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In solid-state NMR, knowledge of the quadrupole coupling constant and the asymmetry parameter from a
powder spectrum allows the determination of the true chemical shift of a line, which can be correlated with the
mean bond angle. However, broad powder patterns are distorted by the dead time of the receiver. The common
way to recover the lost signals is to apply a Hahn echo sequence. As the quadrupole interaction is a single-spin
multiple-energy level interaction, the effects of multiple-quantivQ) transitions during the Hahn echo
sequence are still not well understood. We apply the density-operator approach, combined with the order of
coherence description, to predicting the echo locations of half-integer quadrupolélspgni, 1 and 2) ina
single crystal, the amplitudes of the echoes, and the excitation conditions for obtaining quantitative results on
the spin population ratio. For these purposes, the expression of the MQ transition frequency or line shift is
derived. Between the two pulses and during the detection period, the rotation of the crystal at the magic angle
dramatically reduces the homonuclear magnetic-dipole interaction and completely removes anisotropic spectral
broadening due to the heteronuclear magnetic-dipole and the first-order quadrupole interactions; the spin
system is submitted to the true isotropic chemical shift and the second-order quadrupole interactions only
during these two periods. We treat in a unified way the Hahn edhesding those involved in MQ-magic-
angle spinning methodolodyf the central transition representing the refocusing of single-quantum and MQ
on-resonance coherences generated by the first pulse. During the pulses the crystal is assumed to be static and
only the first-order quadrupole inteaction is considered; the echo amplitudes representing the refocusing of MQ
coherences do not provide us with quantitative results on the spin population ratio. Only that associated with
the refocusing of @ coherence gives quantitative results when the two pulse durations are short. Application
to powders requires high-speed computer averaging of the echo amplitude versus one of the two pulse dura-
tions to extract the quadrupole paramet§&0163-18207)00714-5

. INTRODUCTION which is related to the mean bond angle in a compdtfhd.
Sometimes spectra obtained with several magnetic fidjds
Quadrupole nuclei with a half-integer spin larger than are required for the line-shape analysis. The powder pattern
(1=3, 3, 7, and 3) possess a quadrupole momédt which  of all the lines will be observed iH ) is the dominant
interacts with the electric-field gradie(EFG) generated by interaction with a smalle’qQ/h value. For example,
their surroundings=* The coupling ofQ (a property of the  e2qQ/h=118 kHz for?’Al (1=3) in AICI;x6H,0; the cen-
nucleug with an EFG(a property of the samplés called the  tral line is a symmetrical narrow line superimposed on the
quadrupole interactiohiy . The present paper deals with the symmetrical broad powder pattern of the satellite lih&®r
case wheréH, behaves as a weak perturbation of the Zeestrongere?qQ/h values, the satellite-line powder pattern is
man interactiorH, = — wl ; With wy= By, the coupling be- difficult to detect. But rotating the sample at the magic angle
tween the nuclear spihand the external strong static mag- g with a high spinning rate makes possible the detection of
netic field By. As a result, only the first two perturbation spinning sidebands of satellite lines, whose envelope is
terms ofHg are considered(i) the first-order quadrupole nearly identical to the powder pattern of a static sample.
interactionH (), which is independent oB,, and (ii) the  \whenH ) becomes large, the powder pattern of the central
second-order quadrupole interactiryy’, which is inversely  Jine is mainly observed, that of the satellite lines being
proportional toB,. Quadrupole nuclei are extensively used smeared out over a MHz range. Broad powder patterns are
to probe static and dynamic microscopic phenomena accongistorted by the dead time of the receiver of a spectrometer.
panying reversible phase transitions in sofids. The common way to overcome this problem is to apply a
The NMR line shape of a quadrupole nucleus depends opjahn echo sequence to recover the powder pattern of the
the samplésingle crystal or powdgiand the strength dfig.  central liné'*'2or that of all the lines ife?’qQ/h is not too
The spectrum of a crystal consists of a central line, whosgarge!® However, the setup of experimental conditicisi-
position is not affected by §) and 2 -1 satellite lines, rations, amplitudes, and phases of the two pulses, receiver
whose splittings depend dﬂg). These lines are all shifted phase, interpulse delay, and location of echoegxcite the
by H 8). In most cases, the sample is a powder and its powspin system becomes acute. Missetting one of these param-
der pattern provides us, via line-shape analysis, tweeters can prevent the observation of echoes. For instance,
parameters—the quadrupole coupling consefgfQ/h and  when the interpulse delay is shorter than the duration of the
the asymmetry parameter These two parameters allow us free-induction decayFID) following the second pulse, the
to determine the true isotropic chemical shifig of a line,  echoes are masked by this FID. In contrast, when the inter-
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pulse delay becomes much longer, the echo amplitudes aprilse in the one-pulse experiment also points out the impor-
considerably reduced by spin-spin relaxation phenomena. tance of pulse duration on line intensity. The first maximum
As H, is a single-spin multiple-energy level interaction, of the central-line intensity as well as the associated pulse
multiple-quantum(MQ) transitions between two noncon- duration decrease, but both reach limiting values when the
secutive energy levels as well as single-quant@®) tran-  strength ofH 8) increases®®! The n/2- and 7-pulse dura-
sitions occur simultaneously during the radio-frequefrfy  tions are not related except in two extreme cases wHég‘é
pulses. Fortunately, the shift of the energy levels from thosés either much stronger or much smaller thap.>2=>¢ Fur-
of the Zeeman interaction is only affected by the internalthermore, only a short pulse duration generates a central-line
spin HamiltonianH of the sample. In other words, the tran- powder pattern, in agreement with that predicted by the
sitions between the energy levels of the spin system are cotransition-frequency calculations. Moreover, the line inten-
trolled by both the pulse anid. On the other hand, the spin sity is proportional to the number of spins anddependent
system evolves undet solely between the pulses and dur- of the quadrupole couplingg.*>*>*°As a result, the line
ing the detection period. Therefore, the presence or the abrtensity ratio is a quantitative measurement of the spin
sence of pulses has a different effect on the evolution of th@opulation ratio if the pulse duration is short. Longer pulse
spin system. In the absence of pulses, one is dealing witHurations change the line intensities, and thus the spin popu-
transition frequencies between energy levels related to lin&ation ratio; in the worse case they also distort the line
positions, line shifts, and line shapes in the frequency doshape?®3
main. The frequency-domain studies are dominated by As the one-pulse experiment cannot monitor the MQ
stati¢!'4~28or mechanical rotation of the sample, namely, transition effects, a two-pulse sequence such as
magic-angle spinningMAS),'°~?* variable-angle spinning spin-lock!%*>5"=%%otary-echd'’®*5two pulses with a short
(VAS),%~?" dynamic-angle spinningDAS), 232 or double interpulse delay#®1-%* Solomon ech® " or Hahn
rotation(DOR).3°=23|n the presence of pulses, one is dealingechd"'*"*sequences at least is required to detect the occur-
with signal intensities, locations, and amplitudes of echoes imence of MQ transitions during the first pulse. The second
the time domain. Both aspects are present when the spipulse converts polarizations and coherences generated by the
dynamics throughout the Hahn echo sequence are describéicst pulse to—1Q coherences detectable by an rf coil. The
by the density operatgs.3*~3® When the latter is expressed conversion function has been derived for Solomon
as a matrix in the eigenstateslgf[see Eq(56)], the matrix ~ echoe&®and Hahn echoéfor static crystals. The general
elementsp, . are referred to by two half-integer magnetic approach to determining this function for a particular se-
numbersr andc for row and column. The elements, of  quence remains to be discovered.
the main diagonal are polarizations, those of the other diag- The present paper deals with the Hahn echoes of half-
onal p, _, are on-resonance coherences, and the remaininigteger quadrupole spins, more particularly their locations in
elements are off-resonance coherences. An elemgnis  the detection period, and the excitation conditions for obtain-
also called anr(— c)Q coherence. The MQ transition effects ing quantitative results on the spin population ratio. We
during the Hahn echo sequence are still not well understooathoose to investigate the response of a single crystal. Appli-
The fact that the quadrupole interaction can be muckcation to polycrystalline samples requires high-speed com-
larger than the amplitude,; of the pulses has several impli- puter averaging of the crystal response over all of its possible
cations, namely, the spin dynamics during the pulses cannarientations* In fact, the interactions considered between
be described by a vector model of the magnetization in théhe two pulses and during the detection period determine the
rotating frame3°S of the rf magnetic fieldB,(=w,/y). Ex-  echo locations. For example, when the secular part of the
plicit calculation of the density operator taking into accountheteronuclear magnetic-dipole interactidrl,, whose ex-
H 8) during the pulses is required. For example, the onepression is similar to that of the inhomogeneityBf as in
pulse experiment generates SQ as well as MQ transitionshe original paper of Hahf?,is considered during these two
but an rf coil can only detect1Q coherences, which carry periods,H 8) being present throughout the experiment, the
the same information. By convention thelQ coherences two interactionsH 8) and &I, between the two pulses
have been chosen. As a result, the one-pulse experiment casiephase all the coherences generated by the first pulse. Then
not monitor the effects of MQ transitions: When the phase othey refocus these coherences, via the second pulse, as ech-
the pulse is shifted by, an (r —c)Q coherence undergoes an oes of the central and satellite transitions in the detection
apparent phase change of<{c)e, except for the polariza- period. These echoes are located at odd numbers of the in-
tions, which remain unchangéé:*° Analytical expressions terpulse delay, which is about the durati®p of the free-
of (r—c)Q coherences for=3 (Refs. 41-45 3 (Refs. 46 induction decay of the central transition. Only the central-
and 47, and Z (Refs. 48 and 4Pare available; those for  transition echo, representing the refocusing of th@ 1
=2 require numerical calculations. central-transition coherence generated by the first pulse, pro-
In the case of a spih=3 system, when the excitation of vides us with quantitative results on the spin population ratio
the spin system occurs after the spin system has reachéfdboth pulse durations are shdft.However, the homo-
thermodynamic equilibrium, it is well established that thenuclear magnetic-dipole interactiéiy, - )—a many identi-
relative intensity(integrated area of an absorption limatio  cal spin interaction—should be much smaller thé,,
of two lines in a spectrum is directly related to the relativesince its effects on the echoes are not well known. Up to
proportion of the two site populations of the sample, what-now, the magnetic fiel®, is not strong enough to allow us
ever the pulse duration. We mean that the line intensity ratido give up the investigation of the effects Hfg) on Hahn
quantitatively describes the spin population ratio. For half-echoes. Only some papers deal with this probf@miainly
integer quadrupole spins, considerationl—bg) during the the central-transition echo was investigdfedand in the
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selective-excitation conditiof?. mation of a static crystal during the pulses is proposed. For
Recently, Frydmaret al”®" applied the concept of MQ  simplicity, only H§ is considered during the pulses. The
spectroscopy to half-integer quadrupole spins submitted teesults show that only the echo amplitudes representing the

H&), H{), and the true isotropic chemical shift Hamiltonian refocusing of the Q@ on-resonance coherenpg, _,/, gener-
Hcsand rotating at,, (MQ-MAS). They showed that a two- ated by the first pulse provide us with quantitative results on
dimensional(2D) high-resolution SQ-MQ correlation spec- the spin population ratio.

trum which is as good as that provided by the DAS method

can be obtained. Furthermore, the two chemical shifts of a Il. THEORY

peak along the two axes of the 2D spectrum allow us to

calculate the values @’qQ/h and  unambiguously. Rotat- A. Hamiltonian of the quadrupole interaction
ing the sample atj,, with a high spinning rate reduces for a free nucleus in a uniform space

Hp(-1y considerably and cancels the anisotropic broadening
effects produced bgp1, andH &, which makes possible the
investigation of the effects oH &)+ Hcs. The MQ-MAS

For simplicity, the Hamiltonians are expressed in angular
frequency units. Consider a free nucleus in a uniform space,

approacﬁ7‘7g also applies a two-pulse sequence but with that is, the three coordinate axesy, andz are equivalent.

. . he Hamiltonian representing the quadrupole interadt
complex phase cyf:lmg dependlng on the selectgd MQ COheb—f this nucleus, in%ependegt of qthe C:Ertesian coo%?nate
ences. Phase cycling the first pulse and the receiver allows YSmes. is defined by24
to select one particular pair of (r —c)Q coherences, which '
are converted te-1Q coherences by the second pulse. The eQ
central-transition echoes, representing the refocusing of the ﬁHQ:m E VK§[§(IKI§+I§IK)

—3Q coherence in a spin=3 system or the-5Q coherence ( ) k.

in a spinl =3 system, are located at unusual positions in the —8.1(1+1)] 1)
detection period. As long as the spinning rate of the rotor x€ '

exceeds the central-transition linewidth of the static samplewith VK§=((92U/<9K<9§),:0. . Is the Kronecker delta sym-
synchronization of acquisition with sample rotation is notbol, U is the electrostatic potential at the origiimside the
required. Indeed, none of the authors applying the two-pulsaucleug generated by external charges, ang are the Car-
MQ-MAS approach, which regularly increments the delaytesian components of the EFG at the ori§yinwhich is a
between the two pulses to generate a series of files, has mesecond-rank symmetrical tensor. In the principal axis system
tioned this experimental conditidfi-®* However, this point 35 of the EFG,V is diagonal,

remains to be checked experimentally. Of course, in one-

dimensional1D) NMR, it is harmless if this synchronization Vxx 0 0
is realized, which ensures that the echo is completely refo- v=( 0 Vyy 0 |, 2
cused and no additional rotational artifacts are introd{éed. 0 0 Vz

We treat in a unified way the central-transition Hahn ech- .
oes representing the refocusing of on-resondse@or MQ  With the convention|Vzz|=|Vy\|=[Vxy|. Furthermore, the
coherenceg, _,, generated by the first pulse. The paper isLaplace equatioxx+ Vyy+Vzz=0 holds forV, because
organized as follows: In Sec. Il A, the expressionHyj for the electric field at the nucleus is produced_ by charges
a free nucleus in the absence Bf is derived using the wholly external to thg nucleus. Thus, only two independent
spherical tensor notation, which allows us to desciihg ~Parameters are required,
from one coordinate frame to another using the Wigner ro-

tation matrices. In Sec. Il B, the expressionstof)) and €q=Vzz, ®)
H () of a nucleus in the presence Bf are derived using the

Magnus expansion. Then the second-rank spherical tensors 7= Vxx=Vvy (4)
are expressed as fourth-rank ones using the Clebsch-Gordan Vzz '

or Wigner coefficients. These expressions are used in Se
Il C to derive the MQ transition frequencies in the laboratory

frame or the MQ line shifts relative te, for a static crystal In the coordinate fram&PAS the Cartesian tensor repre-

and a crystal rotating at an arbitrary angle with respe&go ! ) .
For this purpose, the reduced Wigner rotation matrix of ranlffrmgtlon of the quadrupole interactiphq. (1)] takes the

four is established. In Sec. Il D are performed time-domain

calculations. The crystal is assumed to rotatedatwith a €2qQ

high spinning rate. As the anisotropic broadening influenced fiHg= s [B2=-1(1+ 1)+ n(12—12)]. (5
by the first-order quadrupole interaction is suppressed by this 41(21-1)

rotation, onlyH &) andH cs are considered between the two |, term of the operators

pulses and during the detection period. The density-operator

approach, combined with the order of coherence description, [ =Ix+ily, 1_=lx—ily, (6)
is used to predict the echo locations of a spini system.

For the spinsl =%, I, and 2, the echo locations including Ed. (5) become’
those involved in the MQ-MAS methodology are given. On )

the other hand, a numerical procedure for calculating the __€aQ [312-1(1+ 1)+ 1712 +12)]. (7)
conversion functions or the echo amplitudes in the approxi- QU41(21-1) 777 2 M+ ™10

fhe largest component and the asymmetry parameter, respec-
tively, with 1= 7=0.
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The passage from one coordinate frame to another is more B. Hamiltonian of the quadrupole interaction
conveniently realized if the quadrupole interaction of a free for a nucleus in a strong static magnetic field B
nucIeLIE,Bés expressed as a second-rank irreducible spherical 11,4 present paper deals with the case whegecan be
tensor. treated as a weak perturbation of the Zeeman interaction. It is
2 then more convenient to express interactions in the frame
obs ; ; ab .
Ho=No E (—1)4v, K@U, (8a) 3°°® rotating relative to the Iaboratory fram®?® with the
o : angular frequencyw,. Thus the spherical tensor representa-
tion of H? expressed by EqQ.(8a) becomes time
eQ dependeritts3
No=3ri—nn (8b)

Ho(t)=expiH t)Hqg exp(—iH ;t)
In any Cartesian coordinate frade the spherical tensor and 2
; 9,83,84
Cartesian tensor components\6fare related by’ =Ng E (—l)UVZV,UK(Z’“) exp —iuwot).
u=-2

V2,0: % \/EVZD V2,1: —Vy— iVy21 V2,71:sz_ iVy21 (15)

As the oscillations generated by the terms (exp wgt) are

very fast, we can consider only the averaged valdg(t))

(9) of Hg(t) over one Larmor periot| =2/, up to first order,
using the Magnus expansitr®

1 ,
5 (Vax— Vyy) - Iny )

Vj o= %(Vxx_vyy) + inyv Vo o= 2

and those oK a$385-87

1 (u
K@9=1/6[312—1(1+1)], HQOZE fo Ho(t)dt=NgV, K?9, (16)
K@P=—3(10 +141)==31,(2I,+1),

i t t
HQl:_Z_tL fo dtJOdt [Ho(t),Ho(t")]

2
__No

wWo u#
with | . =1,+il, andl_=I,—il,. These two operators are o (2,0) 1 (2.u)
different from those of Eq(6) despite the same notation. It is F (= 1)V 0V, - [KT KT (17
worth noting that the numerical factors in the components ofrjs averaging makes the quadrupole interackigy(t) time
V andK [Egs.(9) and (10)] depend on the authors. Using independent:(Ho(t))=Hgoo+Hoy. Equation (17) differs

Egs. (8)—(10), the spherical tensor representation of theg|ightly with that of Suret al3! Developing the commutators
quadrupole interaction in the coordinate fralidecomes of operators in Eq(17) yields'®

K@= D=L(1,1_+1_1,)=31_(21,— 1),

KZ2=1] 1

1
o KET2=4 (10 5 {BV2uVa K2 K270

Ho=Nof VE[3I12—1(1+ 1)V, o+ 2(1,1 . +1,1,)V, _y N2
eer ’ Lo Hoi=— —2 {36V, oV, 4+ (21,4 1)2
1 1,2 1,2 Q w ! !
=2l F1_1)Vo 1 +3515V, o +317Vo b (1D) 0
- - GPAS - - — 16V, oVy 4l _(21,—1)24+ 36V, oV, o2
Expressing Eq(11) in 3™ and comparing the result with 4 2,0¥2,1° -4z 2 2,0¥2,-20+
Eq. (7) yield the spherical tensor components\bin 3PAS X (14 1) 2BV, Va2 (1, 1)+ 2V, 1V, 4l
z y y — z 7 , z
Vis=3\6eq, VHAS =0, VEA,=leqn. (12 X[41(1+1)—812=1]+ 3V, _,V, 0,
Sometimes, the opposite convention for is x[2I(1+1)-21Z-1]}. (18

taker3r4'27'28'88'89
Usually, only the terms oHq, that commute witH , are
Vyy— Vxx considered. With this simplificationHg, and Hg, are
n= V—zz (13 equivalent to the first-orded 8) and the second-order terms

H ) in the standard perturbation theory, respectivéz,*’
associated with the conditioV,,|=|Vyx|=|Vyy. As a re-

sult, a negative sign appears in frontmfn Egs.(5) and(7) HG =Hgo=Ngs VB[312—1(1+1)]Vy, (19
and in subsequent expressions containyntn particular, the
spherical tensor components éfin 3PAS arg#88:9 N2

HP=Hgy=— —2 {5V, 1V, [41(1+1)—812-1]
Q Q1 2V2,-1V2,1 z
Vio=zV6eq V3i5=0, V;'%=—jeqn. (19) o

1 —2]2—
In the remainder of the paper, we use the first definitios,of T2V2, Vo 2114 1)~ 21~ 1]}
Eq. (4). (20)
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4 Notations J J
4 4 3
| 2 2 1 3 3 mi  m2
2 1 1n2 1/\/5 4 3 2 mq m2 coefficients
1 2| 1z —1W2 2 2 2
2 o|Vas 12 a7
1 1| 2n7 0 377 4 3 2 1
0 2| vana -2 oz 1 1 1 1
2 —1|1A1a Va0 Va7 1M
1 ol Va7 15 —1N14 /3110
0 1| V37 —1N5 114 310 a 3 2 1 0
4 3 2 1 —1 2|1114 —V3r10 Va7 115 0 0 0 0 0
e —1 2 —2| W70 W10 N2z Nas WS
1 —2{1W14 V310 V37 A5 1 —1| J&/35 V255 114 110 —1A5
o -1| V37 1n5 —1W14 3110 0 o|+18/35 0 —2r7 0 1INB
—1  o| V37 -1W5 —1W14 3110 4 3 2 -1 1| Verss V255 114 110 —1Ws
-2 1|14 310 Na7r ~Nws| -2 -2 - -2 2| 1N70 1N10  ~N2i7 25 A5

2
o -2|V314 N2 o
-1 -1| 217 0o 37| 4 3
-2 0|V314a —1n2 V27| -3 -3
-1 -2 12 A2 4
-2 1| W2 -1n2] -4

-2 —2 1

-

FIG. 1. j;,=j,=2, Clebsch-GordafRef. 92 or Wigner coefficientsj,j,m;m,|IM), which can be calculated with theaTHEMATICA
function Clebsch Gordaf{j,,mi}, {j»,my}, {J, M}]. Reading down one column in the table gives the coefficients in the expansion
WJ,M:Em1m2<j1j2m1m2|J M>levm1V12vmz' and reading across one row gives the coefficients W \%

i2:my
=33 m{i1J2mimy|IM)W; . In fact nine tables are shown.

j1.my

Equations(19) and (20), derived in the rotating fram&°°S These coefficients can also be calculated with the
are unchanged in the laboratory framB&®. This is because MATHEMATICA function Clebsch Gordan {[]O,ml},
they commute with the Zeeman interaction. From now on,{j%,mz},{J,M}]. To obtain the expressions df*? and

we shall use the language of standard perturbation theory.®?, we express once more the two prodwets_,V, ; and
The first-order quadrupole interactiéh()’ is independent of  V, _,V, , of HE in Eqg. (20), as linear combinations of the
wp and is an even function df,. In contrast, the second- EFG (W) spherical tensor components, using the Clebsch-
order quadrupole interactioH 82) is inversely proportional Gordan or Wigner coefficients. Then comparing the new ex-
to wy and is an odd function of, as the heteronuclear pression ofH g) with that of Eq.(22) allows us to deduce
magnetic-dipole interactio®l,. Therefore, a strong static that®

magnetic field is required to reduce the effects Hof).

Equation(20) can be rewritten with commutators of opera-

tors ag>%!

\? LEO=210[1(1+1)—2]1,, (233
@___Q (2,1 g(2,-1)
HS 00 {V21Vo o[KH K ]

- L@O=110[3I(1+1)—5I12-1]l,. 23b)
+3V, V, _o[K22 K22 (21) sV10[3I(1+1)-5I5-1]I, (

The two sets of direct products of the spif) and the EFG 0 3.0
(V) second-rank irreducible tensors appearing in(24) can However, the two tensor operatdrS? andL > are unnor-

be expressed as the spih) and the EFG(W) spherical malized. When we express them with normalized tensor op-

109 (3,0 ; 5,86
tensors of higher rank, respectively, using the Clebsch®"atorsP and P>? defined by

Gordan or Wigner coefficiertSreported in Fig. 1Refs. 33

and 93,
3 LEO=L110[1(1+1)—2]PL0, (248
N2
HE = — =2 (£ TW, o(17L3:0—6L19)
wo LEO=_opB.0 (24b)

+35V/35W, o(3L(30+L(10)
— £5V2W o(3L3 0 — 4L (101 (220 EQq.(22) is rewritten as



2
N[

wo | 57

14
Wi P30 =55 5 [a +1)-3

6 V14
XW, P10 — — W, PEO+ —[1(1+1)— %
4,0 3E V20 35 | 2]
3v2
X W, P10+ = W (P30

+i5 [|(|+1)—%]WO,OP<1'°>}. (25)

5\5

Equations(20), (22), and(25) are three ways to express the

second-order quadrupole interaction. In the next section the

three tensor componenW, o, W, andW, o in Egs. (22)
and (25) will be related to the two quantitiesq and 7.

C. Multiple-quantum line shift

The (r—c)Q transition frequency between two energy

levels|r) and|c) in 3'* becomes anr(- c)Q line shift with
respect taw, (angular frequency 0E°Y in the spectrum. In
angular frequency unit, thig - ¢)Q line shift w, . is defined

by
o =(r|(HY'+HE) ) —(cl(H +H)|c) = »'!)

+ %, (26)
The (r—c)Q line shift produced by the first-order quadru-
pole interaction or ther(—c)Q first-order quadrupole shift

o) is given by

(1)_

r,c

Noz VB(r?=c*)Vs . 27

For symmetrical transitionc= —r) this shift is null. This
fact leads to the development of MQ-MAS
technique®-8294-%"and overtone NMR3%€ The (r—c)Q
second-order quadrupole shii{? is given by

(0]

+ 2—18 V1AW, AZ % Wo,oA<°>] ., (29
with
AW(1,r,c)=18I(1+1)—34(r’+rc+c?) -5,
AP r,c)=8l1(1+1)—12(r?+rc+c?) -3,

A9 r.c)=1(1+1)—3(r>+rc+c?). (29

For symmetrical transition the relationships of E89) be-
come identical to those of Amoured%In the remainder of
the paper, anr(—c)Q shift is shorten as a shift for simplic-

ity.
1. Static single crystal

For a static single crystal, the tensor componénf in
Egs.(19) and(27) is related to those expressed3fi*> by
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(a)

PAS
)Y

(c)

VAS

ot S

FIG. 2. Euler angles for stati@) and variable-angle spinning
(b), (c) experiments. Ina) these angles orientate the strong static
magnetic fieldBy in the principal-axis-system coordinate frame
3.PAS of the electric-field gradient tensak;and 8 are also the polar
angles ofBy. In (b) the anglesy,, B, and ¢, orientate the spinner
in the coordinate fram&PAS and in(c) the polar angless,t and 6,
show the direction 0B, in the coordinate fram&"A° of the spin-
ner.

2
Vao= 2 VEuD(@.B.e)

% J6ed (3 cogB—1)+ 1y sirB cos],
(30

the Wigner rotation matri®® («,,¢) can be found in text
books838899-101The first two Euler angles and 3 are the
polar angles 0B, in SPAS[Fig. 2a)]. The third Euler angle

¢ does not appear in EQR0), becausd,, is a symmetry axis
for the spins. Therefore, the first-order quadrupole interac-
tion [Eq. (19)] becomes

HY =3wo[315-1(1+1)], (31
with the quadrupole couplingg defined by
wo=3Q0[3 codp—1+ 7 siPp cos], (323
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TABLE |. Principal-axis-system elements of the EFG spherical teWg8oas a linear combination of
products of those of the second-rank EFG spherical teNsousing the Clebsch-Gordon or Wigner
coefficient$? reported in Fig. 1(Refs. 31 and 38

K,n WEAS
0,0 J5
1 5
E [2(V35)7+ (V35)%] To (eD*(7°+3)
2,0 V14 1
—— [2v25)2 = (V2] NviAka)
2,x2
, 4 3
L vy NER
4'0 2 PAS, 2 PAS\ 2 1 2 1 2
\/?) [(V2,2 +3(V2'0) ] \/ﬁ (eq) E i +9
4,+2 6 3
— VEASVRAS —=(eq?y
\/E 2,2V2,0 2\/7
44 (VB ieq)®r

e2qQ 2. Rotating single crystal

QQ:eCﬂ\b:m. (32b)

For a single crystal rotating at an anglewith respect to
By, this experimental condition corresponds to that of
VAS,* 2" the componen¥/,, in the first-order quadrupole
shift [Eq. (27)] is related to those expressed3f*S, V543,

Sometimes, a minus sign appears in frontzoih Eq. (329
even when the first convention fer[Eq. (4)] is applied; this
e e oL o e TGS, er® "By two Wigner rotaion matriesD (a6, ) and
: . o D@(w,t,6,,¢,) as

quadrupole couplingug is equal to half the standard ohe, rerre

which means that two consecutive lines in the spectrum of a
single crystal are separated byo, if the second-order
qguadrupole interaction is zero. For polycrystalline samples,
the quadrupole coupling constaeftqQ/h and the asymme-

2

VAS PASH (2
Vol 21_22_2 VEI DA (a1, B1.¢1),

(363

try parametery are the relevant quantities.

The tensor componen®, ,, W, o, andW, q are related to
those expressed BFAS WE* (Table ), by the Wigner ro-
tation matricedD @ (,B,¢) as

X

Wao= 2 Wois.DE0(a.6,¢). (33

The reduced Wigner rotation matrik?(B) associated with

2
Vj.0= 22 V\zlﬁSDf())(wrtvﬁr ' @r).

u=—

(36b)

The first Wigner rotation matri©® (e, ,3,,¢;) describes the
orientation of the spinner fixed &S with the Euler angles
ay, By, and e, [Fig. 2(b)]. The second Wigner rotation ma-
trix D®(w,t,6, ,¢,) describes the orientation &, in the
coordinate frame of the spinn&""®, the polar angles,t

D“(a,B.¢) is defined in Table Il. The matrix elements can and ¢, are those 0B, [Fig. 2c)]. The third Euler angle,

also be obtained using th@ATHEMATICA program written
by zare®® Equation(28) becomes

0,1,2
r—c

2)—-__ "2 (2k)
0= G 0§ 2 A1)

k

Xu;k Bak,2u( 7 Db (. B, ¢), (34)
with%*
Boo(m)=—% (7?+3), Boo(n)=1 (7°—3),

Boso(m)= 1 76, Buo(m)= sia(7°+18),

1
By ==2:7J10, B, . =—— 7% (@3
a2 =157V10, Byg(n) Nk (35)

will not appear explicitly for the same reason as in the case
for static experiments. Equatiq27) becomes

2
wg,lgVAS: NQ% \/g(rz_cz) 22 DEJZ,E)(wrtaar ' @r)
W=

2
X 2 VEIDfanBren). (37)

Similarly the component#/, o, W, o, andWj 4 in the second-
order quadrupole shift are related to those express&d‘f

WEAS (Table ), by two Wigner rotation matrices
D&X)(al”gl,(pl) and D(zx)(wrta b, ¢) as

(383

’

X
VAS _ PAS (2
Wa, u—j:E_X W55 D501, B, 1),



55 SECOND-ORDER QUADRUPOLE EFFECTS ON HAH. . . 8413

2

Q
Wa0= E WHSDE (ot 0rg). (38D A= =R ar[1(1+ 1) =37 4By ol )]
Equation(28) becomes +2r[81(1+1)—12r2—3](3)[By.o 7)dE,
2X
r-c X(By)+2B d} e
@uas__ __° : E A(Zx(l,r,c) 2 D(29 (B1) 2.2(1m)d5 o(B1)cos 24 ]
X Py(cost,)+2r[181(1 +1)—34r2—5](3)
X
X(@rt0,90) 2 Boai(MDE (a1 Brig). X[Ba o 7)d5't( B1) +2B4 o 7)d5'y
(39 X(B1)0021+ 2By 4( 7)diy
The terms exp-iuw,t) of D @) (wt,6,,¢,) in EqQ. (39 X(B1)cosda;|P4(cosd,)}. (42)

give rise to spinning sidebands in the frequency domain. Th

amplitude ofnth sideband depends on d,),'°? and is For the central transitiofr =—3) Eq. (42) becomes

thus suppressed at high spinning rate. Underhiigh spin- 02
ning condition, that is, upon ignoring oscillating terms such w 2)fest VAS 2r0+1)- 3{iBg o(7) +8(3)
as exp— IU((u 'g) due to the rotation of the spinner, only the o
elementsD ¥ (w,t,6, ,¢,) of the Wigner rotation matrices 2) (2)
D9 remaln nonzero, that is, the elements with the subscript X[Ba,ol 7)dg ol B1) +2B2,A(7)d3 0
u=0 in Egs.(37) and(39). As a result, the two angles,t 1
and ¢, will not appear explicitly in the expressions of the X(B1)cos 2, JP(cofr) +18(3)
Iégenzhlft. The first- and second-order quadrupole shifts be- X[ By ol 1) d5 Y B1)+2B4 o 7)d5Y
X(B1)C0S201+ 2B, 4( )dS'y
(i VA= Nq 3 VB(r2—c?)dZy( o, ) E V5D X (1) cos4a;]P4(cosd, )}, 43)
with
X(al!Bla(Pl)! (403
L@svas. TS o . - 7 Boo(m=—5% (3 n*+1), 4Byo(m=% (5 n°—1),
as’ X X
) ~ Fae QQXEO A(1,r,c)diZs , .
X 4B, +o(7m)= ﬁ 7, 9Bao(m) =75 (E 7+ 1),
xwr)jgx Box2i(7)D50(@1,B1,¢1)
r— _ _ 2
_ 0 9B, - =———17, 9B,. =— 7"
= 2w0 Q {A( ) (1,r,€)Bg o 7) 4,-2(7) 14\/E 7 4,+4(m) 4\/% 7

(44

(2) (2)
FABLT, ) 6)[B2.ol 7)do ol B) Equations(43) and(44) are similar to those of Zheret al,?’
+2B; o 7)d2Y B1)cos2x, ]+ AW (1,r,c)dy’)  except they applied the second convention 4diEq. (13)].
@ @ Compared with those of Llor and Virlé8 who also used the
X(6r)[Ba,ol m)dg o(B1) +2B4 o 7)d3g second convention foy, the relationships of Eq44) must

be divided by 9, because they used the coefficign§ 9n-
X(B1)c0S201+ 2By 4( 7)dy*( By)cOSAay ]} stead 003 % Eq. (43). Y :
(40b)

The three reduced Wigner rotation matrix elemeﬂﬁé(e ),
d§3(6,), andd '(6,) are identical to the three Legendre

3. Second-order quadrupole shift of the center of gravity
of a spectrum

poiynomials Py(cos,), P,(cosd,), and P,coss,), For a powder sample, the absorption line of the central
respectively?’?% 3,100,103 transition(—3,3) in the presence of the second-order quadru-
pole interaction has a characteristic normalized shidpg
Po(cos,)=1, (418  depending on the experimen(static, VAS or MAS in the
limit of high spinning ratg and a center of gravitw 22,
P,(cosd,)=3(3 cog6,— 1), (41b  independent of the experimer{ttatic, VAS, DAS, DOR, or

MAS). From the definition of the first momeiM ; with re-
P4(cos;)=3(35 codh,—30 codf,+3). (410  spect to a frequency, given, in the rotating fram§°'°S by

For symmetrical transition Eq40a reduces to zero as in .
static experiment, Eq(40b) becomes identical to that of M1=f (0—wy)f(w)dw,
Amoureux” or Frydman and Harwoot} o



TABLE II. Reduced rotation matrix elements{i)(8) of the fourth-rank Wigner rotation matrio®(a,8,¢), whose elements are defined By (e.8,¢)=exp(—ima)d ()
exp(—ine). For simplicity, c=cos3 ands=sing. These reduced matrix elements are related by the symmetry relatioofligs) = (—1)™ "d {(8), d {%(B) =(—1)™ "d ¥, _.(8),

andd®,(B)=(—1)< "d®_ (8+ 7), (Refs. 27, 86, and 100

m 4 3 2 1 0 -1 -2 -3 -4
1 ) 7 14 70 14 7 2
E(1+°)4 —E(1+c)3s §(1+c)252 —g(1+c)s3 1—Cs4 —g(l—c)sﬁ %_(1—@252 —g(l—c)f’s 1—6(1—0)“
o0 L V14 7 V35 7 V4 1 v
§(1+C)3S —§(1+c)3 T(1+c)2 -5 (1+0) chs3 5 (1-9) 77(17(:)2 §(1—0)3 —§(1—0)3s
X (3—4c) x(1-2c)s X (1—4c)s? X(1+4c)s? X(1+2¢)s X (3+4c)
2 7 14 1 vz 10 V2 1 14 7
%—(Hc)zsz —g(1+c)2 ‘—,r(1+<:)2 *3(1+C) g(kz—l)sz fg(lfc) 4—1(170)2 —g(l—c)z ?(1—0)232
X(1-2c)s  X(7c¢®—7c+1) X(14c®-7c—1)s X(14c?+7c—1)s  X(7c®+7c+1) X(1+2¢)s
1 14 7 V2 1 5 1 V2 7 14
g(1+c)s3 —%(l+c) §(1+c)(14c2 §(1+c)(3—60 _\/T—UCZ_S)CS —g(l—c)(3+60 —g(l—c)(14c2 %(1-@ —g(l—c)s3
X (1—4c)s? —7¢c—1)s —12c2+28c%) —21c¢%-28cd) +7¢c—1)s X (1+4c)s?
0 V70 V35 V10 V5 1 o4 oo V5 V10 V35 V70
E 4 TCS3 T(?CZ—l)SZ 7(702—3)03 5(35(: —30c°+3) _7(702_3)05 T(?CZ—].)SZ —TCS3 ESA'
-1 14 7 V2 1 5 1 V2 7 14
g(1_°)53 \/?_(1_0) E(l—c)(14c2 —g(l—c)(3+6c \/T—(7c2—3)cs §(1+c)(3—6c —§(1+c) —\/?—(1+c) —g(lJrc)s3
X (1+4c)s? +7¢c—1)s —21c2-28cd) —21c%+28c%  X(14c®-7c—1)s  X(1—4c)s?
-2 7 14 1 V2 10 V2 1 14 7
g(l_c)zsz g(l_c)z Z(l—c)z E(1—c)(14c2 gacz—l)sz §(1+c)(1402 Z(1+c)2 g(1+c)2 \/?—(1-%0)232
X(1+2c)s X(7¢?+7¢c+1) +7c—1)s —7c—1)s X(7c?—7c+1) X(1-2c)s
o L V14 7 V35 V7 V14 1 v
T (1—p)3 “(1—_p\3 _ = 3 _ - 3
g (1 c)’s g c) T(lfc)z 5 (1-©) Tcs3 -5 (1+0) fT(1+c)2 g (10 g (1+0)'s
X (3+4c) x(1+2¢)s X(1+4c)s? X (1—4c)s? X(1-2c)s X (3—4c)
—4 1 V2 7 14 70 14 7 vz 1
E(l—c)“ E(l—c)?’s g(l—c)zsz g(l—c)se‘ 1—Cs4 g(lﬂ;)sﬁ %_(Hc)zsz 3(1+C)3s E(1+C)4

viv8

NV ‘d TvOSvd



with

fx f(w)dow=1, (453

(2)iso

M, becomes zero when, is the center of gravityw%))5'1/»

The latter is not located at the Larmor frequency. For this
reason, this deviation is called the second-order quadrupole

shift of the center of graV|tyu(2) 0 of a spectrum:

(2)iso

® 15 172 (45b)

=f (,0(_2:)|_/2’1/2f(w)d(0.
Equation(45h) means thatu(z)l',sz"l,2 is the average value of
the line positionw?, 12,12 In this paragaph, we extend the
definition of center of graV|ty to any transitiorr,€). Of

course, in 1D NMR onlyw®?, , is observed. On the other
hand, 0{% is extensively used in 2D MQ-MAS spectra.

(2)|so

Theoretlcally oM is defined by the same relationship in-
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b b
H(a) H( ) H(a) H( )
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TFID 9‘52 To 3t
<>
FIG. 3. Pulse sequence, Hamiltoniaft$®=H+HE; H®

=Hcgt HPBSIMAS) “andp=—1 central-transition Hahn echoes for
a spinl =3 system. Echoes are depicted schematically by arrows,
whose heights and widths are meaningless. The edhagBb, and

Ec represent the refocusing ofQl, —3Q, and =3Q on-resonance

dependent of the kind of experiments, that is, by mtegratlngCOherences generated by the first pulse, respectively.

over all possible crystallite orientations of the second-order

quadrupole shifew? with equal probability 14m):

1 1 2w 2)
yp. f_ld(cosﬁ)fo w

2)iso_
(2)iso_ r'cda

W ¢
r_

T

2w (I’r!C)BO,O(ﬂ)

=r—Q o[l (1+1)=3(r>+rc+c?)]

X(5)(1+37°), (450

where we used the expression of?)™ VS defined in Eq.
(40b). For symmetrical transition Eq45¢) simplifies to

0 25°=— 03[1(1+1)-3r2(3)(1+37D). (46
For the central transition E@46) reduces to
. 302
ol 1gg, NI+ D=1+ 477 (47

on-resonancéor symmetrical transitions; that of the second
order is simpler. Equatiof48b) is the result of frequency-
domain calculation and will be extensively used in the next
section to determine the locations of the central-transition
Hahn echoes of a spin=2 system submitted to the second-
order quadrupole interaction and the true isotropic chemical
shift between the two pulses and during the detection period.

D. Locations and amplitudes of the sping Hahn echoes
for a single crystal rotating at magic angle
with high spinning rate

The Hahn echo sequence is shown in Fig. 3. Our aim is to
determine the locations and the amplitudes of the $pin-
central-transition echoes in the detection period. In practice,
these echoes are the only ones detected when the sample is a

powder. For instance, the produce?qQ/h)\1+27%? is
about 2 MHz for the three crystallographic sites®Rb (I
=3) in RbNO;, only the central transition echoes were ob-
served wih a 7 Tmagnetic field>"88°0nce the matrix el-
ementp51,2,1,4t1,72,t3,r4) of the echo density operator is
determined, the& andy component of theelative echo am-
plitudes are defined By*

Our second-order quadrupole shift of the center of gravity of

a spectrum and that deflned by Medek, Harwood, and

Frydmar” v§ are related byiw®,5%,=2mv§.

In MAS expenments the angl®, corresponds to the
magic angled,,, the root of P,(cosd,)=0. Under the high
spinning condition, the first orddisee Eq.(40g] and the
second-order quadrupole shifteee Eq.(40b)] become

(483

(1)fast MAS_
Wy ¢ O

o2fast MAS_ _ (
I‘ C r

r—c
00 e QAT [Ba oG B1)

+2By o 7)d5 Y B1)cOS2y + 2B, 4( 7)dyh)

X(81)c0sda]P4(cosh,,). (48b

The first-order quadrupole shift is reduced to zero either byressed in the eigenstatés of I,

the high spinning of the crystal &, or by the restriction to

Ex(t1,72,t3,74) +iE(ty, 72,t3,74)

Al +@ara

Tlarn@+n

12,148, 72,t3,74). (49

In the remainder of the paper, we consider a Spie
system in a crystal rotating &, with a high spinning rate.
Therefore, homonuclear magnetic-dipole interaction is con-
siderably reduced. Spectral broadening effects due to hetero-
nuclear magnetic-dipole interaction and chemical shift an-
isotropy are averaged out as well. Moreover, only on-
resonance coherencps_, developed at the end of the first
pulse are considered, because their transition frequencies are
equal to that of2°?$1%* Throughout the paper, the matrices
associated with Hamiltonians and density operators are ex-
. A matrix element is
referred to with subscripts: two half-integer magnetic num-



8416 PASCAL P. MAN 55

bersr andc associated with a row and a column of a matrix H@=H+ H<Ql>static, (510
[see Eq(56)]. The orderp of an (r —c)Q coherence; . is . ] . ;
defined byp=r—c. A pulse may cause coherences to pewhen experiments are pgrformed at high magne_t|c ﬁlgl.a _
transferred from one order to another whereas free precedWo —x pulses are considered. These assumptions are iden-
sion preserves the coherence ofé&t*10 tical to those of our previous study on a Hahn echo sequence
This section consists of three parts: In Sec. IlID 1, to@Pplied to static crystals.
follow the evolution of the spin system throughout the ex-
periment, we employ the density-operator approach and the
coherence-order description. The interactions during the two
pulses do not need to be defined explicitly for the moment. For a spinl =2 system submitted to the interactions de-
During the interpulse delay, and the detection period,,  fined in Eq.(50a, the line shiftsw/3y M43 associated with
the HamiltonianH® of the spin system, expressed in the the coherence ordar=3(G<—2), 1 (s—12), =1 (—=1sd),
rotating frame3°" of the central transition, consists of two and—3 (—3<3) are

1. Description of the evolution of the spin system
using density operators

terms:
fast MAS _ (2)iso 7 _
w32 532~ 30515 121 5€-1/2,1/2— 30cswo, (529
H(b):HCS+ Hg)fast MAS, (50@

with Hes=—dcswol ;. because the contribution of the first- S MAS_ _ 2jiso s (52b)
order quadrupole interaction to the line shift is canceled by 1/2,-112 -1/2,1/2~ §-1/2,1/2~ 9cs®o,
the high spinning of the crystal. The analytical expression of
H{@)ast MAS s unknown but it is defined by the correspond- QESLMAS_ @iso |, vs (520
ing line shift or second-order quadrupole shg. (48b)], ~1/2,1/2~ ®~1/2,1/2" §-1/2,1/2T Ocs®o;

; .

{2t MASS (| (2Tast MApy — (o[ HZ)Test MAScy, ©®31250= — 30 A% 15— §€ 112,112t 38cswo,

(50b) (529

. . respectively, with
In Sec. Il D 2, we derive the central-transition Hahn echo P y

locations as well as the associated echo amplitudes, whose

maximum is modulated by a phase factor. One of these ech- Qé
oes is involved in the MQ-MAS methodology. & == —rAD(,r,—1)[Byo 7)d5HB1)
In Sec. Il D 3, a numerical procedure for calculating the @o
conversion functions or tf;e echo amplitudes is proposed and +2B, o 7)d5 N B1)cos2uy + 2B, 4(7)dyYy
illustrated for the spin =3 system. For simplicity the two
pulse durationg; andt; must be much shorter than the in- X (B1)c0osda]P4(cosh,,), (539
verse of the spinner angular velocity, so that during theOr simpl
pulses the spinner looks static. In other words, the interac- Pl
tions are time independent during the pulSebinder these w;e;sét’l\/IpA/g:wE)%f?_stp/l\gAs_ POcswo. (53b)

assumptions, the Hamiltoniad® of the spin system con-

i f f ing th I .
sists of four terms during the pulses, For a spin I=3 system, 5—1/2,1/20‘2796/“)0 and

0250, =—903(1+37)/(10w,). The line shifts for the
H@=H + Hogt HDSEtC, (2)static (519  Other three half-integer quadrupole spihs-3, 4, and3) are
Q Q reported in the Appendix.

. ] . We follow the spin dynamics from the thermodynamic
HE®*is defined by Eq(31) and HE)** by Egs.(20),  equilibrium to the detection period using density operators.
(22), or (25). If Eq. (20) is used forH&)%", the following  |n the high-temperature approximation, the initial state is de-
expressions are requiréd: scribed by the density operatpfO)=1,, whose coherence

3 22 1 ) order isp=0. At the end of the first pulse the density opera-
V,V_1=—2e?q?{[ — 3(7 cos2a)?+ 27 cos2a—3]cod B tor is defined b3

+[3(n cos2w)®~ 27 cos2a— 5 n*+3]cos'B p(t) =T exp(—iQt) TTp(0)T expiQ)T!, (54
+17%(1-cof2a)}, whereQ and T are the diagonalized form df® and the
transformation operator related by
Vo= 3G (n costm®- § 7 cosau+ oot S 55
+[— 12(9 cos2m)?+ 57— {]cos B Equation(55) is solved numerically using standard diagonal-
+ (5 cos2w)?+ Ly cos2u+ 2} (51b) ization procedure, which is applicable for any half-integer

, quadrupole spin and whatever the complexityH3®). For a
As a first approach, we neglelleig)“"j‘“C andH g during the  spinl =3 system, the density operatpft,) has the following
pulses and consider the remaining two terms, general matrix form:
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3) 13) ~3) —3)
<%| <|§/2,73/2(t1)> <|§/2,1/2(t1)> <|3;/2,71/2(t1)> _i<|§>/2,73/2(t1)>
<%| <|Ii/2,1/2(t1)> <|%/2’_1/2(t1)> —i<|§/2’_1/2(t1)> <|J;/2,—3/2(tl)>
| e T T ) B (o () SR TR () %9
(3L ) (32 t) (TR R) -0 ()

where (1 °(t1))=Tr[p(t1)! 4] indicates a nonequilibrium matrix forms. In particularpp(tl)zplp(tl). As we restrict
state of phase coherence between the two connected statge study to on-resonance coherences developed at the end of
Ir) and |C2- The spin operatorsl ;¢ were defined the first pulse, Eq(57) simplifies to a sum of four terms
previously?*’ The matrix elementl "(t,)) is an ¢ —c)Q p3(ty),

coherence andl ';°(t;)) a — (r —c)Q coherence. According P

to MQ transition formalisn?/ the matrix of Eq.(56) can be

decomposed as a sum of seven simpler matricgt;) de-

fined in Table III, -3,-1,1,3
pS(ty) = % pa(ty), (58)
3
plt)= 2 pp(ty). (57)

where pg(tl) contains only a single nonzero element
The analytical expressions of the density-operator compobp,] /2, - pi2 Of the corresponding matrix, . The superscript
nentspy(t,) are unknown. They are defined only by their s means “simplified.” In particularp $ 5(t;) =p-5(t;), and

0 0 0 0 0 0 0 0
0 0 —i(I¥>13 o 0 0 0 0
S y s
ty)= , > (ty)= . _ . 59
p1(ty) 0 0 0 0 p24(ty) 0 |<|;/2, 1/2> 0 0 (59
0 0 0 0 0 0 0 0
At the end of the interpulse delay, the density operator becomes
-3,-1,1,3 -3-1,1,3
Ps(tlaTz):eXli—iH(b)Tz){ % pa(ty) [exp(iH ) 7p) = % prtyexp —inops Y03), (60
or in the matrix form,
i 0 0 0 —i(13273(11)) ]
. fast MAS
X e~ '7293/2,-3/2
0 O _i<|§/2,*1/2(t1)>
. fast MAS
s X e 72912 ~1/2 0
ty1,7)= . _ 60b
p(ty,72) 0 |<|)1//2, 1/2(tl)> ( )
% e i720"92"0% 0 0
(1527 (t))
| xe 10525 0 0 0 |
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TABLE III. Matrlx representation of the density operator componefjt,) at the end of the first rf
pulse for a spid = systemtl is the first-pulse duration angl is the order of coherence.

0 0 0 —i(¥ 33 0 0 0
000 0 0 000
ps(ty)= 00 0 0 v p-s(ty)= 0 00 0
0 00 0 i1%7%% 0 0 0
0 0 (%713 0 0 0 0
0 0 0 (112302 0 0 00
pa(ty)= 0 0 o | p-a(ty)= (327172 0 0
00 o (7 00
0 (13213 0 0 0 0 0
0 0 i 0 (1¥%Y3 0 0 0
pa(ty)= 0 0 0 (-ve-3my | p-1(t)= 0 i(12/27172) 0 0
0 0 0 0 0 0 (1742732 o
<|§/2,—3/2> 0 0 0
(! 0 0
po(ty)= 0 0 BLISEN 0
0 0 _<|§/2,—3/2>

TQe effect of the second pulse on the density operator p° 118, Ta b3, 74) = P 12 1y ts, T3, )
p>(t1,7y) is described by et VAS
X eXp(— | TqWw ai/z 1/ (65)

p(ty,m,t3) =T exp —iQty) TTpS(ty, ) T exp(iQty) TT.

(61) o : _
which is the only coherence detectable in our assumptions.
As a pulse affects only the spin part of a Hamiltonian, Eq.The matrix elemenp * 1/2,1/4t1,72,13) is that of the density

(61) can be rewritten as operatorpS(t;,7,,t3) at the end of the second pulse. Using
-3,-1,1,3 Eq. (62), Eq. (65) is rewritten as
Pt T te) =T exp(—iQt) T X pp(ty)
' pS 1121t 2,13, Ta) = XP( — i 740 $2" )
xexp(—irwgs M03) | TexpiQty) 7T 3113

X % [Pg(tlvts)]—llz,llz

-3,-1,1,3
= 2 stuwer-ineit ), X exp(—ims 1), (66)
(iR _
e four coherence ordef(s-3, —1, 1, and 3 present at the
with end of the first pulsdEq. (63)] contribute to thep=—1
central-transition coherence in the detection period.
po(ty,ta) =T exp( —iQty) TTpR(t) T expliOty) TT. For p=1, because™), /5= — w45, an echo appears

(63 at r,=r,, whose expression is

During the detection period, the density operator becomes

fast MAS
pt 12,104, T2, T) =exXd —i( 14— Tp) 0575

pS(ty, 73,3, 74) = exp —iH® 1) pS(ty, 7, ta)exp(iH P 7,).
64) X[p(t1.t3) ] 1/2,1/2- (67)

2. Locations of the Hahn echoes in the detection period g ochg s represented schematically in Fig. 3 by the arrow

We are concerned with the=—1 central-transition co- Ea. Its maximum is independent mf@i}z'f’{’,*zs. Applying Eq.

herence in the detection period, (63), Eq. (67) becomes
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pEl/Z,l/z(tl Tota, 7= 1) =[p3(t1,ta) - 112172 PE1/2,1/2(t1 172,83, 74)
=[p34(ty t3) 1, 1dexd —i(7y— 37’2)“’%‘/?,1/
Xexd —i74(€-1/2,1/2F Scswo) ]

Xexd —iTa(—$& 1/2.1/2+30cswo) ]

=[T exp(—iQty) TTp(t)T
Xexp(iQtz) T _1/2.1/2.  (68)

It shows that the second pulse refocuses as an echo the co- ~ +&XH —i(74— §72)E 1212l —i (0217 1)
herence associated with the single nonzero matrix element of . (2)iso
p3(t,), the p=1 central-transition coherence generated by * dcswo) JeXH ~imo( =30 37 15T 30cswo) I}
the first pulse or p3(ty)]1/2—1/0= —i(1 ;> Y4(ty)). It is (72)
called in the remainder of the pape®1lr,=7, echo. . _

The coherence ordes=—1 does not generate an echo, Both echoes represent the_refocusmg ofsphe 3 coher-
because both exponential functions fo=—1 in Eq. (66) er!cea,gfir;,e;ated by t_he first _pulse op —['3("1)]—3/2’3(2

=i(ly"“"%(t1)). The first echo is located a;=3r, and is

differ only by the durations, and 7: also represented in Fig. 3 by the arrdie. It is called the
—3Q 7,=37, echo. In contrast to the@ 7,=3r, echo, this
E = —i fast MAS does not depend on the second-order quadrupole shift of
p- t1,7o,t3, ) =exgd —i(14+ 1) 0 one pend : aq p
zadty T2t Ta A the center of gravityfirst term in Eq.(52d)] but depends on
X[pf(tl,t3)]_1/2’1/2. (69 the other two terms of Eq52d) as a phase modulation:

- . L PE1/2,1/2(t1a7'2rt3a7'4:37'2)
For p=3, an echo is predicted but it originates only from

iosne of the three terms contained in E§23. Its expression =[pZ5(t1,ta) ] 1/2.1/2
Xexp —ima(FE 172,12t 65cswo) . (73
P51/2,1/2(t117'21t3!74) In two-dimensional SQ-Q correlation spectroscopy, the
. s spectrum located at®Bswy along theF; dimension has a
=exf —i(74=372) dcswoll p3(t1,t3)]-1/2,1/2 linewidth proportional t05¢ 11> As the £3Q 7,=3r

. 2)iso echoes cannot be observed independently, their maximum
XX —i (012 12t €-12,119)] carry the same information as a free-induction decay. To
xexd —i o L Te ) 7 observe them, the interpulse delaymust be large enough
XL I (B0=12.02t §6-212212)) 70 so that the Q 7,=7, echo and thet3Q 7,=37, echoes are
separated. Equatiof72) shows that another echo, located at
This echo is located at,=3r, and is represented schemati- -,=7+,/9 (Ref. 76, is predictedsecond term in Eq(52d)].
cally in Fig. 3 by the arronEc. At its maximum, the echo  Thijs echo is represented schematically by the arEdwin
does not depend drcs[last term in Eq(52a], but depends  Fig. 3. It is called—3Q 7,=77,/9 echo. At its maximum, the
on the s.econd—order quadrupole interaction terms as a phagenho depends only on two shifts, the second-order quadru-
modulation: pole shift of the center of gravity of a spectrum and the
chemical shift as a phase modulation:

E —
P-1r2,udt1, 72,13, 74=37) PE1/2,1/2(t1 2,13, 74 =5 7))
s
=[p3(t1,t3)]-1/2,172 =[pS4(t1.t)] 1212
. 2 i .
xexd —i rz(6w(,i'f2°’1,2+ TE 12,191 Xexd —ir(— RS0+ 2 5cqwo)]. (74)
(71)

This phase modulation leads to the development of MQ-
MAS methodology.®~82%4-%4which gives the same informa-
This echo represents the refocusing of fixe3 coherence tion as the DAS approacli. The line is located at
generated by the first pulse or p¥(t)]sn 32 — 2Ryt Focswe along Fy without linewidth, which
=—i(1327¥2(t,)). It is called 3 7,=3r, echo. We sup- leads to a high-resolution spectrum aloRg. It is striking
pose the acquisition of the time-domain signal starts at théhat among the four echoes predicted above, only the maxi-
top of the echo. In two-dimensional S@3correlation mum of the usual ® =,=7, echo is not modulated in phase.
NMR spectroscopy where the, dimension corresponds to As the spin-spin relaxation, not explicitly considered in
the usual SQ axis related tg and theF; dimension corre- our assumptions, drastically reduces the amplitudes of the
sponds to the MQ axis related tg, the center of gravity of echoes occurring far from the second pulse, it is advanta-
the spectrum along, is located at 255, instead of  geous to study the-3Q 7,=77,/9 echo rather than the3Q
Scawot 0?91, alongF,, and the linewidth is proportional 7,=37, echoes. However, this echo is disturbed by tig@ 1
t0 $¢ 11p152in Fy instead of¢ 1515500 F. m,=7, echo. Fortunately, six-phase cycliid® of the first

For p=-—3, two echoes are predicted. Their expressiongpulse and the receiver cancels th@ ,= 7, echo and allows
deduced from Eq(66) are the observation of the-3Q 7,=77,/9 echo. This six-phase
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TABLE IV. Echo locations and phase modulation éxpr,¢) of the maximum echo amplitude for the four half-integer quadrupole spins
I and the coherence ordgusFor clarity,wzw(_2¥,52‘fl,2is the second-order quadrupole shift of the center of gravity of a specafiLy, 12
is related to the MQ line width, anfl=c5 wy is the true isotropic chemical shift. The first two parameters are spin-dependent. The symbol

* indicates the echo locations involved in MQ-MAS.

| 3/2 5/2 712 9/2
p Echo location ¢ Echo location ¢ Echo location ¢ Echo location ¢
9Q 7,=97, 85¢/6+45w/2
7Q T,=17 476£45+84w/5  7,=T7,/18* 35w/9—1195/18
=Tr 119818+ 120/2
5Q 74,=57, 85¢12+45wl4  1,=117,/9* 20w/9—345/9 7,=5n/l4 —25¢/18— 15514
7,=57, 34£9+6w 7,=957,/36* 250/18—856/36
74=57, 85¢/36+15w/4
3Q 74,=37 34£/9+6w T, =37:14 —5¢6—-984  7,=97./5 —4&9—-64/5 7,=97,14 —5¢18—-35/4
74=197,/12 50w/6—178112  7,=1017,/45 4w/9—345/45 74=917,/36* 50/18—1768/36
74=37, 17¢12+9wl4  7,=37, 34£/45+6w/5 74=37, 17¢/136+3w/4
1Q =T 0 =Ty 0 =T 0 =T 0
-1Q
-3Q T=Trl9"  —200/9+3459
14=3r, 20£/9+65
-5Q 7=25m,12°  —250/6+85812 7= 20¢/9+65
4=257,14 25¢/6+4554
-7Q 7,=1617,/45°  —56w/9+4765/45 T,=77,/2 35£/9+2148/2
74=497,/5 56£/9+8445/5
-90Q 7,=317,/6* —25w/3+8586
74 =2772 25¢/3+ 4582

cycling has no effect on thee3Q 7,=37, echoes. Without pulses and during the detection period. These predictions do
the six-phase cycling, the:3Q 7,=37, echoes could be ob- not depend on the spin dynamics during the pulses explicitly.
served at the same time as th® ir,=7, echo. Since the Furthermore, Eqs(68), (71), (73), and (74) show that the
latter has a strong amplitude, the detection threshold of thenatrix elementp =, 1,At;,7,,t3,74=\17;) of the p=—1
analog-digital converter of the spectrometer may prevent théentral-transition echo, located at=A, and describing the
detection of thet3Q 7,=3r, echoes. On the other hand, the refocusing of thepQ on-resonance coherence generated by
—3Q 7,=77,/9 echo has a smaller amplitude. As a result, thehe first pulse, is proportional t0pf(t1,t3)] ~1p,12 It de-

+3Q 7,=3r, echoes may be observed at the same time aeeno_is expl_icitly on the duratiortg andt; of the two pulses._
the —3Q ,=77,/9 echo when the six-phase cycling is ap- In this section we gnalyze thg effects of these pulse duratlons
plied. on the echo amplitudes, which are only related to the inter-

Table IV gathers the echo locations and the phageat ~ actions considered during the pulses and defined in Eq.
modulates the maximum echo amplitudes as(exp,¢) for (510.

. . In fact Eq.(63) shows thatp & ty,7o,t3, T4=A\T
the four half-integer quadrupole spins and the coherence 05 the produ?:t(of zwo function;p. Inlc/izéle/czj( é\s tzhegm;trix fcfzm of
der p. A pair of coherence ordersp not equal to+1 gen- '

P pp(t1) contains a single nonzero element, this latter appears
erates three echoes, one of which indicated by the symbol 5575 tacior in the final expression. Thus, the first function is

is involved in MQ-MAS methodology. The coherence Ordersimply the imaginary part of the single nonzero matrix ele-
p=1 always generates one echo. On the other hand, the Ceent ofp 5(t,). The second function or the conversion func-
herence ordep=—1, which is associated with the signal tion depends only on the second-pulse duration. It is worth
detection, does not generate echo. Therefore, 4, 7, 10, and hdting that Eqs(54) and(63) have the same form. In the first
echoes are predicted for the spins3, 3, 7, and3, respec-  equation, the initial state is described i), whereas in the
tively. Among these echoes, 1, 2, 3, and 4 echoes out of 4, Becond equation it is given bzyﬁ(tl).

10, and 13, respectively, are used for MQ-MAS methodol- According to Eq. (49, the amplitude
ogy. As mentioned in the previous paragraph, in order tdE,(tq,7,,t3,7,=A7;) Of the p=—1 central-transition Hahn
observe a specific MQ echo located near ti@ 4=7, one, echo, located at,=\7, and representing the refocusing of

a cycling on the phase of the first pulse and that of the rethe 2’Q on-resonance coherence generated by the first pulse,

ceiver according to the rules of the MQ spectroscpy'%  can be defined by

is required.
. Ey(t1,72,t3,74=\72)
3. Amplitudes of the Hahn echoes in the approximation [(1+1)—(1/4)

of static crystal during the pulses =————————— Im[p, _(t))]¥Zts, 74=\17p).

1
In Sec. Il D 2 we derived the echo locations, which are s+ DEI+D
determined by the interactions considered between the two (75
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Im means the imaginary part. This definition differs slightly
with our previous oné! in which a mistake was made be-
cause Imp, .(t;)] and (I {°(t;)) differ by a sign.

The numerical procedure for calculating the conversion
function ¥2'Q(t,,7,=\1,) is the following: Once the ma-
trix multiplications in Eq.(54) are performed, we generate a
new matrix p3,(t;) containing a single nonzero element
pr.—r(ty). Then we apply the matrix multiplications de-
scribed by Eg.(63). We pick up the matrix element
pEl/Z,l/z(tlvtS) that we introduce in Eq49) to obtain the
echo amplitude. Finally, the latter is divided by
Im[p,,_(t1)], yielding W2"(t3, 74=\1p).

Figure 4 represents the graphs of the imaginary part of
3Q, 1Q, and —3Q coherences generated by the firsk
pulse for a spirt =3 system versus the first-pulse duratign
for various values ofvg/(27) and a typical pulse amplitude
wy/(2)=50 kHz. Equation(56) shows that the=3Q coher-
ences have opposite signs. The imaginary part of tQe 3
coherence is plotted versus till 60 us to show its long
pulse-duration behavior. Wheitg/(2m)=0 kHz, the =3Q
coherences are meaningless because they have zero ampli- J
tudes. The curve associated wibg/(27)=10 kHz oscillates *, s
and changes sign; its extrema increase with The %, o
wgl(2m)=50 kHz curve oscillates but reaches its first maxi- 05+ eceeest
mum at about t;=20 wus. The curve representing T T T T 1T T T 1
wgl/(2m)=200 kHz oscillates slightly but increases steadily 0 2 4 6 8 10
with t;. The curve(not shown associated withog/(27)=1
MHz is essentially zero. In the standard MAS condition, the
rotating rate of a 4-mm diameter spinner reaches 10 kHz
without difficulty. The approximation of a static crystal dur-
ing the pulses restricts each pulse duration tou$Qwhose
inverse is 100 kHz. Thus the remaining graphs are repre-
sented for pulse durations limited to 1&s whatever the
pulse amplitude. The-3Q coherences have large amplitudes
when wy=wy;. Consequently, in order to have a maximum
signal to noise ratio, the stronger the quadrupole coupligg
and the stronger the pulse amplitu@g. In contrast to the
+3Q coherences, theQ on-resonance coherence has large ;
amplitudes forwy/(2m)=0 kHz and 1 MHz. These two - T T Tr
curves are periodic with a period of 16 due to the choice 0 2 4 6 8 10
of w/(2m)=50 kHz. The curves for intermediate values of First-pulse duration t{ (us)
wq are not plotted for clarity. For short pulse duratior@ 1
on-resonance coherence is proportional to the pulse duration ) )
t, and does not depend @, . This is not the case fat:3Q FIG. 4. Graphs of the imaginary part of th@31Q, and—3Q
coherences. on-resonance coherencgs_,(t;) for a spinl=3; system, gener-

Figure 5 represents the three conversion function@ted by the first. pulse in a Hfahn gcho sequence consisting of two
‘I’er(t3,T4=)\72) with r=2, 1, and —2 versus the second- —X pulses and_ln the approximation of a static crystal durlng the
pulse duration; for various values olog and the same pulse pU|seS'| vs th‘z}f';s;'pu':? gulzat'?ft'?r T.’ff/ (.217())_'(‘?_'0 kHz j.nd Vl".’"".
amplitudew,/(27)=50 kHz. In contrast to the graphs of Fig. g(u)sk\;'a}les_ ° .Q(.”)' L _Z’ n fine: Z, medium fine:

) . . z; thick line: 200 kHz;¢: 1 MHz.
4, these functions have the same sign independentlyof
andt,;. That is a property of Hahn echoes. Furthermore, al-
ternating the phase of the second pulse without changing the
receiver phase does not change the sign of the ecflbéke  For wg/(2m)=0 kHz the three functions have large values
two functionsWw*3Q are not related whereas the imaginary (curves not shown folr*39). For wy/(2m)=10 kHz, ¥*?
part of =3Q coherences differ only by the sign. This is not has a large amplitude whegis between 4 and s whereas
surprising becaus&3° converts the 8 coherence gener- ¥ 32 has a large amplitude whegis between 2 and @s.
ated by the first pulse into the=—1 central-transition echo, For wq/(2m)=50 kHz, ¥3? reaches a peak at=5 us
whereas¥ 3C converts the—3Q coherence generated by whereas? 3@ has a large amplitude whepg is between 2
the first pulse into thep=—1 central-transition echo. The and 8us. Forwg/(2m)=1 MHz, only P10 has a large am-
difference between the initial and the final orders of coherplitude, =32 become negligible even fotg/(2m)=200
ence is 4 and-2 for 3Q and—3Q coherences, respectively. kHz. These results suggest thit >° is less affected by the

3Q coherence

o= L }:

1Q coherence

—3Q coherence
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0.5 the spin population ratio may be obtained. This is not the
case for the echoes of the3Q coherences, whose echo
amplitudes depend oig whatever the excitation condition.

11l. CONCLUSIONS
PsQ

First, we have derived the general expression of the MQ
line shift for a half-integer quadrupole spin submitted to the
first- and the second-order quadrupole interactions and lo-
cated in a crystal. The latter is rotating at an arbitrary angle
with respect to the magnetic fieRl,. The contribution of the
first-order quadrupole interaction to the MQ line shift is sup-
pressed either by a high spinning of the crystal at the magic
angle or by the restriction to on-resonar(oe symmetrical
transitions. This limits the study to the second-order quadru-
pole interaction only.

Then, the true isotropic chemical shift and the second-
order quadrupole interaction have been considered between
the two pulses and during the detection period. We have
treated with great details the central-transition Hahn echoes
in the simplest case of a spin=3 system. Four echoes have
been predicted: @ 7,=7, *3Q 7,=37, and —3Q
7,=77,/9 echo. In particular, the latter leads to a 2D high-
resolution spectrum. For the other half-integer quadrupole
spins (1=3, I, and J), the echo locations including those
involved in MQ-MAS methodology have been defined.

Finally, applying the approximation of a static crystal and
considering only the first-order quadrupole interaction during
the two pulses have permitted us to analyze the echo ampli-
tudes versus the two pulse durations. Only tH@ #=m,
echo provides us with quantitative results on the spin popu-
lation ratio. In fact, our numerical approach to determining
the echo amplitudes or the conversion functions can be easily
extended to the other half-integer quadrupole spins.

For future work, it is desirable to remove most of the
restrictions. In particular, the suppression of the approxima-
tion of a static crystal during the pulses will permit us to
apply longer pulse durations. This may improve the signal to
noise ratio. Rotating the crystal at the magic angle with an

y1Q

P-3Q

0 5 4 6 8 16 arbitrary spinning rate will make possible the investigation
_ of the effects of the spinning side bandes. It is also worth
Second-pulse duration t3 (us) including the second-order quadrupole interaction and the

true isotropic chemical shift during the pulses. In that case,
FIG. 5. Graphs of the conversion functiob®® (r=3 3, and  the reduced Wigner rotation matrix of rank fo(irable II),
—3) associated wnth the=—1 central-transition Hahn echo ampli- not much applied in the present work, will be very useful.
tude for a spinl = system vs the second-pulse duratign for
w/(27)=50 kHz and various values @ig/(27). The symbols and

lines have the same meanings as those of Fig. 4. APPENDIX

. N For simplicity, the following notations are used for defin-
3Q 1Q ,
second-pulse duration thakh™~. As in Fig. 4,¥*~ does not ing the line shiftsw, _, = wfast MAS (2)iso

Sepend OMwg fo[wshort pulse duratiot, only. It depends on @47, £=E 1 [Eq (533, and 5_\2222)0“) w-12112 [
3 quadratically* F i X

Since a Hahn echo amplitude is the product of two or & spini =3 system,
funCtlonS—lmk)llz 1/2(t1)]\If (t3,7'4 7'2) II’] Eq (75)—
one depends on the first-pulse duratigrand the other on
the second-pulse duratidn, only the echo representing the s 10 s 10
refocusing of the @ coherence generated by the first pulse @3/2,-32= ~ 3@~ 12§36, ©_323= 70+ 13¢+36,
does not depends on the quadrupole coupliggif the two
pulse durations are shdrsee Figs. &) and §b)]. This ex- W1p-12=—0—E—08, w_jp1~0téE+S, (Al
perimental condition remains valid even for a polycrystalline 5 5
sample wherew,, presents a distribution due to the different With w——(lZQQ/SwO)(l—I— ) and §x72Q0. 5/ wo.
orientations of crystallites. As a result, quantitative results on For a spinl =% system,

_ 25 25
wsj2—52= 20+ BE-58, w_5p57— F0—H5E+56,



__ 49 161
w712 -72= 50+ 35§76,
_ 49 161
®_7/27= 50— g5 &+ T8,

_ 11 _ 11
W5 —5p=0— 5508, w_5p5=—wtFTELSS,

— 9 101 9 101
w312 3= — 50— 35£— 30, w_3;p 3750+ 35 £+ 30,

w1 -12=—0— =08, w_1p1=0+tE+S, (A2)

with = —(9Q3/2we)(1+37°) and £x1350 3/ wy,
For a spinl =3 system,
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__ 27 31 _ 27 31
Wop—9p=5 W+ FE—98, w_gpg=—Fw—FE+9F,

_7 7 _ 7 7
w712 72750~ 1810, w_7/27= 3w+ 15§+76,

— 5 95 _5 95
W52 5= — 10— 366— 50, ®_g535,= 70+ 356+ 56,

_ 9 91 9 91
w312 3127 — 40— 35630, ©_33,37= 70+ 35§+36,

w12 -12=—0—E=08, w_jp1p=0+tE+S, (A3)

with @=—(36Q&/5wp)(1+37°) and 21605/ w.
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