0,0
~2! ~u r !@B2,0~h!d0,0

~2! ~b1!

12B2,2~h!d2,0
~2! ~b1!cos2a1#1A~4!~ I ,r ,c!d0,0

~4!

3~u r !@B4,0~h!d0,0
~4! ~b1!12B4,2~h!d2,0

~4!

3~b1!cos2a112B4,4~h!d4,0
~4! ~b1!cos4a1#%.

~40b!

The three reduced Wigner rotation matrix elementsd 0,0
(0)(u r),

d 0,0
(2)(u r), and d0,0

~4!~ur! are identical to the three Legend
polynomials P0~cosur!, P2~cosur!, and P4~cosur!,
respectively:27,28,33,100,103

P0~cosu r !51, ~41a!

P2~cosu r !5 1
2 ~3 cos2u r21!, ~41b!

P4~cosu r !5 1
8 ~35 cos4u r230 cos2u r13!. ~41c!

For symmetrical transition Eq.~40a! reduces to zero as in
static experiment, Eq.~40b! becomes identical to that o
Amoureux94 or Frydman and Harwood:76
e

pt

-

v r ,2r
~2!fast VAS52

VQ
2

v0
$2r @ I ~ I11!23r 2#@ 1

2B0,0~h!#

12r @8I ~ I11!212r 223#~ 1
2 !@B2,0~h!d0,0

~2!

3~b1!12B2,2~h!d2,0
~2! ~b1!cos 2a1#

3P2~cosu r !12r @18I ~ I11!234r 225#~ 1
2 !

3@B4,0~h!d0,0
~4! ~b1!12B4,2~h!d2,0

~4!

3~b1!cos2a112B4,4~h!d4,0
~4!

3~b1!cos4a1#P4~cosu r !%. ~42!

For the central transition~r521
2! Eq. ~42! becomes

v21/2,1,2
~2!fast VAS5

VQ
2

v0
@ I ~ I11!2 3

4 #$ 1
2B0,0~h!18~ 1

2 !

3@B2,0~h!d0,0
~2! ~b1!12B2,2~h!d2,0

~2!

3~b1!cos 2a1#P2~cosu r !118~ 1
2 !

3@B4,0~h!d0,0
~4! ~b1!12B4,2~h!d2,0

~4!

3~b1!cos2a112B4,4~h!d4,0
~4!

3~b1!cos4a1#P4~cosu r !%, ~43!

with

1
2 B0,0~h!52 3

10 ~ 1
3 h211!, 4B2,0~h!5 6

7 ~ 1
3 h221!,

4B2,62~h!5
12

7A6
h, 9B4,0~h!5

81

70 S 1

18
h211D ,

9B4,62~h!5
27

14A10
h, 9B4,64~h!5

9

4A70
h2.

~44!

Equations~43! and~44! are similar to those of Zhenget al.,27

except they applied the second convention forh @Eq. ~13!#.
Compared with those of Llor and Virlet,28 who also used the
second convention forh, the relationships of Eq.~44! must
be divided by 9, because they used the coefficient 9VQ

2 in-
stead ofVQ

2 in Eq. ~43!.

3. Second-order quadrupole shift of the center of gravity
of a spectrum

For a powder sample, the absorption line of the cen
transition~2 1

2,
1
2! in the presence of the second-order quad

pole interaction has a characteristic normalized shapef ~v!
depending on the experiments~static, VAS or MAS in the
limit of high spinning rate! and a center of gravityv21/2,1/2

~2!iso

independent of the experiments~static, VAS, DAS, DOR, or
MAS!. From the definition of the first momentM1 with re-
spect to a frequencyva given, in the rotating frameS

obs, by

M15E
2`

`

~v2va! f ~v!dv,
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(k) (b)5(21)m2nd2m,2n
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(k) (b)5(2

,n
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with

E
2`

`

f ~v!dv51, ~45a!

M1 becomes zero whenva is the center of gravityv21/2,1/2
~2!iso .

The latter is not located at the Larmor frequency. For t
reason, this deviation is called the second-order quadru
shift of the center of gravityv r ,c

(2) iso of a spectrum:

v21/2,1/2
~2!iso 5E

2`

`

v21/2,1/2
~2! f ~v!dv. ~45b!

Equation~45b! means thatv21/2,1/2
~2!iso is the average value o

the line positionv21/2,1/2
~2! . In this paragaph, we extend th

definition of center of gravity to any transition (r ,c). Of
course, in 1D NMR onlyv21/2,1/2

~2!iso is observed. On the othe
hand,v r ,c

(2)iso is extensively used in 2D MQ-MAS spectra
Theoretically,v r ,c

(2)iso is defined by the same relationship i
dependent of the kind of experiments, that is, by integrat
over all possible crystallite orientations of the second-or
quadrupole shiftv r ,c

(2) with equal probability 1/~4p!:

v r ,c
~2!iso5

1

4p E
21

1

d~cosb!E
0

2p

v r ,c
~2!da

52
r2c

2v0
VQ

2A~0!~ I ,r ,c!B0,0~h!

5
r2c

2v0
VQ

2 @ I ~ I11!23~r 21rc1c2!#

3~ 3
5 !~11 1

3h2!, ~45c!

where we used the expression ofv r ,c
(2)fast VAS defined in Eq.

~40b!. For symmetrical transition Eq.~45c! simplifies to

v r ,2r
~2!iso5

r

v0
VQ

2 @ I ~ I11!23r 2#~ 3
5 !~11 1

3h2!. ~46!

For the central transition Eq.~46! reduces to

v21/2,1/2
~2!iso 52

3VQ
2

10v0
@ I ~ I11!2 3

4 #~11 1
3h2!. ~47!

Our second-order quadrupole shift of the center of gravity
a spectrum and that defined by Medek, Harwood, a
Frydman77 n 0

Q are related by13v21/2,1/2
~2! iso 52pn 0

Q.
In MAS experiments the angleur corresponds to the

magic angleum , the root ofP2~cosur!50. Under the high
spinning condition, the first order@see Eq.~40a!# and the
second-order quadrupole shifts@see Eq.~40b!# become

v r ,c
~1!fast MAS50, ~48a!

v r ,c
~2!fast MAS5v r ,c

~2!iso2
r2c

2v0
VQ

2A~4!~ I ,r ,c!@B4,0~h!d0,0
~4! ~b1!

12B4,2~h!d2,0
~4! ~b1!cos2a112B4,4~h!d4,0

~4!

3~b1!cos4a1#P4~cosum!. ~48b!

The first-order quadrupole shift is reduced to zero either
the high spinning of the crystal atum or by the restriction to
s
le

g
r

f
d

y

on-resonance~or symmetrical! transitions; that of the secon
order is simpler. Equation~48b! is the result of frequency-
domain calculation and will be extensively used in the n
section to determine the locations of the central-transit
Hahn echoes of a spinI5 3

2 system submitted to the secon
order quadrupole interaction and the true isotropic chem
shift between the two pulses and during the detection per

D. Locations and amplitudes of the spin-32 Hahn echoes
for a single crystal rotating at magic angle

with high spinning rate

The Hahn echo sequence is shown in Fig. 3. Our aim i
determine the locations and the amplitudes of the sp32
central-transition echoes in the detection period. In pract
these echoes are the only ones detected when the sampl

powder. For instance, the product (e2qQ/h)A11 1
3h2 is

about 2 MHz for the three crystallographic sites of87Rb ~I
5 3

2! in RbNO3, only the central transition echoes were o
served with a 7 Tmagnetic field.29,78,80Once the matrix el-
ementr 21/2,1/2

E (t1 ,t2 ,t3 ,t4) of the echo density operator i
determined, thex andy component of therelativeecho am-
plitudes are defined by9,13

Ex~ t1 ,t2 ,t3 ,t4!1 iEy~ t1 ,t2 ,t3 ,t4!

5
AI ~ I11!1~1/4!
1
3 I ~ I11!~2I11!

r21/2,1/2
E ~ t1 ,t2 ,t3 ,t4!. ~49!

In the remainder of the paper, we consider a spinI5 3
2

system in a crystal rotating atum with a high spinning rate.
Therefore, homonuclear magnetic-dipole interaction is c
siderably reduced. Spectral broadening effects due to het
nuclear magnetic-dipole interaction and chemical shift
isotropy are averaged out as well. Moreover, only o
resonance coherencesrr ,2r developed at the end of the firs
pulse are considered, because their transition frequencie
equal to that ofSobs.104 Throughout the paper, the matrice
associated with Hamiltonians and density operators are
pressed in the eigenstatesur & of I z . A matrix element is
referred to with subscripts: two half-integer magnetic nu

FIG. 3. Pulse sequence, Hamiltonians~H (a)5H rf1HQ
(1) ; H (b)

5HCS1HQ
(2)fast MAS!, andp521 central-transition Hahn echoes fo

a spin I53
2 system. Echoes are depicted schematically by arro

whose heights and widths are meaningless. The echoesEa, Eb, and
Ec represent the refocusing of 1Q, 23Q, and63Q on-resonance
coherences generated by the first pulse, respectively.
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bersr andc associated with a row and a column of a mat
@see Eq.~56!#. The orderp of an (r2c)Q coherencerr ,c is
defined byp5r2c. A pulse may cause coherences to
transferred from one order to another whereas free pre
sion preserves the coherence order37,105,106

This section consists of three parts: In Sec. III D 1,
follow the evolution of the spin system throughout the e
periment, we employ the density-operator approach and
coherence-order description. The interactions during the
pulses do not need to be defined explicitly for the mome
During the interpulse delayt2 and the detection periodt4,
the HamiltonianH (b) of the spin system, expressed in th
rotating frameSobs of the central transition, consists of tw
terms:

H ~b!5HCS1HQ
~2!fast MAS, ~50a!

with HCS52dCSv0I z , because the contribution of the firs
order quadrupole interaction to the line shift is canceled
the high spinning of the crystal. The analytical expression
HQ
(2)fast MAS is unknown but it is defined by the correspon

ing line shift or second-order quadrupole shift@Eq. ~48b!#,

v r ,c
~2!fast MAS5^r uHQ

~2!fast MASur &2^cuHQ
~2!fast MASuc&.

~50b!

In Sec. III D 2, we derive the central-transition Hahn ec
locations as well as the associated echo amplitudes, w
maximum is modulated by a phase factor. One of these e
oes is involved in the MQ-MAS methodology.

In Sec. III D 3, a numerical procedure for calculating t
conversion functions or the echo amplitudes is proposed
illustrated for the spinI53

2 system. For simplicity the two
pulse durationst1 and t3 must be much shorter than the in
verse of the spinner angular velocity, so that during
pulses the spinner looks static. In other words, the inte
tions are time independent during the pulses.77 Under these
assumptions, the HamiltonianH (a) of the spin system con
sists of four terms during the pulses,

H ~a!5H rf1HCS1HQ
~1!static1HQ

~2!static. ~51a!

HQ
(1)static is defined by Eq.~31! andHQ

(2)static by Eqs. ~20!,
~22!, or ~25!. If Eq. ~20! is used forHQ

(2)static, the following
expressions are required:99

V1V2152 3
4e

2q2$@2 1
3 ~h cos2a!212h cos2a23#cos4b

1@ 2
3 ~h cos2a!222h cos2a2 1

3h213#cos2b

1 1
3h2~12cos22a!%,

V2V225
3
2e

2q2$@ 1
24 ~h cos2a!22 1

4h cos2a1 3
8 #cos4b

1@2 1
12 ~h cos2a!21 1

6h22 3
4 #cos2b

1 1
24 ~h cos2a!21 1

4h cos2a1 3
8 %. ~51b!

As a first approach, we neglectHQ
(2)static andHCS during the

pulses and consider the remaining two terms,
s-

-
he
o
t.

y
f

se
h-

nd

e
c-

H ~a!5H rf1HQ
~1!static, ~51c!

when experiments are performed at high magnetic fieldB0.
77

Two 2x pulses are considered. These assumptions are i
tical to those of our previous study on a Hahn echo seque
applied to static crystals.71

1. Description of the evolution of the spin system
using density operators

For a spinI5 3
2 system submitted to the interactions d

fined in Eq.~50a!, the line shiftsvp/2,2p/2
fast MAS associated with

the coherence orderp53~32↔23
2!, 1 ~12↔21

2!, 21 ~2 1
2↔1

2!,
and23 ~23

2↔3
2! are

v3/2,23/2
fast MAS53v21/2,1/2

~2!iso 1 7
9 j21/2,1/223dCSv0 , ~52a!

v1/2,21/2
fast MAS52v21/2,1/2

~2!iso 2j21/2,1/22dCSv0 , ~52b!

v21/2,1/2
fast MAS5v21/2,1/2

~2!iso 1j21/2,1/21dCSv0 , ~52c!

v23/2,3/2
fast MAS523v21/2,1/2

~2!iso 2 7
9 j21/2,1/213dCSv0 ,

~52d!

respectively, with

j r ,2r52
VQ

2

v0
rA ~4!~ I ,r ,2r !@B4,0~h!d0,0

~4! ~b1!

12B4,2~h!d2,0
~4! ~b1!cos2a112B4,4~h!d4,0

~4!

3~b1!cos4a1#P4~cosum!, ~53a!

or simply

vp/2,2p/2
fast MAS5vp/2,2p/2

~2!fast MAS2pdCSv0 . ~53b!

For a spin I5 3
2 system, j21/2,1/2}27VQ

2 /v0 and
v21/2,1/2

~2!iso 529VQ
2 ~111

3h
2!/~10v0!. The line shifts for the

other three half-integer quadrupole spins~I55
2,

7
2, and

9
2! are

reported in the Appendix.
We follow the spin dynamics from the thermodynam

equilibrium to the detection period using density operato
In the high-temperature approximation, the initial state is
scribed by the density operatorr~0!5I z , whose coherence
order isp50. At the end of the first pulse the density oper
tor is defined by9,13

r~ t1!5T exp~2 iVt1!T
†r~0!T exp~ iV1!T

†, ~54!

whereV and T are the diagonalized form ofH (a) and the
transformation operator related by

V5T†H ~a!T. ~55!

Equation~55! is solved numerically using standard diagon
ization procedure, which is applicable for any half-integ
quadrupole spin and whatever the complexity ofH (a). For a
spin I53

2 system, the density operatorr~t1! has the following
general matrix form:
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r~ t1!5

^ 3
2 u

^ 1
2 u

^2 1
2 u

^2 3
2 u

u 32 & u 12 & u2 1
2 & u2 3

2 &

F ^I z
3/2,23/2~ t1!& ^I2

3/2,1/2~ t1!& ^I2
3/2,21/2~ t1!& 2 i ^I y

3/2,23/2~ t1!&

^I1
3/2,1/2~ t1!& ^I z

1/2,21/2~ t1!& 2 i ^I y
1/2,21/2~ t1!& ^I2

1/2,23/2~ t1!&

^I1
3/2,21/2~ t1!& i ^I y

1/2,21/2~ t1!& 2^I z
1/2,21/2~ t1!& ^I2

21/2,23/2~ t1!&

i ^I y
3/2,23/2~ t1!& ^I1

1/2,23/2~ t1!& ^I1
21/2,23/2~ t1!& 2^I z

3/2,23/2~ t1!&

G ~56!
ta

p
ir

nd of

nt
where ^I q
r ,c(t1)&5Tr[r(t1)I q

r ,c] indicates a nonequilibrium
state of phase coherence between the two connected s
ur & and uc&. The spin operatorsI q

r ,c were defined
previously.9,37 The matrix element̂ I 2

r ,c(t1)& is an (r2c)Q
coherence and̂I 1

r ,c(t1)& a2(r2c)Q coherence. According
to MQ transition formalism,37 the matrix of Eq.~56! can be
decomposed as a sum of seven simpler matricesrp(t1) de-
fined in Table III,

r~ t1!5 (
p523

3

rp~ t1!. ~57!

The analytical expressions of the density-operator com
nentsrp(t1) are unknown. They are defined only by the
tes

o-

matrix forms. In particularrp(t1)5r2p
† (t1). As we restrict

the study to on-resonance coherences developed at the e
the first pulse, Eq.~57! simplifies to a sum of four terms
r p
S(t1),

rS~ t1!5 (
p

23,21,1,3

rp
S~ t1!, ~58!

where r p
S(t1) contains only a single nonzero eleme

[rp] p/2,2p/2 of the corresponding matrixrp . The superscript
s means ‘‘simplified.’’ In particularr 63

S (t1)5r63(t1), and
r1
S~ t1!5F 0 0 0 0

0 0 2 i ^I y
1/2,21/2& 0

0 0 0 0

0 0 0 0

G , r21
S ~ t1!5F 0 0 0 0

0 0 0 0

0 i ^I y
1/2,21/2& 0 0

0 0 0 0

G . ~59!

At the end of the interpulse delayt2, the density operator becomes

rS~ t1 ,t2!5exp~2 iH ~b!t2!F (
p

23,21,1,3

rp
S~ t1!Gexp~ iH ~b!t2!5 (

p

23,21,1,3

rp
S~ t1!exp~2 i t2vp/2,2p/2

fast MAS!, ~60a!

or in the matrix form,

rS~ t1 ,t2!53
0 0 0 2 i ^I y

3/2,23/2~ t1!&

3e2 i t2v3/2,23/2
fast MAS

0 0 2 i ^I y
1/2,21/2~ t1!&

3e2 i t2v1/2,21/2
fast MAS

0

0 i ^I y
1/2,21/2~ t1!&

3e2 i t2v21/2,1/2
fast MAS

0 0

i ^I y
3/2,23/2~ t1!&

3e2 i t2v23/2,3/2
fast MAS

0 0 0

4 . ~60b!
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TABLE III. Matrix representation of the density operator componentsrp(t1) at the end of the first rf
pulse for a spinI53

2 system,t1 is the first-pulse duration andp is the order of coherence.

r3~t1!5F0 0 0 2i^Iy
3/2,23/2&

0 0 0 0

0 0 0 0

0 0 0 0

G, r23~t1!5F 0 0 0 0

0 0 0 0

0 0 0 0

i^Iy
3/2,23/2& 0 0 0

G
r2~t1!5F0 0 ^I2

3/2,21/2& 0

0 0 0 ^I2
1/2,23/2&

0 0 0 0

0 0 0 0

G, r22~t1!5F 0 0 0 0

0 0 0 0

^I1
3/2,21/2& 0 0 0

0 ^I1
1/2,23/2& 0 0

G
r1~t1!5F0 ^I2

3/2,1/2& 0 0

0 0 2i^Iy
1/2,21/2& 0

0 0 0 ^I2
21/2,23/2&

0 0 0 0

G, r21~t1!5F 0 0 0 0

^I1
3/2,1/2& 0 0 0

0 i^Iy
1/2,21/2& 0 0

0 0 ^I1
21/2,23/2& 0

G
r0~t1!5F^Iz

3/2,23/2& 0 0 0

0 ^Iz
1/2,21/2& 0 0

0 0 2^Iz
1/2,21/2& 0

0 0 0 2^Iz
3/2,23/2&

G

to

q

s

ns.

g

row
The effect of the second pulse on the density opera
rS(t1 ,t2) is described by

rS~ t1 ,t2 ,t3!5T exp~2 iVt3!T
†rS~ t1 ,t2!T exp~ iVt3!T

†.
~61!

As a pulse affects only the spin part of a Hamiltonian, E
~61! can be rewritten as

rS~ t1 ,t2 ,t3!5T exp~2 iVt3!T
†F (

p

23,21,1,3

rp
S~ t1!

3exp~2 i t2vp/2,2p/2
fast MAS!GT exp~ iVt3!T

†

5 (
p

23,21,1,3

rp
S~ t1 ,t3!exp~2 i t2vp/2,2p/2

fast MAS!,

~62!

with

rp
S~ t1 ,t3!5T exp~2 iVt3!T

†rp
S~ t1!T exp~ iVt3!T

†.
~63!

During the detection periodt4 the density operator become

rS~ t1 ,t3 ,t3 ,t4!5exp~2 iH ~b!t4!r
S~ t1 ,t2 ,t3!exp~ iH

~b!t4!.
~64!

2. Locations of the Hahn echoes in the detection period

We are concerned with thep521 central-transition co-
herence in the detection period,
r

.

r21/2,1/2
S ~ t1 ,t2 ,t3 ,t4!5r21/2,1/2

S ~ t1 ,t3 ,t3!

3exp(2 i t4v21/2,1/2
fast MAS), ~65!

which is the only coherence detectable in our assumptio
The matrix elementr 21/2,1/2

S (t1 ,t2 ,t3) is that of the density
operatorrS(t1 ,t2 ,t3) at the end of the second pulse. Usin
Eq. ~62!, Eq. ~65! is rewritten as

r21/2,1/2
S ~ t1 ,t2 ,t3 ,t4!5exp~2 i t4v21/2,1/2

fast MAS!

3 (
p

23,21,1,3

@rp
S~ t1 ,t3!#21/2,1/2

3exp~2 i t2vp/2,2p/2
fast MAS!. ~66!

The four coherence orders~23, 21, 1, and 3! present at the
end of the first pulse@Eq. ~63!# contribute to thep521
central-transition coherence in the detection period.

For p51, becausev21/2,1/2
fast MAS52v1/2,21/2

fast MAS, an echo appears
at t45t2, whose expression is

r21/2,1/2
E ~ t1 ,t2 ,t3 ,t4!5exp@2 i ~t42t2!v21/2,1/2

fast MAS#

3@r1
S~ t1 ,t3!#21/2,1/2. ~67!

This echo is represented schematically in Fig. 3 by the ar
Ea. Its maximum is independent ofv21/2,1/2

fast MAS. Applying Eq.
~63!, Eq. ~67! becomes
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r21/2,1/2
E ~ t1 ,t2 ,t3 ,t45t2!5@r1

S~ t1 ,t3!#21/2,1/2

5@T exp(2 iVt3!T
†r1

S~ t1!T

3exp~ iVt3!T
†]21/2,1/2. ~68!

It shows that the second pulse refocuses as an echo th
herence associated with the single nonzero matrix eleme
r 1
S(t1), the p51 central-transition coherence generated

the first pulse or [r 1
S(t1)] 1/2,21/252 i ^I y

1/2,21/2(t1)&. It is
called in the remainder of the paper 1Q t45t2 echo.

The coherence orderp521 does not generate an ech
because both exponential functions forp521 in Eq. ~66!
differ only by the durationst2 andt4:

r21/2,1/2
E ~ t1 ,t2 ,t3 ,t4!5exp@2 i ~t41t2!v21/2,1/2

fast MAS#

3@r1
S~ t1 ,t3!#21/2,1/2. ~69!

For p53, an echo is predicted but it originates only fro
one of the three terms contained in Eq.~52a!. Its expression
is

r21/2,1/2
E ~ t1 ,t2 ,t3 ,t4!

5exp@2 i ~t423t2!dCSv0#@r3
S~ t1 ,t3!#21/2,1/2

3exp@2 i t4~v21/2,1/2
~2!iso 1j21/2,1/2!#

3exp@2 i t2~3v21/2,1/2
~2!iso 1 7

9 j21/2,1/2!#. ~70!

This echo is located att453t2 and is represented schema
cally in Fig. 3 by the arrowEc. At its maximum, the echo
does not depend onHCS @last term in Eq.~52a!#, but depends
on the second-order quadrupole interaction terms as a p
modulation:

r21/2,1/2
E ~ t1 ,t2 ,t3 ,t453t2!

5@r3
S~ t1 ,t3!#21/2,1/2

3exp@2 i t2~6v21/2,1/2
~2!iso 1 34

9 j21/2,1/2!#.

~71!

This echo represents the refocusing of thep53 coherence
generated by the first pulse or [r 3

S(t1)] 3/2,23/2
52 i ^I y

3/2,23/2(t1)&. It is called 3Q t453t2 echo. We sup-
pose the acquisition of the time-domain signal starts at
top of the echo. In two-dimensional SQ-3Q correlation
NMR spectroscopy where theF2 dimension corresponds t
the usual SQ axis related tot4 and theF1 dimension corre-
sponds to the MQ axis related tot2, the center of gravity of
the spectrum alongF1 is located at 6v21/2,1/2

~2!iso instead of
dCSv01v21/2,1/2

~2!iso alongF2, and the linewidth is proportiona
to 34

9 j21/2,1/2 in F1 instead ofj21/2,1/2 in F2.
For p523, two echoes are predicted. Their expressio

deduced from Eq.~66! are
co-
of
y

se

e

s

r21/2,1/2
E ~ t1 ,t2 ,t3 ,t4!

5@r23
S ~ t1 ,t3!#21/2,1/2$exp@2 i ~t423t2!v21/2,1/2

~2!iso #

3exp@2 i t4~j21/2,1/21dCSv0!#

3exp@2 i t2~2 7
9 j21/2,1/213dCSv0!#

1exp@2 i ~t42
7
9 t2!j21/2,1/2#exp@2 i t4~v21/2,1/2

~2!iso

1dCSv0!#exp@2 i t2~23v21/2,1/2
~2!iso 13dCSv0!#%.

~72!

Both echoes represent the refocusing of thep523 coher-
ence generated by the first pulse or [r 23

S (t1)]23/2,3/2
5 i ^I y

3/2,23/2(t1)&. The first echo is located att453t2 and is
also represented in Fig. 3 by the arrowEc. It is called the
23Q t453t2 echo. In contrast to the 3Q t453t2 echo, this
one does not depend on the second-order quadrupole sh
the center of gravity@first term in Eq.~52d!# but depends on
the other two terms of Eq.~52d! as a phase modulation:

r21/2,1/2
E ~ t1 ,t2 ,t3 ,t453t2!

5@r23
S ~ t1 ,t3!#21/2,1/2

3exp@2 i t2~
20
9 j21/2,1/216dCSv0!#. ~73!

In two-dimensional SQ-3Q correlation spectroscopy, th
spectrum located at 6dCSv0 along theF1 dimension has a
linewidth proportional to20

9 j21/2,1/2. As the 63Q t453t2
echoes cannot be observed independently, their maxim
carry the same information as a free-induction decay.
observe them, the interpulse delayt2 must be large enough
so that the 1Q t45t2 echo and the63Q t453t2 echoes are
separated. Equation~72! shows that another echo, located
t457t2/9 ~Ref. 76!, is predicted@second term in Eq.~52d!#.
This echo is represented schematically by the arrowEb in
Fig. 3. It is called23Q t457t2/9 echo. At its maximum, the
echo depends only on two shifts, the second-order qua
pole shift of the center of gravity of a spectrum and t
chemical shift as a phase modulation:

r21/2,1/2
E ~ t1 ,t2 ,t3 ,t45

7
9 t2!

5@r23
S ~ t1 ,t3!#21/2,1/2

3exp@2 i t2~2 20
9 v21/2,1/2

~2!iso 1 34
9 dCSv0!#. ~74!

This phase modulation leads to the development of M
MAS methodology,76–82,94–97which gives the same informa
tion as the DAS approach.29 The line is located at
220

9 v21/2,1/2
~2!iso 134

9 dCSv0 along F1 without linewidth, which
leads to a high-resolution spectrum alongF1. It is striking
that among the four echoes predicted above, only the m
mum of the usual 1Q t45t2 echo is not modulated in phase

As the spin-spin relaxation, not explicitly considered
our assumptions, drastically reduces the amplitudes of
echoes occurring far from the second pulse, it is advan
geous to study the23Q t457t2/9 echo rather than the63Q
t453t2 echoes. However, this echo is disturbed by the 1Q
t45t2 echo. Fortunately, six-phase cycling77,78 of the first
pulse and the receiver cancels the 1Q t45t2 echo and allows
the observation of the23Q t457t2/9 echo. This six-phase
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TABLE IV. Echo locations and phase modulation exp~2i t2f! of the maximum echo amplitude for the four half-integer quadrupole sp
I and the coherence ordersp. For clarity,v[v21/2,1/2

~2!iso is the second-order quadrupole shift of the center of gravity of a spectrum,j[j21/2,1/2
is related to the MQ line width, andd[dCS v0 is the true isotropic chemical shift. The first two parameters are spin-dependent. The s
* indicates the echo locations involved in MQ-MAS.

I 3/2 5/2 7/2 9/2

p Echo location f Echo location f Echo location f Echo location f

9Q t459t2 85j/6145v/2

7Q t457t2 476j/45184v/5 t457t2/18* 35v/92119d/18

t457t2 119j/18112v/2

5Q t455t2 85j/12145v/4 t4511t2/9* 20v/9234d/9 t455t2/4 225j/18215d/4

t455t2 34j/916v t4595t2/36* 25v/18285d/36

t455t2 85j/36115v/4

3Q t453t2 34j/916v t453t2/4 25j/629d/4 t459t2/5 24j/926d/5 t459t2/4 25j/1823d/4

t4519t2/12* 5v/6217d/12 t45101t2/45* 4v/9234d/45 t4591t2/36* 5v/18217d/36

t453t2 17j/1219v/4 t453t2 34j/4516v/5 t453t2 17j/3613v/4

1Q t45t2 0 t45t2 0 t45t2 0 t45t2 0

21Q
23Q t457t2/9* 220v/9134d/9

t453t2 20j/916d

25Q t4525t2/12* 225v/6185d/12 t45t2 20j/916d

t4525t2/4 25j/6145d/4

27Q t45161t2/45* 256v/91476d/45 t457t2/2 35j/9121d/2

t4549t2/5 56j/9184d/5

29Q t4531t2/6* 225v/3185d/6

t4527t2/2 25j/3145d/2
-
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cycling has no effect on the63Q t453t2 echoes. Without
the six-phase cycling, the63Q t453t2 echoes could be ob
served at the same time as the 1Q t45t2 echo. Since the
latter has a strong amplitude, the detection threshold of
analog-digital converter of the spectrometer may prevent
detection of the63Q t453t2 echoes. On the other hand, th
23Q t457t2/9 echo has a smaller amplitude. As a result,
63Q t453t2 echoes may be observed at the same time
the 23Q t457t2/9 echo when the six-phase cycling is a
plied.

Table IV gathers the echo locations and the phasef that
modulates the maximum echo amplitudes as exp~2i t2f! for
the four half-integer quadrupole spins and the coherence
der p. A pair of coherence orders6p not equal to61 gen-
erates three echoes, one of which indicated by the symb*
is involved in MQ-MAS methodology. The coherence ord
p51 always generates one echo. On the other hand, the
herence orderp521, which is associated with the sign
detection, does not generate echo. Therefore, 4, 7, 10, an
echoes are predicted for the spinsI53

2,
5
2,

7
2, and

9
2, respec-

tively. Among these echoes, 1, 2, 3, and 4 echoes out of
10, and 13, respectively, are used for MQ-MAS method
ogy. As mentioned in the previous paragraph, in order
observe a specific MQ echo located near the 1Q t45t2 one,
a cycling on the phase of the first pulse and that of the
ceiver according to the rules of the MQ spectroscopy37,105,106

is required.

3. Amplitudes of the Hahn echoes in the approximation
of static crystal during the pulses

In Sec. III D 2 we derived the echo locations, which a
determined by the interactions considered between the
e
e

e
s

r-

l
r
o-

13

7,
l-
o

-

o

pulses and during the detection period. These prediction
not depend on the spin dynamics during the pulses explic
Furthermore, Eqs.~68!, ~71!, ~73!, and ~74! show that the
matrix elementr 21/2,1/2

E (t1 ,t2 ,t3 ,t45lt2) of the p521
central-transition echo, located att45lt2 and describing the
refocusing of thepQ on-resonance coherence generated
the first pulse, is proportional to [r p

S(t1 ,t3)]21/2,1/2. It de-
pends explicitly on the durationst1 andt3 of the two pulses.
In this section we analyze the effects of these pulse durat
on the echo amplitudes, which are only related to the in
actions considered during the pulses and defined in
~51c!.

In fact Eq. ~63! shows thatr 21/2,1/2
E (t1 ,t2 ,t3 ,t45lt2)

is the product of two functions. Indeed, as the matrix form
r p
S(t1) contains a single nonzero element, this latter appe

as a factor in the final expression. Thus, the first function
simply the imaginary part of the single nonzero matrix e
ment ofr p

S(t1). The second function or the conversion fun
tion depends only on the second-pulse duration. It is wo
noting that Eqs.~54! and~63! have the same form. In the firs
equation, the initial state is described byr~0!, whereas in the
second equation it is given byr p

S(t1).
According to Eq. ~49!, the amplitude

Ey(t1 ,t2 ,t3 ,t45lt2) of the p521 central-transition Hahn
echo, located att45lt2 and representing the refocusing
the 2rQ on-resonance coherence generated by the first pu
can be defined by

Ey~ t1 ,t2 ,t3 ,t45lt2!

5
AI ~ I11!2~1/4!
1
3 I ~ I11!~2I11!

Im@r r ,2r~ t1!#C
2rQ~ t3 ,t45lt2!.

~75!
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Im means the imaginary part. This definition differs sligh
with our previous one,71 in which a mistake was made be
cause Im[r r ,c(t1)] and ^I y

r ,c(t1)& differ by a sign.
The numerical procedure for calculating the convers

functionC2rQ(t3 ,t45lt2) is the following: Once the ma
trix multiplications in Eq.~54! are performed, we generate
new matrix r 2r

S (t1) containing a single nonzero eleme
r r ,2r(t1). Then we apply the matrix multiplications de
scribed by Eq. ~63!. We pick up the matrix elemen
r 21/2,1/2
E (t1 ,t3) that we introduce in Eq.~49! to obtain the

echo amplitude. Finally, the latter is divided b
Im[r r ,2r(t1)], yielding C2rQ(t3 ,t45lt2).

Figure 4 represents the graphs of the imaginary par
3Q, 1Q, and 23Q coherences generated by the first2x
pulse for a spinI5 3

2 system versus the first-pulse durationt1,
for various values ofvQ/~2p! and a typical pulse amplitud
vrf/~2p!550 kHz. Equation~56! shows that the63Q coher-
ences have opposite signs. The imaginary part of theQ
coherence is plotted versust1 till 60 ms to show its long
pulse-duration behavior. WhenvQ/~2p!50 kHz, the63Q
coherences are meaningless because they have zero a
tudes. The curve associated withvQ/~2p!510 kHz oscillates
and changes sign; its extrema increase witht1. The
vQ/~2p!550 kHz curve oscillates but reaches its first ma
mum at about t1520 ms. The curve representin
vQ/~2p!5200 kHz oscillates slightly but increases stead
with t1. The curve~not shown! associated withvQ/~2p!51
MHz is essentially zero. In the standard MAS condition, t
rotating rate of a 4-mm diameter spinner reaches 10 k
without difficulty. The approximation of a static crystal du
ing the pulses restricts each pulse duration to 10ms, whose
inverse is 100 kHz. Thus the remaining graphs are rep
sented for pulse durations limited to 10ms whatever the
pulse amplitude. The63Q coherences have large amplitud
whenvQ5vrf . Consequently, in order to have a maximu
signal to noise ratio, the stronger the quadrupole couplingvQ
and the stronger the pulse amplitudevrf . In contrast to the
63Q coherences, the 1Q on-resonance coherence has lar
amplitudes forvQ/~2p!50 kHz and 1 MHz. These two
curves are periodic with a period of 10ms due to the choice
of vrf/~2p!550 kHz. The curves for intermediate values
vQ are not plotted for clarity. For short pulse duration, 1Q
on-resonance coherence is proportional to the pulse dura
t1 and does not depend onvQ . This is not the case for63Q
coherences.

Figure 5 represents the three conversion functi
C2rQ(t3 ,t45lt2) with r53

2,
1
2, and23

2 versus the second
pulse durationt3 for various values ofvQ and the same puls
amplitudevrf/~2p!550 kHz. In contrast to the graphs of Fig
4, these functions have the same sign independently ofvQ
and t3. That is a property of Hahn echoes. Furthermore,
ternating the phase of the second pulse without changing
receiver phase does not change the sign of the echoes.107The
two functionsC63Q are not related whereas the imagina
part of63Q coherences differ only by the sign. This is n
surprising becauseC3Q converts the 3Q coherence gener
ated by the first pulse into thep521 central-transition echo
whereasC23Q converts the23Q coherence generated b
the first pulse into thep521 central-transition echo. Th
difference between the initial and the final orders of coh
ence is 4 and22 for 3Q and23Q coherences, respectively
n

f

pli-

-

z

e-

e

on

s

l-
he

r-

For vQ/~2p!50 kHz the three functions have large valu
~curves not shown forC63Q!. For vQ/~2p!510 kHz, C3Q

has a large amplitude whent3 is between 4 and 8ms whereas
C23Q has a large amplitude whent3 is between 2 and 6ms.
For vQ/~2p!550 kHz, C3Q reaches a peak att355 ms
whereasC23Q has a large amplitude whent3 is between 2
and 8ms. ForvQ/~2p!51 MHz, only C1Q has a large am-
plitude, C63Q become negligible even forvQ/~2p!5200
kHz. These results suggest thatC23Q is less affected by the

FIG. 4. Graphs of the imaginary part of the 3Q, 1Q, and23Q
on-resonance coherencesr r ,2r(t1) for a spin I53

2 system, gener-
ated by the first pulse in a Hahn echo sequence consisting of
2x pulses and in the approximation of a static crystal during
pulses, vs the first-pulse durationt1 for vrf/~2p!550 kHz and vari-
ous values ofvQ/~2p!. j: 0 kHz; thin line: 10 kHz; medium line:
50 kHz; thick line: 200 kHz;l: 1 MHz.
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second-pulse duration thanC3Q. As in Fig. 4,C1Q does not
depend onvQ for short pulse durationt3 only. It depends on
t3 quadratically.

107

Since a Hahn echo amplitude is the product of t
functions—Im[r1/221/2(t1)]C

1Q(t3 ,t45t2) in Eq. ~75!—
one depends on the first-pulse durationt1 and the other on
the second-pulse durationt3, only the echo representing th
refocusing of the 1Q coherence generated by the first pu
does not depends on the quadrupole couplingvQ if the two
pulse durations are short@see Figs. 4~b! and 5~b!#. This ex-
perimental condition remains valid even for a polycrystalli
sample wherevQ presents a distribution due to the differe
orientations of crystallites. As a result, quantitative results

FIG. 5. Graphs of the conversion functionC2rQ ~r5
3
2,

1
2, and

2
3
2! associated with thep521 central-transition Hahn echo ampl

tude for a spinI53
2 system vs the second-pulse durationt3, for

vrf/~2p!550 kHz and various values ofvQ/~2p!. The symbols and
lines have the same meanings as those of Fig. 4.
n

the spin population ratio may be obtained. This is not
case for the echoes of the63Q coherences, whose ech
amplitudes depend onvQ whatever the excitation condition

III. CONCLUSIONS

First, we have derived the general expression of the M
line shift for a half-integer quadrupole spin submitted to t
first- and the second-order quadrupole interactions and
cated in a crystal. The latter is rotating at an arbitrary an
with respect to the magnetic fieldB0. The contribution of the
first-order quadrupole interaction to the MQ line shift is su
pressed either by a high spinning of the crystal at the ma
angle or by the restriction to on-resonance~or symmetrical!
transitions. This limits the study to the second-order quad
pole interaction only.

Then, the true isotropic chemical shift and the seco
order quadrupole interaction have been considered betw
the two pulses and during the detection period. We h
treated with great details the central-transition Hahn ech
in the simplest case of a spinI53

2 system. Four echoes hav
been predicted: 1Q t45t2, 63Q t453t2, and 23Q
t457t2/9 echo. In particular, the latter leads to a 2D hig
resolution spectrum. For the other half-integer quadrup
spins ~I55

2,
7
2, and

9
2!, the echo locations including thos

involved in MQ-MAS methodology have been defined.
Finally, applying the approximation of a static crystal a

considering only the first-order quadrupole interaction dur
the two pulses have permitted us to analyze the echo am
tudes versus the two pulse durations. Only the 1Q t45t2
echo provides us with quantitative results on the spin po
lation ratio. In fact, our numerical approach to determini
the echo amplitudes or the conversion functions can be ea
extended to the other half-integer quadrupole spins.

For future work, it is desirable to remove most of th
restrictions. In particular, the suppression of the approxim
tion of a static crystal during the pulses will permit us
apply longer pulse durations. This may improve the signa
noise ratio. Rotating the crystal at the magic angle with
arbitrary spinning rate will make possible the investigati
of the effects of the spinning side bandes. It is also wo
including the second-order quadrupole interaction and
true isotropic chemical shift during the pulses. In that ca
the reduced Wigner rotation matrix of rank four~Table II!,
not much applied in the present work, will be very useful

APPENDIX

For simplicity, the following notations are used for defi
ing the line shiftsv r ,2r5v r ,2r

fast MAS with v5v21/2,1/2
~2!iso @Eq.

~47!#, j5j21/2,1/2 @Eq. ~53a!#, andd5dCSv0.
For a spinI55

2 system,

v5/2,25/25
25
4 v1 25

12j25d, v25/2,5/252 25
4 v2 25

12j15d,

v3/2,23/252 3
4v2 19

12j23d, v23/2,3/25
3
4v1 19

12j13d,

v1/2,21/252v2j2d, v21/2,1/25v1j1d, ~A1!

with v52~12VQ
2 /5v0!~111

3h
2! andj}72VQ

2 /v0.
For a spinI57

2 system,



55 8423SECOND-ORDER QUADRUPOLE EFFECTS ON HAHN . . .
v7/2,27/25
49
5 v1 161

45 j27d,

v27/2,7/252 49
5 v2 161

45 j17d,

v5/2,25/25v2 11
9 j25d, v25/2,5/252v1 11

9 j15d,

v3/2,23/252 9
5v2 101

45 j23d, v23/2,3/25
9
5v1 101

45 j13d,

v1/2,21/252v2j2d, v21/2,1/25v1j1d, ~A2!

with v52~9VQ
2 /2v0!~111

3h
2! andj}135VQ

2 /v0.
For a spinI59

2 system,
.

.

.

em

.-B

hy

e

ag

R

v9/2,29/25
27
2 v1 31

6 j29d, v29/2,9/252 27
2 v2 31

6 j19d,

v7/2,27/25
7
2v2 7

18j27d, v27/2,7/252 7
2v1 7

18j17d,

v5/2,25/252 5
4v2 95

36j25d, v25/2,5/25
5
4v1 95

36j15d,

v3/2,23/252 9
4v2 91

36j23d, v23/2,3/25
9
4v1 91

36j13d,

v1/2,21/252v2j2d, v21/2,1/25v1j1d, ~A3!

with v52~36VQ
2 /5v0!~111

3h
2! andj}216VQ

2 /v0.
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