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Concurrency

Models, design forces, Java

Designing objects for concurrency

Immutability, locking, state dependence, containment, s

Introducing concurrency into applications

Autonomous loops, oneway messages, interactive mes
cancellation

Concurrent application architectures

Flow, parallelism, layering

Libraries

Using, building, and documenting reusable concurrent 
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Some slides are based on joint presentations with David Ho
Macquarie University, Sydney Australia.

More extensive coverage of most topics can be found in the

Concurrent Programming in Java , Addison-Wesley

and the online supplement

http://gee.cs.oswego.edu/dl/cpj

The printed slides contain much more material than can be c
in a tutorial. They include extra backgound, examples, 
extensions. They are not always in presentation order.

Java code examples often omit qualifiers, imports, etc for sp
reasons. Full versions of most examples are available f
CPJ online supplement.

None of this material should be construed as official Sun
information.

Java is a trademark of Sun Microsystems, Inc.
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Why?

Availability

Minimize response lag, maximize throughput

Modelling

Simulating autonomous objects, animation

Parallelism

Exploiting multiprocessors, overlapping I/O

Protection

Isolating activities in threads

Why Not?

Complexity

Dealing with safety, liveness, composition

Overhead

Higher resource usage
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I/O-bound tasks

• Concurrently access web pages, databases, socke

GUIs

• Concurrently handle events, screen updates

Hosting foreign code

• Concurrently run applets, JavaBeans, ...

Server Daemons

• Concurrently service multiple client requests

Simulations

• Concurrently simulate multiple real objects

Common examples

• Web browsers, web services, database servers,
programming development tools, decision support
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Concurrency is a conceptual  property of software.

Concurrent programs might or might not:

Concurrent programming  mainly deals with concepts and
techniques that apply even if not parallel or distributed.

• Threads  and related constructs run on any Java p

• This tutorial doesn’t dwell much on issues spec
parallelism and distribution.

Operate across multiple CPUs
symmetric multiprocessor
(SMPs), clusters, special-
purpose architectures, ...

Share access to resou
objects, memory,
file descriptors, s
...

Parallel  programming mainly
deals with mapping
software to multiple CPUs
to improve performance.

Distributed  programm
mainly deals with
concurrent progr
do NOT share sy
resources.
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Concurrent Object-Oriented
Programming
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Concurrency has always been a part of OOP (since Simula

• Not a factor in wide-scale embrace of OOP (late 1

• Recent re-emergence, partly due to Java

Concurrent OO programming differs from ...

Sequential OO programming

• Adds focus on safety and liveness

• But uses and extends common design patterns

Single-threaded Event-based programming (as in GUIs

• Adds potential for multiple events occuring at same

• But uses and extends common messaging strateg

Multithreaded systems programming

• Adds encapsulation, modularity

• But uses and extends efficient implementations
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Models describe how to think about objects (formally or info

Common features

• Classes, state, references, methods, identity, cons

• Encapsulation

— Separation between the insides and outsides o

Four basic computational operations

• Accept a message

• Update local state

• Send a message

• Create a new object

Models differ in rules for these operations. Two main catego

• Active  vs Passive

• Concurrent models include features of both

• Lead to uniquely concurrent OO design patterns
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Every object has a single thread of control (like a proces
do only one thing at a time.

Most actions are reactive  responses to messages from ob

• But actions may also be autonomous

• But need not act on message immediately upon re

All messages are oneway . Other protocols can be layered

Many extensions and choices of detailed semantics

• Asynchronous vs synchronous messaging, queuin
emption and internal concurrency, multicast chann

state, acquaintances

anAction {

  update state

 send a message

}

trigger

 make an object

message

o
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In sequential programs, only the single Program  object 

• Passive objects serve as the program’s data

In single-threaded Java, Program  is the JVM (interpretor)

• Sequentially simulates the objects comprising the p

• All internal communication based on procedure ca

Program

a passive object

State: program counter, object addresses

main
I

State: instance vars
Methods: byte codes

interpret() {
  ...
}

other passive objects

trigger
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Concurrent Object Models
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Mixtures of active and passive objects

Normally many fewer threads than passive objects

Dumber Active Objects Smarter Passive Objec

• Can perform only one
activity

— in Java, ‘ run() ’

• Share most resources
with other threads

• Require scheduling in
order to coexist

• May simultan
participate in
threads

• Protect them
from engagin
conflicting ac

• Communicat
objects parti
in other threa

• Initiate and c
new threads
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Shared memory multiprocessing

• All objects visible in same (virtual) machine

• Can use procedural message passing

• Usually many more threads than CPUs

Remote message passing

• Only access objects via Remote  references or c

• Must marshal (serialize) messages

Mixed  models including database mediation (‘‘three tier’’)

Ca

CCPU

Cache

memory cells

state of an object

state of
an object

remote messages
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Most OO systems and applications operate at multiple level

Objects at each level manipulate, manage, and coordin
lower-level ground  objects as resources .

Once considered an arcane systems design principle.
But now applies to most applications

Concurrency

• Thread-objects interpret passive objects

Networking and Distribution

• Server-objects pass around resources

Persistence and Databases

• Database-objects manage states of ground objects

Component Frameworks

• Design tools build applications from JavaBeans, et

Layered Applications

• Design patterns based on reflection, interpretation
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Four main kinds of forces  that must be addressed at each

Safety          — Integrity requirements

Liveness     — Progress requirements

Efficiency    — Performance requirements

Reusability  — Compositional requirements

Policies & Protocol Object structures Coding techn

System-wide
design rules

Design patterns,
microarchitecture

Idio
neat 

worka
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Objects

• ADTs, aggregate components, JavaBeans, monito
business objects, remote RMI objects, subsystems

• May be grouped  according to structure, role, ...

• Usable across multiple activities —  focus on S

Activities

• Messages, call chains, threads, sessions, scenario
scripts, workflows, use cases, transactions, data fl
mobile computations,  ...

• May be grouped  according to origin, function, ...

• Span multiple objects — focus on LIVENESS
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Perform method actions only  when in consistent states

Usually impossible to predict consequences of actions attem
when objects are in temporarily inconsistent states

• Read/write and write/write conflicts

• Invariant failures

• Random-looking externally visible behavior

Must balance with liveness goals

• Clients want simultanous access to services

method1

method2

method3

method4

legal
temp

temp
??

transient

states

legal
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A figure is drawn while it is in the midst of being moved

• Could draw at new X-value, old Y-value

• Draws at location that figure never was at

Withdraw from bank account while it is the midst of a transfe

• Could overdraw account

• Could lose money

A  storage location is read in the midst of being written

• Could result in reading some old bytes and some n
bytes

• Normally, a nonsense value
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Every activity should progress toward completion

• Every called method should eventually execute

Related to efficiency

• Every called method should execute as soon as po

An activity might not complete if

• An object does not accept a message

• A method blocks waiting for an event, message or
condition that should be, but isn’t produced by ano
activity

• Insufficient or unfairly scheduled resources

• Failures and errors of various kinds
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Design Dualities
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Two extreme approaches:

Effective, practical, middle-out approaches combine these.

For example, iteratively improving initial designs to
and live across different contexts

Safety-first Liveness-first

Ensure that each class is
safe, then try to improve
liveness as optimization
measure.

• Characteristic of top-
down OO Design

• Can result in slow,
deadlock-prone code

Design live groun
code, then try to 
safety features su
locking and guard

• Characterist
multithreade
systems
programming

• Can result in
code full of r
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Guaranteeing Safety
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“Nothing bad ever happens”

Concurrent safety is an extended sense of type safety

• Adds a temporal dimension

• Not completely enforceable by compilers

Low-level view High-level view

• Bits are never
misinterpreted

• Protect against
storage conflicts on
memory cells

— read/write and

— write/write
conflicts

• Objects are
accessible o
in consistent

• Objects mus
state and
representatio
invariants

• Presents sub
obligations
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“Something eventually happens”

Availability

• Avoiding unnecessary blocking

Progress

• Avoiding resource contention among activities

• Avoiding deadlocks and lockouts

• Avoiding unfair scheduling

• Designing for fault tolerance, convergence, stabilit

Citizenship

• Minimizing computational demands of sets of activ

Protection

• Avoiding contention with other programs

• Preventing denial of service attacks

• Preventing stoppage by external agents



22

Concurrency and Efficiency
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Concurrency can be expensive

• Performance profiles may vary across platforms

Resources

• Threads, Locks, Monitors

Computation

• Construction, finalization overhead for resources

• Synchronization, context switching, scheduling ove

Communication

• Interaction overhead for threads mapped to differe

• Caching and locality effects

Algorithmic efficiency

• Cannot use some fast but unsafe sequential algori

Paying for tunability and extensibility

• Reduces opportunities to optimize for special case
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Concurrency and Reusability
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Added Complexity

• More stringent correctness criteria than sequential

— Usually not automatically statically checkable

• Nondeterminism impedes debuggability, understan

Added Context Dependence (coupling)

• Components only safe/live when used in intended

— Need for documentation

• Can be difficult to extend via subclassing

— “Inheritance anomalies”

• Can be difficult to compose

— Clashes among concurrency control technique
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Reuse and Design Policies
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Think locally. Act globally.

Example design policy domains

Combat complexity

• High-level design rules and architectural constraint
inconsistent case-by-case decisions

• Policy choices are rarely ‘‘optimal’’, but often religio
believed in anyway.

Maintain openness

• Accommodate any component that obeys a given 

• Fail but don’t break if they do not obey policy

State-dependence Service availability Flow const

What to do if
a request
logically
cannot be
performed

Constraints on
concurrent
access to
methods

Est
me
dire
and
rule
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Three Approaches to Reusability

, etc

choices

)classes
C
o

n
c

u
r

r
e

n
t

 
P

r
o

g
r

a
m

m
i

n
g

 
i

n
 

J
a

v
a

Patterns Reusing design knowledge

• Record best practices, refine them to essences

• Analyze for safety, liveness, efficiency, extensibility

• Provide recipes for construction

Frameworks Reusing policies and protocols

• Create interfaces and classes that establish policy
for a suite of applications

• Provide utilities and support classes

• Mainly use by creating application-dependent (sub

Libraries Reusing code

• Create interfaces that apply in many contexts

• Provide high-quality implementations

• Allow others to create alternative implementations
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Java Overview
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Core Java is a relatively small, boring object-oriented langu

Main differences from Smalltalk:

• Static typing

• Support for primitive data types ( int , float , e

• C-based syntax

Main differences from C++:

• Run-time safety via Virtual Machine

— No insecure low-level operations

— Garbage collection

• Entirely class-based: No globals

• Relative simplicity: No multiple inheritance, etc

• Object-based implementations of Array, String, Cla

• Large predefined class library: AWT, Applets, net, 
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Java Features
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Java solves some software development problems

Packaging: Objects, classes, components, package

Portability: Bytecodes, unicode, transports

Extensibility: Subclassing, interfaces, class loaders

Safety: Virtual machine, GC, verifiers

Libraries: java.*  packages

Ubiquity: Run almost anywhere

But new challenges stem from new aspects of programm

Concurrency: Threads, locks, ...

Distribution: RMI, CORBA, ...

Persistence: Serialization, JDBC, ...

Security: Security managers, Domains, ...
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Basic Java Constructs
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Classes Descriptions of object features

    Instance variables Fields representing object state

    Methods Encapsulated procedures

    Statics Per-class variables and methods

    Constructors Operations performed upon object c

Interfaces Sets of methods implemented by an

Subclasses Single inheritance from class Obj

Inner classes Classes within other classes and me

Packages Namespaces for organizing sets of c

Visibility control private, public, protected, per-packa

Qualifiers Semantic control: final, abstract, etc

Statements Nearly the same as in C/C++

Exceptions Throw/catch control upon failure

Primitive types byte, short, int, long, float, char, boo



29

Particle Applet

C

o
n

c
u

r
r

e
n

t
 

P
r

o
g

r
a

m
m

i
n

g
 

i
n

 
J

a
v

a

import java.awt.*;
import java.applet.*;
public class ParticleApplet extends Applet {
  public void init() {
    add(new ParticleCanvas(10));
  }
}

class ParticleCanvas extends Canvas {
  Particle[] particles;
  ParticleCanvas(int nparticles) {
    setSize(new Dimension(100, 100));
    particles = new Particle[nparticles];
    for (int i = 0; i < particles.length; ++i) {
      particles[i] = new Particle(this);
      new Thread(particles[i]).start();
    }
  }

  public void paint(Graphics g) {
    for (int i = 0; i < particles.length; ++i)
      particles[i].draw(g);
  }
} // (needs lots of embellishing to look nice)



30

Particle Class

 {
C
o

n
c

u
r

r
e

n
t

 
P

r
o

g
r

a
m

m
i

n
g

 
i

n
 

J
a

v
a

public class Particle implements Runnable
  private int x = 0, y = 0;
  private Canvas canvas;
  public Particle(Canvas host) { canvas = host; }

  synchronized void moveRandomly() {
    x += (int) (((Math.random() - 0.5) * 5);
    y += (int) (((Math.random() - 0.5) * 5);
  }

  public void draw(Graphics g) {
    int lx, ly;
    synchronized (this) { lx = x; ly = y; }
    g.drawRect(lx, ly, 10, 10);
  }
  public void run() {
    for(;;) {
      moveRandomly();
      canvas.repaint();
      try { Thread.sleep((int)(Math.random()*10);}
      catch (InterruptedException e) { return; }
    }
  }
}
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Java Concurrency Support
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Thread  class represents state of an independent activity

• Methods to start, sleep,  etc

• Very weak guarantees about control and schedulin

• Each Thread  is a member of a ThreadGroup  th
for access control and bookkeeping

• Code executed in threads defined in classes imple

interface Runnable { public void run(); }

synchronized  methods and blocks control atomicity via lo

• Java automates local read/write atomicity of  stora
access of  values of type byte , char , short , in
and Object  references, but not double  and lon

• synchronized  statement also ensures cache flu

• volatile  keyword controls per-variable flush/relo

Monitor  methods in class Object  control suspension and
resumption:

• wait(), wait(ms), notify(), notifyAll()
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Class Thread
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Constructors

Thread(Runnable r)  constructs so run()  calls r.

— Other versions allow names, ThreadGroup  

Principal methods

start()                    activates run()  then returns to c

isAlive()                returns true if started but not stop

join()                       waits for termination (optional tim

interrupt()            breaks out of wait , sleep , or j

isInterrupted() returns interruption state

getPriority()   returns current scheduling priority
setPriority( int priorityFromONEtoTEN )  sets

Static methods that can only be applied to current thread

currentThread()  reveals current thread

sleep(ms)               suspends for (at least) ms millise

interrupted()       returns and clears interruption sta
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Designing Objects for
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Patterns for safely representing and managing state

Immutability

• Avoiding interference by avoiding change

Locking

• Guaranteeing exclusive access

State dependence

• What to do when you can’t do anything

Containment

• Hiding internal objects

Splitting

• Separating independent aspects of objects and loc
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Immutability
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Synopsis

• Avoid interference by avoiding change

• Immutable objects never change state

• Actions on immutable objects are always safe and

Applications

• Objects representing values

— Closed Abstract Data Types

— Objects maintaining state representations for o

— Whenever object identity does not matter

• Objects providing stateless services

• Pure functional programming style
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 Stateless Service Objects
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class StatelessAdder {
  int addOne(int i) { return i + 1; }
  int addTwo(int i) { return i + 2; }
}

There are no special concurrency concerns:

• There is no per-instance state

➔ No storage conflicts

• No representational invariants

➔ No invariant failures

• Any number of instances of addOne and/or add
safely execute at the same time. There is no need
preclude this.

➔ No liveness problems

• The methods do not interact with any other objects

➔ No concurrent protocol design
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Freezing State upon Construction
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class ImmutableAdder {
  private final  int offset_; // blank final

  ImmutableAdder(int x) { offset_ = x; }

  int add(int i) { return i + offset_; }
}

Still no safety or liveness concerns

Java (blank) finals  enforce most senses of immutablity

• Don’t cover cases where objects eventually latc
values that they never change from

Immutability is often used for closed Abstract Data Types in

• java.lang.String

• java.lang.Integer

• java.awt.Color

• But not java.awt.Point  or other AWT graphica
representation classes (A design error?)
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Applications of Immutability
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Immutable references to mutable objects

  class Relay {
    private final  Server delegate;
    Relay(Server s) { delegate = s; }
    void serve()    { delegate.serve(); }
  }

Partial immutability

Methods dealing with immutable aspects of state do no
require locking

class FixedList { // cells with fixed successors
    private final  FixedList next;    // immutable
    FixedList(FixedList nxt)      { next = nxt; }
    FixedList successor()        { return next; }

    private Object elem = null;      // mutable
    synchronized Object get()    { return elem; }
    synchronized void set(Object x) { elem = x; }
  }

relay

next next
element element e
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Locking
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Locking is a simple message accept  mechanism

• Acquire object lock on entry to method, release on

Precludes storage conflicts and invariant failures

• Can be used to guarantee atomicity of methods

Introduces potential liveness failures

• Deadlock, lockouts

Applications

• Fully synchronized (atomic) objects

• Most other reusable objects with mutable state

client

client

internal state

host

lock
action { ... }
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Synchronized Method Example
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  private double x_, y_;

  Location(double x, double y) { x_ = x; y_ = y; }

  synchronized  double x() { return x_; }

double y() {

    synchronized (this) {

      return y_;

    }

  }

  synchronized  void moveBy(double dx, double dy)

    x_ += dx;

    y_ += dy;

  }

}
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Java Locks

atics

locked via

t to:

k is free or

e  lock

cached
C
o

n
c

u
r

r
e

n
t

 
P

r
o

g
r

a
m

m
i

n
g

 
i

n
 

J
a

v
a

Every Java Object  possesses one lock

• Manipulated only via synchronized  keyword

• Class  objects contain a lock used to protect st

• Scalars like int are not Objects so can only be
their enclosing objects

Synchronized  can be either method or block qualifier

synchronized void f() { body; } is equivalen

void f() { synchronized(this) { body; } }

Java locks are reentrant

• A thread hitting synchronized passes if the loc
it already possesses the lock, else waits

• Released after passing as many } ’s as { ’s for th
— cannot forget to release lock

Synchronized  also has the side-effect of clearing locally
values and forcing reloads from main storage
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Storage Conflicts

, one

flicting
e also
C
o

n
c

u
r

r
e

n
t

 
P

r
o

g
r

a
m

m
i

n
g

 
i

n
 

J
a

v
a

class Even {
  int n = 0;
  public int next(){ // POST?: next is always even
    ++n;
    ++n;
    return n;
  }
}

Postcondition may fail due to storage conflicts. For example
possible execution trace when n starts off at 0 is:

Declaring next  method as synchronized  precludes con
traces, as long as all other methods accessing n ar
synchronized

Thread 1
read   0
write  1

read   2

write  3

Thread 2

read   1
write  2
read   2
write  3
return 3

return 3
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Locks and Caching
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Locking generates messages between threads and memory

Lock acquisition forces reads from memory to thread ca

Lock release forces writes of cached updates to memo

Without locking, there are NO promises about if and when
will be flushed or reloaded

➔ Can lead to unsafe execution

➔ Can lead to nonsensical execution

Ca

CCPU

Cache

memory cells

state of object
 unlock  lock
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Memory Anomalies

 and

tes

rites

h.

ables

/
C
o

n
c

u
r

r
e

n
t

 
P

r
o

g
r

a
m

m
i

n
g

 
i

n
 

J
a

v
a

Should acquire lock before use of any field of any object,
release after update

If not, the following are possible:

• Seeing stale  values that do not reflect recent upda

• Seeing inconsistent states  due to out-of-order w
during flushes from thread caches

• Seeing incompletely initialized  new objects

Can declare volatile  fields to force per-variable load/flus

• Has very limited utility.

• volatile  never usefully applies to reference vari

— The referenced object is not necessarily loaded
flushed, just the reference itself.

— Instead, should use synchronization-based
constructions
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Fully Synchronized Objects
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Objects of classes in which all  methods are synchronize

• Always safe, but not always live or efficient

Only process one request at a time

• All methods are locally sequential

Accept new messages only when ready

➔ No other thread holds lock

➔ Not engaged in another activity

• But methods may make self-calls to
other methods during same activity
without blocking (due to reentrancy)

Constraints

• All  methods must be synchronized: Java unsynchr
methods execute even when lock held.

• No public variables or other encapsulation violation

• Methods must not suspend or infinitely loop

• Re-establish consistent state after exceptions

re

client
aMe



45

Deadlock
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class Cell {
  private long value_;

  synchronized long getValue() { return value_;}
  synchronized void setValue(long v) {value_ = v;}

  synchronized void swapValue(Cell other) {
    long t = getValue();
    long v = other.getValue();
    setValue(v);
    other.setValue(t);
  }
}

SwapValue  is a transactional  method. Can deadlock in tr
thread1

enter cell1 .swapValue
t = getValue()

v = other.getValue()

thread2

enter cell2 .swa
t = getValue()

v = other.getValue
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Lock Precedence
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Can prevent deadlock in transactional methods via reso
ordering  based on Java hash codes (among other solu

class Cell {
  long value;

  void swapValue(Cell other) {
    if (other == this) return; // alias check

    Cell fst = this; // order via hash codes
    Cell snd = other;
    if (fst.hashCode() > snd.hashCode()) {
      fst = other; snd = this;
    }
    synchronized(fst) {
      synchronized (snd) {
        long t = fst.value;
        fst.value = snd.value;
        snd.value = t;
      }
    }
  }
}
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Holding Locks
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class Server {
  double state;
  Helper helper;
  public synchronized void svc() {
    state = illegalValue;
    helper.operation();
    state = legalValue;
  }
}

Potential problems with holding locks during downstream ca

Safety :         What if helper.operation  throws exce

Liveness :    What if helper.operation  causes dea

Availability : Cannot accept new svc  requests during

Rule of Thumb (with many variants and exceptions):

Always lock when updating state

Never lock when sending message

Redesign methods to avoid holding locks during downstream
while still preserving safety and consistency
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Synchronization of Accessor Methods
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class Queue {
  private int sz_ = 0;  // number of elements

  public synchronized void put(Object x) {
    // ... increment sz_  ...
  }
  public synchronized Object take() {
    // ... decrement sz_  ...
  }
  public int size() { return sz_; }  // sync
}

Should size()  method be synchronized ?

Pro:

• Prevents clients from obtaining stale cached value

• Ensures that transient values are never returned

— For example, if put  temporarily set sz_ = -1

Con:

• What could a client ever do with this value anyway

Sync always  needed for accessors of mutable reference
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Locking and Singletons
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Every Java Class  object has a lock. Both static and inst
methods  of Singleton classes should use it.

public class Singleton { // lazy initialization
  private int a;
  private Singleton(){ a = 1;}

  private static Class lock = Singleton.class;
  private static Singleton ref = null;

  public static Singleton instance(){
    synchronized(lock) {
      if (ref == null) ref = new Singleton();
      return ref;
    }
  }
  public int  getA() {
    synchronized(lock) { return a; }
  }
  public void setA(int v){
    synchronized(lock) { a = v; }
  }
}
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 State Dependence
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Two aspects of action control:

• A message  from a client

• The internal state  of the host

Design Steps:

• Choose policies  for dealing with actions that can 
only if object is in particular logical state

• Design interfaces  and protocols to reflect policy

• Ensure objects able to assess  state to implemen

There is
separat
mechan
Java.  S
implem
in action
themse

state, acquaintances

anAction {
accept

...  }message

policy control
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Examples of State-Dependent Actions
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Operations on collections, streams, databases

• Remove an element from an empty queue

Operations on objects maintaining constrained values

• Withdraw money from an empty bank account

Operations requiring resources

• Print a file

Operations requiring particular message orderings

• Read an unopened file

Operations on external controllers

• Shift to reverse gear in a moving car
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Policies for State Dependent Actions

ns

me

back

t state
C
o

n
c

u
r

r
e

n
t

 
P

r
o

g
r

a
m

m
i

n
g

 
i

n
 

J
a

v
a

Some policy choices for dealing with pre- and post- conditio

Blind action Proceed anyway; no guarantee of outco

Inaction Ignore request if not in right state

Balking Fail (throw exception) if not in right state

Guarding Suspend until in right state

Trying Proceed, check if succeeded; if not, roll 

Retrying Keep trying until success

Timing out Wait or retry for a while; then fail

Planning First initiate activity that will achieve righ
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Interfaces and Policies
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Boring running example

interface BoundedCounter {
  static final long MIN = 0;
  static final long MAX = 10;

  long value(); // INV:  MIN <= value() <= MAX
// INIT: value() == MIN

  void inc(); // PRE:  value() < MAX
  void dec(); // PRE:  value() > MIN
}

Interfaces alone cannot convey policy

• But can suggest policy

— For example, should inc  throw exception? W

— Different methods can support different policies

• But can use manual annotations

— Declarative constraints form basis for implemen



54

Balking

tc)

ce

 check

rn

host

... actions...

!inRightState

inRightState

age
C
o

n
c

u
r

r
e

n
t

 
P

r
o

g
r

a
m

m
i

n
g

 
i

n
 

J
a

v
a

Check state upon method entry

• Must not change state in course
of checking it

• Relevant state must be explicitly
represented, so can be checked
upon entry

Exit immediately if not in right state

• Throw exception or return special
error value

• Client is responsible for handling
failure

The simplest policy for fully synchronized objects

• Usable in both sequential and concurrent contexts

— Often used in Collection classes ( Vector , e

• In concurrent contexts, the host must always take
responsibility for entire check-act/check-fail sequen

— Clients cannot preclude state changes between
and act, so host must control

retu

client

throw

aMess
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Balking Counter Example
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class Failure extends Exception { }

class BalkingCounter {
  protected long count_ = MIN;
  synchronized long value() { return count_;}

  synchronized void inc() throws Failure {
    if (count_ >= MAX) throw new Failure();
    ++count_;
  }

  synchronized void dec() throws Failure {
    if (count_ <= MIN) throw new Failure();
    --count_;
  }
}
// ...
void suspiciousUsage(BalkingCounter c) {
  if (c.value() > BalkingCounter.MIN)
    try { c.dec(); } catch (Failure ignore) {}
}
void betterUsage(BalkingCounter c) {
  try { c.dec(); } catch (Failure ex) {cope();}
}
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Collection Class Example
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class Vec { // scaled down version of Vect
protected Object[] data_; protected int size_=0;

  public Vec(int cap) { data_=new Object[cap]; }

  public int size () { return size_; }

  public synchronized Object at (int i)
                  throws NoSuchElementException {
    if (i < 0 || i >= size_ )
      throw new NoSuchElementException();
    return data_[i];
  }
  public synchronized void append (Object x)
    if (size_ >= data_.length) resize();
    data_[size_++] = x;
  }
  public synchronized void removeLast ()
               throws NoSuchElementException {
    if (size_ == 0)
      throw new NoSuchElementException();
    data_[--size_] = null;
  }
}
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Policies for Collection Traversal
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How to apply operation to collection elements without interfe

Balking iterators

• Throw exception on access if collection was chang
Implement via version numbers  updated on eac

— Used in JDK1.2 collections

• But can be hard to recover from exceptions

Snapshot iterators

• Make immutable copy of base collection elements.
conversely, copy-on-write  during each update.

• But can be expensive

Indexed traversal

• Clients externally  synchronize when necessary

• But coupled to particular locking policies

Synchronized aggregate methods

• Support apply-to-all  methods in collection class

• But deadlock-prone
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Synchronized Traversal  Examples
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interface Procedure { void apply(Object obj); }

class XVec extends Vec {
synchronized  void applyToAll(Procedure p) {

    for (int i=0;i<size_;++i) p.apply(data_[i]);
  }
}

class App {
  void printAllV1(XVec v) { // aggregate synch
    v.applyToAll( new Procedure() {
      public void apply(Object x) {
        System.out.println(x);
      }} );
  }

  void printAllV2(XVec v) { // client-side synch
    synchronized (v) {
      for (int i = 0; i < v.size(); ++i)
        System.out.println(v.at(i));
    }
  }
}
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Generalization of locking for state-dependent actions

• Locked : Wait until ready (not engaged in othe

• Guarded :    Wait until an arbitrary state predicate

Check state upon entry

• If not in right state, wait

• Some other action in some
other thread may eventually
cause a state change that
enables resumption

Introduces liveness concerns

• Relies on actions of other
threads to make progress

• Useless in sequential
programs

aMessage

return

client
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Guarding via Busy Waits
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class UnsafeSpinningBoundedCounter { // do
  protected volatile  long count_ = MIN;
  long value() { return count_; }

  void inc() {
    while (count_ >= MAX); // spin
    ++count_;
  }
  void dec() {
    while (count_ <= MIN); // spin
    --count_;
  }
}

Unsafe    — no protection from read/write conflicts

Wasteful — consumes CPU time

But busy waiting can sometimes be useful; generally when

• The conditions latch
— once set true, they never become false

• You are sure that threads are running on multiple C

— Java doesn’t provide a way to determine or con
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Guarding via Suspension
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class GuardedBoundedCounter {
  protected long count_ = MIN;

  synchronized long value() { return count_; }

  synchronized void inc()
                    throws InterruptedException {
    while (count_ >= MAX) wait();
    ++count_;
    notifyAll();
  }

  synchronized void dec()
                    throws InterruptedException {
    while (count_ <= MIN) wait();
    --count_;
    notifyAll();
  }
}

Each wait relies on a balancing notification

• Generates programmer obligations

Must recheck condition upon resumption
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Java Monitor Methods
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Every Java Object  has a wait set

• Accessed only via monitor methods, that can only 
invoked under synchronization of target

wait()

• Suspends thread

• Thread is placed in wait set  for target object

• Synch lock for target is released

notify()

• If one exists, any thread T is chosen from target’s

• T must re-acquire synch lock for target

• T resumes at wait point

notifyAll()  is same as notify()  except all  threads c

wait(ms) is same as wait() except thread is automatical
after ms milliseconds if not already notified

Thread.interrupt  causes a wait  (also sleep , join ) 
Same as notify except thread resumed at the associate
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Monitors and Wait Sets
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class X {
  synchronized void w() {
    before(); wait();  after();
  }
  synchronized void n()  { notifyAll(); }
}

One possible trace for three threads accessing instance

before();
wait();

after();

enter  x.w()

before();
wait();

after();

enter  x.n()
notifyAll();

T1 T2 T3

x

waitset

T1 T2

enter  x.w()

release lock

release lock

acquire lock
acquire lock
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Interactions with Interruption
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Effect of Thread.interrupt() :

• If thread not waiting, set the isInterrupted()

• If thread is waiting, force to exit wait  and throw
InterruptedException  upon resumption

Acquiring Running

Acquiring
Lock +

Interrupted

Running

interrupted

Interrupt Thread.interruptedInterrupt

waitenterAcquire

notify, notifyAll, tim

exitAcquire

enterAcquire

exitAcquire

interrupt  interrupt

+

Lock
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Fairness in Java
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Fairness is a system-wide progress property:

Each blocked activity will eventually continue when its
enabling condition holds. (Many variants of definition

➔Threads waiting for lock eventually enter when lock fr

➔Guarded wait loops eventually unblock when conditio

Usually implemented via First-in-First-Out scheduling policie

• FIFO lock and wait queues

• Sometimes, along with preemptive time-slicing

Java does not guarantee fairness

• Potential starvation

— A thread never gets a chance to continue becau
threads are continually placed before it in queu

• FIFO usually not strictly implementable on SMPs

• But JVM implementations usually approximate fair

• Manual techniques available to improve fairness pr
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Timeouts
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Intermediate points between balking and guarding

• Can vary timeout parameter from zero to infinity

Useful for heuristic detection of failures

• Deadlocks, crashes, I/O problems, network discon

But  cannot  be used for high-precision timing or deadlines

• Time can elapse between wait and thread resump

Java implementation constraints

• wait(ms) does not  automatically tell you if it retur
because of notification vs timeout

• Must check for both. Order and style of checking c
matter, depending on

— If always OK to proceed when condition holds

— If timeouts signify errors
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Timeout Example
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class TimeOutBoundedCounter {
  protected long TIMEOUT = 5000;
  // ...
  synchronized void inc() throws Failure {

    if (count_ >= MAX) {
      long start = System.currentTimeMillis();
      long waitTime = TIMEOUT;
      for (;;) {
        if (waitTime <= 0) throw new Failure();
        try { wait(waitTime); }
        catch (InterruptedException e) {
          throw new Failure();
        }
        if (count_ < MAX) break;
        long now = System.currentTimeMillis();
        waitTime = TIMEOUT - (now - start);
      }
    }
    ++count_;
    notifyAll();
  }
  synchronized void dec() throws Failure;//similar
}
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Buffer Supporting Multiple Policies
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class BoundedBuffer {
  Object[]  data_;
  int putPtr_ = 0, takePtr_ = 0, size_ = 0;
  BoundedBuffer(int capacity)  {
    data_ = new Object[capacity];
  }

  protected void doPut(Object x) { // mechan
    data_[putPtr_] = x;
    putPtr_ = (putPtr_ + 1) % data_.length;
    ++size_;
    notifyAll();
  }

  protected Object doTake() { //  mechanics
    Object x = data_[takePtr_];
    data_[takePtr_] = null;
    takePtr_ = (takePtr_ + 1) % data_.length;
    --size_;
    notifyAll();
    return x;
  }
  boolean isFull() { return size_ == data_.length;
  boolean isEmpty() { return size_ == 0; }
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Buffer (continued)
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                    throws InterruptedException {
     while (isFull()) wait();
     doPut(x);
  }

  synchronized Object take()  {
                    throws InterruptedException {
    while (isEmpty()) wait();
    return doTake();
  }

  synchronized boolean offer(Object x) {
     if (isFull()) return false;
     doPut(x);
     return true;
  }

  synchronized Object poll()  {
    if (isEmpty()) return null;
    return doTake();
  }
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Buffer (continued)
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    if (isFull()) {
      if (ms <= 0) return false;
      long start = System.currentTimeMillis();
      long waitTime = ms;
      for (;;) {
        try { wait(waitTime); }
        catch (InterruptedException e) {

         return false;
        }
        if (!isFull()) break;
        long now = System.currentTimeMillis();
        waitTime = ms - (now - start);
        if (waitTime <= 0)  return false;
      }
    }
    return doTake();
  }

synchronized Object poll(long ms) ; // simi
}



71

Containment

cts

riables

s

C
o

n
c

u
r

r
e

n
t

 
P

r
o

g
r

a
m

m
i

n
g

 
i

n
 

J
a

v
a

Structurally guarantee exclusive access to internal  obje

• Control their visibility

• Provide concurrency control for their methods

Applications

• Wrapping unsafe sequential code

• Eliminating need for locking ground objects and va

• Applying special synchronization policies

• Applying different policies to the same mechanism

outer part2

subpart1part1

client

client

lock
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Containment Example
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class Pixel {
  private final java.awt.Point pt_;

  Pixel(int x, int y) { pt_ = new Point(x, y);

  synchronized Point location() {
    return new Point(pt_.x, pt_.y);
  }

  synchronized void moveBy(int dx, int dy){
    pt_.x += dx; pt_.y += dy;
  }
}

Pixel  provides synchronized access to Point  methods

• The reference to Point  object is immutable, but 
are in turn mutable (and public!) so is unsafe witho
protection

Must make copies  of inner objects when revealing state

• This is the most common way to use java.awt.P
java.awt.Rectangle , etc
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Implementing Containment
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Strict containment creates islands  of isolated objects

• Applies recursively

• Allows inner code to run faster

Inner code must be communication-closed

• No unprotected calls in to or out from island

Outer objects must never leak identities  of inner objects

• Can be difficult to enforce and check

Outermost objects must synchronize  access

• Otherwise, possible thread-caching problems

Seen in concurrent versions of many delegation-based patt

• Adapters, decorators, proxies
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Hierarchical Locking
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art2  lock

 lock
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Applies when logically contained parts are not hidden  f

Avoids deadlocks that could occur if parts fully synchronized

Can eliminate this potential deadlock if all locking in all
methods in all Parts  relies on the common owner’s lo

Extreme case: one Giant Lock  for entire subsystem

Can use either internal or external conventions

owner

part2

subpart1part1

client

client

part1 part2
m()

part1 part2
m()

part1  holds self
             needs p

part2  holds self
             needs p
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Internal Hierarchical Locking
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Visible components protect themselves using their owners’ 

class Part {
  protected Container owner_; // never null

  public Container owner() { return owner_; }

  void bareAction() { /* ... unsafe ... */ }

  public void m() {
    synchronized(owner()) { bareAction(); }
  }
}

Or implement using inner classes — Owner is outer class:

class Container {
  class Part {
    public void m() {
      synchronized(Container.this){ bareAction();}
    } } }

Can extend to frameworks based on shared Lock objects,
transaction locks, etc rather than synchronized blocks
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External Hierarchical Locking
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Rely on callers to provide the locking

class Client {

  void f(Part p) {
    synchronized (p.owner()) { p.bareAction(); }
  }
}

Used in AWT

• java.awt.Component.getTreeLock()

Can sometimes avoid more locking overhead, at price of fra

• Can manually minimize use of synchronized

• Requires that all callers obey conventions

• Effectiveness is context dependent

— Breaks encapsulation

— Doesn’t work with fancier schemes that do not 
rely on synchronized  blocks or methods for
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Containment and Monitor Methods
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class Part {
  protected boolean cond_ = false;

  synchronized void await() {
    while (!cond_)
      try { wait(); }
      catch(InterruptedException ex) {}
  }

  synchronized void signal(boolean c) {
    cond_ = c; notifyAll();
  }
}

class Whole {
  final Part part_ = new Part();

  synchronized void rely()  { part_.await(); }

  synchronized void set(boolean c){
    part_.signal(c); }
}

What happens when Whole.rely()  called?
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Nested Monitors
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If thread T calls whole.rely

• It wait s within part

• The lock to whole  is retained  while T is suspend

• No other thread will ever unblock it via whole.se

➔ Nested Monitor Lockout

Policy clash between guarding by Part  and containment

Never wait on a hidden contained object in Java while hold

whole
part

wait set:    T ...

holds lock to
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Avoiding Nested Monitors
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 locks
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Adapt internal hierarchical locking pattern

Can use inner classes, where Part  waits in Whole ’s

class Whole { // ...
  class Part { // ...
    public void await() {
      synchronized (Whole.this) {
         while (...) Whole.this.wait() // ...
    } } }

Create special Condition objects

• Condition methods are never invoked while holding

• Some concurrent languages build in special suppo
Condition objects

— But generally only deal with one-level nesting

• Can build Condition class library in Java
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Splitting Objects and Locks
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Synopsis

• Isolate independent  aspects of state and/or beha
host object into helper objects

• The host object delegates to helpers

• The host may change which helpers it uses dynam

Applications

• Atomic state updates

— Conservative and optimistic techniques

• Avoiding deadlocks

— Offloading locks used for status indicators, etc

• Improving concurrency

— Reducing lock contention for host object

• Reducing granularity

— Enabling fine-grained concurrency control
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Isolating Dependent Representations
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Does Location  provide strong enough semantic guarante

class Location { // repeated
  private double x_, y_;
  synchronized double x() { return x_; }
  synchronized double y() { return y_; }
  synchronized void moveBy(double dx, double dy) {
    x_ += dx; y_ += dy;
  }
}

No protection from interleaving problems such as:

Thread 1:  x=loc.x(); ...............; y=loc.y();

Thread 2: .........; loc.moveBy(1,6);.........;

Thread 1 can have incorrect view (old x , new y )

Avoid by splitting out dependent representations in separate

Location

XY xy()

XY

x()

xy

moveBy(dx, dy)
y()
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Conservative Representation Updates
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class XY { // immutable
  private final double x_, y_;
  XY(double x, double y) { x_ = x; y_ = y; }
  double x() { return x_; }
  double y() { return y_; }
}

class LocationV2 {
  private XY xy_ ;

  LocationV2(double x, double y) {
xy_  = new XY(x, y);

  }
  synchronized XY xy() { return xy_ ; }

  synchronized void moveBy(double dx,double dy) {
  xy_  = new XY( xy_ .x() + dx, xy_ .y() + dy)

  }
}

Locking moveBy()  ensures that the two accesses of xy
get different points

Locking xy()  avoids thread-cache problems by clients
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Optimistic Representation Updates
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class LocationV3 {
  private XY xy_;

  private synchronized boolean commit(XY oldp,
                                      XY newp){
    boolean success = (xy_ == oldp);
    if (success) xy_ = newp;
    return success;
  }

  LocationV3(double x,double y){xy_=new XY(x,y);}

synchronized  XY xy() { return xy_; }

  void moveBy(double dx,double dy) {
    while (!Thread.interrupted()){
      XY oldp = xy();
      XY newp = new XY(oldp.x()+dx, oldp.y()+dy);
      if (commit(oldp, newp)) break;
      Thread.yield();
    }
  }
}
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Optimistic Update Techniques
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Every public state update method has four parts:

➔ Record current version

Easiest to use reference to immutable representat

— Or can assign version numbers, transaction IDs
stamps to mutable representations

➔ Build new version, without any irreversible side effec

All actions before commit  must be reversable

— Ensures that failures are clean (no side effects

— No I/O or thread construction unless safely can

— All internally called methods must also be reve

➔ Commit  to new version if no other thread changed v

Isolation of state updates to single atomic com
can avoid potential deadlocks

➔ Otherwise fail or retry

Retries can livelock  unless proven wait-free  in 
context



85

Optimistic State-Dependent Policies
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As with optimistic updates, isolate state
into versions, and isolate state
changes to commit  method

In each method:

• Record current version

• Build new version

• Commit  to version if success and
no one changed version

• Otherwise fail or retry

Retry policy is a tamed busy wait. Can be
more efficient than guarded waits if

• Conflicts are rare

• Guard conditions usually hold

• Running on multiple CPUs

aMes

return

client

throw
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Optimistic Counter
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class OptimisticBoundedCounter {
  private Long count_ = new Long(MIN);
  long value() { return count().longValue(); }
  synchronized Long count() { return count_;}
  private synchronized boolean commit(Long oldc,
                                      Long newc){
    boolean success = (count_ == oldc);
    if (success) count_ = newc;
    return success;
  }

  public void inc() throws InterruptedException{
   for (;;) { // retry-based

      if (Thread.interrupted())
        throw new InterruptedException();
      Long c = count();
      long v = c.longValue();
      if (v < MAX && commit(c, new Long(v+1)))
        break;
      Thread.yield();
    }
  }
  public void dec() // symmetrical
}
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Splitting Locks and Behavior
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Associate a helper object with an independent  subset o
functionality.

Delegate actions to helper via pass-through  method

class Shape {
// Assumes size & dimension are independent

  int height_ = 0;
  int width_ = 0;

  synchronized void grow() { ++height_; ++width_;}

Locatio n l = new Location(0,0); // fully s

void shift() { l.moveBy(1, 1); } // Use l
}

grow  and shift  can execute simultaneously

When there is no existing object to delegate independent ac

• Use an arbitrary Object  as a lock, and protect a
methods using synchronized block on that lock

— Useful for concurrent data structures
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Concurrent Queue
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class TwoLockQueue {
  final static class Node {
    Object value;  Node next = null;
    Node(Object x) { value = x; }
  }

private Node head_ = new Node(null); // dummy
  private Node last_ = head_;
  private Object lastLock_ = new Object();

  void put(Object x) {
    synchronized (lastLock_) {
      last_ = last_.next = new Node(x);
    }
  }

synchronized  Object poll() { // null if empty
    Object x = null;
    Node first = head_.next;  // only contentio
    if (first != null) {
      x = first.value; first.value = null;
      head_ = first;  // old first becomes header
    }
    return x;
  }
}



89

Concurrent Queue (continued)

ccess

ntial

d

f put
C
o

n
c

u
r

r
e

n
t

 
P

r
o

g
r

a
m

m
i

n
g

 
i

n
 

J
a

v
a

puts  and polls  can run concurrently

• The data structure is crafted to avoid contending a

— Rely on Java atomicity guarantees at only pote
contention point

• But multiple puts  and multiple polls  disallowe

Weakens semantics

• poll  may return null if another thread is in midst o

• Balking policy for poll  is nearly forced here

— But can layer on blocking version

next

head
last

hdr first

value

(null)

queue

... (null)
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Introducing Concurrency into
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Three sets of patterns

Each associated with a reason to introduce concurrenc

Autonomous Loops

Establishing independent cyclic behavior

Oneway messages

Sending messages without waiting for reply or terminat

• Improves availability of sender object

Interactive messages

Requests that later result in reply or callback messages

• Allows client to proceed concurrently for a while

Most design ideas and semantics stem from  active objec
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Autonomous Loops
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Simple non-reactive active objects contain a run  loop o

public void run() {
  while (!Thread.interrupted())
    doSomething();
}

Normally established with a constructor containing:

new Thread(this).start();

Perhaps also setting priority and daemon status

Normally also support other methods called from other threa

Requires standard safety measures

Common Applications

• Animations

• Simulations

• Message buffer Consumers

• Polling daemons that periodically sense state of wo
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Autonomous Particle Class
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public class Particle implements Runnable
  private int x = 0, y = 0;
  private Canvas canvas;
  public Particle(Canvas host) { canvas = host; }

  synchronized void moveRandomly() {
    x += (int) (((Math.random() - 0.5) * 5);
    y += (int) (((Math.random() - 0.5) * 5);
  }

  public void draw(Graphics g) {
    int lx, ly;
    synchronized (this) { lx = x; ly = y; }
    g.drawRect(lx, ly, 10, 10);
  }
  public void run() {
    for(;;) {
      moveRandomly();
      canvas.repaint();
      try { Thread.sleep((int)(Math.random()*10);}
      catch (InterruptedException e) { return; }
    }
  }
}
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Particle Applet
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import java.awt.*;
import java.applet.*;
public class ParticleApplet extends Applet {
  public void init() {
    add(new ParticleCanvas(10));
  }
}

class ParticleCanvas extends Canvas {
  Particle[] particles;
  ParticleCanvas(int nparticles) {
    setSize(new Dimension(100, 100));
    particles = new Particle[nparticles];
    for (int i = 0; i < particles.length; ++i) {
      particles[i] = new Particle(this);
      new Thread(particles[i]).start();
    }
  }

  public void paint(Graphics g) {
    for (int i = 0; i < particles.length; ++i)
      particles[i].draw(g);
  }
} // (needs lots of embellishing to look nice)
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 Oneway Messages
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Conceptually oneway messages are sent with

• No need for replies

• No concern about failure (exceptions)

• No dependence on termination of called method

• No dependence on order that messages are receiv

But may sometimes want to cancel messages or resultin

state, acquaintances

react {
update state

send message
}

accept

oneway

Client

Host
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Oneway Message Styles
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 Some semantics choices

Asynchronous : Entire message send is independent

— By far, most common style in reactive applicati

Synchronous : Caller must wait until message is acc

— Basis for rendezvous  protocols

Multicast : Message is sent to group  of recipients

— The group might not even have any members

Events Mouse clicks, etc

Notifications Status change alerts, etc

Postings Mail messages, stock quotes, etc

Activations Applet creation, etc

Commands Print requests, repaint requests, etc

Relays Chain of responsibility designs, etc
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Direct  method invocations

• Rely on standard call/return mechanics

Command strings

• Recipient parses then dispatches to underlying me

• Widely used in client/server systems including HTT

EventObjects  and service codes

• Recipient dispatches

• Widely used in GUIs, including AWT

Request  objects, asking to perform encoded operation

• Used in distributed object systems — RMI and CO

Class  objects (normally via .class  files)

• Recipient creates instance of class

• Used in Java Applet framework

Runnable  commands

• Basis for thread instantiation, mobile code systems
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Design Goals for Oneway Messages
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Object-based forces

Safety

• Local state changes should be atomic (normally, lo

— Typical need for locking leads to main differenc
single-threaded Event systems

• Safe guarding and failure policies, when applicable

Availability

• Minimize delay until host can accept another mess

Activity-based forces

Flow

• The activity should progress with minimal contentio

Performance

• Minimize overhead and resource usage
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Design Patterns for Oneway Messages
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Thread-per-Message

Thread-per-Activity via Pass-throughs

Thread-per-Object via Worker Threads (variants: Pools, List

client

start

host

new thread

client host

same thread

client host

channel

put take

worker threa
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Reactive Methods
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Code scaffolding for illustrating patterns:

class Host {
  // ...
  private long localState_;  // Or any state vars
  private Handler handler_;  // Message target

  public void react (...) {
    updateState(...);
    sendMessage(...);
  }

  private synchronized void updateState(...) {
// Assign to localState_ ;

  }

  private void sendMessage(...) {
// Issue handler.process(...)

  }
}

react()  may be called directly from client, or indirectly afte
decoding command, event, etc
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Thread-per-Message

/ wrap

ntless,
)

 or
C
o

n
c

u
r

r
e

n
t

 
P

r
o

g
r

a
m

m
i

n
g

 
i

n
 

J
a

v
a

class Host { //...
  public void react(...) {
    updateState(...);
    sendMessage(...);
  }

synchronized  void sendMessage (...) {

    Runnable command = new Runnable() { /
      final Handler dest = handler_;
      public void run() {
        dest.process(...);
      }
    };
    new Thread(command).start();        // run
  }
}

Runnable  is the standard Java interface describing argume
resultless command methods (aka closures , thunks

Synchronization  of sendMessage  desirable if handler_
process()  arguments not fixed/final

Variants: Thread-per-connection (sockets)
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Thread-per-Message Protocol
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client host comman

start/run

handler

... updateState...

react

process
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Multicast TPM
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Multicasts can either

• Generate one thread per message, or

• Use a single thread for all messages

Depends on whether OK to wait each one out before se
next one

client host handlers
react

return
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TPM Socket-based Server
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class Server implements Runnable {
  public void run() {
    try {

ServerSocket socket = new ServerSocket(PO
      for (;;) {
        final Socket connection = socket.accept();
        new Thread(new Runnable() {
          public void run() {
            new Handler().process(connection);
          }}).start();
      }
    }
    catch(Exception e) { /* cleanup; exit */ }
  }
}

class Handler {
  void process(Socket s) {
    InputStream i = s.getInputStream();
    OutputStream o = s.getOutputStream();
    // decode and service request, handle errors
    s.close();
  }
}
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Thread Attributes and Scheduling
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Each Thread  has an integer priority

• From Thread.MIN_PRIORITY  to Thread.MAX_P
(currently 1 to 10)

• Initial priority is same as that of the creating thread

• Can be changed at any time via setPriority

• ThreadGroup.setMaxPriority  establishes a c
all threads in the group

JVM schedulers give preference  to threads with higher pr

• But preference is left vague, implementation-dep

• No guarantees about fairness for equal-priority thre

— Time-slicing is permitted but not required

• No guarantees whether highest-priority or longest-
threads acquire locks or receive notifications befor

Priorities can only be used heuristically

• Build custom Queues to control order of sequentia

• Build custom Conditions to control locking and noti
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Adding Thread Attributes
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Thread  objects can hold non-public Thread-Specific co
attributes for all methods/objects running in that thread

• Normally preferable to static  variables

Useful for variables that apply per-activity, not per-object

• Timeout values, transaction IDs, Principals, curren
directories, default parameters

Useful as tool to eliminate need for locking

• Used  internally in JVMs to optimize memory alloc
locks, etc via per-thread caches

Thread
specific
attributes

Thread
specific
attributes
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Implementing Thread-Specific Storage

lay_ ;

;

s

always

s

C
o

n
c

u
r

r
e

n
t

 
P

r
o

g
r

a
m

m
i

n
g

 
i

n
 

J
a

v
a

class GameThread extends Thread { // ...
  private long movementDelay_ = 3;

static  GameThread currentGameThread() {
    return (GameThread)(Thread.currentThread());
  }

static  long getDelay() {
    return currentGameThread(). movementDe
  }

static  long setDelay(long t) {
    currentGameThread(). movementDelay_  = t
  }
}
class Ball {  // ...
  void move() { // ...
    Thread.sleep( GameThread.getDelay()) );
  }
}
class Main { ... new GameThread(new Game()) ... }

Define contextual attributes in special Thread  subclasse

• Can be accessed without locking if all accesses are
via Thread.currentThread()

• Enforce via static  methods in Thread  subclas
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Using ThreadLocal
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java.lang.ThreadLocal  available in JDK1.2

• An alternative to defining special Thread  subcl

Uses internal hash table to associate data with threads

• Avoids need to make special Thread  subclasse
adding per-thread data

— Trade off flexibility vs strong typing and perform

class Ball {
  static ThreadLocal delay = new ThreadLocal();
  void move() { // ...
    if (delay. get ()==null) delay. set (new L
    long d = ((Long)(delay. get ())).longValue
    Thread.sleep(d);
  }
}

Can extend to implement inherited  Thread contexts

Where new threads by default use attributes of the pare
thread that constructed them
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Other Scoping Options
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Choices for maintaining context information

per Object

per Method

per Class

per Principal

per Application

per Session

per System

per G
per Thread

per A

per Role

per Block per D

per Version

per S
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Choosing among Scoping Options
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Reusability heuristics

• Responsibility-driven design

• Factor commonalities, isolate variation

• Simplify Programmability

— Avoid long parameter lists

— Avoid awkward programming constructions

— Avoid opportunities for errors due to policy con

— Automate propagation of bindings

Conflict analysis

Example: Changing per-object bindings via tuning inter
can lead to conflicts when objects support multiple role

• Settings made by one client impact others

• Common error with Proxy objects

• Replace with per-method, per-role, per-thread
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Thread-per-Activity via Pass-Throughs
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class Host { //...

  void reactV1(...) { // no synch
updateState(); // isolate in synched m

 sendMessage(...);
  }
  void sendMessage(...) { // no synch
    handler_.process(...); // direct call
  }
}

A kind of forwarding — conceptually removing host from ca

Callers of react must wait
for handler.process
to terminate, or
generate their own
threads

Host  can respond to
another react call from
another thread
immediately after
updating state

client host

pro

... updateState

react
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Using Pass-Throughs
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Common approach to writing AWT Event handlers, JavaBea
methods, and other event-based components.

But somewhat fragile :

• There is no “opposite” to synchronized

— Avoid self calls to react  from synchronized

• Need care in accessing representations at call-poi

— If handler_  variable or process  arguments
copy values to locals while under synchronizati

• Callers  must be sure to create thread around call 
cannot afford to wait or would lock up

Variants

Bounded Thread-per-Message

• Keep track of how many threads have been create
many, fall back to pass-through.

Mediated

• Register handlers in a common mediator structure
pass-through.
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Multicast  Pass-Throughs
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class Host { //...
  CopyOnWriteSet handlers_;

  synchronized void addHandler(Handler h) {
     handlers_.add(h); // copy
  }

  void sendMessage(...) {
    Iterator e = handlers_.iterator();
    while (e.hasNext())
      ((Handler)(e.next())).process(...);
  }
}

Normally use copy-on-write  to implement target collection

• Additions are much less common than traversals

AWT uses java.awt.AWTEventMulticaster  class

• Employs variant of FixedList  class design

• But coupled to AWT Listener framework, so canno
used in other contexts
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Thread-Per-Object via Worker Threads
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Establish a producer-consumer chain

Producer

Reactive method just places message  in a chan

Channel  might be a buffer, queue, stream, etc

Message  might be a Runnable command, even

Consumer

Host contains an autonomous loop thread of form:

         while (!Thread.interrupted()) {
        m = channel.take();
        process(m);
      }

Common variants

Pools

Use more than one worker thread

Listeners

Separate producer and consumer in different objec
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Worker Thread Example
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interface Channel { // buffer, queue, stream, etc
  void   put(Object x);
  Object take();
}

class Host { //...
  Channel channel_ = ...;
  void sendMessage(...) {

   channel_.put (new Runnable() {  // enqueu
      public void run(){
        handler_.process(...);
      }});
  }

Host() { // Set up worker thread in constructor
    // ...
    new Thread(new Runnable() {
      public void run() {
       while (!Thread.interrupted())
        ((Runnable)( channel_.take() )).run();
      }
    }).start();
  }
}
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Worker Thread Protocol

hannel

!empty
C
o

n
c

u
r

r
e

n
t

 
P

r
o

g
r

a
m

m
i

n
g

 
i

n
 

J
a

v
a

client host command

put

handler

... updateState...

react

process

c

take

run

run



116

Channel Options
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Unbounded queues

• Can exhaust resources if clients faster than handle

Bounded buffers

• Can cause clients to block when full

Synchronous channels

• Force client to wait for handler to complete previou

Leaky bounded buffers

• For example, drop oldest if full

Priority queues

• Run more important tasks first

Streams or sockets

• Enable persistence, remote execution

Non-blocking channels

• Must take evasive action if put  or take  fail or ti
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Example: The AWT Event Queue Thread
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AWT uses one thread and a single java.awt.EventQueue

• Single thread makes visual updates appear more c

• Browsers may add per-Applet threads and queue

Events implement java.util.EventObject

• Include both ‘‘Low-level’’ and ‘‘Semantic’’ events

Event dequeuing performed by AWT thread

repaint()  places drawing request event in queue.

• The request may beoptimized away if one already 

• update/paint  is called when request dequeued

— Drawing is done by AWT thread , not your thr

mouseEvent
click

AWT queue

actionPe

a

dequeue button
... dis

}

anEvent

anEvent

AWT Thread

pass-through
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AWT Example
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               implements ActionListener  

  Button button = new Button(“Push me”);
  boolean onOff = false;

  public void init() {
    button.addActionListener(this); // atta
    add(button);              // add to layout
  }

  public void ActionPerformed(ActionEvent evt) {
    if (evt.getSource() == button) // dispa
      toggle();  // update state
    repaint(); // issue event(not necessary here
  }

  synchronized void toggle() {
    onOff = !onOff;
  }
}
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Using AWT in Concurrent Programs
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Most conservative policy is to perform all GUI-related sta
in event handling methods

• Define and generate new EventObjects  if nece

• Consider splitting  GUI-related state into separate

• Do not rely on thread-safety of GUI components

Define drawing and event handling methods in reactive form

• Do not hold locks when sending messages

• Do not block or delay caller thread (the AWT threa

• Generate threads to arrange GUI-unrelated  proc

— Explicitly set their ThreadGroups

• Generate events to arrange GUI-related  asynch 

— Swing  includes some utility classes to make th
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 Thread Pools
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Use a collection of worker threads, not just one

• Can limit maximum number and priorities of thread

Often faster than thread-per-message

• But slower than single thread working off a multislo
unless handler actions permit parallelism

• Often works well for I/O-bound actions

channel

put

take

client
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Listeners
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House worker thread in a different object

• Even in a different process, connected via socket

But full support for remote  listeners requires frameworks 

• Naming remote acquaintances (via registries, j

• Failure, reliability, fault tolerance

• Security, protocol conformance, ...

Can make more transparent via Proxies

• Channels/Listeners that duplicate interface of Han
wrap each message as queued command for later
execution

client host

channel

put take

worker threa

listener
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Remote Worker Threads
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class Host { // ...
ObjectOutputStream c; // connected to a Soc

  void sendMessage(...) {
    c.writeObject (new SerializableRunnable() {
      public void run(){
        new Handler().process(...);
      }
    });
  }
}

class Listener {  // instantiate on remote machine
  ObjectInputStream c;  // connected to a Socket
  Listener() {
    c = new ...
    Thread me = new Thread (new Runnable() {
      public void run() {
        for (;;) {
         ((Runnable)(c.readObject())).run();
        }}});
    me.start();
  }
}
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Synchronous Channels
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Synchronous oneway messages same as asynchronous, ex

• Caller must wait at least until message is accep

Simplest option is to use synchronized methods

• Caller must wait out all  downstream processing

Increase concurrency via synchronous channel to worker th

• Every put must wait for take

• Every take must wait for put

Basis for synchronous message passing frameworks (CSP 

• Enables more precise, deterministic, analyzable, b
expensive flow control measures.

• Relied on in part because CSP-inspired systems d
allow dynamic construction of new threads, so req
more careful management of existing ones.

Variants

• Barrier : Threads wait but do not exchange informa

• Rendezvous : Bidirectional message exchange at 
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Synchronous Channel Example
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class SynchronousChannel {
  Object item_ = null;
  boolean putting_ = false; //disable multiple p

  synchronized void put(Object e) {
    if (e == null) return;
    while (putting_) try { wait(); } catch ...
    putting_ = true;
    item_ = e;
    notifyAll();

while (item_ != null) try { wait(); } catch ...
    putting_ = false;
    notifyAll();
  }

  synchronized Object take() {
while (item_ == null) try { wait(); } catch ...

    Object e = item_;
    item_ = null;
    notifyAll();
    return e;
  }
}
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Some Pattern Trade-Offs
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Thread-per-
Message

Pass-Through Worker Th

+ Simple
semantics:
When in doubt,
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thread

- Can be hard to
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usage

- Thread start-up
overhead

+ Low overhead

- Fragile
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+ Tunable
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  Interactive Messages
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Synopsis

• Client activates Server with a oneway message

• Server later invokes a callback  method on client

Callback can be either oneway or procedural

Callback can instead be sent to a helper object of 

Degenerate case: inform only of task completion

Applications

• Observer designs

• Completion indications from file and network I/O

• Threads performing computations that yield results

client server
oneway

 callbackclient server
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Observer Designs
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The oneway calls are change
notifications

The callbacks are state queries

Examples

• Screen updates

• Constraint frameworks

• Publish/subscribe

• Hand-built variants of
wait  and notifyAll

Notifications must use oneway
design pattern

 Otherwise:

changeNotifi

currentVa

changeValue(v)

return

subject

val==v

return(val)

changeNotification

currentValue

val==vthread1

thread2

can deadlock against:
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Observer Example
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class Subject {
  protected double val_ = 0.0; // modeled state
  public synchronized double getValue(){
    return val_;}
  protected synchronized void setValue(double d){
    val_ = d;}

  protected CopyOnWriteSet obs_ = new COWImpl();
  public void attach(Observer o) { obs_.add(o); }

  public void changeValue(double newstate) {
   setValue(newstate);

    Iterator it = obs_.iterator();
    while (it.hasNext()){
      final Observer o = (Observer)(it.next());
      new Thread(new Runnable() {
        public void run() {
          o.changeNotification(this);
        }
      }).start();
    }
  }
} // More common to use pass-through calls instead of
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Observer Example (Continued)
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  protected double cachedState_;//last known state
  protected Subject subj_;      // only one here

  Observer(Subject s) {
    subj_ = s; cachedState_ = s.getValue();
    display();
  }

  synchronized void changeNotification(Subject s){
if (s != subj_) return; // only one

    double oldState = cachedState_;
    cachedState_ = subj_.getValue(); // pro

    if (oldState != cachedState_) display();
  }

  synchronized void display() { // default version
    System.out.println(cachedState_);
  }
}
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Completion Callbacks
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The asynch messages are service
activations

The callbacks are continuation
calls that transmit results

• May contain a message
ID or completion token to
tell client which task has
completed

Typically two kinds of callbacks

Success  – analog of return

Failure  – analog of throw

Client readiness to accept
callbacks may be state-
dependent

• For example, if client can
only process callbacks in
a certain order

  app

client
start/run

return

success

failure

return

return

... 



131

Completion Callback Example
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Callback interface

interface FileReaderClient {
  void readCompleted(String filename);
  void readFailed(String filename,IOException ex);
}

Sample Client

class FileReaderApp implements FileReaderClient {
  private byte[] data_;

  void readCompleted(String filenm) {
    // ... use data ...
  }
  void readFailed(String fn, IOException e){
    // ... deal with failure ...
  }

  void app() {
    new Thread(new FileReader(“file”,
                   data_,this)).start();
  }
}
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Completion Callbacks (continued)
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Sample Server

class FileReader implements Runnable {
  final String nm_;
  final byte[] d_;
  final FileReaderClient client_; // allow null

  public FileReader(String name, byte[] data,
                    FileReaderClient c) {
    nm_ = name; d_ = data; client_ = c;
  }

  void run() {
    try {
      // ... read...
      if (client_ != null)
        client_.readCompleted(nm_);
    }
    catch (IOException ex) {
      if (client_ != null)
        client_.readFailed(nm_, ex);
    }
  }
}
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Threads and I/O
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Java I/O calls generally block

• Thread.interrupt  causes them to unblock

— (This is broken in many Java implementations)

• Time-outs are available for some Socket operation

— Socket.setSoTimeOut

• Can manually set up classes to arrange time-out in
for other kinds of I/O

Common variants of I/O completion callbacks

• Issue callback whenever there is enough data to p
rather than all at once

• Send a Runnable  completion action instead of ca

• Use thread pools for either I/O or completion action

Alternatives

• Place the I/O and the subsequent actions all in sam
method, run in same thread.

• Read into a buffer serviced by a worker thread



134

Rerouting Exceptions
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Callbacks can be used instead of exceptions in any asynch
messaging context, not just those directly constructing t

Variants seen in Adaptors that call methods throwing excep
that clients do not know how to handle:

interface Server { void svc() throws SException
interface EHandler { void handle(Exception e); }

class SvcAdapter {
  Server server = new ServerImpl();
  EHandler handler;
  void attachHandler(EHandler h) { handler = h; }

public void svc() { // no throw clause
    try   { server.svc(); }
    catch (SException e) {
     if (handler != null) handler.handle(e); }
  }
}

Pluggable Handlers can do anything that a normal catch cla

• Including cancelling all remaining processing in an

• But are less structured and sometimes more error-
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Joining Threads
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Thread.join()  may be used instead of callbacks when

• Server does not need to call back client with result

• But client cannot continue until service completion

Usually the easiest way to express termination dependen

• No need to define callback interface or send client
argument

• No need for server to explicitly notify or call client

• Internally implemented in java by

— t.join()  calls t.wait()

— terminating threads call notifyAll()

Can use to simulate futures  and deferred calls  found in o
concurrent OO languages

• But no syntactic support for futures
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Join Example
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public class PictureDisplay {
  private final PictureRenderer myRenderer_;
    // ...

  public void show(final byte[] rawPic) {
    class Waiter implements Runnable {
      Picture result = null;
      public void run() {
        result = myRenderer_.render(rawPic); }
    };
    Waiter waiter = new Waiter();
    Thread t = new Thread(waiter);
    t.start();

    displayBorders();  // do other things
    displayCaption();  //  while rendering

    try { t.join(); }
    catch(InterruptedException e) { return; }

    displayPicture(waiter.result);
  }
}
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     Join Protocol
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picturedisplay waiter renderer

return(im)

join

return

displayPicture(result)

start
thread

run

render

... other actions...

return

isAlive

!isAlive

!isAlive

...
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Futures
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Encapsulate waits for results of operations performed in thr

• Futures are ‘‘data’’ types that wait until results read

— Normally requires use of interfaces for types

Clients wait only upon trying to use results

interface Pic      { byte[] getImage(); }
interface Renderer { Pic render(byte[] raw); }

class AsynchRenderer implements Renderer {
  static class FuturePic implements Pic { //inner
    byte[] img_ = null;
    synchronized void setImage(byte[] img) {
      img_ = img;
      notifyAll();
    }
    public synchronized byte[] getImage() {

     while (img_ == null)
        try { wait(); }
        catch (InterruptedException e) { ... }
      return img_;
    }
  } // continued
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Futures (continued)
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// class AsynchRender, continued

  public Pic render(final byte[] raw) {
    final FuturePic p = new FuturePic();
    new Thread(new Runnable() {
      public void run() {
        p.setImage(doRender(raw));
      }
    }).start();
    return p;
   }

   private Pic doRender(byte[] r); // ...
}

class App { // sample usage
  void app(byte[] r) {
    Pic p = new AsynchRenderer().render(r);
    doSomethingElse();

display(p.getImage()); // wait if not yet ready
  }
}

Could alternatively write join -based version.
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Threads normally terminate after completing their run  m

May need to cancel asynchronous activities before complet

• Applet.stop()  called

• User hits a CANCEL button

• Threads performing computations that are not nee

• I/O or network-driven activites that encounter failur

Options

Asynchronous cancellation: Thread.stop

Polling and exceptions: Thread.interrupt

Terminating program:        System.exit

Minimizing contention: setPriority(MIN_PRIO

Revoking permissions:       SecurityManager  

Unlinking resources known to cause failure exceptions
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Asynchronous Cancellation
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Thread.stop  stops thread by throwing ThreadDeath  e

Deprecated in JDK1.2 because it can corrupt object sta

class C {
  private int v;          // invariant: v
  synchronized void f() {

v = -1; // temporarily set to illegal value
   compute();         // call some other method

  v = 1;                  // set to legal value
 }

  synchronized void g() { // depend on invariant
    while ( v != 0 ) { --v;  something(); } }
}

What happens if stop  occurs during compute() ?

In principle, could catch(ThreadDeath)

• But this would only work well if done after just abou
line of code in just about every Java class. Imp

• Most other thread systems (including POSIX) eithe
support or severely restrict asynchronous cancella
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Interruption
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Safety can be maintained by each object checking cancella
status only when in an appropriate state to do so, relyin

thread.isInterrupted

• Returns current interruption status.

(static) Thread.interrupted

• Clears status for current thread, returning previous

thread.interrupt

• Sets interrupted status, and also causes applicable
methods to throw InterruptedException

• Threads that are blocked waiting for synchroniz
method or block entry are NOT awakened by in

InterruptedException

• Thrown by Thread.sleep , Thread.join , Ob
if  blocked during interruption, also clearing stat

• Blocking IO methods in the java.io  package re
interrupt  by throwing InterruptedIOException
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Implementing a Cancellation Policy
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Best-supported policy is:

Thread.isInterrupted()   means cancelle

Any method sensing interruption should

• Assume current task is cancelled.

• Exit as quickly and cleanly as possible.

• Ensure that callers are aware of cancellation. Optio

Thread.currentThread().interrupt()

throw new InterruptedException()

Alternatives

• Local recovery and continuation

• Centralized error recovery objects

• Always ignoring/resetting status
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Cancellation can be checked as a precondition for any meth

if (Thread.currentThread().isInterrupted())
  cancellationCode();

• Also in loop headers of looping methods, etc

Can be caught, thrown, or rethrown as an exception

try { somethingThrowingInterruptedException(); }
catch (InterruptedException ex) {
  cancellationCode();
}

• Or as a subclass of a general failure exception, as
InterruptedIOException

Placement, style, and poll frequency require engineering tra

• How important is it to stop now ?

• How hard is it to stop now?

• Will another object detect and deal with at a better

• Is it too late to stop an irreversable action?

• Does it really matter if the thread is stopped?
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Responses to Cancellation
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Early return

• Clean up and exit without producing or signalling e
May require rollback or recovery

• Callers can poll  status if necessary to find out why
was not carried out.

• Reset (if necessary) interruption status before retu
Thread.currentThread().interrupt()

Continuation (ignoring cancellation status)

• When it is too dangerous to stop

• When partial actions cannot be backed out

• When it doesn’t matter (but consider lowering prior

Throwing InterruptedException

• When callers must be alerted on method return

Throwing a general failure Exception

• When interruption is one of many reasons method
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Multiphase Cancellation
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Foreign code running in thread might not respond to cancel

Dealing with this forms part of any security framework. Exam

static boolean terminate(Thread t) {
  if (!t.isAlive()) return true;  // already dead

  // phase 1 -- graceful cancellation
  t.interrupt();
  try { t.join(maxWaitToDie); }
  catch(InterruptedException e){} //  ignore
  if (!t.isAlive()) return true;  // success

  // phase 2 -- trap all security checks
  theSecurityMgr.denyAllChecksFor(t); // made-up
  try { t.join(maxWaitToDie); }
  catch(InterruptedException ex) {}
  if (!t.isAlive()) return true;

  // phase 3 -- minimize damage
  t.setPriority(Thread.MIN_PRIORITY);
  // or even unsafe last-resort t.stop()
  return false;
}
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Shutting Down Applets
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Applets can create threads

— usually in Applet.start

and terminate them

— usually in Applet.stop

These threads should be cancellable

• Otherwise, it is impossible to
predict lifecycle

• No guarantees about when
browsers will destroy, or
whether threads automatically
killed when unloading

Guidelines

• Explicitly cancel threads (normally in Applet.sto

• Ensure that activities check cancellation often eno

• Consider last-resort Thread.stop  in Applet.de

init

start

stop

destro

move

off/on

page

revisit/reload
after
finalized

insta
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Concurrent Application
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Establishing application- (or subsystem-) wide Policies

• Communication directionality, synchronization

• Avoid inconsistent case-by-case decisions

Samplings from three styles

Flow systems

Wiring together processing stages

— Illustrated with Push Flow designs

Parallel execution

Partitioning independent tasks

— Illustrated with Group-based designs

Layered services

Synchronization and control of ground objects

— Illustrated with Before/After designs
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Push Flow Systems
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Systems in which (nearly) all activities are performed by obj
issuing oneway messages along paths from source

• Each message transfers  information and/or objec

Examples

Control systems

Assembly systems

Workflow systems

Event processing

Chain of command

Pipeline algorithms

Requires common directionality and locality constraints

• Precludes many safety and liveness problems

• Success relies on adherence to design rules
 — potentially formally checkable

The simplest and sometimes best open systems protocol

supplier
invoices

approval

contractor
invoices

tempSensor comparator
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Stages in Flow Systems
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Every stage is a producer and/or consumer

Stages implement common interface
with method of form

void put(Object item)

May have multiple successors

 Outgoing elements may be

— multicasted  or

— routed

May have multiple predecessors

 Incoming elements may be

— combined  or

— collected

Normally require explicit  linkages
 — only one stage per connection

Each stage can define put using any appropriate oneway
implementation pattern — may differ across stages

producer put

splitter put

put
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Exclusive Ownership of  Resources
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Elements in most flow systems act like physical resourc

• If you have one, then you can do something (with i
you couldn’t do otherwise.

• If you have one, then no one else has it.

• If you give it to someone else, then you no longer h

• If you destroy it, then no one will ever have it.

Examples

• Invoices

• Network packets

• File and socket handles

• Tokens

• Mail messages

• Money
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Accessing Resources
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How should stages manage resource objects?

class Stage {
  Resource res;
  void put(Resource r) { /* ... */ }
}

Both reference-passing ‘‘shared memory’’ and copy-based
‘‘message passing’’ policies can encounter problems:

stage2stage1 put(r) stage1 put(r)

resource resource

access access access a

Synchronize access to resource      Deal with identity d

Shared memory Message pas
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Transfer policy

At most one stage refers to any resource at any time

Require each owner to forget about each resource after re
to any other owner as message argument or return valu

• Implement by nulling out instance variables referin
resources after hand-off

— Or avoiding such variables

• Resource Pools can be used to hold unused resou

— Or just let them be garbage collected

stage2stage1 put(r) stage1 put(r)

resource

access a

Before message After messag

(null)(null)
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Assembly Line Example
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Boxes are flow elements

• Have adjustable dimension and color

• Can clone and draw themselves

Sources produce continuous stream of BasicBoxes

Boxes are pushed through stages

• Stages paint, transform, combine into composite b

A viewer applet serves as the sink

See CPJ p233-248 for most code omitted here

• Some code here differs in minor ways for sake of
illustration
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Interfaces
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interface PushSource { void start(); }

interface PushStage { void putA(Box p); }

interface DualInputPushStage extends PushStage {
  public void putB(Box p);
}

PushSource
start

PushStage
putA

DualInput
PushStage

putA

putB
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Adapters
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class DualInputAdapter implements PushStage {
  protected final DualInputPushStage stage_;

  DualInputAdapter(DualInputPushStage stage) {
    stage_ = stage;
  }

  void putA(Box p) { stage_.putB(p); }
}

Allows all other stages to issue putA

• Use adapter when necessary to convert to putB

• Simplifies composition

Alternatively, could have used a single  put(command)

• Would require each stage to decode type/sense of
command

DualInput
Adapter
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Connections
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class SingleOutputPushStage {
  protected PushStage next1_= null;
  void attach1(PushStage s) { next1_ = s; }
}

class DualOutputPushStage
                 extends SingleOutputPushStage {
  protected PushStage next2_ = null;
  void attach2(PushStage s) { next2_ = s; }
}

Alternatively, could have used a collection ( Vector  etc)

We assume/require all attach es to be performed before 

SingleOutput
PushStage next1

DualOutput
PushStage

next1

next2
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Linear Stages
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class Painter extends SingleOutputPushStage
              implements PushStage {
  protected final  Color color_;

  public Painter(Color c) {
    super();
    color_ = c;
  }

  public void putA(Box p) {
    p.color(color_);
    next1_.putA(p);
  }
}

Painter  is immutable after initialization

Painter
putA putA

next1
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Dual Input Stages
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public class Collector
                  extends SingleOutputPushStage
                  implements DualInputPushStage {

  public synchronized  void putA(Box p) {
    next1_.putA(p);
  }

  public synchronized  void putB(Box p) {
    next1_.putA(p);
  }

}

Synchronization used here to illustrate flow control, not safe

Collector
putA

putA

putB

next1
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class Joiner extends SingleOutputPushStage
             implements DualInputPushStage {
  protected Box a_ = null;  // incoming from putA
  protected Box b_ = null;  // incoming from putB
  protected abstract Box join(Box p, Box q);
  protected synchronized Box joinFromA(Box p) {
    while (a_ != null) // wait until last consum
      try { wait(); }
      catch (InterruptedException e){return null;}
    a_ = p;
    return tryJoin();
  }
  protected synchronized Box tryJoin() {
    if (a_ == null || b_ == null) return null;

Box joined = join(a_, b_); // make com
    a_ = b_ = null; // forget old bo
    notifyAll(); // allow new p
    return joined;
  }
  void putA(Box p) {
    Box j = joinFromA(p);
    if (j != null) next1_.putA(j);
  }
} // (mechanics for putB are symmetrical)
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Dual Output Stages
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class Cloner extends DualOutputPushStage
             implements PushStage {

  protected synchronized Box dup(Box p) {
    return p.duplicate();
  }

  public void putA(final Box p) {
    Box p2 = dup(p); // synched update (not nec.)
    Runnable r = new Runnable() {
      public void run() { next1_.putA(p); }
    };
    new Thread(r).start();  // use new thread f
    next2_.putA(p2);       // current thread for B
  }
}

Using second thread for second output maintains liveness

Cloner
putA

putA next1

next2putA
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Configuration
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All setup code is of form

    Stage aStage = new Stage();
    aStage.attach(anotherStage);

Would be nicer with a visual scripting tool

BBSource Painter Alternator

BBSource Painter

HorizJoin Collector

DIAdaptor

DIAdaptor
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Parallel Execution
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Classic parallel programming deals with

Tightly coupled, fine-grained multiprocessors

Large scientific and engineering problems

Speed-ups from parallelism are possible in less exotic settin

SMPs, Overlapped I/O

Key to speed-up is independence  of tasks

Minimize thread communication  and synchronization

Minimize sharing of resource objects

Rely on groups  of thread-based objects

Worker thread designs

Scatter/gather designs
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Interacting with Groups
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Group Proxies encapsulate a group of workers and protocol

class GroupProxy implements Service {
  public Result serve(Data data) {
    split the data into parts;

    for each part p
      start up a thread to process p;

    for each thread t {
collect results from t; //via callback or
if (have enough results) // one, all, o

        return aggegrate result;
    }
  }

client proxy members

scatter

gather

serve

return
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 Group Service Example
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public class GroupPictureRenderer {

  public Picture[] render(final byte[][] data)
                   throws InterruptedException {

   int n = data.length;
   Thread threads[] = new Thread[n];
   final Picture results[] = new Picture[n];

   for (int k = 0; k < n; k++) {
     final int i = k;  // inner vars must be fina
     threads[i] = new Thread(new Runnable() {
       public void run() {

PictureRendere r r = new PictureRend
         results[i] = r.render(data[i]);
       }
     };
     threads[i].start();
   }
   // block until all are finished
   for (int k = 0; k < n; k++) threads[k].join();
   return results;
  }
}
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Iteration using Cyclic Barriers
algorithms
C
o

n
c

u
r

r
e

n
t

 
P

r
o

g
r

a
m

m
i

n
g

 
i

n
 

J
a

v
a

CyclicBarrier is synchronization tool for iterative  group 

• Initialize count with number of members

• synch()  waits for zero, then resets to initial count

class PictureProcessor { // ...
  public void processPicture(final byte[][] data){

    final CyclicBarrier barrier =
                      new CyclicBarrier(NWORKERS);
    for (int ii = 0; ii < NWORKERS; ++ii) {
      final int i = ii;
      Runnable worker = new Runnable() {
        public void run() {
          while (!done()) {
            transform(data[i]);
            try { barrier.barrier();  }
            catch(InterruptedException e){return;}
            combine(data[i],data[(i+1)%NWORKERS]);
          } } };
      new Thread(worker).start();
    }
  }
}
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Implementing Cyclic Barriers
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class CyclicBarrier {

  private int count_;
  private int initial_;
  private int resets_ = 0;

  CyclicBarrier(int c) { count_ = initial_ = c; }

  synchronized boolean barrier() throws Inte...{
    if (--count_ > 0) {  // not yet tripped
      int r = resets_;   // wait until next reset
      do { wait(); } while (resets_ == r);
      return false;
    }
    else {
      count_ = initial_;
      ++resets_;
      notifyAll();

return true; // return true if caller tripped
    }
  }
}
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Layered Services
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Providing concurrency control for methods of internal  o

• Applying special synchronization policies

• Applying different policies to the same mechanism

Requires visibility control (containment)

• Inner code must be communication-closed

• No unprotected calls in to or out from island

• Outer objects must never leak identities  of inne

• Can be difficult to enforce and check

Usually based on before/after methods

part2

subpart1part1

client

client

Control
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Three-Layered Application Designs
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Common across many concurrent applications

Generally easy to design and implement

Maintain directionality of control and locking

Interaction with external world

generating threads

Basic mechanisms

Concurrency Control

locking, waiting, failing
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Control access to contained object/action via a method of th

   void controlled() {
pre();

     try { action(); }
     finally { post();  }
   }

Used by built-in Java synchronized(obj) { action();

Pre: ‘ { ‘ obtains lock      ...       Post: ‘ } ’ releases lock

Control code must be separable from ground action code

• Control code deals only with  execution state

• Ground code deals only with intrinsic state

Basis for many delegation-based designs

ControlledService
service()  {

GroundService

action() { ... }

  delegate

    pre();
     delegate.action();
    post();
}
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Template Method Before/After Designs
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Subclassing  is one way to implement
before/after containment designs

• Superclass instance variables
and methods are “contained”
in subclass instances

Template methods

• Isolate ground code and
control code in overridable
protected  methods

• Public  methods call control
and ground code in an
established fashion

• Can provide default versions
in abstract classes

• Can override the control code
and/or the ground code in
subclasses

AbstractSer
public service()  {

protected  pre();
protected  action();
protected  post();

ConcreteS

override
pre()  or action()  o

    pre();
    action();
    post();
}
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Readers & Writers Policies
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Apply when

• Methods of ground class can be separated into rea
(accessors) vs writers (mutators)

— For example, controlling access to data reposit

• Any number of reader threads can run simultanous
writers require exclusive access

Many policy variants possible

• Mainly surrounding precedence of waiting threads

— Readers first? Writers first? FIFO?

write

read

threads

data
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Readers & Writers via Template Methods
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public abstract class RW {
  protected int activeReaders_ = 0; // exec state
  protected int activeWriters_ = 0;
  protected int waitingReaders_ = 0;
  protected int waitingWriters_ = 0;

  public void read() {
    beforeRead();
    try { doRead(); } finally { afterRead(); }
  }
  public void write(){

  beforeWrite();
    try { doWrite(); }  finally { afterWrite(); }
  }

  protected boolean allowReader() {
    return waitingWriters_ == 0 &&
           activeWriters_  == 0;
  }
  protected boolean allowWriter() {
    return activeReaders_ == 0 &&
           activeWriters_ == 0;
  }
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Readers & Writers (continued)
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    ++waitingReaders_;

    while (!allowReader())

      try { wait(); }

      catch (InterruptedException ex) { ... }

    --waitingReaders_;

    ++activeReaders_;

  }

  protected abstract void doRead();

  protected synchronized void afterRead()  {

    --activeReaders_;

    notifyAll();

  }
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Readers & Writers (continued)
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    ++waitingWriters_;

    while (!allowWriter())

      try { wait(); }

      catch (InterruptedException ex) { ... }

    --waitingWriters_;

    ++activeWriters_;

  }

  protected abstract void doWrite();

  protected synchronized void afterWrite() {

    --activeWriters_;

    notifyAll();

  }

}
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Using Concurrency Libraries
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Library classes can help separate responsibilities for

Choosing  a policy; for example

— Exclusive versus shared access

— Waiting versus failing

— Use of privileged resources

Applying  a policy in the course of a service or transact

— These decisions can occur many times within a

Standard libraries can encapsulate intricate synchronization

But can add programming obligations

• Correctness relies on all objects obeying usage po

• Cannot automatically enforce

Examples

• Synchronization, Channels, Transactions
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Interfaces
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Sync  encompasses many concurrency control policies

public interface Sync {
  //  Serve as a gate, fail only if interrupted
  void acquire() throws InterruptedException;

// Possibly allow other threads to pass the gate
  void release();
  //  Try to pass for at most timeout msecs,
  //    return false if fail
  boolean attempt(long timeOut);
}

Service
service(...) {

ConcreteSyn

implementa

  cond

  cond.acquire();

Sync
void acquire()
void release()
boolean attempt(long tim

   try       {  action();  }
  finally  { cond.release();  }
}
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Synchronization Libraries
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Semaphores

• Maintain count of the number of threads allowed to

Latches

• Boolean conditions that are set once, ever

Barriers

• Counters that cause all threads to wait until all hav
finished

Reentrant Locks

• Java-style locks allowing multiple acquisition by sa
thread, but that may be acquired and released as n

Mutexes

• Non-reentrant locks

Read/Write Locks

• Pairs of conditions in which the readLock may be s
but the writeLock is exclusive
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Semaphores
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Conceptually serve as permit  holders

• Construct with an initial number of permits (usually

• require  waits for a permit to be available, then ta

• release  adds a permit

But in normal implementations, no actual permits change ha

• The semaphore just maintains the current count.

• Enables very efficient implementation

Applications

• Isolating wait sets in buffers, resource controllers

• Designs that would otherwise encounter misse

— Where one thread signals before the other has
started waiting

— Semaphores ‘remember’ how many times they
signalled
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Counter Using Semaphores
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class BoundedCounterUsingSemaphores {

  long count_ = MIN;

  Sync decPermits_= new Semaphore(0);
  Sync incPermits_= new Semaphore(MAX-MIN);

  synchronized long value() { return count_; }

  void inc() throws InterruptedException {
    incPermits_.acquire();
    synchronized(this) { ++count_; }
    decPermits_.release();
  }

  void dec() throws InterruptedException {
    decPermits_.acquire();
    synchronized(this) { --count_; }
    incPermits_.release();
  }
}

This uses native synch for update protection, but only inside
blocks. This avoids nested monitor lockouts
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Semaphore Synchronous Channel
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class SynchronousChannelVS {
  Object item = null;

  Semaphore putPermit = new Semaphore(1);
  Semaphore takePermit = new Semaphore(0);

  Semaphore ack = new Semaphore(0);

  void put(Object x) throws InterruptedException {
    putPermit.acquire();
    item = x;
    takePermit.release();
    ack.acquire();
  }

  Object take() throws InterruptedException {
    takePermit.acquire();
    Object x = item;
    putPermit.release();
    ack.release();
    return x;
  }
}
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Conditions starting out false, but once set true, remain true 

• Initialization flags

• End-of-stream conditions

• Thread termination

• Event occurrences

class Worker implements Runnable {
  Latch go;
  Worker(Latch l) { go = l; }
  public void run() {
    go.acquire();
    doWork();
  }
}
class Driver { // ...
  void main() {
    Latch go = new Latch();
    for (int i = 0; i < N; ++i) // make threads
      new Thread(new Worker( go)).start();
    doSomethingElse(); // don’t let run yet
    go.release(); // let all threads proceed
  } }
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Using Barrier Conditions
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Count-based latches

• Initialize with a fixed count

• Each release  monotonically decrements count

• All acquires  pass when count reaches zero

class Worker implements Runnable {
  Barrier done;
  Worker(Barrier d) { done = d; }
  public void run() {
    doWork();
    done.release();
  }
}
class Driver { // ...
  void main() {
    Barrier done = new Barrier(N);
    for (int i = 0; i < N; ++i)
      new Thread(new Worker(done)).start();
    doSomethingElse();
    done.acquire(); // wait for all to finish
  } }
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Using Lock Classes
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class HandSynched {
  private double state_ = 0.0;
  private Sync lock_;

  HandSynched(Sync l) { lock_ = l; }

  void changeState(double d) {
    try {
      lock_.acquire();
      try     { state_ = d; }
      finally { lock_.release(); }
    } catch(InterruptedException ex) { }
  }

  double getState() {
    double d = 0.0;
    try {
      lock_.acquire();
      try     { d = state_; }
      finally { lock_.release(); }
    } catch(InterruptedException ex){}
    return d;
  }
}
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Standardize common client usages of custom locks using w

• Wrapper class supports perform  method that ta
of all before/after control surrounding a Runnab
command sent as a parameter

• Can also standardize failure control by accepting
Runnable  action to be performed on acquire  

Alternative perform methods can accept blocks that retur
and/or throw exceptions

• But need to create new interface type for each kind

Similar to macros in other languages

• But implement more safely via inner classes

— Wrappers are composable

Adds noticeable overhead for simple usages

• Most useful for controlling “heavy” actions
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Before/After Wrapper Example
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  Sync cond;
  public WithLock(Sync c) { cond = c; }

  public void perform(Runnable command)
              throws InterruptedException {
    cond.acquire();
    try     { command.run(); }
    finally { cond.release(); }
  }

  public void perform(Runnable command,
                      Runnable onInterrupt) {
    try { perform(command); }
    catch (InterruptedException ex) {
      if (onInterrupt != null)
        onInterrupt.run();
      else // default
        Thread.currentThread().interrupt();
    }
  }
}
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class HandSynchedV2 {  // ...
  private double state_ = 0.0;
  private WithLock withlock_;

  HandSynchedV2(Sync l) {
    withlock_ = new WithLock(l);
  }

 void changeState(double d) {
   withlock_.perform(
      new Runnable() {
        public void run() { state_ = d; } },
      null); // use default interrupt action
  }

  double getState() {
// (need to define interface & perform version)

    try {
      return withLock_.perform(new Double
        public void run() { return state_; } });
    }
    catch(InterruptedException ex){return 0.0;}
  }
}
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Using Conditional Locks
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Sync.attempt  can be used in conditional locking idioms

Back-offs

• Escape out if a lock not available

• Can either retry or fail

Reorderings

• Retry lock sequence in different order if first attemp

Heuristic deadlock detection

• Back off on time-out

Precise deadlock detection

• Implement Sync  via lock manager that can detec
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Back-off Example
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class Cell {
  long value;
  Sync lock = new SyncImpl();
  void swapValue(Cell other) {
    for (;;) {
      try {
        lock.acquire();
        try {
          if (other.lock.attempt(100)) {
            try {

   long t = value; value = other.value;
              other.value = t;
              return;
            }
            finally { other.lock.release(); }
          }
        }
        finally { lock.release(); }
      }
      catch (InterruptedException ex) { return; }
    }
  }
}
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Lock Reordering Example
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class Cell {
  long value;
  Sync lock = new SyncImpl();
  private static boolean trySwap(Cell a, Cell b) {
    a.lock.acquire();
    try {
      if (!b.lock.attempt(0)) return false;
      try {

   long t = a.value;
        a.value = b.value;
        b.value = t;
        return true;
      }
      finally { other.lock.release(); }
    }
    finally { lock.release(); }
    return false;
  }

  void swapValue(Cell other) {
    while (!trySwap(this, other) &&
           !tryswap(other, this)) Thread.yield();
  }
}
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Using Read/Write Locks
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public interface ReadWriteLock {
  Sync readLock();
  Sync writeLock();
}

Sample usage using wrapper

class WithRWLock {
  ReadWriteLock rw;

  public WithRWLock(ReadWriteLock l) { rw = l; }

  public void performRead(Runnable readCommand)
throws InterruptedExcept

    rw.readLock().acquire();
    try     { readCommand.run();  }
    finally { rw.readlock().release(); }
  }

  public void performWrite(...) // similar
}
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Transaction Locks
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Associate keys with locks

• Each key corresponds to a different transaction.

— Thread.currentThread()  serves as key in
Java synchronization locks

• Supply keys as arguments to gating methods

• Security frameworks can use similar interfaces, ad
mechanisms and protocols so keys serve as capab

Sample interface

interface TransactionLock {

  void begin (Object key); // bind key with lock

  void end (Object key);   // get rid of key

  void acquire (Object key)
               throws InterruptedException;

  void release (Object key);
}
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Transactional Classes
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Implement a common transaction control interface, for exam

interface Transactor {

  // enter a new transaction
  void join (Object key) throws Failure;

  // return true if transaction can be committed
  boolean canCommit (Object key);

  // update state to reflect current transaction
  void commit (Object key) throws Failure;

  // roll back state
  void abort (Object key);
}

Transactors  must  ensure that all  objects they commun
are also Transactors

• Control arguments must be propagated to all partic
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Per-Method Transaction Control
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Add transaction control argument to each method.

For example:

interface TransBankAccount extends Transactor {

  long balance(Object key)
                   throws InterruptedException;

  void deposit(Object key, long amount)
                   throws InsufficientFunds,
                          InterruptedException;

  void withdraw(Object key, long amount)
                   throws InsufficientFunds,
                          InterruptedException;
}

The same interfaces can apply to optimistic transactions

• Use interference detection rather than locking.

• They are generally interoperable
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Per -ThreadGroup Transaction Control
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Assumes each transaction established in own ThreadG

class Context { // ...
  Object   get(Object name);
  void     bind(Object name, Object val);
}

class XTG extends ThreadGroup { // ...
  Context getContext();
}

class Account extends Transactor {
  private long balance_;
  private TransactionLock tlock_;
  // ...
  void deposit(long amount) throws ... {
    tlock_.acquire( ((XTG)
      (Thread.currentThread().getThreadGroup()))
       .getContext().get("TransactionID")
    synchronized (this) {

if (amount >= 0) balance_ += amount; else
    }
  }
}
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Integrating Control Policies
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Dealing with multiple contextual domains, including

• Security : Principal identities, keys, groups, etc

• Synchronization : Locks, conditions, transactions,

• Scheduling : Priorities, timing, checkpointing, etc

• Environment : Location, computational resources

Dealing with multiple outcomes

• Block, fail, proceed, save state, commit state, notif

Encapsulating associated policy control information

• For example access control lists, lock dependencie

Introducing new policies in sub-actions

• New threads, conditions, rights-transfers, subtrans

• Avoiding policy conflicts: policy compatibility matric

Avoiding excessive programming obligations for developers

Tool-based code generation, layered virtual machines
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Using Integrated Control
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Methods invoke helpers to make control decisions as neede

class Account { // ...

  void deposit(long amount, ...) {
    authenticator.authenticate(clientID);
    accessController.checkAccess(clientID, acl);
    logger.logDeposit(clientID, transID, amount);
    replicate.shadowDeposit(...);
    db.checkpoint(this);
    lock.acquire();

    balance += amount;

    lock.release();
    db.commit(balance, ...);
    UIObservers.notifyOfChange(this);
  }
}

Not much fun to program.
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Implementing Library Classes
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Classes based on Java monitor methods can be slow

• Involve context switch, locking, and scheduling ove

• Relative performance varies across platforms

Some performance enhancements

State tracking

• Only notify when state changes known to unblock 

Isolating wait sets

• Only wake up threads waiting for a particular state

Single notifications

• Only wake up a single thread rather than all waiting

Avoiding locks

• Don’t lock if can be sure won’t wait

Can lead to significantly faster, but more complex and fragil
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Tracking State in Guarded Methods
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Partition action control state into categories with
same enabling properties

Only provide notifications when making a state
transition that can ever unblock another thread

• Here, on exit from top  or bottom

— When count goes up from MIN or down from M

• Still need notifyAll  unless add instrumentation

State tracking leads to faster but more fragile code

• Usually many fewer notification calls

• Harder to change guard conditions

• Harder to add subclasses with different conditions

State Condition inc dec
top value == MAX no yes
middle MIN < value < MAX yes yes
bottom value == MIN yes no
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 Counter with State Tracking
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  protected long count_ = MIN;

  synchronized long value() { return count_; }

  synchronized void inc()

                    throws InterruptedException {

    while (count_ == MAX) wait();

    if (count_++ == MIN) notifyAll();

  }

  synchronized void dec()

                    throws InterruptedException {

    while (count_ == MIN) wait();

    if (count_-- == MAX)  notifyAll();

  }

}
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Buffer with State Tracking
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class BoundedBufferVST {
  Object[]  data_;
  int putPtr_ = 0, takePtr_ = 0, size_ = 0;

  protected void doPut(Object x){
    data_[putPtr_] = x;
    putPtr_ = (putPtr_ + 1) % data_.length;
    if (size_++ == 0) notifyAll();
  }

  protected Object doTake() {
    Object x = data_[takePtr_];
    data_[takePtr_] = null;
    takePtr_ = (takePtr_ + 1) % data_.length;
    if (size_-- == data_.length) notifyAll();
    return x;
  }

  synchronized void put(Object x) throws Inte... {
     while (isFull()) wait();
     doPut(x);
  }
  // ...
}
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Inheritance Anomaly Example
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class XBuffer extends BoundedBufferVST {
  synchronized void putPair(Object x, Object y)
                    throws InterruptedException {
    put(x);
    put(y);
  }
}

PutPair  does not guarantee that the pair is inserted contig

To ensure contiguity, try adding guard:

while (size_ > data_.length - 2) wait();

But doTake  only performs notifyAll  when the buffer tr
from full to not full

• The wait may block indefinitely even when space

• So must rewrite doTake  to change notification co

Would have been better to factor out the notification conditio
separate overridable method

• Most inheritance anomalies can be avoided by fine
(often tedious) factoring of methods and classes
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Isolating Waits and Notifications
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Mixed condition problems

• Threads that wait in different methods in the same
may be blocked for different reasons — for examp
Empty vs not Full  for buffer

• notifyAll  wakes up all threads, even those wait
conditions that could not possibly hold

Can  isolate waits and notifications for different conditio
different objects — an application of splitting

Thundering herd problems

• notifyAll  may wake up many threads

• Often, at most one of them will be able to continue

Can solve by using notify  instead of notifyAll o

➔ All threads wait on same condition

➔ At most one thread could continue anyway

• That is,  when it doesn’t matter which one is woken
doesn’t matter that others aren’t woken
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Implementing Reentrant Locks
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final  class ReentrantLock implements Sync {
  private Thread owner_ = null;
  private int    holds_ = 0;

  synchronized void acquire() throws Interru... {
    Thread caller = Thread.currentThread();
    if (caller == owner_) ++holds_;
    else {
      try { while (owner_ != null) wait();
      catch (InterruptedException e) {
         notify(); throw e;
      }
      owner_ = caller; holds_ = 1;
    }
  }
  synchronized void release() {
    Thread caller = Thread.currentThread();
    if (caller != owner_ || holds_ <= 0)
      throw new Error("Illegal Lock usage");
    if (--holds_ == 0) {
      owner_ = null;
      notify();
    }
  }}
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Implementing Semaphores
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final class Semaphore implements Sync {
  int permits_ ; int waits_  = 0;

  Semaphore(int p) { permits_  = p; }

  synchronized void acquire() throws Interrup.. {
    if ( permits_  <= waits_ ) {

   ++waits_ ;
      try {
        do { wait();  } while ( permits_  ==
      }
      catch(InterruptedException ex) {

    --waits_ ; notify();  throw ex;
      }

 --waits_ ;
    }

  --permits_ ;
  }

  synchronized void release() {
  ++permits_ ;

notify();
  }
}
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Exploit set-once property to avoid locking using double

Check status without even locking

• If set, exit — no possibility of conflict or stale read

• Otherwise, enter standard locked wait

But can have surprising effects if callers expect locking for s
memory consistency.

final class Latch implements Sync {
  private boolean latched_ = false;

  void acquire() throws InterruptedException {
    if (!latched_)
      synchronized(this) {
        while (!latched_) wait();
      }
  }

  synchronized void release() {
    latched_ = true;
    notifyAll();
  }
}
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Implementing Barrier Conditions
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Double-check can be used for any monotonic variable th
only for a threshold value

CountDown Barriers monotonically decrement counts

• Tests against zero cannot encounter conflict or sta

(This technique does not apply to Cyclic Barriers)

class CountDown implements Sync {
  private int count_;
  CountDown(int initialc) { count_ = initialc; }

  void acquire() throws InterruptedException {
    if (count_ > 0)
     synchronized(this) {
        while (count_ > 0) wait();
     }
  }
  synchronized void release() {
    if (--count_ == 0) notifyAll();
  }
}
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Implementing Read/Write Locks
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class SemReadWriteLock implements ReadWriteLock 

  // Provide fair access to active slot
  Sync active_ = new Semaphore(1);

    // Control slot sharing by readers
  class ReaderGate implements Sync {
    int readers_ = 0;

    synchronized void acquire()
                throws InterruptedException {
    // readers pile up on lock until first passes
      if (readers_++ == 0) active_.acquire();
    }

    synchronized void release()  {
      if (--readers_ == 0) active_.release();
    }
  }
  Sync rGate_ = new ReaderGate();

  public Sync writeLock() { return active_; }
  public Sync readLock()  { return rGate_; }
}
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Documenting Concurrency
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Make code  understandable

• To developers who use components

• To developers who maintain and extend componen

• To developers who review and test components

Avoid  need for extensive documentation by adopting:

• Standard policies, protocols, and interfaces

• Standard design patterns, libraries, and framework

• Standard coding idioms and conventions

Document decisions

• Use javadoc to link to more detailed descriptions

• Use naming and signature conventions as shortha

• Explain deviations from standards, usage limitation

• Describe necessary data invariants etc

Use checklists  to ensure minimal sanity
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Sample Documentation Techniques
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Patlet references

/** ... Uses
 * <a href=”tpm.html”>Thread-per-Message</a> **/
void handleRequest(...);

Default naming and signature conventions

Sample rule: Unless specified otherwise, methods that
block have signature
     ... throws InterruptedException

Intentional limitations, and how to work around them

/** ... NOT Threadsafe, but can be used with
 *  @see XAdapter to make lockable version. **/

Decisions impacting potential subclassers

/** ... Always maintains a legal value,
 *  so accessor method is unsynchronized **/
protected int bufferSize;

Certification

/** Passed safety review checklist 11Nov97 **/
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Semiformal Annotations
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PRE  — Precondition (normally unchecked)

/** PRE:  Caller holds synch lock ...

WHEN — Guard condition (always checked)

/** WHEN not empty return oldest ...

POST —Postcondition (normally unchecked)

/** POST: Resource r is released...

OUT  — Guaranteed message send (relays, callbacks, etc)

/** OUT: c.process(buff) called after read...

RELY —Required property of other objects/methods

/** RELY: Must be awakened by x.signal()...

INV  — Object constraint true at start/end of every activity

/** INV:  x,y are valid screen coordinates...

INIT — Object constraint that must hold upon construction

/** INIT: bufferCapacity greater than zero...
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Safety Problem Checklist
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Storage conflicts

• Failure to ensure exclusive access; race conditions

Atomicity errors

• Breaking locks in the midst of logically atomic oper

Representation inconsistencies

• Allowing dependent representations to vary indepe

Invariant failures

• Failing to re-establish invariants within atomic meth
 for example failing to clean up after exceptions

Semantic conflicts

• Executing actions when they are logically prohibite

Slipped Conditions

• A condition stops holding in the midst of an action
requiring it to hold

Memory ordering and visibility

• Using stale cached values
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Liveness Problems
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Lockout

• A called method never becomes available

Deadlock

• Two or more activities endlessly wait for each othe

Livelock

• A retried action never succeeds

Missed signals

• A thread starts waiting after it has already been sig

Starvation

• A thread is continually crowded out from passing g

Failure

• A thread that others are waiting for stops

Resource exhaustion

• Exceeding memory, bandwidth, CPU limitations



214

Efficiency Problems
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Too much locking

• Cost of using synchronized

• Cost of blocking waiting for locks

• Cost of thread cache flushes and reloads

Too many threads

• Cost of starting up new threads

• Cost of context switching and scheduling

• Cost of inter-CPU communication, cache misses

Too much coordination

• Cost of guarded waits and notification messages

• Cost of layered concurrency control

Too many objects

• Cost of using objects to represent state, messages



215

Reusability Problems
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Context dependence

• Components that are not safe/live outside original 

Policy breakdown

• Components that vary from system-wide policies

Inflexibility

• Hardwiring control, premature optimization

Policy clashes

• Components with incompatible concurrency contro
strategies

Inheritance anomalies

• Classes that are difficult or impossible to subclass

Programmer-hostile components

Components imposing awkward, implicit , and/or error-pron
programming obligations
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