

An indispensable companion to the best-selling Core Java 2, Vol. I--Fundamentals (0-13-
089468-0), Core Java 2, Volume II: Advanced Features is now available in a revised and
expanded fifth edition. It delivers the same real-world guidance you need to solve even the
most challenging programming problems and offers an all-new chapter on XML and Java, plus
thoroughly revamped coverage of many advanced features—from collections to native
methods, security to Swing.

Cay Horstmann identifies the problems experienced Java platform developers encounter most
often, and delivers insightful, expert-level guidance for addressing them-together with even
more of the robust, sample code that have made Core Java an international bestseller for five
straight years. You'll gain new insights into networking, remote objects, JDBC API,
internationalization, and a whole lot more.

For experienced programmers, Core Java 2, Volume 2: Advanced Features provides the
answers that they need to take full advantage of the power of Java technology and to get the
job done as efficiently as possible.

State-of-the-art information for advanced Java technology development, including:

Thoroughly updated coverage of multithreading, collections, and networking

Completely revised coverage of remote objects

Detailed new chapter on XML and Java

Sophisticated new techniques for utilizing JavaBeans(tm) component architecture

Advanced GUI-building techniques leveraging both Swing and AWT

• Examples

Core Java™ 2: Volume II–Advanced Features

By Cay S. Horstmann, Gary Cornell

Publisher : Prentice Hall PTR

Pub Date : December 13, 2001

ISBN : 0-13-092738-4

Pages : 1232

 Copyright

 List of Tables, Code Examples, and Figures

 Preface

 Acknowledgments

 Chapter 1. Multithreading

 Chapter 2. Collections

 Chapter 3. Networking

 Chapter 4. Database Connectivity: JDBC

 Chapter 5. Remote Objects

 Chapter 6. Advanced Swing

 Chapter 7. Advanced AWT

 Chapter 8. JavaBeans™

 Chapter 9. Security

Copyright
© 2002 Sun Microsystems, Inc.—

Printed in the United States of America.

901 San Antonio Road, Palo Alto, California

94303 U.S.A.

All rights reserved. This product and related documentation are protected by copyright and
distributed under licenses restricting its use, copying, distribution, and decompilation. No part
of this product or related documentation may be reproduced in any form by any means without
prior written authorization of Sun and its licensors, if any.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States
Government is subject to the restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR
52.227-19.

The products described may be protected by one or more U.S. patents, foreign patents, or
pending applications.

TRADEMARKS—Sun, Sun Microsystems, the Sun logo, Java, and all Java-based trademarks
are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.

The publisher offers discounts on this book when ordered in bulk quantities. For more
information, contact: Corporate Sales Department, Phone: 800-382-3419; Fax: 201-236-7141;
E-mail: corpsales@prenhall.com; or write: Prentice Hall PTR, Corp. Sales Dept., One Lake
Street, Upper Saddle River, NJ 07458.

Editorial/production supervision: Navta Associates

Acquisitions editor: Gregory G. Doench

Editorial assistant: Brandt Kenna

Manufacturing manager: Alexis R. Heydt-Long

Cover design director: Jerry Votta

Cover designer: Talar Agasyan-Boorujy

Cover illustration: Karen Strelecki

 Chapter 10. Internationalization

 Chapter 11. Native Methods

 Chapter 12. XML

Marketing manager: Debby van Dijk

Project coordinator: Anne Garcia

Interior designer: Gail Cocker-Bogusz

Sun Microsystems Press:

Marketing manager: Michael Llwyd Alread

Publisher: Rachel Borden

10 9 8 7 6 5 4 3 2

Sun Microsystems Press

A Prentice Hall Title

List of Tables, Code Examples, and Figures
Tables

2-1 Hash codes resulting from the hashCode function

2-2 Hash codes of objects with identical contents

2-3 Adding elements into hash and tree sets

3-1 Convenience methods for response header values

4-1 The Authors table

4-2 The Books table

4-3 The BooksAuthors table

4-4 The Publishers table

4-5 SQL Data Types

4-6 SQL data types and their corresponding Java language types

4-7 Selected queries

4-8 ResultSet type values

4-9 ResultSet concurrency values

4-10 Five columns of the result set

5-1 Naming conventions for RMI classes

6-1 Default renderers

6-2 Resize modes

7-1 The Porter-Duff Composition Rules

7-2 Rendering Hints

7-3 Document Flavors for Print Services

7-4 Printing Attributes

7-5 Capabilities of the Java data transfer mechanism

7-6 Data Transfer Support in Swing Components

9-1 Call stack during permission checking

9-2 Permissions and their associated targets and actions

10-1 Common ISO-639 language codes

10-2 Common ISO-3166 country codes

10-3 Collations with different strengths

10-4 String selected by ChoiceFormat

11-1 Java types and C types

11-2 Correspondence between Java array types and C types

12-1 Rules for Element Content

12-2 Attribute types

12-3 Attribute defaults

Code Examples

1-1 Bounce.java

1-2 BounceThread.java

1-3 BounceExpress.java

1-4 BounceSelfish.java

1-5 UnsynchBankTest.java

1-6 SynchBankTest.java

1-7 SwingThreadTest.java

1-8 Animation.java

1-9 TimerTest.java

1-10 ProgressBarTest.java

1-11 ProgressMonitorTest.java

1-12 ProgressMonitorInputStreamTest.java

1-13 PipeTest.java

2-1 LinkedListTest.java

2-2 SetTest.java

2-3 TreeSetTest.java

2-4 MapTest.java

2-5 ShuffleTest.java

2-6 SystemInfo.java

2-7 CustomWorld.java

2-8 Sieve.java

2-9 Sieve.cpp

3-1 SocketTest.java

3-2 EchoServer.java

3-3 ThreadedEchoServer.java

3-4 MailTest.java

3-5 InetAddressTest.java

3-6 URLConnectionTest.java

3-7 PostTest.java

3-8 WeatherApplet.java

3-9 ProxySvr.java

3-10 proxysvr.c

3-11 proxysvr.pl

4-1 TestDB.java

4-2 ExecSQL.java

4-3 QueryDB.java

4-4 ViewDB.java

5-1 ProductServer.java

5-2 ProductImpl.java

5-3 Product.java

5-4 ShowBindings.java

5-5 ProductClient.java

5-6 Product.java

5-7 Warehouse.java

5-8 ProductImpl.java

5-9 Customer.java

5-10 Warehouse.java

5-11 WarehouseImpl.java

5-12 WarehouseServer.java

5-13 WarehouseClient.java

5-14 WarehouseApplet.java

5-15 WarehouseApplet.html

5-16 ProductImpl.java

5-17 ProductActivator.java

5-18 rmid.policy

5-19 server.policy

5-20 client.policy

5-21 EnvClient.java

5-22 EnvServer.cpp

5-23 SysPropServer.java

5-24 SysPropClient.cpp

6-1 ListTest.java

6-2 LongListTest.java

6-3 ListRenderingTest.java

6-4 SimpleTree.java

6-5 TreeEditTest.java

6-6 ClassTree.java

6-7 ClassBrowserTest.java

6-8 ObjectInspectorTest.java

6-9 PlanetTable.java

6-10 InvestmentTable.java

6-11 ResultSetTable.java

6-12 TableSortTest.java

6-13 TableCellRenderTest.java

6-14 TableSelectionTest.java

6-15 EditorPaneTest.java

6-16 SplitPaneTest.java

6-17 TabbedPaneTest.java

6-18 InternalFrameTest.java

7-1 ShapeTest.java

7-2 AreaTest.java

7-3 StrokeTest.java

7-4 PaintTest.java

7-5 TransformTest.java

7-6 ClipTest.java

7-7 CompositeTest.java

7-8 RenderQualityTest.java

7-9 ImageIOTest.java

7-10 MandelbrotTest.java

7-11 ImageProcessingTest.java

7-12 PrintTest.java

7-13 BookTest.java

7-14 PrintServiceTest.java

7-15 StreamPrintServiceTest.java

7-16 TextTransferTest.java

7-17 ImageTransferTest.java

7-18 LocalTransferTest.java

7-19 SerialTransferTest.java

7-20 DropTargetTest.java

7-21 DragSourceTest.java

7-22 SwingDnDTest.java

8-1 ImageViewerBean.java

8-2 FileNameBean.java

8-3 IntTextBean.java

8-4 RangeBean.java

8-5 TimerBean.java

8-6 TimerListener.java

8-7 TimerEvent.java

8-8 ChartBean.java

8-9 ChartBeanBeanInfo.java

8-10 TitlePositionEditor.java

8-11 InverseEditor.java

8-12 InverseEditorPanel.java

8-13 DoubleArrayEditor.java

8-14 DoubleArrayEditorPanel.java

8-15 ChartBeanBeanInfo.java

8-16 ChartBeanCustomizer.java

8-17 SpinBean.java

8-18 SpinBeanCustomizer.java

8-19 SpinBeanBeanInfo.java

9-1 ClassLoaderTest.java

9-2 Caesar.java

9-3 VerifierTest.java

9-4 PermissionTest.java

9-5 WordCheckPermission.java

9-6 SecurityManagerTest.java

9-7 WordCheckSecurityManager.java

9-8 AuthTest.java

9-9 LineCount.java

9-10 AuthTest.policy

9-11 jaas.config

9-12 MessageDigestTest.java

9-13 SignatureTest.java

9-14 CertificateSigner.java

9-15 FileReadApplet.java

9-16 DESTest.java

9-17 RSATest.java

10-1 NumberFormatTest.java

10-2 DateFormatTest.java

10-3 CollationTest.java

10-4 TextBoundaryTest.java

10-5 Retire.java

10-6 RetireResources.java

10-7 RetireResources_de.java

10-8 RetireResources_zh.java

10-9 RetireStrings.properties

10-10 RetireStrings_de.properties

10-11 RetireStrings_zh.properties

11-1 HelloNative.h

11-2 HelloNative.c

11-3 HelloNative.java

11-4 HelloNativeTest.java

11-5 Printf1.java

11-6 Printf1.c

11-7 Printf1Test.java

11-8 Printf2Test.java

11-9 Printf2.java

11-10 Printf2.c

11-11 EmployeeTest.java

11-12 Employee.java

11-13 Employee.c

11-14 Printf3Test.java

11-15 Printf3.java

11-16 Printf3.c

11-17 Printf4.c

11-18 Printf4.java

11-19 Printf4Test.java

11-20 InvocationTest.c

11-21 Win32RegKey.java

11-22 Win32RegKey.c

11-23 Win32RegKeyTest.java

12-1 DOMTreeTest.java

12-2 GridBagTest.java

12-3 fontdialog.xml

12-4 GridBagPane.java

12-5 gridbag.dtd

12-6 SAXTest.java

12-7 XMLWriteTest.java

12-8 TransformTest.java

12-9 makehtml.xsl

12-10 makeprop.xsl

Figures

1-1 Using a thread to animate a bouncing ball

1-2 The Event Dispatch and Ball Threads

1-3 Multiple threads

1-4 Time-slicing on a single CPU

1-5 Thread states

1-6 Threads with different priorities

1-7 Simultaneous access by two threads

1-8 Comparison of unsynchronized and synchronized threads

1-9 A deadlock situation

1-10 Exception reports in the console

1-11 Threads in a Swing program

1-12 This file has 36 images of a globe

1-13 Picking a frame from a strip of frames

1-14 Clock threads

1-15 A progress bar

1-16 A progress monitor dialog

1-17 A progress monitor for an input stream

1-18 A sequence of pipes

2-1 A queue

2-2 Queue implementations

2-3 Advancing an iterator

2-4 Removing an element from an array

2-5 A doubly linked list

2-6 Removing an element from a linked list

2-7 Adding an element to a linked list

2-8 A hash table

2-9 A Linked Hash Table

2-10 The interfaces of the collections framework

2-11 Classes in the collections framework

2-12 Legacy classes in the collections framework

2-13 The customized Hello World program

3-1 Output of the "time of day" service

3-2 A client connecting to a server port

3-3 Using telnet to access an HTTP port

3-4 Accessing an echo server

3-5 Simultaneous access to the threaded echo server

3-6 The MailTest program

3-7 A network password dialog

3-8 An HTML form

3-9 Data flow during execution of a CGI script

3-10 A web form to request census data

3-11 The WeatherReport applet

3-12 Applet security disallows connection to a third party

3-13 A firewall provides security

3-14 Data flow in the weather report applet

4-1 JDBC-to-database communication path

4-2 A client/server application

4-3 A three-tier application

4-4 Sample table containing the HTML books

4-5 Two tables joined together

4-6 The QueryDB application

4-7 A GUI view of a query result

4-8 The ViewDB application

5-1 Transmitting objects between client and server

5-2 Invoking a remote method on a server object

5-3 Parameter marshalling

5-4 Inheritance diagram

5-5 Calling the remote getDescription method

5-6 Obtaining product suggestions from the server

5-7 Copying local parameter and result objects

5-8 Only the ProductImpl methods are remote

5-9 BookImpl has additional remote methods

5-10 Inheritance of equals and hashCode methods

5-11 The warehouse applet

6-1 A list box

6-2 Choosing from a very long list of selections

6-3 A list box with rendered cells

6-4 A directory tree

6-5 A hierarchy of countries, states, and cities

6-6 Tree terminology

6-7 Tree classes

6-8 A simple tree

6-9 The initial tree display

6-10 Collapsed and expanded subtrees

6-11 A tree with the Windows look and feel

6-12 A tree with no connecting lines

6-13 A tree with the horizontal line style

6-14 A tree with a root handle

6-15 A forest

6-16 Leaf icons

6-17 Editing a tree

6-18 A tree path

6-19 The scroll pane scrolls to display a new node

6-20 The Default Cell Editor

6-21 Tree traversal orders

6-22 An inheritance tree

6-23 A class browser

6-24 An object inspection tree

6-25 A simple table

6-26 Moving a column

6-27 Resizing columns

6-28 Growth of an investment

6-29 Displaying a query result in a table

6-30 Sorting the rows of a table

6-31 A table model filter

6-32 A table with cell renderers

6-33 A cell editor

6-34 Relationship between Table classes

6-35 Editing the cell color with a color chooser

6-36 Selecting a row

6-37 Selecting a range of cells

6-38 The editor pane displaying an HTML page

6-39 The editor pane in edit mode

6-40 A frame with two nested split panes

6-41 A tabbed pane

6-42 A tabbed pane with scrolling tabs

6-43 A multiple document interface application

6-44 A Java application with three internal frames

6-45 Cascaded internal frames

6-46 Tiled internal frames

6-47 The user can veto the close property

7-1 The rendering pipeline

7-2 The bounding rectangle of an ellipse and an arc

7-3 Relationships between the shape classes

7-4 Constructing a RoundRectangle2D

7-5 Constructing an elliptical arc

7-6 Arc types

7-7 A quadratic curve

7-8 A cubic curve

7-9 The ShapeTest program

7-10 Constructive Area Geometry Operations

7-11 The AreaTest Program

7-12 End Cap Styles

7-13 Join Styles

7-14 A dash pattern

7-15 The StrokeTest program

7-16 Gradient paint

7-17 Texture paint

7-18 User and device coordinates

7-19 The fundamental transformations

7-20 Composing transformations

7-21 The TransformTest program

7-22 The ClipTest program

7-23 Overlaying a partially transparent rectangle on an image

7-24 Designing a Composition Rule

7-25 Porter-Duff Composition Rules

7-26 The CompositeTest program

7-27 Antialiasing

7-28 The RenderingHints program

7-29 An Animated GIF Image

7-30 A Mandelbrot set

7-31 A rotated image

7-32 Blurring an image

7-33 Edge detection

7-34 A Cross-Platform Print Dialog

7-35 Page format measurements

7-36 A Cross-Platform Page Setup Dialog

7-37 A Windows print dialog

7-38 A Windows page setup dialog

7-39 A banner

7-40 Printing a page of a banner

7-41 A print preview dialog

7-42 Viewing a PostScript File

7-43 The Attribute Hierarchy

7-44 The Attribute Set Hierarchy

7-45 The TextTransferTest program

7-46 The Windows clipboard viewer after a copy

7-47 Copying from a Java program to a native program

7-48 Copying from a native program to a Java program

7-49 Transferring Local Objects

7-50 Data is copied between two instances of a Java application

7-51 Initiating a drag operation

7-52 Cursor shapes over drop targets

7-53 The DropTargetTest program

7-54 The DragSourceTest program

7-55 The Swing Drag and Drop Test Program

8-1 The Properties window in Visual Basic for an image application

8-2 A Calendar Bean

8-3 Adding a Bean to a Palette in Forte

8-4 Building a New Form

8-5 The Form Editor Window

8-6 The Code Editor Window

8-7 Adding a Bean to a Form

8-8 A Property Inspector

8-9 Using a property editor to set properties

8-10 The ImageViewerBean at work

8-11 The Events Tab of the Property Inspector

8-12 Event Handling Code in The Edit Window

8-13 The range bean

8-14 A Veto Message

8-15 A Non-visual Bean

8-16 Listening to a Custom Event

8-17 The chart bean

8-18 The property inspector for the chart bean

8-19 The TitlePositionEditor at work

8-20 A custom editor dialog

8-21 The custom editor dialog for editing an array

8-22 The customizer for the ChartBean

8-23 The spin bean

8-24 The customizer of the SpinBean

8-25 The SpinBean coupled with an IntTextBean buddy

8-26 Bean Contexts

8-27 Relationships between the bean context classe

8-28 The Message Tracer window

9-1 The ClassLoaderTest program

9-2 Modifying bytecodes with a hex editor

9-3 Loading a corrupted class file raises a method verification error

9-4 A security policy

9-5 Permission hierarchy in JDK 1.2

9-6 Relationship between security classes

9-7 The policy tool displaying code sources

9-8 The policy tool displaying the permissions for a code source

9-9 Editing a permission with the policy tool

9-10 The PermissionTest program

9-11 The SecurityManagerTest program

9-12 Computing a message digest

9-13 Public key signature exchange using DSA

9-14 Authentication through a trusted intermediary

9-15 Authentication through a trusted intermediary's signature

9-16 Request for a digital ID

9-17 ASN.1 definition of X.509v3

9-18 The FileReadApplet program

9-19 Launching a signed applet

10-1 The NumberFormatTest program

10-2 The DateFormatTest program running under Chinese Windows

10-3 The CollationTest program

10-4 The TextBoundaryTest program

10-5 The retirement calculator in English

10-6 The retirement calculator in German

10-7 The retirement calculator in Chinese

11-1 The env pointer

11-2 Inheritance hierarchy of array types

11-3 The registry editor

12-1 The Node interfaces and its subinterfaces

12-2 A Simple DOM Tree

12-3 A parse tree of an XML document

12-4 A font dialog defined by an XML layout

12-5 Generating Modern Art

12-6 The Apache Batik SVG Viewer

12-7 Applying XSL Transformations

Preface
To the Reader

About This Book

Conventions

Definitions

To the Reader
The book you have in your hands is the second volume of the fourth edition of Core Java. The
first edition appeared in early 1996, the second in late 1996, and the third in 1997/1998. The
first two editions appeared in a single volume, but the second edition was already 150 pages
longer than the first, which was itself not a thin book. When we sat down to work on the third
edition, it became clear that a one-volume treatment of all the features of the Java™ platform
that a serious programmer needs to know was no longer possible. Hence, we decided to break
up the third edition into two volumes. In the fourth edition, we again organized the material into
two volumes. However, we rearranged the materials, moving streams into Volume 1 and
collections into Volume 2.

The first volume covers the essential features of the language; this volume covers the
advanced topics that a programmer will need to know for professional software development.
Thus, as with the first volume and the previous editions of this book, we still are targeting
programmers who want to put Java technology to work on real projects.

Please note: If you are an experienced developer who is comfortable with the new event model
and advanced language features such as inner classes, you need not have read the first
volume in order to benefit from this volume. (While we do refer to sections of the previous

volume when appropriate and, of course, hope you will buy or have bought Volume 1, you can
find the needed background material in any comprehensive introductory book about the Java
platform.)

Finally, when any book is being written, errors and inaccuracies are inevitable. We would very
much like to hear about them. Of course, we would prefer to hear about them only once. For
this reason, we have put up a web site at http://www.horstmann.com/corejava.html with an
FAQ, bug fixes, and workarounds. Strategically placed at the end of the bug report web page
(to encourage you to read the previous reports) is a form that you can use to report bugs or
problems and to send suggestions for improvements to future editions.

About This Book
The chapters in this book are, for the most part, independent of each other. You should be
able to delve into whatever topic interests you the most and read the chapters in any order.

Chapter 1 covers multithreading, which enables you to program tasks to be done in parallel. (A
thread is a flow of control within a program.) We show you how to set up threads and how to
make sure none of them get stuck. We put this knowledge to practical use by example,
showing you the techniques needed to build timers and animations.

The topic of Chapter 2 is the collections framework of the Java 2 platform. Whenever you want
to collect multiple objects and retrieve them later, you will want to use a collection that is best
suited for your circumstances, instead of just tossing the elements into a Vector. This
chapter shows you how to take advantage of the standard collections that are prebuilt for your
use.

Chapter 3 covers one of the most exciting APIs in the Java platform: the networking API. Java
makes it phenomenally easy to do complex network programming. Not only do we cover this
API in depth, we also discuss the important consequences of the applet security model for
network programming.

Chapter 4 covers JDBC™, the Java database connectivity API. We show you how to write
useful programs to handle realistic database chores, using a core subset of the JDBC API.
Please note that this is not a complete treatment of everything you can do with the rich JDBC
API. (A complete treatment of the JDBC API would require a book almost as long as this one.)

Chapter 5 covers remote objects and Remote Method Invocation (RMI). This API lets you work
with Java objects that are distributed over multiple machines. We also show you where the
rallying cry of "objects everywhere" can realistically be used.

Chapter 6 contains all the Swing material that didn't make it into Volume 1, especially the
important but complex tree and table components. We show the basic uses of editor panes
and the Java technology implementation of a "multiple document" interface. Again, we focus
on the most useful constructs that you are likely to encounter in practical programming, since
an encyclopedic coverage of the entire Swing library would fill several volumes and would only
be of interest to dedicated taxonomists.

Chapter 7 covers the Java 2D API that you can use to create realistic drawings. The chapter

also covers some advanced features of the Abstract Windowing Toolkit (AWT) that seemed
too specialized for coverage in Volume 1 but are, nonetheless, techniques that should be part
of every programmer's toolkit. These features include printing and the APIs for cut-and-paste
and drag-and-drop. We actually take the cut-and-paste API one step further than Sun
Microsystems itself did: We show you how to cut and paste serializable Java objects between
different programs in the Java programming language via the system clipboard.

Chapter 8 shows you what you need to know about the component API for the Java platform—
JavaBeans™. You will see how to write your own beans that other programmers can
manipulate in integrated builder environments. (We do not cover the various builder
environments that are designed to manipulate beans, however.) The JavaBeans™ component
technology is an extraordinarily important technology for the eventual success of Java
technology because it can potentially bring the same ease of use to user interface
programming environments that ActiveX controls give to the millions of Visual Basic
programmers. Of course, since these components are written in the Java programming
language, they have the advantage over ActiveX controls in that they are immediately usable
across other platforms and capable of fitting into the sophisticated security model of the Java
platform.

In fact, Chapter 9 takes up that security model. The Java platform was designed from the
ground up to be secure, and this chapter takes you under the hood to see how this design is
implemented. We show you how to write your own class loaders and security managers for
special-purpose applications. Then, we take up the new security API that allows for such
important features as signed classes.

Chapter 10 discusses a specialized feature that we believe can only grow in importance:
internationalization. The Java programming language is one of the few languages designed
from the start to handle Unicode, but the internationalization support in the Java platform goes
much further. As a result, you can internationalize Java applications so that they not only cross
platforms but cross country boundaries as well. For example, we show you how to write a
retirement calculator applet that uses either English, German, or Chinese—depending on the
locale of the browser.

Chapter 11 takes up native methods, which let you call methods written for a specific machine
such as the Microsoft Windows API. Obviously, this feature is controversial: Use native
methods, and the cross-platform nature of the Java platform vanishes. Nonetheless, every
serious programmer writing Java applications for specific platforms needs to know these
techniques. There will be times when you need to turn to the operating system's API for your
target platform when you are writing a serious application. We illustrate this by showing you
how to access the registry functions in Windows.

Conventions
As is common in many computer books, we use courier type to represent computer code.

NOTE

Notes are tagged with a "notepad" icon that looks like this.

TIP

CAUTION

C++ NOTE

The Java platform comes with a large programming library or Application Programming
Interface (API). When using an API call for the first time, we add a short summary description,
tagged with an API icon. These descriptions are a bit more informal but also a little more
informative than those in the official on-line API documentation.

Programs whose source code is on the CD-ROM are listed as examples, for instance,
Example 5-8: WarehouseServer.java refers to the corresponding code on the CD-ROM. You
can also download these example files from the Web.

Definitions
A Java object is an object that is created by a program that was written in the Java
programming language.

A Java application is a program that was written in the Java programming language and that is
launched by a Java virtual machine (that is, a virtual machine for the Java platform).

Acknowledgments
Writing a book is always a monumental effort, and rewriting doesn't seem to be much easier,
especially with such a rapid rate of change in Java technology. Making a book a reality takes
many dedicated people, and it is my great pleasure to acknowledge the contributions of the
entire Core Java team.

Our long-suffering editor Greg Doench of Prentice Hall PTR once again did a great job,
coordinating all aspects of this complex project. Julie Bettis copyedited the manuscript, with an
excellent eye for consistency and always on the lookout for Teutonic constructions and

Helpful tips are tagged with this icon.

Notes that warn of pitfalls or dangerous situations are tagged with a
"Caution" icon.

There are a number of C++ notes that explain the difference between the
Java programming language and C++.You can skip them if you aren't
interested in C++.

violations of the Java trademark rules.

Kathi Beste, Bert Stutz, and Marilyn Stutz at Navta Associates, Inc., once again delivered an
attractively typeset book. A number of other individuals at Prentice Hall PTR and Sun
Microsystems Press also provided valuable assistance, but they managed to stay behind the
scenes. I'd like them all to know how much I appreciate their efforts. My thanks also to my co-
author of earlier editions, Gary Cornell, who has since moved on to other ventures.

I am very grateful to the excellent reviewing team who found many embarrassing errors and
made lots of thoughtful suggestions for improvement. The new material for this edition was
reviewed by David Geary, Bob Lynch, Paul Philion, and George Thiruvathukal.

Reviewers of earlier editions are Alec Beaton (PointBase, Inc.), Joshua Bloch (Sun
Microsystems), David Brown, Dr. Nicholas J. De Lillo (Manhattan College), Rakesh Dhoopar
(Oracle), Angela Gordon (Sun Microsystems), Dan Gordon (Sun Microsystems), Rob Gordon,
Cameron Gregory (olabs.com), Marty Hall (The Johns Hopkins University Applied Physics
Lab), Vincent Hardy (Sun Microsystems), Vladimir Ivanovic (PointBase, Inc.), Jerry Jackson
(ChannelPoint Software), Tim Kimmet (Preview Systems), Chris Laffra, Charlie Lai (Sun
Microsystems),

Doug Langston, Doug Lea (SUNY Oswego), Gregory Longshore, Mark Morrissey (The Oregon
Graduate Institute), Mahesh Neelakanta (Florida Atlantic University), Blake Ragsdell, Stuart
Reges (University of Arizona), Peter Sanders (ESSI University, Nice, France), Devang Shah
(Sun Microsystems), Christopher Taylor, Luke Taylor (Valtech), Kim Topley, Janet Traub,
Peter van der Linden (Sun Microsystems), and Burt Walsh.

Most importantly, my love, gratitude, and apologies go to my wife Hui-Chen and my children
Tommy and Nina for their continuing support of this never-ending project.

Cay Horstmann

Cupertino, November 2001

Chapter 1. Multithreading
What Are Threads?

Interrupting Threads

Thread Properties

Thread Priorities

Selfish Threads

Synchronization

Deadlocks

User Interface Programming with Threads

Using Pipes for Communication between Threads

You are probably familiar with multitasking: the ability to have more than one program working
at what seems like the same time. For example, you can print while editing or sending a fax. Of
course, unless you have a multiple-processor machine, what is really going on is that the
operating system is doling out resources to each program, giving the impression of parallel
activity. This resource distribution is possible because while you may think you are keeping the
computer busy by, for example, entering data, most of the CPU's time will be idle. (A fast typist
takes around 1/20 of a second per character typed, after all, which is a huge time interval for a
computer.)

Multitasking can be done in two ways, depending on whether the operating system interrupts
programs without consulting with them first, or whether pro-grams are only interrupted when
they are willing to yield control. The former is called preemptive multitasking; the latter is called
cooperative (or, simply, nonpreemptive) multitasking Windows 3.1 and Mac OS 9 are
cooperative multitasking systems, and UNIX/Linux, Windows NT (and Windows 95 for 32-bit
programs), and OS X are preemptive. (Although harder to implement, preemptive multitasking
is much more effective. With cooperative multitasking, a badly behaved program can hog
everything.)

Multithreaded programs extend the idea of multitasking by taking it one level lower: individual
programs will appear to do multiple tasks at the same time. Each task is usually called a
thread—which is short for thread of control. Programs that can run more than one thread at
once are said to be multithreaded. Think of each thread as running in a separate context:
contexts make it seem as though each thread has its own CPU—with registers, memory, and
its own code.

So, what is the difference between multiple processes and multiple threads? The essential

CONTENTS

difference is that while each process has a complete set of its own variables, threads share the
same data. This sounds somewhat risky, and indeed it can be, as you will see later in this
chapter. But it takes much less overhead to create and destroy individual threads than it does
to launch new processes, which is why all modern operating systems support multithreading.
Moreover, inter-process communication is much slower and more restrictive than
communication between threads.

Multithreading is extremely useful in practice. For example, a browser should be able to
simultaneously download multiple images. An email program should let you read your email
while it is downloading new messages. The Java programming language itself uses a thread to
do garbage collection in the background—thus saving you the trouble of managing memory!
Graphical user interface (GUI) programs have a separate thread for gathering user interface
events from the host operating environment. This chapter shows you how to add
multithreading capability to your Java applications and applets.

Fair warning: multithreading can get very complex. In this chapter, we present all of the tools
that the Java programming language provides for thread programming. We explain their use
and limitations and give some simple but typical examples. However, for more intricate
situations, we suggest that you turn to a more advanced reference, such as Concurrent
Programming in Java by Doug Lea [Addison-Wesley 1999].

NOTE

What Are Threads?
Let us start by looking at a program that does not use multiple threads and that, as a
consequence, makes it difficult for the user to perform several tasks with that program. After
we dissect it, we will then show you how easy it is to have this program run separate threads.
This program animates a bouncing ball by continually moving the ball, finding out if it bounces
against a wall, and then redrawing it. (See Figure 1-1.)

Figure 1-1. Using a thread to animate a bouncing ball

In many programming languages, you have to use an external thread
package to do multithreaded programming. The Java programming
language builds in multithreading, which makes your job much easier.

As soon as you click on the "Start" button, the program launches a ball from the upper-left
corner of the screen and the ball begins bouncing. The handler of the "Start" button calls the
addBall method:

public void addBall()
{
 try
 {
 Ball b = new Ball(canvas);
 canvas.add(b);
 for (int i = 1; i <= 1000; i++)
 {
 b.move();
 Thread.sleep(5);
 }
 }
 catch (InterruptedException exception)
 {
 }
}

That method contains a loop running through 1,000 moves. Each call to move moves the ball
by a small amount, adjusts the direction if it bounces against a wall, and then redraws the
canvas. The static sleep method of the Thread class pauses for 5 milliseconds.

The call to Thread.sleep does not create a new thread—sleep is a static method of the
Thread class that temporarily stops the activity of the current thread.

The sleep method can throw an InterruptedException. We will discuss this
exception and its proper handling later. For now, we simply terminate the bouncing if this
exception occurs.

If you run the program, the ball bounces around nicely, but it completely takes over the
application. If you become tired of the bouncing ball before it has finished its 1,000 bounces
and click on the "Close" button, the ball continues bouncing anyway. You cannot interact with
the program until the ball has finished bouncing.

NOTE

Obviously, the behavior of this program is rather poor. You would not want the programs that
you use behaving in this way when you ask them to do a time-consuming job. After all, when
you are reading data over a network connection, it is all too common to be stuck in a task that
you would really like to interrupt. For example, suppose you download a large image and
decide, after seeing a piece of it, that you do not need or want to see the rest; you certainly
would like to be able to click on a "Stop" or "Back" button to interrupt the loading process. In
the next section, we will show you how to keep the user in control by running crucial parts of
the code in a separate thread.

Example 1-1 is the entire code for the program.

Example 1-1 Bounce.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.awt.geom.*;
 4. import java.util.*;
 5. import javax.swing.*;
 6.
 7. /**

If you carefully look over the code at the end of this section, you will notice
the call

canvas.paint(canvas.getGraphics())

inside the move method of the Ball class. That is pretty strange—
normally, you'd call repaint and let the AWT worry about getting the
graphics context and doing the painting. But if you try to call
canvas.repaint() in this program, you'll find out that the canvas is
never repainted since the addBall method has completely taken over all
processing. In the next program, where we use a separate thread to
compute the ball position, we'll again use the familiar repaint.

 8. Shows an animated bouncing ball.
 9. */
 10. public class Bounce
 11. {
 12. public static void main(String[] args)
 13. {
 14. JFrame frame = new BounceFrame();
 15. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 16. frame.show();
 17. }
 18. }
 19.
 20. /**
 21. The frame with canvas and buttons.
 22. */
 23. class BounceFrame extends JFrame
 24. {
 25. /**
 26. Constructs the frame with the canvas for showing th
 27. bouncing ball and Start and Close buttons
 28. */
 29. public BounceFrame()
 30. {
 31. setSize(WIDTH, HEIGHT);
 32. setTitle("Bounce");
 33.
 34. Container contentPane = getContentPane();
 35. canvas = new BallCanvas();
 36. contentPane.add(canvas, BorderLayout.CENTER);
 37. JPanel buttonPanel = new JPanel();
 38. addButton(buttonPanel, "Start",
 39. new ActionListener()
 40. {
 41. public void actionPerformed(ActionEvent ev
 42. {
 43. addBall();
 44. }
 45. });
 46.
 47. addButton(buttonPanel, "Close",
 48. new ActionListener()
 49. {
 50. public void actionPerformed(ActionEvent ev
 51. {

 52. System.exit(0);
 53. }
 54. });
 55. contentPane.add(buttonPanel, BorderLayout.SOUTH);
 56. }
 57.
 58. /**
 59. Adds a button to a container.
 60. @param c the container
 61. @param title the button title
 62. @param listener the action listener for the button
 63. */
 64. public void addButton(Container c, String title,
 65. ActionListener listener)
 66. {
 67. JButton button = new JButton(title);
 68. c.add(button);
 69. button.addActionListener(listener);
 70. }
 71.
 72. /**
 73. Adds a bouncing ball to the canvas and makes
 74. it bounce 1,000 times.
 75. */
 76. public void addBall()
 77. {
 78. try
 79. {
 80. Ball b = new Ball(canvas);
 81. canvas.add(b);
 82.
 83. for (int i = 1; i <= 1000; i++)
 84. {
 85. b.move();
 86. Thread.sleep(5);
 87. }
 88. }
 89. catch (InterruptedException exception)
 90. {
 91. }
 92. }
 93.
 94. private BallCanvas canvas;
 95. public static final int WIDTH = 450;

 96. public static final int HEIGHT = 350;
 97. }
 98.
 99. /**
100. The canvas that draws the balls.
101. */
102. class BallCanvas extends JPanel
103. {
104. /**
105. Add a ball to the canvas.
106. @param b the ball to add
107. */
108. public void add(Ball b)
109. {
110. balls.add(b);
111. }
112.
113. public void paintComponent(Graphics g)
114. {
115. super.paintComponent(g);
116. Graphics2D g2 = (Graphics2D)g;
117. for (int i = 0; i < balls.size(); i++)
118. {
119. Ball b = (Ball)balls.get(i);
120. b.draw(g2);
121. }
122. }
123.
124. private ArrayList balls = new ArrayList();
125. }
126.
127. /**
128. A ball that moves and bounces off the edges of a
129. component
130. */
131. class Ball
132. {
133. /**
134. Constructs a ball in the upper left corner
135. @c the component in which the ball bounces
136. */
137. public Ball(Component c) { canvas = c; }
138.
139. /**

140. Draws the ball at its current position
141. @param g2 the graphics context
142. */
143. public void draw(Graphics2D g2)
144. {
145. g2.fill(new Ellipse2D.Double(x, y, XSIZE, YSIZE));
146. }
147.
148. /**
149. Moves the ball to the next position, reversing dire
150. if it hits one of the edges
151. */
152. public void move()
153. {
154. x += dx;
155. y += dy;
156. if (x < 0)
157. {
158. x = 0;
159. dx = -dx;
160. }
161. if (x + XSIZE >= canvas.getWidth())
162. {
163. x = canvas.getWidth() - XSIZE;
164. dx = -dx;
165. }
166. if (y < 0)
167. {
168. y = 0;
169. dy = -dy;
170. }
171. if (y + YSIZE >= canvas.getHeight())
172. {
173. y = canvas.getHeight() - YSIZE;
174. dy = -dy;
175. }
176.
177. canvas.paint(canvas.getGraphics());
178. }
179.
180. private Component canvas;
181. private static final int XSIZE = 15;
182. private static final int YSIZE = 15;
183. private int x = 0;

184. private int y = 0;
185. private int dx = 2;
186. private int dy = 2;
187. }

java.lang.Thread

static void sleep(long millis)

sleeps for the given number of milliseconds

In the previous sections, you learned what is required to split a program into multiple
concurrent tasks. Each task needs to be placed into a run method of a class that extends
Thread. But what if we want to add the run method to a class that already extends another
class? This occurs most often when we want to add multithreading to an applet. An applet
class already inherits from JApplet, and we cannot inherit from two parent classes, so we
need to use an interface. The necessary interface is built into the Java platform. It is called
Runnable. We take up this important interface next.

Using Threads to Give Other Tasks a Chance

We will make our bouncing-ball program more responsive by running the code that moves the
ball in a separate thread.

NOTE

Our next program uses two threads: one for the bouncing ball and another for the event
dispatch thread that takes care of user interface events. Because each thread gets a chance to
run, the main thread has the opportunity to notice when you click on the "Close" button while
the ball is bouncing. It can then process the "close" action.

There is a simple procedure for running code in a separate thread: place the code into the
run method of a class derived from Thread.

gra

Parameters: millis the number of milliseconds to sleep

Since most computers do not have multiple processors, the Java virtual
machine (JVM) uses a mechanism in which each thread gets a chance to
run for a little while, then activates another thread. The virtual machine
generally relies on the host operating system to provide the thread
scheduling package.

To make our bouncing-ball program into a separate thread, we need only derive a class
BallThread from Thread and place the code for the animation inside the run method, as
in the following code:

class BallThread extends Thread
{
 . . .
 public void run()
 {
 try
 {
 for (int i = 1; i <= 1000; i++)
 {
 b.move();
 sleep(5);
 }
 }
 catch (InterruptedException exception)
 {
 }
 }
 . . .
}

You may have noticed that we are catching an exception called Interrupted-
Exception. Methods such as sleep and wait throw this exception when your thread is
interrupted because another thread has called the interrupt method. Interrupting a thread
is a very drastic way of getting the thread's attention, even when it is not active. Typically, a
thread is interrupted to terminate it. Accordingly, our run method exits when an
InterruptedException occurs.

Running and Starting Threads

When you construct an object derived from Thread, the run method is not automatically
called.

BallThread thread = new BallThread(. . .); // won't run yet

You must call the start method in your object to actually start a thread.

thread.start();

CAUTION

Do not call the run method directly—start will call it when the thread is

Beginners are sometimes misled into believing that every method of a Thread object
automatically runs in a new thread. As you have seen, that is not true. The methods of any
object (whether a Thread object or not) run in whatever thread they are called. A new thread
is only started by the start method. That new thread then executes the run method.

In the Java programming language, a thread needs to tell the other threads when it is idle, so
the other threads can grab the chance to execute the code in their run procedures. (See
Figure 1-2.) The usual way to do this is through the static sleep method. The run method of
the BallThread class uses the call to sleep(5) to indicate that the thread will be idle for
the next five milliseconds. After five milliseconds, it will start up again, but in the meantime,
other threads have a chance to get work done.

Figure 1-2. The Event Dispatch and Ball Threads

TIP

The complete code is shown in Example 1-2.

set up and ready to go. Calling the run method directly merely executes its
contents in the same thread—no new thread is started.

There are a number of static methods in the Thread class. They all
operate on the current thread, that is, the thread that executes the method.
For example, the static sleep method idles the thread that is calling
sleep.

Example 1-2 BounceThread.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.awt.geom.*;
 4. import java.util.*;
 5. import javax.swing.*;
 6.
 7. /**
 8. Shows an animated bouncing ball running in a separate
 9. */
 10. public class BounceThread
 11. {
 12. public static void main(String[] args)
 13. {
 14. JFrame frame = new BounceFrame();
 15. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 16. frame.show();
 17. }
 18. }
 19.
 20. /**
 21. The frame with canvas and buttons.
 22. */
 23. class BounceFrame extends JFrame
 24. {
 25. /**
 26. Constructs the frame with the canvas for showing th
 27. bouncing ball and Start and Close buttons
 28. */
 29. public BounceFrame()
 30. {
 31. setSize(WIDTH, HEIGHT);
 32. setTitle("BounceThread");
 33.
 34. Container contentPane = getContentPane();
 35. canvas = new BallCanvas();
 36. contentPane.add(canvas, BorderLayout.CENTER);
 37. JPanel buttonPanel = new JPanel();
 38. addButton(buttonPanel, "Start",
 39. new ActionListener()
 40. {
 41. public void actionPerformed(ActionEvent ev
 42. {

 43. addBall();
 44. }
 45. });
 46.
 47. addButton(buttonPanel, "Close",
 48. new ActionListener()
 49. {
 50. public void actionPerformed(ActionEvent ev
 51. {
 52. System.exit(0);
 53. }
 54. });
 55. contentPane.add(buttonPanel, BorderLayout.SOUTH);
 56. }
 57.
 58. /**
 59. Adds a button to a container.
 60. @param c the container
 61. @param title the button title
 62. @param listener the action listener for the button
 63. */
 64. public void addButton(Container c, String title,
 65. ActionListener listener)
 66. {
 67. JButton button = new JButton(title);
 68. c.add(button);
 69. button.addActionListener(listener);
 70. }
 71.
 72. /**
 73. Adds a bouncing ball to the canvas and starts a thr
 74. to make it bounce
 75. */
 76. public void addBall()
 77. {
 78. Ball b = new Ball(canvas);
 79. canvas.add(b);
 80. BallThread thread = new BallThread(b);
 81. thread.start();
 82. }
 83.
 84. private BallCanvas canvas;
 85. public static final int WIDTH = 450;
 86. public static final int HEIGHT = 350;

 87. }
 88.
 89. /**
 90. A thread that animates a bouncing ball.
 91. */
 92. class BallThread extends Thread
 93. {
 94. /**
 95. Constructs the thread.
 96. @aBall the ball to bounce
 97. */
 98. public BallThread(Ball aBall) { b = aBall; }
 99.
100. public void run()
101. {
102. try
103. {
104. for (int i = 1; i <= 1000; i++)
105. {
106. b.move();
107. sleep(5);
108. }
109. }
110. catch (InterruptedException exception)
111. {
112. }
113. }
114.
115. private Ball b;
116. }
117.
118. /**
119. The canvas that draws the balls.
120. */
121. class BallCanvas extends JPanel
122. {
123. /**
124. Add a ball to the canvas.
125. @param b the ball to add
126. */
127. public void add(Ball b)
128. {
129. balls.add(b);
130. }

131.
132. public void paintComponent(Graphics g)
133. {
134. super.paintComponent(g);
135. Graphics2D g2 = (Graphics2D)g;
136. for (int i = 0; i < balls.size(); i++)
137. {
138. Ball b = (Ball)balls.get(i);
139. b.draw(g2);
140. }
141. }
142.
143. private ArrayList balls = new ArrayList();
144. }
145.
146. /**
147. A ball that moves and bounces off the edges of a
148. component
149. */
150. class Ball
151. {
152. /**
153. Constructs a ball in the upper left corner
154. @c the component in which the ball bounces
155. */
156. public Ball(Component c) { canvas = c; }
157.
158. /**
159. Draws the ball at its current position
160. @param g2 the graphics context
161. */
162. public void draw(Graphics2D g2)
163. {
164. g2.fill(new Ellipse2D.Double(x, y, XSIZE, YSIZE));
165. }
166.
167. /**
168. Moves the ball to the next position, reversing dire
169. if it hits one of the edges
170. */
171. public void move()
172. {
173. x += dx;
174. y += dy;

175. if (x < 0)
176. {
177. x = 0;
178. dx = -dx;
179. }
180. if (x + XSIZE >= canvas.getWidth())
181. {
182. x = canvas.getWidth() - XSIZE;
183. dx = -dx;
184. }
185. if (y < 0)
186. {
187. y = 0;
188. dy = -dy;
189. }
190. if (y + YSIZE >= canvas.getHeight())
191. {
192. y = canvas.getHeight() - YSIZE;
193. dy = -dy;
194. }
195.
196. canvas.repaint();
197. }
198.
199. private Component canvas;
200. private static final int XSIZE = 15;
201. private static final int YSIZE = 15;
202. private int x = 0;
203. private int y = 0;
204. private int dx = 2;
205. private int dy = 2;
206.}
207.

java.lang.Thread

Thread()

constructs a new thread. You must start the thread to activate its run method.

gra

void run()

You must override this function and add the code that you want to have executed in the
thread.

void start()

starts this thread, causing the run() method to be called. This method will return
immediately. The new thread runs concurrently.

Running Multiple Threads

Run the program in the preceding section. Now, click on the "Start" button again while a ball is
running. Click on it a few more times. You will see a whole bunch of balls bouncing away, as
captured in Figure 1-3. Each ball will move 1,000 times until it comes to its final resting place.

Figure 1-3. Multiple threads

This example demonstrates a great advantage of the thread architecture in the Java
programming language. It is very easy to create any number of autonomous objects that
appear to run in parallel.

Occasionally, you may want to enumerate the currently running threads—see the API note in
the "Thread Groups" section for details.

The Runnable Interface

We could have saved ourselves a class by having the Ball class extend the Thread class.
As an added advantage of that approach, the run method has access to the private fields of
the Ball class:

class Ball extends Thread
{
 public void run()
 {
 try
 {
 for (int i = 1; i <= 1000; i++)
 {
 x += dx;
 y += dy;
 . . .
 canvas.repaint();
 sleep(5);
 }
 }
 catch (InterruptedException exception)
 {
 }
 }
 . . .
 private Component canvas;
 private int x = 0;
 private int y = 0;
 private int dx = 2;
 private int dy = 2;
}

Conceptually, of course, this is dubious. A ball isn't a thread, so inheritance isn't really
appropriate. Nevertheless, programmers sometimes follow this approach when the run
method of a thread needs to access private fields of another class. In the preceding section,
we've avoided that issue altogether by having the run method call only public methods of the
Ball class, but it isn't always so easy to do that.

Suppose the run method needs access to private fields, but the class into which you want to
put the run method already has another superclass. Then it can't extend the Thread class,
but you can make the class implement the Runnable interface. As though you had derived
from Thread, put the code that needs to run in the run method. For example,

class Animation extends JApplet
 implements Runnable
{

 . . .
 public void run()
 {
 // thread action goes here
 }
}

You still need to make a thread object to launch the thread. Give that thread a reference to the
Runnable object in its constructor. The thread then calls the run method of that object.

class Animation extends JApplet
 implements Runnable
{
 . . .
 public void start()
 {
 runner = new Thread(this);
 runner.start();
 }
 . . .
 private Thread runner;
}

In this case, the this argument to the Thread constructor specifies that the object whose
run method should be called when the thread executes is an instance of the Animation
object.

Some people even claim that you should always follow this approach and never subclass the
Thread class. That advice made sense for Java 1.0, before inner classes were invented, but
it is now outdated. If the run method of a thread needs private access to another class, you
can often use an inner class, like this:

class Animation extends JApplet
{
 . . .
 public void start()
 {
 runner = new Thread()
 {
 public void run()
 {
 // thread action goes here
 }
 };
 runner.start();

 }
 . . .
 private Thread runner;
}

A plausible use for the Runnable interface would be a thread pool in which pre-spawned
threads are kept around for running. Thread pools are sometimes used in environments that
execute huge numbers of threads, to reduce the cost of creating and garbage collecting thread
objects.

java.lang.Thread

Thread(Runnable target)

constructs a new thread that calls the run() method of the specified target.

java.lang.Runnable

void run()

You must override this method and place in the thread the code that you want to have
executed.

Interrupting Threads
A thread terminates when its run method returns. (In the first version of the Java
programming environment, there also was a stop method that another thread could call to
terminate a thread. However, that method is now deprecated. We will discuss the reason later
in this chapter.)

There is no longer a way to force a thread to terminate. However, the interrupt method
can be used to request termination of a thread. That means that the run method of a thread
ought to check once in a while whether it should exit.

public void run()
{
 . . .
 while (no request to terminate && more work to do)

gra

gra

 {
 do more work
 }
 // exit run method and terminate thread
}

However, as you have learned, a thread should not work continuously, but it should go to sleep
or wait once in a while, to give other threads a chance to do their work. But when a thread is
sleeping, it can't actively check whether it should terminate. This is where the
InterruptedException comes in. When the interrupt method is called on a thread
object that is currently blocked, the blocking call (such as sleep or wait) is terminated by
an InterruptedException.

There is no language requirement that a thread that is interrupted should terminate.
Interrupting a thread simply grabs its attention. The interrupted thread can decide how to react
to the interruption by placing appropriate actions into the catch clause that deals with the
InterruptedException. Some threads are so important that they should simply ignore
their interruption by catching the exception and continuing. But quite commonly, a thread will
simply want to interpret an interruption as a request for termination. The run method of such a
thread has the following form:

public void run()
{
 try
 {
 . . .
 while (more work to do)
 {
 do more work
 }
 }
 catch(InterruptedException exception)
 {
 // thread was interrupted during sleep or wait
 }
 finally
 {
 cleanup, if required
 }
 // exit run method and terminate thread
}

However, there is a problem with this code skeleton. If the interrupt method was called
while the thread was not sleeping or waiting, then no InterruptedException was
generated. The thread needs to call the interrupted method to find out if it was recently

interrupted.

while (!interrupted() && more work to do)
{
 do more work
}

In particular, if a thread was blocked while waiting for input/output, the input/output operations
are not terminated by the call to interrupt. When the blocking operation has returned, you
need to call the interrupted method to find out if the current thread has been interrupted.

NOTE

It is a bit tedious that there are two distinct ways of dealing with thread interruption—testing the
"interrupted" flag and catching the InterruptedException.

It would have been nice if methods such as sleep had been defined to simply return with the
"interrupted" flag set when an interruption occurs—then one wouldn't have to deal with the
InterruptedException at all. Of course, you can manually set the "interrupted" flag
when an InterruptedException is caught:

try
{
 sleep(delay);
}
catch (InterruptedException exception)
{
 Thread.currentThread().interrupt();
}

You need to use this approach if the sleep method is called from a method that can't throw
any exceptions.

NOTE

Curiously, there are two very similar methods, interrupted and
isInterrupted. The interrupted method is a static method that
checks whether the current thread has been interrupted. (Recall that a
thread is interrupted because another thread has called its interrupt
method.) Furthermore, calling the interrupted method resets the
"interrupted" status of the thread. On the other hand, the
isInterrupted method is an instance method that you can use to
check whether any thread has been interrupted. Calling it does not change
the "interrupted" status of its argument.

 You'll find lots of published code where the InterruptedException is

If you don't want to clutter up lots of nested methods with isInterrupted tests, you can
turn the "interrupted" flag into an exception.

if (isInterrupted()) throw new InterruptedException();

Assuming that your code is already prepared to terminate the run method when an
InterruptedException is thrown, this is a painless way of immediately terminating the
thread when an interruption is detected. The principal disadvantage is that you have to tag
your methods with

throws InterruptedException

since, alas, the InterruptedException is a checked exception.

java.lang.Thread

void interrupt()

sends an interrupt request to a thread. The "interrupted" status of the thread is set to
true. If the thread is currently blocked by a call to sleep or wait, an
InterruptedException is thrown.

static boolean interrupted()

tests whether or not the current thread (that is, the thread that is executing this
instruction) has been interrupted. Note that this is a static method. The call has a side
effect—it resets the "interrupted" status of the current thread to false.

boolean isInterrupted()

tests whether or not a thread has been interrupted. Unlike the static interrupted
method, this call does not change the "interrupted" status of the thread.

 squelched, like this:

try { sleep(delay); }
catch (InterruptedException exception) {} // DON'T!

Don't do that! Either set the "interrupted" flag of the current thread, or
propagate the exception to the calling method (and ultimately to the run
method).

gra

static Thread currentThread()

returns the Thread object representing the currently executing thread.

Thread Properties
Thread States

Threads can be in one of four states:

new

runnable

blocked

dead

Each of these states is explained in the sections that follow.

New threads

When you create a thread with the new operator—for example, new Ball()—the thread is
not yet running. This means that it is in the new state. When a thread is in the new state, the
program has not started executing code inside of it. A certain amount of bookkeeping needs to
be done before a thread can run.

Runnable threads

Once you invoke the start method, the thread is runnable. A runnable thread may not yet be
running. It is up to the operating system to give the thread time to run. When the code inside
the thread begins executing, the thread is running. (The Java platform documentation does not
call this a separate state, though. A running thread is still in the runnable state.)

NOTE

Once a thread is running, it doesn't necessarily keep running. In fact, it is desirable if running
threads are occasionally interrupted so that other threads have a chance to run. The details of
thread scheduling depend on the services that the operating system provides. If the operating
system doesn't cooperate, then the Java thread implementation does the minimum to make
multithreading work. An example is the so-called green threads package that is used by the
Java 1.x platform on Solaris. It keeps a running thread active until a higher-priority thread
awakes and takes control. Other thread systems (such as Windows 95 and Windows NT) give
each runnable thread a slice of time to perform its task. When that slice of time is exhausted,

The runnable state has nothing to do with the Runnable interface.

the operating system gives another thread an opportunity to work. This approach is called time
slicing. Time slicing has an important advantage: an uncooperative thread can't prevent other
threads from running. Current releases of the Java platform on Solaris can be configured to
allow use of the native Solaris threads, which also perform time-slicing.

Always keep in mind that a runnable thread may or may not be running at any given time. (This
is why the state is called "runnable" and not "running.") See Figure 1-4.

Figure 1-4. Time-slicing on a single CPU

Blocked threads

A thread enters the blocked state when one of the following actions occurs:

1. Someone calls the sleep() method of the thread.

2. The thread calls an operation that is blocking on input/output, that is, an operation that
will not return to its caller until input and output operations are complete.

3. The thread calls the wait() method.

4. The thread tries to lock an object that is currently locked by another thread. We will
discuss object locks later in this chapter.

5. Someone calls the suspend() method of the thread. However, this method is
deprecated, and you should not call it in your code. We will explain the reason later in
this chapter.

Figure 1-5 shows the states that a thread can have and the possible transitions from one state
to another. When a thread is blocked (or, of course, when it dies), another thread is scheduled

to run. When a blocked thread is reactivated (for example, because it has slept the required
number of milliseconds or because the I/O it waited for is complete), the scheduler checks to
see if it has a higher priority than the currently running thread. If so, it preempts the current
thread and picks a new thread to run. (On a machine with multiple processors, each processor
can run a thread, and you can have multiple threads run in parallel. On such a machine, a
thread is only preempted if a higher priority thread becomes runnable and there is no available
processor to run it.)

Figure 1-5. Thread states

For example, the run method of the BallThread blocks itself after it has completed a
move, by calling the sleep method.

This gives other threads (in our case, other balls and the main thread) the chance to run.

If the computer has multiple processors, then more than one thread has a chance to run at the
same time.

Moving Out of a Blocked State

The thread must move out of the blocked state and back into the runnable state, using the
opposite of the route that put it into the blocked state.

1. If a thread has been put to sleep, the specified number of milliseconds must expire.

2. If a thread is waiting for the completion of an input or output operation, then the operation
must have finished.

3. If a thread called wait, then another thread must call notifyAll or notify. (We
cover the wait and notifyAll/notify methods later in this chapter.)

4. If a thread is waiting for an object lock that was owned by another thread, then the other
thread must relinquish ownership of the lock. (You will see the details later in this
chapter.)

5. If a thread has been suspended, then someone must call its resume method. However,
since the suspend method has been deprecated, the resume method has been
deprecated as well, and you should not call it in your own code.

NOTE

If you invoke a method on a thread that is incompatible with its state, then the virtual machine
throws an IllegalThreadStateException. For example, this happens when you call
sleep on a thread that is currently blocked.

Dead Threads

A thread is dead for one of two reasons:

It dies a natural death because the run method exits normally.

It dies abruptly because an uncaught exception terminates the run method.

In particular, it is possible to kill a thread by invoking its stop method. That method throws a
ThreadDeath error object which kills the thread. However, the stop method is deprecated,
and you should not call it in your own code. We will explain later in this chapter why the stop
method is inherently dangerous.

To find out whether a thread is currently alive (that is, either runnable or blocked), use the
isAlive method. This method returns true if the thread is runnable or blocked, false if
the thread is still new and not yet runnable or if the thread is dead.

NOTE

A blocked thread can only reenter the runnable state through the same
route that blocked it in the first place. For example, if a thread is blocked on
input, you cannot call its resume method to unblock it.

Daemon Threads

A thread can be turned into a daemon thread by calling

t.setDaemon(true);

There is nothing demonic about such a thread. A daemon is simply a thread that has no other
role in life than to serve others. Examples are timer threads that send regular "timer ticks" to
other threads. When only daemon threads remain, then the program exits. There is no point in
keeping the program running if all remaining threads are daemons.

Thread Groups

Some programs contain quite a few threads. It then becomes useful to categorize them by
functionality. For example, consider an Internet browser. If many threads are trying to acquire
images from a server and the user clicks on a "Stop" button to interrupt the loading of the
current page, then it is handy to have a way of interrupting all of these threads simultaneously.
The Java programming language lets you construct what it calls a thread group so you can
simultaneously work with a group of threads.

You construct a thread group with the constructor:

String groupName = . . .;
ThreadGroup g = new ThreadGroup(groupName)

The string argument of the ThreadGroup constructor identifies the group and must be
unique. You then add threads to the thread group by specifying the thread group in the thread
constructor.

Thread t = new Thread(g, threadName);

To find out whether any threads of a particular group are still runnable, use the
activeCount method.

if (g.activeCount() == 0)
{
 // all threads in the group g have stopped
}

To interrupt all threads in a thread group, simply call interrupt on the group object.

g.interrupt(); // interrupt all threads in group g

You cannot find out if an alive thread is runnable or blocked, or if a runnable
thread is actually running. In addition, you cannot differentiate between a
thread that has not yet become runnable and one that has already died.

We'll discuss interrupting threads in greater detail in the next section.

Thread groups can have child subgroups. By default, a newly created thread group becomes a
child of the current thread group. But you can also explicitly name the parent group in the
constructor (see the API notes). Methods such as activeCount and interrupt refer to
all threads in their group and all child groups.

One nice feature of thread groups is that you can get a notification if a thread died because of
an exception. You need to subclass the ThreadGroup class and override the
uncaughtException method. You can then replace the default action (which prints a
stack trace to the standard error stream) with something more sophisticated, such as logging
the error in a file or displaying a dialog.

java.lang.Thread

Thread(ThreadGroup g, String name)

creates a new Thread that belongs to a given ThreadGroup.

ThreadGroup getThreadGroup()

returns the thread group of this thread.

boolean isAlive()

returns true if the thread has started and has not yet terminated.

void suspend()

suspends this thread's execution. This method is deprecated.

void resume()

resumes this thread. This method is only valid after suspend() has been invoked.
This method is deprecated.

void setDaemon(boolean on)

gra

Parameters: g the thread group to which the new thread belongs
 name the name of the new thread

marks this thread as a daemon thread or a user thread. When there are only daemon
threads left running in the system, the program exits. This method must be called before
the thread is started.

void stop()

stops the thread. This method is deprecated.

java.lang.ThreadGroup

ThreadGroup(String name)

creates a new ThreadGroup. Its parent will be the thread group of the current thread.

ThreadGroup(ThreadGroup parent, String name)

creates a new ThreadGroup.

int activeCount()

returns an upper bound for the number of active threads in the thread group.

int enumerate(Thread[] list)

gets references to every active thread in this thread group. You can use the
activeCount method to get an upper bound for the array; this method returns the
number of threads put into the array. If the array is too short (presumably because more
threads were spawned after the call to activeCount), then as many threads as fit are
inserted.

gra

Parameters: name the name of the new thread group

Parameters: parent the parent thread group of the new thread group
 name the name of the new thread group

Parameters: list an array to be filled with the thread references

ThreadGroup getParent()

gets the parent of this thread group.

void interrupt()

interrupts all threads in this thread group and all of its child groups.

void uncaughtException(Thread t, Throwable e)

Override this method to react to exceptions that terminate any threads in this thread
group. The default implementation calls this method of the parent thread group if there is
a parent, or otherwise prints a stack trace to the standard error stream. (However, if e is
a ThreadDeath object, then the stack trace is suppressed. ThreadDeath objects
are generated by the deprecated stop method.).

Thread Priorities
In the Java programming language, every thread has a priority. By default, a thread inherits the
priority of its parent thread. You can increase or decrease the priority of any thread with the
setPriority method. You can set the priority to any value between MIN_PRIORITY
(defined as 1 in the Thread class) and MAX_PRIORITY (defined as 10).
NORM_PRIORITY is defined as 5.

Whenever the thread-scheduler has a chance to pick a new thread, it generally picks the
highest-priority thread that is currently runnable.

CAUTION

The highest-priority runnable thread keeps running until:

It yields by calling the yield method, or

Parameters: t the thread that was terminated due to an uncaught exception
 e the uncaught exception object

We need to say right at the outset that the rules for thread priorities are
highly system-dependent. When the virtual machine relies on the thread
implementation of the host platform, the thread scheduling is at the mercy
of that thread implementation. The virtual machine maps the thread
priorities to the priority levels of the host platform (which may have more or
fewer thread levels). What we describe in this section is an ideal situation
that every virtual machine implementation tries to approximate to some
degree.

It ceases to be runnable (either by dying or by entering the blocked state), or

A higher-priority thread has become runnable (because the higher-priority thread has
slept long enough, or its I/O operation is complete, or someone unblocked it by calling
the notifyAll/notify method on the object that the thread was waiting for).

Then, the scheduler selects a new thread to run. The highest-priority remaining thread is
picked among those that are runnable.

What happens if there is more than one runnable thread with the same (highest) priority? One
of the highest priority threads gets picked. It is completely up to the thread scheduler how to
arbitrate between threads of the same priority. The Java programming language gives no
guarantee that all of the threads get treated fairly. Of course, it would be desirable if all threads
of the same priority are served in turn, to guarantee that each of them has a chance to make
progress. But it is at least theoretically possible that on some platforms a thread scheduler
picks a random thread or keeps picking the first available thread. This is a weakness of the
Java programming language, and it is difficult to write multithreaded programs that are
guaranteed to work identically on all virtual machines.

CAUTION

Consider, for example, a call to yield. It may have no effect on some implementations. The
levels of all runnable threads might map to the same host thread level. The host scheduler
might make no effort towards fairness and might simply keep reactivating the yielding thread,
even though other threads would like to get their turn. It is a good idea to call sleep
instead—at least you know that the current thread won't be picked again right away.

Most virtual machines have several (although not necessarily 10) priorities, and thread
schedulers make some effort to rotate among equal priority threads. For example, if you watch
a number of ball threads in the preceding example program, all balls progressed to the end
and they appeared to get executed at approximately the same rate. Of course, that is not a
guarantee. If you need to ensure a fair scheduling policy, you must implement it yourself.

Consider the following example program, which modifies the previous program to run threads
of one kind of balls (displayed in red) with a higher priority than the other threads. (The bold
line in the code below shows how to increase the priority of the thread.)

Some platforms (such as Windows NT) have fewer priority levels than the
10 levels that the Java platform specifies. On those platforms, no matter
what mapping of priority levels is chosen, some of the 10 JVM levels will be
mapped to the same platform levels. In the Sun JVM for Linux, thread
priorities are ignored altogether, so you will not be able to see the "express
threads" in action when you run the sample program at the end of this
section.

Whenever the host platform uses fewer priority levels than the Java
platform, a thread can be preempted by another thread with a seemingly
lower priority. That plainly means that you cannot rely on priority levels in
your multithreaded programs.

If you click on the "Start" button, a thread is launched at the normal priority, animating a black
ball. If you click on the "Express" button, then you launch a red ball whose thread runs at a
higher priority than the regular ball threads.

public class BounceFrame
{
 public BounceFrame()
 {
 . . .
 addButton(buttonPanel, "Start",
 new ActionListener()
 {
 public void actionPerformed(ActionEvent evt)
 {
 addBall(Thread.NORM_PRIORITY, Color.black);
 }
 });

 addButton(buttonPanel, "Express",
 new ActionListener()
 {
 public void actionPerformed(ActionEvent evt)
 {
 addBall(Thread.NORM_PRIORITY + 2, Color.red)
 }
 });
 . . .
 }

 public void addBall(int priority, Color color)
 {
 Ball b = new Ball(canvas, color);
 canvas.add(b);
 BallThread thread = new BallThread(b);
 thread.setPriority(priority);
 thread.start();
 }
 . . .
}

Try it out. Launch a set of regular balls and a set of express balls. You will notice that the
express balls seem to run faster. This is solely a result of their higher priority, not because the
red balls run at a higher speed. The code to move the express balls is the same as that of the
regular balls.

Here is why this demonstration works: five milliseconds after an express thread goes to sleep,
the scheduler wakes it. Now:

The scheduler again evaluates the priorities of all the runnable threads;

It finds that the express threads have the highest priority.

One of the express threads gets another turn right away. This can be the one that just woke
up, or perhaps it is another express thread—you have no way of knowing. The express
threads take turns, and only when they are all asleep does the scheduler give the lower-priority
threads a chance to run. See Figure 1-6 and Example 1-3.

Figure 1-6. Threads with different priorities

Note that the lower-priority threads would have no chance to run if the express threads had
called yield instead of sleep.

Once again, we caution you that this program works fine on Windows NT and Solaris, but the
Java programming language specification gives no guarantee that it works identically on other
implementations.

TIP

If you find yourself tinkering with priorities to make your code work, you are
on the wrong track. Instead, read the remainder of this chapter, or delve
into one of the cited references, to learn more about reliable mechanisms
for controlling multithreaded programs.

Example 1-3 BounceExpress.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.awt.geom.*;
 4. import java.util.*;
 5. import javax.swing.*;
 6.
 7. /**
 8. Shows animated bouncing balls, some running in higher
 9. threads
 10. */
 11. public class BounceExpress
 12. {
 13. public static void main(String[] args)
 14. {
 15. JFrame frame = new BounceFrame();
 16. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 17. frame.show();
 18. }
 19. }
 20.
 21. /**
 22. The frame with canvas and buttons.
 23. */
 24. class BounceFrame extends JFrame
 25. {
 26. /**
 27. Constructs the frame with the canvas for showing th
 28. bouncing ball and Start and Close buttons
 29. */
 30. public BounceFrame()
 31. {
 32. setSize(WIDTH, HEIGHT);
 33. setTitle("BounceExpress");
 34.
 35. Container contentPane = getContentPane();
 36. canvas = new BallCanvas();
 37. contentPane.add(canvas, BorderLayout.CENTER);
 38. JPanel buttonPanel = new JPanel();
 39. addButton(buttonPanel, "Start",
 40. new ActionListener()
 41. {
 42. public void actionPerformed(ActionEvent ev

 43. {
 44. addBall(Thread.NORM_PRIORITY, Color.bla
 45. }
 46. });
 47.
 48. addButton(buttonPanel, "Express",
 49. new ActionListener()
 50. {
 51. public void actionPerformed(ActionEvent ev
 52. {
 53. addBall(Thread.NORM_PRIORITY + 2, Color
 54. }
 55. });
 56.
 57. addButton(buttonPanel, "Close",
 58. new ActionListener()
 59. {
 60. public void actionPerformed(ActionEvent ev
 61. {
 62. System.exit(0);
 63. }
 64. });
 65. contentPane.add(buttonPanel, BorderLayout.SOUTH);
 66. }
 67.
 68. /**
 69. Adds a button to a container.
 70. @param c the container
 71. @param title the button title
 72. @param listener the action listener for the button
 73. */
 74. public void addButton(Container c, String title,
 75. ActionListener listener)
 76. {
 77. JButton button = new JButton(title);
 78. c.add(button);
 79. button.addActionListener(listener);
 80. }
 81.
 82. /**
 83. Adds a bouncing ball to the canvas and starts a thr
 84. to make it bounce
 85. @param priority the priority for the threads
 86. @color the color for the balls

 87. */
 88. public void addBall(int priority, Color color)
 89. {
 90. Ball b = new Ball(canvas, color);
 91. canvas.add(b);
 92. BallThread thread = new BallThread(b);
 93. thread.setPriority(priority);
 94. thread.start();
 95. }
 96.
 97. private BallCanvas canvas;
 98. public static final int WIDTH = 450;
 99. public static final int HEIGHT = 350;
100. }
101.
102. /**
103. A thread that animates a bouncing ball.
104. */
105. class BallThread extends Thread
106. {
107. /**
108. Constructs the thread.
109. @aBall the ball to bounce
110. */
111. public BallThread(Ball aBall) { b = aBall; }
112.
113. public void run()
114. {
115. try
116. {
117. for (int i = 1; i <= 1000; i++)
118. {
119. b.move();
120. sleep(5);
121. }
122. }
123. catch (InterruptedException exception)
124. {
125. }
126. }
127.
128. private Ball b;
129. }
130.

131. /**
132. The canvas that draws the balls.
133. */
134. class BallCanvas extends JPanel
135. {
136. /**
137. Add a ball to the canvas.
138. @param b the ball to add
139. */
140. public void add(Ball b)
141. {
142. balls.add(b);
143. }
144.
145. public void paintComponent(Graphics g)
146. {
147. super.paintComponent(g);
148. Graphics2D g2 = (Graphics2D)g;
149. for (int i = 0; i < balls.size(); i++)
150. {
151. Ball b = (Ball)balls.get(i);
152. b.draw(g2);
153. }
154. }
155.
156. private ArrayList balls = new ArrayList();
157. }
158.
159. /**
160. A ball that moves and bounces off the edges of a
161. component
162. */
163. class Ball
164. {
165. /**
166. Constructs a ball in the upper left corner
167. @c the component in which the ball bounces
168. @aColor the color of the ball
169. */
170. public Ball(Component c, Color aColor)
171. {
172. canvas = c;
173. color = aColor;
174. }

175.
176. /**
177. Draws the ball at its current position
178. @param g2 the graphics context
179. */
180. public void draw(Graphics2D g2)
181. {
182. g2.setColor(color);
183. g2.fill(new Ellipse2D.Double(x, y, XSIZE, YSIZE));
184. }
185.
186. /**
187. Moves the ball to the next position, reversing dire
188. if it hits one of the edges
189. */
190. public void move()
191. {
192. x += dx;
193. y += dy;
194. if (x < 0)
195. {
196. x = 0;
197. dx = -dx;
198. }
199. if (x + XSIZE >= canvas.getWidth())
200. {
201. x = canvas.getWidth() - XSIZE;
202. dx = -dx;
203. }
204. if (y < 0)
205. {
206. y = 0;
207. dy = -dy;
208. }
209. if (y + YSIZE >= canvas.getHeight())
210. {
211. y = canvas.getHeight() - YSIZE;
212. dy = -dy;
213. }
214.
215. canvas.repaint();
216. }
217.
218. private Component canvas;

219. private Color color;
220. private static final int XSIZE = 15;
221. private static final int YSIZE = 15;
222. private int x = 0;
223. private int y = 0;
224. private int dx = 2;
225. private int dy = 2;
226. }

java.lang.Thread

void setPriority(int newPriority)

sets the priority of this thread. The priority must be between Thread.MIN_PRIORITY
and Thread.MAX_PRIORITY. Use Thread.NORM_PRIORITY for normal priority.

static int MIN_PRIORITY

is the minimum priority that a Thread can have. The minimum priority value is 1.

static int NORM_PRIORITY

is the default priority of a Thread. The default priority is 5.

static int MAX_PRIORITY

is the maximum priority that a Thread can have. The maximum priority value is 10.

static void yield()

causes the currently executing thread to yield. If there are other runnable threads whose
priority is at least as high as the priority of this thread, they will be scheduled next. Note
that this is a static method.

Selfish Threads
Our ball threads were well-behaved and gave each other a chance to run. They did this by
calling the sleep method to wait their turns. The sleep method blocks the thread and gives
the other threads an opportunity to be scheduled. Even if a thread does not want to put itself to
sleep for any amount of time, it can call yield() whenever it does not mind being
interrupted. A thread should always call sleep or yield when it is executing a long loop, to
ensure that it is not monopolizing the system. A thread that does not follow this rule is called

gra

selfish.

The following program shows what happens when a thread contains a tight loop, a loop in
which it carries out a lot of work without giving other threads a chance. When you click on the
"Selfish" button, a blue ball is launched whose run method contains a tight loop.

class BallThread extends Thread
{
 . . .
 public void run()
 {
 try
 {
 for (int i = 1; i <= 1000; i++)
 {
 b.move();
 if (selfish)
 {
 // busy wait for 5 milliseconds
 long t = System.currentTimeMillis();
 while (System.currentTimeMillis() < t + 5)
 ;
 }
 else
 sleep(5);
 }
 }
 catch (InterruptedException exception)
 {
 }
 }
 . . .
 private boolean selfish;
}

When the selfish flag is set, the run method will last about five seconds before it returns,
ending the thread. In the meantime, it never calls sleep or yield.

What actually happens when you run this program depends on your operating system and
choice of thread implementation. For example, when you run this program under Solaris or
Linux with the "green threads" implementation as opposed to the "native threads"
implementation, you will find that the selfish ball indeed hogs the whole application. Try closing
the program or launching another ball; you will have a hard time getting even a mouse-click
into the application. However, when you run the same program under Windows or the native
threads implementation, nothing untoward happens. The blue balls can run in parallel with
other balls.

The reason for this behavioral difference is that the underlying thread package of the operating
system performs time-slicing. It periodically interrupts threads in midstream, even if they are
not cooperating. When a thread (even a selfish thread) is interrupted, the scheduler activates
another thread—picked among the top-priority-level runnable threads. The green threads
implementation on Solaris and Linux does not perform time-slicing, but the native thread
package does. (Why doesn't everyone simply use the native threads? Until recently, X11 and
Motif were not thread safe, and using native threads could lock up the window manager.) Also,
as Java gets ported to new platforms, the green threads implementation tends to get
implemented first because it is easier to port.

If you know that your program will execute on a machine whose thread system performs time-
slicing, then you do not need to worry about making your threads polite. But the point of
Internet computing is that you generally do not know the environments of the people who will
use your program. You should, therefore, plan for the worst and put calls to sleep or yield
in every loop.

CAUTION

See Example 1-4 for the complete source code of the "selfish ball" program.

Example 1-4 BounceSelfish.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.awt.geom.*;
 4. import java.util.*;
 5. import javax.swing.*;
 6.
 7. /**
 8. Shows animated bouncing balls, some running in selfish
 9. threads
 10. */
 11. public class BounceSelfish
 12. {
 13. public static void main(String[] args)
 14. {
 15. JFrame frame = new BounceFrame();
 16. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 17. frame.show();
 18. }

When programming with threads, expect platform-dependent behavior
variations. You can't assume that your threads will get pre-empted by other
threads, so you must plan for the case that they run forever unless you yield
control. But you can't rely on your threads running without interruption—on
most platforms, they won't. You must be prepared that they can lose control
at any time.

 19. }
 20.
 21. /**
 22. The frame with canvas and buttons.
 23. */
 24. class BounceFrame extends JFrame
 25. {
 26. /**
 27. Constructs the frame with the canvas for showing th
 28. bouncing ball and Start and Close buttons
 29. \ */
 30. public BounceFrame()
 31. {
 32. setSize(WIDTH, HEIGHT);
 33. setTitle("BounceSelfish");
 34.
 35. Container contentPane = getContentPane();
 36. canvas = new BallCanvas();
 37. contentPane.add(canvas, BorderLayout.CENTER);
 38. JPanel buttonPanel = new JPanel();
 39. addButton(buttonPanel, "Start",
 40. new ActionListener()
 41. {
 42. public void actionPerformed(ActionEvent ev
 43. {
 44. addBall(false, Color.black);
 45. }
 46. });
 47.
 48. addButton(buttonPanel, "Selfish",
 49. new ActionListener()
 50. {
 51. public void actionPerformed(ActionEvent ev
 52. {
 53. addBall(true, Color.blue);
 54. }
 55. });
 56.
 57. addButton(buttonPanel, "Close",
 58. new ActionListener()
 59. {
 60. public void actionPerformed(ActionEvent ev
 61. {
 62. System.exit(0);

 63. }
 64. });
 65. contentPane.add(buttonPanel, BorderLayout.SOUTH);
 66. }
 67.
 68. /**
 69. Adds a button to a container.
 70. @param c the container
 71. @param title the button title
 72. @param listener the action listener for the button
 73. */
 74. public void addButton(Container c, String title,
 75. ActionListener listener)
 76. {
 77. JButton button = new JButton(title);
 78. c.add(button);
 79. button.addActionListener(listener);
 80. }
 81.
 82. /**
 83. Adds a bouncing ball to the canvas and starts a thr
 84. to make it bounce
 85. @param priority the priority for the threads
 86. @color the color for the balls
 87. */
 88. public void addBall(boolean selfish, Color color)
 89. {
 90. Ball b = new Ball(canvas, color);
 91. canvas.add(b);
 92. BallThread thread = new BallThread(b, selfish);
 93. thread.start();
 94. }
 95.
 96. private BallCanvas canvas;
 97. public static final int WIDTH = 450;
 98. public static final int HEIGHT = 350;
 99. }
100.
101. /**
102. A thread that animates a bouncing ball.
103. */
104. class BallThread extends Thread
105. {
106. /**

107. Constructs the thread.
108. @aBall the ball to bounce
109. @boolean selfishFlag true if the thread is selfish,
110. a busy wait instead of calling sleep
111. */
112. public BallThread(Ball aBall, boolean selfishFlag)
113. {
114. b = aBall;
115. selfish = selfishFlag;
116. }
117.
118. public void run()
119. {
120. try
121. {
122. for (int i = 1; i <= 1000; i++)
123. {
124. b.move();
125. if (selfish)
126. {
127. // busy wait for 5 milliseconds
128. long t = System.currentTimeMillis();
129. while (System.currentTimeMillis() < t + 5)
130. ;
131. }
132. else
133. sleep(5);
134. }
135. }
136. catch (InterruptedException exception)
137. {
138. }
139. }
140.
141. private Ball b;
142. boolean selfish;
143. }
144.
145. /**
146. The canvas that draws the balls.
147. */
148. class BallCanvas extends JPanel
149. {
150. /**

151. Add a ball to the canvas.
152. @param b the ball to add
153. */
154. public void add(Ball b)
155. {
156. balls.add(b);
157. }
158.
159. public void paintComponent(Graphics g)
160. {
161. super.paintComponent(g);
162. Graphics2D g2 = (Graphics2D)g;
163. for (int i = 0; i < balls.size(); i++)
164. {
165. Ball b = (Ball)balls.get(i);
166. b.draw(g2);
167. }
168. }
169.
170. private ArrayList balls = new ArrayList();
171. }
172.
173. /**
174. A ball that moves and bounces off the edges of a
175. component
176. */
177. class Ball
178. {
179. /**
180. Constructs a ball in the upper left corner
181. @c the component in which the ball bounces
182. @aColor the color of the ball
183. */
184. public Ball(Component c, Color aColor)
185. {
186. canvas = c;
187. color = aColor;
188. }
189.
190. /**
191. Draws the ball at its current position
192. @param g2 the graphics context
193. */
194. public void draw(Graphics2D g2)

195. {
196. g2.setColor(color);
197. g2.fill(new Ellipse2D.Double(x, y, XSIZE, YSIZE));
198. }
199.
200. /**
201. Moves the ball to the next position, reversing dire
202. if it hits one of the edges
203. */
204. public void move()
205. {
206. x += dx;
207. y += dy;
208. if (x < 0)
209. {
210. x = 0;
211. dx = -dx;
212. }
213. if (x + XSIZE >= canvas.getWidth())
214. {
215. x = canvas.getWidth() - XSIZE;
216. dx = -dx;
217. }
218. if (y < 0)
219. {
220. y = 0;
221. dy = -dy;
222. }
223. if (y + YSIZE >= canvas.getHeight())
224. {
225. y = canvas.getHeight() - YSIZE;
226. dy = -dy;
227. }
228.
229. canvas.repaint();
230. }
231.
232. private Component canvas;
233. private Color color;
234. private static final int XSIZE = 15;
235. private static final int YSIZE = 15;
236. private int x = 0;
237. private int y = 0;
238. private int dx = 2;

239. private int dy = 2;
240. }

Synchronization
In most practical multithreaded applications, two or more threads need to share access to the
same objects. What happens if two threads have access to the same object and each calls a
method that modifies the state of the object? As you might imagine, the threads step on each
other's toes. Depending on the order in which the data was accessed, corrupted objects can
result. Such a situation is often called a race condition.

Thread Communication Without Synchronization

To avoid simultaneous access of a shared object by multiple threads, you must learn how to
synchronize the access. In this section, you'll see what happens if you do not use
synchronization. In the next section, you'll see how to synchronize object access.

In the next test program, we simulate a bank with 10 accounts. We randomly generate
transactions that move money between these accounts. There are 10 threads, one for each
account. Each transaction moves a random amount of money from the account serviced by the
thread to another random account.

The simulation code is straightforward. We have the class Bank with the method transfer.
This method transfers some amount of money from one account to another. If the source
account does not have enough money in it, then the call simply returns. Here is the code for
the transfer method of the Bank class.

public void transfer(int from, int to, double amount)
 // CAUTION: unsafe when called from multiple threads
{
 if (accounts[from] < amount) return;
 accounts[from] -= amount;
 accounts[to] += amount;
 ntransacts++;
 if (ntransacts % NTEST == 0) test();
}

Here is the code for the TransferThread class. Its run method keeps moving money out
of a fixed bank account. In each iteration, the run method picks a random target account and
a random amount, calls transfer on the bank object, and then sleeps.

class TransferThread extends Thread
{
 public TransferThread(Bank b, int from, int max)
 {
 bank = b;

 fromAccount = from;
 maxAmount = max;
 }

 public void run()
 {
 try
 {
 while (!interrupted())
 {
 int toAccount = (int)(bank.size() * Math.random())
 int amount = (int)(maxAmount * Math.random());
 bank.transfer(fromAccount, toAccount, amount);
 sleep(1);
 }
 }
 catch(InterruptedException e) {}
 }

 private Bank bank;
 private int fromAccount;
 private int maxAmount;
}

When this simulation runs, we do not know how much money is in any one bank account at
any time. But we do know that the total amount of money in all the accounts should remain
unchanged since all we do is move money from one account to another.

Every 10,000 transactions, the transfer method calls a test method that recomputes the
total and prints it out.

This program never finishes. Just press CTRL+C to kill the program.

Here is a typical printout:

Transactions:10000 Sum: 100000
Transactions:20000 Sum: 100000
Transactions:30000 Sum: 100000
Transactions:40000 Sum: 100000
Transactions:50000 Sum: 100000
Transactions:60000 Sum: 100000
Transactions:70000 Sum: 100000
Transactions:80000 Sum: 100000
Transactions:90000 Sum: 100000
Transactions:100000 Sum: 100000

Transactions:110000 Sum: 100000
Transactions:120000 Sum: 100000
Transactions:130000 Sum: 94792
Transactions:140000 Sum: 94792
Transactions:150000 Sum: 94792
. . .

As you can see, something is very wrong. For quite a few transactions, the bank balance
remains at $100,000, which is the correct total for 10 accounts of $10,000 each. But after
some time, the balance changes slightly. When you run this program, you may find that errors
happen quickly, or it may take a very long time for the balance to become corrupted. This
situation does not inspire confidence, and you would probably not want to deposit your hard-
earned money into this bank.

Example 1-5 provides the complete source code. See if you can spot the problem with the
code. We will unravel the mystery in the next section.

Example 1-5 UnsynchBankTest.java

 1. public class UnsynchBankTest
 2. {
 3. public static void main(String[] args)
 4. {
 5. Bank b = new Bank(NACCOUNTS, INITIAL_BALANCE);
 6. int i;
 7. for (i = 0; i < NACCOUNTS; i++)
 8. {
 9. TransferThread t = new TransferThread(b, i,
 10. INITIAL_BALANCE);
 11. t.setPriority(Thread.NORM_PRIORITY + i % 2);
 12. t.start();
 13. }
 14. }
 15.
 16. public static final int NACCOUNTS = 10;
 17. public static final int INITIAL_BALANCE = 10000;
 18. }
 19.
 20. /**
 21. A bank with a number of bank accounts.
 22. */
 23. class Bank
 24. {
 25. /**
 26. Constructs the bank.

 27. @param n the number of accounts
 28. @param initialBalance the initial balance
 29. for each account
 30. */
 31. public Bank(int n, int initialBalance)
 32. {
 33. accounts = new int[n];
 34. int i;
 35. for (i = 0; i < accounts.length; i++)
 36. accounts[i] = initialBalance;
 37. ntransacts = 0;
 38. }
 39.
 40. /**
 41. Transfers money from one account to another.
 42. @param from the account to transfer from
 43. @param to the account to transfer to
 44. @param amount the amount to transfer
 45. */
 46. public void transfer(int from, int to, int amount)
 47. throws InterruptedException
 48. {
 49. accounts[from] -= amount;
 50. accounts[to] += amount;
 51. ntransacts++;
 52. if (ntransacts % NTEST == 0) test();
 53. }
 54.
 55. /**
 56. Prints a test message to check the integrity
 57. of this bank object.
 58. */
 59. public void test()
 60. {
 61. int sum = 0;
 62.
 63. for (int i = 0; i < accounts.length; i++)
 64. sum += accounts[i];
 65.
 66. System.out.println("Transactions:" + ntransacts
 67. + " Sum: " + sum);
 68. }
 69.
 70. /**

 71. Gets the number of accounts in the bank.
 72. @return the number of accounts
 73. */
 74. public int size()
 75. {
 76. return accounts.length;
 77. }
 78.
 79. public static final int NTEST = 10000;
 80. private final int[] accounts;
 81. private long ntransacts = 0;
 82. }
 83.
 84. /**
 85. A thread that transfers money from an account to other
 86. accounts in a bank.
 87. */
 88. class TransferThread extends Thread
 89. {
 90. /**
 91. Constructs a transfer thread.
 92. @param b the bank between whose account money is tr
 93. @param from the account to transfer money from
 94. @param max the maximum amount of money in each tran
 95. */
 96. public TransferThread(Bank b, int from, int max)
 97. {
 98. bank = b;
 99. fromAccount = from;
100. maxAmount = max;
101. }
102.
103. public void run()
104. {
105. try
106. {
107. while (!interrupted())
108. {
109. for (int i = 0; i < REPS; i++)
110. {
111. int toAccount = (int)(bank.size() * Math.r
112. int amount = (int)(maxAmount * Math.random
113. bank.transfer(fromAccount, toAccount, amou
114. sleep(1);

115. }
116. }
117. }
118. catch(InterruptedException e) {}
119. }
120.
121. private Bank bank;
122. private int fromAccount;
123. private int maxAmount;
124. private static final int REPS = 1000;
125. }

Synchronizing Access to Shared Resources

In the previous section, we ran a program in which several threads updated bank account
balances. After a while, errors crept in and some amount of money was either lost or
spontaneously created. This problem occurs when two threads are simultaneously trying to
update an account. Suppose two threads simultaneously carry out the instruction:

accounts[to] += amount;

The problem is that these are not atomic operations. The instruction might be processed as
follows:

1. Load accounts[to] into a register.

2. Add amount.

3. Move the result back to accounts[to].

Now, suppose the first thread executes Steps 1 and 2, and then it is interrupted. Suppose the
second thread awakens and updates the same entry in the account array. Then, the first
thread awakens and completes its Step 3.

That action wipes out the modification of the other thread. As a result, the total is no longer
correct. (See Figure 1-7.)

Figure 1-7. Simultaneous access by two threads

Our test program detects this corruption. (Of course, there is a slight chance of false alarms if
the thread is interrupted as it is performing the tests!)

NOTE

You can actually peek at the virtual machine bytecodes that execute each
statement in our class. Run the command

javap -c -v Bank

to decompile the Bank.class file. For example, the line

accounts[to] += amount;

is translated into the following bytecodes.

aload_0
getfield #16 <Field Bank.accounts [J>
iload_1
dup2
laload
iload_3
i2l
lsub
lastore

What these codes mean does not matter. The point is that the increment
command is made up of several instructions, and the thread executing them
can be interrupted at the point of any instruction.

What is the chance of this corruption occurring? It is quite low, because each thread does so
little work before going to sleep again that it is unlikely that the scheduler will preempt it. We
found by experimentation that we could boost the probability of corruption by various
measures, depending on the target platform. On Windows 98, it helps to assign half of the
transfer threads a higher priority than the other half.

for (i = 0; i < NACCOUNTS; i++)
{
 TransferThread t = new TransferThread(b, i,
 INITIAL_BALANCE);
 t.setPriority(Thread.NORM_PRIORITY + i % 2);
 t.start();
}

When a higher-priority transfer thread wakes up from its sleep, it will preempt a lower-priority
transfer thread.

NOTE

On Linux, thread priorities are ignored, and instead, a slight change in the run method did the
trick—to repeat the transfer multiple times before sleeping.

final int REPS = 1000;
for (int i = 0; i < REPS; i++)
{
 int toAccount = (int)(bank.size() * Math.random());
 int amount = (int)(maxAmount * Math.random() / REPS);
 bank.transfer(fromAccount, toAccount, amount);
 sleep(1);
}

On all platforms, it helps if you load your machine heavily, by running a few bloatware
programs in parallel with the test.

The real problem is that the work of the transfer method can be interrupted in the middle.
If we could ensure that the method runs to completion before the thread loses control, then the
state of the bank account object would not be corrupted.

Many thread libraries force the programmer to fuss with so-called semaphores and critical
sections to gain uninterrupted access to a resource. This is sufficient for procedural
programming, but it is hardly object-oriented. The Java programming language has a nicer

This is exactly the kind of tinkering with priority levels that we tell you not to
do in your own programs. We were in a bind—we wanted to show you a
program that can demonstrate data corruption. In your own programs, you
presumably will not want to increase the chance of corruption, so you
should not imitate this approach.

mechanism, inspired by the monitors invented by Tony Hoare.

You simply tag any operation that should not be interrupted as synchronized, like this:

public synchronized void transfer(int from, int to,
 int amount)
{
 if (accounts[from] < amount) return;
 accounts[from] -= amount;
 accounts[to] += amount;
 ntransacts++;
 if (ntransacts % NTEST == 0) test();
}

When one thread calls a synchronized method, it is guaranteed that the method will finish
before another thread can execute any synchronized method on the same object (see Figure
1-8). When one thread calls transfer and then another thread also calls transfer, the
second thread cannot continue. Instead, it is deactivated and must wait for the first thread to
finish executing the transfer method.

Figure 1-8. Comparison of unsynchronized and synchronized threads

Try it out. Tag the transfer method as synchronized and run the program again. You
can run it forever, and the bank balance will not get corrupted.

In general, you will want to tag those methods as synchronized that require multiple
operations to update a data structure, as well as those that retrieve a value from a data
structure. You are then assured that these operations run to completion before another thread
can use the same object.

Of course, the synchronization mechanism isn't free. As you'll see in the next section, some
bookkeeping code is executed every time a synchronized method is called. Thus, you will not
want to synchronize every method of every class. If objects are not shared among threads,
then there is no need to use synchronization. If a method always returns the same value for a
given object, then you don't need to synchronize that method. For example, the size method
of our Bank class need not be synchronized—the size of a bank object is fixed after the object
is constructed.

Because synchronization is too expensive to use for every class, it is usually a good idea to
custom-build classes for thread communication. For example, suppose a browser loads
multiple images in parallel and wants to know when all images are loaded. You can define a
ProgressTracker class with synchronized methods to update and query the loading
progress.

Some programmers who have experience with other threading models complain about Java
synchronization, finding it cumbersome and inefficient. For system level programming, these
may be valid complaints. But for application programmers, the Java model works quite nicely.
Just remember to use supporting classes for thread communication—don't try to hack existing
code by sprinkling a few synchronized keywords over it.

NOTE

In some cases, programmers try to avoid the cost of synchronization in
code that performs simple independent load or store operations. However,
that can be dangerous, for two reasons. First, a load or store of a 64-bit
value is not guaranteed to be atomic. That is, if you make an assignment to
a double or long field, half of the assignment could happen, then the
thread might be preempted. The next thread then sees the field in an
inconsistent state. Moreover, in a multiprocessor machine, each processor
can work on a separate cache of data from the main memory. The
synchronized keyword ensures that local caches are made consistent
with the main memory, but unsynchronized methods have no such
guarantee. It can then happen that one thread doesn't see a modification to
a shared variable made by another thread.

The volatile keyword is designed to address these situations. Loads
and stores of a 64-bit variable that is declared as volatile are
guaranteed to be atomic. In a multiprocessor machine, loads and stores of
volatile variables should work correctly even for data in processor caches.

Object Locks

When a thread calls a synchronized method, the object becomes "locked." Think of each
object as having a door with a lock on the inside. It is quite common among Java programmers
to visualize object locks by using a "rest room" analogy. The object corresponds to a rest room
stall that can hold only one person at a time. In the interest of good taste, we will use a
"telephone booth" analogy instead. Imagine a traditional, enclosed telephone booth and
suppose it has a latch on the inside. When a thread enters the synchronized method, it closes
the door and locks it. When another thread tries to call a synchronized method on the same
object, it can't open the door, so it stops running. Eventually, the first thread exits its
synchronized method and unlocks the door.

Periodically, the thread scheduler activates the threads that are waiting for the lock to open,
using its normal activation rules that we already discussed. Whenever one of the threads that
wants to call a synchronized method on the object runs again, it checks to see if the object is
still locked. If the object is now unlocked, the thread gets to be the next one to gain exclusive
access to the object.

However, other threads are still free to call unsynchronized methods on a locked object. For
example, the size method of the Bank class is not synchronized and it can be called on a
locked object.

When a thread leaves a synchronized method by throwing an exception, it still relinquishes the
object lock. That is a good thing—you wouldn't want a thread to hog the object after it has
exited the synchronized method.

If a thread owns the lock of an object and it calls another synchronized method of the same
object, then that method is automatically granted access. The thread only relinquishes the lock
when it exits the last synchronized method.

NOTE

Note that you can have two different objects of the same class, each of which is locked by a
different thread. These threads may even execute the same synchronized method. It's the

In some situations, it might be possible to avoid synchronization and use
volatile variables instead. However, not only is this issue fraught with
complexity, there also have been reports of virtual machine
implementations that don't handle volatile variables correctly. Our
recommendation is to use synchronization, not volatile variables, to
guarantee thread safety.

Technically, each object has a lock count that counts how many
synchronized methods the lock owner has called. Each time a new
synchronized method is called, the lock count is increased. Each time a
synchronized method terminates (either because of a normal return or
because of an uncaught exception), the lock count is decremented. When
the lock count reaches zero, the thread gives up the lock.

object that's locked, not the method. In the telephone booth analogy, you can have two people
in two separate booths. Each of them may execute the same synchronized method, or they
may execute different methods—it doesn't matter.

Of course, an object's lock can only be owned by one thread at any given point in time. But a
thread can own the locks of multiple objects at the same time, simply by calling a synchronized
method on an object while executing a synchronized method of another object. (Here,
admittedly, the telephone booth analogy breaks down.)

The wait and notify methods

Let us refine our simulation of the bank. We do not want to transfer money out of an account
that does not have the funds to cover the transfer. Note that we cannot use code like:

if (bank.getBalance(from) >= amount)
 bank.transfer(from, to, amount);

It is entirely possible that the current thread will be deactivated between the successful
outcome of the test and the call to transfer.

if (bank.getBalance(from) >= amount)
 // thread might be deactivated at this point
 bank.transfer(from, to, amount);

By the time the thread is running again, the account balance may have fallen below the
withdrawal amount. You must make sure that the thread cannot be interrupted between the
test and the insertion. You do so by putting both the test and the transfer action inside the
same synchronized method:

public synchronized void transfer(int from, int to,
 int amount)
{
 while (accounts[from] < amount)
 {
 // wait
 . . .
 }
 // transfer funds
 . . .
}

Now, what do we do when there is not enough money in the account? We wait until some
other thread has added funds. But the transfer method is synchronized. This thread
has just gained exclusive access to the bank object, so no other thread has a chance to make
a deposit. A second feature of synchronized methods takes care of this situation. You use the
wait method of the Object class if you need to wait inside a synchronized method.

When wait is called inside a synchronized method, the current thread is blocked and gives
up the object lock. This lets in another thread that can, we hope, increase the account balance.

The wait method can throw an InterruptedException when the thread is interrupted
while it is waiting. In that case, you can either turn on the "interrupted" flag or propagate the
exception—after all, the calling thread, not the bank object, should decide what to do with an
interruption. In our case, we simply propagate the exception and add a throws specifier to
the transfer method.

public synchronized void transfer(int from, int to,
 int amount) throws InterruptedException
{
 while (accounts[from] < amount)
 wait();
 // transfer funds
 . . .
}

Note that the wait method is a method of the class Object, not of the class Thread.
When calling wait, the bank object unlocks itself and blocks the current thread. (Here, the
wait method was called on the this reference.)

CAUTION

There is an essential difference between a thread that is waiting to get inside a synchronized
method and a thread that has called wait. Once a thread calls the wait method, it enters a
wait list for that object. The thread is now blocked. Until the thread is removed from the wait
list, the scheduler ignores it and it does not have a chance to continue running.

To remove the thread from the wait list, some other thread must call the notifyAll or
notify method on the same object. The notifyAll method removes all threads from the
object's wait list. The notify method removes just one arbitrarily chosen thread. When the
threads are removed from the wait list, then they are again runnable, and the scheduler will
eventually activate them again. At that time, they will attempt to reenter the object. As soon as
the object lock is available, one of them will lock the object and continue where it left off after
the call to wait.

To understand the wait and notifyAll/notify calls, let's trot out the telephone booth
analogy once again. Suppose a thread locks an object and then finds it can't proceed, say
because the phone is broken. First of all, it would be pointless for the thread to fall asleep while

If a thread holds the locks to multiple objects, then the call to wait unlocks
only the object on which wait was called. That means that the blocked
thread can hold locks to other objects, which won't get unlocked until the
thread is unblocked again. That's a dangerous situation that you should
avoid.

locked inside the booth. Then a maintenance engineerwould be prevented from entering and
fixing the equipment. By calling wait, the thread unlocks the object and waits outside.
Eventually, a maintenance engineer enters the booth, locks it from inside, and does
something. After the engineer leaves the booth, the waiting threads won't know that the
situation has improved—maybe the engineer just emptied the coin reservoir. The waiting
threads just keep waiting, still without hope. By calling notifyAll, the engineer tells all
waiting threads that the object state may have changed to their advantage. By calling
notify, the engineer picks one of the waiting threads at random and only tells that one,
leaving the others in their despondent waiting state.

It is crucially important that some other thread calls the notify or notifyAll method
periodically. When a thread calls wait, it has no way of unblocking itself. It puts its faith in the
other threads. If none of them bother to unblock the waiting thread, it will never run again. This
can lead to unpleasant deadlock situations. If all other threads are blocked and the last active
thread calls wait without unblocking one of the others, then it also blocks. There is no thread
left to unblock the others, and the program hangs. The waiting threads are not automatically
reactivated when no other thread is working on the object. We will discuss deadlocks later in
this chapter.

As a practical matter, it is dangerous to call notify because you have no control over which
thread gets unblocked. If the wrong thread gets unblocked, that thread may not be able to
proceed. We simply recommend that you use the notifyAll method and that all threads be
unblocked.

When should you call notifyAll? The rule of thumb is to call notifyAll whenever the
state of an object changes in a way that might be advantageous to waiting threads. For
example, whenever an account balance changes, the waiting threads should be given another
chance to inspect the balance. In our example, we will call notifyAll when we have
finished with the funds transfer.

public synchronized void transfer(int from, int to,
 int amount)
{
 . . .
 accounts[from] -= amount;
 accounts[to] += amount;
 ntransacts++;
 notifyAll();
 . . .
}

This notification gives the waiting threads the chance to run again. A thread that was waiting
for a higher balance then gets a chance to check the balance again. If the balance is sufficient,
the thread performs the transfer. If not, it calls wait again.

Note that the call to notifyAll does not immediately activate a waiting thread. It only
unblocks the waiting threads so that they can compete for entry into the object after the current

thread has exited the synchronized method.

TIP

If you run the sample program with the synchronized version of the transfer method, you
will notice that nothing ever goes wrong. The total balance stays at $100,000 forever. (Again,
you need to press CTRL+C to terminate the program.)

You will also notice that the program in Example 1-6 runs a bit slower—this is the price you
pay for the added bookkeeping involved in the synchronization mechanism.

Example 1-6 SynchBankTest.java

 1. public class SynchBankTest
 2. {
 3. public static void main(String[] args)
 4. {
 5. Bank b = new Bank(NACCOUNTS, INITIAL_BALANCE);
 6. int i;
 7. for (i = 0; i < NACCOUNTS; i++)
 8. {
 9. TransferThread t = new TransferThread(b, i,
 10. INITIAL_BALANCE);
 11. t.setPriority(Thread.NORM_PRIORITY + i % 2);
 12. t.start();
 13. }
 14. }
 15.
 16. public static final int NACCOUNTS = 10;
 17. public static final int INITIAL_BALANCE = 10000;
 18. }
 19.
 20. /**
 21. A bank with a number of bank accounts.
 22. */
 23. class Bank
 24. {
 25. /**
 26. Constructs the bank.
 27. @param n the number of accounts
 28. @param initialBalance the initial balance

If your multithreaded program gets stuck, double-check that every wait is
matched by a notifyAll.

 29. for each account
 30. */
 31. public Bank(int n, int initialBalance)
 32. {
 33. accounts = new int[n];
 34. int i;
 35. for (i = 0; i < accounts.length; i++)
 36. accounts[i] = initialBalance;
 37. ntransacts = 0;
 38. }
 39.
 40. /**
 41. Transfers money from one account to another.
 42. @param from the account to transfer from
 43. @param to the account to transfer to
 44. @param amount the amount to transfer
 45. */
 46. public synchronized void transfer(int from, int to, in
 47. throws InterruptedException
 48. {
 49. while (accounts[from] < amount)
 50. wait();
 51. accounts[from] -= amount;
 52. accounts[to] += amount;
 53. ntransacts++;
 54. notifyAll();
 55. if (ntransacts % NTEST == 0) test();
 56. }
 57.
 58. /**
 59. Prints a test message to check the integrity
 60. of this bank object.
 61. */
 62. public synchronized void test()
 63. {
 64. int sum = 0;
 65.
 66. for (int i = 0; i < accounts.length; i++)
 67. sum += accounts[i];
 68.
 69. System.out.println("Transactions:" + ntransacts
 70. + " Sum: " + sum);
 71. }
 72.

 73. /**
 74. Gets the number of accounts in the bank.
 75. @return the number of accounts
 76. */
 77. public int size()
 78. {
 79. return accounts.length;
 80. }
 81.
 82. public static final int NTEST = 10000;
 83. private final int[] accounts;
 84. private long ntransacts = 0;
 85. }
 86.
 87. /**
 88. A thread that transfers money from an account to other
 89. accounts in a bank.
 90. */
 91. class TransferThread extends Thread
 92. {
 93. /**
 94. Constructs a transfer thread.
 95. @param b the bank between whose account money is tr
 96. @param from the account to transfer money from
 97. @param max the maximum amount of money in each tran
 98. */
 99. public TransferThread(Bank b, int from, int max)
100. {
101. bank = b;
102. fromAccount = from;
103. maxAmount = max;
104. }
105.
106. public void run()
107. {
108. try
109. {
110. while (!interrupted())
111. {
112. int toAccount = (int)(bank.size() * Math.rand
113. int amount = (int)(maxAmount * Math.random())
114. bank.transfer(fromAccount, toAccount, amount)
115. sleep(1);
116. }

117. }
118. catch(InterruptedException e) {}
119. }
120.
121. private Bank bank;
122. private int fromAccount;
123. private int maxAmount;
124. }

Here is a summary of how the synchronization mechanism works.

1. To call a synchronized method, the implicit parameter must not be locked. Calling the
method locks the object. Returning from the call unlocks the implicit parameter object.
Thus, only one thread at a time can execute synchronized methods on a particular
object.

2. When a thread executes a call to wait, it surrenders the object lock and enters a wait
list for that object.

3. To remove a thread from the wait list, some other thread must make a call to
notifyAll or notify, on the same object.

The scheduling rules are undeniably complex, but it is actually quite simple to put them into
practice. Just follow these five rules:

1. If two or more threads modify an object, declare the methods that carry out the
modifications as synchronized. Read-only methods that are affected by object
modifications must also be synchronized.

2. If a thread must wait for the state of an object to change, it should wait inside the object,
not outside, by entering a synchronized method and calling wait.

3. Don't spend any significant amount of time in a synchronized method. Most operations
simply update a data structure and quickly return. If you can't complete a synchronized
method immediately, call wait so that you give up the object lock while waiting.

4. Whenever a method changes the state of an object, it should call notifyAll. That
gives the waiting threads a chance to see if circumstances have changed.

5. Remember that wait and notifyAll/notify are methods of the Object class,
not the Thread class. Double-check that your calls to wait are matched up by a
notification on the same object.

Synchronized Blocks

Occasionally, it is useful to lock an object and obtain exclusive access to it for just a few
instructions without writing a new synchronized method. You use synchronized blocks to

achieve this access. A synchronized block consists of a sequence of statements, enclosed in
{ . . . } and prefixed with synchronized (obj), where obj is the object to be
locked. Here is an example of the syntax:

public void run()
{
 . . .
 synchronized (bank) // lock the bank object
 {
 if (bank.getBalance(from) >= amount)
 bank.transfer(from, to, amount);
 }
 . . .
}

In this sample code segment, the synchronized block will run to completion before any other
thread can call a synchronized method on the bank object.

Application programmers tend to avoid this feature. It is usually a better idea to take a step
back, think about the mechanism on a higher level, come up with a class that describes it, and
use synchronized methods of that class. System programmers who consider additional classes
"high overhead" are more likely to use synchronized blocks.

Synchronized Static Methods

A singleton is a class with just one object. Singletons are commonly used for management
objects that need to be globally unique, such as print spoolers, database connection
managers, and so on.

Consider the typical implementation of a singleton.

public class Singleton
{
 public static Singleton getInstance()
 {
 if (instance == null)
 instance = new Singleton(. . .);
 return instance;
 }

 private Singleton(. . .) { . . . }
 . . .
 private static Singleton instance;
}

However, the getInstance method is not threadsafe. Suppose one thread calls

getInstance and is preempted in the middle of the constructor, before the instance
field has been set. Then another thread gains control and it calls getInstance. Since
instance is still null, that thread constructs a second object. That's just what a singleton
is supposed to prevent.

The remedy is simple: make the getInstance method synchronized:

public static synchronized Singleton getInstance()
{
 if (instance == null)
 instance = new Singleton(. . .);
 return instance;
}

Now, the method runs to completion before another thread can call it.

If you paid close attention to the preceding sections, you may wonder how this works. When a
thread calls a synchronized method, it acquires the lock of an object. But this method is
static—what object does a thread lock when calling Singleton.getInstance()?

Calling a static method locks the class object Singleton.class. (Recall from Volume 1,
Chapter 5, that there is a unique object of type Class that describes each class that the
virtual machine has loaded.) Therefore, if one thread calls a synchronized static method of a
class, all synchronized static methods of the class are blocked until the first call returns.

java.lang.Object

void notifyAll()

unblocks the threads that called wait on this object. This method can only be called
from within a synchronized method or block. The method throws an
IllegalMonitorStateException if the current thread is not the owner of the
object's lock.

void notify()

unblocks one randomly selected thread among the threads that called wait on this
object. This method can only be called from within a synchronized method or block. The
method throws an IllegalMonitorStateException if the current thread is not
the owner of the object's lock.

void wait()

gra

causes a thread to wait until it is notified. This method can only be called from within a
synchronized method. It throws an IllegalMonitorStateException if the
current thread is not the owner of the object's lock.

Deadlocks
The synchronization feature in the Java programming language is convenient and powerful,
but it cannot solve all problems that might arise in multithreading. Consider the following
situation:

Account 1: $2,000

Account 2: $3,000

Thread 1: Transfer $3,000 from Account 1 to Account 2

Thread 2: Transfer $4,000 from Account 2 to Account 1

As Figure 1-9 indicates, Threads 1 and 2 are clearly blocked. Neither can proceed because the
balances in Accounts 1 and 2 are insufficient.

Figure 1-9. A deadlock situation

Is it possible that all 10 threads are blocked because each is waiting for more money? Such a
situation is called a deadlock.

In our program, a deadlock cannot occur for a simple reason. Each transfer amount is for, at
most, $10,000. Since there are 10 accounts and a total of $100,000 in them, at least one of the
accounts must have more than $10,000 at any time. The thread moving money out of that
account can therefore proceed.

But if you change the run method of the threads to remove the $10,000 transaction limit,
deadlocks can occur quickly. Try it out. Construct each TransferThread with a
maxAmount of 14000 and run the program. The program will run for a while and then hang.

Another way to create a deadlock is to make the i'th thread responsible for putting money into
the i'th account, rather than for taking it out of the i'th account. In this case, there is a chance
that all threads will gang up on one account, each trying to remove more money from it than it
contains. Try it out. In the SynchBankTest program, turn to the run method of the
TransferThread class. In the call to transfer, flip fromAccount and toAccount.
Run the program and see how it deadlocks almost immediately.

Here is another situation in which a deadlock can occur easily: Change the notifyAll
method to notify in the SynchBankTest program. You will find that the program hangs
quickly. Unlike notifyAll, which notifies all threads that are waiting for added funds, the
notify method unblocks only one thread. If that thread can't proceed, all threads can be
blocked. Consider the following sample scenario of a developing deadlock.

Account 1: $19,000

All other accounts: $9,000 each

Thread 1: Transfer $9,500 from Account 1 to Account 2

All other threads: Transfer $9,100 from their account to another account

Clearly, all threads but Thread 1 are blocked, because there isn't enough money in their
accounts.

Thread 1 proceeds. Afterward, we have the following situation:

Account 1: $9,500

Account 2: $18,500

All other accounts: $9,000 each

Then, Thread 1 calls notify. The notify method picks a thread at random to unblock.
Suppose it picks Thread 3. That thread is awakened, finds that there isn't enough money in its
account, and calls wait again. But Thread 1 is still running. A new random transaction is
generated, say,

Thread 1: Transfer $9,600 to from Account 1 to Account 2

Now, Thread 1 also calls wait, and all threads are blocked. The system has deadlocked.

The culprit here is the call to notify. It only unblocks one thread, and it may not pick the
thread that is essential to make progress. (In our scenario, Thread 2 must proceed to take
money out of Account 2.) In contrast, notifyAll unblocks all threads.

Unfortunately, there is nothing in the Java programming language to avoid or break these
deadlocks. You must design your threads to ensure that a deadlock situation cannot occur.
You need to analyze your program and ensure that every blocked thread will eventually be
notified, and that at least one of them can always proceed.

CAUTION

Some programmers find Java thread synchronization overly deadlock-prone because they are
accustomed to different mechanisms that don't translate well to Java. Simply trying to turn
semaphores into a nested mess of synchronized blocks can indeed be a recipe for disaster.
Our advice, if you get stuck with a deadlock problem, is to step back and ask yourself what
communication pattern between threads you want to achieve. Then create another class for
that purpose. That's the Object-Oriented way, and it often helps disentangle the logic of
multithreaded programs.

Why the stop and suspend Methods Are Deprecated

The Java 1.0 platform defined a stop method that simply terminates a thread, and a
suspend method that blocks a thread until another thread calls resume. Both of these
methods have been deprecated in the Java 2 platform. The stop method is inherently unsafe,
and experience has shown that the suspend method frequently leads to deadlocks. In this
section, you will see why these methods are problematic and what you can do to avoid
problems.

Let us turn to the stop method first. When a thread is stopped, it immediately gives up the
locks on all objects that it has locked. This can leave objects in an inconsistent state. For
example, suppose a TransferThread is stopped in the middle of moving money from one
account to another, after the withdrawal and before the deposit. Now the bank object is
damaged. That damage is observable from the other threads that have not been stopped.

CAUTIO

You should avoid blocking calls inside a synchronized method, for example
a call to an I/O operation. If the thread blocks while holding the object lock,
every other thread calling a synchronized method on the same object also
blocks. If eventually all other threads call a synchronized method on that
object, then all threads are blocked and deadlock results. This is called a
"black hole." (Think of someone staying in a phone booth for a very long
time, and everyone else waiting outside instead of doing useful work.)

When a thread wants to stop another thread, it has no way of knowing when the stop method
is safe and when it leads to damaged objects. Therefore, the method has been deprecated.

NOTE

If you need to stop a thread safely, you can have the thread periodically check a variable that
indicates whether a stop has been requested.

public class MyThread extends Thread
{
 public void run()
 {
 while (!stopRequested && more work to do)
 {
 do more work
 }
 }

 public void requestStop()
 {
 stopRequested = true;
 }

 private boolean stopRequested;
}

This code leaves the run method to control when to finish, and it is up to the run method to
ensure that no objects are left in a damaged state.

Testing the stopRequested variable in the main loop of a thread work is fine, except if the
thread is currently blocked. In that case, the thread will only terminate after it is unblocked. You

Technically speaking, the stop method causes the thread to be stopped to
throw an exception object of type ThreadDeath. This exception
terminates all pending methods, including the run method.

For the same reason, any uncaught exception in a synchronized method
can cause that method to terminate prematurely and lead to damaged
objects.

Some authors claim that the stop method has been deprecated because it
can cause objects to be permanently locked by a stopped thread. However,
that is not true. A stopped thread exits all synchronized methods it has
called (through the processing of the ThreadDeath exception). As a
consequence, the thread relinquishes the object locks that it holds.

can force a thread out of a blocked state by interrupting it. Thus, you should define the
requestStop method to call interrupt:

public void requestStop()
{
 stopRequested = true;
 interrupt();
}

You can test the stopRequested variable in the catch clause for the
InterruptedException. For example,

try
{
 wait();
}
catch (InterruptedException e)
{
 if (stopRequested)
 return; // exit the run method
}

Actually, many programmers take the attitude that the only reason to interrupt a thread is to
stop it. Then, you don't need to test the stopRequested variable—simply exit the run
method whenever you sense an interrupt.

By the way, the interrupt method does not generate an InterruptedException
when a thread is interrupted while it is working. Instead, it simply sets the "interrupted" flag.
That way, interrupting a thread cannot corrupt object data. It is up to the thread to check the
"interrupted" flag after all critical calculations have been completed.

Next, let us see what is wrong with the suspend method. Unlike stop, suspend won't
damage objects. However, if you suspend a thread that owns a lock to an object, then the
object is unavailable until the thread is resumed. If the thread that calls the suspend method
tries to acquire the lock for the same object before calling resume, then the program
deadlocks: the suspended thread waits to be resumed, and the suspending thread waits for
the object to be unlocked.

This situation occurs frequently in graphical user interfaces. Suppose we have a graphical
simulation of our bank. We have a button labeled "Pause" that suspends the transfer threads,
and a button labeled "Resume" that resumes them.

pauseButton.addActionListener(new
 ActionListener()
 {
 public void actionPerformed(ActionEvent event)

 {
 for (int i = 0; i < threads.length; i++)
 threads[i].suspend(); // Don't do this
 }
 });
resumeButton.addActionListener(new
 ActionListener()
 {
 public void actionPerformed(ActionEvent event)
 {
 for (int i = 0; i < threads.length; i++)
 threads[i].resume(); // Don't do this
 }
 });

Suppose a paintComponent method paints a chart of each account, calling the
bank.getBalance method, and that method is synchronized.

As you will see in the next section, both the button actions and the repainting occur in the
same thread, the event dispatch thread.

Now consider the following scenario:

1. One of the transfer threads acquires the lock on the bank object.

2. The user clicks the "Pause" button.

3. All transfer threads are suspended; one of them still holds the lock on the bank object.

4. For some reason, the account chart needs to be repainted.

5. The paintComponent method calls the synchronized method
bank.getBalance.

Now the program is frozen.

The event dispatch thread can't proceed because the bank object is locked by one of the
suspended threads. Thus, the user can't click the "Resume" button, and the threads won't ever
resume.

If you want to safely suspend the thread, you should introduce a variable
suspendRequested and test it in a safe place of your run method—somewhere, where
your thread doesn't lock objects that other threads need. When your thread finds that the
suspendRequested variable has been set, keep waiting until it becomes available again.

For greater clarity, wrap the variable in a class SuspendRequestor, like this:

class SuspendRequestor
{
 public synchronized void set(boolean b)
 {
 suspendRequested = b;
 notifyAll();
 }

 public synchronized void waitForResume()
 throws InterruptedException
 {
 while (suspendRequested)
 wait();
 }

 private boolean suspendRequested;
}

class MyThread extends Thread
{
 public void requestSuspend()
 {
 suspender.set(true);
 }
 public void requestResume()
 {
 suspender.set(false);
 }

 public void run()
 {
 try
 {
 while (more work to do)
 {
 suspender.waitForResume();
 do more work
 }
 }
 catch (InterruptedException exception)
 {
 }
 }

 private SuspendRequestor suspender
 = new SuspendRequestor();
}

Now the call to suspender.waitForResume() blocks when suspension has been
requested. To unblock, some other thread has to request resumption.

NOTE

Some programmers don't want to come up with a new class for such a
simple mechanism. But they still need some object on which to synchronize,
because the waiting thread needs to be added to the wait list of some
object. It is possible to use a separate dummy variable, like this:

class MyThread extends Thread
{

 public void requestSuspend()
 {
 suspendRequested = true;
 }
 public void requestResume()
 {
 suspendRequested = false;
 synchronized (dummy)
 {
 dummy.notifyAll();
 // unblock the thread waiting on dummy
 }
 }

 private void waitForResume()
 throws InterruptedException
 {
 synchronized (dummy)
 // synchronized necessary for calling wait
 {
 while (suspendRequested)
 dummy.wait(); // block this thread
 }
 }

 . . .
 private boolean suspendRequested;
 private Integer dummy = new Integer(1);

Of course, avoiding the Thread.suspend method does not automatically avoid deadlocks.
If a thread calls wait, it might not wake up either. But there is an essential difference. A
thread can control when it calls wait. But the Thread.suspend method can be invoked
externally on a thread, at any time, without the thread's consent. The same is true for the
Thread.stop method. For that reason, these two methods have been deprecated.

NOTE

Timeouts

When you make a blocking call, such as a call to the wait method or to I/O, your thread loses
control and is at the mercy of another thread or, in the case of I/O, external circumstances.
You can limit that risk by using timeouts.

There are two wait methods with timeout parameters:

void wait(long millis)
void wait(long millis, int nanos)

that wait until the thread is awakened by a call to notifyAll/notify or for the given
number of milliseconds, or milliseconds and nanoseconds—there are 1,000,000 nanoseconds
in a millisecond.

However, when the wait method returns, you don't know whether the cause was a timeout or
a notification. You probably want to know—there is no point in reevaluating the condition for
which you were waiting if there was no notification.

 // any non-null object will work
}

We don't like this coding style. It is just as easy to supply an additional class.
Then the lock is naturally associated with that class, and you avoid the
confusion that arises when you hijack an object just for its lock and wait list.

In this section, we defined methods requestStop,
requestSuspend, and requestResume. These methods provide
functionality that is similar to the deprecated stop, suspend, and
resume methods, while avoiding the risks of those deprecated methods.
You will find that many programmers implement similar methods, but
instead of giving them different names, they simply override the stop,
suspend, and resume methods. It is entirely legal to override a
deprecated method with another method that is not deprecated. If you see a
call to stop, suspend, or resume in a program, you should not
automatically assume that the program is wrong. First check whether the
programmer overrode the deprecated methods with safer versions.

You can compute the difference of the system time before and after the call:

long before = System.currentTimeMillis();
wait(delay);
long after = System.currentTimeMills();
if (after - before > delay)
 . . . // timeout

Alternatively, you can make the notifying thread set a flag.

A thread can also block indefinitely when calling an I/O operation that doesn't have a timeout.
For example, as you will see in Chapter 3, to open a network socket, you need to call the
socket constructor, and it doesn't have a provision for a timeout. You can always force a
timeout by putting the blocking operation into a second thread, and then use the join
method. The call

t.join(millis);

blocks the current thread until the thread t has completed or the given number of milliseconds
has elapsed, whichever occurs first. Use this outline:

Thread t = new
 Thread()
 {
 public void run()
 {
 blocking operation
 }
 };
t.start();
t.join(millis);

The blocking operation either succeeds within the given number of milliseconds, or the join
method returns control to the current thread. Of course, then the thread t is still alive. What to
do about that depends on the nature of the blocking operation. If you know that the operation
can be interrupted, you can call t.interrupt() to stop it. In the case of an I/O operation,
you may know that there is an operating-system-dependent timeout. In that case, just leave t
alive until the timeout occurs and the blocking operation returns. See the SocketOpener in
Chapter 3 for a typical example.

java.lang.Thread

gra

void wait(long millis)

void wait(long millis, int nanos)

causes a thread to wait until it is notified or until the specified amount of time has passed.
This method can only be called from within a synchronized method. It throws an
IllegalMonitorStateException if the current thread is not the owner of the
object's lock.

void join()

waits for the specified thread to cease to be alive.

void join(long millis)

waits for the specified thread to cease to be alive or for the specified number of
milliseconds to pass.

User Interface Programming with Threads
In the following sections, we discuss threading issues that are of particular interest to user
interface programming.

Threads and Swing

As we mentioned in the introduction, one of the reasons to use threads in your programs is to
make your programs more responsive. When your program needs to do something time-
consuming, then you should fire up another worker thread instead of blocking the user
interface.

However, you have to be careful what you do in a worker thread because, perhaps
surprisingly, Swing is not thread safe. That is, the majority of methods of Swing classes are not
synchronized. If you try to manipulate user interface elements from multiple threads, then your
user interface will become corrupted.

For example, run the test program whose code you will find at the end of this section. When
you click on the "Bad" button, a new thread is started that edits a combo box, randomly adding
and removing values.

Parameters: millis the number of milliseconds
 nanos the number of nanoseconds, < 1,000,000

Parameters: millis the number of milliseconds

class BadWorkerThread extends Thread
{
 public BadWorkerThread(JComboBox aCombo)
 {
 combo = aCombo;
 generator = new Random();
 }

 public void run()
 {
 try
 {
 while (!interrupted())
 {
 int i = Math.abs(generator.nextInt());
 if (i % 2 == 0)
 combo.insertItemAt(new Integer(i), 0);
 else if (combo.getItemCount() > 0)
 combo.removeItemAt(i % combo.getItemCount());

 sleep(1);
 }
 }
 catch (InterruptedException exception) {}
 }

 private JComboBox combo;
 private Random generator;
}

Try it out. Click on the "Bad" button. If you start the program from a console window, you will
see an occasional exception report in the console (see Figure 1-10).

Figure 1-10. Exception reports in the console

What is going on? When an element is inserted into the combo box, the combo box fires an
event to update the display. Then, the display code springs into action, reading the current size
of the combo box and preparing to display the values. But the worker thread keeps on going,
which can occasionally result in a reduction of the count of the values in the combo box. The
display code then thinks that there are more values in the model than there actually are, asks
for nonexistent values, and triggers an ArrayIndexOutOfBounds exception.

This situation could have been avoided by locking the combo box object while displaying it.
However, the designers of Swing decided not to expend any effort to make Swing thread safe,
for two reasons. First, synchronization takes time, and nobody wanted to slow down Swing any
further. More importantly, the Swing team checked out what experience other teams had with
thread-safe user interface toolkits. What they found was not encouraging. When building a
user interface toolkit, you want it to be extensible so that other programmers can add their own
user interface components. But user interface programmers using thread-safe toolkits turned
out to be confused by the demands for synchronization and tended to create components that
were prone to deadlocks.

Therefore, when you use threads together with Swing, you have to follow a few simple rules.
First, however, let's see what threads are present in a Swing program.

Every Java application starts with a main method that runs in the main thread. In a Swing
program, the main method typically does the following:

First it calls a constructor that lays out components in a frame window;

then it invokes the show or setVisible method on the window.

When the first window is shown, a second thread is created, the event dispatch thread. All
event notifications, such as calls to actionPerformed or paintComponent, run in the
event dispatch thread. The main thread keeps running until the main method exits. Usually, of
course, the main method exits immediately after displaying the frame window (see Figure 1-
11). Other threads are running behind the scenes, such as the thread that posts events into
the event queue, but those threads are invisible to the application programmer.

Figure 1-11. Threads in a Swing program

In a Swing application, essentially all code is contained in event handlers to respond to user
interface and repaint requests. All that code runs on the event dispatch thread. Here are the
rules that you need to follow.

1. If an action takes a long time, fire up a new thread to do the work. If you take a long time
in the event dispatch thread, the application seems "dead" since it cannot respond to any
events.

2. If an action can block on input or output, fire up a new thread to do the work. You don't
want to freeze the user interface for the potentially indefinite time that a network
connection is unresponsive.

3. If you need to wait for a specific amount of time, don't sleep in the event dispatch thread.
Instead, use a timer.

4. The work that you do in your threads cannot touch the user interface. Read any
information from the UI before you launch your threads, launch them, and then update
the user interface from the event dispatching thread once the threads have completed.

The last rule is often called the single thread rule for Swing programming. There are a few
exceptions to the single thread rule.

1. A few Swing methods are thread safe. They are specially marked in the API

documentation with the sentence "This method is thread safe, although most Swing
methods are not." The most useful among these thread-safe methods are:

JTextComponent.setText
JTextArea.insert
JTextArea.append
JTextArea.replaceRange

2. The following methods of the JComponent class can be called from any thread:

repaint
revalidate

The repaint method schedules a repaint event. You use the revalidate method if
the contents of a component have changed and the size and position of the component
must be updated. The revalidate method marks the component's layout as invalid
and schedules a layout event. (Just like paint events, layout events are coalesced. If
there are multiple layout events in the event queue, the layout is only recomputed once.)

NOTE

1. You can safely add and remove event listeners in any thread. Of course, the listener
methods will be invoked in the event dispatching thread.

2. You can construct components, set their properties, and add them into containers, as
long as none of the components have been realized. A component has been realized if it
can receive paint or validation events. This is the case as soon as the show,
setVisible(true), or pack methods have been invoked on the component, or if
the component has been added to a container that has been realized. Once a
component has been realized, you can no longer manipulate it from another thread.

In particular, you can create the GUI of an application in the main method before calling
show, and you can create the GUI of an applet in the applet constructor or the init
method.

These rules look complex, but they aren't actually difficult to follow. It is an easy matter to start
a new thread to start a time-consuming process. Upon a user request, gather all the necessary

We have used the repaint method many times in volume 1 of this book,
but the revalidate method is less common. Its purpose is to force a
layout of a component after the contents has changed. The traditional AWT
has invalidate and validate methods to mark a component's
layout as invalid and to force the layout of a component. For Swing
components, you should simply call revalidate instead. (However, to
force the layout of a JFrame, you still need to call validate—a
JFrame is a Component but not a JComponent.)

information from the GUI, pass them to a thread, and start the thread.

public void actionPerformed(ActionEvent e)
{
 // gather data needed by thread
 MyThread t = new MyThread(data);
 t.start();
}

The difficult part is to update the GUI to indicate progress within your thread and to present the
result of the work when your thread is finished. Remember that you can't touch any Swing
components from your thread. For example, if you want to update a progress bar or a label
text, then you can't simply set its value from your thread.

To solve this problem, there are two convenient utility methods that you can use in any thread
to add arbitrary actions to the event queue. For example, suppose you want to periodically
update a label "x% complete" in a thread, to indicate progress. You can't call
label.setText from your thread, but you can use the invokeLater and
invokeAndWait methods of the EventQueue class to have that call executed in the
event dispatching thread.

NOTE

Here is what you need to do. You place the Swing code into the run method of a class that
implements the Runnable interface. Then, you create an object of that class and pass it to
the static invokeLater or invokeAndWait method. For example, here is how you can
update a label text. First, create the class with the run method.

public class LabelUpdater implements Runnable
{
 public LabelUpdater(JLabel aLabel, int aPercentage)
 {
 label = aLabel;
 percentage = aPercentage;
 }

 public void run()
 {
 label.setText(percentage + "% complete");
 }

These methods are also available in the
javax.swing.SwingUtilities class. If you use Swing with Java
Development Kit (JDK) 1.1, you need to use that class—the methods were
added to EventQueue in JDK 1.2.

}

Then, create an object and pass it to the invokeLater method.

Runnable updater = new LabelUpdater(label, percentage);
EventQueue.invokeLater(updater);

The invokeLater method returns immediately when the event is posted to the event
queue. The run method is executed asynchronously. The invokeAndWait method waits
until the run method has actually been executed. The EventQueue class handles the
details of the synchronization. In the situation of updating a progress label, the
invokeLater method is more appropriate. Users would rather have the worker thread
make more progress than insist on the most precise display of the completed percentage.

To invoke code in the event dispatch thread, anonymous inner classes offer a useful shortcut.
For example, the sample code given above can be simplified to the following cryptic, but
shorter, command:

EventQueue.invokeLater(new
 Runnable()
 {

 public void run()
 {
 label.setText(percentage + "% complete");
 }
 });

NOTE

Example 1-7 demonstrates how to use the invokeLater method to safely modify the
contents of a combo box. If you click on the "Good" button, a thread inserts and removes
numbers. However, the actual modification takes place in the event dispatching thread.

Example 1-7 SwingThreadTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.util.*;
 4. import javax.swing.*;

The invokeLater and invokeAndWait methods use objects that
implement the Runnable interface. You already saw how to construct
new threads out of Runnable objects. However, in this case, the code of
the run method executes in the event dispatching thread, not a new
thread.

 5.
 6. /**
 7. This program demonstrates that a thread that
 8. runs in parallel with the event dispatch thread
 9. can cause errors in Swing components.
 10. */
 11. public class SwingThreadTest
 12. {
 13. public static void main(String[] args)
 14. {
 15. SwingThreadFrame frame = new SwingThreadFrame();
 16. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 17. frame.show();
 18. }
 19. }
 20.
 21. /**
 22. This frame has two buttons to fill a combo box from a
 23. separate thread. The "Good" button uses the event queu
 24. the "Bad" button modifies the combo box directly.
 25. */
 26. class SwingThreadFrame extends JFrame
 27. {
 28. public SwingThreadFrame()
 29. {
 30. setTitle("SwingThread");
 31. setSize(WIDTH, HEIGHT);
 32.
 33. final JComboBox combo = new JComboBox();
 34.
 35. JPanel p = new JPanel();
 36. p.add(combo);
 37. getContentPane().add(p, BorderLayout.CENTER);
 38.
 39. JButton b = new JButton("Good");
 40. b.addActionListener(new ActionListener()
 41. {
 42. public void actionPerformed(ActionEvent event
 43. {
 44. combo.showPopup();
 45. new GoodWorkerThread(combo).start();
 46. }
 47. });
 48. p = new JPanel();

 49. p.add(b);
 50. b = new JButton("Bad");
 51. b.addActionListener(new ActionListener()
 52. {
 53. public void actionPerformed(ActionEvent event
 54. {
 55. combo.showPopup();
 56. new BadWorkerThread(combo).start();
 57. }
 58. });
 59. p.add(b);
 60.
 61. getContentPane().add(p, BorderLayout.NORTH);
 62. }
 63.
 64. public static final int WIDTH = 450;
 65. public static final int HEIGHT = 300;
 66. }
 67.
 68. /**
 69. This thread modifies a combo box by randomly adding
 70. and removing numbers. This can result in errors becaus
 71. the combo box is not synchronized and the event dispat
 72. thread accesses the combo box to repaint it.
 73. */
 74. class BadWorkerThread extends Thread
 75. {
 76. public BadWorkerThread(JComboBox aCombo)
 77. {
 78. combo = aCombo;
 79. generator = new Random();
 80. }
 81.
 82. public void run()
 83. {
 84. try
 85. {
 86. while (!interrupted())
 87. {
 88. int i = Math.abs(generator.nextInt());
 89. if (i % 2 == 0)
 90. combo.insertItemAt(new Integer(i), 0);
 91. else if (combo.getItemCount() > 0)
 92. combo.removeItemAt(i % combo.getItemCount(

 93.
 94. sleep(1);
 95. }
 96. }
 97. catch (InterruptedException exception) {}
 98. }
 99.
100. private JComboBox combo;
101. private Random generator;
102. }
103.
104. /**
105. This thread modifies a combo box by randomly adding
106. and removing numbers. In order to ensure that the
107. combo box is not corrupted, the editing operations are
108. forwarded to the event dispatch thread.
109. */
110. class GoodWorkerThread extends Thread
111. {
112. public GoodWorkerThread(JComboBox aCombo)
113. {
114. combo = aCombo;
115. generator = new Random();
116. }
117.
118. public void run()
119. {
120. try
121. {
122. while (!interrupted())
123. {
124. EventQueue.invokeLater(new
125. Runnable()
126. {
127. public void run()
128. {
129. int i = Math.abs(generator.nextInt()
130.
131. if (i % 2 == 0)
132. combo.insertItemAt(new Integer(i)
133. else if (combo.getItemCount() > 0)
134. combo.removeItemAt(i % combo.getI
135. }
136. });

137. Thread.sleep(1);
138. }
139. }
140. catch (InterruptedException exception) {}
141. }
142.
143. private JComboBox combo;
144. private Random generator;
145. }

java.awt.EventQueue

static void invokeLater(Runnable runnable)

Causes the run method of the runnable object to be executed in the event dispatch
thread, after pending events have been processed.

static void invokeAndWait(Runnable runnable)

Causes the run method of the runnable object to be executed in the event dispatch
thread, after pending events have been processed. This call blocks until the run method
has terminated.

Animation

In this section, we dissect one of the most common uses for threads in applets: animation. An
animation sequence displays images, giving the viewer the illusion of motion. Each of the
images in the sequence is called a frame. If the frames are complex, they should be rendered
ahead of time—the computer running the applet may not have the horsepower to compute
images fast enough for real-time animation.

You can put each frame in a separate image file or put all frames into one file. We do the latter.
It makes the process of loading the image much easier. In our example, we use a file with 36
images of a rotating globe, courtesy of Silviu Marghescu of the University of Maryland. Figure
1-12 shows the first few frames.

Figure 1-12. This file has 36 images of a globe

gra

The animation applet must first acquire all the frames. Then, it shows each of them in turn for a
fixed time. To draw the i'th frame, we make a method call as follows:

g.drawImage(image, 0, - i * imageHeight
 / imageCount, null);

Figure 1-13 shows the negative offset of the y-coordinate.

Figure 1-13. Picking a frame from a strip of frames

This offset causes the first frame to be well above the origin of the canvas. The top of the i'th
frame becomes the top of the canvas. After a delay, we increment i and draw the next frame.

We use a MediaTracker object to load the image. Behind the scenes and transparent to
the programmer, the addImage method fires up a new thread to acquire the image. Loading
an image can be very slow, especially if the image has many frames or is located across the
network. The waitForID call blocks until the image is fully loaded.

NOTE

Once the image is loaded, we render one frame at a time. Our applet starts a single thread.

class Animation extends JApplet
{
 . . .
 private Thread runner = null;
}

You will see such a thread variable in many applets. Often, it is called kicker, and we once
saw killer as the variable name. We think runner makes more sense, though.

First and foremost, we will use this thread to:

Start the animation when the user is watching the applet;

Stop the animation when the user has switched to a different page in the browser.

Readers who are familiar with the SDK 1.4 image I/O package may wonder
why we don't use ImageIO.read to read the image. That method
creates a temporary file—an operation that is not legal for an applet in the
sandbox.

We do these tasks by creating the thread in the start method of the applet and by
interrupting it in the stop method.

class Animation extends JApplet
{
 public void start()
 {
 if (runner == null)
 {
 runner = new
 Thread()
 {
 public void run()
 {
 . . .
 }
 };
 runner.start();
 }
 }

 public void stop()
 {
 runner.interrupt();
 runner = null;
 }
 . . .
}

Here is the run method. It simply loops, painting the screen, advancing the frame counter,
and sleeping when it can.

public void run()
{
 try
 {
 while (!Thread.interrupted())
 {
 repaint();
 current = (current + 1) % imageCount;
 Thread.sleep(200);
 }
 }
 catch(InterruptedException e) {}

}

Finally, we implement another mechanism for stopping and restarting the animation. When you
click the mouse on the applet window, the animation stops. When you click again, it restarts.
Note that we use the thread variable, runner, as an indication whether the thread is currently
running or not. Whenever the thread is terminated, the variable is set to null. This is a
common idiom that you will find in many multithreaded applets.

public void init()
{
 addMouseListener(new
 MouseAdapter()
 {
 public void mousePressed(MouseEvent evt)
 {
 if (runner == null)
 start();
 else
 stop();
 }
 });

 . . .
}

The applet reads the name of the image and the number of frames in the strip from the param
section in the HTML file.

<applet code=Animation.class width=100 height=100>
<param name=imagename value="globe.gif">
<param name=imagecount value="36">
</applet>

Example 1-8 is the code of the applet. Note that the start and stop methods start and stop
the applet—they are not methods of the thread that is generated.

This animation applet is simplified to show you what goes on behind the scenes, and to help
you understand other applets with a similar structure. If you are interested only in how to put a
moving image on your web page, look instead at the Animator applet in the demo section of
the JDK. That applet has many more options than ours, and it enables you to add sound.

Furthermore, as you will see in the next section, you really don't need to implement your own
threads for a simple animation—you can just use a Swing timer.

Example 1-8 Animation.java

 1. import java.awt.*;
 2. import java.awt.image.*;
 3. import java.awt.event.*;
 4. import javax.swing.*;
 5. import java.net.*;
 6.
 7. /**
 8. An applet that shows a rotating globe.
 9. */
 10. public class Animation extends JApplet
 11. {
 12. public void init()
 13. {
 14. addMouseListener(new MouseAdapter()
 15. {
 16. public void mousePressed(MouseEvent evt)
 17. {
 18. if (runner == null)
 19. start();
 20. else
 21. stop();
 22. }
 23. });
 24.
 25. try
 26. {
 27. String imageName = getParameter("imagename");
 28. imageCount = 1;
 29. String param = getParameter("imagecount");
 30. if (param != null)
 31. imageCount = Integer.parseInt(param);
 32. current = 0;
 33. image = null;
 34. loadImage(new URL(getDocumentBase(), imageName))
 35. }
 36. catch (Exception e)
 37. {
 38. showStatus("Error: " + e);
 39. }
 40. }
 41.
 42. /**
 43. Loads an image.
 44. @param url the URL of the image file

 45. */
 46. public void loadImage(URL url)
 47. throws InterruptedException
 48. // thrown by MediaTracker.waitFor
 49. {
 50. image = getImage(url);
 51. MediaTracker tracker = new MediaTracker(this);
 52. tracker.addImage(image, 0);
 53. tracker.waitForID(0);
 54. imageWidth = image.getWidth(null);
 55. imageHeight = image.getHeight(null);
 56. resize(imageWidth, imageHeight / imageCount);
 57. }
 58.
 59. public void paint(Graphics g)
 60. {
 61. if (image == null) return;
 62. g.drawImage(image, 0, - (imageHeight / imageCount)
 63. * current, null);
 64. }
 65.
 66. public void start()
 67. {
 68. runner = new
 69. Thread()
 70. {
 71. public void run()
 72. {
 73. try
 74. {
 75. while (!Thread.interrupted())
 76. {
 77. repaint();
 78. current = (current + 1) % imageCount
 79. Thread.sleep(200);
 80. }
 81. }
 82. catch(InterruptedException e) {}
 83. }
 84. };
 85. runner.start();
 86. showStatus("Click to stop");
 87. }
 88.

 89. public void stop()
 90. {
 91. runner.interrupt();
 92. runner = null;
 93. showStatus("Click to restart");
 94. }
 95.
 96. private Image image;
 97. private int current;
 98. private int imageCount;
 99. private int imageWidth;
100. private int imageHeight;
101. private Thread runner;
102. }

Timers

In many programming environments, you can set up timers. A timer alerts your program
elements at regular intervals. For example, to display a clock in a window, the clock object
must be notified once every second.

Swing has a built-in timer class that is easy to use. You construct a timer by supplying an
object of a class that implements the ActionListener interface and the delay between
timer alerts, in milliseconds.

Timer t = new Timer(1000, listener);

Call

t.start();

to start the timer. Then, the actionPerformed method of the listener class is called
whenever a timer interval has elapsed. The actionPerformed method is automatically
called on the event dispatch thread, not the timer thread, so that you can freely invoke Swing
methods in the callback.

To stop the timer, call

t.stop();

Then the timer stops sending action events until you restart it.

NOTE

SDK 1.3 has an unrelated java.util.Timer class to schedule a
TimerTask for later execution. The TimerTask class implements the

The example program at the end of this section puts the Swing timer to work. Figure 1-4 shows
six different clocks.

Figure 1-14. Clock threads

Each clock is an instance of the ClockCanvas class. The constructor sets up the timer:

public ClockCanvas(String tz)
{
 calendar = new GregorianCalendar(TimeZone.getTimeZone(tz));
 Timer t = new Timer(1000, new
 ActionListener()
 {
 public void actionPerformed(ActionEvent event)
 {
 calendar.setTime(new Date());
 repaint();
 }
 });
 t.start();
 . . .
 }

The actionPerformed method of the timer's anonymous action listener gets called

Runnable interface and also supplies a cancel method to cancel the
task. However, the java.util.Timer class has no provision for a
periodic callback.

approximately once per second. It calls new Date() to get the current time and repaints the
clock.

As you can see, no thread programming is required at all in this case. The Swing timer takes
care of the thread details. We could have used a timer for the animation of the preceding
section as well.

You will find the complete code in Example 1-9.

Example 1-9 TimerTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import javax.swing.*;
 4. import java.util.*;
 5. import javax.swing.Timer;
 6.
 7. /**
 8. This class shows a frame with several clocks that
 9. are updated by a timer thread.
 10. */
 11. public class TimerTest
 12. {
 13. public static void main(String[] args)
 14. {
 15. TimerTestFrame frame = new TimerTestFrame();
 16. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 17. frame.show();
 18. }
 19. }
 20.
 21. /**
 22. The frame holding the clocks.
 23. */
 24. class TimerTestFrame extends JFrame
 25. {
 26. public TimerTestFrame()
 27. {
 28. setTitle("TimerTest");
 29. setSize(WIDTH, HEIGHT);
 30.
 31. Container c = getContentPane();
 32. c.setLayout(new GridLayout(2, 3));
 33. c.add(new ClockCanvas("America/Los_Angeles"));
 34. c.add(new ClockCanvas("America/New_York"));

 35. c.add(new ClockCanvas("America/Caracas"));
 36. c.add(new ClockCanvas("Europe/Rome"));
 37. c.add(new ClockCanvas("Africa/Cairo"));
 38. c.add(new ClockCanvas("Asia/Taipei"));
 39. }
 40.
 41. public static final int WIDTH = 450;
 42. public static final int HEIGHT = 300;
 43. }
 44.
 45. /**
 46. The canvas to display a clock that is updated by a tim
 47. */
 48. class ClockCanvas extends JPanel
 49. {
 50. /**
 51. Constructs a clock canvas.
 52. @param tz the time zone string
 53. */
 54. public ClockCanvas(String tz)
 55. {
 56. zone = tz;
 57. calendar = new GregorianCalendar(TimeZone.getTimeZo
 58. Timer t = new Timer(1000, new
 59. ActionListener()
 60. {
 61. public void actionPerformed(ActionEvent event
 62. {
 63. calendar.setTime(new Date());
 64. repaint();
 65. }
 66. });
 67. t.start();
 68. setSize(WIDTH, HEIGHT);
 69. }
 70.
 71. public void paintComponent(Graphics g)
 72. {
 73. super.paintComponent(g);
 74. g.drawOval(0, 0, 100, 100);
 75.
 76. int seconds = calendar.get(Calendar.HOUR) * 60 * 60
 77. + calendar.get(Calendar.MINUTE) * 60
 78. + calendar.get(Calendar.SECOND);

 79. double hourAngle = 2 * Math.PI
 80. * (seconds - 3 * 60 * 60) / (12 * 60 * 60);
 81. double minuteAngle = 2 * Math.PI
 82. * (seconds - 15 * 60) / (60 * 60);
 83. double secondAngle = 2 * Math.PI
 84. * (seconds - 15) / 60;
 85. g.drawLine(50, 50, 50 + (int)(30
 86. * Math.cos(hourAngle)),
 87. 50 + (int)(30 * Math.sin(hourAngle)));
 88. g.drawLine(50, 50, 50 + (int)(40
 89. * Math.cos(minuteAngle)),
 90. 50 + (int)(40 * Math.sin(minuteAngle)));
 91. g.drawLine(50, 50, 50 + (int)(45
 92. * Math.cos(secondAngle)),
 93. 50 + (int)(45 * Math.sin(secondAngle)));
 94. g.drawString(zone, 0, 115);
 95. }
 96.
 97. private String zone;
 98. private GregorianCalendar calendar;
 99.
100. public static final int WIDTH = 125;
101. public static final int HEIGHT = 125;
102. }

javax.swing.Timer

Timer(int delay, ActionListener listener)

Creates a new timer that sends events to a listener

void start()

Start the timer. After this call, the timer starts sending events to its action listener.

void stop()

gra

Parameters: delay the delay, in milliseconds, between eventnotifications
 listener the action listener to be notified when the delay has elapsed

Stop the timer. After this call, the timer stops sending events to its action listener.

Progress Bars

A progress bar is a simple component—just a rectangle that is partially filled with color to
indicate the progress of an operation. By default, progress is indicated by a string "n %". You
can see a progress bar in the bottom right of Figure 1-15.

Figure 1-15. A progress bar

You construct a progress bar much as you construct a slider, by supplying the minimum and
maximum value and an optional orientation:

progressBar = new JProgressBar(0, 1000);
progressBar = new JProgressBar(SwingConstants.VERTICAL, 0, 100

You can also set the minimum and maximum with the setMinimum and setMaximum
methods.

Unlike a slider, the progress bar cannot be adjusted by the user. Your program needs to call
setValue to update it.

If you call

progressBar.setStringPainted(true);

the progress bar computes the completion percentage and displays a string "n %". If you want
to show a different string, you can supply it with the setString method:

if (progressBar.getValue() > 900)
 progressBar.setString("Almost Done");

The program in Example 1-10 shows a progress bar that monitors a simulated time-consuming
activity.

The SimulatedActivity class implements a thread that increments a value current
ten times per second. When it reaches a target value, the thread finishes. If you want to
terminate the thread before it has reached its target, you should interrupt it.

class SimulatedActivity extends Thread
{ . . .
 public void run()
 {
 try
 {
 while (current < target && !interrupted())
 {
 sleep(100);
 current++;
 }
 }
 catch(InterruptedException e)
 {
 }
 }

 int current;
 int target;
}

When you click on the "Start" button, a new SimulatedActivity thread is started. To
update the progress bar, it would appear to be an easy matter for the simulated activity thread
to make calls to the setValue method. But that is not thread safe. Recall that you should
call Swing methods only from the event dispatch thread. In practice, it is also unrealistic. In
general, a worker thread is not aware of the existence of the progress bar. Instead, the
example program shows how to launch a timer that periodically polls the thread for a progress
status and updates the progress bar.

CAUTION

Recall that a Swing timer calls the actionPerformed method of its listeners and that
these calls occur in the event dispatch thread. That means it is safe to update Swing
components in the timer callback. Here is the timer callback from the example program. The
current value of the simulated activity is displayed both in the text area and the progress bar. If
the end of the simulation has been reached, the timer is stopped and the "Start" button is
reenabled.

If a worker thread is aware of a progress bar that monitors its progress,
remember that it cannot set the progress bar value directly. To set the value
in the event dispatch thread, the worker thread can use the
SwingUtilities.invokeLater method.

public void actionPerformed(ActionEvent event)
{
 int current = activity.getCurrent();
 // show progress

 textArea.append(current + "\n");
 progressBar.setValue(current);

 // check if task is completed
 if (current == activity.getTarget())
 {
 activityMonitor.stop();
 startButton.setEnabled(true);
 }
}

Example 1-10 shows the full program code.

NOTE

Example 1-10 ProgressBarTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.util.*;
 4. import javax.swing.*;
 5. import javax.swing.event.*;
 6. import javax.swing.Timer;
 7.
 8. /**
 9. This program demonstrates the use of a progress bar
 10. to monitor the progress of a thread.
 11. */
 12. public class ProgressBarTest
 13. {
 14. public static void main(String[] args)
 15. {
 16. ProgressBarFrame frame = new ProgressBarFrame();

SDK 1.4 adds support for an indeterminate progress bar that shows an
animation indicating some kind of progress, without giving an indication of
the percentage of completion. That is the kind of progress bar that you see
in your browser—it indicates that the browser is waiting for the server and
has no idea how long the wait may be. To display the "indeterminate wait"
animation, call the setIndeterminate method.

 17. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 18. frame.show();
 19. }
 20. }
 21.
 22. /**
 23. A frame that contains a button to launch a simulated a
 24. a progress bar, and a text area for the activity outpu
 25. */
 26. class ProgressBarFrame extends JFrame
 27. {
 28. public ProgressBarFrame()
 29. {
 30. setTitle("ProgressBarTest");
 31. setSize(WIDTH, HEIGHT);
 32.
 33. Container contentPane = getContentPane();
 34.
 35. // this text area holds the activity output
 36. textArea = new JTextArea();
 37.
 38. // set up panel with button and progress bar
 39.
 40. JPanel panel = new JPanel();
 41. startButton = new JButton("Start");
 42. progressBar = new JProgressBar();
 43. progressBar.setStringPainted(true);
 44. panel.add(startButton);
 45. panel.add(progressBar);
 46. contentPane.add(new JScrollPane(textArea),
 47. BorderLayout.CENTER);
 48. contentPane.add(panel, BorderLayout.SOUTH);
 49.
 50. // set up the button action
 51.
 52. startButton.addActionListener(new
 53. ActionListener()
 54. {
 55. public void actionPerformed(ActionEvent event
 56. {
 57. progressBar.setMaximum(1000);
 58. activity = new SimulatedActivity(1000);
 59. activity.start();
 60. activityMonitor.start();

 61. startButton.setEnabled(false);
 62. }
 63. });
 64.
 65.
 66. // set up the timer action
 67.
 68. activityMonitor = new Timer(500, new
 69. ActionListener()
 70. {
 71. public void actionPerformed(ActionEvent event
 72. {
 73. int current = activity.getCurrent();
 74.
 75. // show progress
 76. textArea.append(current + "\n");
 77. progressBar.setValue(current);
 78.
 79. // check if task is completed
 80. if (current == activity.getTarget())
 81. {
 82. activityMonitor.stop();
 83. startButton.setEnabled(true);
 84. }
 85. }
 86. });
 87. }
 88.
 89. private Timer activityMonitor;
 90. private JButton startButton;
 91. private JProgressBar progressBar;
 92. private JTextArea textArea;
 93. private SimulatedActivity activity;
 94.
 95. public static final int WIDTH = 300;
 96. public static final int HEIGHT = 200;
 97. }
 98.
 99. /**
100. A simulated activity thread.
101. */
102. class SimulatedActivity extends Thread
103. {
104. /**

105. Constructs the simulated activity thread object. Th
106. thread increments a counter from 0 to a given targe
107. @param t the target value of the counter.
108. */
109. public SimulatedActivity(int t)
110. {
111. current = 0;
112. target = t;
113. }
114.
115. public int getTarget()
116. {
117. return target;
118. }
119.
120. public int getCurrent()
121. {
122. return current;
123. }
124.
125. public void run()
126. {
127. try
128. {
129. while (current < target && !interrupted())
130. {
131. sleep(100);
132. current++;
133. }
134. }
135. catch(InterruptedException e)
136. {
137. }
138. }
139.
140. private int current;
141. private int target;
142. }

Progress Monitors

A progress bar is a very simple component that can be placed inside a window. In contrast, a
ProgressMonitor is a complete dialog box that contains a progress bar (see Figure 1-
16). The dialog contains "OK" and "Cancel" buttons. If you click either, the monitor dialog is

closed. In addition, your program can query whether the user has canceled the dialog and
terminate the monitored action. (Note that the class name does not start with a "J".)

Figure 1-16. A progress monitor dialog

You construct a progress monitor by supplying the following:

The parent component over which the dialog should pop up;

An object (which should be a string, icon, or component) that is displayed on the dialog;

An optional note to display below the object;

The minimum and maximum values.

However, the progress monitor cannot measure progress or cancel an activity by itself.

You still need to periodically set the progress value by calling the setProgress method.
(This is the equivalent of the setValue method of the JProgressBar class.) As you
update the progress value, you should also call the isCanceled method to see if the
program user has clicked on the "Cancel" button.

When the monitored activity has concluded, you should call the close method to dismiss the
dialog. You can reuse the same dialog by calling start again.

The example program looks very similar to that of the preceding section. We still need to
launch a timer to watch over the progress of the simulated activity and update the progress
monitor. Here is the timer callback.

public void actionPerformed(ActionEvent event)
{
 int current = activity.getCurrent();

 // show progress
 textArea.append(current + "\n");

 progressDialog.setProgress(current);

 // check if task is completed or canceled
 if (current == activity.getTarget()
 || progressDialog.isCanceled())
 {
 activityMonitor.stop();
 progressDialog.close();
 activity.interrupt();
 startButton.setEnabled(true);
 }
}

Note that there are two conditions for termination. The activity might have completed, or the
user might have canceled it. In each of these cases, we close down:

the timer that monitored the activity;

the progress dialog;

the activity itself (by interrupting the thread).

If you run the program in Example 1-11, you can observe an interesting feature of the progress
monitor dialog. The dialog doesn't come up immediately. Instead, it waits a for a short interval
to see if the activity has already been completed or is likely to complete in less time than it
would take for the dialog to appear. You control the timing as follows. Use the
setMillisToDecidePopup method to set the number of milliseconds to wait between
the construction of the dialog object and the decision whether to show the pop-up at all. The
default value is 500 milliseconds. The setMillisToPopup is the time that you estimate
that the dialog needs to pop up. The Swing designers set this value to a default of 2 seconds.

Clearly they were mindful of the fact that Swing dialogs don't always come up as snappily as
we all would like. You should probably not touch this value.

Example 1-11 shows the progress monitor in action, again measuring the progress of a
simulated activity. As you can see, the progress monitor is convenient to use and only requires
that you periodically query the thread that you want to monitor.

Example 1-11 ProgressMonitorTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.util.*;
 4. import javax.swing.*;
 5. import javax.swing.event.*;
 6. import javax.swing.Timer;
 7.

 8. /**
 9. A program to test a progress monitor dialog.
 10. */
 11. public class ProgressMonitorTest
 12. {
 13. public static void main(String[] args)
 14. {
 15. JFrame frame = new ProgressMonitorFrame();
 16. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 17. frame.show();
 18. }
 19. }
 20.
 21. /**
 22. A frame that contains a button to launch a simulated a
 23. and a text area for the activity output.
 24. */
 25. class ProgressMonitorFrame extends JFrame
 26. {
 27. public ProgressMonitorFrame()
 28. {
 29. setTitle("ProgressMonitorTest");
 30. setSize(WIDTH, HEIGHT);
 31.
 32. Container contentPane = getContentPane();
 33.
 34. // this text area holds the activity output
 35. textArea = new JTextArea();
 36.
 37. // set up a button panel
 38. JPanel panel = new JPanel();
 39. startButton = new JButton("Start");
 40. panel.add(startButton);
 41.
 42. contentPane.add(new JScrollPane(textArea),
 43. BorderLayout.CENTER);
 44. contentPane.add(panel, BorderLayout.SOUTH);
 45.
 46. // set up the button action
 47.
 48. startButton.addActionListener(new
 49. ActionListener()
 50. {
 51. public void actionPerformed(ActionEvent event

 52. {
 53. // start activity
 54. activity = new SimulatedActivity(1000);
 55. activity.start();
 56.
 57. // launch progress dialog
 58. progressDialog = new ProgressMonitor(
 59. ProgressMonitorFrame.this,
 60. "Waiting for Simulated Activity",
 61. null, 0, activity.getTarget());
 62.
 63. // start timer
 64. activityMonitor.start();
 65.
 66. startButton.setEnabled(false);
 67. }
 68. });
 69.
 70. // set up the timer action
 71.
 72. activityMonitor = new Timer(500, new
 73. ActionListener()
 74. {
 75. public void actionPerformed(ActionEvent event
 76. {
 77. int current = activity.getCurrent();
 78.
 79. // show progress
 80. textArea.append(current + "\n");
 81. progressDialog.setProgress(current);
 82.
 83. // check if task is completed or canceled
 84. if (current == activity.getTarget()
 85. || progressDialog.isCanceled())
 86. {
 87. activityMonitor.stop();
 88. progressDialog.close();
 89. activity.interrupt();
 90. startButton.setEnabled(true);
 91. }
 92. }
 93. });
 94. }
 95.

 96. private Timer activityMonitor;
 97. private JButton startButton;
 98. private ProgressMonitor progressDialog;
 99. private JTextArea textArea;
100. private SimulatedActivity activity;
101.
102. public static final int WIDTH = 300;
103. public static final int HEIGHT = 200;
104. }
105.
106. /**
107. A simulated activity thread.
108. */
109. class SimulatedActivity extends Thread
110. {
111. /**
112. Constructs the simulated activity thread object. Th
113. thread increments a counter from 0 to a given targe
114. @param t the target value of the counter.
115. */
116. public SimulatedActivity(int t)
117. {
118. current = 0;
119. target = t;
120. }
121.
122. public int getTarget()
123. {
124. return target;
125. }
126.
127. public int getCurrent()
128. {
129. return current;
130. }
131.
132. public void run()
133. {
134. try
135. {
136. while (current < target && !interrupted())
137. {
138. sleep(100);
139. current++;

140. }
141. }
142. catch(InterruptedException e)
143. {
144. }
145. }
146.
147. private int current;
148. private int target;
149. }

Monitoring the Progress of Input Streams

The Swing package contains a useful stream filter, ProgressMonitorInputStream,
that automatically pops up a dialog that monitors how much of the stream has been read.

This filter is extremely easy to use. You sandwich in a ProgressMonitorInputStream
between your usual sequence of filtered streams. (See Chapter 12 of Volume 1 for more
information on streams.)

For example, suppose you read text from a file. You start out with a FileInputStream:

FileInputStream in = new FileInputStream(f);

Normally, you would convert fileIn to an InputStreamReader.

InputStreamReader reader = new InputStreamReader(in);

However, to monitor the stream, first turn the file input stream into a stream with a progress
monitor:

ProgressMonitorInputStream progressIn
 = new ProgressMonitorInputStream(parent, caption, in);

You need to supply the parent component, a caption, and, of course, the stream to monitor.
The read method of the progress monitor stream simply passes along the bytes and updates
the progress dialog.

You now go on building your filter sequence:

InputStreamReader reader = new InputStreamReader(progressIn);

That's all there is to it. When the file is read, the progress monitor automatically pops up. This
is a very nice application of stream filtering.

CAUTION

Figure 1-17. A progress monitor for an input stream

The program in Example 1-12 counts the lines in a file. If you read in a large file (such as "The
Count of Monte Cristo" on the CD), then the progress dialog pops up.

Note that the program doesn't use a very efficient way of filling up the text area. It would be
faster to first read in the file into a StringBuffer and then set the text of the text area to
the string buffer contents. But in this example program, we actually like this slow approach—it
gives you more time to admire the progress dialog.

To avoid flicker, the text area is not displayed while it is filled up.

Example 1-12 ProgressMonitorInputStreamTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.io.*;
 4. import java.util.*;
 5. import javax.swing.*;
 6. import javax.swing.event.*;
 7. import javax.swing.Timer;
 8.
 9. /**
 10. A program to test a progress monitor input stream.
 11. */
 12. public class ProgressMonitorInputStreamTest

The progress monitor stream uses the available method of the
InputStream class to determine the total number of bytes in the stream.
However, the available method only reports the number of bytes in the
stream that are available without blocking. Progress monitors work well for
files and HTTP URLs because their length is known in advance, but they
don't work with all streams.

 13. {
 14. public static void main(String[] args)
 15. {
 16. JFrame frame = new TextFrame();
 17. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 18. frame.show();
 19. }
 20. }
 21.
 22. /**
 23. A frame with a menu to load a text file and a text are
 24. to display its contents. The text area is constructed
 25. when the file is loaded and set as the content pane of
 26. the frame when the loading is complete. That avoids fl
 27. during loading.
 28. */
 29. class TextFrame extends JFrame
 30.{
 31. public TextFrame()
 32. {
 33. setTitle("ProgressMonitorInputStreamTest");
 34. setSize(WIDTH, HEIGHT);
 35.
 36. // set up menu
 37.
 38. JMenuBar menuBar = new JMenuBar();
 39. setJMenuBar(menuBar);
 40. JMenu fileMenu = new JMenu("File");
 41. menuBar.add(fileMenu);
 42. openItem = new JMenuItem("Open");
 43. openItem.addActionListener(new
 44. ActionListener()
 45. {
 46. public void actionPerformed(ActionEvent event
 47. {
 48. try
 49. {
 50. openFile();
 51. }
 52. catch(IOException exception)
 53. {
 54. exception.printStackTrace();
 55. }
 56. }

 57. });
 58.
 59. fileMenu.add(openItem);
 60. exitItem = new JMenuItem("Exit");
 61. exitItem.addActionListener(new
 62. ActionListener()
 63. {
 64. public void actionPerformed(ActionEvent event
 65. {
 66. System.exit(0);
 67. }
 68. });
 69. fileMenu.add(exitItem);
 70. }
 71.
 72. /**
 73. Prompts the user to select a file, loads the file i
 74. a text area, and sets it as the content pane of the
 75. */
 76. public void openFile() throws IOException
 77. {
 78. JFileChooser chooser = new JFileChooser();
 79. chooser.setCurrentDirectory(new File("."));
 80. chooser.setFileFilter(
 81. new javax.swing.filechooser.FileFilter()
 82. {
 83. public boolean accept(File f)
 84. {
 85. String fname = f.getName().toLowerCase(
 86. return fname.endsWith(".txt")
 87. || f.isDirectory();
 88. }
 89. public String getDescription()
 90. {
 91. return "Text Files";
 92. }
 93. });
 94.
 95. int r = chooser.showOpenDialog(this);
 96. if (r != JFileChooser.APPROVE_OPTION) return;
 97. final File f = chooser.getSelectedFile();
 98.
 99. // set up stream and reader filter sequence
100.

101. FileInputStream fileIn = new FileInputStream(f);
102. ProgressMonitorInputStream progressIn
103. = new ProgressMonitorInputStream(this,
104. "Reading " + f.getName(), fileIn);
105. InputStreamReader inReader
106. = new InputStreamReader(progressIn);
107. final BufferedReader in = new BufferedReader(inRead
108.
109. // the monitored activity must be in a new thread.
110.
111. Thread readThread = new Thread()
112. {
113. public void run()
114. {
115. try
116. {
117. final JTextArea textArea = new JTextArea()
118.
119. String line;
120. while ((line = in.readLine()) != null)
121. {
122. textArea.append(line);
123. textArea.append("\n");
124. }
125. in.close();
126.
127. // set content pane in the event dispatch
128. EventQueue.invokeLater(new
129. Runnable()
130. {
131. public void run()
132. {
133. setContentPane(new JScrollPane(te
134. validate();
135. }
136. });
137.
138. }
139. catch(IOException exception)
140. {
141. exception.printStackTrace();
142. }
143. }
144. };

145.
146. readThread.start();
147. }
148.
149. private JMenuItem openItem;
150. private JMenuItem exitItem;
151.
152. public static final int WIDTH = 300;
153. public static final int HEIGHT = 200;
154. }

javax.swing.JProgressBar

JProgressBar()

JProgressBar(int direction)

JProgressBar(int min, int max)

JProgressBar(int direction, int min, int max)

construct a horizontal slider with the given direction, minimum and maximum.

int getMinimum()

int getMaximum()

void setMinimum(int value)

void setMaximum(int value)

get and set the minimum and maximum values.

int getValue()

gra

Parameters: direction one of SwingConstants.HORIZONTAL or
SwingConstants.VERTICAL. The default is
horizontal.

 min, max the minimum and maximum for the progress bar values.
Defaults are 0 and 100.

void setValue(int value)

get and set the current value.

String getString()

void setString(String s)

get and set the string to be displayed in the progress bar. If the string is null, then a
default string "n %" is displayed.

boolean isStringPainted()

void setStringPainted(boolean b)

get and set the "string painted" property. If this property is true, then a string is painted
on top of the progress bar. The default is false; no string is painted.

boolean isIndeterminate()

void setIndeterminate(boolean b)

get and set the "indeterminate" property (SDK 1.4). If this property is true, then the
progress bar becomes a block that moves backwards and forwards, indicating a wait of
unknown duration. The default is false.

javax.swing.ProgressMonitor

ProgressMonitor(Component parent, Object message, String
note, int min, int max)

constructs a progress monitor dialog.

gra

Parameters: parent the parent component over which this dialog pops up.
 message the message object to display in the dialog.
 note the optional string to display under the message. If this value

is null, then no space is set aside for the note, and a later
call to setNote has no effect.

 min, max the minimum and maximum values of the progress bar.

void setNote(String note)

changes the note text.

void setProgress(int value)

sets the progress bar value to the given value.

void close()

closes this dialog.

boolean isCanceled()

returns true if the user canceled this dialog.

javax.swing.ProgressMonitorInputStream

ProgressMonitorInputStream(Component parent, Object
message, InputStream in)

constructs an input stream filter with an associated progress monitor dialog.

Using Pipes for Communication Between Threads
Sometimes, the communication pattern between threads is very simple. A producer thread
generates a stream of bytes. A consumer thread reads and processes that byte stream. If no
bytes are available for reading, the consumer thread blocks. If the producer generates data
much more quickly than the consumer can handle it, then the write operation of the producer
thread blocks. The Java programming language has a convenient set of classes,
PipedInputStream and PipedOutputStream, to implement this communication
pattern. (There is another pair of classes, PipedReader and PipedWriter, if the
producer thread generates a stream of Unicode characters instead of bytes.)

The principal reason to use pipes is to keep each thread simple. The producer thread simply
sends its results to a stream and forgets about them. The consumer simply reads the data

gra

Parameters: parent the parent component over which this dialog pops up
 message the message object to display in the dialog
 in the input stream that is being monitored

from a stream, without having to care where it comes from. By using pipes, you can connect
multiple threads with each other without worrying about thread synchronization.

Example 1-13 is a program that shows off piped streams. We have a producer thread that
emits random numbers at random times, a filter thread that reads the input numbers and
continuously computes the average of the data, and a consumer thread that prints out the
answers. (You'll need to use CTRL+C to stop this program.) Figure 1-18 shows the threads
and the pipes that connect them. UNIX users will recognize these pipe streams as the
equivalent of pipes connecting processes in UNIX.

Figure 1-18. A sequence of pipes

Piped streams are only appropriate if the communication between the threads is on a low level,
such as a sequence of numbers as in this example. In other situations, you can use queues.
The producing thread inserts objects into the queue, and the consuming thread removes them.

Example 1-13 PipeTest.java

 1. import java.util.*;
 2. import java.io.*;
 3.
 4. /**
 5. This program demonstrates how multiple threads communi
 6. through pipes.
 7. */
 8. public class PipeTest
 9. {
 10. public static void main(String args[])
 11. {
 12. try
 13. {
 14. /* set up pipes */
 15. PipedOutputStream pout1 = new PipedOutputStream(
 16. PipedInputStream pin1 = new PipedInputStream(pou
 17.
 18. PipedOutputStream pout2 = new PipedOutputStream(
 19. PipedInputStream pin2 = new PipedInputStream(pou

 20.
 21. /* construct threads */
 22.
 23. Producer prod = new Producer(pout1);
 24. Filter filt = new Filter(pin1, pout2);
 25. Consumer cons = new Consumer(pin2);
 26.
 27. /* start threads */
 28.
 29. prod.start();
 30. filt.start();
 31. cons.start();
 32. }
 33. catch (IOException e){}
 34. }
 35. }
 36.
 37. /**
 38. A thread that writes random numbers to an output strea
 39. */
 40. class Producer extends Thread
 41. {
 42. /**
 43. Constructs a producer thread.
 44. @param os the output stream
 45. */
 46. public Producer(OutputStream os)
 47. {
 48. out = new DataOutputStream(os);
 49. }
 50.
 51. public void run()
 52. {
 53. while (true)
 54. {
 55. try
 56. {
 57. double num = rand.nextDouble();
 58. out.writeDouble(num);
 59. out.flush();
 60. sleep(Math.abs(rand.nextInt() % 1000));
 61. }
 62. catch(Exception e)
 63. {

 64. System.out.println("Error: " + e);
 65. }
 66. }
 67. }
 68.
 69. private DataOutputStream out;
 70. private Random rand = new Random();
 71. }
 72.
 73. /**
 74. A thread that reads numbers from a stream and writes t
 75. average to an output stream.
 76. */
 77. class Filter extends Thread
 78. {
 79. /**
 80. Constructs a filter thread.
 81. @param is the output stream
 82. @param os the output stream
 83. */
 84. public Filter(InputStream is, OutputStream os)
 85. {
 86. in = new DataInputStream(is);
 87. out = new DataOutputStream(os);
 88. }
 89.
 90. public void run()
 91. {
 92. for (;;)
 93. {
 94. try
 95. {
 96. double x = in.readDouble();
 97. total += x;
 98. count++;
 99. if (count != 0) out.writeDouble(total / count
100. }
101. catch(IOException e)
102. {
103. System.out.println("Error: " + e);
104. }
105. }
106. }
107.

108. private DataInputStream in;
109. private DataOutputStream out;
110. private double total = 0;
111. private int count = 0;
112. }
113.
114. /**
115. A thread that reads numbers from a stream and
116. prints out those that deviate from previous inputs
117. by a threshold value.
118. */
119. class Consumer extends Thread
120. {
121. /**
122. Constructs a consumer thread.
123. @param is the input stream
124. */
125. public Consumer(InputStream is)
126. {
127. in = new DataInputStream(is);
128. }
129.
130. public void run()
131. {
132. for(;;)
133. {
134. try
135. {
136. double x = in.readDouble();
137. if (Math.abs(x - oldx) > THRESHOLD)
138. {
139. System.out.println(x);
140. oldx = x;
141. }
142. }
143. catch(IOException e)
144. {
145. System.out.println("Error: " + e);
146. }
147. }
148. }
149.
150. private double oldx = 0;
151. private DataInputStream in;

152. private static final double THRESHOLD = 0.01;
153. }

java.io.PipedInputStream

PipedInputStream()

creates a new piped input stream that is not yet connected to a piped output stream.

PipedInputStream(PipedOutputStream out)

creates a new piped input stream that reads its data from a piped output stream.

void connect(PipedOutputStream out)

attaches a piped output stream from which the data will be read.

java.io.PipedOutputStream

PipedOutputStream()

creates a new piped output stream that is not yet connected to a piped input stream.

PipedOutputStream(PipedInputStream in)

creates a new piped output stream that writes its data to a piped input stream.

gra

Parameters: out the source of the data

Parameters: out the source of the data

gra

Parameters: in the destination of the data

void connect(PipedInputStream in)

attaches a piped input stream to which the data will be written.

Parameters: in the destination of the data

CONTENTS

Chapter 2. Collections
Collection Interfaces

Concrete Collections

The Collections Framework

Algorithms

Legacy Collections

Object-oriented programming (OOP) encapsulates data inside classes, but this doesn't make
how you organize the data inside the classes any less important than in traditional
programming languages. Of course, how you choose to structure the data depends on the
problem you are trying to solve. Does your class need a way to easily search through
thousands (or even millions) of items quickly? Does it need an ordered sequence of elements
and the ability to rapidly insert and remove elements in the middle of the sequence? Does it
need an arraylike structure with random-access ability that can grow at run time? The way you
structure your data inside your classes can make a big difference when it comes to
implementing methods in a natural style, as well as for performance.

This chapter shows how Java technology can help you accomplish the traditional data
structuring needed for serious programming. In college computer science programs, there is a
course called Data Structures that usually takes a semester to complete, so there are many,
many books devoted to this important topic. Exhaustively covering all the data structures that
may be useful is not our goal in this chapter; instead, we cover the fundamental ones that the
standard Java library supplies. We hope that, after you finish this chapter, you will find it easy
to translate any of your data structures to the Java programming language.

Collection Interfaces
Before the release of the Java 2 platform, the standard library supplied only a small set of
classes for the most useful data structures: Vector, Stack, Hashtable, BitSet, and
the Enumeration interface that provides an abstract mechanism for visiting elements in an
arbitrary container. That was certainly a wise choice—it takes time and skill to come up with a
comprehensive collection class library.

With the advent of the Java 2 platform, the designers felt that the time had come to roll out a
full-fledged set of data structures. They faced a number of conflicting design decisions. They
wanted the library to be small and easy to learn. They did not want the complexity of the
"Standard Template Library" (or STL) of C++, but they wanted the benefit of "generic
algorithms" that STL pioneered. They wanted the legacy classes to fit into the new framework.
As all designers of collection libraries do, they had to make some hard choices, and they came
up with a number of idiosyncratic design decisions along the way. In this section, we will
explore the basic design of the Java collections framework, show you how to put it to work,

CONTENTS

and explain the reasoning behind some of the more controversial features.

Separating Collection Interfaces and Implementation

As is common for modern data structure libraries, the Java collection library separates
interfaces and implementations. Let us look at that separation with a familiar data structure, the
queue. The Java library does not supply a queue, but it is nevertheless a good example to
introduce the basic concepts.

NOTE

A queue interface specifies that you can add elements at the tail end of the queue, remove
them at the head, and find out how many elements are in the queue. You use a queue when
you need to collect objects and retrieve them in a "first in, first out" fashion (see Figure 2-1).

Figure 2-1. A queue

If there was a queue interface in the collections library, it might look like this:

interface Queue
{
 void add(Object obj);
 Object remove();
 int size();
}

The interface tells you nothing about how the queue is implemented. There are two common
implementations of a queue, one that uses a "circular array" and one that uses a linked list
(see Figure 2-2).

Figure 2-2. Queue implementations

If you need a queue, you can simply use the LinkedList class that we
discuss later in this chapter.

Each implementation can be expressed by a class that realizes the Queue interface:

class CircularArrayQueue implements Queue
{
 CircularArrayQueue(int capacity) { . . . }
 public void add(Object obj) { . . . }
 public Object remove() { . . . }
 public int size() { . . . }

 private Object[] elements;
 private int head;
 private int tail;
}

class LinkedListQueue implements Queue
{
 LinkedListQueue() { . . . }
 public void add(Object obj) { . . . }
 public Object remove() { . . . }
 public int size() { . . . }

 private Link head;
 private Link tail;
}

When you use a queue in your program, you don't need to know which implementation is
actually used once the collection has been constructed. Therefore, it makes sense to use the
concrete class (such as CircularArrayQueue) only when you construct the collection
object. Use the interface type to hold the collection reference.

Queue expressLane = new CircularArrayQueue(100);
expressLane.add(new Customer("Harry"));

This approach makes it easy to change your mind and use a different implementation. You
only need to change your program in one place—the constructor. If you decide that a
LinkedListQueue is a better choice after all, your code becomes:

Queue expressLane = new LinkedListQueue();
expressLane.add(new Customer("Harry"));

Why would you choose one implementation over another? The interface says nothing about
the efficiency of the implementation. A circular array is somewhat more efficient than a linked
list, so it is generally preferable. However, as usual, there is a price to pay. The circular array is
a bounded collection—it has a finite capacity. If you don't have an upper limit on the number of
objects that your program will collect, you may be better off with a linked list implementation
after all.

This example illustrates another issue for the designer of a collection class library. Strictly
speaking, in a bounded collection, the interface of the add method should indicate that the
method can fail:

class CircularArrayQueue
{
 public void add(Object obj)
 throws CollectionFullException
 . . .
}

That's a problem—now the CircularArrayQueue class can't implement the Queue
interface since you can't add exception specifiers when overriding a method. Should one have
two interfaces, BoundedQueue and Queue? Or should the add method throw an
unchecked exception? There are advantages and disadvantages to both approaches. It is
these kinds of issues that make it genuinely hard to design a logically coherent collection class
library.

As we already mentioned, the Java library has no separate class for queues. We just used this
example to illustrate the difference between interface and implementation since a queue has a
simple interface and two well-known distinct implementations. In the next section, you will see
how the Java library classifies the collections that it supports.

Collection and Iterator Interfaces in the Java Library

The fundamental interface for collection classes in the Java library is the Collection
interface. The interface has two fundamental methods:

boolean add(Object obj)
Iterator iterator()

There are several methods in addition to these two; we will discuss them later.

The add method adds an object to the collection. The add method returns true if adding the
object actually changed the collection, and false if the collection is unchanged. For example,
if you try to add an object to a set and the object is already present, then the add request is
rejected since sets reject duplicates.

The iterator method returns an object that implements the Iterator interface—we will
describe that interface in a moment. You can use the iterator object to visit the elements in the
container one by one.

The Iterator interface has three fundamental methods:

Object next()
boolean hasNext()
void remove()

By repeatedly calling the next method, you can visit the elements from the collection one by
one. However, if you reach the end of the collection, the next method throws a
NoSuchElementException. Therefore, you need to call the hasNext method before
calling next. That method returns true if the iterator object still has more elements to visit. If
you want to inspect all elements in a collection, you request an iterator and then keep calling
the next method while hasNext returns true.

Iterator iter = c.iterator();
while (iter.hasNext())
{
 Object obj = iter.next();
 do something with obj
}

NOTE

Finally, the remove method removes the element that was returned by the last call to next.

You may well wonder why the remove method is a part of the Iterator interface. It is
more efficient to remove an element if you know where it is. The iterator knows about positions
in the collection. Therefore, the remove method is a part of the Iterator interface. If you

Old-timers will notice that the next and hasNext methods of the
Iterator interface serve the same purpose as the nextElement and
hasMoreElements methods of an Enumeration. The designers of
the Java collection library could have chosen to extend the
Enumeration interface. But they disliked the cumbersome method
names and chose to introduce a new interface with shorter method names
instead.

visited an element that you didn't like, you can efficiently remove it.

There is an important conceptual difference between iterators in the Java collection library and
iterators in other libraries. In traditional collection libraries such as the Standard Template
Library of C++, iterators are modeled after array indexes. Given such an iterator, you can look
up the element that is stored at that position, much like you can look up an array element a[i]
if you have an array index i. Independently of the lookup, you can advance the iterator to the
next position, just like you can advance an array index with the i++ operation without
performing a lookup. However, the Java iterators do not work like that. The lookup and position
change are tightly coupled. The only way to look up an element is to call next, and that
lookup advances the position.

Instead, you should think of Java iterators as being between elements. When you call next,
the iterator jumps over the next element, and it returns a reference to the element that it just
passed (see Figure 2-3).

Figure 2-3. Advancing an iterator

NOTE

You must be careful when using the remove method. Calling remove removes the element
that was returned by the last call to next. That makes sense if you want to remove a

Here is another useful analogy. You can think of Iterator.next as the
equivalent of InputStream.read. Reading a byte from a stream
automatically "consumes" the byte. The next call to read consumes and
returns the next byte from the input. Similarly, repeated calls to next let
you read all elements in a collection.

particular value—you need to see the element before you can decide that it is the one that
should be removed. But if you want to remove an element by position, you first need to skip
past the element. For example, here is how you remove the first element in a collection.

Iterator it = c.iterator();
it.next(); // skip over the first element
it.remove(); // now remove it

More importantly, there is a dependency between calls to the next and remove methods. It
is illegal to call remove if it wasn't preceded by a call to next. If you try, an
IllegalStateException is thrown.

If you want to remove two adjacent elements, you cannot simply call:

it.remove();
it.remove(); // Error!

Instead, you must first call next to jump over the element to be removed.

it.remove();
it.next();
it.remove(); // Ok

Because the collection and iterator interfaces are generic, you can write utility methods that
operate on any kind of collection. For example, here is a generic print method that prints all
elements in a collection.

public static void print(Collection c)
{
 System.out.print("[");
 Iterator iter = c.iterator();
 while (iter.hasNext())
 System.out.print(iter.next() + " ");
 System.out.println("]");
}

NOTE

Here is a method that adds all objects from one collection to another:

We give this example to illustrate how to write a generic method. If you
want to print the elements in a collection, you can just call
System.out.println(c). This works because each collection class
has a toString method that returns a string containing all elements in
the collection.

public static boolean addAll(Collection to, Collection from)
{
 Iterator iter = from.iterator();
 boolean modified = false;
 while (iter.hasNext())
 if (to.add(iter.next()))
 modified = true;
 return modified;
}

Recall that the add method returns true if adding the element modified the collection. You
can implement these utility methods for arbitrary collections because the Collection and
Iterator interfaces supply fundamental methods such as add and next.

The designers of the Java library decided that some of these utility methods are so useful that
the library should make them available. That way, users don't have to keep reinventing the
wheel. The addAll method is one such method.

Had Collection been an abstract class instead of an interface, then it would have been an
easy matter to supply this functionality in the class. However, you cannot supply methods in
interfaces of the Java programming language. Therefore, the collection library takes a slightly
different approach. The Collection interface declares quite a few useful methods that all
implementing classes must supply. Among them are:

int size()
boolean isEmpty()
boolean contains(Object obj)
boolean containsAll(Collection c)
boolean equals(Object other)
boolean addAll(Collection from)
boolean remove(Object obj)
boolean removeAll(Collection c)
void clear()
boolean retainAll(Collection c)
Object[] toArray()

Many of these methods are self-explanatory; you will find full documentation in the API notes
at the end of this section.

Of course, it is a bother if every class that implements the Collection interface has to
supply so many routine methods. To make life easier for implementors, the class
AbstractCollection leaves the fundamental methods (such as add and iterator)
abstract but implements the routine methods in terms of them. For example:

public class AbstractCollection
 implements Collection

{
 . . .
 public abstract boolean add(Object obj);

 public boolean addAll(Collection from)
 {
 Iterator iter = from.iterator();
 boolean modified = false;
 while (iter.hasNext())
 if (add(iter.next()))
 modified = true;
 return modified;
 }
 . . .
}

A concrete collection class can now extend the AbstractCollection class. It is now up
to the concrete collection class to supply an add method, but the addAll method has been
taken care of by the AbstractCollection superclass. However, if the subclass has a
more efficient way of implementing addAll, it is free to do so.

This is a good design for a class framework. The users of the collection classes have a richer
set of methods available in the generic interface, but the implementors of the actual data
structures do not have the burden of implementing all the routine methods.

java.util.Collection

Iterator iterator()

returns an iterator that can be used to visit the elements in the collection.

int size()

returns the number of elements currently stored in the collection.

boolean isEmpty()

returns true if this collection contains no elements.

boolean contains(Object obj)

returns true if this collection contains an object equal to obj.

boolean containsAll(Collection other)

returns true if this collection contains all elements in the other collection.

boolean add(Object element)

adds an element to the collection. Returns true if the collection changed as a result of
this call.

boolean addAll(Collection other)

adds all elements from the other collection to this collection. Returns true if the
collection changed as a result of this call.

boolean remove(Object obj)

removes an object equal to obj from this collection. Returns true if a matching object
was removed.

boolean removeAll(Collection other)

removes all elements from the other collection from this collection. Returns true if the
collection changed as a result of this call.

Parameters: obj the object to match in the collection

Parameters: other the collection holding the elements to match

Parameters: element the element to add

Parameters: other the collection holding the elements to add

Parameters: obj an object that equals the element to remove

Parameters: other the collection holding the elements to add

void clear()

removes all elements from this collection.

boolean retainAll(Collection other)

removes all elements from this collection that do not equal one of the elements in the
other collection. Returns true if the collection changed as a result of this call.

Object[] toArray()

returns an array of the objects in the collection.

java.util.Iterator

boolean hasNext()

returns true if there is another element to visit.

Object next()

returns the next object to visit. Throws a NoSuchElementException if the end of
the collection has been reached.

Object remove()

removes and returns the last visited object. This method must immediately follow an
element visit. If the collection has been modified since the last element visit, then the
method throws an IllegalStateException.

Concrete Collections
Rather than getting into more details about all the interfaces, we thought it would be helpful to
first discuss the concrete data structures that the Java library supplies. Once you have a
thorough understanding of what classes you will want to use, we will return to abstract
considerations and see how the collections framework organizes these classes.

Parameters: other the collection holding the elements to be kept

Linked Lists

We used arrays and their dynamic cousin, the ArrayList class, for many examples in
Volume 1. However, arrays and array lists suffer from a major drawback. Removing an
element from the middle of an array is very expensive since all array elements beyond the
removed one must be moved toward the beginning of the array (see Figure 2-4). The same is
true for inserting elements in the middle.

Figure 2-4. Removing an element from an array

Another well-known data structure, the linked list, solves this problem. Whereas an array
stores object references in consecutive memory locations, a linked list stores each object in a
separate link. Each link also stores a reference to the next link in the sequence. In the Java
programming language, all linked lists are actually doubly linked, that is, each link also stores a
reference to its predecessor (see Figure 2-5).

Figure 2-5. A doubly linked list

Removing an element from the middle of a linked list is an inexpensive operation—only the
links around the element to be removed need to be updated (see Figure 2-6).

Figure 2-6. Removing an element from a linked list

Perhaps you once had a course in data structures where you learned how to implement linked
lists. You may have bad memories of tangling up the links when removing or adding elements
in the linked list. If so, you will be pleased to learn that the Java collections library supplies a
class LinkedList ready for you to use.

The LinkedList class implements the Collection interface. You can use the familiar
methods to traverse a list. The following code example prints the first three elements of a list,
adds three elements, and then removes the third one.

LinkedList staff = new LinkedList();
staff.add("Angela");
staff.add("Bob");
staff.add("Carl");
Iterator iter = staff.iterator();
for (int i = 0; i < 3; i++)
 System.out.println(iter.next());
iter.remove(); // remove last visited element

However, there is an important difference between linked lists and generic collections. A linked
list is an ordered collection where the position of the objects matters. The
LinkedList.add method adds the object to the end of the list. But you often want to add
objects somewhere in the middle of a list. This position-dependent add method is the
responsibility of an iterator, since iterators describe positions in collections. Using iterators to
add elements only makes sense for collections that have a natural ordering. For example, the
set data type that we discuss in the next section does not impose any ordering on its elements.
Therefore, there is no add method in the Iterator interface. Instead, the collections library
supplies a subinterface ListIterator that contains an add method:

interface ListIterator extends Iterator
{
 void add(Object);
 . . .

}

Unlike Collection.add, this method does not return a boolean—it is assumed that the
add operation always modifies the list.

In addition, the ListIterator interface has two methods that you can use for traversing a
list backwards.

Object previous()
boolean hasPrevious()

Like the next method, the previous method returns the object that it skipped over.

The listIterator method of the LinkedList class returns an iterator object that
implements the ListIterator interface.

ListIterator iter = staff.listIterator();

The add method adds the new element before the iterator position. For example, the code

ListIterator iter = staff.listIterator();
iter.next();
iter.add("Juliet");

skips past the first element in the linked list and adds "Juliet" before the second element
(see Figure 2-7).

Figure 2-7. Adding an element to a linked list

If you call the add method multiple times, the elements are simply added in the order in which
you supplied them. They all get added in turn before the current iterator position.

When you use the add operation with an iterator that was freshly returned from the
listIterator method and that points to the beginning of the linked list, the newly added
element becomes the new head of the list. When the iterator has passed the last element of
the list (that is, when hasNext returns false), the added element becomes the new tail of
the list. If the linked list has n elements, there are n +1 spots for adding a new element. These
spots correspond to the n +1 possible positions of the iterator. For example, if a linked list
contains three elements, A, B, and C, then the four possible positions (marked as |) for
inserting a new element are:

|ABC
A|BC
AB|C
ABC|

NOTE

You have to be careful with the "cursor" analogy. The remove operation
does not quite work like the backspace key. Immediately after a call to
next, the remove method indeed removes the element to the left of the
iterator, just like the backspace key would. However, if you just called
previous, the element to the right is removed. And you can't call
remove twice in a row.

Finally, there is a set method that replaces the last element returned by a call to next or
previous with a new element. For example, the following code replaces the first element of
a list with a new value:

ListIterator iter = list.listIterator();
Object oldValue = iter.next(); // returns first element
iter.set(newValue); // sets first element to newValue

As you might imagine, if an iterator traverses a collection while another iterator is modifying it,
confusing situations can occur. For example, suppose an iterator points before an element that
another iterator has just removed. The iterator is now invalid and should no longer be used.
The linked list iterators have been designed to detect such modifications. If an iterator finds
that its collection has been modified by another iterator or by a method of the collection itself,
then it throws a ConcurrentModificationException. For example, consider the
following code:

LinkedList list = . . .;
ListIterator iter1 = list.listIterator();
ListIterator iter2 = list.listIterator();
iter1.next();
iter1.remove();
iter2.next(); // throws ConcurrentModificationException

The call to iter2.next throws a ConcurrentModificationException since
iter2 detects that the list was modified externally.

To avoid concurrent modification exceptions, follow this simple rule: You can attach as many
iterators to a container as you like, provided that all of them are only readers. Alternatively, you
can attach a single iterator that can both read and write.

Concurrent modification detection is achieved in a simple way. The container keeps track of
the number of mutating operations (such as adding and removing elements). Each iterator
keeps a separate count of the number of mutating operations that it was responsible for. At the
beginning of each iterator method, the iterator simply checks whether its own mutation count
equals that of the collection. If not, it throws a ConcurrentModificationException.

This is an excellent check and a great improvement over the fundamentally unsafe iterators in
the C++ STL framework. Note, however, that it does not automatically make collections safe
for multithreading. We discuss thread safety issues later in this chapter.

NOTE

Unlike the add method, which only depends on the iterator position, the
remove method depends on the iterator state.

There is, however, a curious exception to the detection of concurrent
modifications. The linked list only keeps track of structural modifications to

Now you have seen the fundamental methods of the LinkedList class. You use a
ListIterator to traverse the elements of the linked list in either direction, and to add and
remove elements.

As you saw in the preceding section, there are many other useful methods for operating on
linked lists that are declared in the Collection interface. These are, for the most part,
implemented in the AbstractCollection superclass of the LinkedList class. For
example, the toString method invokes toString on all elements and produces one long
string of the format [A, B, C]. This is handy for debugging. Use the contains method to
check whether an element is present in a linked list. For example, the call
staff.contains("Harry") returns true if the linked list already contains a string that
is equal to the String "Harry". However, there is no method that returns an iterator to that
position. If you want to do something with the element beyond knowing that it exists, you have
to program an iteration loop by hand.

CAUTION

The library also supplies a number of methods that are, from a theoretical perspective,
somewhat dubious. Linked lists do not support fast random access. If you want to see the nth
element of a linked list, you have to start at the beginning and skip past the first n - 1 elements
first. There is no shortcut. For that reason, programmers don't usually use linked lists in
programming situations where elements need to be accessed by an integer index.

Nevertheless, the LinkedList class supplies a get method that lets you access a
particular element:

Object obj = list.get(n);

Of course, this method is not very efficient. If you find yourself using it, you are probably using
the wrong data structure for your problem.

the list, such as adding and removing links. The set method does not
count as a structural modification. You can attach multiple iterators to a
linked list, all of which call set to change the contents of existing links.
This capability is required for a number of algorithms in the
Collections class that we discuss later in this chapter.

The Java platform documentation points out that you should not add a reference o
itself. Otherwise, it is easy to generate a stack overflow in the virtual machine. For
following call is fatal:

LinkedList list = new LinkedList();
list.add(list); // add list to itself
String contents = list.toString(); // dies with infini

Naturally, this is not a situation that comes up in everyday programming.

You should never use this illusory random access method to step through a linked list. The
code

for (int i = 0; i < list.size(); i++)
 do something with list.get(i);

is staggeringly inefficient. Each time you look up another element, the search starts again from
the beginning of the list. The LinkedList object makes no effort to cache the position
information.

NOTE

The list iterator interface also has a method to tell you the index of the current position. In fact,
because Java iterators conceptually point between elements, it has two of them: the
nextIndex method returns the integer index of the element that would be returned by the
next call to next; the previousIndex method returns the index of the element that would
be returned by the next call to previous. Of course, that is simply one less than
nextIndex. These methods are efficient—the iterators keep a count of the current position.
Finally, if you have an integer index n, then list.listIterator(n) returns an iterator
that points just before the element with index n. That is, calling next yields the same element
as list.get(n). Of course, obtaining that iterator is inefficient.

If you have a linked list with only a handful of elements, then you don't have to be overly
paranoid about the cost of the get and set methods. But then why use a linked list in the first
place? The only reason to use a linked list is to minimize the cost of insertion and removal in
the middle of the list. If you only have a few elements, you can just use an array or a collection
such as ArrayList.

We recommend that you simply stay away from all methods that use an integer index to
denote a position in a linked list. If you want random access into a collection, use an array or
ArrayList, not a linked list.

The program in Example 2-1 puts linked lists to work. It simply creates two lists, merges them,
then removes every second element from the second list, and finally tests the removeAll
method. We recommend that you trace the program flow and pay special attention to the
iterators. You may find it helpful to draw diagrams of the iterator positions, like this:

|ACE |BDFG
A|CE |BDFG
AB|CE B|DFG
. . .

Note that the call

The get method has one slight optimization: if the index is at least size
() / 2, then the search for the element starts at the end of the list.

System.out.println(a);

prints all elements in the linked list a.

Example 2-1 LinkedListTest.java

 1. import java.util.*;
 2.
 3. /**
 4. This program demonstrates operations on linked lists.
 5. */
 6. public class LinkedListTest
 7. {
 8. public static void main(String[] args)
 9. {
10. List a = new LinkedList();
11. a.add("Angela");
12. a.add("Carl");
13. a.add("Erica");
14.
15. List b = new LinkedList();
16. b.add("Bob");
17. b.add("Doug");
18. b.add("Frances");
19. b.add("Gloria");
20.
21. // merge the words from b into a
22.
23. ListIterator aIter = a.listIterator();
24. Iterator bIter = b.iterator();
25.
26. while (bIter.hasNext())
27. {
28. if (aIter.hasNext()) aIter.next();
29. aIter.add(bIter.next());
30. }
31.
32. System.out.println(a);
33.
34. // remove every second word from b
35.
36. bIter = b.iterator();
37. while (bIter.hasNext())
38. {

39. bIter.next(); // skip one element
40. if (bIter.hasNext())
41. {
42. bIter.next(); // skip next element
43. bIter.remove(); // remove that element
44. }
45. }
46.
47. System.out.println(b);
48.
49. // bulk operation: remove all words in b from a
50.
51. a.removeAll(b);
52.
53. System.out.println(a);
54. }

java.util.List

ListIterator listIterator()

returns a list iterator for visiting the elements of the list.

ListIterator listIterator(int index)

returns a list iterator for visiting the elements of the list whose first call to next will return
the element with the given index.

void add(int i, Object element)

adds an element at the specified position.

Parameters: index the position of the next visited element

Parameters: index the position of the new element
 element the element to add

void addAll(int i, Collection elements)

adds all elements from a collection to the specified position.

Object remove(int i)

removes and returns an element at the specified position.

Object set(int i, Object element)

replaces the element at the specified position with a new element and returns the old
element.

int indexOf(Object element)

returns the position of the first occurrence of an element equal to the specified element,
or -1 if no matching element is found.

int lastIndexOf(Object element)

returns the position of the last occurrence of an element equal to the specified element,
or -1 if no matching element is found.

java.util.ListIterator

Parameters: index the position of the first new element
 elements the elements to add

Parameters: index the position of the element to remove

Parameters: index the replacement position
 element the new element

Parameters: element the element to match

Parameters: element the element to match

void add(Object element)

adds an element before the current position.

void set(Object element)

replaces the last element visited by next or previous with a new element. Throws an
IllegalStateException if the list structure was modified since the last call to
next or previous.

boolean hasPrevious()

returns true if there is another element to visit when iterating backwards through the
list.

Object previous()

returns the previous object. Throws a NoSuchElementException if the beginning
of the list has been reached.

int nextIndex()

returns the index of the element that would be returned by the next call to next.

int previousIndex()

returns the index of the element that would be returned by the next call to previous.

java.util.LinkedList

Parameters: element the element to add

Parameters: element the new element

LinkedList()

constructs an empty linked list.

LinkedList(Collection elements)

constructs a linked list and adds all elements from a collection.

void addFirst(Object element)

void addLast(Object element)

add an element to the beginning or the end of the list.

Object getFirst()

Object getLast()

return the element at the beginning or the end of the list.

Object removeFirst()

Object removeLast()

remove and return the element at the beginning or the end of the list.

Array Lists

In the preceding section, you saw the List interface and the LinkedList class that
implements it. The List interface describes an ordered collection in which the position of
elements matters. There are two protocols for visiting the elements: through an iterator and by
random access with methods get and set. The latter are not appropriate for linked lists, but
of course they make a lot of sense for arrays. The collections library supplies the familiar
ArrayList class that implements the List interface. An ArrayList encapsulates a
dynamically reallocated Object[] array.

NOTE

Parameters: elements the elements to add

Parameters: element the element to add

 If you are a veteran Java programmer, you will have used the Vector

Hash Sets

Linked lists and arrays let you specify in which order you want to arrange the elements.
However, if you are looking for a particular element and you don't remember its position, then
you need to visit all elements until you find a match. That can be time-consuming if the
collection contains many elements. If you don't care about the ordering of the elements, then
there are data structures that let you find elements much faster. The drawback is that those
data structures give you no control over the order in which the elements appear. The data
structures organize the elements in an order that is convenient for their own purposes.

A well-known data structure for finding objects quickly is the hash table. A hash table
computes an integer, called the hash code, for each object. You will see in the next section
how these hash codes are computed. What's important for now is that hash codes can be
computed quickly and that the computation only depends on the state of the object that needs
to be hashed, and not on the other objects in the hash table.

A hash table is an array of linked lists. Each list is called a bucket (see Figure 2-8). To find the
place of an object in the table, compute its hash code and reduce it modulo the total number of
buckets. The resulting number is the index of the bucket that holds the element. For example,
if an object has hash code 345 and there are 101 buckets, then the object is placed in bucket
42 (because the remainder of the integer division 345/101 is 42). Perhaps you are lucky and
there is no other element in that bucket. Then, you simply insert the element into that bucket.
Of course, it is inevitable that you sometimes hit a bucket that is already filled. This is called a
hash collision. Then, you need to compare the new object with all objects in that bucket to see
if it is already present. Provided that the hash codes are reasonably randomly distributed and
the number of buckets is large enough, only a few comparisons should be necessary.

Figure 2-8. A hash table

 class whenever you needed a dynamic array. Why use an ArrayList
instead of a Vector? There is one simple reason. All methods of the
Vector class are synchronized. It is safe to access a Vector object
from two threads. But if you only access a vector from a single thread—by
far the more common case—your code wastes quite a bit of time with
synchronization. In contrast, the ArrayList methods are not
synchronized. We recommend that you use an ArrayList instead of a
Vector whenever you don't need synchronization.

If you want more control over the performance of the hash table, you can specify the initial
bucket count. The bucket count gives the number of buckets that are used to collect objects
with identical hash values. If too many elements are inserted into a hash table, the number of
collisions increases and retrieval performance suffers.

If you know approximately how many elements will eventually be in the table, then you should
set the initial bucket count to about 150 percent of the expected element count. Some
researchers believe that it is a good idea to make the size of the hash table a prime number to
prevent a clustering of keys. The evidence for this isn't conclusive, but it certainly can't hurt.
For example, if you need to store about 100 entries, set the initial bucket size to 151.

Of course, you do not always know how many elements you need to store, or your initial guess
may be too low. If the hash table gets too full, it needs to be rehashed. To rehash the table, a
table with more buckets is created, all elements are inserted into the new table, and the
original table is discarded. In the Java programming language, the load factor determines
when a hash table is rehashed. For example, if the load factor is 0.75 (which is the default) and
the hash table becomes more than 75 percent full, then the table is automatically rehashed,
using twice as many buckets. For most applications, it is reasonable to leave the load factor at
0.75.

Hash tables can be used to implement several important data structures. The simplest among
them is the set type. A set is a collection of elements without duplicates. The add method of a
set first tries to find the object to be added, and only adds it if it is not yet present.

The Java collections library supplies a HashSet class that implements a set based on a hash
table. At the time of this writing, the default constructor HashSet constructs a hash table with
101 buckets and a load factor of 0.75. These values may change in future releases. If you care
at all about these values, you should specify your own, with the constructors

HashSet(int initialCapacity)
HashSet(int initialCapacity, float loadFactor)

You add elements with the add method. The contains method is redefined to make a fast
lookup to find if an element is already present in the set. It only checks the elements in one
bucket and not all elements in the collection.

The hash set iterator visits all buckets in turn. Since the hashing scatters the elements around
in the table, they are visited in seemingly random order. You would only use a hash set if you
don't care about the ordering of the elements in the collection.

The sample program at the end of this section (Example 2-2) reads words from System.in,
adds them to a set, and finally prints out all words in the set. For example, you can feed the
program the text from Alice in Wonderland (which you can obtain from www.gutenberg.net) by
launching it from a command shell as

java SetTest < alice30.txt

The program reads all words from the input and adds them to the hash set. It then iterates
through the unique words in the set and finally prints out a count. (Alice in Wonderland has
5,909 unique words, including the copyright notice at the beginning.) The words appear in
random order.

NOTE

Version 1.4 of the Java Software Developer's Kit (SDK) adds a class
LinkedHashSet that keeps track of the order in which the elements are
added to the set. The iterator of a LinkedHashSet visits the elements in
insertion order. That gives you an ordered collection with fast element
lookup. Of course, there is an added implementation cost—the elements in
the buckets are chained together by a doubly linked list (see Figure 2-9).

Figure 2-9. A Linked Hash Table

To see the difference, replace the HashSet with a LinkedHashSet in
Example 2-2 below. Now the words are printed in the order in which they
occurred in the input. (If a word occurs multiple times, only the first insertion

Example 2-2 SetTest.java

 1. import java.util.*;
 2. import java.io.*;
 3.
 4. /**
 5. This program uses a set to print all unique words in
 6. System.in.
 7. */
 8. public class SetTest
 9. {
10. public static void main(String[] args)
11. {
12. Set words = new HashSet(59999);
13. // set to HashSet, LinkedHashSet or TreeSet
14. long totalTime = 0;
15.
16. try
17. {
18. BufferedReader in = new
19. BufferedReader(new InputStreamReader(System.in
20. String line;
21. while ((line = in.readLine()) != null)
22. {
23. StringTokenizer tokenizer = new StringTokenize
24. while (tokenizer.hasMoreTokens())
25. {
26. String word = tokenizer.nextToken();
27. long callTime = System.currentTimeMillis();
28. words.add(word);
29. callTime = System.currentTimeMillis() - cal
30. totalTime += callTime;
31. }
32. }
33. }
34. catch (IOException e)
35. {
36. System.out.println("Error " + e);
37. }
38.
39. Iterator iter = words.iterator();
40. while (iter.hasNext())

matters.)

41. System.out.println(iter.next());
42. System.out.println(words.size()
43. + " distinct words. " + totalTime + " millisecond
44. }
45. }

java.util.HashSet

HashSet()

constructs an empty hash set.

HashSet(Collection elements)

constructs a hash set and adds all elements from a collection.

HashSet(int initialCapacity)

constructs an empty hash set with the specified capacity.

HashSet(int initialCapacity, float loadFactor)

constructs an empty hash set with the specified capacity and load factor.

java.util.LinkedHashSet

Parameters: elements the elements to add

Parameters: initialCapacity the initial number of buckets

Parameters: initialCapacity the initial number of buckets
 loadFactor a number between 0.0 and 1.0 that determines at

what percentage of fullness the hash table will be
rehashed into a larger one

LinkedHashSet()

constructs an empty linked hash set.

LinkedHashSet(Collection elements)

constructs a linked hash set and adds all elements from a collection.

LinkedHashSet(int initialCapacity)

constructs an empty linked hash set with the specified capacity.

HashSet(int initialCapacity, float loadFactor)

constructs an empty linked hash set with the specified capacity and load factor.

Hash functions

You can insert strings into a hash set because the String class has a hashCode method
that computes a hash code for a string. A hash code is an integer that is somehow derived
from the characters in the string. Table 2-1 lists a few examples of hash codes that result from
the hashCode function of the String class.

Parameters: elements the elements to add

Parameters: initialCapacity the initial number of buckets

Parameters: initialCapacity the initial number of buckets
 loadFactor a number between 0.0 and 1.0 that determines at

what percentage of fullness the hash table will be
rehashed into a larger one

Table 2-1. Hash codes resulting from the hashCode function
String Hash code
Hello 140207504
Harry 140013338

The hashCode method is defined in the Object class. Therefore, every object has a
default hash code. That hash code is derived from the object's memory address. In general,
the default hash function is not very useful because objects with identical contents may yield
different hash codes. Consider this example.

String s = "Ok";
StringBuffer sb = new StringBuffer(s);
System.out.println(s.hashCode() + " " + sb.hashCode());
String t = new String("Ok");
StringBuffer tb = new StringBuffer(t);
System.out.println(t.hashCode() + " " + tb.hashCode());

Table 2-2 shows the result.

Note that the strings s and t have the same hash value because, for strings, the hash values
are derived from their contents. The string buffers sb and tb have different hash values
because no special hash function has been defined for the StringBuffer class, and the
default hash code function in the Object class derives the hash code from the object's
memory address.

You should always define the hashCode method for objects that you insert into a hash table.
This method should return an integer (which can be negative). The hash table code will later
reduce the integer by dividing by the bucket count and taking the remainder. Just scramble up
the hash codes of the data fields in some way that will give the hash codes for different objects
a good chance of being widely scattered.

For example, suppose you have the class Item for inventory items. An item consists of a
description string and a part number.

anItem = new Item("Toaster", 49954);

If you want to construct a hash set of items, you need to define a hash code. For example:

class Item
{
 . . .

Hacker 884756206

Table 2-2. Hash codes of objects with identical contents
Object Hash code
s 3030
sb 20526976
t 3030
tb 20527144

 public int hashCode()
 {
 return 13 * description.hashCode() + 17 * partNumber;
 }
 . . .
 private String description;
 private int partNumber;
}

As a practical matter, if the part number uniquely identifies the item, you don't need to
incorporate the hash code of the description.

Furthermore, you also need to make sure that the equals method is well defined. The
Object class defines equals, but that method only tests whether or not two objects are
identical. If you don't redefine equals, then every new object that you insert into the table will
be considered a different object.

You need to redefine equals to check for equal contents.

class Item
{
 . . .
 public boolean equals(Object other)
 {
 if (other != null && getClass() == other.getClass())
 {
 Item otherItem = (Item)other;
 return description.equals(otherItem.description)
 && partNumber == otherItem.partNumber;
 }
 else
 return false;
 }
 . . .
}

CAUTION

java.lang.Object

Your definitions of equals and hashCode must be compatible: if
x.equals(y) is true, then x.hashCode() must be the same value
as y.hashCode().

boolean equals(Object obj)

compares two objects for equality; returns true if both objects are equal; false
otherwise.

int hashCode()

returns a hash code for this object. A hash code can be any integer, positive or negative.
Equal objects need to return identical hash codes.

Tree Sets

The TreeSet class is similar to the hash set, with one added improvement. A tree set is a
sorted collection. You insert elements into the collection in any order. When you iterate through
the collection, the values are automatically presented in sorted order. For example, suppose
you insert three strings and then visit all elements that you added.

TreeSet sorter = new TreeSet();
sorter.add("Bob");
sorter.add("Angela");
sorter.add("Carl");
Iterator iter = sorter.iterator();
while (iter.hasNext()) System.println(iter.next());

Then, the values are printed in sorted order: Angela Bob Carl. As the name of the class
suggests, the sorting is accomplished by a tree data structure. (The current implementation
uses a red-black tree. For a detailed description of red-black trees, see, for example,
Introduction to Algorithms by Thomas Cormen, Charles Leiserson, and Ronald Rivest [The
MIT Press 1990].) Every time an element is added to a tree, it is placed into its proper sorting
position. Therefore, the iterator always visits the elements in sorted order.

Adding an element to a tree is slower than adding it to a hash table, but it is still much faster
than adding it into the right place in an array or linked list. If the tree contains n elements, then
an average of log2 n comparisons are required to find the correct position for the new element.
For example, if the tree already contains 1,000 elements, then adding a new element requires
about 10 comparisons.

Thus, adding elements into a TreeSet is somewhat slower than adding into a HashSet—

Parameters: obj the object to compare with the first object (may be null, in which
case the method should return false)

see Table 2-3 for a comparison—but the TreeSet automatically sorts the elements.

java.util.TreeSet

TreeSet()

constructs an empty tree set.

TreeSet(Collection elements)

constructs a tree set and adds all elements from a collection.

Object comparison

How does the TreeSet know how you want the elements sorted? By default, the tree set
assumes that you insert elements that implement the Comparable interface. That interface
defines a single method:

int compareTo(Object other)

The call a.compareTo(b) must return 0 if a and b are equal, a negative integer if a comes
before b in the sort order, and a positive integer if a comes after b. The exact value does not
matter; only its sign (>0, 0, or < 0) matters. Several standard Java platform classes implement
the Comparable interface. One example is the String class. Its compareTo method
compares strings in dictionary order (sometimes called lexicographic order).

If you insert your own objects, you need to define a sort order yourself by implementing the
Comparable interface. There is no default implementation of compareTo in the Object
class.

Table 2-3. Adding elements into hash and tree sets
Document Total number of

words
Number of distinct
words

HashSet TreeSet

Alice in Wonderland 28195 5909 5 sec 7 sec
The Count of Monte
Cristo

466300 37545 75 sec 98 sec

Parameters: elements the elements to add

For example, here is how you can sort Item objects by part number.

class Item implements Comparable
{
 public int compareTo(Object other)
 {
 Item otherItem = (Item)other;
 return partNumber - otherItem.partNumber;
 }
 . . .
}

Note that the explicit argument of the compareTo method has type Object, not
Comparable. If the object is not of the correct type, then this compareTo method simply
throws a ClassCastException. (The compareTo methods in the standard library
behave in the same way when presented with illegal argument types.)

If you compare two positive integers, such as part numbers in our example, then you can
simply return their difference—it will be negative if the first item should come before the second
item, zero if the part numbers are identical, and positive otherwise.

CAUTION

However, using the Comparable interface for defining the sort order has obvious limitations.
You can only implement the interface once. But what can you do if you need to sort a bunch of
items by part number in one collection and by description in another? Furthermore, what can
you do if you need to sort objects of a class whose creator didn't bother to implement the
Comparable interface?

In those situations, you tell the tree set to use a different comparison method, by passing a
Comparator object into the TreeSet constructor. The Comparator interface has a
single method, with two explicit parameters:

int compare(Object a, Object b)

Just like the compareTo method, the compare method returns a negative integer if a
comes before b, zero if they are identical, or a positive integer otherwise.

To sort items by their description, simply define a class that implements the Comparator
interface:

class ItemComparator implements Comparator

This trick only works if the integers are from a small enough range. If x is a
large positive integer and y is a large negative integer, then the difference
x - y can overflow.

{
 public int compare(Object a, Object b)
 {
 Item itemA = (Item)a;
 Item itemB = (Item)b;
 String descrA = itemA.getDescription();
 String descrB = itemB.getDescription();
 return descrA.compareTo(descrB);
 }
}

You then pass an object of this class to the tree set constructor:

ItemComparator comp = new ItemComparator();
TreeSet sortByDescription = new TreeSet(comp);

If you construct a tree with a comparator, it uses this object whenever it needs to compare two
elements.

Note that this item comparator has no data. It is just a holder for the comparison method. Such
an object is sometimes called a function object.

Function objects are commonly defined "on the fly," as instances of anonymous inner classes:

TreeSet sortByDescription = new TreeSet(new
 Comparator()
 {
 public int compare(Object a, Object b)
 {
 Item itemA = (Item)a;
 Item itemB = (Item)b;
 String descrA = itemA.getDescription();
 String descrB = itemB.getDescription();
 return descrA.compareTo(descrB);
 }
 });

Using comparators, you can sort elements in any way you wish.

Sometimes, comparators do have instance fields. For example, you can have a comparator
with a flag to control ascending or descending sort order.

If you look back at Table 2-3, you may well wonder if you should always use a tree set instead
of a hash set. After all, adding elements does not seem to take much longer, and the elements
are automatically sorted. The answer depends on the data that you are collecting. If you don't
need the data sorted, there is no reason to pay for the sorting overhead. More importantly, with

some data it is very difficult to come up with a sort order. Suppose you collect a bunch of
rectangles. How do you sort them? By area? You can have two different rectangles with
different positions but the same area. If you sort by area, the second one is not inserted into
the set. The sort order for a tree must be a total ordering: Any two elements must be
comparable, and the comparison can only be zero if the elements are equal. There is such a
sort order for rectangles (the lexicographic ordering on its coordinates), but it is unnatural and
cumbersome to compute. In contrast, hash functions are usually easier to define. They only
need to do a reasonably good job of scrambling the objects, whereas comparison functions
must tell objects apart with complete precision.

The program in Example 2-3 builds two tree sets of Item objects. The first one is sorted by
part number, the default sort order of Item objects. The second set is sorted by description,
using a custom comparator.

Example 2-3 TreeSetTest.java

 1. import java.util.*;
 2.
 3. /**
 4. This program sorts a set of item by comparing
 5. their descriptions.
 6. */
 7. public class TreeSetTest
 8. {
 9. public static void main(String[] args)
10. {
11. SortedSet parts = new TreeSet();
12. parts.add(new Item("Toaster", 1234));
13. parts.add(new Item("Widget", 4562));
14. parts.add(new Item("Modem", 9912));
15. System.out.println(parts);
16.
17. SortedSet sortByDescription = new TreeSet(new
18. Comparator()
19. {
20. public int compare(Object a, Object b)
21. {
22. Item itemA = (Item)a;
23. Item itemB = (Item)b;
24. String descrA = itemA.getDescription();
25. String descrB = itemB.getDescription();
26. return descrA.compareTo(descrB);
27. }
28. });
29.
30. sortByDescription.addAll(parts);

31. System.out.println(sortByDescription);
32. }
33. }
34.
35. /**
36. An item with a description and a part number.
37. */
38. class Item implements Comparable
39. {
40. /**
41. Constructs an item.
42. @param aDescription the item's description
43. @param aPartNumber the item's part number
44. */
45. public Item(String aDescription, int aPartNumber)
46. {
47. description = aDescription;
48. partNumber = aPartNumber;
49. }
50.
51. /**
52. Gets the description of this item.
53. @return the description
54. */
55. public String getDescription()
56. {
57. return description;
58. }
59.
60. public String toString()
61. {
62. return "[description=" + description
63. + ", partNumber=" + partNumber + "]";
64. }
65.
66. public boolean equals(Object other)
67. {
68. if (getClass() == other.getClass())
69. { Item otherItem = (Item)other;
70. return description.equals(otherItem.description)
71. && partNumber == otherItem.partNumber;
72. }
73. else
74. return false;

75. }
76.
77. public int hashCode()
78. {
79. return 13 * description.hashCode() + 17 * partNumber
80. }
81.
82. public int compareTo(Object other)
83. {
84. Item otherItem = (Item)other;
85. return partNumber - otherItem.partNumber;
86. }
87.
88. private String description;
89. private int partNumber;
90. }

java.lang.Comparable

int compareTo(Object other)

compares this object with another object and returns a negative value if this comes
before other, zero if they are considered identical in the sort order, and a positive value
if this comes after other.

java.util.Comparator

int compare(Object a, Object b)

compares two objects and returns a negative value if a comes before b, zero if they are
considered identical in the sort order, and a positive value if a comes after b.

Parameters: other the object to compare

Parameters: a, b the objects to compare

java.util.SortedSet

Comparator comparator()

returns the comparator used for sorting the elements, or null if the elements are
compared with the compareTo method of the Comparable interface.

Object first()

Object last()

return the smallest or largest element in the sorted set.

java.util.TreeSet

TreeSet(Comparator c)

constructs a tree set and uses the specified comparator for sorting its elements.

TreeSet(SortedSet elements)

constructs a tree set, adds all elements from a sorted set, and uses the same element
comparator as the given sorted set.

Maps

A set is a collection that lets you quickly find an existing element. However, to look up an
element, you need to have an exact copy of the element to find. That isn't a very common

Parameters: c the comparator to use for sorting

Parameters: elements the sorted set with the elements to add and the comparator
to use

lookup—usually, you have some key information, and you want to look up the associated
element. The map data structure serves that purpose. A map stores key/value pairs. You can
find a value if you provide the key. For example, you may store a table of employee records,
where the keys are the employee IDs and the values are Employee objects.

The Java library supplies two general purpose implementations for maps: HashMap and
TreeMap. A hash map hashes the keys, and a tree map uses a total ordering on the keys to
organize them in a search tree. The hash or comparison function is applied only to the keys.
The values associated with the keys are not hashed or compared.

Should you choose a hash map or a tree map? As with sets, hashing is a bit faster, and it is
the preferred choice if you don't need to visit the keys in sorted order.

Here is how you set up a hash map for storing employees.

HashMap staff = new HashMap();
Employee harry = new Employee("Harry Hacker");
staff.put("987-98-9996", harry);
. . .

Whenever you add an object to a map, you must supply a key as well. In our case, the key is a
string, and the corresponding value is an Employee object.

To retrieve an object, you must use (and therefore, remember) the key.

String s = "987-98-9996";
e = (Employee)staff.get(s); // gets harry

If no information is stored in the map with the particular key specified, then get returns null.

Keys must be unique. You cannot store two values with the same key. If you call the put
method twice with the same key, then the second value replaces the first one. In fact, put
returns the previous value stored with the key parameter. (This feature is useful; if put returns
a non-null value, then you know you replaced a previous entry.)

The remove() method removes an element from the map. The size() method returns the
number of entries in the map.

The collections framework does not consider a map itself as a collection. (Other frameworks
for data structures consider a map as a collection of pairs, or as a collection of values that is
indexed by the keys.) However, you can obtain views of the map, objects that implement the
Collection interface, or one of its subinterfaces.

There are three views: the set of keys, the collection of values (which is not a set), and the set
of key/value pairs. The keys and key/value pairs form a set because there can be only one
copy of a key in a map. The methods

Set keySet()
Collection values()
Set entrySet()

return these three views. (The elements of the entry set are objects of the inner class
Map.Entry.)

Note that the keySet is not a HashSet or TreeSet, but it is an object of some other class
that implements the Set interface. We discuss the Set interface and its purpose in detail in
the next section. The Set interface extends the Collection interface. In fact, as you will
see, it does not add any new methods. Therefore, you can use it exactly as you use the
Collection interface.

For example, you can enumerate all keys of a map:

Set keys = map.keySet();
Iterator iter = keys.iterator();
while (iter.hasNext())
{
 Object key = iter.next();
 do something with key
}

TIP

If you invoke the remove method of the iterator, you actually remove the key and its
associated value from the map. However, you cannot add an element to the key set view. It
makes no sense to add a key without also adding a value. If you try to invoke the add method,
it throws an UnsupportedOperationException. The key/value set view has the same
restriction, even though it would make conceptual sense to add a new key/value pair.

NOTE

If you want to look at both keys and values, then you can avoid value
lookups by enumerating the entries. Use the following code skeleton:

Set entries = staff.entrySet();
Iterator iter = entries.iterator();
while (iter.hasNext())
{
 Map.Entry entry = (Map.Entry)iter.next();
 Object key = entry.getKey();
 Object value = entry.getValue();
 do something with key, value
}

Example 2-4 illustrates a map at work. We first add key/value pairs to a map. Then, we remove
one key from the map, which removes its associated value as well. Next, we change the value
that is associated with a key and call the get method to look up a value. Finally, we iterate
through the entry set.

Example 2-4 MapTest.java

 1. import java.util.*;
 2.
 3. /**
 4. This program demonstrates the use of a map with key typ
 5. String and value type Employee.
 6. */
 7. public class MapTest
 8. {
 9. public static void main(String[] args)
10. {
11. Map staff = new LinkedHashMap(101,0.75F,true);
12. staff.put("144-25-5464", new Employee("Angela Hung")
13. staff.put("567-24-2546", new Employee("Harry Hacker"
14. staff.put("157-62-7935", new Employee("Gary Cooper")
15. staff.put("456-62-5527", new Employee("Francesca Cru
16.
17. // print all entries
18.
19. System.out.println(staff);
20.
21. // remove an entry
22.
23. staff.remove("567-24-2546");
24.
25. // replace an entry
26.
27. staff.put("456-62-5527", new Employee("Francesca Mil
28.
29. // look up a value
30.
31. System.out.println(staff.get("157-62-7935"));
32.
33. // iterate through all entries

The legacy Hashtable class (which we cover later in this chapter) has
methods that return enumeration objects—the classical analog to
iterators—that traverse keys and values. However, having collection views
is more powerful since they let you operate on all keys or values at once.

34.
35. Set entries = staff.entrySet();
36. Iterator iter = entries.iterator();
37. while (iter.hasNext())
38. {
39. Map.Entry entry = (Map.Entry)iter.next();
40. Object key = entry.getKey();
41. Object value = entry.getValue();
42. System.out.println("key=" + key + ", value=" + va
43. }
44. }
45. }
46.
47. /**
48. A minimalist employee class for testing purposes.
49. */
50. class Employee
51. {
52. /**
53. Constructs an employee with $0 salary.
54. @param n the employee name
55. */
56. public Employee(String n)
57. {
58. name = n;
59. salary = 0;
60. }
61.
62. public String toString()
63. {
64. return "[name=" + name + ", salary=" + salary + "]";
65. }
66.
67. /**
68. Sets the employee salary to a new value.
69. @param s the new salary.
70. */
71. public void setSalary(double s)
72. {
73. salary = s;
74. }
75.
76. private String name;
77. private double salary;

78. }

java.util.Map

Object get(Object key)

gets the value associated with the key; returns the object associated with the key, or
null if the key is not found in the map.

Object put(Object key, Object value)

puts the association of a key and a value into the map. If the key is already present, the
new object replaces the old one previously associated with the key. This method returns
the old value of the key, or null if the key was not previously present.

void putAll(Map entries)

adds all entries from the specified map to this map.

boolean containsKey(Object key)

returns true if the key is present in the map.

boolean containsValue(Object value)

Parameters: key the key to use for retrieval (may be null)

Parameters: key the key to use for retrieval (may be null)
 value the associated object (may not be null)

Parameters: entries the map with the entries to be added

Parameters: key the key to find

returns true if the value is present in the map.

Set entrySet()

returns a set view of Map.Entry objects, the key/value pairs in the map. You can
remove elements from this set, and they are removed from the map, but you cannot add
any elements.

Set keySet()

returns a set view of all keys in the map. You can remove elements from this set, and the
keys and associated values are removed from the map, but you cannot add any
elements.

Collection values()

returns a collection view of all values in the map. You can remove elements from this set,
and the removed value and its key are removed from the map, but you cannot add any
elements.

java.util.Map.Entry

Object getKey()

Object getValue()

return the key or value of this entry.

Object setValue(Object value)

changes the value in the associated map to the new value and returns the old value.

java.util.HashMap

Parameters: value the value to find

Parameters: value the new value to associate with the key

HashMap()

constructs an empty hash map.

HashMap(Map entries)

constructs a hash map and adds all entries from a map.

HashMap(int initialCapacity)

HashMap(int initialCapacity, float loadFactor)

construct an empty hash map with the specified capacity and load factor.

java.util.TreeMap

TreeMap(Comparator c)

constructs a tree map and uses the specified comparator for sorting its keys.

TreeMap(Map entries)

constructs a tree map and adds all entries from a map.

Parameters: entries the entries to add

Parameters: initialCapacity the initial number of buckets.
 loadFactor a number between 0.0 and 1.0 that determines at

what percentage of fullness the hash table will be
rehashed into a larger one. The default is 0.75.

Parameters: c the comparator to use for sorting

TreeMap(SortedMap entries)

constructs a tree map, adds all entries from a sorted map, and uses the same element
comparator as the given sorted map.

java.util.SortedMap

Comparator comparator()

returns the comparator used for sorting the keys, or null if the keys are compared with
the compareTo method of the Comparable interface.

Object firstKey()

Object lastKey()

return the smallest or largest key in the map.

Specialized Map Classes

The collection class library has several map classes for specialized needs that we briefly
discuss in this section.

Weak hash maps

The WeakHashMap class was designed to solve an interesting problem. What happens with
a value whose key is no longer used anywhere in your program? Suppose the last reference to
a key has gone away. Then, there is no longer any way to refer to the value object. But since
no part of the program has the key any more, the key/value pair cannot be removed from the
map. Why can't the garbage collector remove it? Isn't it the job of the garbage collector to
remove unused objects?

Unfortunately, it isn't quite so simple. The garbage collector traces live objects. As long as the
map object is live, then all buckets in it are live and they won't be reclaimed. Thus, your

Parameters: entries the entries to add

Parameters: entries the sorted set with the entries to add and the comparator to
use

program should take care to remove unused values from long-lived maps. Or, you can use a
WeakHashMap instead. This data structure cooperates with the garbage collector to remove
key/value pairs when the only reference to the key is the one from the hash table entry.

Here are the inner workings of this mechanism. The WeakHashMap uses weak references to
hold keys. A WeakReference object holds a reference to another object, in our case, a
hash table key. Objects of this type are treated in a special way by the garbage collector.
Normally, if the garbage collector finds that a particular object has no references to it, it simply
reclaims the object. However, if the object is reachable only by a WeakReference, the
garbage collector still reclaims the object, but it places the weak reference that led to it onto a
queue. The operations of the WeakHashMap periodically check that queue for newly arrived
weak references. When a weak reference arrives in the queue, this is an indication that the key
was no longer used by anyone and that it has been collected. The WeakHashMap then
removes the associated entry.

Linked hash maps

Version 1.4 of the SDK adds a class LinkedHashMap that remembers in which order you
inserted key/value pairs into the map. That way, you avoid the seemingly random order of keys
in a HashMap without incurring the expense of a TreeMap. As entries are inserted into the
table, they are joined together in a doubly linked list.

The keySet, entrySet, and values methods of this class yield collections whose
iterators follow the links of that linked list.

For example, consider the following map insertions from Example 2-4.

Map staff = new LinkedHashMap();
staff.put("144-25-5464", new Employee("Angela Hung"));
staff.put("567-24-2546", new Employee("Harry Hacker"));
staff.put("157-62-7935", new Employee("Gary Cooper"));
staff.put("456-62-5527", new Employee("Francesca Cruz"));

Then staff.keySet().iterator() enumerates the keys in the order:

144-25-5464
567-24-2546
157-62-7935
456-62-5527

and staff.values().iterator() enumerates the values in the order:

Angela Hung
Harry Hacker
Gary Cooper
Francesca Cruz

Why would you want this behavior? Apparently, some programmers find it confusing that the
order of entries in a hash table can change seemingly randomly—for example, when the hash
table exceeds its load factor and is rehashed, or when values are copied from one hash table
to another. The LinkedHashMap gives you control over the order. Also, if a hash table is
sparsely filled, iteration is somewhat inefficient since the iterator must skip past all the empty
buckets. Iteration in a LinkedHashMap is independent of the capacity of the hash table
since the iterator follows the links between the entries. The drawback is, of course, that the
additional links consume storage.

If you use the constructor

LinkedHashMap(int initialCapacity, float loadFactor,
 boolean accessOrder)

and set accessOrder to true, then the linked hash map uses access order, not insertion
order, to iterate through the map entries. Every time you call get or put, the affected entry is
removed from its current position and placed at the end of the linked list of entries. (Only the
position in the linked list of entries is affected, not the hash table bucket. An entry always stays
in the bucket that corresponds to the hash code of the key.)

That behavior is useful to implement a "least recently used" discipline for a cache. For
example, you may want to keep frequently accessed entries in memory and read less
frequently objects from a database. When you don't find an entry in the table, and the table is
already pretty full, then you can get an iterator into the table and remove the first few elements
that it enumerates. Those entries were the least recently used ones.

You can even automate that process. Form a subclass of LinkedHashMap and override the
method

protected boolean removeEldestEntry(Map.Entry eldest)

Then adding a new entry causes the eldest entry to be removed whenever your method
returns true. For example, the following cache is kept at a size of at most 100 elements.

Map cache = new
 LinkedHashMap(125, 0.8F, true)
 {
 protected boolean removeEldestEntry(Map.Entry eldest)
 {
 return size() > 100;
 }
 };

Alternatively, you can consider the eldest entry to decide whether to remove it. For
example, you may want to check a time stamp stored with the entry.

Identity hash maps

Version 1.4 of the SDK adds another class IdentityHashMap for another quite
specialized purpose, where the hash values for the keys should not be computed by the
hashCode method but by the System.identityHashCode method. That's the method
that Object.hashCode uses to compute a hash code from the object's memory address.
Also, for comparison of objects, the IdentityHashMap uses ==, not equals.

In other words, different key objects are considered distinct even if they have equal contents.
This class is useful for implementing object traversal algorithms (such as object serialization),
in which you want to keep track of which objects have been already been traversed.

java.util.WeakHashMap

WeakHashMap()

constructs an empty weak hash map.

WeakHashMap(int initialCapacity)

WeakHashMap(int initialCapacity, float loadFactor)

construct an empty hash map with the specified capacity and load factor.

java.util.LinkedHashMap

LinkedHashMap()

constructs an empty hash map. (Since SDK 1.4)

LinkedHashMap(Map entries)

constructs a hash map and adds all entries from a map.

Parameters: initialCapacity the initial number of buckets.
 loadFactor a number between 0.0 and 1.0 that determines at

what percentage of fullness the hash table will be
rehashed into a larger one. The default is 0.75.

LinkedHashMap(int initialCapacity)

LinkedHashMap(int initialCapacity, float loadFactor)

LinkedHashMap(int initialCapacity, float loadFactor,
boolean accessOrder)

construct an empty linked hash map with the specified capacity, load factor, and
ordering.

protected boolean removeEldestEntry(Map.Entry eldest)

Override this method to return true if you want the eldest entry to be removed. This
method is called after an entry has been added to the map. The default implementation
returns false—old elements are not removed by default. But you can redefine this
method to selectively return true, for example if the eldest entry fits a certain condition
or the map exceeds a certain size.

java.util.IdentityHashMap

IdentityHashMap()

constructs an empty identity hash map. (Since SDK 1.4)

IdentityHashMap(Map entries)

constructs an identity hash map and adds all entries from a map.

Parameters: entries the entries to add

Parameters: initialCapacity the initial number of buckets.
 loadFactor a number between 0.0 and 1.0 that determines at

what percentage of fullness the hash table will be
rehashed into a larger one. The default is 0.75.

Parameters: eldest the eldest entry whose removal is being contemplated

IdentityHashMap(int expectedMaxSize)

constructs an empty identity hash map whose capacity is the smallest power of 2
exceeding 1.5.

java.lang.System

static int identityHashCode(Object obj)

returns the same hash code (derived from the object's memory address) that
Object.hashCode computes, even if the class to which obj belongs has redefined
the hashCode method.

The Collections Framework
A framework is a set of classes that form the basis for building advanced functionality. A
framework contains superclasses with useful functionality, policies, and mechanisms. The user
of a framework forms subclasses to extend the functionality without having to reinvent the
basic mechanisms. For example, Swing is a framework for user interfaces.

The Java collections library forms a framework for collection classes. It defines a number of
interfaces and abstract classes for implementors of collections (see Figure 2-10), and it
prescribes certain mechanisms, such as the iteration protocol. You can use the collection
classes without having to know much about the framework—we did just that in the preceding
sections. However, if you want to implement generic algorithms that work for multiple collection
types, or if you want to add a new collection type, then it is helpful to understand the
framework.

Figure 2-10. The interfaces of the collections framework

Parameters: entries the entries to add

Parameters: expectedMaxSize the expected maximum number of entries in this
map

There are two fundamental interfaces for containers: Collection and Map. You insert
elements into a collection with a method:

boolean add(Object element)

However, maps hold key/value pairs, and you use the put method to insert them.

Object put(object key, object value)

To read elements from a collection, you visit them with an iterator. However, you can read
values from a map with the get method:

Object get(Object key)

A List is an ordered collection. Elements are added into a particular position in the container.
An object can be placed into its position in two ways: by an integer index, and by a list iterator.
The List interface defines methods for random access:

void add(int index, Object element)
Object get(int index)
void remove(int index)

As already discussed, the List interface provides these random access methods whether or
not they are efficient for a particular implementation. To make it possible to avoid carrying out
costly random access operations, version 1.4 of the SDK introduces a tagging interface,
RandomAccess. That interface has no methods, but you can use it to test whether a
particular collection supports efficient random access:

if (c instanceof RandomAccess)
{
 use random access algorithm
}
else

{
 use sequential access algorithm
}

The ArrayList and Vector classes implement this interface.

NOTE

The ListIterator interface defines a method for adding an element before the iterator
position:

void add(Object element)

To get and remove elements at a particular position, you simply use the next and remove
methods of the Iterator interface.

The Set interface is identical to the Collection interface, but the behavior of the methods
is more tightly defined. The add method of a set should reject duplicates. The equals
method of a set should be defined so that two sets are identical if they have the same
elements, but not necessarily in the same order. The hashCode method should be defined
such that two sets with the same elements yield the same hash code.

NOTE

Why make a separate interface if the method signatures are the same? Conceptually, not all
collections are sets. Making a Set interface enables programmers to write methods that only
accept sets.

From a theoretical point of view, it would have made sense to have a
separate Array interface that extends the List interface and declares
the random access methods. If there was a separate Array interface, then
those algorithms that require random access would use Array
parameters, and you could not accidentally apply them to collections with
slow random access. However, the designers of the collections framework
chose not to define a separate interface. They wanted to keep the number
of interfaces in the library small. Also, they did not want to take a
paternalistic attitude toward programmers. You are free to pass a linked list
to algorithms that use random access—you just need to be aware of the
performance costs.

For sets and lists, there is a well-defined notion of equality. Two sets are
equal if they contain the same elements, regardless of their order. Two lists
are equal if they contain the same elements in the same order. However,
there is no well-defined notion of equality for collections. You should
therefore not use the equals method on Collection references.

Finally, the SortedSet and SortedMap interfaces expose the comparison object used for
sorting, and they define methods to obtain views of subsets of the containers. We discuss
these views in the next section.

Now, let us turn from the interfaces to the classes that implement them. We already discussed
that the collection interfaces have quite a few methods that can be trivially implemented from
more fundamental methods. There are five abstract classes that supply many of these routine
implementations:

AbstractCollection
AbstractList
AbstractSequentialList
AbstractSet
AbstractMap

If you implement your own collection class, then you probably want to extend one of these
classes so that you can pick up the implementations of the routine operations.

The Java library supplies six concrete classes:

LinkedList
ArrayList
HashSet
TreeSet
HashMap
TreeMap

Figure 2-11 shows the relationships between these classes.

Figure 2-11. Classes in the collections framework

Finally, there are a number of "legacy" container classes that have been present since the
beginning, before there was a collections framework:

Vector
Stack
Hashtable
Properties

They have been integrated into the collections framework—see Figure 2-12. We discuss these
classes later in this chapter.

Figure 2-12. Legacy classes in the collections framework

Views and Wrappers

If you look at Figure 2-10 and Figure 2-11, you might think it is overkill to have six interfaces
and five abstract classes to implement six concrete collection classes. However, these figures
don't tell the whole story. By using views, you can obtain other objects that implement the
Collection or Map interfaces. You saw one example of this with the keySet method of
the map classes. At first glance, it appears as if the method creates a new set, fills it with all
keys of the map, and returns it. However, that is not the case. Instead, the keySet method
returns an object of a class that implements the Set interface and whose methods manipulate

the original map. Such a collection is called a view. You have no way of knowing, and you
need not know, exactly what class the library uses to implement the view.

The technique of views has a number of useful applications in the collections framework. Here
is the most compelling one. Recall that the methods of the Vector class are synchronized,
which is unnecessarily slow if the vector is accessed only from a single thread. For that
reason, we recommended the use of the ArrayList instead of the Vector class.
However, if you do access a collection from multiple threads, it is very important that the
methods are synchronized. For example, it would be disastrous if one thread tried to add to a
hash table while another thread is rehashing the elements. The library designers could have
implemented companion classes with synchronized methods for all data structures. But they
did something more useful. They supplied a mechanism that produces synchronized views for
all interfaces. For example, the static synchronizedMap method in the Collections
class can turn any map into a Map with synchronized access methods:

HashMap hashMap = new HashMap();
map = Collections.synchronizedMap(hashMap);

Now, you can access the map object from multiple threads. The methods such as get and
put are synchronized—each method call must be finished completely before another thread
can call another method.

NOTE

There are six methods to obtain synchronized collections:

Collections.synchronizedCollection
Collections.synchronizedList
Collections.synchronizedSet
Collections.synchronizedSortedSet
Collections.synchronizedMap
Collections.synchronizedSortedMap

The views that are returned by these methods are sometimes called wrappers.

NOTE

You should make sure that no thread accesses the data structure through the original

The Collections class contains a number of utility methods whose
parameters or return values are collections. Do not confuse it with the
Collection interface.

If a list implements the RandomAccess interface, then the wrapper object
returned by the synchronizedList method belongs to a class that
also implements RandomAccess.

unsynchronized methods. The easiest way to ensure this is not to save any reference to the
original object, but to simply pass the constructed collection to the wrapper method:

map = Collections.synchronizedMap(new HashMap());

There is one caveat when accessing a collection from multiple threads. Recall that you can
either have multiple iterators that read from a collection, or a single thread that modifies the
collection. For that reason, you will want to make sure that any iteration—

Iterator iter = collection.iterator();
while (iter.hasNext())
 do something with iter.next();

—does not occur at a time when another thread modifies the collection. If it did, then the next
method would throw a ConcurrentModificationException.

If you run into problems in controlling access of the same collection in multiple threads, you
may want to follow the advice of Chapter 1: figure out what higher-level purpose the collection
serves, then come up with the class that expresses that purpose. Make the collection into an
instance field of that class, and control access to it via synchronized methods.

Since the wrappers wrap the interface and not the actual collection object, you only have
access to those methods that are defined in the interface. For example, the LinkedList
class has convenience methods, addFirst and addLast, that are not part of the List
interface. These methods are not accessible through the synchronization wrapper.

CAUTION

The Collections class has another potentially useful set of wrappers to produce
unmodifiable views of collections. These wrappers add a runtime check to an existing
collection. If an attempt to modify the collection is detected, then an exception is thrown and
the collection remains untouched.

The synchronizedCollection method (as well as the
unmodifiableCollection method discussed later in this section)
returns a collection whose equals method does not invoke the equals
method of the underlying collection. Instead, it inherits the equals method
of the Object class, which just tests whether the objects are identical. If
you turn a set or list into just a collection, you can no longer test for equal
contents. The wrapper acts in this way because equality testing is not well
defined at this level of the hierarchy.

However, the synchronizedSet and synchronizedList class do
not hide the equals methods of the underlying collections.

The wrappers treat the hashCode method in the same way.

For example, suppose you want to let some part of your code look at, but not touch, the
contents of a collection. Here is what you could do:

List staff = new LinkedList();
. . .
lookAt(new Collections.unmodifiableList(staff));

The Collections.unmodifiableList method returns an object of a class
implementing the List interface. Its accessor methods retrieve values from the staff
collection. Of course, the lookAt method can call all methods of the List interface, not just
the accessors. But all mutator methods (such as add) have been redefined to throw an
UnsupportedOperationException instead of forwarding the call to the underlying
collection. There are similar methods to obtain unmodifiable wrappers to the other collection
interfaces.

NOTE

The Arrays class has a static asList method that returns a List wrapper around a plain
Java array. This method lets you pass the array to a method that expects a list or collection
argument. For example,

Card[] cardDeck = new Card[52];
. . .
List cardList = Arrays.asList(cardDeck);

The returned object is not an ArrayList. It is a view object whose get and set methods
access the underlying array. All methods that would change the size of the array (such as add
and the remove method of the associated iterator) throw an
UnsupportedOperationException.

Subranges

You can form subrange views for a number of collections. For example, suppose you have a
list staff and want to extract elements 10 to 19. You use the subList method to obtain a
view into the subrange of the list.

List group2 = staff.subList(10, 20);

The first index is inclusive, the second exclusive—just like the parameters for the

In the API documentation, certain methods of the collection interfaces, such
as add, are described as "optional operations." This is curious—isn't the
purpose of an interface to lay out the methods that a class must implement?
Indeed, it would have made sense to separate the read-only interfaces from
the interfaces that allow full access. But that would have doubled the
number of interfaces, which the designers of the library found unacceptable.

substring operation of the String class.

You can apply any operations to the subrange, and they automatically reflect the entire list. For
example, you can erase the entire subrange:

group2.clear(); // staff reduction

The elements are now automatically cleared from the staff list.

For sorted sets and maps, you use the sort order, not the element position, to form subranges.
The SortedSet interface declares three methods:

subSet(from, to)
headSet(to)
tailSet(from)

These return the subsets of all elements that are larger than or equal to from and strictly
smaller than to. For sorted maps, there are similar methods

subMap(from, to)
headMap(to)
tailMap(from)

that return views into the maps consisting of all entries where the keys fall into the specified
ranges.

Lightweight collection wrappers

The method call

Collections.nCopies(n, anObject)

returns an immutable object that implements the List interface and gives the illusion of
having n elements, each of which appears as anObject. There is very little storage cost—
the object is only stored once. This is a cute application of the wrapper technique. You can use
such a list to initialize a concrete container. For example, the following call creates an
ArrayList containing 100 strings, all set to "DEFAULT":

ArrayList settings
 = new ArrayList(Collections.nCopies(100, "DEFAULT"));

The method call

Collections.singleton(anObject)

returns a wrapper object that implements the Set interface (unlike ncopies which produces

a List). The returned object implements an immutable single-element set without the
overhead of a hash table or tree. The constants Collections.EMPTY_LIST and
Collections.EMPTY_SET return objects that implement the List and Set interfaces
and contain no elements. The advantage is similar to that of the singleton method: the
returned objects do not have the overhead of a data structure. Singletons and empty objects
are potentially useful as parameters to methods that expect a list, set, or container.

NOTE

A final note on optional operations

We'd like to end this section with a few words about the "optional" or unsupported operations in
the collection and iterator interfaces. This is undoubtedly the most controversial design
decision in the collections framework. The problem is caused by the undeniably powerful and
convenient views. Views are good because they lead to efficient code, and their "plug and
play" nature means you only need to learn a few basic concepts. A view usually has some
restriction—it may be read-only, it may not be able to change the size, or it may support
removal, but not insertion, as is the case for the key view of a map. The restriction is different
for each view. Making a separate interface for each restricted view would lead to a bewildering
tangle of interfaces that would be unusable in practice.

Should you extend the technique of "optional" methods to your own interfaces? We think not.
Even though collections are used very frequently, the coding style for implementing them is not
typical for other problem domains. The designers of a collection class library have to resolve a
particularly brutal set of conflicting requirements. Users want the library to be easy to learn,
convenient to use, completely generic, idiot-proof, and at the same time as efficient as hand-
coded algorithms. It is plainly impossible to achieve all these goals simultaneously, or even to
come close. Look at a few other libraries, such as the JGL library from ObjectSpace
(www.objectspace.com), to see a different set of trade-offs. Or, even better, try your hand at
designing your own library of collections and algorithms. You will soon run into the inevitable
conflicts and feel much more sympathy with the folks from Sun. But in your own programming
problems, you will rarely encounter such an extreme set of constraints. You should be able to
find solutions that do not rely on the extreme measure of "optional" interface operations.

java.util.Collections

static Collection synchronizedCollection(Collection c)

static List synchronizedList(List c)

JDK 1.3 added methods singletonList and singletonMap and a
constant EMPTY_MAP.

static Set synchronizedSet(Set c)

static SortedSet synchronizedSortedSet(SortedSet c)

static Map synchronizedMap(Map c)

static SortedMap synchronizedSortedMap(SortedMap c)

construct a view of the collection whose methods are synchronized.

static Collection unmodifiableCollection(Collection c)

static List unmodifiableList(List c)

static Set unmodifiableSet(Set c)

static SortedSet unmodifiableSortedSet(SortedSet c)

static Map unmodifiableMap(Map c)

static SortedMap unmodifiableSortedMap(SortedMap c)

construct a view of the collection whose mutator methods throw an
UnsupportedOperationException.

static List nCopies(int n, Object value)

static Set singleton(Object value)

construct a view of the object as either an unmodifiable list with n identical elements, or a
set with a single element.

static final List EMPTY_LIST

Parameters: c the collection to wrap

Parameters: c the collection to wrap

Parameters: n the number of times to repeat the value in the list
 value the element value in the collection

static final Set EMPTY_SET

An unmodifiable wrapper for an empty list or set.

java.util.Arrays

static List asList(Object[] array)

returns a list view of the elements in an array that is modifiable but not resizable.

java.util.List

List subList(int from, int to)

returns a list view of the elements within a range of positions.

java.util.SortedSet

SortedSet subSet(Object from, Object to)

SortedSet headSet(Object to)

SortedSet tailSet(Object from)

return a view of the elements within a range.

Parameters: array the array to wrap

Parameters: from the first position to include in the view
 to the first position to exclude in the view

java.util.SortedMap

SortedMap subMap(Object from, Object to)

SortedMap headMap(Object to)

SortedMap tailMap(Object from)

return a map view of the entries whose keys are within a range.

Bulk Operations

So far, most of our examples used an iterator to traverse a collection, one element at a time.
However, you can often avoid iteration by using one of the bulk operations in the library.

Suppose you want to find the intersection of two sets, the elements that two sets have in
common. First, make a new set to hold the result.

Set result = new HashSet(a);

Here, you use the fact that every collection has a constructor whose parameter is another
collection that holds the initialization values.

Now, use the retainAll method:

result.retainAll(b);

It retains all elements that also happen to be in b. You have formed the intersection without
programming a loop.

You can carry this idea further and apply a bulk operation to a view. For example, suppose you
have a map that maps employee IDs to employee objects, and you have a set of the IDs of all

Parameters: from the first element to include in the view
 to the first element to exclude in the view

Parameters: from the first key to include in the view
 to the first key to exclude in the view

employees that are to be terminated.

Map staffMap = . . .;
Set terminatedIDs = . . .;

Simply form the key set and remove all IDs of terminated employees.

staffMap.keySet().removeAll(terminatedIDs);

Because the key set is a view into the map, the keys and associated employee names are
automatically removed from the map.

By using a subrange view, you can restrict bulk operations to sublists and subsets. For
example, suppose you want to add the first ten elements of a list to another container. Form a
sublist to pick out the first ten:

relocated.addAll(staff.subList(0, 10));

The subrange can also be a target of a mutating operation.

staff.subList(0, 10).clear();

Interfacing with Legacy APIs

Since large portions of the Java platform API were designed before the collections framework
was created, you occasionally need to translate between traditional arrays and vectors and the
more modern collections.

First, consider the case where you have values in an array or vector and you want to put them
into a collection. If the values are inside a Vector, simply construct your collection from the
vector:

Vector values = . . .;
HashSet staff = new HashSet(values);

All collection classes have a constructor that can take an arbitrary collection object. Since the
Java 2 platform, the Vector class implements the List interface.

If you have an array, you need to turn it into a collection. The Arrays.asList wrapper
serves this purpose:

String[] values = . . .;
HashSet staff = new HashSet(Arrays.asList(values));

Conversely, if you need to call a method that requires a vector, you can construct a vector from
any collection:

Vector values = new Vector(staff);

Obtaining an array is a bit trickier. Of course, you can use the toArray method:

Object[] values = staff.toArray();

But the result is an array of objects. Even if you know that your collection contained objects of
a specific type, you cannot use a cast:

String[] values = (String[])staff.toArray(); // Error!

The array returned by the toArray method was created as an Object[] array, and you
cannot change its type. Instead, you need to use a variant of the toArray method. Give it an
array of length 0 of the type that you'd like. Then, the returned array is created as the same
array type, and you can cast it:

String[] values = (String[])staff.toArray(new String[0]);

NOTE

java.util.Collection

Object[] toArray(Object[] array)

checks if the array parameter is larger than the size of the collection. If so, it adds all
elements of the collection into the array, followed by a null terminator, and it returns
the array. If the length of array equals the size of the collection, then the method adds
all elements of the collection to the array but does not add a null terminator. If there
isn't enough room, then the method creates a new array, of the same type as the
incoming array, and fills it with the elements of the collection.

Algorithms

You may wonder why you don't simply pass a Class object (such as
String.class) to the toArray method. However, as you can see
from the API notes, this method does "double duty," both to fill an existing
array (provided it is long enough) and to create a new array.

Parameters: array the array that holds the collection elements, or whose element
type is used to create a new array to hold the collection elements

Generic collection interfaces have a great advantage—you only need to implement your
algorithms once. For example, consider a simple algorithm to compute the maximum element
in a collection. Traditionally, programmers would implement such an algorithm as a loop. Here
is how you find the largest element of an array.

if (a.length == 0) throw new NoSuchElementException();
Comparable largest = a[0];
for (int i = 1; i < a.length; i++)
 if (largest.compareTo(a[i]) < 0)
 largest = a[i];

Of course, to find the maximum of an array list, the code would be slightly different.

if (v.size() == 0) throw new NoSuchElementException();
Comparable largest = (Comparable)v.get(0);
for (int i = 1; i < v.size(); i++)
 if (largest.compareTo(v.get(i)) < 0)
 largest = v.get(i);

What about a linked list? You don't have efficient random access in a linked list. But you can
use an iterator.

if (l.isEmpty()) throw new NoSuchElementException();
Iterator iter = l.iterator();
Comparable largest = (Comparable)iter.next();
while (iter.hasNext())
{
 Object next = iter.next();
 if (largest.compareTo(next) < 0)
 largest = next;
}

These loops are tedious to write, and they are just a bit error-prone. Is there an off-by-one
error? Do the loops work correctly for empty containers? For containers with only one
element? You don't want to test and debug this code every time, but you also don't want to
implement a whole slew of methods such as these:

Object max(Comparable[] a)
Object max(ArrayList v)
Object max(LinkedList l)

That's where the collection interfaces come in. Think of the minimal collection interface that
you need to efficiently carry out the algorithm. Random access with get and set comes
higher in the food chain than simple iteration. As you have seen in the computation of the
maximum element in a linked list, random access is not required for this task. Computing the
maximum can be done simply by iterating through the elements. Therefore, you can implement
the max method to take any object that implements the Collection interface.

public static Object max(Collection c)
{
 if (c.isEmpty()) throw new NoSuchElementException();
 Iterator iter = c.iterator();
 Comparable largest = (Comparable)iter.next();
 while (iter.hasNext())
 {
 Object next = iter.next();
 if (largest.compareTo(next) < 0)
 largest = next;
 }
 return largest;
}

Now you can compute the maximum of a linked list, an array list, or an array, with a single
method.

LinkedList l;
ArrayList v;
Employee[] a;
. . .
largest = max(l);
largest = max(v);
largest = max(Arrays.asList(a));

That's a powerful concept. In fact, the standard C++ library has dozens of useful algorithms,
each of which operates on a generic collection. The Java library is not quite so rich, but it does
contain the basics: sorting, binary search, and some utility algorithms.

Sorting and Shuffling

Computer old-timers will sometimes reminisce about how they had to use punched cards and
how they actually had to program sorting algorithms by hand.

Nowadays, of course, sorting algorithms are part of the standard library for most programming
languages, and the Java programming language is no exception.

The sort method in the Collections class sorts a collection that implements the List
interface.

List staff = new LinkedList();
// fill collection . . .;
Collections.sort(staff);

This method assumes that the list elements implement the Comparable interface. If you
want to sort the list in some other way, you can pass a Comparator object as a second

parameter. (We discussed comparators in the section on sorted sets.) Here is how you can
sort a list of employees by increasing salary.

Collections.sort(staff, new
 Comparator()
 {
 public int compare(Object a, Object b)
 {
 double salaryDifference = (Employee)a.getSalary()
 - (Employee)b.getSalary();
 if (salaryDifference < 0) return -1;
 if (salaryDifference > 0) return 1;
 return 0;
 }
 });

If you want to sort a list in descending order, then use the static convenience method
Collections.reverseOrder(). It returns a comparator that returns b.compareTo
(a). (The objects must implement the Comparable interface.) For example:

Collections.sort(staff, Collections.reverseOrder())

sorts the elements in the list staff in reverse order, according to the ordering given by the
compareTo method of the element type.

You may wonder how the sort method sorts a list. Typically, when you look at a sorting
algorithm in a book on algorithms, it is presented for arrays and uses random element access.
But random access in a list can be inefficient. You can actually sort lists efficiently by using a
form of merge sort (see, for example, Algorithms in C++, by Robert Sedgewick [Addison-
Wesley 1998, p. 366–369]). However, the implementation in the Java programming language
does not do that. It simply dumps all elements into an array, sorts the array, using a different
variant of merge sort, and then copies the sorted sequence back into the list.

The merge sort algorithm used in the collections library is a bit slower than quick sort, the
traditional choice for a general-purpose sorting algorithm. However, it has one major
advantage: it is stable, that is, it doesn't switch equal elements. Why do you care about the
order of equal elements? Here is a common scenario. Suppose you have an employee list that
you already sorted by name. Now you sort by salary. What happens to employees with equal
salary? With a stable sort, the ordering by name is preserved. In other words, the outcome is a
list that is sorted first by salary, then by name.

Because collections need not implement all of their "optional" methods, all methods that
receive collection parameters need to describe when it is safe to pass a collection to an
algorithm. For example, you clearly cannot pass an unmodifiableList list to the sort
algorithm. What kind of list can you pass? According to the documentation, the list must be
modifiable but need not be resizable.

These terms are defined as follows:

A list is modifiable if it supports the set method.

A list is resizable if it supports the add and remove operations.

The Collections class has an algorithm shuffle that does the opposite of sorting—it
randomly permutes the order of the elements in a list. You supply the list to be shuffled and a
random number generator. For example,

ArrayList cards = . . .;
Collections.shuffle(cards);

If you supply a list that does not implement the RandomAccess interface, then the
shuffle method copies the elements into an array, shuffles the array, and copies the
shuffled elements back into the list.

The program in Example 2-5 fills an array list with 49 Integer objects containing the
numbers 1 through 49. It then randomly shuffles the list and selects the first 6 values from the
shuffled list. Finally, it sorts the selected values and prints them out.

Example 2-5 ShuffleTest.java

 1. import java.util.*;
 2.
 3. /**
 4. This program demonstrates the random shuffle and sort
 5. algorithms.
 6. */
 7. public class ShuffleTest
 8. {
 9. public static void main(String[] args)
10. {
11. List numbers = new ArrayList(49);
12. for (int i = 1; i <= 49; i++)
13. numbers.add(new Integer(i));
14. Collections.shuffle(numbers);
15. List winningCombination = numbers.subList(0, 6);
16. Collections.sort(winningCombination);
17. System.out.println(winningCombination);
18. }
19. }

java.util.Collections

static void sort(List elements)

static void sort(List elements, Comparator c)

sort the elements in the list, using a stable sort algorithm. The algorithm is guaranteed to
run in O(n log n) time, where n is the length of the list.

static void shuffle(List elements)

static void shuffle(List elements, Random r)

randomly shuffle the elements in the list. This algorithm runs in O(n * a (n)) time, where
n is the length of the list and a(n) is the average time to access an element.

static Comparator reverseOrder()

returns a comparator that sorts elements in the reverse order of the one given by the
compareTo method of the Comparable interface.

Binary Search

To find an object in an array, you normally need to visit all elements until you find a match.
However, if the array is sorted, then you can look at the middle element and check if it is larger
than the element that you are trying to find. If so, you keep looking in the first half of the array;
otherwise, you look in the second half. That cuts the problem in half. You keep going in the
same way. For example, if the array has 1024 elements, you will locate the match (or confirm
that there is none) after 10 steps, whereas a linear search would have taken you an average of
512 steps if the element is present, and 1024 steps to confirm that it is not.

The binarySearch of the Collections class implements this algorithm. Note that the
collection must already be sorted or the algorithm will return the wrong answer. To find an
element, supply the collection (which must implement the List interface—more on that in the

Parameters: elements the list to sort
 c the comparator to use for sorting

Parameters: elements the list to shuffle
 r the source of randomness for shuffling

note below) and the element to be located. If the collection is not sorted by the compareTo
element of the Comparable interface, then you need to supply a comparator object as well.

i = Collections.binarySearch(c, element);
i = Collections.binarySearch(c, element, comparator);

If the return value of the binarySearch method is 0, it denotes the index of the
matching object. That is, c.get(i) is equal to element under the comparison order. If the
value is negative, then there is no matching element. However, you can use the return value to
compute the location where you should insert element into the collection to keep it sorted.
The insertion location is

insertionPoint = -i - 1;

It isn't simply -i because then the value of 0 would be ambiguous. In other words, the
operation

if (i < 0)
 c.add(-i - 1, element);

adds the element in the correct place.

To be worthwhile, binary search requires random access. If you have to iterate one by one
through half of a linked list to find the middle element, you have lost all advantage of the binary
search. Therefore, the binarySearch algorithm reverts to a linear search if you give it a
linked list.

NOTE

java.util.Collections

static int binarySearch(List elements, Object key)

static int binarySearch(List elements, Object key,

In SDK version 1.3, there was no separate interface for an ordered
collection with efficient random access, and the binarySearch method
employed a very crude device, checking whether the list parameter extends
the AbstractSequentialList class. This has been fixed in version
1.4. Now the binarySearch method checks if the list parameter
implements the RandomAccess interface. If it does, then the method
carries out a binary search. Otherwise, it uses a linear search.

Comparator c)

search for a key in a sorted list, using a linear search if elements extends the
AbstractSequentialList class, and a binary search in all other cases. The
methods are guaranteed to run in O(a(n) log n) time, where n is the length of the list and
a(n) is the average time to access an element. The methods return either the index of the
key in the list, or a negative value i if the key is not present in the list. In that case, the
key should be inserted at index -i - 1 for the list to stay sorted.

Simple Algorithms

The Collections class contains several simple but useful algorithms. Among them is the
example from the beginning of this section, finding the maximum value of a collection. Others
include copying elements from one list to another, filling a container with a constant value, and
reversing a list. Why supply such simple algorithms in the standard library? Surely most
programmers could easily implement them with simple loops. We like the algorithms because
they make life easier for the programmer reading the code. When you read a loop that was
implemented by someone else, you have to decipher the original programmer's intentions.
When you see a call to a method such as Collections.max, you know right away what
the code does.

The following API notes describe the simple algorithms in the Collections class.

java.util.Collections

static Object min(Collection elements)

static Object max(Collection elements)

static Object min(Collection elements, Comparator c)

static Object max(Collection elements, Comparator c)

return the smallest or largest element in the collection.

Parameters: elements the list to search
 key the object to find
 c the comparator used for sorting the list elements

Parameters: elements the collection to search

static void copy(List to, List from)

copies all elements from a source list to the same positions in the target list. The target
list must be at least as long as the source list.

static void fill(List l, Object value)

sets all positions of a list to the same value.

static void replaceAll(List l, Object oldValue, Object
newValue)

replaces all elements equal to oldValue with newValue. This method was added in
SDK 1.4.

static int indexOfSubList(List l, List s)

static int lastIndexOfSubList(List l, List s)

return the index of the first or last sublist of l equalling s, or -1 if no sublist of l equals s.
For example, if l is [s, t, a, r] and s is [t, a, r], then both methods return
the index 1. These methods were added in SDK 1.4.

 c the comparator used for sorting the elements

Parameters: to the target list
 from the source list

Parameters: l the list to fill
 value the value with which to fill the list

Parameters: l the list whose elements are replaced
 oldValue the value to be replaced
 newValue the replacement value

Parameters: l the list to search
 s the sublist to match

static void reverse(List l)

reverses the order of the elements in a list. For example, reversing the list [t, a, r]
yields the list [r, a, t]. This method runs in O(n) time, where n is the length of the
list.

static void rotate(List l, int d)

rotates the elements in the list, moving the entry with index i to position (i + d) %
l.size(). For example, rotating the list [t, a, r] by 2 yields the list [a, r,
t]. This method runs in O(n) time, where n is the length of the list. This method was
added in SDK 1.4.

Writing Your Own Algorithms

If you write your own algorithm (or in fact, any method that has a collection as a parameter),
you should work with interfaces, not concrete implementations, whenever possible. For
example, suppose you want to fill a JComboBox with a set of strings. Traditionally, such a
method might have been implemented like this:

void fillComboBox(JComboBox comboBox, Vector choices)
{
 for (int i = 0; i < choices.size(); i++)
 comboBox.addItem(choices.get(i));
}

However, you now constrained the caller of your method—the caller must supply the choices
in a vector. If the choices happened to be in another container, they first need to be
repackaged. It is much better to accept a more general collection.

You should ask yourself what is the most general collection interface that can do the job. In
this case, you just need to visit all elements, a capability of the basic Collection interface.
Here is how you can rewrite the fillComboBox method to accept collections of any kind.

void fillComboBox(JComboBox comboBox, Collection choices)
{

Parameters: l the list to reverse

Parameters: l the list to reverse

 Iterator iter = choices.iterator();
 while (iter.hasNext())
 comboBox.addItem(iter.next());
}

Now, anyone can call this method with a vector or even with an array, wrapped with the
Arrays.asList wrapper.

NOTE

If you write a method that returns a collection, you don't have to change the return type to a
collection interface. The user of your method might in fact have a slight preference to receive
the most concrete class possible. However, for your own convenience, you may want to return
an interface instead of a class, because you can then change your mind and reimplement the
method later with a different collection.

For example, let's write a method getAllItems that returns all items of a combo box. You
could simply return the collection that you used to gather the items, say, an ArrayList.

ArrayList getAllItems(JComboBox comboBox)
{
 ArrayList items = new ArrayList(comboBox.getItemCount());
 for (int i = 0; i < comboBox.getItemCount(); i++)
 items.set(i, comboBox.getItemAt(i));
 return items;
}

But a better approach is to change the return type to List.

List getAllItems(JComboBox comboBox)

Then, you are free to change the implementation later. For example, you may decide that you
don't want to copy the elements of the combo box but simply provide a view into them. You
achieve this by returning an anonymous subclass of AbstractList.

If it is such a good idea to use collection interfaces as method parameters,
why doesn't the Java library follow this rule more often? For example, the
JComboBox class has two constructors:

JComboBox(Object[] items)
JComboBox(Vector items)

The reason is simply timing. The Swing library was created before the
collections library. You should expect future APIs to rely more heavily on
the collections library. In particular, vectors should be "on their way out"
because of the synchronization overhead.

List getAllItems(final JComboBox comboBox)
{
 return new
 AbstractList()
 {
 public Object get(int i)
 {
 return comboBox.getItemAt(i);
 }
 public int size()
 {
 return comboBox.getItemCount();
 }
 };
}

Of course, this is an advanced technique. If you employ it, be careful to document exactly
which "optional" operations are supported. In this case, you must advise the caller that the
returned object is an unmodifiable list.

Legacy Collections
In this section, we discuss the collection classes that existed in the Java programming
language since the beginning: the Hashtable class and its useful Properties subclass,
the Stack subclass of Vector, and the BitSet class.

The Hashtable Class

The classic Hashtable class serves the same purpose as the HashMap and has
essentially the same interface. Just like methods of the Vector class, the Hashtable
methods are synchronized. If you do not require synchronization or compatibility with legacy
code, you should use the HashMap instead.

NOTE

Enumerations

The legacy collections use the Enumeration interface for traversing sequences of
elements. The Enumeration interface has two methods, hasMoreElements and
nextElement. These are entirely analogous to the hasNext and next methods of the

The name of the class is Hashtable, with a lowercase t. Under
Windows, you'll get strange error messages if you use HashTable,
because the Windows file system is not case-sensitive but the Java
compiler is.

Iterator interface.

For example, the elements method of the Hashtable class yields an object for
enumerating the values in the table:

Enumeration e = staff.elements();
while (e.hasMoreElements())
{
 Employee e = (Employee)e.nextElement();
 . . .
}

You will occasionally encounter a legacy method that expects an enumeration parameter. The
static method Collections.enumeration yields an enumeration object that
enumerates the elements in the collection. For example,

ArrayList streams = . . .; // a sequence of input streams
SequenceInputStream in
 = new SequenceInputStream(Collections.enumeration(streams)
 // the SequenceInputStream constructor expects an enumerati

NOTE

java.util.Enumeration

boolean hasMoreElements()

returns true if there are more elements yet to be inspected.

Object nextElement()

returns the next element to be inspected. Do not call this method if
hasMoreElements() returned false.

In C++, it is quite common to use iterators as parameters. Fortunately, in
programming for the Java platform, very few programmers use this idiom. It
is much smarter to pass around the collection than to pass an iterator. The
collection object is more useful. The recipients can always obtain the
iterator from it when they need it, plus they have all the collection methods
at their disposal. However, you will find enumerations in some legacy code
since they were the only available mechanism for generic collections until
the collections framework appeared in the Java 2 platform.

java.util.Hashtable

Enumeration keys()

returns an enumeration object that traverses the keys of the hash table.

Enumeration elements()

returns an enumeration object that traverses the elements of the hash table.

java.util.Vector

Enumeration elements()

returns an enumeration object that traverses the elements of the vector.

Property Sets

A property set is a map structure of a very special type. It has three particular characteristics.

The keys and values are strings.

The table can be saved to a file and loaded from a file.

There is a secondary table for defaults.

The Java platform class that implements a property set is called Properties.

Property sets are useful in specifying configuration options for programs. The environment
variables in UNIX and DOS are good examples. On a PC, your AUTOEXEC.BAT file might
contain the settings:

SET PROMPT=pg
SET TEMP=C:\Windows\Temp
SET CLASSPATH=c:\jdk\lib;.

Here is how you would model those settings as a property set in the Java programming
language.

Properties settings = new Properties();
settings.put("PROMPT", "pg");
settings.put("TEMP", "C:\\Windows\\Temp");
settings.put("CLASSPATH", "c:\\jdk\\lib;.");

Use the store method to save this list of properties to a file. Here, we just print the property
set to the standard output. The second argument is a comment that is included in the file.

settings.store(System.out, "Environment settings");

The sample table gives the following output.

#Environment settings
#Sun Jan 21 07:22:52 1996
CLASSPATH=c:\\jdk\\lib;.
TEMP=C:\\Windows\\Temp
PROMPT=pg

System information

Here's another example of the ubiquity of the Properties set: information about your
system is stored in a Properties object that is returned by a method of the System class.
Applications have complete access to this information, but applets that are loaded from a web
page do not—a security exception is thrown if they try to access certain keys. The code at the
end of this section prints out the key/value pairs in the Properties object that stores the
system properties.

Here is an example of what you would see when you run the program. You can see all the
values stored in this Properties object. (What you would get will, of course, reflect your
machine's settings.)

java.runtime.name=Java(TM) 2 Runtime Environment, Standard Edi
sun.boot.library.path=/usr/local/j2sdk1.4.0/jre/lib/i386
java.vm.version=1.4.0-beta-b65
java.vm.vendor=Sun Microsystems Inc.
java.vendor.url=http://java.sun.com/
path.separator=:
java.vm.name=Java HotSpot(TM) Client VM
file.encoding.pkg=sun.io
sun.os.patch.level=unknown
java.vm.specification.name=Java Virtual Machine Specification
user.dir=/home/cay
java.runtime.version=1.4.0-beta-b65
java.awt.graphicsenv=sun.awt.X11GraphicsEnvironment
os.arch=i386
java.io.tmpdir=/tmp

line.separator=

java.vm.specification.vendor=Sun Microsystems Inc.
java.awt.fonts=
os.name=Linux
java.library.path=/usr/local/j2sdk1.4.0/jre/lib/i386:/usr/loca
j2sdk1.4.0/jre/lib/i386/native_threads/:/usr/local/j2sdk1.4.0/
lib/i386/client:/usr/local/j2sdk1.4.0/jre/../lib/i386
java.specification.name=Java Platform API Specification
java.class.version=48.0
java.util.prefs.PreferencesFactory=java.util.prefs.FileSystemP
encesFactory
os.version=2.4.3-20mdk
user.home=/home/cay
user.timezone=
java.awt.printerjob=sun.print.PSPrinterJob
file.encoding=ISO-8859-1
java.specification.version=1.4
user.name=cay
java.class.path=.
java.vm.specification.version=1.0
sun.arch.data.model=32
java.home=/usr/local/j2sdk1.4.0/jre
java.specification.vendor=Sun Microsystems Inc.
user.language=en
java.vm.info=mixed mode
java.version=1.4.0-beta
java.ext.dirs=/usr/local/j2sdk1.4.0/jre/lib/ext
sun.boot.class.path=/usr/local/j2sdk1.4.0/jre/lib/rt.jar:/usr/
j2sdk1.4.0/jre/lib/i18n.jar:/usr/local/j2sdk1.4.0/jre/lib/sunr
sign.jar:/usr/local/j2sdk1.4.0/jre/lib/jsse.jar:/usr/local/
j2sdk1.4.0/jre/lib/jce.jar:/usr/local/j2sdk1.4.0/jre/lib/char-
sets.jar:/usr/local/j2sdk1.4.0/jre/classes
java.vendor=Sun Microsystems Inc.
file.separator=/
java.vendor.url.bug=http://java.sun.com/cgi-bin/bugreport.cgi
sun.cpu.endian=little
sun.io.unicode.encoding=UnicodeLittle
user.region=US
sun.cpu.isalist=

NOTE

For security reasons, applets can only access a small subset of these

NOTE

Example 2-6 SystemInfo.java

 1. import java.util.*;
 2.
 3. /**
 4. This program prints out all system properties.
 5. */
 6. public class SystemInfo
 7. {
 8. public static void main(String args[])
 9. {
10. Properties systemProperties = System.getProperties()
11. Enumeration enum = systemProperties.propertyNames();
12. while (enum.hasMoreElements())
13. {
14. String key = (String)enum.nextElement();
15. System.out.println(key + "=" +
16. systemProperties.getProperty(key));
17. }
18. }
19. }

Property defaults

A property set is also a useful gadget whenever you want to allow the user to customize an
application. Here is how your users can customize the NotHelloWorld program to their
hearts' content. We'll allow them to specify the following in the configuration file
CustomWorld.ini:

Window size

Font

Point size

properties.

The list of system properties shows a disadvantage of the Properties
format. There is no hierarchy to the property keys, and it is cumbersome to
use an artificial hierarchy, such as dot-separated tokens. There are two
solutions. You can use XML to store properties in a hierarchical format—
see chapter 12. Alternatively, SDK 1.4 introduces a Preferences class
that can attach properties to individual classes.

Background color

Message string

If the user doesn't specify some of the settings, we will provide defaults.

The Properties class has two mechanisms for providing defaults. First, whenever you look
up the value of a string, you can specify a default that should be used automatically when the
key is not present.

String font = settings.getProperty("FONT", "Courier");

If there is a "FONT" property in the property table, then font is set to that string. Otherwise,
font is set to "Courier".

If you find it too tedious to specify the default in every call to getProperty, then you can
pack all the defaults into a secondary property set and supply that in the constructor of your
lookup table.

Properties defaultSettings = new Properties();
defaultSettings.put("FONT", "Courier");
defaultSettings.put("SIZE", "10");
defaultSettings.put("MESSAGE", "Hello, World");
. . .
Properties settings = new Properties(defaultSettings);
FileInputStream sf = new FileInputStream("CustomWorld.ini");
settings.load(sf);
. . .

Yes, you can even specify defaults to defaults if you give another property set parameter to the
defaultSettings constructor, but it is not something one would normally do.

Figure 2-13 is the customizable "Hello World" program. Just edit the .ini file to change
the program's appearance to the way you want (see Figure 2-13).

Figure 2-13. The customized Hello World program

Here are the current property settings.

#Environment settings
#Sun Jan 21 07:22:52 1996
FONT=Serif
SIZE=400 200
MESSAGE=Hello, Custom World
COLOR=0 50 100
PTSIZE=36

NOTE

The Properties class extends the Hashtable class. That means that
all methods of Hashtable are available to Properties objects. Some
methods are useful. For example, size returns the number of possible
properties (well, it isn't that nice—it doesn't count the defaults). Similarly,
keys returns an enumeration of all keys, except for the defaults. There is
also a second function, called propertyNames, that returns all keys.
The put function is downright dangerous. It doesn't check that you put
strings into the table.

Does the is-a rule for using inheritance apply here? Is every property set a
hash table? Not really. That these are true is really just an implementation
detail. Maybe it is better to think of a property set as having a hash table.
But then the hash table should be a private instance variable. Actually, in
this case, a property set uses two hash tables, one for the defaults and one
for the nondefault values.

We think a better design would be the following:

class Properties
{
 public String getProperty(String) { . . . }
 public void put(String, String) { . . . }
 . . .

Example 2-7 CustomWorld.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.util.*;
 4. import java.io.*;
 5. import javax.swing.*;
 6.
 7. /**
 8. This program demonstrates how to customize a "Hello, Wo
 9. program with a properties file.
10. */
11. public class CustomWorld
12. {
13. public static void main(String[] args)
14. {
15. CustomWorldFrame frame = new CustomWorldFrame();
16. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE)
17. frame.show();
18. }
19. }
20.
21. /**
22. This frame displays a message. The frame size, message
23. font, and color are set in a properties file.
24. */
25. class CustomWorldFrame extends JFrame
26. {
27. public CustomWorldFrame()
28. {
29. Properties defaultSettings = new Properties();
30. defaultSettings.put("FONT", "Monospaced");
31. defaultSettings.put("SIZE", "300 200");
32. defaultSettings.put("MESSAGE", "Hello, World");
33. defaultSettings.put("COLOR", "0 50 50");

 private Hashtable nonDefaults;
 private Hashtable defaults;
}

We don't want to tell you to avoid the Properties class in the Java
library. Provided you are careful to put nothing but strings in it, it works just
fine. But think twice before using "quick and dirty" inheritance in your own
programs.

34. defaultSettings.put("PTSIZE", "12");
35.
36. Properties settings = new Properties(defaultSettings
37. try
38. {
39. FileInputStream sf
40. = new FileInputStream("CustomWorld.ini");
41. settings.load(sf);
42. }
43. catch (FileNotFoundException e) {}
44. catch (IOException e) {}
45.
46. StringTokenizer st = new StringTokenizer
47. (settings.getProperty("COLOR"));
48. int red = Integer.parseInt(st.nextToken());
49. int green = Integer.parseInt(st.nextToken());
50. int blue = Integer.parseInt(st.nextToken());
51.
52. Color foreground = new Color(red, green, blue);
53.
54. String name = settings.getProperty("FONT");
55. int size = Integer.parseInt(settings.getProperty("PT
56. Font f = new Font(name, Font.BOLD, size);
57.
58. st = new StringTokenizer(settings.getProperty("SIZE"
59. int hsize = Integer.parseInt(st.nextToken());
60. int vsize = Integer.parseInt(st.nextToken());
61. setSize(hsize, vsize);
62. setTitle(settings.getProperty("MESSAGE"));
63.
64.
65. JLabel label = new JLabel(settings.getProperty("MESS
66. SwingConstants.CENTER);
67. label.setFont(f);
68. label.setForeground(foreground);
69. getContentPane().add(label);
70. }
71. }

java.util.Properties

Properties()

creates an empty property list.

Properties(Properties defaults)

creates an empty property list with a set of defaults.

String getProperty(String key)

gets a property association; returns the string associated with the key, or the string
associated with the key in the default table if it wasn't present in the table.

String getProperty(String key, String defaultValue)

gets a property with a default value if the key is not found; returns the string associated
with the key, or the default string if it wasn't present in the table.

void load(InputStream in) throws IOException

loads a property set from an InputStream.

Stacks

Since version 1.0, the standard library had a Stack class with the familiar push and pop
methods. However, the Stack class extends the Vector class, which is not satisfactory
from a theoretical perspective—you can apply such un-stack-like operations as insert and
remove to insert and remove values anywhere, not just the top of the stack.

Parameters: defaults the defaults to use for lookups

Parameters: key the key whose associated string to get

Parameters: key the key whose associated string to get
 defaultValue the string to return if the key is not present

Parameters: in the input stream

java.util.Stack

void push(Object item)

pushes an item onto the stack.

Object pop()

pops and returns the top item of the stack. Don't call this method if the stack is empty.

Object peek()

returns the top of the stack without popping it. Don't call this method if the stack is empty.

Bit Sets

The Java platform BitSet class stores a sequence of bits. (It is not a set in the mathematical
sense—bit vector or bit array would have been more appropriate terms.) Use a bit set if you
need to store a sequence of bits (for example, flags) efficiently. Because a bit set packs the
bits into bytes, it is far more efficient to use a bit set than to use an ArrayList of Boolean
objects.

The BitSet class gives you a convenient interface for reading, setting, or resetting individual
bits. Use of this interface avoids the masking and other bit-fiddling operations that would be
necessary if you stored bits in int or long variables.

For example, for a BitSet named bucketOfBits,

bucketOfBits.get(i)

returns true if the i'th bit is on, and false otherwise. Similarly,

bucketOfBits.set(i)

turns the i'th bit on. Finally,

bucketOfBits.clear(i)

Parameters: item the item to be added

turns the i'th bit off.

C++ NOTE

java.util.BitSet

BitSet(int nbits)

constructs a bit set.

int length()

returns the "logical length" of the bit set: one plus the index of the highest set bit.

boolean get(int bit)

gets a bit.

void set(int bit)

sets a bit.

void clear(int bit)

clears a bit.

The C++ bitset template has the same functionality as the Java platform
BitSet.

Parameters: nbits the initial number of bits

Parameters: bit the position of the requested bit

Parameters: bit the position of the bit to be set

void and(BitSet set)

logically ANDs this bit set with another.

void or(BitSet set)

logically ORs this bit set with another.

void xor(BitSet set)

logically XORs this bit set with another.

void andNot(BitSet set)

clears all bits in this bitset that are set in the other bit set.

The "sieve of Eratosthenes" benchmark

As an example of using bit sets, we want to show you an implementation of the "sieve of
Eratosthenes" algorithm for finding prime numbers. (A prime number is a number like 2, 3, or 5
that is divisible only by itself and 1, and the sieve of Eratosthenes was one of the first methods
discovered to enumerate these fundamental building blocks.) This isn't a terribly good
algorithm for finding the number of primes, but for some reason it has become a popular
benchmark for compiler performance. (It isn't a good benchmark either, since it mainly tests bit
operations.)

Oh well, we bow to tradition and include an implementation. This program counts all prime

Parameters: bit the position of the bit to be cleared

Parameters: set the bit set to be combined with this bit set

Parameters: set the bit set to be combined with this bit set

Parameters: set the bit set to be combined with this bit set

Parameters: set the bit set to be combined with this bit set

numbers between 2 and 1,000,000. (There are 78,498 primes, so you probably don't want to
print them all out.) You will find that the program takes a little while to get going, but eventually
it picks up speed.

Without going into too many details of this program, the key is to march through a bit set with
one million bits. We first turn on all the bits. After that, we turn off the bits that are multiples of
numbers known to be prime. The positions of the bits that remain after this process are,
themselves, the prime numbers. Example 2-8 illustrates this program in the Java programming
language, and Example 2-9 is the C++ code.

NOTE

Example 2-8 Sieve.java

 1. import java.util.*;
 2.
 3. /**
 4. This program runs the Sieve of Erathostenes benchmark.

Even though the sieve isn't a good benchmark, we couldn't resist timing the
two implementations of the algorithm. Here are the timing results on a 233
MHz IBM Thinkpad with 224 megabytes of RAM, running Linux Mandrake
8.

g++ 2.96: 1740 milliseconds

JDK 1.4: 1133 milliseconds

We have run this test for five editions of Core Java, and in the last two
editions the Java programming language beat C++. However, in all
fairness, we should point out that the culprit for the bad C++ result is the
lousy implementation of the standard bitset template in the g++
compiler. When we reimplemented bitset, the time for C++ went down
to 630 milliseconds.

Of course, these are perfect benchmark results because they allow you to
put on any spin that you like. If you want to "prove" that the Java
programming language is twice as slow as C++, make use of the latter
results. Or you can "prove" that it has now overtaken C++. Point out that it
is only fair to compare the language implementation as a whole, including
standard class libraries, and quote the first set of numbers.

 5. It computes all primes up to 1,000,000.
 6. */
 7. public class Sieve
 8. {
 9. public static final boolean PRINT = false;
10.
11. public static void main(String[] s)
12. {
13. int n = 1000000;
14. long start = System.currentTimeMillis();
15. BitSet b = new BitSet(n);
16. int count = 0;
17. int i;
18. for (i = 2; i <= n; i++)
19. b.set(i);
20. i = 2;
21. while (i * i <= n)
22. {
23. if (b.get(i))
24. {
25. if (PRINT) System.out.println(i);
26. count++;
27. int k = 2 * i;
28. while (k <= n)
29. {
30. b.clear(k);
31. k += i;
32. }
33. }
34. i++;
35. }
36. while (i <= n)
37. {
38. if (b.get(i))
39. {
40. if (PRINT) System.out.println(i);
41. count++;
42. }
43. i++;
44. }
45. long end = System.currentTimeMillis();
46. System.out.println(count + " primes");
47. System.out.println((end - start) + " milliseconds");
48. }

49. }

Example 2-9 Sieve.cpp

 1. #ifndef AVOID_STANDARD_BITSET
 2.
 3. #include <bitset>
 4.
 5. #else
 6.
 7. template<int N>
 8. class bitset
 9. {
10. public:
11. bitset() : bits(new char[(N - 1) / 8 + 1]) {}
12.
13. bool test(int n)
14. {
15. return (bits[n >> 3] & (1 << (n & 7))) != 0;
16. }
17.
18. void set(int n)
19. {
20. bits[n >> 3] |= 1 << (n & 7);
21. }
22.
23. void reset(int n)
24. {
25. bits[n >> 3] &= ~(1 << (n & 7));
26. }
27.
28. private:
29. char* bits;
30. };
31.
32. #endif
33.
34. #include <iostream>
35. #include <ctime>
36.
37. using namespace std;
38.
39. int main()
40. {

41. const int N = 1000000;
42. clock_t cstart = clock();
43.
44. bitset<N + 1> b;
45. int count = 0;
46. int i;
47. for (i = 2; i <= N; i++)
48. b.set(i);
49. i = 2;
50. while (i * i <= N)
51. {
52. if (b.test(i))
53. {
54. int k = 2 * i;
55. while (k <= N)
56. { b.reset(k);
57. k += i;
58. }
59. }
60. i++;
61. }
62. for (i = 2; i <= N; i++)
63. {
64. if (b.test(i))
65. {
66. #ifdef PRINT
67. cout << i << "\n";
68. #endif
69. count++;
70. }
71. }
72.
73. clock_t cend = clock();
74. double millis = 1000.0
75. * (cend - cstart) / CLOCKS_PER_SEC;
76.
77. cout << count << " primes\n"
78. << millis << " milliseconds\n";
79.
80. return 0;
81. }

CONTENTS

Chapter 3. Networking
Connecting to a Server

Implementing Servers

Sending E-Mail

Advanced Socket Programming

URL Connections

Posting Form Data

Harvesting Information from the Web

The Java programming language is supposed to become the premier tool for connecting
computers over the Internet and corporate intranets and, in this realm, Java mostly lives up to
the hype. If you are accustomed to programming network connections in C or C++, you will be
pleasantly surprised at how easy it is to program them in the Java programming language. For
example, as you saw in the applet chapter in Volume 1, it is easy to open a URL (uniform
resource locator) on the Net: simply pass the URL to the showDocument method in the
AppletContext class.

We begin this chapter by talking a little bit about basic networking. Then, we move on to
reviewing and extending the information that was briefly presented in the applet chapter in
Volume 1. The rest of the chapter moves on to the intricacies of doing sophisticated work on
the Net with the Java programming language. For example, we give you a glimpse into server-
side programming with Java. In particular, we show you how to use a combination of an applet
and a servlet to harvest information on the Internet.

In the first part of this chapter, we assume that you have no network programming experience.
If you have written TCP/IP programs before and ports and sockets are no mystery to you, you
should breeze through the sample code. Toward the end of this chapter, the code becomes
complex and is geared more toward those with some experience in network programming.

Connecting to a Server
Before writing our first network program, let's learn about a great debugging tool for network
programming that you already have, namely, telnet. Most systems (both UNIX and Windows)
always come with telnet. However, it is optional with some installations, and you may not have
requested it when you installed the operating system. If you can't run telnet from a command
shell, then you need to add it from your operating system installation disk.

You may have used telnet to connect to a remote computer and to check your e-mail, but you
can use it to communicate with other services provided by Internet hosts as well. Here is an

CONTENTS

example of what you can do. Type

telnet time-A.timefreq.bldrdoc.gov 13

As Figure 3-1 shows, you should get back a line like this:

Figure 3-1. Output of the "time of day" service

52088 01-06-28 14:35:13 50 0 0 644.8 UTC(NIST) *

What is going on? You have connected to the "time of day" service that most UNIX machines
constantly run. The particular server that you connected to is operated by the National Institute
of Standards and Technology in Boulder, Colorado, and gives the measurement of a Cesium
atomic clock. (Of course, the reported time is not completely accurate due to network delays.)
By convention, the "time of day" service is always attached to "port" number 13.

NOTE

In network parlance, a port is not a physical device, but an abstraction to
facilitate communication between a server and a client (see Figure 3-2).

Figure 3-2. A client connecting to a server port

What is happening is that the server software is continuously running on the remote machine,
waiting for any network traffic that wants to chat with port 13. When the operating system on
the remote computer gets a network package that contains a request to connect to port
number 13, it wakes up the listening server process and establishes the connection. The
connection stays up until it is terminated by one of the parties.

When you began the telnet session with time-A.timefreq.bldrdoc.gov at port 13,
an unrelated piece of network software knew enough to convert the string "time-
A.timefreq.bldrdoc.gov" to its correct Internet Protocol address, 132.163.4.102. The
software then sent a connection request to that computer, asking for a connection to port 13.
Once the connection was established, the remote program sent back a line of data and then
closed the connection. In general, of course, clients and servers engage in a more extensive
dialog before one or the other closes the connection.

Here is another experiment, along the same lines, that is a bit more interesting. Do the
following:

1. On Windows, turn on the local key echo in the Terminal Preferences dialog box.

2. Connect to java.sun.com on port 80.

3. Type the following, exactly as it appears, without pressing backspace.

4. GET / HTTP/1.0

5. Now, press the ENTER key two times.

Figure 3-3 shows the response. It should look eerily familiar—you got a page of HTML-
formatted text, namely, the main web page for Java technology.

Figure 3-3. Using telnet to access an HTTP port

This is exactly the same process that your web browser goes through to get a web page.

Our first network program in Example 3-1 will do the same thing we did using telnet—connect
to a port and print out what it finds.

Example 3-1 SocketTest.java

 1. import java.io.*;
 2. import java.net.*;
 3.
 4. /**
 5. This program makes a socket connection to the atomic cl
 6. in Boulder, Colorado, and prints the time that the
 7. server sends.
 8. */
 9. public class SocketTest
10. {
11. public static void main(String[] args)
12. {
13. try
14. {
15. Socket s = new Socket("time-A.timefreq.bldrdoc.go
16. 13);
17.
18. BufferedReader in = new BufferedReader
19. (new InputStreamReader(s.getInputStream()));
20. boolean more = true;
21. while (more)
22. {
23. String line = in.readLine();

24. if (line == null)
25. more = false;
26. else
27. System.out.println(line);
28. }
29.
30. }
31. catch (IOException e)
32. {
33. e.printStackTrace();
34. }
35. }
36. }

This program is extremely simple, but before we analyze the two key lines, note that we are
importing the java.net package and catching any input/output errors because the code is
encased in a try/catch block. (Since many things can go wrong with a network
connection, most of the network-related methods threaten to throw I/O errors. You must catch
them for the code to compile.)

As for the code itself, the key lines are as follows:

Socket s = new Socket("time-A.timefreq.bldrdoc.gov", 13);
BufferedReader in = new BufferedReader
 (new InputStreamReader(s.getInputStream()));

The first line opens a socket, which is an abstraction for the network software that enables
communication out of and into this program. We pass the remote address and the port number
to the socket constructor. If the connection fails, then an UnknownHostException is
thrown. If there is another problem, then an IOException occurs. Since
UnknownHostException is a subclass of IOException and this is a sample program,
we just catch the superclass.

Once the socket is open, the getInputStream method injava.net.Socket returns
an InputStream object that you can use just like any other stream. (See Chapter 12 of
Volume 1.) Once you have grabbed the stream, this program simply

1. Reads all characters sent by the server using readLine;

2. Prints each line out to standard output.

This process continues until the stream is finished and the server disconnects. You know this
happens when the readLine method returns a null string.

NOTE

Plainly, the Socket class is pleasant and easy to use because Java technology hides the
complexities of establishing a networking connection and sending data across. The
java.net package essentially gives you the same programming interface you would use to
work with a file.

Implementing Servers
Now that we have implemented a basic network client that receives data from the Net, let's
implement a simple server that can send information out to the Net. Once you start the server
program, it waits for some client to attach to its port. We chose port number 8189, which is not
used by any of the standard services. The ServerSocket class is used to establish a
socket. In our case, the command

ServerSocket s = new ServerSocket(8189);

establishes a server that monitors port 8189. The command

Socket incoming = s.accept();

tells the program to wait indefinitely until a client connects to that port. Once someone
connects to this port by sending the correct request over the network, this method returns a
Socket object that represents the connection that was made. You can use this object to get
an input reader and an output writer from that socket, as is shown in the following code:

BufferedReader in = new BufferedReader
 (new InputStreamReader(incoming.getInputStream()));
PrintWriter out = new PrintWriter
 (incoming.getOutputStream(), true /* autoFlush */);

Everything that the server sends to the server output stream becomes the input of the client
program, and all the output from the client program ends up in the server input stream.

In all of the examples in this chapter, we will transmit text through sockets. We, therefore, turn
the streams into readers and writers. Then, we can use the readLine method (defined in
BufferedReader, but not in InputStream) and the print method (defined in
PrintWriter, but not in OutputStream). If we wanted to transmit binary data, we would
turn the streams into DataInputStream and DataOutputStreams. To transmit
serialized objects, we would use ObjectInputStream and ObjectOutputStreams
instead.

Let's send the client a greeting:

This program works only with very simple servers, such as a "time of day"
service. In more complex networking programs, the client sends request
data to the server, and the server may not immediately disconnect at the
end of a response. You will see how to implement that behavior in several
examples throughout this chapter.

out.println("Hello! Enter BYE to exit.");

When you use telnet to connect to this server program at port 8189, you will see the above
greeting on the terminal screen.

In this simple server, we just read the client input, a line at a time, and echo it. This
demonstrates that the program gets the client's input. An actual server would obviously
compute and return an answer that depended on the input.

String line = in.readLine();
if (line != null)
{
 out.println("Echo: " + line);
 if (line.trim().equals("BYE")) done = true;
}
else done = true;

In the end, we close the incoming socket.

incoming.close();

That is all there is to it. Every server program, such as an HTTP web server, continues
performing this loop:

1. It gets a command from the client ("get me this information") through an incoming data
stream.

2. It somehow fetches the information.

3. It sends the information to the client through the outgoing data stream.

Example 3-2 is the complete program.

Example 3-2 EchoServer.java

 1. import java.io.*;
 2. import java.net.*;
 3.
 4. /**
 5. This program implements a simple server that listens to
 6. port 8189 and echoes back all client input.
 7. */
 8. public class EchoServer
 9. {
10. public static void main(String[] args)
11. {
12. try

13. {
14. // establish server socket
15. ServerSocket s = new ServerSocket(8189);
16.
17. // wait for client connection
18. Socket incoming = s.accept();
19. BufferedReader in = new BufferedReader
20. (new InputStreamReader(incoming.getInputStream
21. PrintWriter out = new PrintWriter
22. (incoming.getOutputStream(), true /* autoFlush
23.
24. out.println("Hello! Enter BYE to exit.");
25.
26. // echo client input
27. boolean done = false;
28. while (!done)
29. {
30. String line = in.readLine();
31. if (line == null) done = true;
32. else
33. {
34. out.println("Echo: " + line);
35.
36. if (line.trim().equals("BYE"))
37. done = true;
38. }
39. }
40. incoming.close();
41. }
42. catch (Exception e)
43. {
44. e.printStackTrace();
45. }
46. }
47. }

To try it out, you need to compile and run the program. Then, use telnet to connect to the
following server and port:

Server: 127.0.0.1

Port: 8189

The IP address 127.0.0.1 is a special address, called the local loopback address, that denotes
the local machine. Since you are running the echo server locally, that is where you want to

connect.

NOTE

Actually, anyone in the world can access your echo server, provided it is running and they
know your IP address and the magic port number.

When you connect to the port, you will get the message shown in Figure 3-4:

Figure 3-4. Accessing an echo server

Hello! Enter BYE to exit.

Type anything and watch the input echo on your screen. Type BYE (all uppercase letters) to
disconnect. The server program will terminate as well.

Serving Multiple Clients

There is one problem with the simple server in the preceding example. Suppose we want to
allow multiple clients to connect to our server at the same time. Typically, a server runs
constantly on a server computer, and clients from all over the Internet may want to use the
server at the same time. Rejecting multiple connections allows any one client to monopolize
the service by connecting to it for a long time. We can do much better through the magic of
threads.

Every time we know the program has established a new socket connection, that is, when the
call to accept was successful, we will launch a new thread to take care of the connection
between the server and that client. The main program will just go back and wait for the next

If you are using a dial-up connection, you need to have it running for this
experiment. Even though you are only talking to your local machine, the
network software must be loaded.

connection. For this to happen, the main loop of the server should look like this:

while (true)
{
 Socket incoming = s.accept();
 Thread t = new ThreadedEchoHandler(incoming);
 t.start();
}

The ThreadedEchoHandler class derives from Thread and contains the
communication loop with the client in its run method.

class ThreadedEchoHandler extends Thread
{ . . .
 public void run()
 {
 try
 {
 BufferedReader in = new BufferedReader
 (new InputStreamReader(incoming.getInputStream())
 PrintWriter out = new PrintWriter
 (incoming.getOutputStream(), true /* autoFlush */)

 String line;
 while ((line = in.readLine()) != null)
 {
 process line
 }
 incoming.close();
 }
 catch(Exception e)
 {
 handle exception
 }
 }
}

Because each connection starts a new thread, multiple clients can connect to the server at the
same time. You can easily check out this fact. Compile and run the server program (Example
3-3). Open several telnet windows as we have in Figure 3-5. You can communicate through all
of them simultaneously. The server program never dies. Use ctrl+c to kill it.

Figure 3-5. Simultaneous access to the threaded echo server

Example 3-3 ThreadedEchoServer.java

 1. import java.io.*;
 2. import java.net.*;
 3.
 4. /**
 5. This program implements a multithreaded server that lis
 6. port 8189 and echoes back all client input.
 7. */
 8. public class ThreadedEchoServer
 9. {
10. public static void main(String[] args)
11. {
12. try
13. {
14. int i = 1;
15. ServerSocket s = new ServerSocket(8189);
16.
17. for (;;)
18. {
19. Socket incoming = s.accept();
20. System.out.println("Spawning " + i);
21. Thread t = new ThreadedEchoHandler(incoming, i
22. t.start();

23. i++;
24. }
25. }
26. catch (Exception e)
27. {
28. e.printStackTrace();
29. }
30. }
31. }
32.
33. /**
34. This class handles the client input for one server sock
35. connection.
36. */
37. class ThreadedEchoHandler extends Thread
38. {
39. /**
40. Constructs a handler.
41. @param i the incoming socket
42. @param c the counter for the handlers (used in promp
43. */
44. public ThreadedEchoHandler(Socket i, int c)
45. {
46. incoming = i; counter = c;
47. }
48.
49. public void run()
50. {
51. try
52. {
53. BufferedReader in = new BufferedReader
54. (new InputStreamReader(incoming.getInputStream
55. PrintWriter out = new PrintWriter
56. (incoming.getOutputStream(), true /* autoFlush
57.
58. out.println("Hello! Enter BYE to exit.");
59.
60. boolean done = false;
61. while (!done)
62. {
63. String str = in.readLine();
64. if (str == null) done = true;
65. else
66. {

67. out.println("Echo (" + counter + "): " + st
68.
69. if (str.trim().equals("BYE"))
70. done = true;
71. }
72. }
73. incoming.close();
74. }
75. catch (Exception e)
76. {
77. e.printStackTrace();
78. }
79. }
80.
81. private Socket incoming;
82. private int counter;
83. }

java.net.ServerSocket

ServerSocket(int port) throws IOException

creates a server socket that monitors a port.

Socket accept() throws IOException

waits for a connection. This method will block (that is, idle) the current thread until the
connection is made. The method returns a Socket object through which the program
can communicate with the connecting client.

void close() throws IOException

closes the server socket.

Sending E-Mail
In this section, we show you a practical example of socket programming: a program that sends

Parameters: port the port number

e-mail to a remote site.

To send e-mail, you make a socket connection to port 25, the SMTP port. SMTP is the Simple
Mail Transport Protocol that describes the format for e-mail messages. You can connect to any
server that runs an SMTP service. On UNIX machines, that service is typically implemented by
the sendmail daemon. However, the server must be willing to accept your request. It used
to be that sendmail servers were routinely willing to route e-mail from anyone, but in these
days of spam floods, most servers now have built-in checks and only accept requests from
users, domains, or IP address ranges that they trust.

Once you are connected to the server, send a mail header (in the SMTP format, which is easy
to generate), followed by the mail message.

Here are the details:

1. Open a socket to your host.

Socket s = new Socket("mail.yourserver.com", 25); // 25 is
PrintWriter out = new PrintWriter(s.getOutputStream());

2. Send the following information to the print stream:

HELO sending host
MAIL FROM: <sender email address>
RCPT TO: <recipient email address>
DATA
mail message
(any number of lines)
.
QUIT

The SMTP specification (RFC 821) states that lines must be terminated with \r followed by
\n.

Most SMTP servers do not check the veracity of the information—you may be able to supply
any sender you like. (Keep this in mind the next time you get an e-mail message from
president@whitehouse.gov inviting you to a black-tie affair on the front lawn. Anyone
could have connected to an SMTP server and created a fake message.)

The program in Example 3-4 is a very simple e-mail program. As you can see in Figure 3-6,
you type in the sender, recipient, mail message, and SMTP server. Then, click on the "Send"
button, and your message is sent.

Figure 3-6. The MailTest program

The program simply sends the sequence of commands that we just discussed. It displays the
commands that it sends to the SMTP server and the responses that it receives. Note that the
communication with the mail server occurs in a separate thread so that the user interface
thread is not blocked when the program tries to connect to the mail server. (See Chapter 1 for
more details on threads in Swing applications.)

Example 3-4 MailTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.util.*;
 4. import java.net.*;
 5. import java.io.*;
 6. import javax.swing.*;
 7.
 8. /**
 9. This program shows how to use sockets to send plain te
 10. mail messages.
 11. */
 12. public class MailTest
 13. {
 14. public static void main(String[] args)
 15. {
 16. JFrame frame = new MailTestFrame();
 17. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 18. frame.show();
 19. }
 20. }
 21.

 22. /**
 23. The frame for the mail GUI.
 24. */
 25. class MailTestFrame extends JFrame
 26. {
 27. public MailTestFrame()
 28. {
 29. setSize(WIDTH, HEIGHT);
 30. setTitle("MailTest");
 31.
 32. getContentPane().setLayout(new GridBagLayout());
 33.
 34. GridBagConstraints gbc = new GridBagConstraints();
 35. gbc.fill = GridBagConstraints.HORIZONTAL;
 36. gbc.weightx = 0;
 37. gbc.weighty = 0;
 38.
 39. gbc.weightx = 0;
 40. add(new JLabel("From:"), gbc, 0, 0, 1, 1);
 41. gbc.weightx = 100;
 42. from = new JTextField(20);
 43. add(from, gbc, 1, 0, 1, 1);
 44.
 45. gbc.weightx = 0;
 46. add(new JLabel("To:"), gbc, 0, 1, 1, 1);
 47. gbc.weightx = 100;
 48. to = new JTextField(20);
 49. add(to, gbc, 1, 1, 1, 1);
 50.
 51. gbc.weightx = 0;
 52. add(new JLabel("SMTP server:"), gbc, 0, 2, 1, 1);
 53. gbc.weightx = 100;
 54. smtpServer = new JTextField(20);
 55. add(smtpServer, gbc, 1, 2, 1, 1);
 56.
 57. gbc.fill = GridBagConstraints.BOTH;
 58. gbc.weighty = 100;
 59. message = new JTextArea();
 60. add(new JScrollPane(message), gbc, 0, 3, 2, 1);
 61.
 62. communication = new JTextArea();
 63. add(new JScrollPane(communication), gbc, 0, 4, 2, 1
 64.
 65. gbc.weighty = 0;

 66. JButton sendButton = new JButton("Send");
 67. sendButton.addActionListener(new
 68. ActionListener()
 69. {
 70. public void actionPerformed(ActionEvent evt)
 71. {
 72. new
 73. Thread()
 74. {
 75. public void run()
 76. {
 77. sendMail();
 78. }
 79. }.start();
 80. }
 81. });
 82. JPanel buttonPanel = new JPanel();
 83. buttonPanel.add(sendButton);
 84. add(buttonPanel, gbc, 0, 5, 2, 1);
 85. }
 86.
 87. /**
 88. Add a component to this frame.
 89. @param c the component to add
 90. @param gbc the grid bag constraints
 91. @param x the grid bax column
 92. @param y the grid bag row
 93. @param w the number of grid bag columns spanned
 94. @param h the number of grid bag rows spanned
 95. */
 96. private void add(Component c, GridBagConstraints gbc,
 97. int x, int y, int w, int h)
 98. {
 99. gbc.gridx = x;
100. gbc.gridy = y;
101. gbc.gridwidth = w;
102. gbc.gridheight = h;
103. getContentPane().add(c, gbc);
104. }
105.
106. /**
107. Sends the mail message that has been authored in th
108. */
109. public void sendMail()

110. {
111. try
112. {
113. Socket s = new Socket(smtpServer.getText(), 25);
114.
115. out = new PrintWriter(s.getOutputStream());
116. in = new BufferedReader(new
117. InputStreamReader(s.getInputStream()));
118.
119. String hostName
120. = InetAddress.getLocalHost().getHostName();
121.
122. receive();
123. send("HELO " + hostName);
124. receive();
125. send("MAIL FROM: <" + from.getText() +">");
126. receive();
127. send("RCPT TO: <" + to.getText() +">");
128. receive();
129. send("DATA");
130. receive();
131. StringTokenizer tokenizer = new StringTokenizer(
132. message.getText(), "\n");
133. while (tokenizer.hasMoreTokens())
134. send(tokenizer.nextToken());
135. send(".");
136. receive();
137. s.close();
138. }
139. catch (IOException exception)
140. {
141. communication.append("Error: " + exception);
142. }
143. }
144.
145. /**
146. Sends a string to the socket and echoes it in the
147. communication text area.
148. @param s the string to send.
149. */
150. public void send(String s) throws IOException
151. {
152. communication.append(s);
153. communication.append("\n");

154. out.print(s);
155. out.print("\r\n");
156. out.flush();
157. }
158.
159. /**
160. Receives a string from the socket and displays it
161. in the communication text area.
162. */
163. public void receive() throws IOException
164. {
165. String line = in.readLine();
166. if (line != null)
167. {
168. communication.append(line);
169. communication.append("\n");
170. }
171. }
172.
173. private BufferedReader in;
174. private PrintWriter out;
175. private JTextField from;
176. private JTextField to;
177. private JTextField smtpServer;
178. private JTextArea message;
179. private JTextArea communication;
180.
181. public static final int WIDTH = 300;
182. public static final int HEIGHT = 300;
183. }

Advanced Socket Programming
Socket timeouts

In real-life programs, you don't just want to read from a socket, because the read methods will
block until data is available. If the host is unreachable, then your application waits for a long
time, and you are at the mercy of the underlying operating system to time out eventually.

Instead, you should decide what timeout value is reasonable for your particular application.
Then, call the setSoTimeout method to set a timeout value (in milliseconds).

Socket s = new Socket(. . .);
s.setSoTimeout(10000); // time out after 10 seconds

If the timeout value has been set for a socket, then all subsequent read operations throw an
InterruptedIOException when the timeout has been reached before input is
available. You can catch that exception and react to the timeout.

try
{
 String line
 while ((String line = in.readLine()) != null)
 {
 process line
 }
}
catch (InterruptedIOException exception)
{
 react to timeout
}

There is one additional timeout issue that you need to address. The constructor

Socket(String host, int port)

can block indefinitely until an initial connection to the host is established.

As of SDK 1.4, you can overcome this problem by first constructing an unconnected socket
and then connecting it with a timeout:

Socket s = new Socket();
s.connect(new InetSocketAddress(host, port), timeout);

TIP

If you use an older version of the SDK, you need to construct the socket in
a separate thread and wait for that thread to either complete or time out.

Socket socket = null;
Thread t = new Thread()
 {
 public void run()
 {
 try
 {
 socket = new Socket(host, port);
 }
 catch (IOException exception)
 {
 }

Half-Close

When a client program sends a request to the server, the server needs to be able to determine
when the end of the request occurs. For that reason, many Internet protocols (such as SMTP)
are line-oriented. Other protocols contain a header that specifies the size of the request data.
Otherwise, indicating the end of the request data is harder than writing data to a file. With a
file, you'd just close the file at the end of the data. But if you close a socket, then you
immediately disconnect from the server.

The half-close overcomes this problem. You can close the output stream of a socket, thereby
indicating to the server the end of the request data, but keep the input stream open so that you
can read the response.

The client side looks like this:

Socket socket = new Socket(host, port);
BufferedReader reader = new BufferedReader(
 new InputStreamReader(socket.getInputStream()));
PrintWriter writer = new PrintWriter(
 socket.getOutputStream());
// send request data
writer.print(. . .);
writer.flush();
socket.shutdownOutput();
// now socket is half closed
// read response data
String line;
while ((line = reader.readLine()) != null)

 }
 };

t.start();
try
{
 t.join(timeout);
}
catch (InterruptedException exception)
{
}

The join method returns when the thread has completed or when the
timeout has expired, whichever happens first. If the socket variable is not
null, then the socket has been successfully opened within the allotted
time.

 . . .
socket.close();

The server side simply reads input until the end of the input stream is reached.

Of course, this protocol is only useful for one-shot services such as HTTP where the client
connects, issues a request, catches the response, and then disconnects.

Internet addresses

Usually, you don't have to worry too much about Internet addresses—the numerical host
addresses that consist of four bytes (or, with IPv6, six bytes) such as 132.163.4.102. However,
you can use the InetAddress class if you need to convert between host names and
Internet addresses.

As of SDK 1.4, the java.net package supports IPv6 Internet addresses, provided the host
operating system does. For example, you'll be able to make use of IPv6 addresses on Solaris
but, at the time of this writing, not on Windows.

The static getByName method returns an InetAddress object of a host.

For example,

InetAddress address
 = InetAddress.getByName("time-A.timefreq.bldrdoc.gov");

returns an InetAddress object that encapsulates the sequence of four bytes
132.163.4.102. You can access the bytes with the getAddress method.

byte[] addressBytes = address.getAddress();

Some host names with a lot of traffic correspond to multiple Internet addresses, to facilitate
load balancing. For example, at the time of this writing, the host name java.sun.com
corresponds to three different Internet addresses. One of them is picked at random when the
host is accessed. You can get all hosts with the getAllByName method.

InetAddress[] addresses = InetAddress.getAllByName(host);

Finally, you sometimes need the address of the local host. If you simply ask for the address of
localhost, you always get the address 127.0.0.1, which isn't very useful. Instead, use the
static getLocalHost method to get the address of your local host.

InetAddress address
 = InetAddress.getLocalHost();

Example 3-5 is a simple program that prints the Internet address of your local host if you do
not specify any command-line parameters, or all Internet addresses of another host if you

specify the host name on the command line, such as

java InetAddressTest java.sun.com

Example 3-5 InetAddressTest.java

 1. import java.net.*;
 2.
 3. /**
 4. This program demonstrates the InetAddress class.
 5. Supply a host name as command line argument, or run
 6. without command line arguments to see the address of th
 7. local host.
 8. */
 9. public class InetAddressTest
10. {
11. public static void main(String[] args)
12. {
13. try
14. {
15. if (args.length > 0)
16. {
17. String host = args[0];
18. InetAddress[] addresses
19. = InetAddress.getAllByName(host);
20. for (int i = 0; i < addresses.length; i++)
21. System.out.println(addresses[i]);
22. }
23. else
24. {
25. InetAddress localHostAddress
26. = InetAddress.getLocalHost();
27. System.out.println(localHostAddress);
28. }
29. }
30. catch (Exception e)
31. {
32. e.printStackTrace();
33. }
34. }
35. }

NOTE

 In this book, we cover only the TCP (Transmission Control Protocol)

java.net.Socket

Socket(String host, int port)

creates a socket and connects it to a port on a remote host.

Socket()

creates a socket that has not yet been connected.

void connect(SocketAddress address)

connects this socket to the given address. (Since SDK 1.4)

void connect(SocketAddress address, int timeout)

connects this socket to the given address or returns if the time interval expired. (Since
SDK 1.4)

boolean isConnected()

returns true if the socket is connected. (Since SDK 1.4)

 networking protocol. TCP establishes a reliable connection between two
computers. The Java platform also supports the so-called UDP (User
Datagram Protocol) protocol, which can be used to send packets (also
called datagrams) with much less overhead than that for TCP. The
drawback is that the packets can be delivered in random order, or even
dropped altogether. It is up to the recipient to put the packets in order and
to request retransmission of missing packets. UDP is most suited for
applications where missing packets can be tolerated, for example, in audio
or video streams, or for continuous measurements.

Parameters: host the host name
 port the port number

Parameters: address the remote address
 timeout the timeout in milliseconds

void close()

closes the socket.

boolean isClosed()

returns true if the socket is closed. (Since SDK 1.4)

InputStream getInputStream()

gets the input stream to read from the socket.

OutputStream getOutputStream()

gets an output stream to write to this socket.

void setSoTimeout(int timeout)

sets the blocking time for read requests on this Socket. If the timeout is reached, then
an InterruptedIOException is raised.

void shutdownOutput()

sets the output stream to "end of stream."

void shutdownInput()

sets the input stream to "end of stream."

boolean isOutputShutdown

returns true if output has been shut down. (Since SDK 1.4)

boolean isInputShutdown

returns true if input has been shut down.(Since SDK 1.4)

java.net.InetAddress

Parameters: timeout the timeout in milliseconds (0 for infinite timeout)

static InetAddress getByName(String host)

static InetAddress[] getAllByName(String host)

These methods construct an InetAddress, or an array of all Internet addresses, for
the given host name.

static InetAddress getLocalHost()

constructs an InetAddress for the local host.

byte[] getAddress()

returns an array of bytes that contains the numerical address.

String getHostAddress()

returns a string with decimal numbers, separated by periods, for example
"132.163.4.102".

String getHostName()

returns the host name.

java.net.InetSocketAddress

Since SDK 1.4:

InetSocketAddress(String hostname, int port)

constructs an address object with the given host and port, resolving the host name during
construction. If the host name cannot be resolved, then the address object's
unresolved property is set to true.

boolean isUnresolved()

returns true if this address object could not be resolved.

URL Connections
In the last section, you saw how to use socket-level programming to connect to an SMTP
server and send an e-mail message. It is nice to know that this can be done, and to get a

glimpse of what goes on "under the hood" of an Internet service such as e-mail. However, if
you are planning an application that incorporates e-mail, you will probably want to work at a
higher level and use a library that encapsulates the protocol details. For example, Sun
Microsystems has developed the JavaMail API as a standard extension of the Java platform.
In the JavaMail API, you simply issue a call such as

Transport.send(message);

to send a message. The library takes care of message protocols, multiple recipients, handling
attachments, and so on.

For the remainder of this chapter, we will concentrate on higher-level services that the
standard edition of the Java platform provides. Of course, the runtime library uses sockets to
implement these services. But you don't have to worry about the protocol details when you use
the higher-level services.

URLs and URIs

The URL and URLConnection classes encapsulate much of the complexity of retrieving
information from a remote site. Here is how you specify a URL.

URL url = new URL(urlString);

The Java 2 platform supports both HTTP and FTP resources.

If you simply want to fetch the contents of the resource, then you can use the openStream
method of the URL class. This method yields an InputStream object. Using this stream
object, you can easily read the contents of the resource.

InputStream uin = url.openStream();
BufferedReader in
 = new BufferedReader(new InputStreamReader(uin));
String line;
while ((line = in.readLine()) != null)
{
 process line;
}

As of SDK 1.4, the java.net package makes a useful distinction between URLs (uniform
resource locators) and URIs (uniform resource identifiers).

A URI is a purely syntactical construct that specifies the various parts of the string specifying a
web resource. A URL is a special kind of URI, namely one with sufficient information to locate
a resource. Other URIs, such as

mailto:cay@horstmann.com

are not locators—there is no data to locate from this identifier. Such a URI is called a URN
(uniform resource name).

In the Java library, the URI class has no methods for accessing the resource that the identifier
specifies—its sole purpose is parsing. In contrast, the URL class can open a stream to the
resource. For that reason, the URL class only works with identifiers of a kind that the Java
library knows how to handle, such as an HTTP or FTP URL.

To see why a URI class is necessary, consider how complex URLs can be. For example,

http://maps.yahoo.com/py/maps.py?csz=Cupertino+CA
ftp://username:password@ftp.yourserver.com/pub/file.txt

The URI specification gives rules for the makeup of these identifiers. A URI has the syntax

[scheme:]schemeSpecificPart[#fragment]

Here, the […] denotes an optional part, and the: and # are included literally in the identifier.

If the scheme: part is present, the URI is called absolute. Otherwise, it is called relative.

An absolute URI is opaque if the schemeSpecificPart does not begin with a / such as

mailto:cay@horstmann.com

All absolute non-opaque URIs and all relative URIs are hierarchical. Examples are:

http://java.sun.com/index.html
../../java/net/Socket.html#Socket()

The schemeSpecificPart of a hierarchical URI has the structure

[//authority][path][?query]

where again […] denotes optional parts.

For server-based URIs, the authority part has the form

[user-info@]host[:port]

The port must be an integer.

RFC 2396, which standardizes URIs, also supports a registry-based mechanism where the
authority has a different format, but they are not in common use.

One of the purposes of the URI class is to parse an identifier and break it up into its various
components. You can retrieve them with the methods

getScheme
getSchemeSpecificPart
getAuthority
getUserInfo
getHost
getPort
getPath
getQuery
getFragment

The other purpose of the URI class is the handling of absolute and relative identifiers. If you
have an absolute URI such as

http://docs.mycompany.com/api/java/net/ServerSocket.html

and a relative URI such as

../../java/net/Socket.html#Socket()

then you can combine the two into an absolute URI.

http://docs.mycompany.com/api/java/net/Socket.html#Socket()

This process is called resolving a relative URL.

The opposite process is called relativization. For example, suppose you have a base URI

http://docs.mycompany.com/api

and a URI

http://docs.mycompany.com/api/java/lang/String.html

then the relativized URI is

java/lang/String.html

The URI class supports both of these operations:

relative = base.relativize(combined);
combined = base.resolve(relative);

Using a URLConnection to Retrieve Information

If you want additional information about a web resource, then you should use the
URLConnection class, which gives you much more control than the basic URL class.

When working with a URLConnection object, you must carefully schedule your steps, as
follows:

1. Call the openConnection method of the URL class to obtain the URLConnection
object:

URLConnection connection = url.openConnection();

2. Set any request properties, using the methods

setDoInput
setDoOutput
setIfModifiedSince
setUseCaches
setAllowUserInteraction
setRequestProperty

We discuss these methods later in this section and in the API notes.

3. Connect to the remote resource by calling the connect method.

connection.connect();

Besides making a socket connection to the server, this method also queries the server
for header information.

4. After connecting to the server, you can query the header information. There are two
methods, getHeaderFieldKey and getHeaderField, to enumerate all fields of
the header. As of SDK 1.4, there is also a method getHeaderFields that gets a
standard Map object containing the header fields. For your convenience, the following
methods query standard fields.

getContentType
getContentLength
getContentEncoding
getDate
getExpiration
getLastModified

5. Finally, you can access the resource data. Use the getInputStream method to
obtain an input stream for reading the information. (This is the same input stream that the
openStream method of the URL class returns.) There is also a method
getObject; however, in practice, it isn't very useful. The objects that are returned by
standard content types such as text/plain and image/gif require classes in the
com.sun hierarchy for processing. It is possible to register your own content handlers,
but we will not discuss that technique in this book.

CAUTION

Let us now look at some of the URLConnection methods in detail. There are several
methods to set properties of the connection before connecting to the server. The most
important ones are setDoInput and setDoOutput. By default, the connection yields an
input stream for reading from the server but no output stream for writing. If you want an output
stream (for example, for posting data to a web server—see the next section), then you need to
call

connection.setDoOutput(true);

Next, you may want to set some of the request headers. The request headers are sent
together with the request command to the server. Here is an example:

GET www.server.com/index.html HTTP/1.0
Referer: http://www.somewhere.com/links.html
Proxy-Connection: Keep-Alive
User-Agent: Mozilla/4.76 (Windows ME; U) Opera 5.11 [en]
Host: www.server.com
Accept: text/html, image/gif, image/jpeg, image/png, */*
Accept-Language: en
Accept-Charset: iso-8859-1,*,utf-8
Cookie: orangemilano=192218887821987

The setIfModifiedSince method tells the connection that you are only interested in
data that has been modified since a certain date. The setUseCaches and
setAllowUserInteraction are only used inside applets. The setUseCaches
method directs the ambient browser to first check the browser cache. The
setAllowUserInteraction method allows an application to pop up a dialog for
querying the user name and password for password-protected resources (see Figure 3-7).

Some programmers form the wrong mental image when using the
URLConnection class and think that the getInputStream and
getOutputStream methods are similar to those of the Socket class.
But that isn't quite true. The URLConnection class does quite a bit of
magic behind the scenes, in particular the handling of request and response
headers. For that reason, it is important that you follow the setup steps for
the connection.

These settings have no effect outside of applets.

Figure 3-7. A network password dialog

Finally, there is a catch-all setRequestProperty method that you can use to set any
name/value pair that is meaningful for the particular protocol. For the format of the HTTP
request headers, see RFC 2616. Some of these parameters are not well documented and are
passed around by word of mouth from one programmer to the next. For example, if you want
to access a password-protected web page, you must do the following:

1. Concatenate the user name, a colon, and the password.

String input = username + ":" + password;

2. Compute the Base 64 encoding of the resulting string. (The Base64 encoding encodes a
sequence of bytes into a sequence of printable ASCII characters.)

String encoding = base64Encode(input);

3. Call the setRequestProperty method with a name of "Authorization" and
value "Basic " + encoding:

connection.setRequestProperty("Authorization",
 "Basic " + encoding);

TIP

You just saw how to access a password-protected web page. To access a
password-protected file by FTP, you use an entirely different method. You simply
construct a URL of the form

ftp://username:password@ftp.yourserver.com/pub/file.tx

This, too, does not seem to be well documented. We found out by looking inside
rt.jar, locating the promising-looking class

Once you call the connect method, you can query the response header information. First, let
us see how to enumerate all response header fields. The implementors of this class felt a need
to express their individuality by introducing yet another iteration protocol. The call

String key = connection.getHeaderFieldKey(n);

gets the nth key from the response header, where n starts from 1! It returns null if n is zero
or larger than the total number of header fields. There is no method to return the number of
fields; you simply keep calling getHeaderFieldKey until you get null. Similarly, the call

String value = connection.getHeaderField(n);

returns the nth value.

Mercifully, as of SDK 1.4, there is a method getHeaderFields that returns a Map of
response header fields that you can access as explained in Chapter 2.

Map headerFields = connection.getHeaderFields();

Here is a set of response header fields from a typical HTTP request.

Date: Wed, 29 Aug 2001 00:15:48 GMT
Server: Apache/1.3.3 (Unix)
Last-Modified: Sun, 24 Jun 2001 20:53:38 GMT
ETag: "28094e-12cd-37729ad2"
Accept-Ranges: bytes
Content-Length: 4813
Connection: close
Content-Type: text/html

As a convenience, six methods query the values of the most common header types and
convert them to numeric types when appropriate. Table 3-1 shows these convenience
methods. The methods with return type long return the number of seconds since January 1,
1970 GMT.

sun.net.www.protocol.ftp.FtpURLConnection, and decompiling
that class with javap.

Table 3-1. Convenience methods for response header values
Key name Method name Return type
Date getDate long
Expires getExpiration long
Last-Modified getLastModified long
Content-Length getContentLength int

The program in Example 3-6 lets you experiment with URL connections. Supply a URL and an
optional user name and password on the command line when running the program, for
example:

java URLConnectionTest http://www.yourserver.com user pw

The program prints out

All keys and values of the header;

The return values of the six convenience methods in Table 3-1;

The first ten lines of the requested resource.

The program is straightforward, except for the computation of the Base 64 encoding. There is
an undocumented class, sun.misc.Base64Encoder, that you can use instead of the
one that we provide in the example program. Simply replace the call to base64Encode with

String encoding
 = new sun.misc.BASE64Encoder().encode(input.getBytes());

However, we supplied our own class because we do not like to rely on the classes in the sun
or com.sun packages.

NOTE

Example 3-6 URLConnectionTest.java

 1. import java.io.*;
 2. import java.net.*;
 3. import java.util.*;
 4.
 5. /**
 6. This program connects to an URL and displays the
 7. response header data and the first 10 lines of the
 8. requested data.
 9.

Content-Type getContentType String
Content-Encoding getContentEncoding String

The javax.mail.internet.MimeUtility class in the JavaMail
standard extension package also has a method for Base64 encoding. SDK
1.4 includes a package containing the visible (non-public) class
java.util.prefs.Base64.

 10. Supply the URL and an optional username and password (
 11. HTTP basic authentication) on the command line.
 12. */
 13. public class URLConnectionTest
 14. {
 15. public static void main(String[] args)
 16. {
 17. try
 18. {
 19. String urlName;
 20. if (args.length > 0)
 21. urlName = args[0];
 22. else
 23. urlName = "http://java.sun.com";
 24.
 25. URL url = new URL(urlName);
 26. URLConnection connection = url.openConnection();
 27.
 28. // set username, password if specified on comman
 29.
 30. if (args.length > 2)
 31. {
 32. String username = args[1];
 33. String password = args[2];
 34. String input = username + ":" + password;
 35. String encoding = base64Encode(input);
 36. connection.setRequestProperty("Authorization"
 37. "Basic " + encoding);
 38. }
 39.
 40. connection.connect();
 41.
 42. // print header fields
 43.
 44. int n = 1;
 45. String key;
 46. while ((key = connection.getHeaderFieldKey(n)) !
 47. {
 48. String value = connection.getHeaderField(n);
 49. System.out.println(key + ": " + value);
 50. n++;
 51. }
 52.
 53. // print convenience functions

 54.
 55. System.out.println("----------");
 56. System.out.println("getContentType: "
 57. + connection.getContentType());
 58. System.out.println("getContentLength: "
 59. + connection.getContentLength());
 60. System.out.println("getContentEncoding: "
 61. + connection.getContentEncoding());
 62. System.out.println("getDate: "
 63. + connection.getDate());
 64. System.out.println("getExpiration: "
 65. + connection.getExpiration());
 66. System.out.println("getLastModifed: "
 67. + connection.getLastModified());
 68. System.out.println("----------");
 69.
 70.
 71. BufferedReader in = new BufferedReader(new
 72. InputStreamReader(connection.getInputStream()
 73.
 74. // print first ten lines of contents
 75.
 76. String line;
 77. n = 1;
 78. while ((line = in.readLine()) != null && n <= 10
 79. {
 80. System.out.println(line);
 81. n++;
 82. }
 83. if (line != null) System.out.println(". . .");
 84. }
 85. catch (IOException exception)
 86. {
 87. exception.printStackTrace();
 88. }
 89. }
 90.
 91. /**
 92. Computes the Base64 encoding of a string
 93. @param s a string
 94. @return the Base 64 encoding of s
 95. */
 96. public static String base64Encode(String s)
 97. {

 98. ByteArrayOutputStream bOut
 99. = new ByteArrayOutputStream();
100. Base64OutputStream out = new Base64OutputStream(bOu
101. try
102. {
103. out.write(s.getBytes());
104. out.flush();
105. }
106. catch (IOException exception)
107. {
108. }
109. return bOut.toString();
110. }
111. }
112.
113. /**
114. This stream filter converts a stream of bytes to their
115. Base64 encoding.
116.
117. Base64 encoding encodes 3 bytes into 4 characters.
118. |11111122|22223333|33444444|
119. Each set of 6 bits is encoded according to the
120. toBase64 map. If the number of input bytes is not
121. a multiple of 3, then the last group of 4 characters
122. is padded with one or two = signs. Each output line
123. is at most 76 characters.
124. */
125. class Base64OutputStream extends FilterOutputStream
126. {
127. /**
128. Constructs the stream filter
129. @param out the stream to filter
130. */
131. public Base64OutputStream(OutputStream out)
132. {
133. super(out);
134. }
135.
136. public void write(int c) throws IOException
137. {
138. inbuf[i] = c;
139. i++;
140. if (i == 3)
141. {

142. super.write(toBase64[(inbuf[0] & 0xFC) >> 2]);
143. super.write(toBase64[((inbuf[0] & 0x03) << 4) |
144. ((inbuf[1] & 0xF0) >> 4)]);
145. super.write(toBase64[((inbuf[1] & 0x0F) << 2) |
146. ((inbuf[2] & 0xC0) >> 6)]);
147. super.write(toBase64[inbuf[2] & 0x3F]);
148. col += 4;
149. i = 0;
150. if (col >= 76)
151. {
152. super.write('\n');
153. col = 0;
154. }
155. }
156. }
157.
158. public void flush() throws IOException
159. {
160. if (i == 1)
161. {
162. super.write(toBase64[(inbuf[0] & 0xFC) >> 2]);
163. super.write(toBase64[(inbuf[0] & 0x03) << 4]);
164. super.write('=');
165. super.write('=');
166. }
167. else if (i == 2)
168. {
169. super.write(toBase64[(inbuf[0] & 0xFC) >> 2]);
170. super.write(toBase64[((inbuf[0] & 0x03) << 4) |
171. ((inbuf[1] & 0xF0) >> 4)]);
172. super.write(toBase64[(inbuf[1] & 0x0F) << 2]);
173. super.write('=');
174. }
175. }
176.
177. private static char[] toBase64 =
178. {
179. 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H',
180. 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P',
181. 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X',
182. 'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f',
183. 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n',
184. 'o', 'p', 'q', 'r', 's', 't', 'u', 'v',
185. 'w', 'x', 'y', 'z', '0', '1', '2', '3',

186. '4', '5', '6', '7', '8', '9', '+', '/'
187. };
188.
189. private int col = 0;
190. private int i = 0;
191. private int[] inbuf = new int[3];
192. }

NOTE

java.net.URL

InputStream openStream()

opens an input stream for reading the resource data.

URLConnection openConnection();

returns a URLConnection object that manages the connection to the resource.

java.net.URLConnection

void setDoInput(boolean doInput)

If doInput is true, then the user can receive input from this URLConnection.

void setDoOutput(boolean doOutput)

If doOutput is true, then the user can send output to this URLConnection.

A commonly asked question is whether the Java platform supports access
of secure web pages. If you open a connection to an https URL inside an
applet, then the applet will indeed access the page, by taking advantage of
the SSL implementation of the browser. However, before SDK 1.4, there
was no support for https URLs. For patent and export restrictions, you
need to install a separate extension library and a cryptographic service
provider for the RSA algorithm. As of SDK 1.4, SSL support is a part of the
standard library.

void setIfModifiedSince(long time)

configures this URLConnection to fetch only data that has been modified since a
given time. The time is given in seconds from midnight, GMT, January 1, 1970.

void setUseCaches(boolean useCaches)

If useCaches is true, then data can be retrieved from a local cache. Note that the
URLConnection itself does not maintain such a cache. The cache must be supplied
by an external program such as a browser.

void setAllowUserInteraction(boolean allowUserInteraction)

If allowUserInteraction is true, then the user can be queried for passwords.
Note that the URLConnection itself has no facilities for executing such a query. The
query must be carried out by an external program such as a browser or browser plug-in.

void setRequestProperty(String key, String value)

sets a request header field.

Map getRequestProperties()

returns a map of request header key/value pairs. This method was added in SDK 1.4.

void connect()

connects to the remote resource and retrieves response header information.

Map getHeaderFields()

returns a map of response header field name/value pairs. This method was added in
SDK 1.4.

String getHeaderFieldKey(int n)

gets the nth response header field key, or null if n is 0 or larger than the number of
response header fields.

String getHeaderField(int n)

gets the nth response header field value, or null if n is 0 or larger than the number
of response header fields.

int getContentLength()

gets the content length, if available, or -1 if unknown.

String getContentType

gets the content type, such as text/plain or image/gif.

String getContentEncoding()

gets the content encoding, such as gzip. This value is not commonly used, as the
default identity encoding is not supposed to be specified with a Content-
Encoding header.

long getDate()

long getExpiration()

long getLastModifed()

These methods get the date of creation, expiration, and last modification of the resource.
The dates are specified as seconds from midnight, GMT, January 1, 1970.

InputStream openInputStream()

OutputStream openOutputStream()

These methods return a stream for reading from the resource or writing to the resource.

Object getObject()

selects the appropriate content handler to read the resource data and convert it into an
object. This method is not useful for reading standard types such as text/plain or
image/gif unless you install your own content handler.

Posting Form Data
In the preceding section, you saw how to read data from a web server. Now we will show you
how your programs can send data back to a web server and to programs that the web server
invokes, using the CGI and servlet mechanisms.

CGI Scripts and Servlets

Even before Java technology came along, there was a mechanism for writing interactive web
applications. To send information from a web browser to the web server, a user would fill out a
form, like the one in Figure 3-8.

Figure 3-8. An HTML form

When the user clicks on the "Submit" button, the text in the text fields and the settings of the
check boxes and radio buttons are sent back to the server to be processed by a CGI script.
(CGI stands for Common Gateway Interface.) The CGI script to use is specified in the
ACTION attribute of the FORM tag.

The CGI script is a program that resides on the server computer. There are usually many CGI
scripts on a server, conventionally residing in the cgi-bin directory. The web server
launches the CGI script and feeds it the form data.

The CGI script processes the form data and produces another HTML page that the web server
sends back to the browser. This sequence is illustrated in Figure 3-9. The response page can
contain new information (for example, in an information-search program) or just an
acknowledgment. The web browser then displays the response page.

Figure 3-9. Data flow during execution of a CGI script

CGI programs are commonly written in Perl, but they can be written in any language that can
read from standard input and write to standard output.

NOTE

CGI is often a good mechanism to use because it is well established and system
administrators are familiar with it. It does have a major disadvantage. Each request forks a
new process and not just a new thread. Furthermore, it is difficult to control the security of
those scripts. The newer servlet technology overcomes both of these disadvantages. Servlet
engines use Java technology to start each servlet in a separate thread and to control the
security privileges of servlets. You will see an example servlet later in this chapter. For more
information on servlets, we recommend the book Core Java Web Server by Chris Taylor and
Tim Kimmet [Prentice-Hall, 1998].

Sending Data to a Web Server

When data is sent to a web server, it does not matter whether the data is interpreted by a CGI
script or a servlet. The client sends the data to the web server in a standard format, and the
web server takes care of passing it on to the program that generates the response.

There are two methods with which to send information to a web server: the GET method and
the POST method.

In the GET method, you simply attach parameters to the end of the URL. The URL has the
form

We will not discuss how to design HTML forms that interact with CGI. A
good reference for that topic is HTML & XHTML: The Definitive Guide (4th
edition) by Chuck Musciano and Bill Kennedy [O'Reilly, 2000]. Our interest
lies in the interface between CGI and Java programs, not in HTML forms.

http://host/script?parameters

For example, at the time of this writing, the Yahoo web site has a script py/maps.py at the
host maps.yahoo.com. The script requires two parameters, addr and csz. You need to
separate the parameters by an & and encode the parameters, using the following scheme.

Replace all spaces with a +. Replace all nonalphanumeric characters by a %, followed by a
two-digit hexadecimal number. For example, to transmit the street name S. Main, you use S%
2e+Main, since the hexadecimal number 2e (or decimal 46) is the ASCII code of the "."
character.

This encoding keeps any intermediate programs from messing with spaces and interpreting
other special characters. This encoding scheme is called URL encoding.

For example, to get a map of 1 Infinite Loop, Cupertino, CA, simply request the following URL:

http://maps.yahoo.com/py/maps.py?addr=1+Infinite+Loop&csz=
 Cupertino+CA

The GET method is simple, but it has a major limitation that makes it relatively unpopular. Most
browsers have a limit on the number of characters that you can include in a GET request.

In the POST method, you do not attach parameters to a URL. Instead, you get an output
stream from the URLConnection and write name/value pairs to the output stream. You still
have to URL-encode the values and separate them with & characters.

Let us look at this process in more detail. To post data to a script, you first establish a
URLConnection.

URL url = new URL("http://host/script");
URLConnection connection = url.openConnection();

Then, you call the setDoOutput method to set up the connection for output.

connection.setDoOutput(true);

Next, you call getOutputStream to get a stream through which you can send data to the
server. If you are sending text to the server, it is convenient to wrap that stream into a
PrintWriter.

PrintWriter out
 = new PrintWriter(connection.getOutputStream());

Now you are ready to send data to the server:

out.print(name1 + "=" + URLEncoder.encode(value1) + "&");
out.print(name2 + "=" + URLEncoder.encode(value2));

Finally, close the output stream.

out.close();

You read the server response in the usual way.

BufferedReader in = new BufferedReader(new
 InputStreamReader(connection.getInputStream()));
String line;
while ((line = in.readLine()) != null)
{
 process line
}

Let us run through a practical example. The web site at
http://www.census.gov/ipc/www/idbprint.html contains a form to request population data (see
Figure 3-10). If you look at the HTML source, you will see the following HTML tag:

Figure 3-10. A web form to request census data

<FORM METHOD=POST ACTION="/cgi-bin/ipc/idbsprd">

This tag indicates that the name of the script that is executed when the user clicks the "Submit"
button is /cgi-bin/ipc/idbsprd, and that you need to use the POST method to send
data to the script.

Next, you need to find out the field names that the script expects. Look at the user interface
components. Each of them has a NAME attribute, for example,

<SELECT NAME="tbl" SIZE=8>
<OPTION VALUE="001">001 Total Midyear Population
more options . . .
</SELECT>

This tells you that the name of the field is tbl. This field specifies the population table type. If
you specify the table type 001, you will get a table of the total midyear population. If you look
further, you will also find a country field name cty with values such as US for the United
States and CH (!) for China. (Sadly, the Census Bureau seems to be unaware of the ISO-3166

standard for country codes.)

Finally, there is a field named optyr for the year range selection. For this example, we will
just set it to latest checked. Then, the remaining fields will not be filled and the latest
available data will be displayed.

For example, to get the latest data for the total midyear population of China, you construct this
string:

tbl=1&cty=CH&optyr=latest+checked

Send the string to the URL

http://www.census.gov/cgi-bin/ipc/idbsprd:

The script sends back the following reply:

<PRE>
U.S. Bureau of the Census, International Data Base

Table 001. Total Midyear Population

CtYear Population

CH1999 1246871951

Source: U.S. Bureau of the Census, International
 Data Base.
</PRE>

As you can see, the script formats the reply as a minimally acceptable HTML page, by placing
<PRE> and </PRE> tags around the data. This particular script doesn't bother with
constructing a pretty table, though. That is the reason we picked it as an example—it is easy to
see what happens with this script, whereas it can be confusing to decipher a complex set of
HTML tags that other scripts produce.

The program in Example 3-7 sends POST data to an arbitrary URL. You can use it to send
data to the Census Bureau script that we just discussed or to any other URL. You specify the
data in a properties file (by default PostTest.properties), for example,

URL=http://www.census.gov/cgi-bin/ipc/idbsprd
tbl=001
cty=CH
optyr=latest checked

Here is how the program works. First, we check if the user supplied a command-line argument
to override the default property file. Then, we read the property file.

Properties props = new Properties();
FileInputStream in = new FileInputStream(fileName);
props.load(in);

Next, we use the URL property to construct the URL object, and we remove that property so
that it isn't sent to the web server.

URL url = new URL(props.getProperty("URL"));
props.remove("URL");

In the doPost method, we first open the connection, call doOutput(true), and open the
output stream. Then, we enumerate the names and values in the Properties object. For
each of them, we send the name, = character, value, and & separator character:

out.print(name);
out.print('=');
out.print(URLEncoder.encode(value));
if (more pairs) out.print('&');

Finally, we read the response from the server.

There is one twist with reading the response. If a script error occurs, then the call to
connection.getInputStream() throws a FileNotFoundException. However,
the server still sends an error page back to the browser (such as the ubiquitous "Error 404 -
page not found"). To capture this error page, you cast the URLConnection object to the
HttpURLConnection class and call its getErrorStream method:

InputStream err
 = ((HttpURLConnection)connection).getErrorStream();

Then, you can read the error page from the stream err.

If you run the program with the supplied properties file, then you will see the result from the
Census Bureau script. We supply a second file, Zip.properties, that performs a zip
code lookup, using a script provided by the United States Postal Service. The query result
contains a list of city names for a given zip code.

The technique that this program displays is useful whenever you need to query information
from an existing web site. Simply find out the parameters that you need to send (usually by
inspecting the HTML source of a web page that carries out the same query), and then strip out
the HTML tags and other unnecessary information from the reply.

Example 3-7 PostTest.java

 1. import java.io.*;
 2. import java.net.*;
 3. import java.util.*;
 4.
 5. /**
 6. This program demonstrates how to use the URLConnection
 7. for a POST request. The URL and form data are in a .pro
 8. file whose name should be supplied on the command line.
 9. */
10. public class PostTest
11. {
12. public static void main(String[] args)
13. {
14. try
15. {
16. String fileName;
17. if (args.length > 0)
18. fileName = args[0];
19. else
20. fileName = "PostTest.properties";
21. Properties props = new Properties();
22. FileInputStream in = new FileInputStream(fileName
23. props.load(in);
24.
25. URL url = new URL(props.getProperty("URL"));
26. props.remove("URL");
27. String r = doPost(url, props);
28. System.out.println(r);
29. }
30. catch (IOException exception)
31. {
32. exception.printStackTrace();
33. }
34. }
35.
36. /**
37. Makes a POST request and returns the server response
38. @param url the URL to post to
39. @param nameValuePairs a table of name/value pairs to
40. supply in the request.
41. @return the server reply (either from the input stre
42. or the error stream)
43. */
44. public static String doPost(URL url,

45. Properties nameValuePairs) throws IOException
46. {
47. URLConnection connection = url.openConnection();
48. connection.setDoOutput(true);
49.
50. PrintWriter out
51. = new PrintWriter(connection.getOutputStream());
52.
53. Enumeration enum = nameValuePairs.keys();
54.
55. while (enum.hasMoreElements())
56. {
57. String name = (String)enum.nextElement();
58. String value = nameValuePairs.getProperty(name);
59. out.print(name);
60. out.print('=');
61. out.print(URLEncoder.encode(value));
62. if (enum.hasMoreElements()) out.print('&');
63. }
64.
65. out.close();
66.
67. BufferedReader in;
68. StringBuffer response = new StringBuffer();
69. try
70. {
71. in = new BufferedReader(new
72. InputStreamReader(connection.getInputStream())
73. }
74. catch (IOException e)
75. {
76. if (!(connection instanceof HttpURLConnection)) t
77. InputStream err
78. = ((HttpURLConnection)connection).getErrorStre
79. if (err == null) throw e;
80. in = new BufferedReader(new InputStreamReader(err
81. }
82. String line;
83.
84. while ((line = in.readLine()) != null)
85. response.append(line + "\n");
86.
87. in.close();
88. return response.toString();

89. }
90. }

Our example program uses the URLConnection class to post data to a web site. More for
curiosity's sake than for practical usage, you may like to know exactly what information the
URLConnection sends to the server in addition to the data that you supply.

The URLConnection object first sends a request header to the server. The first line of the
header must be

Content-Type: type

where type is usually one of the following:

text/plain
text/html
application/octet-stream
application/x-www-form-urlencoded

The content type must be followed by the line

Content-Length: length

for example,

Content-Length: 1024

The end of the header is indicated by a blank line. Then, the data portion follows. The web
server strips off the header and routes the data portion to the server script.

Note that the URLConnection object buffers all data that you send to the output stream
since it must first determine the total content length.

java.net.HttpURLConnection

InputStream getErrorStream()

returns a stream from which you can read web server error messages.

java.net.URLEncoder

static String encode(String s)

returns the URL-encoded form of the string s. In URL encoding, the characters 'A' -
'Z', 'a'- 'z', '0'- '9', '-', '_', '.' and '*'are left unchanged. Space is
encoded into '+', and all other characters are encoded into "%UV", where 0xUV is the
lower order byte of the character.

java.net.URLDecoder

static string decode(String s)

returns the decoding of the URL encoded string s.

Harvesting Information from the Web
The last example showed you how to read data from a web server. The Internet contains a
wealth of information both interesting and not: it is the lack of guidance through this mass of
information that is the major complaint of most web users. One promise of the Java technology
is that it may help to bring order to this chaos: you can use Java applets to retrieve information
and present it to the user in an appealing format.

There are many possible uses. Here are a few that come to mind:

An applet can look at all the web pages the user has specified as interesting and find
which have recently changed.

An applet can visit the web pages of all scheduled airlines to find out which is running a
special.

Applets can gather and display recent stock quotes, monetary exchange rates, and other
financial information.

Applets can search FAQs, press releases, articles, and so on, and return text that
contains certain keywords.

We give a simple example of such an applet. The National Weather Service stores weather
reports in various files on the server http://iwin.nws.noaa.gov. For example, an hourly forecast
for California is stored at

http://iwin.nws.noaa.gov/iwin/ca/hourly.html

Other directories contain similar reports.

Our applet presents the user with two lists, one with states and another with report types. If
you click on Get report, the applet fetches the report and places it into a text area (see Figure
3-11). You will find the code for the applet in Example 3-8.

Figure 3-11. The WeatherReport applet

The applet code itself is straightforward. The only interesting action occurs in the
getWeather method. That method first builds up the query string. It obtains the base URL
(http://iwin.nws.noaa.gov/iwin/) from the queryBase parameter of the applet tag. Then, it
adds the state and report name and the extension .html:

String queryBase = getParameter("queryBase");
String query = queryBase + state + "/" + report + ".html";

Next, we create an URL object and call openStream.

URL url = new URL(query);
BufferedReader in = new BufferedReader(new
 InputStreamReader(url.openStream()));

The remainder of the method simply reads the file, removes HTML tags, and places the file in

the text area.

String line;
while ((line = in.readLine()) != null)
 weather.append(removeTags(line) + "\n");

Example 3-8 WeatherApplet.java

 1. import java.net.*;
 2. import java.io.*;
 3. import java.util.*;
 4. import java.awt.*;
 5. import java.awt.event.*;
 6. import java.applet.*;
 7. import javax.swing.*;
 8.
 9. /**
 10. This applet displays weather data from a NOAA server.
 11. The data is mostly in text format, so it can be displa
 12. in a text area.
 13. */
 14. public class WeatherApplet extends JApplet
 15. {
 16. public void init()
 17. {
 18. Container contentPane = getContentPane();
 19. contentPane.setLayout(new BorderLayout());
 20.
 21. // Set up the lists of choices for states and repor
 22. JPanel comboPanel = new JPanel();
 23. state = makeCombo(states, comboPanel);
 24. report = makeCombo(reports, comboPanel);
 25. contentPane.add(comboPanel, BorderLayout.NORTH);
 26.
 27. // Add the text area
 28. weather = new JTextArea(20, 80);
 29. weather.setFont(new Font("Courier", Font.PLAIN, 12)
 30.
 31. // Add the report button
 32. contentPane.add(new JScrollPane(weather),
 33. BorderLayout.CENTER);
 34. JPanel buttonPanel = new JPanel();
 35. JButton reportButton = new JButton("Get report");
 36. reportButton.addActionListener(new
 37. ActionListener()

 38. {
 39. public void actionPerformed(ActionEvent evt)
 40. {
 41. weather.setText("");
 42. new
 43. Thread()
 44. {
 45. public void run()
 46. {
 47. getWeather(getItem(state, states)
 48. getItem(report, reports));
 49. }
 50. }.start();
 51. }
 52. });
 53.
 54. buttonPanel.add(reportButton);
 55. contentPane.add(buttonPanel, BorderLayout.SOUTH);
 56. }
 57.
 58. /**
 59. Makes a combo box.
 60. @param items the array of strings whose first colum
 61. contains the combo box display entries
 62. @param parent the parent to add the combo box to
 63. */
 64. public JComboBox makeCombo(String[][] items, Container
 65. {
 66. JComboBox combo = new JComboBox();
 67. for (int i = 0; i < items.length; i++)
 68. combo.addItem(items[i][0]);
 69. parent.add(combo);
 70. return combo;
 71. }
 72.
 73. /**
 74. Gets the query string for a combo box display entry
 75. @param box the combo box
 76. @param items the array of strings whose first colum
 77. contains the combo box display entries and whose se
 78. column contains the corresponding query strings
 79. @return the query string
 80. */
 81. public String getItem(JComboBox box, String[][] items)

 82. {
 83. return items[box.getSelectedIndex()][1];
 84. }
 85.
 86. /**
 87. Puts together the URL query and fills the text area
 88. the data.
 89. @param state the state part of the query
 90. @param report the report part of the query
 91. */
 92. public void getWeather(String state, String report)
 93. {
 94. String r = new String();
 95. try
 96. {
 97. String queryBase = getParameter("queryBase");
 98. String query
 99. = queryBase + state + "/" + report + ".html";
100. URL url = new URL(query);
101. BufferedReader in = new BufferedReader(new
102. InputStreamReader(url.openStream()));
103.
104. String line;
105. while ((line = in.readLine()) != null)
106. weather.append(removeTags(line) + "\n");
107. }
108. catch(IOException e)
109. {
110. showStatus("Error " + e);
111. }
112. }
113.
114. /**
115. Removes HTML tags from a string.
116. @param s a string
117. @return s with <...> tags removed.
118. */
119. public static String removeTags(String s)
120. {
121. while (true)
122. {
123. int lb = s.indexOf('<');
124. if (lb < 0) return s;
125. int rb = s.indexOf('>', lb);

126. if (rb < 0) return s;
127. s = s.substring(0, lb) + " " + s.substring(rb +
128. }
129. }
130.
131. private JTextArea weather;
132. private JComboBox state;
133. private JComboBox report;
134.
135. private String[][] states =
136. {
137. { "Alabama", "al" },
138. { "Alaska", "ak" },
139. { "Arizona", "az" },
140. { "Arkansas", "ar" },
141. { "California", "ca" },
142. { "Colorado", "co" },
143. { "Connecticut", "ct" },
144. { "Delaware", "de" },
145. { "Florida", "fl" },
146. { "Georgia", "ga" },
147. { "Hawaii", "hi" },
148. { "Idaho", "id" },
149. { "Illinois", "il" },
150. { "Indiana", "in" },
151. { "Iowa", "ia" },
152. { "Kansas", "ks" },
153. { "Kentucky", "ky" },
154. { "Louisiana", "la" },
155. { "Maine", "me" },
156. { "Maryland", "md" },
157. { "Massachusetts", "ma" },
158. { "Michigan", "mi" },
159. { "Minnesota", "mn" },
160. { "Mississippi", "ms" },
161. { "Missouri", "mo" },
162. { "Montana", "mt" },
163. { "Nebraska", "ne" },
164. { "Nevada", "nv" },
165. { "New Hampshire", "nh" },
166. { "New Jersey", "nj" },
167. { "New Mexico", "nm" },
168. { "New York", "ny" },
169. { "North Carolina", "nc" },

170. { "North Dakota", "nd" },
171. { "Ohio", "oh" },
172. { "Oklahoma", "ok" },
173. { "Oregon", "or" },
174. { "Pennsylvania", "pa" },
175. { "Rhode Island", "ri" },
176. { "South Carolina", "sc" },
177. { "South Dakota", "sd" },
178. { "Tennessee", "tn" },
179. { "Texas", "tx" },
180. { "Utah", "ut" },
181. { "Vermont", "vt" },
182. { "Virginia", "va" },
183. { "Washington", "wa" },
184. { "West Virginia", "wv" },
185. { "Wisconsin", "wi" },
186. { "Wyoming", "wy" }
187. };
188.
189. private String[][] reports =
190. {
191. { "Hourly (State Weather Roundup)", "hourly" },
192. { "State Forecast", "state" },
193. { "Zone Forecast", "zone" },
194. { "Short Term (NOWCASTS)", "shortterm" },
195. { "Forecast Discussion", "discussion" },
196. { "Weather Summary", "summary" },
197. { "Public Information", "public" },
198. { "Climate Data", "climate" },
199. { "Hydrological Data", "hydro" },
200. { "Watches", "watches" },
201. { "Special Weather Statements", "special" },
202. { "Warnings and Advisories", "allwarnings" }
203. };
204. }

Unfortunately, when you try running this applet, you will be disappointed. Both the applet
viewer and the browser refuse to run it. Whenever you click on Get report, a security violation
is generated. We discuss the reason for this violation, and how to overcome this problem, in
the next section. Right now, we'll just show you how to force the applet viewer to run the applet
anyway.

First, create a text file with the following contents:

grant

{
 permission java.net.SocketPermission
 "iwin.nws.noaa.gov:80", "connect";
};

Call it WeatherApplet.policy. We will discuss policy files in detail in Chapter 9.
However, this particular policy file is easy to understand. It simply grants the applet the
permission to connect to the host iwin.nws.noaa.gov on port 80, the HTTP port. Why
the applet needs such a permission is the topic of the next section.

Now start the applet viewer with the following command line:

appletviewer -J-Djava.security.policy=WeatherApplet.policy
 WeatherApplet.html

The -J option of the applet viewer passes command-line arguments to the Java bytecode
interpreter. The -D option of the Java bytecode interpreter sets the value of a system property.
Here, we set the system property java.security.policy to the name of a policy file
that contains the security permissions for this program.

If you want to run the applet in a browser, you first have to sign it. Then, you and, more
importantly, anyone else who wants to run it, must tell the browser:

To verify the signature (unless it was guaranteed by a trusted certificate authority);

To agree with the requested privileges.

We discuss applet signing in detail in Chapter 9.

Applet Security

As you just saw, your applet was forbidden from doing a very simple operation, namely,
connecting to port 80 of a web server. In this section, we discuss the reason for this prohibition
and describe how to deploy the applet without making your users fuss with certificates.

Web browsers allow an applet to read and write data only on the host that serves the applet.
Applets can connect only to sockets on the computer from which the applet came. This rule is
often described as "applets can only phone home."

At first, this restriction seems to make no sense. Why should the applet be denied an operation
that the ambient browser carries out all the time, namely, to get data from a web host? To
understand the rationale, it helps to visualize the three hosts involved, as shown in Figure 3-
12:

Figure 3-12. Applet security disallows connection to a third party

The originating host — your computer that delivers the web page and Java applet to
clients;

The local host — the user's machine that runs your applet;

The third-party data repository that your applet would like to see.

The applet security rule says that the applet can read and write data only on the originating
host. Certainly it makes sense that the applet cannot write to the local host. If it could, it might
be able to plant viruses or alter important files. After all, the applet starts running immediately
when the user stumbles upon our web page, and the user must be protected from damage by
malicious or incompetent applets.

It also makes sense that the applet cannot read from the local host. Otherwise, it might browse
the files on the local computer for sensitive information, such as credit card numbers, open a
socket connection to the applet host, and write the information back. You might open a great-
looking web page, interact with an applet that does something fun or useful, and be completely
unaware of what that applet does in other threads. The browser denies your applet all access
to the files on your computer.

But why can't the applet read other files from the Web? Isn't the Web a wealth of publicly
available information, made available for everyone to read? If you browse the Web from home,
through a service provider, this is indeed the situation. But it is quite different when you do your
Web surfing in your office (searching only for work-relevant information, of course). Many
companies have their computer sitting behind a firewall.

A firewall is a computer that filters traffic going into and out of the corporate network. This
computer will deny attempts to access services with less than stellar security histories. For
example, there are known security holes in many FTP implementations. The firewall might
simply disallow anonymous FTP requests or shunt them off to an isolated FTP server. It might
also deny a request to access the mail port on all machines except the mail server. Depending
on the security philosophy, the firewall (shown in Figure 3-13) can also apply filtering rules to
the traffic between the corporate network and the Internet.

Figure 3-13. A firewall provides security

(If you are interested in this topic, turn to Firewalls and Internet Security: Repelling the Wily
Hacker by William R. Cheswick and Steven M. Bellovin [Addison-Wesley, 1994].)

Having a firewall allows a company to use the Web to distribute internal information that is of
interest to employees but should not be accessible outside the company. The company simply
sets up a web server, tells the address only to its employees, and programs the firewall to
deny any access requests to that server from the outside. The employees can then browse the
internal information with the same web tools they already know and use.

If an employee visits your web page, the applet is downloaded into the computer behind the
firewall and starts running there. If it were able to read all the web pages that the ambient
browser can read, it would have access to the corporate information. Then, it could open a
connection to the host from which it came and send all that private information back. That is
obviously insecure. Since the browser has no idea which web pages are public and which are
confidential, it disallows access to all of them.

That is too bad—you simply cannot write an applet that goes out on the Web, grabs
information, processes and formats it, and presents it to the applet user. For example, our
weather report applet does not want to write any information back to its host. Why doesn't the
browser let the applet strike a deal? If the applet promises not to write anywhere, it ought to be
able to read from everywhere. That way, it would just be a harvester and processor, showing
an ephemeral result on the user's screen.

The trouble is that a browser cannot distinguish read from write requests. When you ask to
open a stream on a URL, this is obviously a read request. Well, maybe not. The URL might be
of the form

http://www.rogue.com/cgi-bin/cracker.pl?
Garys+password+is+Sicily

Here, the culprit is the CGI mechanism. It is designed to take arbitrary arguments and process
them. The script that handles the CGI request can, and often does, store the request data. It is
easy to hide information in a CGI query text. (A data stream that contains hidden information is
called a covert channel in security circles.)

So, should the browser disallow all CGI queries and allow access only to plain web pages?
The solution is not that simple. The browser has no way of knowing that the server to which it
connects on port 80 (the HTTP port) is actually a standard HTTP server. It might be just a shell
that saves all requests to a file and returns an HTML page: "Sorry, the information you
requested is not available." Then, the applet could transmit information by pretending to read
from the URL

http://www.rogue.com/Garys/password/is/Sicily

Since the browser cannot distinguish read from write requests, it must disallow them both.

To summarize: Applets run on the computer browsing your web page, but they can connect
only to the computer serving the web page. That is the "applets can only phone home" rule.

Proxy Servers

How, then, can you distribute an applet that harvests information for your users? You could
make a web page that shows the applet in action with fake data, stored on your server. (This is
exactly the approach that Sun takes with their stock-ticker sample applet.) You could then
provide a button with which the user downloads the applet and a policy file. Users could then
run it from the applet viewer.

That approach will probably greatly limit the attractiveness of your applet. Many people will be
too lazy to download and install the applet locally if they did not first get to use it a few times
with real data on your web page.

Fortunately, there is a way to feed the applet real data: install a proxy server on your HTML
server. That proxy server is a service that grabs requested information from the Web and
sends it to whoever requested it. For example, suppose your applet makes a GET request

http://www.yourserver.com/proxysvr?URL=http://iwin.nws.noaa.go
 /iwin/CA/hourly.html

to the proxy server that resides on the same host as the applet code. Then the proxy server
fetches the web page for the applet and sends it as the result of the GET request (see Figure
3-14).

Figure 3-14. Data flow in the weather report applet

Proxy servers for this purpose must exist, but we could not find one, so we wrote our own. You
can see the code in Example 3-9. We implemented the proxy as a servlet, a program that is
started by a servlet engine. Most web servers can either run servlets directly or can be
extended to do so.

Servlets are not a part of the standard edition of the Java platform, and a detailed discussion of
servlets is beyond the scope of this book. For details, please turn to Core Java Web Server by
Chris Taylor and Tim Kimmet [Prentice-Hall 1998]. However, the servlet in Example 3-9 is
quite simple. Here is a brief explanation of how it works.

When the web server receives a GET request for the servlet, it calls its doGet method. The
HttpServletRequest parameter contains the request parameters. The servlet uses the
getParameter method to get the value of the URL parameter. In any servlet, you send
your response to the PrintStream that the getWriter method of the
HttpServletResponse class returns. This servlet simply connects to the resource given
in the URL parameter, reads the data a line at a time, and sends it to the response stream.
Finally, you can see how the sendError method is used for error reporting.

The next section tells you how to configure the servlet if you use the Apache Tomcat Servlet
Container. That software contains a small web server that you can run locally to test the
weather report applet.

You don't have to use servlets to implement a proxy server. The sidebar tells you how you can
implement the proxy server in C or Perl.

Example 3-9 ProxySvr.java

 1. import java.io.*;
 2. import java.net.*;
 3. import javax.servlet.*;
 4. import javax.servlet.http.*;
 5.
 6. /**
 7. A very simple proxy servlet. The URL request parameter
 8. specifies the resource to get. The servlet gets the
 9. requested information and returns it to the caller.
10. */
11. public class ProxySvr extends HttpServlet
12. {
13. public void doGet(HttpServletRequest request,
14. HttpServletResponse response)
15. throws ServletException, IOException
16. {
17. String query = null;
18.
19. response.setContentType("text/html");
20. PrintWriter out = response.getWriter();
21.
22. query = request.getParameter("URL");
23. if (query == null)
24. {
25. response.sendError(HttpServletResponse.SC_BAD_REQ
26. "Missing URL parameter");
27. return;
28. }
29.
30. try
31. {
32. query = URLDecoder.decode(query);
33. }
34. catch(Exception exception)
35. {
36. response.sendError(HttpServletResponse.SC_BAD_REQ
37. "URL decode error " + exception);
38. return;
39. }
40.
41. try
42. {

43. URL url = new URL(query);
44. BufferedReader in = new BufferedReader(new
45. InputStreamReader(url.openStream()));
46.
47. String line;
48. while ((line = in.readLine()) != null)
49. out.println(line);
50. out.flush();
51. }
52. catch(IOException exception)
53. {
54. response.sendError(HttpServletResponse.SC_NOT_FOU
55. "Exception: " + exception);
56. }
57. }
58.}

Example 3-10 proxysvr.c

 1. #include <netdb.h>
 2. #include <sys/types.h>
 3. #include <sys/socket.h>
 4. #include <netinet/in.h>
 5. #include <arpa/inet.h>
 6. #include <stdio.h>
 7. #include <string.h>
 8. #include <stdlib.h>
 9.
 10. #define MAXLINE 512
 11. #define MAXNAME 128
 12. #define HTTP 80
 13.
 14. unsigned writen(fd, vptr, n)
 15. int fd;
 16. char* vptr;
 17. unsigned n;
 18. {
 19. unsigned nleft;
 20. unsigned nwritten;
 21. char* ptr;
 22.
 23. ptr = (char*)vptr;
 24. nleft = n;
 25. while (nleft > 0)

 26. {
 27. if ((nwritten = write(fd, ptr, nleft)) <= 0)
 28. return nwritten;
 29. nleft -= nwritten;
 30. ptr += nwritten;
 31. }
 32. return n - nleft;
 33. }
 34.
 35. unsigned readline(fd, vptr, maxlen)
 36. int fd;
 37. char* vptr;
 38. int maxlen;
 39. {
 40. unsigned n;
 41. unsigned rc;
 42. char* ptr;
 43. char c;
 44.
 45. ptr = vptr;
 46. for (n = 1; n < maxlen; n++)
 47. {
 48. if ((rc = read(fd, &c, 1)) == 1)
 49. {
 50. *ptr++ = c;
 51. if (c == '\n')
 52. {
 53. *ptr = 0;
 54. return n;
 55. }
 56. }
 57. else if (rc == 0)
 58. {
 59. if (n == 1) return 0;
 60. else
 61. {
 62. *ptr = 0;
 63. return n;
 64. }
 65. }
 66. else
 67. return -1;
 68. }
 69. *ptr = 0;

 70. return n;
 71. }
 72.
 73. void error(msg)
 74. char* msg;
 75. {
 76. fputs(msg, stderr);
 77. fputc('\n', stderr);
 78. exit(1);
 79. }
 80.
 81. void url_decode(in, out, outlen)
 82. char* in;
 83. char* out;
 84. int outlen;
 85. {
 86. int i = 0;
 87. int j = 0;
 88. while (in[i] != '\0' && j < outlen - 1)
 89. {
 90. if (in[i] == '+') out[j] = ' ';
 91. else if (in[i] == '%')
 92. {
 93. int ch;
 94. sscanf(in + i + 1, "%x", &ch);
 95. out[j] = ch;
 96. i += 2;
 97. }
 98. else out[j] = in[i];
 99. i++;
100. j++;
101. }
102. out[j] = 0;
103. }
104.
105. int main(argc, argv)
106. int argc;
107. char** argv;
108. {
109. int sockfd;
110. struct sockaddr_in serv_addr;
111. int n;
112. char* name;
113. struct hostent* hostptr;

114. char url[MAXLINE + 1];
115. char sendline[MAXLINE + 1];
116. char recvline[MAXLINE + 1];
117. char server_name[MAXNAME];
118. char file_name[MAXLINE];
119. int port;
120. int service = 0;
121. char* p;
122. char* q;
123.
124. url_decode(argv[1], url, sizeof(url));
125.
126. p = strstr(url, "URL=http://");
127. if (p != url)
128. error("Sorry--can only recognize URL=service://serv
129. service = HTTP;
130. p += strlen("URL=http://");
131. q = strchr(p, '/');
132. if (q == NULL)
133. error("Sorry--can only recognize //server/file");
134. strncpy(server_name, p, q - p);
135. server_name[q - p] = '\0';
136. strncpy(file_name, q, sizeof(file_name) - 1);
137. file_name[sizeof(file_name) - 1] = '\0';
138. port = service;
139.
140. if ((sockfd = socket(PF_INET, SOCK_STREAM, 0)) < 0)
141. error("Can't open stream socket");
142.
143. bzero((char*)&serv_addr, sizeof(serv_addr));
144. serv_addr.sin_family = AF_INET;
145. hostptr = gethostbyname(server_name);
146. if (hostptr == 0) error("Can't find host");
147. name = inet_ntoa(*(struct in_addr*)*hostptr->h_addr_li
148. serv_addr.sin_addr.s_addr = inet_addr(name);
149. serv_addr.sin_port = htons(port);
150.
151. if (connect(sockfd, (struct sockaddr*)&serv_addr,
152. sizeof(serv_addr)) < 0)
153. error("Can't connect to server");
154.
155. sendline[sizeof(sendline) - 1] = 0;
156. if (service == HTTP)
157. {

158. strcpy(sendline, "GET ");
159. strncat(sendline, file_name, sizeof(sendline) - 1
160. - strlen(sendline));
161. }
162. strncat(sendline, "\r\n", sizeof(sendline) - 1
163. - strlen(sendline));
164.
165. n = strlen(sendline);
166. if (writen(sockfd, sendline, n) != n)
167. error("Write error on socket");
168.
169. fputs("Content-type: text/html\n\n", stdout);
170.
171. do
172. {
173. n = readline(sockfd, recvline, MAXLINE);
174. if (n < 0)
175. error("Read error on socket");
176. else if (n > 0)
177. {
178. recvline[n] = 0;
179. fputs(recvline, stdout);
180. }
181. }
182. while (n > 0);
183.
184. return 0;
185. }

Example 3-11 proxysvr.pl

 1. ($url) = @ARGV;
 2.
 3. $url =~ tr/+/ /;
 4. $url =~ s/%([a-fA-F0-9][a-fA-F0-9])/pack("C", hex($1))/eg;
 5.
 6. $pos = index($url, "URL=http://");
 7.
 8. if ($pos != 0)
 9. {
10. die "Sorry--can only recognize URL=http://server/file";
11. }
12.
13. $port = 80;

14.
15. $pos = 11;
16. $pos2 = index($url, "/", $pos);
17. if ($pos2 < 0)
18. {
19. die "Sorry--can only recognize //server/file";
20. }
21.
22. $server_name = substr($url, $pos, $pos2 - $pos);
23. $file_name = substr($url, $pos2);
24. $AF_INET = 2;
25. $SOCK_STREAM =1;
26.
27. $sockaddr = 'S n a4 x8';
28.
29. ($name, $aliases, $proto) = getprotobyname ('tcp');
30. ($name,$aliases,$type,$len,$thataddr)
31. = gethostbyname($server_name);
32. $that = pack($sockaddr, $AF_INET, $port, $thataddr);
33.
34. if (!socket (S, $AF_INET, $SOCK_STREAM, $proto))
35. {
36. die $!;
37. }
38.
39. if (!connect (S, $that))
40. {
41. die $!;
42. }
43.
44. select(S); $|=1; select(STDOUT);
45.
46. $command = "GET ".$file_name;
47.
48. print S $command."\r\n";
49.
50. print "Content-type: text/html\n\n";
51. while (<S>)
52. {
53. print;
54.

Comparing Servlets, Perl, and C for Server-side

Testing the WeatherReport Applet

In this section, we show you how to test the weather report applet. You need a web server that
can execute either servlets or CGI scripts. We give you detailed instructions for the Apache
Tomcat servlet container. If you use another web server, you will need to make the appropriate
adjustments.

Here are the steps.

1. Download Tomcat from http://jakarta.apache.org/tomcat/index.html.

2. Install Tomcat. To keep the instructions uncluttered, let's assume you installed it in
the /tomcat directory. If you use another directory, modify the instructions accordingly.

3. Compile the servlet code:

Processing
CGI scripts can be written in any language that can read from standard input and write to
standard output. The "traditional" choice for CGI scripts is Perl. However, we actually
wrote our first proxy server script in C because we did not realize that Perl can connect
to sockets.

The Perl and C codes are listed in Example 3-10 and 3-11. As you can see, the C code
is quite long. Even the most elementary operations (for example, reading a line of input)
must be programmed in gory detail in C. Networking code is even worse. We didn't
come up with the networking code ourselves. We modified a sample program from UNIX
Network Programming, by W. Richard Stevens [Prentice-Hall, 1990]. Have a look at the
code, and you will really appreciate the simplicity and elegance of the java.net
package.

The Perl code is much shorter but, as you can see by glancing at it, is completely
unreadable to the uninitiated. There are charming variable names like $! and $| and
inscrutable statements such as

$url =~ s/%([a-fA-F0-9][a-fA-F0-9])/pack("C", hex($1))/eg;

This means "replace all strings of the form '% followed by two hex digits' by the
corresponding hex value." (No, we didn't figure that out ourselves. Like everybody else,
we copied it from another script.) The remainder of the program is a modification of an
example from Programming Perl, (3rd edition) by Larry Wall, Tom Christiansen, and Jon
Orwant [O'Reilly, 2000]. We don't pretend to understand the details, but it works.

As a result of this experiment, we can heartily recommend servlets as a great
mechanism for server-side processing. The network programming and string handling in
the Java platform beat the daylights out of C, and the Java programming language code
is far more readable and maintainable than the Perl equivalent.

javac -classpath /tomcat/lib/servlet.jar:. ProxySvr.java

4. Copy the class file ProxySvr.class to
the /tomcat/webapps/examples/WEB-INF/classes directory.

5. Edit the /tomcat/webapps/examples/WEB-INF/web.xml file by adding the
lines

<servlet>
 <servlet-name>
 ProxySvr
 </servlet-name>
 <servlet-class>
 ProxySvr
 </servlet-class>
</servlet>

and

<servlet-mapping>
 <servlet-name>
 ProxySvr
 </servlet-name>
 <url-pattern>
 /ProxySvr
 </url-pattern>
</servlet-mapping>

in the appropriate places. (Just follow the syntax of the other examples.)

6. Copy the files

WeatherApplet.html
WeatherApplet*.class

to the /tomcat/webapps/examples directory. Note that there are several inner
class files that you need to copy.

7. Edit the WeatherApplet.html file and change the PARAM tag to

<PARAM NAME="queryBase" VALUE=
"http://localhost:8080/examples/ProxySvr?URL=http://
iwin.nws.noaa.gov/iwin/">

8. Start Tomcat.

9. Start the applet by running

appletviewer http://localhost:8080/examples/WeatherApplet.h

Alternatively, use your browser to view that URL. Your browser needs to be able to
handle Java 2 applets (such as Netscape 6 or Opera). Note that no security policy file is
required

Now that you have seen the applet in action, let us review why the proxy server solves the
applet security problem. When the user selects a state and report type, the weather applet
requests the information from the proxy server on its local host. The proxy server then goes
out to the National Weather Service, gets the data, and feeds it back to the applet.

This looks like a lot of trouble, but we have avoided the security risk. The applet only talks to
the proxy server. The proxy server cannot peek at documents that may be accessible from the
machine that is running the applet.

You can use this technique whenever you want to deploy an applet that harvests information
from other web sites. In effect, you have offloaded the harvesting to the server, and you use
the applet for presenting the results.

Now the security monkey is on your back. By installing the proxy server on your web server,
you enable anyone to access it and download any files that are visible from your server. It is
then up to you to configure your network so that the proxy server cannot pick up any of your
confidential files. Alternatively, you can implement the proxy server so that it retrieves only
URLs of a certain form. In our case, a useful restriction would be to reject any requests other
than for URLs starting with http://iwin.nws.noaa.gov.

Does it make sense to have the server merely grab the information and reflect it to the applet?
In this case, it does, but in general, it often makes sense for the server to cache it, thus
improving performance when there are multiple requests, or to preprocess the information. In
this example, we used server-side processing to avoid a security issue. In many other
situations, it is best to process as much information as possible on the server because the
server software is easier to control and maintain. Applets still have their place—interacting with
the user and presenting results. In a typical 3-tier (or n-tier) application, the applet is paired
with a servlet or other server-side programming mechanism that does the "heavy lifting."

CONTENTS

Chapter 4. Database Connectivity: JDBC
The Design of JDBC

The Structured Query Language

Installing JDBC

Basic JDBC Programming Concepts

Executing Queries

Scrollable and Updatable Result Sets

Metadata

Transactions

Advanced Connection Management

In the summer of 1996, Sun released the first version of the Java Database Connectivity
(JDBC) kit. This package lets programmers connect to a database, query it, or update it, using
the Structured Query Language or SQL. (SQL, usually pronounced like "sequel," is an industry
standard for database access.) When JDBC was first announced, we considered this one of
the most important developments in programming for the Java platform. It is not just that
databases are among the most common use of hardware and software today. After all, there
are a lot of products running after this market, so why did we think the Java programming
language had the potential to make a big splash? The reason that Java and JDBC have an
essential advantage over other database programming environments is this:

Programs developed with the Java programming language and JDBC are platform
independent and vendor independent.

The same database program written in the Java programming language can run on an NT box,
a Solaris server, or a database appliance powered by the Java platform. You can move your
data from one database to another, for example, from Microsoft SQL Server to Oracle, or even
to a tiny database embedded in a device, and the same program can still read your data. This
is in sharp contrast to traditional database programming. It is all too common that one writes
database applications in a proprietary database language, using a database management
system that is available only from a single vendor. The result is that you can run the resulting
application only on one or two platforms. We believe that because of their universality, the
Java programming language and JDBC will eventually replace proprietary database languages
and call level interfaces used by vendors such as Oracle, Informix, and Microsoft for accessing
databases.

NOTE

CONTENTS

As part of the release of Java 2 in 1998, a second version of JDBC was issued as well. At the
time of this writing, support for JDBC 2 is still not universal, but many JDBC 2 drivers are
available. JDBC 2 introduces several major features such as scrollable cursors and support for
advanced SQL types. The JDBC 3 specification was in its final review phase as this chapter
was finished. JDBC 3 enhancements are more technical in nature. In this chapter, we alert you
when you need to be aware of the version differences.

We still must caution you that the JDK offers no tools for database programming with the Java
programming language. For form designers, query builders, and report generators, you need
to turn to third-party packages. "Corporate" or "professional" versions of development
environments for the Java platform, such as Visual Café and JBuilder, ship with database
integration tools.

In this chapter:

We explain some of the ideas behind JDBC—the "Java Database Connectivity" API.

We give you an introduction (or a refresher) in SQL, the industry-standard Structured
Query Language for databases.

We provide enough details and examples so that you can get started in using JDBC for
common programming situations.

NOTE

The Design of JDBC
From the start, the developers of the Java technology at Sun were aware of the potential that
Java showed for working with databases. Starting in 1995, they began working on extending
the standard Java library to deal with SQL access to databases. What they first hoped to do
was to extend Java so that it could talk to any random database, using only "pure" Java. It
didn't take them very long to realize that this is an impossible task: there are simply too many

Some database vendors now build a Java Virtual Machine into the
database itself so that you can write stored procedures in Java. This
technology is part of the SQLJ specification. For more information on SQLJ,
see http://www.sqlj.org.

Over the years, many technologies were invented to make database access
more efficient and fail-safe. Standard databases support indexes, triggers,
stored procedures, and transaction management. JDBC supports all these
features, but we do not discuss them in detail in this chapter. One could
write an entire book on advanced database programming for the Java
platform, and many such books have been written. The material in this
chapter will give you enough information to effectively use JDBC with a
departmental database. To go further with JDBC, we suggest JDBC API
Tutorial and Reference by Seth White, Maydene Fisher, Rick Cattell,
Graham Hamilton, and Mark Hapner [Addison-Wesley 1999].

databases out there, using too many protocols. Moreover, while database vendors were all in
favor of Sun providing a standard network protocol for database access, they were only in
favor of it if Sun decided to use their network protocol.

What all the database vendors and tool vendors did agree on was that it would be useful if Sun
provided a pure Java API for SQL access along with a driver manager to allow third-party
drivers to connect to specific databases. Database vendors could provide their own drivers to
plug into the driver manager. There would then be a simple mechanism for registering third-
party drivers with the driver manager—the point being that all the drivers needed to do was
follow the requirements laid out in the driver manager API.

After a fairly long period of public discussion, the API for database access became the JDBC
API, and the rules for writing drivers were encapsulated in the JDBC service provider interface,
or SPI. (The SPI is of interest only to database vendors and database tool providers; we don't
cover it here.)

This protocol follows the very successful model of Microsoft's ODBC, which provided a C
programming language interface for database access. Both JDBC and ODBC are based on
the same idea: Programs written according to the JDBC API would talk to the JDBC driver
manager, which, in turn, would use the drivers that were plugged into it at that moment to talk
to the actual database.

NOTE

More precisely, the JDBC consists of two layers. The top layer is the JDBC API. This API
communicates with the JDBC manager driver API, sending it the various SQL statements. The
manager should (transparently to the programmer) communicate with the various third-party
drivers that actually connect to the database and return the information from the query or
perform the action specified by the query.

NOTE

All this means the Java/JDBC layer is all that most programmers will ever have to deal with.
Figure 4-1 illustrates what happens.

Figure 4-1. JDBC-to-database communication path

A list of JDBC drivers currently available can be found at the web site
http://industry.java.sun.com/products/jdbc/drivers

The JDBC specification will actually allow you to pass any string to the
underlying driver. The driver can pass this string to the database. This
feature allows you to use specialized versions of SQL that may be
supported by the driver and its associated database.

JDBC drivers are classified into the following types:

A type 1 driver translates JDBC to ODBC and relies on an ODBC driver to communicate
with the database. Sun includes one such driver, the JDBC/ODBC bridge, with the JDK.
However, the bridge requires deployment and proper configuration of an ODBC driver.
When JDBC was first released, the bridge was handy for testing, but it was never
intended for production use. At this point, there are plenty of better drivers available, and
we advise against using the JDBC/ODBC bridge.

A type 2 driver is a driver, written partly in the Java programming language and partly in
native code, that communicates with the client API of a database. When you use such a
driver, you must install some platform-specific code in addition to a Java library.

A type 3 driver is a pure Java client library that uses a database-independent protocol to
communicate database requests to a server component, which then translates the
requests into a database-specific protocol. The client library is independent of the actual
database, thus simplifying deployment.

A type 4 driver is a pure Java library that translates JDBC requests directly to a
database-specific protocol.

Most database vendors supply either a type 3 or type 4 driver with their database.
Furthermore, a number of third-party companies specialize in producing drivers with better
standards conformance, support for more platforms, better performance, or, in some cases,
simply better reliability than the drivers that are provided by the database vendors.

In summary, the ultimate goal of the JDBC is to make possible the following:

Programmers can write applications in the Java programming language to access any
database, using standard SQL statements—or even specialized extensions of SQL—
while still following Java language conventions. (All JDBC drivers must support at least
the entry-level version of SQL 92.)

Database vendors and database tool vendors can supply the low-level drivers. Thus,
they can optimize their drivers for their specific products.

NOTE

Typical Uses of JDBC

You can use JDBC in both applications and applets. In an applet, all the normal security
restrictions apply. By default, the security manager assumes that all applets written in the Java
programming language are untrusted.

In particular, applets that use JDBC are only able to open a database connection to the server
from which they are downloaded. That means the Web server and the database server must
be the same machine, which is not a typical setup. Of course, the Web server can have a
proxy service that routes database traffic to another machine. With signed applets, this
restriction can be loosened.

Applications, on the other hand, have complete freedom to access remote database servers. If
you implement a traditional client/server program (see Figure 4-2), it probably makes more
sense to use an application, not an applet, for database access.

Figure 4-2. A client/server application

If you are curious as to why Sun just didn't adopt the ODBC model, their
response, as given at the JavaOne conference in May 1996, was:

ODBC is hard to learn.

ODBC has a few commands with lots of complex options. The
preferred style in the Java programming language is to have simple
and intuitive methods, but to have lots of them.

ODBC relies on the use of void* pointers and other C features that
are not natural in the Java programming language.

An ODBC-based solution is inherently less safe and harder to deploy
than a pure Java solution.

However, the world is moving away from client/server and toward a "three-tier model" or even
more advanced "n-tier models." In the three-tier model, the client does not make database
calls. Instead, it calls on a middleware layer on the server that in turn makes the database
queries. The three-tier model has a couple of advantages. It separates visual presentation (on
the client) from the business logic (in the middle tier) and the raw data (in the database).
Therefore, it becomes possible to access the same data and the same business rules from
multiple clients, such as a Java application or applet or a web form.

Communication between the client and middle tier can occur through HTTP (when you use a
web browser as the client), RMI (when you use an application or applet—see Chapter 5), or
another mechanism. JDBC is used to manage the communication between the middle tier and
the back-end database. Figure 4-3 shows the basic architecture. There are, of course, many
variations of this model. In particular, the Java 2 Enterprise Edition defines a structure for
application servers that manage code modules called Enterprise JavaBeans, and provide
valuable services such as load balancing, request caching, security, and simple database
access. In that architecture, JDBC still plays an important role for issuing complex database
queries. (For more information on the Enterprise Edition, see http://java.sun.com/j2ee.)

Figure 4-3. A three-tier application

The Structured Query Language
JDBC is an interface to SQL, which is the interface to essentially all modern relational
databases. Desktop databases usually have a graphical user interfaces that lets users
manipulate the data directly, but server-based databases are accessed purely through SQL.
Most desktop databases have a SQL interface as well, but it often does not support the full
range of ANSI SQL92 features, the current standard for SQL.

The JDBC package can be thought of as nothing more than an application programming
interface (API) for communicating SQL statements to databases. We will give a short

introduction to SQL in this section. If you have never seen SQL before, you may not find this
material sufficient. If so, you should turn to one of the many books on the topic. We
recommend Client/Server Databases by James Martin and Joe Leben [Prentice-Hall 1998] or
the venerable and opinionated book A Guide to the SQL Standard by Chris. J. Date [Addison-
Wesley 1997].

You can think of a database as a bunch of named tables with rows and columns. Each column
has a column name. The rows contain the actual data. These are sometimes called records.

As the example database for this book, we use a set of tables that describe a collection of
books on HTML. (Thanks to Cye H. Waldman at http://wwwiz.com/books for supplying the
sample data.)

Figure 4-4 shows a view of the Books table. Figure 4-5 shows the result of joining this table
with a table of publishers. Both the Books and the Publishers table contain a numerical
code for the publisher. When we join both tables on the publisher code, we obtain a query
result made up of values from the joined tables. Each row in the result contains the information
about a book, together with the publisher name and Web page URL. Note that the publisher
names and URLs are duplicated across several rows since we have several rows with the
same publisher.

Figure 4-4. Sample table containing the HTML books

Table 4-1. The Authors table
Author_ID Name URL
ARON Aronson, Larry http://…
ARPA Arpajian, Scott http://…
… … …

Table 4-2. The Books table
Title ISBN Publisher_ID URL Price
Beyond HTML 0-07-882198-3 00788 http://… 27.95
10 Minute Guide to HTML 0-78970541-9 07897 http://… 15.00
… … … … …

Table 4-3. The BooksAuthors table
ISBN Author_ID Seq_No
1-56-884454-9 TAYL 1
1-56884645-2 SMIT 1
1-56884645-2 BEBA 2
… … …

Table 4-4. The Publishers table
Publisher_ID Name URL
01262 Academic Press www.apnet.com/
18835 Coriolis www.coriolis.com/
… … …

Figure 4-5. Two tables joined together

The benefit of joining tables is to avoid unnecessary duplication of data in the database tables.
For example, a naive database design might have had columns for the publisher name and
URL right in the Books table. But then the database itself, and not just the query result, would
have many duplicates of these entries. If a publisher's Web address changed, all entries would
need to be updated. Clearly, this is somewhat error prone. In the relational model, we
distribute data into multiple tables such that no information is ever unnecessarily duplicated.
For example, each publisher URL is contained only once in the publisher table. If the

information needs to be combined, then the tables are joined.

In the figures, you can see a graphical tool to inspect and link the tables. Many vendors have
tools to express queries in a simple form by connecting column names and filling information
into forms. Such tools are often called query by example (QBE) tools. In contrast, a query that
uses SQL is written out in text, using the SQL syntax. For example:

SELECT Books.ISBN, Books.Price, Books.Title,
 Books.Publisher_Id, Publishers.Name, Publishers.URL
FROM Books, Publishers
WHERE Books.Publisher_Id = Publishers.Publisher_Id

In the remainder of this section, you will learn how to write such queries. If you are already
familiar with SQL, just skip this section.

By convention, SQL keywords are written in all caps, although this is not necessary.

The SELECT operation is quite flexible. You can simply select all elements in the Books
table with the following query:

SELECT * FROM Books

The FROM statement is required in every SQL SELECT statement. The FROM clause tells the
database which tables to examine to find the data.

You can choose the columns that you want.

SELECT ISBN, Price, Title
FROM Books

You can restrict the rows in the answer with the WHERE clause.

SELECT ISBN, Price, Title
FROM Books
WHERE Price <= 29.95

Be careful with the "equals" comparison. SQL uses = and <>, not == or !=, as in the Java
programming language, for equality testing.

NOTE

The WHERE clause can also use pattern matching, using the LIKE operator. The wildcard
characters are not the usual * and ?, however. Use a % for zero or more characters and an

Some database vendors support the use of != for inequality testing. This is
not standard SQL, so we recommend against using it.

underscore for a single character. For example:

SELECT ISBN, Price, Title
FROM Books
WHERE Title NOT LIKE '%H_M%'

Note that strings are enclosed in single quotes, not double quotes. A single quote inside a
string is denoted as a pair of single quotes. For example,

SELECT Title
FROM Books
WHERE Books.Title LIKE '%''%'

reports all titles that contain a single quote.

You can select data from multiple tables.

SELECT * FROM Books, Publishers

Without a WHERE clause, this query is not very interesting. It lists all combinations of rows
from both tables. In our case, where Books has 37 rows and Publishers has 18 rows, the
result is a table with 37 x 18 entries and lots of duplications. We really want to constrain the
query to say that we are only interested in matching books with their publishers.

SELECT * FROM Books, Publishers
WHERE Books.Publisher_Id = Publishers.Publisher_Id

This query result has 37 rows, one for each book, since each book has a publisher in the
Publisher table.

Whenever you have multiple tables in a query, the same column name can occur in two
different places. That happened in our example. There is a publisher code column called
Publisher_Id in both the Books and the Publishers table. When an ambiguity would
otherwise result, you must prefix each column name with the name of the table to which it
belongs, such as Books.Publisher_Id.

Now you have seen all SQL constructs that were used in the query at the beginning of this
section:

SELECT Books.ISBN, Books.Price, Books.Title,
 Books.Publisher_Id, Publishers.Name, Publishers.URL
FROM Books, Publishers
WHERE Books.Publisher_Id = Publishers.Publisher_Id

You can use SQL to change the data inside a database as well, by using so-called action
queries (i.e., queries that move or change data). For example, suppose you want to reduce by
$5.00 the current price of all books that do not have "HTML 3" in their title.

UPDATE Books
SET Price = Price - 5.00
WHERE Title NOT LIKE '%HTML 3%'

Similarly, you can change several fields at the same time by separating the SET clauses with
commas. There are many other SQL keywords you can use in an action query. Probably the
most important besides UPDATE is DELETE, which allows the query to delete those records
that satisfy certain criteria. Finally, SQL comes with built-in functions for taking averages,
finding maximums and minimums in a column, and a lot more. Consult a book on SQL for
more information.

Typically, to insert values into a table, you use the INSERT statement:

INSERT INTO Books
VALUES ('Beyond HTML', '0-07-882198-3', '00788', '', 27.95)

You need a separate INSERT statement for every row being inserted in the table.

Of course, before you can query, modify, and insert data, you must have a place to store data.
Use the CREATE TABLE command to make a new table. You specify the name and data type
for each column. For example,

CREATE TABLE Books
(
 Title CHAR(60),
 ISBN CHAR(13),
 Publisher_Id CHAR(5),
 URL CHAR(80),
 Price DECIMAL(6,2)
)

Table 4-5 shows the most common SQL data types.

Table 4-5. SQL Data Types
Data Types Description
INTEGER or INT Typically, a 32-bit integer
SMALLINT Typically, a 16-bit integer
NUMERIC(m,n),DECIMAL(m,n)
or DEC(m,n)

Fixed-point decimal number with m total digits and n
digits after the decimal point

FLOAT(n) A floating-point number with n binary digits of
precision

REAL Typically, a 32-bit floating-point number
DOUBLE Typically, a 64-bit floating-point number
CHARACTER(n) or CHAR(n) Fixed-length string of length n

In this book, we are not discussing the additional clauses, such as keys and constraints, that
you can use with the CREATE TABLE command.

Installing JDBC
First, you need a database program that is compatible with JDBC. You will also need to create
a database for your experimental use. We assume you will call this database COREJAVA.
Create a new database, or have your database administrator create one with the appropriate
permissions. You need to be able to create, update, and drop tables.

If you have never installed a client/server database before, you may find that setting up the
database is somewhat complex and that it can be difficult to diagnose the cause for failure. It
may be best to seek expert help if your setup is not working correctly.

One alternative is to install a pure Java database such as Cloudscape
(http: //www.cloudscape.com), PointBase (http://www.pointbase.com), or InstantDB
(http://www.lutris.com/products/instantDB). These databases are less powerful but simple to
set up. The most complex part is setting up the class path, which should not pose a challenge
for a seasoned Java programmer.

Essentially all database vendors already have JDBC drivers. You need to locate the vendor's
instructions to load the driver into your program and to connect to the database. In the next
section, we will explain the setups for two typical databases that are available on a variety of
platforms:

IBM DB2

Cloudscape

Instructions for other databases are similar, although, of course, the details will vary.

We recommend against using the JDBC/ODBC bridge driver that comes with the Java 2 SDK.
We recommend even more strongly against using that driver with a desktop database such as
Microsoft Access. Not only are the installation and configuration somewhat cumbersome, but
both the bridge driver and desktop databases have restrictions that can easily lead to
confusion. Ultimately, one learns very little about real databases from this setup.

NOTE

VARCHAR(n) Variable-length strings of maximum length n
BOOLEAN A boolean value
DATE Calendar date, implementation dependent
TIME Time of day, implementation dependent
TIMESTAMP Date and time of day, implementation dependent
BLOB A binary large object
CLOB A character large object

Basic JDBC Programming Concepts
Programming with the JDBC classes is, by design, not very different from programming with
the usual Java platform classes: you build objects from the JDBC core classes, extending
them by inheritance if need be. This section takes you through the details.

NOTE

Database URLs

When connecting to a database, you must specify the data source and you may need to
specify additional parameters. For example, network protocol drivers may need a port, and
ODBC drivers may need various attributes.

As you might expect, JDBC uses a syntax similar to ordinary URLs to describe data sources.
Here are examples of the syntax:

jdbc:db2:COREJAVA
jdbc:cloudscape:COREJAVA;create=true

These JDBC URLs specify a DB2 or Cloudscape database named COREJAVA. The general
syntax is

jdbc:subprotocol name:other stuff

where a subprotocol is used to select the specific driver for connecting to the database.

The format for the other stuff parameter depends on the subprotocol used. You need to
look up your vendor's documentation for the specific format.

Making the Connection

You need to find out the names of the JDBC driver classes used by your vendor. Typical driver
names are

COM.ibm.db2.jdbc.app.DB2Driver

Some desktop databases support SQL through a proprietary mechanism,
not JDBC or ODBC. For example, Borland has a BDE engine and Microsoft
has a Jet engine that give somewhat better performance than ODBC for
local database access. These mechanisms are not compatible with the
Java platform.

The classes that you use for JDBC programming are contained in the
java.sql and javax.sql packages.

COM.cloudscape.core.JDBCDriver

Next, you must find the library in which the driver is located, such as db2java.zip or
cloudscape.jar. You must place the full path name to that driver onto the class path.
Use one of the following three mechanisms:

Launch your database programs with the -classpath command-line argument.

Modify the CLASSPATH environment variable.

Copy the database library into the jre/lib/ext directory.

The DriverManager is the class responsible for selecting database drivers and creating a
new database connection. However, before the driver manager can activate a driver, the driver
must be registered.

There are two methods for registering drivers. The jdbc.drivers property contains a list
of class names for the drivers that the driver manager will register at startup. The names are
separated by colons.

You can specify the property with a command-line argument, such as

java -Djdbc.drivers=COM.ibm.db2.jdbc.app.DB2Driver MyProg

Or your application can add read a properties file with the line

jdbc.drivers=COM.ibm.db2.jdbc.app.DB2Driver

and add that setting to the system properties. (See Chapter 2 for more information on
properties.)

You can also supply multiple drivers; separate them with colons, such as

COM.ibm.db2.jdbc.app.DB2Driver:COM.cloudscape.core.JDBCDriver

This approach allows users of your application to install appropriate drivers simply by
modifying a property file.

Our sample programs read all database parameters from a properties file
database.properties. Make sure to edit that file to match your database.

Alternatively, you can manually register a driver by loading its class.

For example,

Class.forName("COM.ibm.db2.jdbc.app.DB2Driver");
 // force registration of driver

After registering drivers, you open a database connection with code that is similar to the
following example:

String url = "jdbc:db2:COREJAVA";
String username = "db2inst1";
String password = "wombat";
Connection conn = DriverManager.getConnection(url,
 username, password);

The driver manager will try to find a driver that can use the protocol specified in the database
URL by iterating through the available drivers currently registered with the driver manager.

For our example programs, we find it convenient to use a properties file to specify the URL,
user name, and password in addition to the database driver. A typical properties file has the
following contents:

jdbc.drivers=COM.ibm.db2.jdbc.app.DB2Driver
jdbc.url=jdbc:db2:COREJAVA
jdbc.username=db2inst1
jdbc.password=wombat

Here is the code for reading a properties file and opening the database connection.

Properties props = new Properties();
FileInputStream in
 = new FileInputStream("database.properties");
props.load(in);
in.close();

String drivers = props.getProperty("jdbc.drivers");
if (drivers != null)
 System.setProperty("jdbc.drivers", drivers);
String url = props.getProperty("jdbc.url");
String username = props.getProperty("jdbc.username");
String password = props.getProperty("jdbc.password");
return DriverManager.getConnection(url, username, password);

The getConnection method returns a Connection object. In the following sections, you
will see how to use the connection object to execute SQL statements.

TIP

A good way to debug JDBC-related problems is to enable JDBC tracing.
Call the DriverManager.setLogWriter method to send trace
messages to a PrintWriter. The trace output contains a detailed listing
of the JDBC activity.

Testing Your Database Installation
Setting up JDBC for the first time can be a bit tricky. You need several pieces of vendor-
specific information, and the slightest configuration error can lead to very bewildering
error messages.

You should first test your database setup without JDBC. Find out how you can connect
to your database and enter SQL commands. Unless a database administrator tells you
to use another database, create a database called COREJAVA.

Enter the following commands:

CREATE TABLE Greetings (Name CHAR(20))
INSERT INTO Greetings VALUES ('Hello, World!')
SELECT * FROM Greetings

At this point, you should see a display of the "Hello, World!" entry.

Now clean up:

DROP TABLE Greetings

Once you know that your database installation is working, and that you can log onto the
database, you need to gather five pieces of information:

The database user name and password

The name of the database to use (such as COREJAVA)

The JDBC URL format

The JDBC driver name

The location of the library files with the driver code

The first two depend on your database setup. The other three are supplied in the JDBC
specific documentation from your database vendor. For example, for IBM DB2, you may
have

Database user name = db2inst1 (the installation default), password = the
password supplied during installation

Database name = COREJAVA

JDBC URL format = jdbc:db2:databaseName

Example 4-1 TestDB.java

 1. import java.sql.*;
 2. import java.io.*;
 3. import java.util.*;
 4.
 5. /**
 6. This program tests that the database and the JDBC
 7. driver are correctly configured.
 8. */
 9. class TestDB
10. {
11. public static void main (String args[])
12. {
13. try
14. {

JDBC driver = COM.ibm.db2.jdbc.app.DB2Driver

Library file = /usr/IBMdb2/V7.1/java/db2java.zip

For Cloudscape, you may have

Database user name and password are empty

Database name = COREJAVA

JDBC URL format = jdbc:cloudscape:databaseName;create=true

JDBC driver = COM.cloudscape.core.JDBCDriver

Library file = /usr/local/cloudscape/lib/cloudscape.jar

Example 4-1 is a small test program that you can use to test your JDBC setup. Prepare
the database.properties file with the information that you collected. Then start
the test program with the driver library on the class path, such as

java -classpath .:/usr/IBMdb2/V7.1/java/db2java.zip TestDB

(Remember to use a semicolon instead of a colon as the path separator on Windows.)

This program executes the same SQL instructions as the manual test. If you get a SQL
error message, then you need to keep working on your setup. It is extremely common to
make one or more small errors with capitalization, path names, the JDBC URL format, or
the database configuration. Once the test program displays "Hello, World!", then
everything is fine, and you can move on to the next section.

15. Connection conn = getConnection();
16. Statement stat = conn.createStatement();
17.
18. stat.execute("CREATE TABLE Greetings (Name CHAR(2
19. stat.execute(
20. "INSERT INTO Greetings VALUES ('Hello, World!'
21.
22. ResultSet result
23. = stat.executeQuery("SELECT * FROM Greetings")
24. result.next();
25. System.out.println(result.getString(1));
26. result.close();
27.
28. stat.execute("DROP TABLE Greetings");
29.
30. stat.close();
31. conn.close();
32. }
33. catch (SQLException ex)
34. {
35. while (ex != null)
36. {
37. ex.printStackTrace();
38. ex = ex.getNextException();
39. }
40. }
41. catch (IOException ex)
42. {
43. ex.printStackTrace();
44. }
45. }
46.
47. /**
48. Gets a connection from the properties specified
49. in the file database.properties
50. @return the database connection
51. */
52. public static Connection getConnection()
53. throws SQLException, IOException
54. {
55. Properties props = new Properties();
56. FileInputStream in
57. = new FileInputStream("database.properties");
58. props.load(in);

59. in.close();
60.
61. String drivers = props.getProperty("jdbc.drivers");
62. if (drivers != null)
63. System.setProperty("jdbc.drivers", drivers);
64. String url = props.getProperty("jdbc.url");
65. String username = props.getProperty("jdbc.username")
66. String password = props.getProperty("jdbc.password")
67.
68. return
69. DriverManager.getConnection(url, username, passwo
70. }
71. }

Executing SQL Commands

To execute a SQL command, you first create a Statement object. The Connection
object that you obtained from the call to DriverManager.getConnection can be used
to create statement objects.

Statement stat = conn.createStatement();

Next, you place the statement that you want to execute into a string, for example,

String command = "UPDATE Books"
 + " SET Price = Price - 5.00"
 + " WHERE Title NOT LIKE '%HTML 3%'";

Then you call the executeUpdate method of the Statement class:

stat.executeUpdate(command);

The executeUpdate method returns a count of the rows that were affected by the SQL
command. For example, the call to executeUpdate in the preceding example returns the
number of book records whose price was lowered by $5.00.

The executeUpdate method can execute actions such as INSERT, UPDATE, and
DELETE as well as data definition commands such as CREATE TABLE, and DROP
TABLE. However, you need to use the executeQuery method to execute SELECT
queries. There is also a catch-all execute statement to execute arbitrary SQL statements.
It's not as commonly used, except for queries that a user supplies interactively.

When you execute a query, you are interested in the result. The executeQuery object
returns an object of type ResultSet that you use to walk through the result a row at a time.

ResultSet rs = stat.executeQuery("SELECT * FROM Books")

NOTE

The basic loop for analyzing a result set looks like this:

while (rs.next())
{
 look at a row of the result set
}

CAUTION

When inspecting an individual row, you will want to know the contents of each column. A large
number of accessor methods give you this information.

String isbn = rs.getString(1);
float price = rs.getDouble("Price");

There are accessors for every Java programming language type, such as getString and
getDouble. Each accessor has two forms, one that takes a numeric argument and one that
takes a string argument. When you supply a numeric argument, you refer to the column with
that number. For example, rs.getString(1) returns the value of the first column in the

You can use the same Statement object for multiple, unrelated
commands. However, a statement has a single open result set. If you issue
multiple queries whose results you analyze concurrently, then you need
multiple Statement objects.

Be forewarned, though, that at least one commonly used database
(Microsoft SQL Server) has a JDBC driver that allows only one active
statement at a time. Use the getMaxStatements method of the
DatabaseMetaData class to find out the number of concurrently open
statements that your JDBC driver supports.

This sounds restrictive, but in practice, you should probably not fuss with
multiple concurrent result sets. If the result sets are related, then you should
be able to issue a combined query and analyze a single result. It is much
more efficient to let the database combine queries than it is for a Java
program to iterate through multiple result sets.

The iteration protocol of the ResultSet class is slightly different from the
protocol of the Iterator and Enumeration interfaces that we
discussed in Chapter 2. Here, the iterator is initialized to a position before
the first row. You must call the next method once to move it to the first
row.

current row.

CAUTION

When you supply a string argument, you refer to the column in the result set with that name.
For example, rs.getDouble("Price") returns the value of the column
with name Price. Using the numeric argument is a bit more efficient, but the string
arguments make the code easier to read and maintain.

Each get method will make reasonable type conversions when the type of the method doesn't
match the type of the column. For example, the call rs.getString("Price") converts
the floating-point value of the Price column to a string.

NOTE

Unlike array indexes, database column numbers start at 1.

SQL data types and Java data types are not exactly the same. See Table 4-
6 for a listing of the basic SQL data types and their equivalents in the Java
programming language.

Table 4-6. SQL data types and their corresponding Java language types
SQL data type Java data type
INTEGER or INT int
SMALLINT short
NUMERIC(m,n), DECIMAL(m,n)or DEC(m,n) java.sql.Numeric
FLOAT(n) double
REAL float
DOUBLE double
CHARACTER(n)or CHAR(n) String
VARCHAR(n) String
BOOLEAN boolean
DATE java.sql.Date
TIME java.sql.Time
TIMESTAMP java.sql.Timestamp
BLOB java.sql.Blob
CLOB java.sql.Clob
ARRAY java.sql.Array

Advanced SQL Types (JDBC 2)

In addition to numbers, strings, and dates, many databases can store large objects such as
images or other data. In SQL, binary large objects are called BLOBs, and character large
objects are called CLOBs. The getBlob and getClob methods return objects of type
BLOB and CLOB. These classes have methods to fetch the bytes or characters in the large
objects.

A SQL ARRAY is a sequence of values. For example, in a Student table, you can have a
Scores column that is an ARRAY OF INTEGER. The getArray method returns an object
of type java.sql.Array (which is different from the java.lang.reflect.Array
class that we discussed in Volume 1). The java.sql.Array interface has methods to
fetch the array values.

NOTE

When you get a BLOB or an array from a database, the actual contents are only fetched from
the database when you request individual values. This is a useful performance enhancement,
since the data can be quite voluminous.

Some databases are able to store user-defined structured types. JDBC 2 supports a
mechanism for automatically mapping structured SQL types to Java objects.

However, in this introductory chapter, we do not discuss BLOBs, arrays, and user-defined
types any further.

java.sql.DriverManager

static Connection getConnection(String url, String user,
String password)

establishes a connection to the given database and returns a Connection object.

The BLOB, CLOB, and ARRAY types are features of SQL3. Java platform
support for BLOB and CLOB has been greatly enhanced in JDBC 2, and
support for ARRAY is a new feature in JDBC 2.

gra

Parameters: url the URL for the database
 user the database logon ID
 password the database logon password

java.sql.Connection

Statement createStatement()

creates a statement object that can be used to execute SQL queries and updates without
parameters.

void close()

immediately closes the current connection.

java.sql.Statement

ResultSet executeQuery(String sql)

executes the SQL statement given in the string and returns a ResultSet to view the
query result.

int executeUpdate(String sql)

executes the SQL INSERT, UPDATE, or DELETE statement specified by the string.
Also used to execute Data Definition Language (DDL) statements such as CREATE
TABLE. Returns the number of records affected, or -1 for a statement without an update
count.

boolean execute(String sql)

executes the SQL statement specified by the string. Returns true if the statement
returns a result set, false otherwise. Use the getResultSet or
getUpdateCount method to obtain the statement outcome.

gra

gra

Parameters: sql the SQL query

Parameters: sql the SQL statement

int getUpdateCount()

Returns the number of records affected by the preceding update statement, or -1 if the
preceding statement was a statement without an update count. Call this method only
once per executed statement.

ResultSet getResultSet()

Returns the result set of the preceding query statement, or null if the preceding
statement did not have a result set. Call this method only once per executed statement.

java.sql.ResultSet

boolean next()

makes the current row in the result set move forward by one. Returns false after the
last row. Note that you must call this method to advance to the first row.

Xxx getXxx(int columnNumber)

Xxx getXxx(String columnName)

(Xxx is a type such as int, double, String, Date, etc.)

return the value of the column with column index columnNumber or with column
names, converted to the specified type. Not all type conversions are legal. See
documentation for details.

int findColumn(String columnName)

gives the column index associated with a column name.

void close()

immediately closes the current result set.

java.sql.SQLException

Parameters: sql the SQL statement

gra

Most JDBC methods throw this exception, and you must be prepared to catch it. The following
methods give more information about the exceptions.

String getSQLState()

gets the SQLState formatted, using the X/Open standard.

int getErrorCode()

gets the vendor-specific exception code.

SQLException getNextException()

gets the exception chained to this one. It may contain more information about the error.

Populating a Database

We now want to write our first, real, JDBC program. Of course, it would be nice if we could
execute some of the fancy queries that we discussed earlier. Unfortunately, we have a
problem: right now, there is no data in the database. And you won't find a database file on the
CD-ROM that you can simply copy onto your hard disk for the database program to read,
because no database file format lets you interchange SQL relational databases from one
vendor to another. SQL does not have anything to do with files. It is a language to issue
queries and updates to a database. How the database execsutes these statements most
efficiently and what file formats it uses toward that goal are entirely up to the implementation of
the database. Database vendors try very hard to come up with clever strategies for query
optimization and data storage, and different vendors arrive at different mechanisms. Thus,
while SQL statements are portable, the underlying data representation is not.

To get around our problem, we provide you with a small set of data in a series of text files that
contain the raw SQL instructions to create the tables and insert the values. We also give you a
program that reads a file with SQL instructions, one instruction per line, and executes them.

Specifically, the program reads data from a text file in a format such as

CREATE TABLE Publisher (Publisher_Id char(5), Name char(30), U
INSERT INTO Publisher VALUES ('01262', 'Academic Press', 'www.
INSERT INTO Publisher VALUES ('18835', 'Coriolis', 'www.coriol
. . .

At the end of this section, you can see the code for the program that reads the SQL statement
file and executes the statements. Even if you are not interested in looking at the
implementation, you must run this program if you want to execute the more interesting
examples in the remainder of this chapter. Run the program as follows:

gra

java ExecSQL Books.sql
java ExecSQL Authors.sql
java ExecSQL Publishers.sql
java ExecSQL BooksAuthors.sql

Before running the program, check the file database.properties. It looks like this:

jdbc.drivers=COM.cloudscape.core.JDBCDriver
jdbc.url=jdbc:cloudscape:COREJAVA;create=true
jdbc.username=
jdbc.password=

These values work for the Cloudscape database; change them if you use another database.

CAUTION

The following steps provide an overview of the ExecSQL program.

1. Connect to the database. The getConnection method reads the properties in the file
database.properties and adds the jdbc.drivers property to the system
properties. The driver manager uses the jdbc.drivers property to load the
appropriate database driver. The getConnection method uses the jdbc.url,
jdbc.username, and jdbc.password properties to open the database
connection.

2. Open the file with the SQL commands. If no file was supplied, then prompt the user to
enter the commands on the console. In that way, you can use the ExecSQL program to
interactively issue simple queries.

3. Execute each command with the generic execute method. If it returns true, the
command had a result set. The four SQL files that we provide for the book database all
end in a SELECT * statement so that you can see that the data was successfully
inserted.

4. If there was a result set, print out the result. Because this is a generic result set, we need
to use meta data to find out how many columns the result has. You will learn more about
meta data later in this chapter.

5. If there is any SQL exception, we print the exception and any chained exceptions that
may be contained in it.

Make sure that both the database driver and the current directory are on the
class path. Alternatively, start up the program as

java -classpath driverPath:. ExecSQL SQLfile

Example 4-2 provides the code for the program.

Example 4-2 ExecSQL.java

 1. import java.io.*;
 2. import java.util.*;
 3. import java.sql.*;
 4.
 5. /**
 6. Executes all SQL statements in a file.
 7. Call this program as
 8. java -classpath driverPath:. ExecSQL commandFile
 9. */
 10. class ExecSQL
 11. {
 12. public static void main (String args[])
 13. {
 14. try
 15. {
 16.
 17. Reader reader;
 18. if (args.length == 0)
 19. reader = new InputStreamReader(System.in);
 20. else
 21. reader = new FileReader(args[0]);
 22.
 23. Connection conn = getConnection();
 24. Statement stat = conn.createStatement();
 25.
 26. BufferedReader in = new BufferedReader(reader);
 27.
 28. boolean done = false;
 29. while (!done)
 30. {
 31. if (args.length == 0)
 32. System.out.println(
 33. "Enter command or a blank line to exit:
 34.
 35. String line = in.readLine();
 36. if (line == null || line.length() == 0)
 37. done = true;
 38. else
 39. {
 40. try

 41. {
 42. boolean hasResultSet = stat.execute(lin
 43. if (hasResultSet)
 44. showResultSet(stat);
 45. }
 46. catch (SQLException ex)
 47. {
 48. while (ex != null)
 49. {
 50. ex.printStackTrace();
 51. ex = ex.getNextException();
 52. }
 53. }
 54. }
 55. }
 56.
 57. in.close();
 58. stat.close();
 59. conn.close();
 60. }
 61. catch (Exception ex)
 62. {
 63. ex.printStackTrace();
 64. }
 65. }
 66.
 67. /**
 68. Gets a connection from the properties specified
 69. in the file database.properties
 70. @return the database connection
 71. */
 72. public static Connection getConnection()
 73. throws SQLException, IOException
 74. {
 75. Properties props = new Properties();
 76. FileInputStream in
 77. = new FileInputStream("database.properties");
 78. props.load(in);
 79. in.close();
 80.
 81. String drivers = props.getProperty("jdbc.drivers");
 82. if (drivers != null)
 83. System.setProperty("jdbc.drivers", drivers);
 84. String url = props.getProperty("jdbc.url");

 85. String username = props.getProperty("jdbc.username"
 86. String password = props.getProperty("jdbc.password"
 87.
 88. return
 89. DriverManager.getConnection(url, username, passw
 90. }
 91.
 92. /**
 93. Prints a result set.
 94. @param stat the statement whose result set should b
 95. printed
 96. */
 97. public static void showResultSet(Statement stat)
 98. throws SQLException
 99. {
100. ResultSet result = stat.getResultSet();
101. ResultSetMetaData metaData = result.getMetaData();
102. int columnCount = metaData.getColumnCount();
103.
104. for (int i = 1; i <= columnCount; i++)
105. {
106. if (i > 1) System.out.print(", ");
107. System.out.print(metaData.getColumnLabel(i));
108. }
109. System.out.println();
110.
111. while (result.next())
112. {
113. for (int i = 1; i <= columnCount; i++)
114. {
115. if (i > 1) System.out.print(", ");
116. System.out.print(result.getString(i));
117. }
118. System.out.println();
119. }
120. result.close();
121. }
122. }

Executing Queries
In this section, we will write a program that executes queries against the COREJAVA
database. For this program to work, you must have populated the COREJAVA database with
tables, as described in the preceding section.

Figure 4-6 shows the query application.

Figure 4-6. The QueryDB application

You can select the author and the publisher or leave either of them as "Any." Click on "Query";
all books matching your selection will be displayed in the text box.

You can also change the data in the database. Select a publisher and type an amount into the
text box next to the "Change prices" button. When you click on the button, all prices of that
publisher are adjusted by the amount you entered, and the text area contains a message
indicating how many records were changed. However, to minimize unintended changes to the
database, you can't change all prices at once. The author field is ignored when you change
prices. After a price change, you may want to run a query to verify the new prices.

In this program, we use one new feature, prepared statements. Consider the query for all
books by a particular publisher, independent of the author. The SQL query is

SELECT Books.Price, Books.Title
FROM Books, Publishers
WHERE Books.Publisher_Id = Publishers.Publisher_Id
AND Publishers.Name = the name from the list box

Rather than build a separate query command every time the user launches such a query, we
can prepare a query with a host variable and use it many times, each time filling in a different
string for the variable. That technique gives us a performance benefit. Whenever the database
executes a query, it first computes a strategy of how to efficiently execute the query. By

preparing the query and reusing it, you ensure that the planning step is done only once. (The
reason you do not always want to prepare a query is that the optimal strategy may change as
your data changes. You have to balance the expense of optimization versus the expense of
querying your data less efficiently.)

Each host variable in a prepared query is indicated with a ?. If there is more than one variable,
then you must keep track of the positions of the ? when setting the values. For example, our
prepared query becomes

String publisherQuery =
 "SELECT Books.Price, Books.Title " +
 "FROM Books, Publishers " +
 "WHERE Books.Publisher_Id = Publishers.Publisher_Id " +
 "AND Publishers.Name = ?";
PreparedStatement publisherQueryStat
 = conn.prepareStatement(publisherQuery);

Before executing the prepared statement, you must bind the host variables to actual values
with a set method. As with the ResultSet get methods, there are different set methods
for the various types. Here, we want to set a string to a publisher name.

publisherQueryStat.setString(1, publisher);

The first argument is the host variable that we want to set. The position 1 denotes the first ?.
The second argument is the value that we want to assign to the host variable.

If you reuse a prepared query that you have already executed and the query has more than
one host variable, all host variables stay bound as you set them unless you change them with
a set method. That means you only need to call set on those host variables that change
from one query to the next.

Once all variables have been bound to values, you can execute the query

ResultSet rs = publisherQueryStat.executeQuery();

You process the result set in the usual way. Here, we add the information to the text area
result.

result.setText("");
while (rs.next())
 result.appendText(rs.getString(1) + ", " +
 rs.getString(2y) + "\n");
rs.close();

There are a total of four prepared queries in this program, one each for the cases shown in
Table 4-7.

The price update feature is implemented as a simple UPDATE statement. For variety, we did
not choose to make a prepared statement in this case. Note that we call executeUpdate,
not executeQuery, since the UPDATE statement does not return a result set and we don't
need one. The return value of executeUpdate is the count of changed rows. We display
the count in the text area.

String updateStatement = "UPDATE Books ...";
int r = stat.executeUpdate(updateStatement);
result.setText(r + " records updated");

The following steps provide an overview of the program.

1. Arrange the components in the frame, using a grid bag layout (see Chapter 9 in Volume
1).

2. Populate the author and publisher text boxes by running two queries that return all author
and publisher names in the database.

3. When the user selects "Query," find which of the four query types needs to be executed.
If this is the first time this query type is executed, then the prepared statement variable is
null, and the prepared statement is constructed. Then, the values are bound to the
query and the query is executed.

The queries involving authors are more complex. Because a book can have multiple
authors, the BooksAuthors table gives the correspondence between authors and
books. For example, the book with ISBN number 1-56-604288-7 has two authors with
codes HARR and KIDD. The BooksAuthors table has the rows

1-56-604288-7, HARR, 1
1-56-604288-7, KIDD, 2

to indicate this fact. The third column lists the order of the authors. (We can't just use the
position of the records in the table. There is no fixed row ordering in a relational table.)
Thus, the query has to snake (join) itself from the Books table to the BooksAuthors
table, then to the Authors table to compare the author name with the one selected by
the user.

SELECT Books.Price, Books.Title
FROM Books, Publishers, BooksAuthors, Authors

Table 4-7. Selected queries
Author Publisher
any any
any specified
specified any
specified specified

WHERE Books.Publisher_Id = Publishers.Publisher_Id
AND Publishers.Name = ?
AND Books.ISBN = BooksAuthors.ISBN
AND BooksAuthors.Author = Authors.Author
AND Authors.Name = ?

TIP

4. The results of the query are displayed in the results text box.

5. When the user selects "Change prices," then the update query is constructed and
executed. The query is quite complex because the WHERE clause of the UPDATE
statement needs the publisher code and we know only the publisher name. This problem
is solved with a nested subquery.

UPDATE Books
SET Price = Price + price change
WHERE Books.Publisher_Id =
 (SELECT Publisher_Id
 FROM Publishers
 WHERE Name = publisher name)

6. We initialize the connection and statement objects in the constructor. We hang on to
them for the life of the program. Just before the program exits, we trap the "window
closing" event, and these objects are closed.

class QueryDB extends Frame
{
 QueryDB()
 {
 conn = getConnection();
 stat = conn.createStatement();
 . . .
 add(new
 WindowAdapter()
 {
 public void windowClosing(WindowEvent event)
 {
 try

Some Java programmers avoid complex SQL statements such as this one.
A surprisingly common, but very inefficient, workaround is to write lots of
Java code that iterates through multiple result sets. But the database is a
lot better at executing query code than a Java program—that's the core
competency of a database. As a rule of thumb: If you can do it in SQL, don't
do it in Java.

 {
 stat.close();
 conn.close();
 }
 catch(SQLException ex)
 {
 while (ex != null)
 {
 ex.printStackTrace();
 ex = ex.getNextException();
 }
 }
 }
 });
 }
 . . .
 Connection conn;
 Statement stat;
}

Example 4-3 is the complete program code.

Example 4-3 QueryDB.java

 1. import java.net.*;
 2. import java.sql.*;
 3. import java.awt.*;
 4. import java.awt.event.*;
 5. import java.io.*;
 6. import java.util.*;
 7. import javax.swing.*;
 8.
 9. /**
 10. This program demonstrates several complex database que
 11. */
 12. public class QueryDB
 13. {
 14. public static void main(String[] args)
 15. {
 16. JFrame frame = new QueryDBFrame();
 17. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 18. frame.show();
 19. }
 20. }
 21.

 22. /**
 23. This frame displays combo boxes for query parameters,
 24. a text area for command results, and buttons to launch
 25. a query and an update.
 26. */
 27. class QueryDBFrame extends JFrame
 28. {
 29. public QueryDBFrame()
 30. {
 31. setTitle("QueryDB");
 32. setSize(WIDTH, HEIGHT);
 33. getContentPane().setLayout(new GridBagLayout());
 34. GridBagConstraints gbc = new GridBagConstraints();
 35.
 36. authors = new JComboBox();
 37. authors.setEditable(false);
 38. authors.addItem("Any");
 39.
 40. publishers = new JComboBox();
 41. publishers.setEditable(false);
 42. publishers.addItem("Any");
 43.
 44. result = new JTextArea(4, 50);
 45. result.setEditable(false);
 46.
 47. priceChange = new JTextField(8);
 48. priceChange.setText("-5.00");
 49.
 50. try
 51. {
 52. conn = getConnection();
 53. stat = conn.createStatement();
 54.
 55. String query = "SELECT Name FROM Authors";
 56. ResultSet rs = stat.executeQuery(query);
 57. while (rs.next())
 58. authors.addItem(rs.getString(1));
 59. rs.close();
 60.
 61. query = "SELECT Name FROM Publishers";
 62. rs = stat.executeQuery(query);
 63. while (rs.next())
 64. publishers.addItem(rs.getString(1));
 65. rs.close();

 66. }
 67. catch(SQLException ex)
 68. {
 69. result.setText("");
 70. while (ex != null)
 71. {
 72. result.append("" + ex);
 73. ex = ex.getNextException();
 74. }
 75. }
 76. catch (IOException ex)
 77. {
 78. result.setText("" + ex);
 79. }
 80.
 81. gbc.fill = GridBagConstraints.NONE;
 82. gbc.weightx = 100;
 83. gbc.weighty = 100;
 84. add(authors, gbc, 0, 0, 2, 1);
 85.
 86. add(publishers, gbc, 2, 0, 2, 1);
 87.
 88. gbc.fill = GridBagConstraints.NONE;
 89. JButton queryButton = new JButton("Query");
 90. queryButton.addActionListener(new
 91. ActionListener()
 92. {
 93. public void actionPerformed(ActionEvent event
 94. {
 95. executeQuery();
 96. }
 97. });
 98. add(queryButton, gbc, 0, 1, 1, 1);
 99.
100. JButton changeButton = new JButton("Change prices")
101. changeButton.addActionListener(new
102. ActionListener()
103. {
104. public void actionPerformed(ActionEvent event
105. {
106. changePrices();
107. }
108. });
109. add(changeButton, gbc, 2, 1, 1, 1);

110.
111. gbc.fill = GridBagConstraints.HORIZONTAL;
112. add(priceChange, gbc, 3, 1, 1, 1);
113.
114. gbc.fill = GridBagConstraints.BOTH;
115. add(new JScrollPane(result), gbc, 0, 2, 4, 1);
116.
117. add(new
118. WindowAdapter()
119. {
120. public void windowClosing(WindowEvent event)
121. {
122. try
123. {
124. stat.close();
125. conn.close();
126. }
127. catch(SQLException ex)
128. {
129. while (ex != null)
130. {
131. ex.printStackTrace();
132. ex = ex.getNextException();
133. }
134. }
135. }
136. });
137. }
138.
139. /**
140. Add a component to this frame.
141. @param c the component to add
142. @param gbc the grid bag constraints
143. @param x the grid bax column
144. @param y the grid bag row
145. @param w the number of grid bag columns spanned
146. @param h the number of grid bag rows spanned
147. */
148. private void add(Component c, GridBagConstraints gbc,
149. int x, int y, int w, int h)
150. {
151. gbc.gridx = x;
152. gbc.gridy = y;
153. gbc.gridwidth = w;

154. gbc.gridheight = h;
155. getContentPane().add(c, gbc);
156. }
157.
158. /**
159. Executes the selected query.
160. */
161. private void executeQuery()
162. {
163. ResultSet rs = null;
164. try
165. {
166. String author
167. = (String)authors.getSelectedItem();
168. String publisher
169. = (String)publishers.getSelectedItem();
170. if (!author.equals("Any")
171. && !publisher.equals("Any"))
172. {
173. if (authorPublisherQueryStmt == null)
174. {
175. String authorPublisherQuery =
176. "SELECT Books.Price, Books.Title " +
177. "FROM Books, BooksAuthors, Authors, Publishers " +
178. "WHERE Authors.Author_Id = BooksAuthors.Author_Id AND " +
179. "BooksAuthors.ISBN = Books.ISBN AND " +
180. "Books.Publisher_Id = Publishers.Publisher_Id AND " +
181. "Authors.Name = ? AND " +
182. "Publishers.Name = ?";
183. authorPublisherQueryStmt
184. = conn.prepareStatement(authorPublisher
185. }
186. authorPublisherQueryStmt.setString(1, author)
187. authorPublisherQueryStmt.setString(2,
188. publisher);
189. rs = authorPublisherQueryStmt.executeQuery();
190. }
191. else if (!author.equals("Any")
192. && publisher.equals("Any"))
193. {
194. if (authorQueryStmt == null)
195. {
196. String authorQuery =
197. "SELECT Books.Price, Books.Title " +

198. "FROM Books, BooksAuthors, Authors " +
199. "WHERE Authors.Author_Id = BooksAuthors.Author_Id AND " +
200. "BooksAuthors.ISBN = Books.ISBN AND " +
201. "Authors.Name = ?";
202. authorQueryStmt
203. = conn.prepareStatement(authorQuery);
204. }
205. authorQueryStmt.setString(1, author);
206. rs = authorQueryStmt.executeQuery();
207. }
208. else if (author.equals("Any")
209. && !publisher.equals("Any"))
210. {
211. if (publisherQueryStmt == null)
212. {
213. String publisherQuery =
214. "SELECT Books.Price, Books.Title " +
215. "FROM Books, Publishers " +
216. "WHERE Books.Publisher_Id = Publishers.Publisher_Id AND "
217. "Publishers.Name = ?";
218. publisherQueryStmt
219. = conn.prepareStatement(publisherQuery)
220. }
221. publisherQueryStmt.setString(1, publisher);
222. rs = publisherQueryStmt.executeQuery();
223. }
224. else
225. {
226. if (allQueryStmt == null)
227. {
228. String allQuery =
229. "SELECT Books.Price, Books.Title FROM Books";
230. allQueryStmt
231. = conn.prepareStatement(allQuery);
232. }
233. rs = allQueryStmt.executeQuery();
234. }
235.
236. result.setText("");
237. while (rs.next())
238. {
239. result.append(rs.getString(1));
240. result.append(", ");
241. result.append(rs.getString(2));

242. result.append("\n");
243. }
244. rs.close();
245. }
246. catch(SQLException ex)
247. {
248. result.setText("");
249. while (ex != null)
250. {
251. result.append("" + ex);
252. ex = ex.getNextException();
253. }
254. }
255. }
256.
257. /**
258. Executes an update statement to change prices.
259. */
260. public void changePrices()
261. {
262. String publisher
263. = (String)publishers.getSelectedItem();
264. if (publisher.equals("Any"))
265. {
266. result.setText
267. ("I am sorry, but I cannot do that.");
268. return;
269. }
270. try
271. {
272. String updateStatement =
273. "UPDATE Books " +
274. "SET Price = Price + " + priceChange.getText() +
275. " WHERE Books.Publisher_Id = " +
276. "(SELECT Publisher_Id FROM Publishers WHERE Name = '" +
277. publisher + "')";
278. int r = stat.executeUpdate(updateStatement);
279. result.setText(r + " records updated.");
280. }
281. catch(SQLException ex)
282. {
283. result.setText("");
284. while (ex != null)
285. {

286. result.append("" + ex);
287. ex = ex.getNextException();
288. }
289. }
290. }
291.
292. /**
293. Gets a connection from the properties specified
294. in the file database.properties
295. @return the database connection
296. */
297. public static Connection getConnection()
298. throws SQLException, IOException
299. {
300. Properties props = new Properties();
301. FileInputStream in
302. = new FileInputStream("database.properties");
303. props.load(in);
304. in.close();
305.
306. String drivers = props.getProperty("jdbc.drivers");
307. if (drivers != null)
308. System.setProperty("jdbc.drivers", drivers);
309. String url = props.getProperty("jdbc.url");
310. String username = props.getProperty("jdbc.username"
311. String password = props.getProperty("jdbc.password"
312.
313. return
314. DriverManager.getConnection(url, username, passw
315. }
316.
317. public static final int WIDTH = 400;
318. public static final int HEIGHT = 400;
319.
320. private JComboBox authors;
321. private JComboBox publishers;
322. private JTextField priceChange;
323. private JTextArea result;
324. private Connection conn;
325. private Statement stat;
326. private PreparedStatement authorQueryStmt;
327. private PreparedStatement authorPublisherQueryStmt;
328. private PreparedStatement publisherQueryStmt;
329. private PreparedStatement allQueryStmt;

330. }

java.sql.Connection

PreparedStatement prepareStatement(String sql)

returns a PreparedStatement object containing the precompiled statement. The
string sql contains a SQL statement that can contain one or more parameter
placeholders denoted by ? characters.

java.sql.PreparedStatement

void setXxx(int n, Xxx x)

(Xxx is a type such as int, double, String, Date, etc.)

sets the value of the nth parameter to x.

void clearParameters()

clears all current parameters in the prepared statement.

ResultSet executeQuery()

executes a prepared SQL query and returns a ResultSet object.

int executeUpdate()

executes the prepared SQL INSERT, UPDATE, or DELETE statement represented by
the PreparedStatement object. Returns the number of rows affected, or 0 for DDL
statements.

Scrollable and Updatable Result Sets
The most useful improvements in JDBC 2 are in the ResultSet class. As you have seen,
the next method of the ResultSet class iterates over the rows in a result set. That is
certainly adequate for a program that needs to analyze the data. However, consider a visual
data display that shows a table or query result (see Figure 4-7). You usually want the user to

gra

gra

be able to move both forward and backward in the result set. But in JDBC 1, there was no
previous method. Programmers who wanted to implement backwards iteration had to
manually cache the result set data. The scrolling result set in JDBC 2 lets you move forward
and backward through a result set and jump to any position in the result set.

Figure 4-7. A GUI view of a query result

Furthermore, once you display the contents of a result set to users, they may be tempted to
edit it. If you supply an editable view to your users, you have to make sure that the user edits
are posted back to the database. In JDBC 1, you had to program UPDATE statements. In
JDBC 2, you can simply update the result set entries, and the database is automatically
updated.

JDBC 2 delivers additional enhancements to result sets, such as the capability of updating a
result set with the most recent data if the data has been modified by another concurrent
database connection. JDBC 3 adds another refinement, specifying the behavior of result sets
when a transaction is committed. One form of the getStatement method of the
Connection class lets you specify the holdability of the result sets. You can choose to have
result sets automatically close when a transaction is committed, or to keep them open.
However, these advanced features are outside the scope of this introductory chapter. We refer
you to the JDBC API Tutorial and Reference by Seth White, et al. [Addison-Wesley 1999], and
the JDBC specification documents at http://java.sun.com/products/jdbc for more information.

Scrollable Result Sets (JDBC 2)

To obtain scrolling result sets from your queries, you must obtain a different Statement
object with the method

Statement stat = conn.createStatement(type, concurrency);

For a prepared statement, use the call

PreparedStatement stat = conn.prepareStatement(command,
 type, concurrency);

The possible values of type and concurrency are listed in Table 4-8 and Table 4-9. You
have the following choices:

Do you want the result set to be scrollable or not? If not, use
ResultSet.TYPE_FORWARD_ONLY.

If the result set is scrollable, do you want it to be able to reflect changes in the database
that occurred after the query that yielded it? (In our discussion, we will assume the
ResultSet.TYPE_SCROLL_INSENSITIVE setting for scrolling result sets. This
assumes that the result set does not "sense" database changes that occurred after the
query.)

Do you want to be able to update the database by editing the result set? (See the next
section for details.)

For example, if you simply want to be able to scroll through a result set but you don't want to
edit its data, you use:

Statement stat
 = conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_READ_ONLY);

All result sets that are returned by method calls

Table 4-8. ResultSet type values
TYPE_FORWARD_ONLY The result set is not scrollable.
TYPE_SCROLL_INSENSITIVE The result set is scrollable but not sensitive to database

changes.
TYPE_SCROLL_SENSITIVE The result set is scrollable and sensitive to database

changes.

Table 4-9. ResultSet concurrency values
CONCUR_READ_ONLY The result set cannot be used to update the database.
CONCUR_UPDATABLE The result set can be used to update the database.

ResultSet rs = stat.executeQuery(query)

are now scrollable. A scrolling result set has a cursor that indicates the current position.

NOTE

CAUTION

Scrolling is very simple. You use

if (rs.previous()) . . .

to scroll backward. The method returns true if the cursor is positioned on an actual row;
false if it now is positioned before the first row.

You can move the cursor backward or forward by a number of rows with the command

rs.relative(n);

Actually, a database driver might not be able to honor your request for a
scrolling or updatable cursor. (The supportsResultSetType and
supportsResultSetConcurrency methods of the
DatabaseMetaData class tell you which types and concurrency modes
are supported by a particular database.) But even if a database supports all
result set modes, a particular query might not be able to yield a result set
with all the properties that you requested. (For example, the result set of a
complex query may not be updatable.) In that case, the executeQuery
method returns a ResultSet of lesser capabilities and adds a warning to
the connection object. You can retrieve warnings with the getWarnings
method of the Connection class. Alternatively, you can use the
getType and getConcurrency methods of the ResultSet class to
find out what mode a result set actually has. If you do not check the result
set capabilities and issue an unsupported operation, such as previous
on a result set that is not scrollable, then the operation throws a
SQLException.

In JDBC 1 drivers, the Connection class does not have a method

Statement createStatement(int type, int concurrency);

If a program that you compiled for JDBC 2 inadvertently loads a JDBC 1 driver
and then calls this nonexistent method, the program will crash. Unfortunately,
there is no JDBC 2 mechanism for querying a driver as to whether it is JDBC 2
compliant. In JDBC 3, you can use the getJDBCMajorVersion and
getJDBCMinorVersion methods of the DatabaseMetaData class to
find the JDBC version number of the driver.

If n is positive, the cursor moves forward. If n is negative, it moves backwards. If n is zero, the
call has no effect. If you attempt to move the cursor outside the current set of rows, it is set to
point either after the last row or before the first row, depending on the sign of n. Then, the
method returns false and the cursor does not move. The method returns true if the cursor
landed on an actual row.

Alternatively, you can set the cursor to a particular row number:

rs.absolute(n);

You get the current row number with the call

int n = rs.getRow();

The first row in the result set has number 1. If the return value is 0, the cursor is not currently
on a row—it is either before the first or after the last row.

NOTE

There are convenience methods

first
last
beforeFirst
afterLast

to move the cursor to the first, to the last, before the first, or after the last position.

Finally, the methods

isFirst
isLast
isBeforeFirst
isAfterLast

test whether the cursor is at one of these special positions.

Using a scrollable result set is very simple. The hard work of caching the query data is carried
out behind the scenes by the database driver.

TIP

The order of the rows in a result set is completely arbitrary. You should
never attach any significance to the row numbers.

 If you want to implement a scrollable view in a web application, then the scrollable

Updatable Result Sets (JDBC 2)

If you want to be able to edit result set data and have the changes automatically reflected in
the database, you need to create an updatable result set. Updatable result sets don't have to
be scrollable, but if you present data to a user for editing, you usually want to allow scrolling as
well.

To obtain updatable result sets, you create a statement as follows.

Statement stat
 = conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_UPDATABLE);

Then, the result sets returned by a call to executeQuery are updatable.

NOTE

For example, suppose you want to raise the prices of some books, but you don't have a simple
criterion for issuing an UPDATE command. Then, you can iterate through all books and update
prices, based on arbitrary conditions.

String query = "SELECT * FROM Books";
ResultSet rs = stat.executeQuery(query);
while (rs.next())
{
 if (. . .)
 {
 double increase = . . .
 double price = rs.getDouble("Price");
 rs.updateDouble("Price", price + increase);

 set has a major drawback. It requires you to keep the connection to the database o
between page requests. However, users can walk away from their computer for a
time, or simply abandon your site, leaving the connection occupied. That is not goo
database connections are scarce resources. In such a situation, use a row set. Th
RowSet interface extends the ResultSet interface, but row sets aren't tied to a
database connection. They can be cached, or they can present data from a source
than a database. The article
http://developer.java.sun.com/developer/technicalArticles/javaserverpages/cached
shows how to use row sets in a web application.

Not all queries return updatable result sets. If your query is a join that
involves multiple tables, the result may not be updatable. If your query
involves only a single table or if it joins multiple tables by their primary keys,
you should expect the result set to be updatable. Call the
getConcurrency method of the ResultSet class to find out for sure.

 rs.updateRow();
 }
}

There are updateXxx methods for all data types that correspond to SQL types, such as
updateDouble, updateString, and so on. As with the getXxx methods, you specify
the name or the number of the column. Then, you specify the new value for the field.

NOTE

The updateXxx method only changes the row values, not the database. When you are done
with the field updates in a row, you must call the updateRow method. That method sends all
updates in the current row to the database. If you move the cursor to another row without
calling updateRow, all updates are discarded from the row set and they are never
communicated to the database. You can also call the cancelRowUpdates method to
cancel the updates to the current row.

The preceding example shows how you modify an existing row. If you want to add a new row
to the database, you first use the moveToInsertRow method to move the cursor to a
special position, called the insert row. You build up a new row in the insert row position by
issuing updateXxx instructions. Finally, when you are done, call the insertRow method
to deliver the new row to the database. When you are done inserting, call
moveToCurrentRow to move the cursor back to the position before the call to
moveToInsertRow. Here is an example.

rs.moveToInsertRow();
rs.updateString("Title", title);
rs.updateString("ISBN", isbn);
rs.updateString("Publisher_Id", pubid);
rs.updateString("URL", url);
rs.updateDouble("Price", price);
rs.insertRow();
rs.moveToCurrentRow();

Note that you have no influence where the new data is added in the result set or the database.

Finally, you can delete the row under the cursor.

rs.deleteRow();

The deleteRow method immediately removes the row from both the result set and the
database.

If you use the updateXxx method whose first parameter is the column
number, be aware that this is the column number in the result set. It may
well be different from the column number in the database.

The updateRow, insertRow, and deleteRow methods of the ResultSet class give
you the same power as executing UPDATE, INSERT, and DELETE SQL commands.
However, programmers who are used to the Java programming language will find it more
natural to manipulate the database contents through result sets than by constructing SQL
statements. Once JDBC 2 drivers are widely available, this programming style is likely to
become quite popular.

CAUTION

javax.sql.Connection

Statement createStatement(int type, int concurrency)

PreparedStatement prepareStatement(String command, int
type, int concurrency)

(JDBC 2) create a statement or prepared statement that yields result sets with the given
type and concurrency.

SQLWarning getWarnings()

returns the first of the pending warnings on this connection, or null if no warnings are
pending. The warnings are chained together—keep calling getNextWarning on the
returned SQLWarning object until that method returns null. This call does not
consume the warnings. The SQLWarning class extends SQLException. Use the

If you are not careful, you can write staggeringly inefficient code with
updatable result sets. It is much more efficient to execute an UPDATE
statement than it is to make a query and iterate through the result, changing
data along the way. Updatable result sets make sense for interactive
programs in which a user can make arbitrary changes, but for most
programmatic changes, a SQL UPDATE is more appropriate.

gra

Parameters: command the command to prepare
 type one of the constants TYPE_FORWARD_ONLY,

TYPE_SCROLL_INSENSITIVE, or
TYPE_SCROLL_SENSITIVE of the ResultSet
interface

 concurrency one of the constants CONCUR_READ_ONLY or
CONCUR_UPDATABLE of the ResultSet interface

inherited getErrorCode and getSQLState to analyze the warnings.

void clearWarnings()

clears all warnings that have been reported on this connection.

java.sql.ResultSet

int getType()

(JDBC 2) returns the type of this result set, one of TYPE_FORWARD_ONLY,
TYPE_SCROLL_INSENSITIVE, or TYPE_SCROLL_SENSITIVE.

int getConcurrency()

(JDBC 2) returns the concurrency setting of this result set, one of
CONCUR_READ_ONLY or CONCUR_UPDATABLE.

boolean previous()

(JDBC 2) moves the cursor to the preceding row. Returns true if the cursor is
positioned on a row.

int getRow()

(JDBC 2) gets the number of the current row. Rows are numbered starting with 1.

boolean absolute(int r)

(JDBC 2) moves the cursor to row r. Returns true if the cursor is positioned on a row.

boolean relative(int d)

(JDBC 2) moves the cursor by d rows. If d is negative, the cursor is moved backward.
Returns true if the cursor is positioned on a row.

boolean first()

boolean last()

(JDBC 2) move the cursor to the first or last row. Return true if the cursor is positioned
on a row.

gra

void beforeFirst()

void afterLast()

(JDBC 2) move the cursor before the first or after the last row.

boolean isFirst()

boolean isLast()

(JDBC 2) test if the cursor is at the first or last row.

boolean isBeforeFirst()

boolean isAfterLast()

(JDBC 2) test if the cursor is before the first or after the last row.

void moveToInsertRow()

(JDBC 2) moves the cursor to the insert row. The insert row is a special row that is used
for inserting new data with the updateXxx and insertRow methods.

void moveToCurrentRow()

(JDBC 2) moves the cursor back from the insert row to the row that it occupied when the
moveToInsertRow method was called.

void insertRow()

(JDBC 2) inserts the contents of the insert row into the database and the result set.

void deleteRow()

(JDBC 2) deletes the current row from the database and the result set.

void updateXxx(int column, Xxx data)

void updateXxx(String columnName, Xxx data)

(Xxx is a type such as int, double, String, Date, etc.)

(JDBC 2) update a field in the current row of the result set.

void updateRow()

(JDBC 2) sends the current row updates to the database.

void cancelRowUpdates()

(JDBC 2) cancels the current row updates.

java.sql.DatabaseMetaData

boolean supportsResultSetType(int type)

(JDBC 2) returns true if the database can support result sets of the given type.

boolean supportsResultSetConcurrency(int type, int
concurrency)

(JDBC 2) Returns true if the database can support result sets of the given combination
of type and concurrency.

Metadata
In the preceding sections, you saw how to populate, query, and update database tables.
However, JDBC can give you additional information about the structure of a database and its
tables. For example, you can get a list of the tables in a particular database or the column
names and types of a table. This information is not useful when you are implementing a
particular database application. After all, if you design the tables, you know the tables and their
structure. Structural information is, however, extremely useful for programmers who write tools

gra

Parameters: command the command to prepare
 type one of the constants TYPE_FORWARD_ONLY,

TYPE_SCROLL_INSENSITIVE, or
TYPE_SCROLL_SENSITIVE of the ResultSet interface

Parameters: command the command to prepare
 type one of the constants TYPE_FORWARD_ONLY,

TYPE_SCROLL_INSENSITIVE, or
TYPE_SCROLL_SENSITIVE of the ResultSet
interface

 concurrency one of the constants CONCUR_READ_ONLY or
CONCUR_UPDATABLE of the ResultSet interface

that work with any database.

In this section, we will show you how to write such a simple tool. This tool lets you browse all
tables in a database.

The combo box on top displays all tables in the database. Select one of them, and the center
of the frame is filled with the field names of that table and the values of the first record, as
shown in Figure 4-8. Click on "Next" to scroll through the records in the table.

Figure 4-8. The ViewDB application

We fully expect tool vendors to develop much more sophisticated versions of programs like
this one. For example, it would be possible to let the user edit the values or add new ones, and
then update the database. We developed this program mostly to show you how such tools can
be built.

In SQL, data that describes the database or one of its parts is called metadata (to distinguish it
from the actual data that is stored in the database). You can get two kinds of metadata: about
a database and about a result set.

To find out more about the database, you need to request an object of type
DatabaseMetaData from the database connection.

DatabaseMetaData meta = conn.getMetaData();

Now you are ready to get some metadata. For example, the call

ResultSet rs = meta.getTables(null, null, null, new String[]
 { "TABLE" });

returns a result set that contains information about all tables in the database. (See the API
note for other parameters to this method.)

Each row in the result set contains information about the table. We only care about the third
entry, the name of the table. (Again, see the API note for the other columns.) Thus,
rs.getString(3) is the table name. Here is the code that populates the combo box.

while (rs.next())
 tableNames.addItem(rs.getString(3));

rs.close();

The DatabaseMetaData class gives data about the database. There is a second
metadata class, ResultSetMetaData, that reports information about a result set.
Whenever you have a result set from a query, you can inquire about the number of columns
and each column's name, type, and field width.

We will make use of this information to make a label for each name and a text field of sufficient
size for each value.

ResultSet rs = stat.executeQuery("SELECT * FROM " + tableName)
ResultSetMetaData meta = rs.getMetaData();
for (int i = 1; i <= meta.getColumnCount(); i++)
{
 String columnName = meta.getColumnLabel(i);
 int columnWidth = meta.getColumnDisplaySize(i);
 Label l = new Label(columnName);
 TextField tf = new TextField(columnWidth);
 . . .
}

There is a second important use for database meta data. Databases are complex, and the
SQL standard leaves plenty of room for variability. There are well over a hundred methods in
the DatabaseMetaData class to inquire about the database, including calls with exotic
names such as

md.supportsCatalogsInPrivilegeDefinitions()

and

md.nullPlusNonNullIsNull()

Clearly, these are geared toward advanced users with special needs, in particular, those who
need to write highly portable code that works with multiple databases. In our sample program,
we only give one example of this technique. We ask the database metadata whether the JDBC
driver supports scrolling result sets. If so, we open a scrolling result set and add a "Previous"
button for scrolling backwards.

if (meta.supportsResultSetType(
 ResultSet.TYPE_SCROLL_INSENSITIVE)) . . .

The following steps provide a brief overview of the sample program.

1. Have the border layout put the table name combo box on the top and the table values in
the center.

2. Connect to the database. Find out if it supports scrolling result sets. If so, create the

Statement object to yield scrolling result sets. Otherwise, just create a default
Statement.

3. Get the table names and fill them into the choice component.

4. If scrolling is supported, add the "Previous" button. Always add the "Next" button.

5. When the user selects a table, make a query to see all its values. Get the result set
metadata. Throw out the old scroll pane from the center panel. Create a panel containing
a gridbag layout of labels and text fields. Add it to the frame and call the validate
method to recompute the frame layout. Then, call showNextRow to show the first row.

6. The showNextRow method is called to show the first record and is also called
whenever the "Next" button is clicked. It gets the next row from the table and fills the
column values into the text boxes.

7. There is a slight subtlety in detecting the end of the result set. When the result set is
scrolling, we can simply use the isLast method. But when it isn't scrolling, that method
call will cause an exception (or even a JVM error if the driver is a JDBC 1 driver).
Therefore, we use a different strategy for non-scrolling result sets. When rs.next()
returns false, we close the result set and set rs to null.

8. The "Previous" button calls showPreviousRow, which moves the result set
backwards. Since this button is only installed when the result set is scrollable, we know
that the previous and isFirst method are supported.

9. The showRow method simply fills in all the result set fields into the text fields of the data
panel.

Example 4-4 is the program.

Example 4-4 ViewDB.java

 1. import java.net.*;
 2. import java.sql.*;
 3. import java.awt.*;
 4. import java.awt.event.*;
 5. import java.io.*;
 6. import java.util.*;
 7. import javax.swing.*;
 8.
 9. /**
 10. This program uses metadata to display arbitrary tables
 11. in a database.
 12. */
 13. public class ViewDB

 14. {
 15. public static void main(String[] args)
 16 {
 17. JFrame frame = new ViewDBFrame();
 18. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 19. frame.show();
 20. }
 21. }
 22.
 23. /**
 24. The frame that holds the data panel and the navigation
 25. buttons.
 26. */
 27. class ViewDBFrame extends JFrame
 28. {
 29. public ViewDBFrame()
 30. {
 31. setTitle("ViewDB");
 32. setSize(WIDTH, HEIGHT);
 33.
 34. Container contentPane = getContentPane();
 35.
 36. tableNames = new JComboBox();
 37. tableNames.addActionListener(new
 38. ActionListener()
 39. {
 40. public void actionPerformed(ActionEvent event
 41. {
 42. showTable((String)tableNames.getSelectedIt
 43. }
 44. });
 45. contentPane.add(tableNames, BorderLayout.NORTH);
 46.
 47. try
 48. {
 49. conn = getConnection();
 50. meta = conn.getMetaData();
 51. createStatement();
 52. getTableNames();
 53. }
 54. catch(Exception ex)
 55. {
 56. JOptionPane.showMessageDialog(this, ex);
 57. }

 58.
 59. JPanel buttonPanel = new JPanel();
 60. contentPane.add(buttonPanel, BorderLayout.SOUTH);
 61.
 62. if (scrolling)
 63. {
 64. previousButton = new JButton("Previous");
 65. previousButton.addActionListener(new
 66. ActionListener()
 67. {
 68. public void actionPerformed(ActionEvent ev
 69. {
 70. showPreviousRow();
 71. }
 72. });
 73. buttonPanel.add(previousButton);
 74. }
 75.
 76. nextButton = new JButton("Next");
 77. nextButton.addActionListener(new
 78. ActionListener()
 79. {
 80. public void actionPerformed(ActionEvent event
 81. {
 82. showNextRow();
 83. }
 84. });
 85. buttonPanel.add(nextButton);
 86.
 87. add(new
 88. WindowAdapter()
 89. {
 90. public void windowClosing(WindowEvent event)
 91. {
 92. try
 93. {
 94. stat.close();
 95. conn.close();
 96. }
 97. catch(SQLException ex)
 98. {
 99. while (ex != null)
100. {
101. ex.printStackTrace();

102. ex = ex.getNextException();
103. }
104. }
105. }
106. });
107. }
108. }
109.
110. /**
111. Creates the statement object used for executing que
112. If the database supports scrolling cursors, the sta
113. is created to yield them.
114. */
115. public void createStatement() throws SQLException
116. {
117. if (meta.supportsResultSetType(
118. ResultSet.TYPE_SCROLL_INSENSITIVE))
119. {
120. stat = conn.createStatement(
121. ResultSet.TYPE_SCROLL_INSENSITIVE,
122. ResultSet.CONCUR_READ_ONLY);
123. scrolling = true;
124. }
125. else
126. {
127. stat = conn.createStatement();
128. scrolling = false;
129. }
130. }
131.
132. /**
133. Gets all table names of this database and adds them
134. to the combo box.
135. */
136. public void getTableNames() throws SQLException
137. {
138. ResultSet mrs = meta.getTables(null, null, null,
139. new String[] { "TABLE" });
140. while (mrs.next())
141. tableNames.addItem(mrs.getString(3));
142. mrs.close();
143. }
144.
145. /**

146. Prepares the text fields for showing a new table, a
147. shows the first row.
148. @param tableName the name of the table to display
149. */
150. public void showTable(String tableName)
151. {
152. try
153. {
154. if (rs != null) rs.close();
155. rs = stat.executeQuery("SELECT * FROM " + tableN
156. if (scrollPane != null)
157. getContentPane().remove(scrollPane);
158. dataPanel = new DataPanel(rs);
159. scrollPane = new JScrollPane(dataPanel);
160. getContentPane().add(scrollPane, BorderLayout.CE
161. validate();
162. showNextRow();
163. }
164. catch(Exception ex)
165. {
166. JOptionPane.showMessageDialog(this, ex);
167. }
168. }
169.
170. /**
171. Moves to the previous table row.
172. */
173. public void showPreviousRow()
174. {
175. try
176. {
177. if (rs == null || rs.isFirst()) return;
178. rs.previous();
179. dataPanel.showRow(rs);
180. }
181. catch(Exception ex)
182. {
183. System.out.println("Error " + ex);
184. }
185. }
186.
187. /**
188. Moves to the next table row.
189. */

190. public void showNextRow()
191. {
192. try
193. {
194. if (rs == null || scrolling && rs.isLast()) retu
195.
196. if (!rs.next() && !scrolling)
197. {
198. rs.close();
199. rs = null;
200. return;
201. }
202.
203. dataPanel.showRow(rs);
204. }
205. catch(Exception ex)
206. {
207. System.out.println("Error " + ex);
208. }
209. }
210.
211. /**
212. Gets a connection from the properties specified
213. in the file database.properties
214. @return the database connection
215. */
216. public static Connection getConnection()
217. throws SQLException, IOException
218. {
219. Properties props = new Properties();
220. FileInputStream in
221. = new FileInputStream("database.properties");
222. props.load(in);
223. in.close();
224.
225. String drivers = props.getProperty("jdbc.drivers");
226. if (drivers != null)
227. System.setProperty("jdbc.drivers", drivers);
228. String url = props.getProperty("jdbc.url");
229. String username = props.getProperty("jdbc.username"
230. String password = props.getProperty("jdbc.password"
231.
232. return
233. DriverManager.getConnection(url, username, passw

234. }
235.
236. public static final int WIDTH = 300;
237. public static final int HEIGHT = 200;
238.
239. private JButton previousButton;
240. private JButton nextButton;
241. private DataPanel dataPanel;
242. private JScrollPane scrollPane;
243. private JComboBox tableNames;
244.
245. private Connection conn;
246. private Statement stat;
247. private DatabaseMetaData meta;
248. private ResultSet rs;
249. private boolean scrolling;
250. }
251.
252. /**
253. This panel displays the contents of a result set.
254. */
255. class DataPanel extends JPanel
256. {
257. /**
258. Constructs the data panel.
259. @param rs the result set whose contents this panel
260. */
261. public DataPanel(ResultSet rs) throws SQLException
262. {
263. fields = new ArrayList();
264. setLayout(new GridBagLayout());
265. GridBagConstraints gbc = new GridBagConstraints();
266. gbc.weighty = 100;
267.
268. ResultSetMetaData rsmd = rs.getMetaData();
269. for (int i = 1; i <= rsmd.getColumnCount(); i++)
270. {
271. String columnName = rsmd.getColumnLabel(i);
272. int columnWidth = rsmd.getColumnDisplaySize(i);
273. JTextField tb = new JTextField(columnWidth);
274. fields.add(tb);
275.
276. gbc.weightx = 0;
277. gbc.anchor = GridBagConstraints.EAST;

278. gbc.fill = GridBagConstraints.NONE;
279. add(new JLabel(columnName), gbc, 0, i - 1, 1, 1)
280.
281. gbc.weightx = 100;
282. gbc.anchor = GridBagConstraints.WEST;
283. gbc.fill = GridBagConstraints.HORIZONTAL;
284. add(tb, gbc, 1, i - 1, 1, 1);
285. }
286. }
287.
288. /**
289. Shows a database row by populating all text fields
290. with the column values.
291. */
292. public void showRow(ResultSet rs) throws SQLException
293. {
294. for (int i = 1; i <= fields.size(); i++)
295. {
296. String field = rs.getString(i);
297. JTextField tb
298. = (JTextField)fields.get(i - 1);
299. tb.setText(field);
300. }
301. }
302.
303. /**
304. Adds a component to this panel.
305. @param c the component to add
306. @param gbc the grid bag constraints
307. @param x the grid bax column
308. @param y the grid bag row
309. @param w the number of grid bag columns spanned
310. @param h the number of grid bag rows spanned
311. */
312. private void add(Component c,
313. GridBagConstraints gbc, int x, int y, int w, int h)
314. {
315. gbc.gridx = x;
316. gbc.gridy = y;
317. gbc.gridwidth = w;
318. gbc.gridheight = h;
319. add(c, gbc);
320. }
321.

322. private ArrayList fields;
323.}

java.sql.Connection

DatabaseMetaData getMetaData()

returns the metadata for the connection as a DataBaseMetaData object.

java.sql.DatabaseMetaData

ResultSet getTables(String catalog, String schemaPattern,
String tableNamePattern, String types[])

gets a description of all tables in a catalog that match the schema and table name
patterns and the type criteria. (A schema describes a group of related tables and access
permissions. A catalog describes a related group of schemas. These concepts are
important for structuring large databases.)

The catalog and schema parameters can be "" to retrieve those tables without a
catalog or schema, or null to return tables regardless of catalog or schema.

The types array contains the names of the table types to include. Typical types are
TABLE, VIEW, SYSTEM TABLE, GLOBAL TEMPORARY, LOCAL TEMPORARY,
ALIAS, and SYNONYM. If types is null, then tables of all types are returned.

The result set has five columns, all of which are of type String, as shown in Table 4-
10.

gra

gra

Table 4-10. Five columns of the result set
1 TABLE_CAT Table catalog (may be null)
2 TABLE_SCHEM Table schema (may be null)
3 TABLE_NAME Table name
4 TABLE_TYPE Table type
5 REMARKS Comment on the table

int getJDBCMajorVersion()

int getJDBCMinorVersion()

(JDBC 3) Return the major and minor JDBC version numbers of the driver that
established the database connection. For example, a JDBC 3.0 driver has major version
number 3 and minor version number 0.

int getMaxStatements()

Returns the maximum number of concurrently open statements per database connection,
or 0 if the number is unlimited or unknown.

java.sql.ResultSet

ResultSetMetaData getMetaData()

gives you the metadata associated with the current ResultSet columns.

java.sql.ResultSetMetaData

int getColumnCount()

returns the number of columns in the current ResultSet object.

int getColumnDisplaySize(int column)

tells you the maximum width of the column specified by the index parameter.

String getColumnLabel(int column)

gives you the suggested title for the column.

gra

gra

Parameters: column the column number

Parameters: column the column number

String getColumnName(int column)

gives the column name associated with the column index specified.

Transactions
While we do not want to go deep into transaction support, we do want to show you how to
group a set of statements to form a transaction that can be committed when all has gone well,
or rolled back as if none of the commands had been issued if an error has occurred in one of
them.

The major reason for grouping commands into transactions is database integrity. For example,
suppose we want to add a new book to our book database. Then, it is important that we
simultaneously update the Books, Authors, and BooksAuthors table. If the update
were to add new rows into the first two tables but not into the third, then the books and authors
would not be properly matched up.

If you group updates to a transaction, then the transaction either succeeds in its entirety and it
can be committed, or it fails somewhere in the middle. In that case, you can carry out a
rollback and the database automatically undoes the effect of all updates that occurred since
the last committed transaction. Furthermore, queries are guaranteed to report only on the
committed state of the database.

By default, a database connection is in autocommit mode, and each SQL command is
committed to the database as soon as it is executed. Once a command is committed, you
cannot roll it back.

To check the current autocommit mode setting, call the getAutoCommit method of the
Connection class.

You turn off autocommit mode with the command

conn.setAutoCommit(false);

Now you create a statement object in the normal way:

Statement stat = conn.createStatement();

Call executeUpdate any number of times:

stat.executeUpdate(command1);
stat.executeUpdate(command2);
stat.executeUpdate(command3);

Parameters: column the column number

. . .

When all commands have been executed, call the commit method:

conn.commit();

However, if an error occurred, call

conn.rollback();

Then, all commands until the last commit are automatically reversed. You typically issue a
rollback when your transaction was interrupted by a SQLException.

Batch Updates (JDBC 2)

Suppose a program needs to execute many INSERT statements to populate a database
table. In JDBC 2, you can improve the performance of the program by using a batch update. In
a batch update, a sequence of commands is collected and submitted as a batch.

NOTE

The commands in a batch can be actions such as INSERT, UPDATE, and DELETE as well
as data definition commands such as CREATE TABLE and DROP TABLE. However, you
cannot add SELECT commands to a batch since executing a SELECT statement returns a
result set.

To execute a batch, you first create a Statement object in the usual way:

Statement stat = conn.createStatement();

Now, instead of calling executeUpdate, you call the addBatch method:

String command = "CREATE TABLE . . ."
stat.addBatch(command);

while (. . .)
{
 command = "INSERT INTO . . . VALUES (" + . . . + ")";
 stat.addBatch(command);
}

Finally, you submit the entire batch.

Use the supportsBatchUpdates method of the
DatabaseMetaData class to find out if your database supports this
feature.

int[] counts = stat.executeBatch();

The call to executeBatch returns an array of the row counts for all submitted commands.
(Recall that an individual call to executeUpdate returns an integer, namely, the count of
the rows that are affected by the command.) In our example, the executeBatch method
returns an array with first element equal to 0 (because the CREATE TABLE command yields
a row count of 0) and all other elements equal to 1 (because each INSERT command affects
one row).

For proper error handling in batch mode, you want to treat the batch execution as a single
transaction. If a batch fails in the middle, you want to roll back to the state before the beginning
of the batch.

First, turn autocommit mode off, then collect the batch, execute it, commit it, and finally restore
the original autocommit mode:

boolean autoCommit = conn.getAutoCommit();
conn.setAutoCommit(false);
Statement stat = conn.getStatement();
. . .
// keep calling stat.addBatch(. . .);
. . .
stat.executeBatch();
conn.commit();
conn.setAutoCommit(autoCommit);

java.sql.Connection

void setAutoCommit(boolean b)

sets the autocommit mode of this connection to b. If autocommit is true, all statements
are committed as soon as their execution is completed.

boolean getAutoCommit()

gets the autocommit mode of this connection.

void commit()

commits all statements that were issued since the last commit.

void rollback()

gra

undoes the effect of all statements that were issued since the last commit.

java.sql.Statement

void addBatch(String command)

(JDBC 2) adds the command to the current batch of commands for this statement.

int[] executeBatch()

(JDBC 2) executes all commands in the current batch. Returns an array of row counts,
containing an element for each command in the batch that denotes the number of rows
affected by that command.

java.sql.DatabaseMetaData

boolean supportsBatchUpdates()

(JDBC 2) returns true if the driver supports batch updates.

Advanced Connection Management
The simplistic database connection setup of the preceding sections, with a
database.properties file, is suitable for small test programs, but it won't scale for
larger applications.

When deploying a JDBC 2 application in an enterprise environment, the management of
database connections is integrated with the Java Naming and Directory Interface (JNDI). A
directory manages the location of data sources across the enterprise. Using a directory allows
for centralized management of user names, passwords, database names, and JDBC URLs.

In such an environment, you use the following code to establish a database connection:

Context jndiContext = . . .;
DataSource source
 = (DataSource)jndiContext.lookup("jdbc/corejava");
Connection conn = source.getConnection(username, password);

Note that the DriverManager is no longer involved. Instead, the JNDI service locates a

gra

gra

data source. A data source is an interface that allows for simple JDBC connections as well as
more advanced services, such as executing distributed transactions that involve multiple
databases. The DataSource interface is defined in the javax.sql standard extension
package.

Management of user names and logins is just one of the issues that require special attention.
A second issue involves the cost of establishing database connections.

Our simple database programs established a single database connection at the start of the
program and closed it at the end of the program. However, in many programming situations,
this approach won't work. Consider a typical web application. Such an application serves
multiple page requests in parallel. Multiple requests may need simultaneous access the
database. With many databases, a connection is not intended to be shared by multiple
threads. Thus, each request needs its own connection. A simplistic approach would be to
establish a connection for each page request and close it afterwards. But that would be very
costly. Establishing a database connection can be quite time-consuming. Connections are
intended to be used for multiple queries, not to be closed after one or two queries.

The solution is to pool the connections. This means that database connections are not
physically closed but are kept in a queue and reused. Connection pooling is an important
service, and the JDBC specification provides hooks for implementors to supply it. However, the
Java SDK itself does not provide any implementation, and database vendors don't usually
include one with their JDBC driver either. Instead, vendors of application servers such as BEA
WebLogic or IBM WebSphere supply connection pool implementations as part of the
application server package.

Using a connection pool is completely transparent to the programmer. You acquire a
connection from a source of pooled connections, by obtaining a data source and calling
getConnection. When you are done using the connection, call close. That doesn't close
the physical connection but tells the pool that you are done using it.

TIP

CAUTION

If you deploy a simple Web application, using just a servlet container such as Apac
Tomcat, you need to supply your own connection pool. Implementations of varying
are available on the Internet. If you only need support for a single database login,
don't use transactions, then the implementation at
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/co
should get you started.

In Web applications, you need to be particularly careful about recycling
connections when an error occurs. Suppose an exception is thrown and the
call to close is skipped. Then a user can drain the connection pool quickly
simply by hitting the browser's "Reload" button in frustration, executing the
same faulty service request over and over. Be sure to close the connections
in finally clauses, like this:

You have now learned about the JDBC fundamentals and know enough to implement simple
database applications. However, as we mentioned at the beginning of this chapter, databases
are complex and there are quite a few advanced topics that are beyond the scope of an
introductory chapter. For an overview of advanced JDBC capabilities, you can read the JDBC
specifications at http://java.sun.com/products/jdbc.

public void myService() throws SQLException
{
 Connection conn = null;
 try
 {
 conn = ds.getConnection();
 . . .
 }
 finally
 {
 if (conn != null) conn.close();
 }
}

This code has one flaw—if the conn.close()call throws an exception, it
masks the original exception. That's an unfortunate consequence of the
Java exception handling mechanism. However, saving and rethrowing the
original exception would be fiendishly complex—we leave it as the
proverbial exercise for the reader.

CONTENTS

Chapter 5. Remote Objects
Remote Method Invocations

Setting Up Remote Method Invocation

Parameter Passing in Remote Methods

Using RMI with Applets

Server Object Activation

Java IDL and CORBA

Periodically, the programming community starts thinking of "objects everywhere" as the
solution to all its problems. The idea is to have a happy family of collaborating objects that can
be located anywhere. These objects are, of course, supposed to communicate through
standard protocols across a network. For example, you'll have an object on the client where
the user can fill in a request for data. The client object sends a message to an object on the
server that contains the details of the request. The server object gathers the requested
information, perhaps by accessing a database or by communicating with additional objects.
Once the server object has the answer to the client request, it sends the answer back to the
client. Like most bandwagons in programming, this plan contains a fair amount of hype that
can obscure the utility of the concept. This chapter:

Explains the models that make interobject communication possible;

Explains situations where distributed objects can be useful;

Shows you how to use remote objects and the associated remote method invocation
(RMI) for communicating between two Java virtual machines (which may run on different
computers);

Introduces you to CORBA, the Common Object Request Broker Architecture that allows
communication between objects that are written in different programming languages
(such as the Java programming language, C++, and so on).

Introduction to Remote Objects: The Roles of Client and
Server
Let's go back to that idea of locally collecting information on a client computer and sending the
information across the Net to a server. We are supposing that a user on a local machine will fill
out an information request form. The form data gets sent to the vendor's server, and the server
processes the request and will, in turn, want to send back product information the client can
view, as shown in Figure 5-1.

CONTENTS

Figure 5-1. Transmitting objects between client and server

In the traditional client/server model, the request is translated to an intermediary format (such
as name/value pairs or XML data). The server parses the request format, computes the
response, and formats the response for transmission to the client. The client then parses the
response and displays it to the user.

But if your data is structured, then there is a significant coding hassle: you have to come up
with appropriate ways of translating the data to and from the transmission format.

NOTE

What would go into a possible solution? Well, keeping in mind that objects sending requests to

Another method for sending a request for data to a server is with HTML
forms. Then, the client is simply the browser, and the server needs to
gather the requested information and format it as HTML. Even in that
model, it makes sense to separate the form processing from the data
gathering. Typically, the form processing happens on the web server, and
the data gathering happens on a different server, called an application
server. You again have two communicating objects, the client object on the
web server and the server object on the application server. This is a very
common model in practice. In this chapter, we stick to a more traditional
client/server example because it makes the roles of the client and server
more intuitive.

one another is the central tenet of OOP, we could put objects on different machines and have
them send messages directly to each other. Let's assume that the client object was written in
the Java programming language so that it can theoretically run anywhere. For the server
objects, there are two obvious possibilities:

The server object was not written in the Java programming language (either because it is
a legacy object or because somebody hasn't jumped on the appropriate bandwagon).

The server object was written in the Java programming language.

The first situation requires us to have a way for objects to talk to each other regardless of what
language they were originally written in. If you think about it, you will agree with us that even
the theoretical possibility of this is an amazing achievement. How can what is ultimately a
sequence of bytes written in an arbitrary language, that we may have no knowledge of, tell us
what services it offers, what messages it responds to? Of course, getting this to work in
practice isn't easy, but the idea is elegant. The "common object request broker architecture," or
CORBA standard, by the Object Management Group or OMG (www.omg.org) defines a
common mechanism for interchanging data and discovering services.

The fundamental idea is that we delegate the task of finding out this information and activating
any requested services to a so-called Object Request Broker (or ORB). You can think of an
ORB as a kind of universal translator for interobject communication. Objects don't talk directly
to each other. They always use an object broker to bargain between them. ORBs are located
across the network, and it is important that they can communicate with each other. Most ORBs
follow the specification set up by the OMG for inter-ORB communication. This specification is
called the Internet Inter-ORB Protocol or IIOP.

NOTE

CORBA is completely language neutral. Client and server programs can be written in C++, the
Java programming language, or any other language with a CORBA binding. You use an
Interface Definition Language (or IDL) to specify the signatures of the messages and the types
of the data your objects can send and understand. (IDL specifications look a lot like interfaces
in the Java programming language; in fact, you can think of them as defining interfaces that
the communicating objects must support. One nice feature of this model is that you can supply
an IDL specification for an existing legacy object and then access its services through the ORB
even if it was written long before the first ORB arrived.)

There are quite a few people who believe that CORBA is the object model of the future, and
that the Java programming language is an excellent choice for implementing CORBA clients
and servers. However, frankly speaking, CORBA has had a reputation—sometimes
deserved—for slow performance, complex implementations, and interoperability problems.

Microsoft uses COM, a different, lower-level protocol for interobject
communication. ORB-like services are bundled into the Windows operating
system. As recently as 1999, Microsoft positioned COM as a competitor to
CORBA. However, at the time of this writing, Microsoft is deemphasizing
COM in favor of its NET model for XML-based communication between
software components.

After running into quite a few CORBA problems while writing this chapter, and encountering
many of the same issues when updating it two years later, our sentiments about CORBA are
similar to those expressed by French president Charles De Gaulle's about Brazil: It has a great
future … and always will.

If both communicating objects are written in the Java programming language, then the full
generality and complexity of CORBA is not required. Sun developed a simpler mechanism,
called Remote Method Invocation (RMI), specifically for communication between Java
applications.

NOTE

While CORBA may be interesting tomorrow, RMI is easier to understand and more convenient
to use. For that reason, we will start out this chapter with RMI. Of course, RMI is useful only for
communication between Java objects. In the last section of this chapter, we briefly introduce
CORBA programming and show you how to hook up a C++ client with a server implemented in
the Java programming language and a client implemented in the Java programming language
with a C++ server.

Remote Method Invocations
The Remote Method Invocation mechanism lets you do something that sounds simple. If you
have access to an object on a different machine, you can call methods of the remote object. Of
course, the method parameters must somehow be shipped to the other machine, the object
must be informed to execute the method, and the return value must be shipped back. RMI
handles these details.

For example, the client seeking product information can query a Warehouse object on the
server. It calls a remote method, find, which has one parameter: a Customer object. The
find method returns an object to the client: the product information object. (See Figure 5-2.)

Figure 5-2. Invoking a remote method on a server object

CORBA supporters initially did not like RMI because it completely ignored
the CORBA standard. However, starting with SDK 1.3, CORBA and RMI
have become more interoperable. In particular, you can use RMI with the
IIOP protocol instead of the proprietary Java Remote Method Protocol. For
more information on RMI over IIOP, see the introductory article at
http://www.javaworld.com/javaworld/jw-12-1999/jw-12-iiop.html and the
tutorial at http://java.sun.com/j2se/1.4/docs/guide/rmi-
iiop/rmiiiopexample.html.

In RMI terminology, the object whose method makes the remote call is called the client object.
The remote object is called the server object. It is important to remember that the client/server
terminology applies only to a single method call. The computer running the code in the Java
programming language that calls the remote method is the client for that call, and the computer
hosting the object that processes the call is the server for that call. It is entirely possible that
the roles are reversed somewhere down the road. The server of a previous call can itself
become the client when it invokes a remote method on an object residing on another
computer.

Stubs and Parameter Marshalling

When client code wants to invoke a remote method on a remote object, it actually calls an
ordinary method of the Java programming language that is encapsulated in a surrogate object
called a stub. The stub resides on the client machine, not on the server. The stub packages
the parameters used in the remote method into a block of bytes. This packaging uses a
device-independent encoding for each parameter. For example, numbers are always sent in
big-endian byte ordering. Objects are encoded with the serialization mechanism that is
described in Chapter 12 of Volume 1. The process of encoding the parameters is called
parameter marshalling. The purpose of parameter marshalling is to convert the parameters
into a format suitable for transport from one virtual machine to another.

To sum up: the stub method on the client builds an information block that consists of:

An identifier of the remote object to be used;

A description of the method to be called;

The marshalled parameters.

The stub then sends this information to the server. On the server side, a receiver object
performs the following actions for every remote method call:

It unmarshals the parameters.

It locates the object to be called.

It calls the desired method.

It captures and marshals the return value or exception of the call.

It sends a package consisting of the marshalled return data back to the stub on the client.

The client stub unmarshals the return value or exception from the server. This value becomes
the return value of the stub call. Or, if the remote method threw an exception, the stub rethrows
it in the process space of the caller. Figure 5-3 shows the information flow of a remote method
invocation.

Figure 5-3. Parameter marshalling

This process is obviously complex, but the good news is that it is completely automatic and, to
a large extent, transparent for the programmer. Moreover, the designers of the remote Java
object tried hard to give remote objects the same "look and feel" as local objects.

The syntax for a remote method call is the same as for a local call. If centralWarehouse

is a stub object for a central warehouse object on a remote machine and getQuantity is
the method you want to invoke on it, then a typical call looks like this:

centralWarehouse.getQuantity("SuperSucker 100 Vacuum Cleaner")

The client code always uses object variables whose type is an interface to access remote
objects. For example, associated to this call would be an interface:

interface Warehouse
{
 int getQuantity(String description)
 throws RemoteException;
 . . .
}

An object declaration for a variable that will implement the interface is:

Warehouse centralWarehouse = . . .;

Of course, interfaces are abstract entities that only spell out what methods can be called along
with their signatures. Variables whose type is an interface must always be bound to an actual
object of some type. When calling remote methods, the object variable refers to a stub object.
The client program does not actually know the type of those objects. The stub classes and the
associated objects are created automatically.

While the designers did a good job of hiding many details of remote method invocation from
the programmer, a number of techniques and caveats still must be mastered. Those
programming tasks are the topic of the rest of this chapter.

NOTE

Dynamic Class Loading

When you pass a remote object to another program, either as a parameter or return value of a
remote method, then that program must be able to deal with the associated stub object. That
is, it must have the code for the stub class. The stub methods don't do a lot of interesting work.
They just marshal and unmarshal the parameters and then contact the server for method calls.
Of course, they do all this work transparently to the programmer.

Furthermore, the classes for parameters, return values, and exception objects may need to be
loaded as well. This loading can be more complex than you might think. For example, you may
declare a remote method with a certain return type that is known to the client, but the method

Remote objects are garbage collected automatically, just as local objects
are. However, the current distributed collector uses reference counting and
cannot detect cycles of objects that refer to each other but have no external
reference into the cycle. Cycles must be explicitly broken by the
programmer before they can be reclaimed.

actually returns an object of a subclass that is not known to the client. The class loader will
then load that derived class.

While unglamorous, the stub classes must be available to the running client program. One
obvious way to make these classes available is to put them on the local file system. However,
if the server program is extended and new classes for return types and exceptions are added,
then it would be a hassle to keep updating the client.

For that reason, RMI clients can automatically load stub classes from another place. The
process is similar to the class loading process of applets that run in a browser.

Whenever a program loads new code from another network location, there is a security issue.
For that reason, you need to use a security manager in RMI client applications. This is a safety
mechanism that protects the program from viruses in stub code. For specialized applications,
programmers can substitute their own class loaders and security managers, but those
provided by the RMI system suffice for normal usage. (See Chapter 9 for more information on
class loaders and security managers.)

Setting Up Remote Method Invocation
Running even the simplest remote object example requires quite a bit more setup than does
running a standalone program or applet. You must run programs on both the server and client
computers. The necessary object information must be separated into client-side interfaces and
server-side implementations. There is also a special lookup mechanism that allows the client
to locate objects on the server.

To get started with the actual coding, we walk through each of these requirements, using a
simple example. In our first example, we generate a couple of objects of a type Product on
the server computer. We then run a program on a client computer that locates and queries
these objects.

NOTE

Interfaces and Implementations

Your client program needs to manipulate server objects, but it doesn't actually have copies of
them. The objects themselves reside on the server. The client code must still know what it can
do with those objects. Their capabilities are expressed in an interface that is shared between
the client and server and so resides simultaneously on both machines.

You can try out this example on a single computer or on a pair of networked
computers. We give you instructions for both scenarios.

Even if you run this code on a single computer, you must have network
services available. In particular, be sure that you have TCP/IP running. If
your computer doesn't have a network card, then you can activate TCP/IP
by establishing a dialup networking connection.

interface Product // shared by client and server
 extends Remote
{
 String getDescription() throws RemoteException;
}

Just as in this example, all interfaces for remote objects must extend the Remote interface
defined in the java.rmi package. All the methods in those interfaces must also declare that
they will throw a RemoteException. The reason for the declaration is that remote method
calls are inherently less reliable than local calls—it is always possible that a remote call will fail.
For example, the server or the network connection may be temporarily unavailable, or there
may be a network problem. Your client code must be prepared to deal with these possibilities.
For these reasons, the Java programming language forces you to catch the
RemoteException with every remote method call and to specify the appropriate action to
take when the call does not succeed.

The client accesses the server object through a stub that implements this interface.

Product p = ...;
 // see below how the client gets a stub
 // reference to a remote object
String d = p.getDescription();
System.out.println(d);

In the next section, you will see how the client can obtain a reference to this kind of remote
object.

Next, on the server side, you must implement the class that actually carries out the methods
advertised in the remote interface.

public class ProductImpl // server
 extends UnicastRemoteObject
 implements Product
{
 public ProductImpl(String d)
 throws RemoteException
 {
 descr = d;
 }

 public String getDescription()
 throws RemoteException
 {
 return "I am a " + descr + ". Buy me!";
 }

 private String descr;
}

NOTE

This class has a single method, getDescription, that can be called from the remote
client.

You can tell that the class is a server for remote methods because it extends
UnicastRemoteObject, which is a concrete Java platform class that makes objects
remotely accessible.

NOTE

Server classes generally extend the class RemoteServer from the java.rmi.server
package, but RemoteServer is an abstract class that defines only the basic mechanisms
for the communication between server objects and their remote stubs. The
UnicastRemoteObject class that comes with RMI extends the RemoteServer
abstract class and is concrete—so you can use it without writing any code. The "path of least
resistance" for a server class is to derive from UnicastRemoteObject, and all server
classes in this chapter will do so. Figure 5-4 shows the inheritance relationship between these
classes.

Figure 5-4. Inheritance diagram

The ProductImpl constructor is declared to throw a
RemoteException because the UnicastRemoteObject might
throw that exception if it can't connect to the network service that keeps
track of server objects.

The ProductImpl class is not a typical server class because it does so
little work. Normally, you only want to have server classes that do some
heavy-duty work that a client could not carry out locally. We just use the
Product example to walk you through the mechanics of calling remote
methods.

A UnicastRemoteObject object resides on a server. It must be alive when a service is
requested and must be reachable through the TCP/IP protocol. This is the class that we will be
extending for all the server classes in this book and is the only server class available in the
current version of the RMI package. Sun or third-party vendors may, in the future, design other
classes for use by servers for RMI. For example, Sun is talking about a
MulticastRemoteObject class for objects that are replicated over multiple servers.
Other possibilities are for objects that are activated on demand or ones that can use other
communications protocols, such as UDP.

NOTE

Occasionally, you may not want a server class that extends the
UnicastRemoteServer class, perhaps because it already extends
another class. In that situation, you need to manually instantiate the server
objects and pass them to the static exportObject method. Note that
the server class must still implement a remote interface.

Remote server = new MyServer();
UnicastRemoteObject.exportObject(server, 0);

Alternatively, you can call

UnicastRemoteObject.exportObject(this, 0);

in the constructor. The second parameter is 0 to indicate that any suitable

When you use RMI (or any distributed object mechanism, for that matter), there is a somewhat
bewildering set of classes to master. In this chapter, we use a uniform naming convention for
all of our examples that, hopefully, makes it easier to recognize the purpose of each class.
(See Table 5-1.)

You need to generate stubs for the ProductImpl class. Recall that stubs are the classes
that marshal (encode and send) the parameters and marshal the results of method calls
across the network. The programmer never uses those classes directly. Moreover, they need
not be written by hand. The rmic tool generates them automatically, as in the following
example.

rmic -v1.2 ProductImpl

This call to the rmic tool generates a class file ProductImpl_Stub.class. If your
class is in a package, you must call rmic with the full package name.

If your client uses SDK 1.1, you should instead call

rmic ProductImpl

Then, two files are generated: the stub file and a second class file named
ProductImpl_Skel.class. This "skeleton" file is no longer necessary with the Java 2
platform.

NOTE

port can be used to listen to client connections.

Table 5-1. Naming conventions for RMI classes
No suffix (e.g., Product) A remote interface
Impl suffix (e.g., ProductImpl) A server class implementing that interface
Server suffix (e.g.,
ProductServer)

A server program that creates server objects

Client suffix (e.g.,
ProductClient)

A client program that calls remote methods

_Stub suffix (e.g.,
ProductImpl_Stub)

A stub class that is automatically generated by the rmic
program

_Skel suffix (e.g.,
ProductImpl_Skel)

A skeleton class that is automatically generated by the
rmic program; needed for SDK 1.1.

Remember to first compile the source file with javac before running
rmic. If you are generating stubs for a class in a package, you must give
rmic the full package name.

Locating Server Objects

To access a remote object that exists on the server, the client needs a local stub object. How
can the client request such a stub? The most common method is to call a remote method of
another server object and to get a stub object as a return value. There is, however, a chicken-
and-egg problem here. The first server object needs to be located some other way. The Sun
RMI library provides a bootstrap registry service to locate the first server object.

A server program registers objects with the bootstrap registry service, and the client retrieves
stubs to those objects. You register a server object by giving the bootstrap registry service a
reference to the object and a name. The name is a string that is (hopefully) unique.

// server
ProductImpl p1 = new ProductImpl("Blackwell Toaster");
Naming.bind("toaster", p1);

The client code gets a stub to access that server object by specifying the server name and the
object name in the following way:

// client
Product p
 = (Product)Naming.lookup("rmi://yourserver.com/toaster");

RMI URLs start with rmi:// and are followed by a server, an optional port number, another
slash, and the name of the remote object. Another example is:

rmi://localhost:99/central_warehouse

By default, the port number is 1099.

NOTE

For security reasons, an application can bind, unbind, or rebind registry objects references
only if it runs on the same host as the registry. This prevents hostile clients from changing the
registry information. However, any client can look up objects.

The code in Example 5-1 through Example 5-3 shows a complete server program that
registers two Product objects under the names toaster and microwave.

TIP

Because it is notoriously difficult to keep names unique in a global registry,
you should not use this technique as the general method for locating
objects on the server. Instead, there should be relatively few named server
objects registered with the bootstrap service. These should be objects that
can locate other objects for you. In our example, we temporarily violate this
rule and register relatively trivial objects to show you the mechanics for
registering and locating objects.

Example 5-1 ProductServer.java

 1. import java.rmi.*;
 2. import java.rmi.server.*;
 3.
 4. /**
 5. This server program instantiates two remote objects,
 6. registers them with the naming service, and waits for
 7. clients to invoke methods on the remote objects.
 8. */
 9. public class ProductServer
10. {
11. public static void main(String args[])
12. {
13. try
14. {
15. System.out.println
16. ("Constructing server implementations...");
17.
18. ProductImpl p1
19. = new ProductImpl("Blackwell Toaster");
20. ProductImpl p2
21. = new ProductImpl("ZapXpress Microwave Oven");
22.
23. System.out.println
24. ("Binding server implementations to registry..
25.
26. Naming.rebind("toaster", p1);
27. Naming.rebind("microwave", p2);
28.
29. System.out.println
30. ("Waiting for invocations from clients...");
31. }
32. catch(Exception e)
33. {
34. e.printStackTrace();

grap If you compare our server with the server examples in the tutorial
documentation, you will note that we do not install a security manager in the
server. Contrary to the statements in the tutorial, a security manager is
neither necessary nor particularly beneficial for RMI servers. Since adding a
security manager yields yet another fertile source for configuration errors,
we suggest that you only install a security manager if you want to constrain
the actions in the server implementation or if the server is itself an RMI
client of another server.

35. }
36. }
37. }

Example 5-2 ProductImpl.java

 1. import java.rmi.*;
 2. import java.rmi.server.*;
 3.
 4. /**
 5. This is the implementation class for the remote product
 6. objects.
 7. */
 8. public class ProductImpl
 9. extends UnicastRemoteObject
10. implements Product
11. {
12. /**
13. Constructs a product implementation
14. @param n the product name
15. */
16. public ProductImpl(String n) throws RemoteException
17. {
18. name = n;
19. }
20.
21. public String getDescription() throws RemoteException
22. {
23. return "I am a " + name + ". Buy me!";
24. }
25.
26. private String name;
27. }

Example 5-3 Product.java

 1. import java.rmi.*;
 2.
 3. /**
 4. The interface for remote product objects.
 5. */
 6. public interface Product extends Remote
 7. {
 8. /**
 9. Gets the description of this product.

10. @return the product description
11. */
12. String getDescription() throws RemoteException;
13. }

Starting the server

Our server program isn't quite ready to run, yet. Because it uses the bootstrap RMI registry,
that service must be available. To start the RMI registry under UNIX, you execute the
statement

rmiregistry &

Under Windows, call

start rmiregistry

at a DOS prompt or from the Run dialog box. (The start command is a Windows command
that starts a program in a new window.)

Now you are ready to start the server. Under UNIX, use the command:

java ProductServer &

Under Windows, use the command:

start java ProductServer

If you run the server program as

java ProductServer

then the program will never exit normally. This seems strange—after all, the program just
creates two objects and registers them. Actually, the main function does exit immediately
after registration, as you would expect. But, when you create an object of a class that extends
UnicastRemoteObject, a separate thread is started that keeps the program alive
indefinitely. Thus, the program stays around in order to allow clients to connect to it.

TIP

grap The Windows version of the SDK contains a command, javaw, that starts
the bytecode interpreter as a separate Windows process and keeps it
running. Some sources recommend that you use javaw, not start
java, to run a Java session in the background in Windows for RMI. Doing
so is not a good idea, for two reasons.

Windows has no tool to kill a javaw background process—it does not

Before writing the client program, let's verify that we succeeded in registering the remote
objects. The Naming class has a method list that returns a list of all currently registered
names. Example 5-4 shows a simple program that lists the names in the registry.

In our case, its output is

rmi:/toaster
rmi:/microwave

Example 5-4 ShowBindings.java

 1. import java.rmi.*;
 2. import java.rmi.server.*;
 3.
 4. /**
 5. This programs shows all bindings in the naming service.
 6. */
 7. public class ShowBindings
 8. {
 9. public static void main(String[] args)
10. {
11. try
12. {
13. String[] bindings = Naming.list("");
14. for (int i = 0; i < bindings.length; i++)
15. System.out.println(bindings[i]);
16. }
17. catch(Exception e)
18. {
19. e.printStackTrace();

show up in the task list. It turns out that you need to kill and restart the
bootstrap registry service when you change the stub of a registered class.
To kill a process that you started with the start command, all you have to
do is click on the window and press CTRL+C.

There is another important reason to use the start command. When you
run a server process by using javaw, messages sent to the output or error
streams are discarded. In particular, they are not displayed anywhere. If
you want to see output or error messages, use start instead. Then, error
messages at least show up on the console. And trust us, you will want to
see these messages. There are lots of things that can go wrong when you
experiment with RMI. The most common error is probably that you forget to
run rmic. Then, the server complains about missing stubs. If you use
javaw, you won't see that error message, and you'll scratch your head
wondering why the client can't find the server objects.

20. }
21. }
22. }

The Client Side

Now, we can write the client program that asks each newly registered product object to print its
description.

Client programs that use RMI should install a security manager to control the activities of the
dynamically loaded stubs. The RMISecurityManager is such a security manager. You
install it with the instruction

System.setSecurityManager(new RMISecurityManager());

NOTE

Example 5-5 shows the complete client program. The client simply obtains references to two
Product objects in the RMI registry and invokes the getDescription method on both
objects.

Example 5-5 ProductClient.java

 1. import java.rmi.*;
 2. import java.rmi.server.*;
 3.
 4. /**
 5. This program demonstrates how to call a remote method
 6. on two objects that are located through the naming serv
 7. */
 8. public class ProductClient
 9. {
10. public static void main(String[] args)
11. {

If all classes (including stubs) are available locally, then you do not actually
need a security manager. If you know all class files of your program at
deployment time, you can deploy them all locally. However, it often
happens that the server program evolves and new classes are added over
time. Then you benefit from dynamic class loading. Any time you load code
from another source, you need a security manager.

Applets already have a security manager which is able to control the stub
classes. When using RMI from an applet, you do not install another security
manager. However, for applications that are RMI clients, you should use the
RMISecurityManager.

12. System.setProperty("java.security.policy", "client.p
13. System.setSecurityManager(new RMISecurityManager());
14. String url = "rmi://localhost/";
15. // change to "rmi://yourserver.com/"
16. // when server runs on remote machine
17. // yourserver.com
18. try
19. {
20. Product c1 = (Product)Naming.lookup(url + "toaste
21. Product c2 = (Product)Naming.lookup(url + "microw
22. System.out.println(c1.getDescription());
23. System.out.println(c2.getDescription());
24. }
25. catch(Exception e)
26. {
27. e.printStackTrace();
28. }
29. }
30. }

Running the client

By default, the RMISecurityManager restricts all code in the program from establishing
network connections. But the program needs to make network connections

To reach the RMI registry;

To contact the server objects.

NOTE

To allow the client to connect to the RMI registry and the server object, you need to supply a
policy file. We discuss policy files in greater detail in Chapter 9. For now, just use and modify
the samples that we supply. Here is a policy file that allows an application to make any network
connection to a port with port number at least 1024. (The RMI port is 1099 by default, and the
server objects also use ports 1024.)

grant
{
 permission java.net.SocketPermission
 "*:1024-65535", "connect";
};

Once the client program is deployed, it also needs permission to load its
stub classes. We address this issue later when we discuss deployment.

NOTE

In the client program, we instruct the security manager to read the policy file, by setting the
java.security.policy property to the file name.

System.setProperty("java.security.policy", "client.policy");

Alternatively, you can specify the system property setting on the command line:

java -Djava.security.policy=client.policy ProductClient

NOTE

If the RMI registry and server are still running, you can proceed to run the client. Or, if you
want to start from scratch, kill the RMI registry and the server. Then follow these steps:

1. Compile the source files for the interface, implementation, client, and server classes.

javac Product*.java

2. Run rmic on the implementation class.

rmic -v1.2 ProductImpl

3. Start the RMI registry:

rmiregistry &

or

start rmiregistry

4. Start the server:

java ProductServer &

or

Multiple server objects on the same server can share a port. However, if a
remote call is made and the port is busy, another port is opened
automatically. Thus, you should expect somewhat fewer ports to be used
than the remote objects on the server.

In SDK 1.1, a policy file was not required for RMI clients.

start java ProductServer

5. Run the client:

java ProductClient

(Make sure the client.policy file is in the current directory.)

The program simply prints

I am a Blackwell Toaster. Buy me!
I am a ZapXpress Microwave Oven. Buy me!

This output doesn't seem all that impressive, but consider what goes on behind the scenes
when the client program executes the call to the getDescription method. The client
program has a reference to a stub object that it obtained from the lookup method. It calls the
getDescription method, which sends a network message to a receiver object on the
server side. The receiver object invokes the getDescription method on the
ProductImpl object located on the server. That method computes a string. The receiver
sends that string across the network. The stub receives it and returns it as the result. See
Figure 5-5.

Figure 5-5. Calling the remote getDescription method

java.rmi.Naming

static Remote lookup(String url)

returns the remote object for the URL. Throws the NotBound exception if the name is
not currently bound.

static void bind(String name, Remote obj)

binds name to the remote object obj. Throws an AlreadyBoundException if the
object is already bound.

static void unbind(String name)

unbinds the name. Throws the NotBound exception if the name is not currently bound.

static void rebind(String name, Remote obj)

binds name to the remote object obj. Replaces any existing binding.

static String[] list(String url)

returns an array of strings of the URLs in the registry located at the given URL. The array
contains a snapshot of the names present in the registry.

Preparing for Deployment

Deploying an application that uses RMI can be tricky because so many things can go wrong,
and because the error messages that you get when something does go wrong are so poor. We
have found that it really pays off to stage the deployment locally. In this preparatory step,
separate the class files into three subdirectories:

server
download
client

The server directory contains all files that are needed to run the server. You will later move
these files to the machine running the server process. In our example, the server directory
contains the following files:

server:
 ProductServer.class
 ProductImpl.class
 Product.class

 ProductImpl_Stub.class

CAUTION

The download directory contains those class files that will be loaded into the client, as well
as the classes they depend on. In our example, you must add the following classes to the
download directory:

download:
 ProductImpl_Stub.class
 Product.class

If your program was written with SDK 1.1, then you also need to supply the skeleton classes
(such as ProductImpl_Skel.class). You will later place these files on a web server.

CAUTION

Finally, the client directory contains the files that are needed to start the client. These are:

client:
 ProductClient.class
 Product.class
 client.policy

You will deploy these files on the client computer.

CAUTION

Now you have all class files partitioned correctly, and you can test that they can all be loaded.

Add the stub classes to the server directory. They are needed when the
server registers the implementation object. Contrary to popular belief, the
server will not locate them in the download directory, even if you set the
codebase.

In addition to the interface stubs, your download directory must include the
class files on which the stub files depend. This includes the remote
interfaces (such as Product) and any classes or interfaces that occur as
method parameter or return types. If you don't include those class files,
then the server will mysteriously die when trying to register the server class.

You must deploy the class files for the remote interfaces (such as
Product) to the client. You must also deploy all class files on which these
interfaces depend. If you don't, then the client will not load. It does not
download these classes.

We assume that you can start a web server on your computer. If you installed Tomcat to try
out the servlet in Chapter 3, then simply use Tomcat and make the download directory a
subdirectory of the webapps directory. Alternatively, you can get a lightweight server from
ftp://java.sun.com/pub/jdk1.1/rmi/class-server.zip. That server is not a full-blown web server,
but it is easier to install and has enough functionality to serve class files.

First, move the download directory into the web documents directory of the web server (or
establish a symbolic link).

Next, edit the client.policy file. It must give the client these permissions:

To connect to ports 1024 and above to reach the RMI registry and the server
implementations;

To connect to the HTTP port (usually 80 or 8080) to load the stub class files.

Change the file to look like this:

grant
{
 permission java.net.SocketPermission
 "*:1024-65535", "connect";
 permission java.net.SocketPermission
 "*:80", "connect";
};

Finally, you are ready to test your setup.

1. Start the web server.

2. Start a new shell. Make sure that the class path is not set to anything. Change to a
directory that contains no class files. Then start the RMI registry.

CAUTION

If you just want to test out your program and have client, server, and stub
class files in a single directory, then you can start the RMI registry in that
directory. However, for deployment, make sure to start the registry in a shel
with no class path and in a directory with no class files. Otherwise, the RMI
registry may find spurious class files which will confuse it when it should
download additional classes from a different source. There is a reason for
this behavior; see
http://java.sun.com/products/jdk/1.2/docs/guide/rmi/codebase.html. In a
nutshell, each stub object is annotated with the code base from which
supporting classes can be downloaded. If the RMI registry finds the class
on its class path, that codebase annotation is empty, and supporting
classes will not be located from another source.

3. Start a new shell. Change to the server directory. Start the server, giving a URL to the
download directory as the value of the java.rmi.server.codebase property:

java
 -Djava.rmi.server.codebase=http://localhost/download/
 ProductServer &

If you use Tomcat, you need to use the URL

http://localhost:8080/download/

CAUTION

4. Change to the client directory. Make sure the client.policy file is in that
directory. Start the client.

java -Djava.security.policy=client.policy ProductClient

If both the server and the client started up without a hitch, then you are ready to go to the next
step and deploy the classes on a separate client and server. If not, you need to do some more
tweaking.

TIP

RMI registry confusion is a major source of grief for RMI deployment. The
easiest way of protecting yourself is to make sure that the RMI registry
cannot find any classes.

It is very important that you make sure that the URL ends with a slash (/).

grap If you do not want to install a web server locally, you can use a file URL to test clas
loading. However, the setup is a bit trickier. Add the line

permission java.io.FilePermission
 "downloadDirectory", "read";

to your client policy file. Here, the download directory is the full path name to the
download directory, enclosed in quotes, and ending in a minus sign (to denote all f
that directory and its subdirectories). In Windows file names, you have to double e
backslash. For example,

permission java.io.FilePermission

Deploying the Program

Now that you have tested the deployment of your program, you are ready to distribute it onto
the actual clients and servers.

Move the classes in the download directory to the web server. Make sure to use that URL
when starting the server. Move the classes in the server directory onto your server and start
the RMI registry and the server.

Your server setup is now finalized. But you need to make two changes in the client. First, edit
the policy file and replace * with your server name:

grant
{
 permission java.net.SocketPermission
 "yourserver.com:1024-65535", "connect";
 permission java.net.SocketPermission
 "yourserver.com:80", "connect";
};

Finally, replace localhost in the RMI URL of the client program with the actual server.

String url = "rmi://yourserver.com/";
Product c1 = (Product)Naming.lookup(url + "toaster");
. . .

 "/home/test/download/-", "read";

or (under Windows)

permission java.io. FilePermission
 "c:\\home\\test\\download\\-", "read";

Start the RMI registry, then the server with

java -Djava.rmi.server.codebase=file://home/test/downl
 ProductServer &

or

start java
 -Djava.rmi.server.codebase=file:/c:\home\test\downl
 ProductServer

(Remember to add a slash at the end of the URL.) Then start the client.

Then, recompile the client and try it. If everything works, then congratulations are in order. If
not, you may find the following sidebar helpful. It contains a checklist of a number of problems
that can commonly arise when trying to get RMI to work.

TIP

Parameter Passing in Remote Methods
You often want to pass parameters to remote objects. This section explains some of the

grap In practice, you would not want to hard code the RMI URLs into your
program. Instead, you can store them in a property file. We will use that
technique in Example 5-13.

RMI Deployment Checklist
Deploying RMI is tough because it either works, or it fails with a very cryptic error
message. Judging from the traffic on the RMI discussion list at
http://archives.java.sun.com/archives/rmi-users.html, many programmers initially run
into grief. If you do too, you may find it helpful to check out the following issues. We
managed to get every one of them wrong at least once during testing.

Did you put the stub class files into the server directory?

Did you put the interface class files into the download and client directory?

Did you include the dependent classes for each class? For example, in the
next section, you will see an interface Warehouse that has a method with a
parameter of type Customer. Be sure to include Customer.class
whenever you deploy Warehouse.class.

When starting rmiregistry, was the CLASSPATH unset? Was the current
directory free from class files?

Do you use a policy file when starting the client? Does the policy file contain
the correct server names (or * to connect to any host)?

If you use a file: URL for testing, do you specify the correct file name in the
policy file? Does it end in a /- or \\- ? Did you remember to use \\ for
Windows file names?

Does your codebase URL end in a slash?

Finally, note that the RMI registry remembers the class files that it found as well as
those that it failed to find. If you keep adding or removing various class files to test
which files are really necessary, make sure to restart rmiregistry each time.

techniques for doing so—along with some of the pitfalls.

Passing Nonremote Objects

When a remote object is passed from the server to the client, the client receives a stub. Using
the stub, it can manipulate the server object by invoking remote methods. The object, however,
stays on the server. It is also possible to pass and return any objects via a remote method call,
not just those that implement the Remote interface. For example, the getDescription
method of the preceding section returned a String object. That string was created on the
server and had to be transported to the client. Since String does not implement the
Remote interface, the client cannot return a string stub object. Instead, the client gets a copy
of the string. Then, after the call, the client has its own String object to work with. This
means that there is no need for any further connection to any object on the server to deal with
that string.

Whenever an object that is not a remote object needs to be transported from one Java virtual
machine to another, the Java virtual machine makes a copy and sends that copy across the
network connection. This technique is very different from parameter passing in a local method.
When you pass objects into a local method or return them as method results, only object
references are passed. However, object references are memory addresses of objects in the
local Java virtual machine. This information is meaningless to a different Java virtual machine.

It is not difficult to imagine how a copy of a string can be transported across a network. The
RMI mechanism can also make copies of more complex objects, provided they are
serializable. RMI uses the serialization mechanism described in Chapter 12 of Volume 1 to
send objects across a network connection. This means that only the information in any classes
that implement the Serializable interface can be copied. The following program shows
the copying of parameters and return values in action. This program is a simple application
that lets a user shop for a gift. On the client, the user runs a program that gathers information
about the gift recipient, in this case, age, sex, and hobbies (see Figure 5-6).

Figure 5-6. Obtaining product suggestions from the server

An object of type Customer is then sent to the server. Since Customer is not a remote
object, a copy of the object is made on the server. The server program sends back an array list
of products. The array list contains those products that match the customer profile, and it
always contains that one item that will delight anyone, namely, a copy of the book Core Java.
Again, ArrayList is not a remote class, so the array list is copied from the server back to
its client. As described in Chapter 12 of volume 1, the serialization mechanism makes copies
of all objects that are referenced inside a copied object. In our case, it makes a copy of all
array list entries as well. We added an extra complexity: the entries are actually remote
Product objects. Thus, the recipient gets a copy of the array list, filled with stub objects to
the products on the server (see Figure 5-7).

Figure 5-7. Copying local parameter and result objects

To summarize, remote objects are passed across the network as stubs. Nonremote objects
are copied. All of this is automatic and requires no programmer intervention.

Whenever code calls a remote method, the stub makes a package that contains copies of all
parameter values and sends it to the server, using the object serialization mechanism to
marshal the parameters. The server unmarshals them. Naturally, the process can be quite
slow—especially when the parameter objects are large.

Let's look at the complete program. First, we have the interfaces for the product and
warehouse services, as shown in Example 5-6 and Example 5-7.

Example 5-6 Product.java

 1. import java.rmi.*;
 2.
 3. /**
 4. The interface for remote product objects.
 5. */
 6. public interface Product extends Remote
 7. {
 8. /**
 9. Gets the description of this product.
10. @return the product description
11. */

12. String getDescription() throws RemoteException;
13.
14. final int MALE = 1;
15. final int FEMALE = 2;
16. final int BOTH = MALE + FEMALE;
17. }

Example 5-7 Warehouse.java

 1. import java.rmi.*;
 2. import java.util.*;
 3.
 4. /**
 5. The remote interface for a warehouse with products.
 6. */
 7. public interface Warehouse extends Remote
 8. {
 9. /**
10. Gets products that are good matches for a customer.
11. @param c the customer to match
12. @return an array list of matching products
13. */
14. ArrayList find(Customer c) throws RemoteException;
15. }

Example 5-8 shows the implementation for the product service. Products store a description,
an age range, the gender targeted (male, female, or both), and the matching hobby. Note that
this class implements the getDescription method advertised in the Product interface,
and it also implements another method, match, which is not a part of that interface. The
match method is an example of a local method, a method that can be called only from the
local program, not remotely. Since the match method is local, it need not be prepared to
throw a RemoteException.

Example 5-9 contains the code for the Customer class. Note once again that Customer is
not a remote class—none of its methods can be executed remotely. However, the class is
serializable. Therefore, objects of this class can be transported from one virtual machine to
another.

Examples 5-10 and 5-11 shows the interface and implementation for the warehouse service.
Like the ProductImpl class, the WarehouseImpl class has local and remote methods.
The add and read methods are local; they are used by the server to add products to the
warehouse. The find method is remote; it is used to find items in the warehouse.

To illustrate that the Customer object is actually copied, the find method of the
WarehouseImpl class clears the customer object it receives. When the remote method

returns, the WarehouseClient displays the customer object that it sent to the server. As
you will see, that object has not changed. The server cleared only its copy. In this case, the
reset operation serves no useful purpose except to demonstrate that local objects are
copied when they are passed as parameters.

In general, the methods of server classes such as ProductImpl and WarehouseImpl
should be synchronized. Then, it is possible for multiple client stubs to make simultaneous
calls to a server object, even if some of the methods change the state of the server. (See
Chapter 2 for more details on synchronized methods.) In Example 5-11, we synchronize the
methods of the WarehouseImpl class because it is conceivable that the local add and the
remote find methods are called simultaneously. We don't synchronize the methods of the
ProductImpl class because the product server objects don't change their state. Example
5-12 shows the server program that creates a warehouse object and registers it with the
bootstrap registry service.

NOTE

Example 5-13 shows the code for the client. When the user clicks on the "Submit" button, a
new customer object is generated and passed to the remote find method. Then, the
customer record is displayed in the text area (to prove that the clear call in the server did not
affect it). Finally, the product descriptions of the returned products in the array list are added to
the text area. Note that each getDescription call is again a remote method invocation.
That would not be a good design in practice—you would normally pass small objects such as
product descriptions by value. But we want to demonstrate that a remote object is
automatically replaced by a stub during marshalling.

TIP

Example 5-8 ProductImpl.java

 1. import java.rmi.*;
 2. import java.rmi.server.*;
 3.
 4. /**
 5. This is the implementation class for the remote product

Remember that you must start the registry and the server program and
keep both running before you start the client.

grap If you start the server with

java -Djava.rmi.server.logCalls=true WarehouseServer &

then the server logs all remote method calls on its console. Try it—you'll get a
good impression of the RMI traffic.

 6. objects.
 7. */
 8. public class ProductImpl
 9. extends UnicastRemoteObject
10. implements Product
11. {
12. /**
13. Constructs a product implementation
14. @param n the product name
15. @param s the suggested sex (MALE, FEMALE, or BOTH)
16. @param age1 the lower bound for the suggested age
17. @param age2 the upper bound for the suggested age
18. @param h the hobby matching this product
19. */
20. public ProductImpl(String n, int s, int age1, int age2,
21. String h) throws RemoteException
22. {
23. name = n;
24. ageLow = age1;
25. ageHigh = age2;
26. sex = s;
27. hobby = h;
28. }
29.
30. /**
31. Checks whether this product is a good match for a
32. customer. Note that this method is a local method si
33. it is not part of the Product interface.
34. @param c the customer to match against this product
35. @return true if this product is appropriate for the
36. customer
37. */
38. public boolean match(Customer c)
39. {
40. if (c.getAge() < ageLow || c.getAge() > ageHigh)
41. return false;
42. if (!c.hasHobby(hobby)) return false;
43. if ((sex & c.getSex()) == 0) return false;
44. return true;
45. }
46.
47. public String getDescription() throws RemoteException
48. {
49. return "I am a " + name + ". Buy me!";

50. }
51.
52. private String name;
53. private int ageLow;
54. private int ageHigh;
55. private int sex;
56. private String hobby;
57. }

Example 5-9 Customer.java

 1. import java.io.*;
 2.
 3. /**
 4. Description of a customer. Note that customer objects a
 5. remote--the class does not implement a remote interface
 6. */
 7. public class Customer implements Serializable
 8. {
 9. /**
10. Constructs a customer.
11. @param theAge the customer's age
12. @param theSex the customer's sex (MALE or FEMALE)
13. @param theHobbies the customer's hobbies
14. */
15. public Customer(int theAge, int theSex, String[] theHob
16. {
17. age = theAge;
18. sex = theSex;
19. hobbies = theHobbies;
20. }
21.
22. /**
23. Gets the customer's age.
24. @return the age
25. */
26. public int getAge() { return age; }
27.
28. /**
29. Gets the customer's sex
30. @return MALE or FEMALE
31. */
32. public int getSex() { return sex; }
33.

34. /**
35. Tests whether this customer has a particular hobby.
36. @param aHobby the hobby to test
37. @return true if this customer has the hobby
38. */
39. public boolean hasHobby(String aHobby)
40. {
41. if (aHobby == "") return true;
42. for (int i = 0; i < hobbies.length; i++)
43. if (hobbies[i].equals(aHobby)) return true;
44.
45. return false;
46. }
47.
48. /**
49. Resets this customer record to default values.
50. */
51. public void reset()
52. {
53. age = 0;
54. sex = 0;
55. hobbies = null;
56. }
57.
58. public String toString()
59. {
60. String result = "Age: " + age + ", Sex: ";
61. if (sex == Product.MALE) result += "Male";
62. else if (sex == Product.FEMALE) result += "Female";
63. else result += "Male or Female";
64. result += ", Hobbies:";
65. for (int i = 0; i < hobbies.length; i++)
66. result += " " + hobbies[i];
67. return result;
68. }
69.
70. private int age;
71. private int sex;
72. private String[] hobbies;
73. }

Example 5-10 Warehouse.java

 1. import java.rmi.*;

 2. import java.util.*;
 3.
 4. /**
 5. The remote interface for a warehouse with products.
 6. */
 7. public interface Warehouse extends Remote
 8. {
 9. /**
10. Gets products that are good matches for a customer.
11. @param c the customer to match
12. @return an array list of matching products
13. */
14. ArrayList find(Customer c) throws RemoteException;
15. }

Example 5-11 WarehouseImpl.java

 1. import java.io.*;
 2. import java.rmi.*;
 3. import java.util.*;
 4. import java.rmi.server.*;
 5. import java.util.*;
 6.
 7. /**
 8. This class is the implementation for the remote
 9. Warehouse interface.
10. */
11. public class WarehouseImpl
12. extends UnicastRemoteObject
13. implements Warehouse
14. {
15. /**
16. Constructs a warehouse implementation.
17. */
18. public WarehouseImpl()
19. throws RemoteException
20. {
21. products = new ArrayList();
22. coreJavaBook = new ProductImpl("Core Java Book",
23. 0, 200, Product.BOTH, "Computers");
24. }
25.
26. /**
27. Reads in a set of product descriptions. Each line ha

28. the format
29. name|sex|age1|age2|hobby, e.g.
30. Blackwell Toaster|BOTH|18|200|Household
31. @param reader the reader to read from
32. */
33. public void read(BufferedReader reader) throws IOExcept
34. {
35. String line;
36. while ((line = reader.readLine()) != null)
37. {
38. StringTokenizer tokenizer = new StringTokenizer(l
39. "|");
40. String name = tokenizer.nextToken();
41. String s = tokenizer.nextToken();
42. int sex = 0;
43. if (s.equals("MALE")) sex = Product.MALE;
44. else if (s.equals("FEMALE")) sex = Product.FEMALE
45. else if (s.equals("BOTH")) sex = Product.BOTH;
46. int age1 = Integer.parseInt(tokenizer.nextToken()
47. int age2 = Integer.parseInt(tokenizer.nextToken()
48. String hobby = tokenizer.nextToken();
49. add(new ProductImpl(name, sex, age1, age2, hobby)
50. }
51. }
52.
53. /**
54. Add a product to the warehouse. Note that this is a
55. method.
56. @param p the product to add
57. */
58. public synchronized void add(ProductImpl p)
59. {
60. products.add(p);
61. }
62.
63. public synchronized ArrayList find(Customer c)
64. throws RemoteException
65. {
66. ArrayList result = new ArrayList();
67. // add all matching products
68. for (int i = 0; i < products.size(); i++)
69. {
70. ProductImpl p = (ProductImpl)products.get(i);
71. if (p.match(c)) result.add(p);

72. }
73. // add the product that is a good match for everyone
74. result.add(coreJavaBook);
75.
76. // we reset c just to show that c is a copy of the
77. // client object
78. c.reset();
79. return result;
80. }
81.
82. private ArrayList products;
83. private ProductImpl coreJavaBook;
84. }

Example 5-12 WarehouseServer.java

 1. import java.io.*;
 2. import java.rmi.*;
 3. import java.rmi.server.*;
 4.
 5. /**
 6. This server program instantiates a remote warehouse
 7. objects, registers it with the naming service, and wait
 8. for clients to invoke methods.
 9. */
10. public class WarehouseServer
11. {
12. public static void main(String[] args)
13. {
14. try
15. {
16. System.out.println
17. ("Constructing server implementations...");
18.
19. WarehouseImpl w = new WarehouseImpl();
20. w.read(new BufferedReader(new
21. FileReader("products.dat")));
22.
23. System.out.println
24. ("Binding server implementations to registry..
25.
26. Naming.rebind("central_warehouse", w);
27.
28. System.out.println

29. ("Waiting for invocations from clients...");
30. }
31. catch(Exception e)
32. {
33. e.printStackTrace();
34. }
35. }
36. }

Example 5-13 WarehouseClient.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.io.*;
 4. import java.rmi.*;
 5. import java.rmi.server.*;
 6. import java.util.*;
 7. import javax.swing.*;
 8.
 9. /**
 10. The client for the warehouse program.
 11. */
 12. public class WarehouseClient
 13. {
 14. public static void main(String[] args)
 15. {
 16. System.setProperty("java.security.policy", "client.
 17. System.setSecurityManager(new RMISecurityManager())
 18. JFrame frame = new WarehouseClientFrame();
 19. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 20. frame.show();
 21. }
 22. }
 23.
 24. /**
 25. A frame to select the customer's age, sex, and hobbies
 26. show the matching products resulting from a remote cal
 27. warehouse.
 28. */
 29. class WarehouseClientFrame extends JFrame
 30. {
 31. public WarehouseClientFrame()
 32. {
 33. setTitle("WarehouseClient");

 34. setSize(WIDTH, HEIGHT);
 35. initUI();
 36.
 37. try
 38. {
 39. Properties props = new Properties();
 40. String fileName = "WarehouseClient.properties";
 41. FileInputStream in = new FileInputStream(fileNam
 42. props.load(in);
 43. String url = props.getProperty("warehouse.url");
 44. if (url == null)
 45. url = "rmi://localhost/central_warehouse";
 46.
 47. centralWarehouse = (Warehouse)Naming.lookup(url)
 48. }
 49. catch(Exception e)
 50. {
 51. System.out.println("Error: Can't connect to wareho
 52. }
 53. }
 54.
 55. /**
 56. Initializes the user interface.
 57. */
 58. private void initUI()
 59. {
 60. getContentPane().setLayout(new GridBagLayout());
 61.
 62. GridBagConstraints gbc = new GridBagConstraints();
 63. gbc.fill = GridBagConstraints.HORIZONTAL;
 64. gbc.weightx = 100;
 65. gbc.weighty = 0;
 66.
 67. add(new JLabel("Age:"), gbc, 0, 0, 1, 1);
 68. age = new JTextField(4);
 69. age.setText("20");
 70. add(age, gbc, 1, 0, 1, 1);
 71.
 72. male = new JCheckBox("Male", true);
 73. female = new JCheckBox("Female", true);
 74. add(male, gbc, 0, 1, 1, 1);
 75. add(female, gbc, 1, 1, 1, 1);
 76.
 77. add(new JLabel("Hobbies"), gbc, 0, 2, 1, 1);

 78. String[] choices = { "Gardening", "Beauty",
 79. "Computers", "Household", "Sports" };
 80. gbc.fill = GridBagConstraints.BOTH;
 81. hobbies = new JComboBox(choices);
 82. add(hobbies, gbc, 1, 2, 1, 1);
 83.
 84. gbc.fill = GridBagConstraints.NONE;
 85. JButton submitButton = new JButton("Submit");
 86. add(submitButton, gbc, 0, 3, 2, 1);
 87. submitButton.addActionListener(new
 88. ActionListener()
 89. {
 90. public void actionPerformed(ActionEvent evt)
 91. {
 92. callWarehouse();
 93. }
 94. });
 95.
 96. gbc.weighty = 100;
 97. gbc.fill = GridBagConstraints.BOTH;
 98. result = new JTextArea(4, 40);
 99. result.setEditable(false);
100. add(result, gbc, 0, 4, 2, 1);
101. }
102.
103. /**
104. Add a component to this frame.
105. @param c the component to add
106. @param gbc the grid bag constraints
107. @param x the grid bax column
108. @param y the grid bag row
109. @param w the number of grid bag columns spanned
110. @param h the number of grid bag rows spanned
111. */
112. private void add(Component c, GridBagConstraints gbc,
113. int x, int y, int w, int h)
114. { gbc.gridx = x;
115. gbc.gridy = y;
116. gbc.gridwidth = w;
117. gbc.gridheight = h;
118. getContentPane().add(c, gbc);
119. }
120.
121. /**

122. Call the remote warehouse to find matching products
123. */
124. private void callWarehouse()
125. {
126. try
127. {
128. Customer c = new Customer(Integer.parseInt(age.g
129. (male.isSelected() ? Product.MALE : 0)
130. + (female.isSelected() ? Product.FEMALE : 0),
131. new String[] { (String)hobbies.getSelectedIte
132. ArrayList recommendations = centralWarehouse.fin
133. result.setText(c + "\n");
134. for (int i = 0; i < recommendations.size(); i++)
135. {
136. Product p = (Product)recommendations.get(i);
137. String t = p.getDescription() + "\n";
138. result.append(t);
139. }
140. }
141. catch(Exception e)
142. {
143. result.setText("Exception: " + e);
144. }
145. }
146.
147. private static final int WIDTH = 300;
148. private static final int HEIGHT = 300;
149.
150. private Warehouse centralWarehouse;
151. private JTextField age;
152. private JCheckBox male;
153. private JCheckBox female;
154. private JComboBox hobbies;
155. private JTextArea result;
156. }

Passing Remote Objects

Passing remote objects from the server to the client is simple. The client receives a stub
object, then saves it in an object variable whose type is the same as the remote interface. The
client can now access the actual object on the server through the variable. The client can copy
this variable in its own local machine—all those copies are simply references to the same stub.
It is important to note that only the remote interfaces can be accessed through the stub. A
remote interface is any interface extending Remote. All local methods are inaccessible
through the stub. (A local method is any method that is not defined in a remote interface.)

Local methods can run only on the virtual machine containing the actual object.

Next, stubs are generated only from classes that implement a remote interface, and only the
methods specified in the interfaces are provided in the stub classes. If a subclass doesn't
implement a remote interface but a superclass does, and an object of the subclass is passed
to a remote method, only the superclass methods are accessible. To understand this better,
consider the following example. We derive a class BookImpl from ProductImpl.

class BookImpl extends ProductImpl
{
 public BookImpl(String title, String theISBN,
 int sex, int age1, int age2, String hobby)
 {
 super(title + " Book", sex, age1, age2, hobby);
 ISBN = theISBN;
 }
 public String getStockCode() { return ISBN; }
 private String ISBN;
}

Now, suppose we pass a book object to a remote method, either as a parameter or as a return
value. The recipient obtains a stub object. But that stub is not a book stub. Instead, it is a stub
to the superclass ProductImpl since only that class implements a remote interface (see
Figure 5-8). Thus, in this case, the getStockCode method isn't available remotely.

Figure 5-8. Only the ProductImpl methods are remote

A remote class can implement multiple interfaces. For example, the BookImpl class can
implement a second interface in addition to Product. Here, we define a remote interface
StockUnit and have the BookImpl class implement it.

interface StockUnit extends Remote
{
 public String getStockCode() throws RemoteException;
}

class BookImpl extends ProductImpl implements StockUnit
{
 public BookImpl(String title, String theISBN,
 int sex, int age1, int age2, String hobby)
 throws RemoteException
 {
 super(title + " Book", sex, age1, age2, hobby);
 ISBN = theISBN;
 }

 public String getStockCode() throws RemoteException
 {
 return ISBN;
 }

 private String ISBN;
}

Figure 5-9 shows the inheritance diagram.

Figure 5-9. BookImpl has additional remote methods

Now, when a book object is passed to a remote method, the recipient obtains a stub that has
access to the remote methods in both the Product and the StockUnit class. In fact, you
can use the instanceof operator to find out whether a particular remote object implements
an interface. Here is a typical situation where you will use this feature. Suppose you receive a
remote object through a variable of type Product.

ArrayList result = centralWarehouse.find(c);
for (int i = 0; i < result.size(); i++)
{
 Product p = (Product)result.elementAt(i);
 . . .
}

Now, the remote object may or may not be a book. We'd like to use instanceof to find out
whether it is or not. But we can't test

if (p instanceof BookImpl) // wrong
{
 BookImpl b = (BookImpl)p;
 . . .
}

The object p refers to a stub object, and BookImpl is the class of the server object. We
could cast the stub object to a BookImpl_Stub,

if (p instanceof BookImpl_Stub)
{
 BookImpl_Stub b = (BookImpl_Stub)p; // not useful
 . . .

}

but that would not do us much good. The stubs are generated mechanically by the rmic
program for internal use by the RMI mechanism, and clients should not have to think about
them. Instead, we cast to the second interface:

if (p instanceof StockUnit)
{
 StockUnit s = (StockUnit)p;
 String c = s.getStockCode();
 . . .
}

This code tests whether the stub object to which p refers implements the StockUnit
interface. If so, it calls the getStockCode remote method of that interface.

To summarize:

If an object belonging to a class that implements a remote interface is passed to a
remote method, the remote method receives a stub object.

You can cast that stub object to any of the remote interfaces that the implementation
class implements.

You can call all remote methods defined in those interfaces, but you cannot call any local
methods through the stub.

Using Remote Objects in Sets

As we saw in Chapter 2, objects inserted in sets must override the equals method. In the
case of a hash set or hash table, the hashCode method must be defined as well. However,
there is a problem when trying to compare remote objects. To find out if two remote objects
have the same contents, the call to equals would need to contact the servers containing the
objects and compare their contents. And that call could fail. But the equals method in the
class Object is not declared to throw a RemoteException, whereas all methods in a
remote interface must throw that exception. Since a subclass method cannot throw more
exceptions than the superclass method it replaces, you cannot define an equals method in a
remote interface. The same holds for hashCode.

Instead, you must rely on the redefinitions of the equals and hashCode methods in the
RemoteObject class that is the superclass for all stub and server objects. These methods
do not look at the object contents, just at the location of the server objects. The equals
method of the RemoteObject class deems two stubs equal if they refer to the same server
object. Two stubs that refer to different server objects are never equal, even if those objects
have identical contents. Similarly, the hash code is computed only from the object identifier.
Stubs that refer to different server objects will likely have different hash codes, even if the
server objects have identical contents.

This limitation refers only to stubs. You can redefine equals or hashCode for the server
object classes. Those methods are called when you are inserting server objects in a collection
on the server, but they are never called when you are comparing or hashing stubs. To clarify
the difference between client and server behavior, look at the inheritance diagram in Figure 5-
10.

Figure 5-10. Inheritance of equals and hashCode methods

The RemoteObject class is the base for both stub and server classes. On the stub side,
you cannot override the equals and hashCode methods because the stubs are
mechanically generated. On the server side, you can override the methods for the
implementation classes, but they are only used locally on the server. If you do override these
methods, implementation and stub objects are no longer considered identical.

To summarize: You can use stub objects in hash tables, but you must remember that equality
testing and hashing do not take the contents of the remote objects into account.

Cloning Remote Objects

Stubs do not have a clone method, so you cannot clone a remote object by invoking clone
on the stub. The reason is again somewhat technical. If clone were to make a remote call to
tell the server to clone the implementation object, then the clone method would need to
throw a RemoteException. But the clone method in the Object superclass promised
never to throw any exception except CloneNotSupportedException. That is the same
limitation that you encountered in the previous section, when you saw that equals and

hashCode don't look up the remote object value at all but just compare stub references. But
it makes no sense for clone to make another clone of a stub—if you wanted to have another
reference to the remote object, you could just copy the stub variable. Therefore, clone is
simply not defined for stubs.

If you want to clone a remote object, you must write another method, say, remoteClone.
Place it into the interface that defines the remote object services. Of course, that method may
throw a RemoteException. In the implementation class, simply define remoteClone to
call clone and return the cloned implementation object.

interface Product extends Remote
{
 public Object remoteClone()
 throws RemoteException, CloneNotSupportedException;
 . . .
}

class ProductImpl extends UnicastRemoteObject
 implements Product
{
 public Object remoteClone()
 throws CloneNotSupportedException
 { return clone(); }
 . . .
}

Inappropriate Remote Parameters

Suppose we enhance our shopping application by having the application show a picture of
each gift. Can we simply add the remote method

void paint(Graphics g) throws RemoteException

to the Product interface? Unfortunately, this code cannot work, and it is important to
understand why. The problem is that the Graphics class does not implement remote
interfaces. Therefore, a copy of an object of type Graphics would need to be passed to the
remote object, and you can't do this. Why? Well, Graphics is an abstract class, and
Graphics objects are returned via a call to the getGraphics method of the
Component class. This call, in turn, can happen only when you have some subclass that
implements a graphics context on a particular platform. Those objects, in turn, need to interact
with the native graphics code, and to do so, they must store pointers to the memory blocks that
are needed by the native graphics methods. The Java programming language, of course, has
no pointers, so this information is stored as integers in the graphics object and is only cast
back to pointers in the native peer methods. Now, first of all, the target machine may be a
different platform. For example, if the client runs Windows and the server runs X11, then the
server does not have the native methods available to render Windows graphics. But even if the

server and the client have the same graphics system, the pointer values would not be valid on
the server. Therefore, it makes no sense to copy a graphics object. For that reason, the
Graphics class is not serializable and so cannot be sent via RMI.

Instead, if the server wants to send an image to the client, it has to come up with some other
mechanism for transporting the data across the network. As it turns out, this data transport is
actually difficult to do for images. The Image class is just as device-dependent as the
Graphics class. We could send the image data as a sequence of bytes in JPEG format.
Another alternative is to send an array of integers representing the pixels. In the next section,
we show how to solve this problem in a more mundane way: by sending a URL to the client
and using a method of the Applet class that can read an image from a URL.

Using RMI with Applets
There are a number of special concerns when running RMI with applets. Applets have their
own security manager since they run inside a browser. Thus, we do not use the
RMISecurityManager on the client side.

We must take care where to place the stub and server files. Consider a browser that opens a
web page with an applet tag. The browser loads the class file referenced in that tag and all
other class files as they are needed during execution. The class files are loaded from the same
host that contains the web page. Because of applet security restrictions, the applet can make
network connections only to its originating host. Therefore, the server objects must reside on
the same host as the web page. That is, the same server must store

Web pages;

Applet code;

Stub classes;

Server objects;

The RMI registry.

Here is a sample applet that further extends our shopping program. Just like the preceding
application, the applet gets the customer information and then selects matching products.
However, this applet sends images of the recommended items. As we mentioned previously, it
is not easy to send an image from the server to the client because images are stored in a
format that depends on the local graphics system. Instead, the server simply sends the client a
string with the image file name, and we use the getImage method of the Applet class to
obtain the image (see Figure 5-11).

Figure 5-11. The warehouse applet

Here is how you must distribute the code for this kind of situation:

java.rmi.registry.RegistryImpl— Anywhere on the host; the registry must
be running before the applet starts

WarehouseServer— Anywhere on the host; must be running before the applet starts

WarehouseImpl— Can be anywhere on the host as long as WarehouseServer
can find it

WarehouseApplet— Directory referenced in APPLET tag

Stubs— Must be in the same directory as WarehouseApplet

The applet looks for the RMI registry on the same host that contains the applet. To find out its
host, it uses the getCodeBase and getHost methods:

String url = "rmi://" + getCodeBase().getHost()
 + "/central\u-4001warehouse";
centralWarehouse = (Warehouse)Naming.lookup(url);

Example 5-14 shows the code for the applet. Note that the applet does not install a security
manager. Example 5-15 shows the applet HTML page. The product and warehouse
implementations have been changed slightly to add the image file name field. See the

companion code for these straightforward modifications.

Example 5-14 WarehouseApplet.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.io.*;
 4. import java.rmi.*;
 5. import java.rmi.server.*;
 6. import java.util.*;
 7. import javax.swing.*;
 8.
 9. /**
 10. The warehouse client applet.
 11. */
 12. public class WarehouseApplet extends JApplet
 13. {
 14. public void init()
 15. {
 16. initUI();
 17.
 18. try
 19. {
 20. String warehouseName = getParameter("warehouse.n
 21. if (warehouseName == null)
 22. warehouseName = "central_warehouse";
 23. String url = "rmi://" + getCodeBase().getHost()
 24. + "/" + warehouseName;
 25. centralWarehouse = (Warehouse)Naming.lookup(url)
 26. }
 27. catch(Exception e)
 28. {
 29. showStatus("Error: Can't connect to warehouse. "
 30. }
 31. }
 32.
 33. /**
 34. Initializes the user interface.
 35. */
 36. private void initUI()
 37. {
 38. getContentPane().setLayout(new GridBagLayout());
 39.
 40. GridBagConstraints gbc = new GridBagConstraints();

 41. gbc.fill = GridBagConstraints.HORIZONTAL;
 42. gbc.weightx = 100;
 43. gbc.weighty = 0;
 44.
 45. add(new JLabel("Age:"), gbc, 0, 0, 1, 1);
 46. age = new JTextField(4);
 47. age.setText("20");
 48. add(age, gbc, 1, 0, 1, 1);
 49.
 50. male = new JCheckBox("Male", true);
 51. female = new JCheckBox("Female", true);
 52. add(male, gbc, 0, 1, 1, 1);
 53. add(female, gbc, 1, 1, 1, 1);
 54.
 55. add(new JLabel("Hobbies"), gbc, 0, 2, 1, 1);
 56. String[] choices = { "Gardening", "Beauty",
 57. "Computers", "Household", "Sports" };
 58. gbc.fill = GridBagConstraints.BOTH;
 59. hobbies = new JComboBox(choices);
 60. add(hobbies, gbc, 1, 2, 1, 1);
 61.
 62. gbc.fill = GridBagConstraints.NONE;
 63. JButton submitButton = new JButton("Submit");
 64. add(submitButton, gbc, 0, 3, 2, 1);
 65. submitButton.addActionListener(new
 66. ActionListener()
 67. {
 68. public void actionPerformed(ActionEvent evt)
 69. {
 70. callWarehouse();
 71. }
 72. });
 73.
 74. gbc.weighty = 100;
 75. gbc.fill = GridBagConstraints.BOTH;
 76. result = new JTextArea(4, 40);
 77. result.setEditable(false);
 78. add(result, gbc, 0, 4, 2, 1);
 79.
 80. imagePanel = new JPanel();
 81. imagePanel.setMinimumSize(new Dimension(0, 60));
 82. add(imagePanel, gbc, 0, 5, 2, 1);
 83. }
 84.

 85. /**
 86. Add a component to this frame.
 87. @param c the component to add
 88. @param gbc the grid bag constraints
 89. @param x the grid bax column
 90. @param y the grid bag row
 91. @param w the number of grid bag columns spanned
 92. @param h the number of grid bag rows spanned
 93. */
 94. private void add(Component c, GridBagConstraints gbc,
 95. int x, int y, int w, int h)
 96. { gbc.gridx = x;
 97. gbc.gridy = y;
 98. gbc.gridwidth = w;
 99. gbc.gridheight = h;
100. getContentPane().add(c, gbc);
101. }
102.
103. /**
104. Call the remote warehouse to find matching products
105. */
106. private void callWarehouse()
107. {
108. try
109. {
110. Customer c = new Customer(Integer.parseInt(age.g
111. (male.isSelected() ? Product.MALE : 0)
112. + (female.isSelected() ? Product.FEMALE : 0),
113. new String[] { (String)hobbies.getSelectedIte
114. ArrayList recommendations = centralWarehouse.fin
115. result.setText(c + "\n");
116. imagePanel.removeAll();
117. for (int i = 0; i < recommendations.size(); i++)
118. {
119. Product p = (Product)recommendations.get(i);
120. String t = p.getDescription() + "\n";
121. result.append(t);
122. Image productImage
123. = getImage(getCodeBase(), p.getImageFile()
124. imagePanel.add(new JLabel(new ImageIcon(produ
125. }
126. }
127. catch(Exception e)
128. {

129. result.setText("Exception: " + e);
130. }
131. }
132.
133. private static final int WIDTH = 300;
134. private static final int HEIGHT = 300;
135.
136. private Warehouse centralWarehouse;
137. private JTextField age;
138. private JCheckBox male;
139. private JCheckBox female;
140. private JComboBox hobbies;
141. private JTextArea result;
142. private JPanel imagePanel;
143. }

Example 5-15 WarehouseApplet.html

1. <applet code="WarehouseApplet.class" width="600" height="40
2. <param name="warehouse.name" value="central_warehouse"/>
3. </applet>

Server Object Activation
In the preceding sample programs, we used a server program to instantiate and register
objects so that clients could make remote calls on them. However, in some cases, it may be
wasteful to instantiate lots of server objects and have them wait for connections, whether or
not client objects use them. The activation mechanism lets you delay the object construction,
so that a server object is only constructed when at least one client invokes a remote method
on it.

To take advantage of activation, the client code is completely unchanged. The client simply
requests a remote reference and makes calls through it.

However, the server program is replaced by an activation program that constructs activation
descriptors of the objects that are to be constructed at a later time, and binds receivers for
remote method calls with the naming service. When a call is made for the first time, the
information in the activation descriptor is used to construct the object.

A server object that is used in this way should extend the Activatable class and, of
course, implement one or more remote interfaces. For example,

class ProductImpl
 extends Activatable
 implements Product
{

 . . .
}

Because the object construction is delayed until a later point in time, it must happen in a
standardized form. Therefore, you must provide a constructor that takes two parameters:

An activation ID (which you simply pass to the superclass constructor);

A single object containing all construction information, wrapped in a
MarshalledObject.

If you need multiple construction parameters, you must package them up in a single object.
You can always use an Object[] array or an ArrayList. As you will see momentarily,
you will place a serialized (or marshalled) copy of the construction information inside the
activation descriptor. Your server object constructor should use the get method of the
MarshalledObject class to deserialize the construction information.

In the case of the ProductImpl class, this is quite simple—there is only one piece of
information necessary for construction, namely the product name. That information can be
wrapped into a MarshalledObject and unwrapped in the constructor:

public ProductImpl(ActivationID id, MarshalledObject data)
{
 super(id, 0);
 String n = (String)data.get();
 name = n;
 System.out.println("Constructed " + name);
}

By passing 0 as the second parameter of the superclass constructor, we indicate that the RMI
library should assign a suitable port number to the listener port.

This constructor prints a message so that you can see that the product objects are activated
on demand.

NOTE

Now let us turn to the activation program. First, you need to define an activation group. An
activation group describes common parameters for launching the virtual machine that contains
the server objects. The most important parameter is the security policy.

Your server objects don't actually have to extend the Activatable
class. If they don't, then place the static method call

Activatable.exportObject(this, id, 0)

in the constructor of the server class.

As with our other server objects, we will not do security checks. (Presumably they come from a
trusted source.) However, the virtual machine in which the activated objects run has a security
manager installed. To enable all permissions, supply a file server.policy with the
following contents:

grant
{
 permission java.security.AllPermission;
};

Construct an activation group descriptor as follows:

Properties props = new Properties();
props.put("java.security.policy", "/server/server.policy");
ActivationGroupDesc group = new ActivationGroupDesc(prop, null

The second parameter is used to describe special command options; we will not need any for
this example, so we pass a null reference.

Next, you create a group ID with the call

ActivationGroupID id
 = ActivationGroup.getSystem().registerGroup(group);

Now you are ready to construct the activation descriptors. For each object that should be
constructed on demand, you need

The activation group ID for the virtual machine in which the object should be constructed;

The name of the class (such as "ProductImpl" or
"com.mycompany.MyClassImpl");

The URL string from which to load the class files. This should be the base URL, not
including package paths;

The marshalled construction information.

For example,

MarshalledObject param
 = new MarshalledObject("Blackwell Toaster");
ActivationDesc desc = new ActivationDesc(id, "ProductImpl",
 "http://myserver.com/download/", param);

Pass the descriptor to the static Activatable.register method. It returns an object of
some class that implements the remote interfaces of the implementation class. You can bind
that object with the naming service:

Product p = (Product)Activatable.register(desc);
Naming.rebind("toaster", p);

Unlike the server programs of the preceding examples, the activation program exits after
registering and binding the activation receivers. The server objects are only constructed when
the first remote method call occurs.

Examples 5-16 and 5-17 show the code for the activatable product implementation and the
activation program. The product interface and the client program are unchanged.

To launch this program, follow these steps:

1. Compile all source files.

2. Run rmic to generate a stub for the ProductImpl class:

rmic -v1.2 ProductImpl

3. Start the RMI registry.

4. Start the RMI activation daemon.

rmid -J-Djava.security.policy=rmid.policy &

or

start rmid -J-Djava.security.policy=rmid.policy

The rmid program listens to activation requests and activates objects in a separate
virtual machine. To launch a virtual machine, the rmid program needs certain
permissions. These are specified in a policy file (see Example 5-18). The -J option is
used to pass an option to the virtual machine running the activation daemon.

5. Run the activation program. In this setup, we assume that you start the program in the
directory that contains the class files and the server policy file.

java ProductActivator

The program will exit after the activation receivers have been registered with the naming
service.

6. Run the client program

java -Djava.security.policy=client.policy ProductClient

The client will print the familiar product descriptions. When you run the client for the first
time, you will also see the constructor messages in the server shell window.

Example 5-16 ProductImpl.java

 1. import java.io.*;
 2. import java.rmi.*;
 3. import java.rmi.activation.*;
 4.
 5. /**
 6. This is the implementation class for the remote product
 7. objects.
 8. */
 9. public class ProductImpl
10. extends Activatable
11. implements Product
12. {
13. /**
14. Constructs a product implementation
15. @param id the activation id
16. @param data the marshalled construction parameter (c
17. product name)
18. */
19. public ProductImpl(ActivationID id, MarshalledObject da
20. throws RemoteException, IOException, ClassNotFoundEx
21. {
22. super(id, 0);
23. String n = (String)data.get();
24. name = n;
25. System.out.println("Constructed " + name);
26. }
27.
28. public String getDescription() throws RemoteException
29. {
30. return "I am a " + name + ". Buy me!";
31. }
32.
33. private String name;
34. }

Example 5-17 ProductActivator.java

 1. import java.io.*;
 2. import java.net.*;
 3. import java.rmi.*;
 4. //import java.rmi.server.*;
 5. import java.rmi.activation.*;
 6. import java.util.*;

 7.
 8. /**
 9. This server program activates two remote objects and
10. registers them with the naming service.
11. */
12. public class ProductActivator
13. {
14. public static void main(String args[])
15. {
16. try
17. {
18. System.out.println
19. ("Constructing activation descriptors...");
20.
21. Properties props = new Properties();
22. // use the server.policy file in the current dire
23. props.put("java.security.policy",
24. new File("server.policy").getCanonicalPath());
25. ActivationGroupDesc group = new ActivationGroupDes
26. ActivationGroupID id
27. = ActivationGroup.getSystem().registerGroup(g
28. MarshalledObject p1param
29. = new MarshalledObject("Blackwell Toaster");
30. MarshalledObject p2param
31. = new MarshalledObject("ZapXpress Microwave O
32.
33. String classDir = ".";
34. // turn the class directory into a file URL
35. // for this demo we assume that the classes are in
36. String classURL
37. = new File(classDir).getCanonicalFile().toURL(
38.
39. ActivationDesc desc1 = new ActivationDesc
40. (id, "ProductImpl", classURL, p1param);
41. ActivationDesc desc2 = new ActivationDesc
42. (id, "ProductImpl", classURL, p2param);
43.
44. Product p1 = (Product)Activatable.register(desc1
45. Product p2 = (Product)Activatable.register(desc2
46.
47. System.out.println
48. ("Binding activable implementations to regist
49.
50. Naming.rebind("toaster", p1);

51. Naming.rebind("microwave", p2);
52.
53. System.out.println
54. ("Exiting...");
55. }
56. catch(Exception e)
57. {
58. e.printStackTrace();
59. }
60. }
61. }

Example 5-18 rmid.policy

1. grant
2. {
3. permission com.sun.rmi.rmid.ExecPermission
4. "${java.home}${/}bin${/}java";
5. permission com.sun.rmi.rmid.ExecOptionPermission
6. "-Djava.security.policy=*";
7. };

Example 5-19 server.policy

1. grant
2. {
3. permission java.security.AllPermission;
4. };

Example 5-20 client.policy

1. grant
2. {
3. permission java.net.SocketPermission
4. "*:1024-65535", "connect,accept";
5. permission java.net.SocketPermission
6. "localhost:80", "connect";
7. };

java.rmi.activation.Activatable

protected Activatable(ActivationID id, int port)

Constructs the activatable object and establishes a listener on the given port.

static Remote exportObject(Remote obj, ActivationID id,
int port)

Makes a remote object activatable. Returns the activation receiver that should be made
available to remote callers.

Remote register(ActivationDescriptor desc)

Registers the descriptor for an activatable object and prepares it for receiving remote
calls. Returns the activation receiver that should be made available to remote callers.

java.rmi.MarshalledObject

MarshalledObject(Object obj)

Constructs an object containing the serialized data of a given object.

Object get()

Parameters: id the activation ID
 port the port number, or 0 to have a suitable port number assigned

Parameters: obj the server object that belongs to a class implementing one or more
remote interfaces

 id the activation ID
 port the port number, or 0 to have a suitable port number assigned

Parameters: desc the activation descriptor

Parameters: obj the object to be serialized

Deserializes the stored object data and returns the object.

java.rmi.activation.ActivationGroupDesc

ActivationGroupDesc(Properties props,
ActivationGroupDesc.CommandEnvironment env)

Constructs an activation group descriptor that specifies virtual machine properties for a
virtual machine that hosts activated objects.

java.rmi.activation.ActivatationGroup

static ActivationSystem getSystem()

Returns a reference to the activation system.

java.rmi.activation.ActivationSystem

ActivationGroupID registerGroup(ActivationGroupDesc group)

Registers an activation group and returns the group ID.

java.rmi.activation.ActivatationDesc

Parameters: props system properties of the virtual machine
 env command environment (including the path to the virtual machine

executable, and command-line options), or null if no special
settings are required

Parameters: group the activation group descriptor

ActivationDesc(ActivationGroupID id, String className,
String location, MarshalledObject data)

Constructs an activation descriptor.

Java IDL and CORBA
Unlike RMI, CORBA lets you make calls between Java objects and objects written in other
languages. CORBA depends on having an Object Request Broker (ORB) available on both
client and server. You can think of an ORB as a kind of universal translator for interobject
CORBA communication. The CORBA 2 specification defines more than a dozen "services"
that the ORB can use for various kinds of housekeeping tasks. These range from a "startup
service" to get the process going, to a "life cycle service" that you use to create, copy, move, or
destroy objects to a "naming service" that allows you to search for objects if you know their
name.

The Java 2 platform contains an implementation of a CORBA 2 compliant ORB. Thus, all
applications and applets that you deploy for the Java 2 platform have the ability to connect to
remote CORBA objects.

NOTE

Here are the steps for implementing CORBA objects:

1. Write the interface that specifies how the object works, using IDL, the interface definition
language for defining CORBA interfaces. IDL is a special language to specify interfaces
in a language-neutral form.

2. Using the IDL compiler(s) for the target language(s), generate the needed stub and
helper classes.

3. Add the implementation code for the server objects, using the language of your choice.

Parameters: id the activation group ID
 className the fully qualified name of the server class
 location the URL from which to load class files
 data the marshalled construction information

Sun refers to the CORBA support in the Java 2 platform as "Java IDL." That
term is really a misnomer. IDL refers to the interface definition language, a
language for describing class interfaces. The important aspect of the
technology is connectivity with CORBA, not just support for IDL.

(The skeleton created by the IDL compiler is only glue code. You still need to provide the
actual implementation code for the server methods.) Compile the implementation code.

4. Write a server program that creates and registers the server objects. The most
convenient method for registration is to use the CORBA naming service, a service that is
similar to the rmiregistry.

5. Write a client program that locates the server objects and invokes services on them.

6. Start the naming service and the server program on the server and the client program on
the client.

These steps are quite similar to the steps that you use to build distributed applications with
RMI. There are two important differences:

You can use any language with a CORBA binding to implement clients

and servers.

You use IDL to specify interfaces.

In the following sections, you will see how to use IDL to define CORBA interfaces, and how to
connect clients implemented in the Java programming language with C++ servers and C++
clients with servers implemented in the Java programming language.

However, CORBA is a complex subject, and we only give you a couple of basic examples to
show you how to get started. For more information, we recommend Client/Server
Programming with Java and CORBA by Robert Orfali and Dan Harkey [John Wiley & Sons
1998]. More advanced, and definitely not for the faint of heart, is Advanced CORBA
Programming with C++ by Michi Henning and Steve Vinoski [Addison-Wesley 1999].

The Interface Definition Language

To introduce the IDL syntax, let us quickly run through the same example that we used for
RMI. In RMI, you started out with an interface in the Java programming language. With
CORBA, the starting point is an interface in IDL syntax:

interface Product
{
 string getDescription();
};

There are a few subtle differences between IDL and the Java programming language. In IDL,
the interface definition ends with a semicolon. Note that string is written in lower case. In
fact, the string class refers to the CORBA notion of a string, which is different from a Java
string. In the Java programming language, strings contain 16-bit Unicode characters. In
CORBA, strings only contain 8-bit characters. If you send the 16-bit string through the ORB
and the string has characters with nonzero high byte, an exception is thrown. This kind of type

mismatch problem is the price you pay for interoperability between programming languages.

NOTE

The "IDL to Java" compiler (Java IDL compiler) translates IDL definitions to definitions for
interfaces in the Java programming language. For example, suppose you place the IDL
Product definition into a file Product.idl and run

idlj Product.idl

The result is a file ProductOperations.java with the following contents

interface ProductOperations
{
 String getDescription();
}

and a file Product.java that defines an interface

public interface Product extends
 ProductOperations,
 org.omg.CORBA.Object,
 org.omg.CORBA.portable.IDLEntity
{
}

NOTE

The IDL compiler also generates a number of other source files—the stub class for
communicating with the ORB and three helper classes that you will encounter later in this
section and the next.

NOTE

CORBA also has wchar and wstring types for "wide" characters.
However, there is no guarantee that wide character strings use the Unicode
encoding.

In SDK1.2, the idltojava program is used to translate IDL files.

You cannot do any programming in IDL. IDL can only express interfaces.
The CORBA objects that IDL describes must still be implemented, for
example, in C++ or the Java programming language.

The rules that govern the translation from IDL to the Java programming language are
collectively called the Java programming language binding. Language bindings are
standardized by the OMG; all CORBA vendors are required to use the same rules for mapping
IDL constructs to a particular programming language.

We will not discuss all aspects of IDL or the Java programming language binding—see the
CORBA documentation at the web site of the Object Management Group (www.omg.org) for a
full description. However, there are a number of important concepts that every IDL user needs
to know.

When defining a method, you have more choices for parameter passing than the Java
programming language offers. Every parameter can be declared as in, out, or inout. An
in parameter is simply passed to the method—this is the same parameter-passing
mechanism as in the Java programming language. However, the Java programming language
has no analog to an out parameter. A method stores a value in each out parameter before it
returns. The caller can retrieve the values stored in out parameters.

For example, a find method might store the product object that it has found:

interface Warehouse
{
 boolean locate(in String descr, out Product p);
 . . .
};

If the parameter is declared as out only, then the method should not expect the parameter to
be initialized. However, if it is declared as inout, then the caller needs to supply a value for
the method, and the method can change that value so that the caller can retrieve the changed
value. In the Java programming language, these parameters are simulated with special holder
classes that are generated by the Java IDL compiler.

The IDL compiler generates a class with suffix Holder for every interface. For example,
when compiling the Product interface, it automatically generates a ProductHolder
class. Every holder class has a public instance variable called value.

When a method has an out parameter, the IDL compiler changes the method signature to
use a holder, for example

interface Warehouse
{
 boolean locate(String descr, ProductHolder p);
 . . .
};

When calling the method, you need to pass in a holder object. After the method returns, you
retrieve the value of the out parameter from the holder object. Here is how you call the
locate method.

Warehouse w = . . .;
String descr = . . .;
Product p;
ProductHolder pHolder = new ProductHolder();
if (w.locate(descr, pHolder))
 p = pHolder.value;

There are predefined holder classes for fundamental types (such as IntHolder,
DoubleHolder and so on).

NOTE

In IDL, you use the sequence construct to define arrays of variable size. You must first
define a type before you can declare sequence parameters or return values. For example,
here is the definition of a "sequence of products" type.

typedef sequence<Product> ProductSeq;

Then you can use that type in method declarations:

interface Warehouse
{
 ProductSeq find(in Customer c);
 . . .
};

In the Java programming language, sequences correspond to arrays. For example, the find
method is mapped to

Product[] find(Customer c)

If a method can throw an exception, you first define the exception type and then use a
raises declaration. In the following example, the find method can raise a BadCustomer
exception.

interface Warehouse
{
 exception BadCustomer { string reason; };
 ProductSeq find(in Customer c) raises BadCustomer;
 . . .
};

IDL does not support overloaded methods. You need to come up with a
different name for each method.

The IDL compiler translates the exception type into a class.

final public class BadCustomer
 extends org.omg.CORBA.UserException
{
 public BadCustomer() {}
 public BadCustomer(String __reason) { reason = __reason; }
 public String reason;
}

If you catch such an exception, you can look into its public instance variables.

The raises specifier becomes a throws specifier of the Java method

ProductSeq find(Customer c) throws BadCustomer

Interfaces can contain constants, for example,

interface Warehouse
{
 const int SOLD_OUT = 404;
 . . .
};

Interfaces can also contain attributes. Attributes look like instance variables, but they are
actually shorthand for a pair of accessor and mutator methods. For example, here is a Book
interface with an isbn attribute:

interface Book
{
 attribute string isbn;
 . . .
};

The equivalent in the Java programming language is a pair of methods, both with the name
isbn:

String isbn() // accessor
void isbn(String __isbn) // mutator

If the attribute is declared as readonly, then no mutator method is generated.

You cannot specify variables in CORBA interfaces—the data representation for objects is part
of the implementation strategy, and IDL does not address implementation at all.

CORBA supports interface inheritance, for example,

interface Book : Product { /* . . . */ };

You use the colon (:) to denote inheritance. An interface can inherit multiple interfaces.

In IDL, you can group definitions of interfaces, types, constants, and exceptions into modules.

module corejava
{
 interface Product
 {
 . . .
 };

 interface Warehouse
 {
 . . .
 };
};

Modules are translated to packages in the Java programming language.

Once you have the IDL file, you run the IDL compiler that your ORB vendor supplies to get
stubs and helper classes for your target language (such as the Java programming language or
the C++ language).

For example, to convert IDL files to the Java programming language, you run the
idltojava program. Supply the name of the IDL file on the command line:

idlj Product.idl

The program creates five source files:

Product.java, the interface definition;

ProductOperations.java, the interface that contains the actual operations.
(Product extends ProductOperations as well as a couple of CORBA-specific
interfaces.);

ProductHolder.java, the holder class for out parameters;

ProductHelper.java, a helper class, which you will see used in the next section;

_ProductStub.java, the stub class for communicating with the ORB.

The same IDL file can be compiled to C++. We will use a freely available ORB called
omniORB for our examples. The omniORB package contains an IDL-to-C++ compiler called

omniidl. To generate C++ stubs, invoke it as

omniidl -bcxx Product.idl

You get two C++ files:

Product.hh, a header file that defines classes Product, Product_Helper, and
POA_Product (the superclass for the server implementation class);

ProductSK.cc, a C++ file that contains the source code for these classes.

NOTE

A CORBA Example

In our first example, we show you how to call a C++ server object from a client implemented in
the Java programming language, using the CORBA support that is built into the Java 2
platform. On the server side, we will use omniORB, a freely available ORB that works with the
Java 2 platform. You can download omniORB from
http://www.uk.research.att.com/omniORB/index.html.

NOTE

NOTE

Our example C++ server object simply reports the value of an environment variable on the
server. The interface is

interface Env
{
 string getenv(in string name);
};

While the language binding is standardized, it is up to each vendor to
decide how to generate and package the code that realizes the binding.
IDL-to-C++ compilers of other vendors will generate a different set of files.

The omniORB product is free, but on Windows, it requires the Microsoft
C++ compiler. On Linux, you can use omniORB with the GNU C++
compiler.

In principle, of course, you can use any CORBA 2 compliant ORB on the
server. However, you will need to make some changes to the C++ code if
you use a different ORB. Also, if our experience is any guide, you may run
into bootstrapping issues. At the end of this section, we give you a couple of
tips on connecting to other ORBs.

For example, the following program fragment in the Java programming language obtains the
value of the PATH environment variable of the process in which the server object runs.

Env env = . . .;
String value = env.getenv("PATH")

The C++ implementation code for this interface is straightforward. We simply call the getenv
method in the standard C library.

class EnvImpl
 : public POA_Env, public PortableServer::RefCountServantBas
{
public:
 virtual char* getenv(const char *name)
 {
 char* value = std::getenv(name);
 return CORBA::string_dup(value);
 }
};

You don't need to understand the C++ code to follow this section—just treat it as a bit of
legacy code that you want to encapsulate in a CORBA object so that you can call it from
programs written in the Java programming language.

On the server side, you now need to write a C++ program that does the following:

1. Starts the ORB;

2. Creates an object of the EnvImpl class and registers it with the ORB;

3. Uses the name server to bind the object to a name;

4. Waits for invocations from a client.

You can find that program in Example 5-22 at the end of this section. We will not discuss the
C++ code in detail. If you are interested, consult the omniORB documentation for more
information. The documentation contains a good tutorial that explains each step in detail.

Let us now turn to the client code. You already saw how to invoke a method on the server
object once you have a reference to the remote object. However, to get to that reference, you
have to go through a different set of mumbo-jumbo than in RMI.

First, you initialize the ORB. The ORB is simply a code library that knows how to talk to other
ORBs and how to marshal and unmarshal parameters.

ORB orb = ORB.init(args, null);

Next, you need to locate the naming service that helps you locate other objects. However, in
CORBA, the naming service is just another CORBA object. To call the naming service, you
first need to locate it. In the days of CORBA 1, this was a major problem, since there was no
standard way of getting a reference to it. However, a CORBA 2 ORB lets you locate certain
standard services by name. The call

String[] services = orb.list_initial_services();

lists the names of the standard services that the ORB can connect to. The naming service has
the standard name NameService. Most ORBs have additional initial services, such as the
RootPOA service that is used to access the root Portable Object Adaptor.

To obtain an object reference to the service, you use the
resolve_initial_references method. It returns a generic CORBA object, an
instance of the class org.omg.corba.Object. You need to use the full package prefix; if
you just use Object, then the compiler assumes that you mean java.lang.Object.

org.omg.CORBA.Object object
 = orb.resolve_initial_references("NameService");

Next, you need to convert this reference into a NamingContext reference so that you can
invoke the methods of the NamingContext interface. In RMI, you would simply cast the
reference to a different type. However, in CORBA, you cannot simply cast references.

NamingContext namingContext
 = (NamingContext)object; // ERROR

Instead, you have to use the narrow method of the helper class of the target interface.

NamingContext namingContext
 = NamingContextHelper.narrow(object);

CAUTION

Now that you have the naming context, you can use it to locate the object that the server
placed into it. The naming context associates names with server objects. Names are nested
sequences of name components. You can use the nesting levels to organize hierarchies of
names, much like you use directories in a file system.

Casting a CORBA object reference to a subtype will sometimes succeed.
Many org.omg.CORBA.Object references already point to objects
that implement the appropriate interface. But an object reference can also
hold a delegate to another object that actually implements the interface.
Since you don't have any way of knowing how the stub objects were
generated, you should always use the narrow method to convert a
CORBA object reference to a subtype.

A name component consists of an ID and a kind. The ID is a name for the component that is
unique among all names with the same parent component. The kind is some indication of the
type of the component. These kinds are not standardized; we use "Context" for name
components that have nested names, and "Object" for object names.

In our example, the server program has placed the EnvImpl object into the name expressed
by the sequence

(id="corejava", kind="Context"), (id="Env", kind="Object")

We retrieve a remote reference to it by building up an array of name components and passing
it to the resolve method of the NamingContext interface.

NameComponent[] path =
 {
 new NameComponent("corejava", "Context"),
 new NameComponent("Env", "Object")
 };
org.omg.CORBA.Object envObj = namingContext.resolve(path);

Once again, we must narrow the resulting object reference:

Env env = EnvHelper.narrow(envObj);

Now we are ready to call the remote method:

String value = env.getenv("PATH");

You will find the complete code in Example 5-21.

This example shows the steps to follow in a typical client program:

1. Start the ORB.

2. Locate the naming service by retrieving an initial reference to "NameService" and
narrowing it to a NamingContext reference.

3. Locate the object whose methods you want to call by assembling its name and calling
the resolve method of the NamingContext.

4. Narrow the returned object to the correct type and invoke your methods.

To actually test this program, do the following.

1. Compile the IDL file, using both the C++ and Java IDL compilers.

2. Compile the C++ server program. The compilation instructions depend on the ORB. For

example, with OmniORB on Linux, you use

g++
 -o EnvServer
 -D__x86__ -D__linux__ -D__OSVERSION__=2
 -I/usr/local/omni/include
 -L/usr/local/omni/lib/i586_linux_2.0_glibc2.1/
 EnvServer.cpp EnvSK.cc
 -lomniORB3 -ltcpwrapGK -lomnithread -lpthread

To find out what you need with your particular ORB, compile one of the example
programs that are supplied with your installation and make the appropriate modifications
to compile your own programs.

3. Compile the Java client program.

4. Start the naming service on the server (for example, omniNames if you use omniORB).
The naming service runs until you kill it.

5. Start the server:

./EnvServer &

The server also runs until you kill it.

6. Run the client, for example

java EnvClient -ORBInitialPort 2809

The client program should report the PATH of the server process.

TIP

If the server is on a remote machine, or if the initial port of the server ORB is not the same as
the Java IDL default of 900, then you need to set the ORBInitialHost and
ORBInitialPort properties. For example, OmniORB uses port 2809, so you need to set
the initial port.

grap There are a couple of OmniORB configuration issues that you need to
follow carefully. Be sure to set the LD_LIBRARY_PATH (on Unix/Linux) or
the PATH (on Windows) to include the directory containing the OmniORB
libraries. You also need to make a configuration file and set the
OMNIORB_CONFIG environment variable. The configuration file contains
the IOR (Interoperable Object Reference) of the name service. See the
sidebar at the end of this section for more details on IORs, and precisely
follow the steps in the OmniORB documentation.

There are two methods for setting these properties. You can set the system properties

org.omg.CORBA.ORBInitialHost
org.omg.CORBA.ORBInitialPort

for example, by starting the java interpreter with the -D option. Or, you can specify the
values on the command line:

java EnvClient -ORBInitialHost warthog -ORBInitialPort 2809

The command line parameters are passed to the ORB by the call

ORB orb = ORB.init(args, null);

In principle, your ORB vendor should tell you with great clarity how its bootstrap process
works. In practice, we have found that vendors blithely assume that you would never dream of
mixing their precious ORB with another, and they tend to be less than forthcoming with this
information. If your client won't find the naming service, try forcing the initial ports for both the
server and the client to the same value.

TIP

In this section, you saw how to connect to a server that was implemented in C++. We believe
that is a particularly useful scenario. You can wrap legacy services into CORBA objects and
access them from any program for the Java 2 platform, without having to deploy additional
system software on the client. In the next section, you will see the opposite scenario, where
the server is implemented in the Java programming language and the client in C++.

grap If you have trouble connecting to the naming service, print out a list of initial servic
your ORB can locate.

public class ListServices
{
 public static void main(String args[]) throws Excep
 {
 ORB orb = ORB.init(args, null);
 String[] services = orb.list_initial_services();
 for (int i = 0; i < services.length; i++)
 System.out.println(services[i]);
 }
}

With some ORBs, NameService isn't among the listed services, no matter how
you tweak the configuration. Then, you should switch to Plan B and locate the serv
object by its Interoperable Object Reference, or IOR. See the sidebar for more
information.

Example 5-21 EnvClient.java

 1. import org.omg.CosNaming.*;
 2. import org.omg.CORBA.*;
 3.
 4. public class EnvClient
 5. {
 6. public static void main(String args[])
 7. {
 8. try
 9. {
10. ORB orb = ORB.init(args, null);
11. org.omg.CORBA.Object namingContextObj
12. = orb.resolve_initial_references("NameService"
13. NamingContext namingContext
14. = NamingContextHelper.narrow(namingContextObj)
15.
16. NameComponent[] path =
17. {
18. new NameComponent("corejava", "Context"),
19. new NameComponent("Env", "Object")
20. };
21. org.omg.CORBA.Object envObj
22. = namingContext.resolve(path);
23. Env env = EnvHelper.narrow(envObj);
24. System.out.println(env.getenv("PATH"));
25. }
26. catch(Exception e)
27. {
28. e.printStackTrace();
29. }
30. }
31. }

Example 5-22 EnvServer.cpp

 1. #include <iostream>
 2. #include <cstdlib>
 3.
 4. #include "Env.hh"
 5.
 6. using namespace std;
 7.
 8. class EnvImpl :
 9. public POA_Env,

 10. public PortableServer::RefCountServantBase
 11. {
 12. public:
 13. virtual char* getenv(const char *name);
 14. };
 15.
 16. char* EnvImpl::getenv(const char *name)
 17. {
 18. char* value = std::getenv(name);
 19. return CORBA::string_dup(value);
 20. }
 21.
 22. static void bindObjectToName(CORBA::ORB_ptr orb,
 23. const char name[], CORBA::Object_ptr objref)
 24. {
 25. CosNaming::NamingContext_var rootContext;
 26.
 27. try
 28. {
 29. // Obtain a reference to the root context of the
 30. // name service:
 31. CORBA::Object_var obj;
 32. obj = orb->resolve_initial_references("NameService"
 33.
 34. // Narrow the reference returned.
 35. rootContext = CosNaming::NamingContext::_narrow(obj
 36. if(CORBA::is_nil(rootContext))
 37. {
 38. cerr << "Failed to narrow the root naming contex
 39. << endl;
 40. return;
 41. }
 42. }
 43. catch(CORBA::ORB::InvalidName& ex)
 44. {
 45. // This should not happen!
 46. cerr << "Service required is invalid [does not exis
 47. << endl;
 48. return;
 49. }
 50.
 51. try
 52. {
 53. // Bind a context called "test" to the root context

 54.
 55. CosNaming::Name contextName;
 56. contextName.length(1);
 57. contextName[0].id = (const char*) "corejava";
 58. contextName[0].kind = (const char*) "Context";
 59.
 60. CosNaming::NamingContext_var corejavaContext;
 61. try
 62. {
 63. // Bind the context to root.
 64. corejavaContext
 65. = rootContext->bind_new_context(contextName);
 66. }
 67. catch(CosNaming::NamingContext::AlreadyBound& ex)
 68. {
 69. // If the context already exists, this exception
 70. // be raised. In this case, just resolve the nam
 71. // assign the context to the object returned:
 72. CORBA::Object_var obj;
 73. obj = rootContext->resolve(contextName);
 74. corejavaContext
 75. = CosNaming::NamingContext::_narrow(obj);
 76. if(CORBA::is_nil(corejavaContext))
 77. {
 78. cerr << "Failed to narrow naming context." <<
 79. return;
 80. }
 81. }
 82.
 83. // Bind objref with given name to the context:
 84. CosNaming::Name objectName;
 85. objectName.length(1);
 86. objectName[0].id = name;
 87. objectName[0].kind = (const char*) "Object";
 88.
 89. try
 90. {
 91. corejavaContext->bind(objectName, objref);
 92. }
 93. catch(CosNaming::NamingContext::AlreadyBound& ex)
 94. {
 95. corejavaContext->rebind(objectName, objref);
 96. }
 97. }

 98. catch(CORBA::COMM_FAILURE& ex)
 99. {
100. cerr
101. << "Caught system exception COMM_FAILURE -- unab
102. << "contact the naming service." << endl;
103. }
104. catch(CORBA::SystemException&)
105. {
106. cerr << "Caught a CORBA::SystemException while usin
107. << "naming service." << endl;
108. }
109. }
110.
111. int main(int argc, char *argv[])
112. {
113. cout << "Creating and initializing the ORB..." << endl
114.
115. CORBA::ORB_var orb = CORBA::ORB_init(argc, argv, "omni
116.
117. CORBA::Object_var obj
118. = orb->resolve_initial_references("RootPOA");
119. PortableServer::POA_var poa
120. = PortableServer::POA::_narrow(obj);
121. poa->the_POAManager()->activate();
122.
123. EnvImpl* envImpl = new EnvImpl();
124. poa->activate_object(envImpl);
125.
126. // Obtain a reference to the object, and register it i
127. // the naming service.
128. obj = envImpl->_this();
129.
130. cout << orb->object_to_string(obj) << endl;
131. cout << "Binding server implementations to registry...
132. << endl;
133. bindObjectToName(orb, "Env", obj);
134. envImpl->_remove_ref();
135.
136. cout << "Waiting for invocations from clients..." << e
137. orb->run();
138.
139. return 0;
140. }

org.omg.CORBA.ORB

static ORB init(String[] args, Properties props)

creates a new ORB and initializes it.

Locating Objects Through IORs
If you can't configure your server ORB and name service so that your client can invoke it, you
can still locate CORBA objects by using an Interoperable Object Reference, or IOR. An IOR
is a long string starting with IOR: and followed by many hexadecimal digits, for example:

IOR:012020201000000049444c3a4163636f756e743a312e3000010000000
00000004e000000010100200f0000003231362e31352e3131322e31373900
20350420202e00000001504d43000000001000000049444c3a4163636f756
e743a312e30000e0000004a61636b20422e20517569636b00

An IOR describes an object uniquely. By convention, many server classes print out the IORs
of all objects they register, to enable clients to locate them. You can then paste the server
IOR into the client program. Specifically, use the following code:

String ref = "IOR:012020201000000049444c3a4163636f...";
 // paste IOR from server
org.omg.CORBA.Object object = orb.string_to_object(ref);

Then, narrow the returned object to the appropriate type, for example:

Env env = EnvHelper.narrow(object);

or

NamingContext context = NamingContextHelper.narrow(object);

When testing the code for this book, we successfully used this method to connect clients with
Visibroker and OmniORB. (Some Java releases have bugs that prevent them from
recognizing the OmniORB name service.)

Parameters: args command-line arguments for configuring the ORB
 props a table with properties for configuring the ORB

String[] list_initial_services()

returns a list of the initially available services such as "NameService".

org.omg.CORBA.Object resolve_initial_references(String
name)

returns an object that carries out one of the initial services.

org.omg.CORBA.Object string_to_object(String ior)

locates the object with a given IOR.

org.omg.CosNaming.NamingContext

org.omg.CORBA.Object resolve(NameComponent[] name)

returns the object that is bound to the given name.

org.omg.CosNaming.NameComponent

NameComponent(String id, String kind)

constructs a new name component.

Implementing CORBA Servers
If you are deploying a CORBA infrastructure, you will find that the Java programming language
is a good implementation language for CORBA server objects. The language binding is
natural, and it is easier to build robust server software than with C++. This section describes
how to implement a CORBA server in the Java programming language.

Parameters: name the name of the initial service

Parameters: id A string describing the identity of this component
 kind A string describing the type of this component

The example program in this section is similar to that of the preceding section. We supply a
service to look up a system property of a Java virtual machine. Here is the IDL description:

interface SysProp
{
 string getProperty(in string name);
};

For example, our client test program calls the server as follows:

CORBA::String_var key = "java.vendor";
CORBA::String_var value = sysProp->getProperty(key);

The result is a string describing the vendor of the Java virtual machine that is executing the
server program. We won't look into the details of the C++ client program. You will find the code
in Example 5-24.

To implement the server, you run the idlj compiler with the -fall option. (By default,
idlj only creates client-side stubs.)

idlj -fall SysProp.java

Then you extend the SysPropPOA class that the idlj compiler generated from the IDL file.
Here is the implementation:

class SysPropImpl extends SysPropPOA
{
 public String getProperty(String key)
 {
 return System.getProperty(key);
 }
}

NOTE

NOTE

You can choose any name you like for the implementation class. In this
book, we follow the RMI convention and use the suffix Impl for the
implementation class name. Other programmers use a suffix Servant or
_i.

If your implementation class already extends another class, you cannot
simultaneously extend the implementation base class. In that case, you can
instruct the idlj compiler to create a tie class. Your server class then
implements the operations interface instead of extending the

Next, you need to write a server program that carries out the following tasks:

1. Start the ORB.

2. Locate and activate the root Portable Object Adaptor (POA).

3. Create the server implementation.

4. Use the POA to convert the servant reference to a CORBA object reference. (The server
implementation class extends SysPropPOA which itself extends
org.omg.PortableServer.Servant.)

5. Print out its IOR (for name-service-challenged clients—see the Sidebar on page 400).

6. Bind the server implementation to the naming service.

7. Wait for invocations from clients.

You will find the complete code in Example 5-23. Here are the highlights.

You start the ORB as you would for a client program:

ORB orb = ORB.init(args, null);

Next, activate the root POA:

POA rootpoa
 = (POA)orb.resolve_initial_references("RootPOA");
rootpoa.the_POAManager().activate();

Construct the server object and convert it to a CORBA object:

SysPropImpl impl = new SysPropImpl();
org.omg.CORBA.Object ref
 = rootpoa.servant_to_reference(impl);

Next, obtain the IOR with the object_to_string method and print it out:

System.out.println(orb.object_to_string(impl));

You obtain a reference to the naming service in exactly the same way as with a client program:

org.omg.CORBA.Object namingContextObj =

implementation base class. However, any server objects must be created
by means of the tie class. For details, check out the idlj documentation
at http://java.sun.com/j2se/1.4/docs/guide/idl/index.html.

 orb.resolve_initial_references("NameService");
NamingContext namingContext
 = NamingContextHelper.narrow(namingContextObj);

You then build up the desired name for the object. Here, we call the object SysProp:

NameComponent[] path =
 {
 new NameComponent("SysProp", "Object")

 };

CAUTION

You use the rebind method to bind the object to the name:

namingContext.rebind(path, impl);

Finally, you wait for client invocations:

orb.run();

To test this program, do the following.

1. Compile the IDL file, using both the C++ and Java IDL compilers.

2. Compile the server program.

3. Compile the C++ client program.

4. Start the orbd naming service on the server. This program is a part of the Java SDK.

orbd -ORBInitialPort 2809

5. Start the server:

java SysPropServer -ORBInitialPort 2809

The server also runs until you kill it.

6. Run the client.

We don't use a nested name because at the time of this writing, the orbd
name service that is included in the Java SDK does not support nested
names.

./SysPropClient

It should print out the JVM vendor of the server.

NOTE

You have now seen how to use CORBA to connect clients and servers that were written in
different programming languages. This concludes our discussion of CORBA. CORBA has a
number of other interesting features, such as dynamic method invocation and a number of
standard services such as transaction handling and persistence. We refer you to Client/Server
Programming with Java and CORBA by Robert Orfali and Dan Harkey [John Wiley & Sons
1998] for an in-depth discussion of advanced CORBA issues.

Example 5-23 SysPropServer.java

 1. import org.omg.CosNaming.*;
 2. import org.omg.CORBA.*;
 3. import org.omg.PortableServer.*;
 4.
 5. class SysPropImpl extends SysPropPOA
 6. {
 7. public String getProperty(String key)
 8. {
 9. return System.getProperty(key);
10. }
11. }
12.
13. public class SysPropServer
14. {
15. public static void main(String args[])
16. {
17. try
18. {
19. System.out.println(
20. "Creating and initializing the ORB...");
21.
22. ORB orb = ORB.init(args, null);
23.
24. System.out.println(
25. "Registering server implementation with the OR

In this example, we use the transient name service. The orbd tool also
includes a persistent name service that remembers names and object
references even if the name service has been shut down and restarted. See
the Java IDL documentation for more information on the persistent name
service.

26.
27. POA rootpoa
28. = (POA)orb.resolve_initial_references("RootPOA
29. rootpoa.the_POAManager().activate();
30.
31. SysPropImpl impl = new SysPropImpl();
32. org.omg.CORBA.Object ref
33. = rootpoa.servant_to_reference(impl);
34.
35. System.out.println(orb.object_to_string(ref));
36.
37. org.omg.CORBA.Object namingContextObj =
38. orb.resolve_initial_references("NameService")
39. NamingContext namingContext
40. = NamingContextHelper.narrow(namingContextObj)
41.
42. NameComponent[] path =
43. {
44. // new NameComponent("corejava", "Context")
45. new NameComponent("SysProp", "Object")
46. };
47.
48. System.out.println(
49. "Binding server implementation to name service
50.
51. namingContext.rebind(path, ref);
52.
53. System.out.println(
54. "Waiting for invocations from clients...");
55. orb.run();
56. }
57. catch (Exception e)
58. {
59. e.printStackTrace(System.out);
60. }
61. }
62. }

Example 5-24 SysPropClient.cpp

 1. #include <iostream>
 2. #include "SysProp.hh"
 3.
 4. CORBA::Object_ptr getObjectReference(CORBA::ORB_ptr orb,

 5. const char serviceName[])
 6. {
 7. CosNaming::NamingContext_var rootContext;
 8.
 9. try
10. {
11. // Obtain a reference to the root context of the
12. // name service:
13. CORBA::Object_var initServ;
14. initServ = orb->resolve_initial_references("NameServ
15.
16. // Narrow the object returned by
17. // resolve_initial_references()
18. // to a CosNaming::NamingContext object
19. rootContext = CosNaming::NamingContext::_narrow(init
20. if (CORBA::is_nil(rootContext))
21. {
22. cerr << "Failed to narrow naming context." << end
23. return CORBA::Object::_nil();
24. }
25. }
26. catch(CORBA::ORB::InvalidName&)
27. {
28. cerr << "Name service does not exist." << endl;
29. return CORBA::Object::_nil();
30. }
31.
32. // Create a name object, containing the name corejava/S
33. CosNaming::Name name;
34. name.length(1);
35.
36. name[0].id = serviceName;
37. name[0].kind = "Object";
38.
39. CORBA::Object_ptr obj;
40. try
41. {
42. // Resolve the name to an object reference, and assi
43. // the returned reference to a CORBA::Object:
44. obj = rootContext->resolve(name);
45. }
46. catch(CosNaming::NamingContext::NotFound&)
47. {
48. // This exception is thrown if any of the components

49. // path [contexts or the object] aren't found:
50. cerr << "Context not found." << endl;
51. return CORBA::Object::_nil();
52. }
53. return obj;
54. }
55.
56. int main (int argc, char *argv[])
57. {
58. CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv, "omniO
59.
60. CORBA::Object_var obj = getObjectReference(orb, "SysPro
61. SysProp_var sysProp = SysProp::_narrow(obj);
62.
63. if (CORBA::is_nil(sysProp))
64. {
65. cerr << "hello: cannot invoke on a nil object refere
66. << endl;
67. return 1;
68. }
69.
70. CORBA::String_var key = "java.vendor";
71. CORBA::String_var value = sysProp->getProperty(key);
72.
73. cerr << key << "=" << value << endl;
74.
75. return 0;
76. }

org.omg.CORBA.ORB

void connect(org.omg.CORBA.Object obj)

connects the given implementation object to this ORB, enabling the ORB to forward calls
to the object's methods.

String object_to_string(org.omg.CORBA.Object obj)

returns the IOR string of the given object.

org.omg.CosNaming.NamingContext

void bind(NameComponent[] name, org.omg.CORBA.Object obj)

void rebind(NameComponent[] name, org.omg.CORBA.Object
obj)

bind an object to a name. The bind method throws an AlreadyBound exception if
the object has been previously bound. The rebind method replaces any previously
bound objects.

Parameters: name the name to which the object is bound
 obj the object to store in the naming context

CONTENTS

Chapter 6. Advanced Swing
Lists

Trees

Tables

Styled Text Components

Component Organizers

In this chapter, we continue our discussion of the Swing user interface toolkit from Volume 1.
Swing is a very rich toolkit, and Volume 1 only covered basic and commonly used
components. That leaves us with three significantly more complex components for lists, trees,
and tables, whose exploration will occupy the bulk of this chapter. Components for styled text,
in particular HTML, are internally even more complex, and we show you how to put them to
practical use. We finish the chapter by covering component organizers such as tabbed panes
and desktop panes with internal frames.

Lists
If you want to present a set of choices to a user, and a radio button or checkbox set consumes
too much space, you can use a combo box or a list. Combo boxes were covered in Volume 1
because they are relatively simple. The JList component has many more features, and its
design is similar to that of the tree and table components. For that reason, it is our starting
point for the discussion of complex Swing components.

Of course, you can have lists of strings, but you can also have lists of arbitrary objects, with full
control of how they appear. The internal architecture of the list component that makes this
generality possible is rather elegant. Unfortunately, the designers at Sun felt that they needed
to show off that elegance, rather than hiding it from the programmer who just wants to use the
component. You will find that the list control is somewhat awkward to use for common cases
because you need to manipulate some of the machinery that makes the general cases
possible. We'll walk you through the simple and most common case, a list box of strings, and
then give a more complex example that shows off the flexibility of the list component.

The JList Component

The JList component is similar to a set of check boxes or radio buttons, except that the
items are placed inside a single box and are selected by clicking on the items themselves, not
on buttons. If you permit multiple selection for a list box, the user can select any combination of
the items in the box.

Figure 6-1 shows an admittedly silly example. The user can select the attributes for the fox,

CONTENTS

such as "quick," "brown," "hungry," "wild," and, because we ran out of attributes, "static,"
"private," and "final." You can, thus, have the static, final fox jump over the lazy dog.

Figure 6-1. A list box

To construct this list component, you first start out with an array of strings, then pass the array
to the JList constructor:

String[] words= { "quick", "brown", "hungry", "wild", ... };
JList wordList = new JList(words);

Alternatively, you can use an anonymous array:

JList wordList = new JList(new String[]
 {"quick", "brown", "hungry", "wild", ... });

List boxes do not scroll automatically. To make a list box scroll, you must insert it into a scroll
pane:

JScrollPane scrollPane = new JScrollPane(wordList);

Then, you need to add the scroll pane, not the list, into the surrounding panel.

We must admit that the separation of the list display and the scrolling mechanism is elegant in
theory, but it is a pain in practice. Essentially all lists that we ever encountered needed
scrolling. It seems cruel to force programmers to go through hoops in the default case, just so
they can appreciate that elegance.

By default, the list component displays eight items; use the setVisibleRowCount
method to change that value:

wordList.setVisibleRowCount(10); // display 10 items

By default, a user can select multiple items. This requires some knowledge of mouse
technique: To add more items to a selection, press the CTRL key while clicking on each item.
To select a contiguous range of items, click on the first one, then hold down the SHIFT key and
click on the last one.

You can also restrict the user to a more limited selection mode with the
setSelectionMode method:

wordList.setSelectionMode
 (ListSelectionModel.SINGLE_SELECTION);
 // select one item at a time
wordList.setSelectionMode
 (ListSelectionModel.SINGLE_INTERVAL_SELECTION);
 // select one item or one range of items

You may recall from Volume 1 that the basic user interface components send out action events
when the user activates them. List boxes use a different notification mechanism. Rather than
listening to action events, you need to listen to list selection events. Add a list selection listener
to the list component, and implement the method

public void valueChanged(ListSelectionEvent evt)

in the listener.

When the user selects items, a flurry of list selection events is generated. For example,
suppose the user clicks on a new item. When the mouse button goes down, there is an event
that reports a change in selection. This is a transitional event—the call

event.isAdjusting()

returns true if the selection is not yet final. Then, when the mouse button goes up, there is
another event, this time with isAdjusting returning false. If you are not interested in the
transitional events, then you can wait for the event for which isAdjusting is false.
However, if you want to give the user instant feedback as soon as the mouse button is clicked,
then you need to process all events.

Once you are notified that an event has happened, you will want to find out what items are
currently selected. The getSelectedValues method returns an array of objects
containing all selected items.

You need to cast each array element to a string.

Object[] values = list.getSelectedValues();
for (int i = 0; i < values.length; i++)
 do something with (String)values[i];

CAUTION

If your list does not allow multiple selections, you can call the convenience method
getSelectedValue. It returns the first selected value (which you know to be the only
value if multiple selections are disallowed).

String selection = (String)source.getSelectedValue();

NOTE

Example 6-1 is the listing of the program that demonstrates a list box filled with strings. Notice
how the valueChanged method builds up the message string from the selected items.

Example 6-1 ListTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;

You cannot cast the return value of getSelectedValues from an
Object[] array to a String[] array. The return value was not created
as an array of strings, but as an array of objects, each of which happens to
be a string. If you want to process the return value as an array of strings,
you can use the following code:

int length = values.length;
String[] words = new String[length];
System.arrayCopy(values, 0, words, 0, length);

List components do not react to double clicks from a mouse. As envisioned by the
designers of Swing, you use a list to select an item, and then you need to click a
button to make something happen. However, some user interfaces allow a user to
double-click on a list to indicate selection of a list item and acceptance of an
action. We don't think this is a good user interface style because it is difficult for
users to discover that they are supposed to double-click. But if you do want to
implement this behavior, you have to add a mouse listener to the list box, then trap
the mouse event as follows:

public void mouseClicked(MouseEvent evt)
{
 if (evt.getClickCount() == 2)
 {
 JList source = (JList)evt.getSource();
 Object[] selection = source.getSelectedValues();
 doAction(selection);
 }
}

 3. import javax.swing.*;
 4. import javax.swing.event.*;
 5.
 6. /**
 7. This program demonstrates a simple fixed list of string
 8. */
 9. public class ListTest
10. {
11. public static void main(String[] args)
12. {
13. JFrame frame = new ListFrame();
14. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE)
15. frame.show();
16. }
17. }
18.
19. /**
20. This frame contains a word list and a label that shows
21. sentence made up from the chosen words. Note that you c
22. select multiple words with Ctrl+click and Shift+click.
23. */
24. class ListFrame extends JFrame
25. {
26. public ListFrame()
27. {
28. setTitle("ListTest");
29. setSize(WIDTH, HEIGHT);
30.
31. String[] words =
32. {
33. "quick","brown","hungry","wild","silent",
34. "huge","private","abstract","static","final"
35. };
36.
37. wordList = new JList(words);
38. JScrollPane scrollPane = new JScrollPane(wordList);
39.
40. JPanel p = new JPanel();
41. p.add(scrollPane);
42. wordList.addListSelectionListener(new
43. ListSelectionListener()
44. {
45. public void valueChanged(ListSelectionEvent ev
46. {

47. Object[] values = wordList.getSelectedValue
48.
49. StringBuffer text = new StringBuffer(prefix
50. for (int i = 0; i < values.length; i++)
51. {
52. String word = (String)values[i];
53. text.append(word);
54. text.append(" ");
55. }
56. text.append(suffix);
57.
58. label.setText(text.toString());
59. }
60. });
61.
62. Container contentPane = getContentPane();
63. contentPane.add(p, BorderLayout.SOUTH);
64. label = new JLabel(prefix + suffix);
65. contentPane.add(label, BorderLayout.CENTER);
66. }
67.
68. private static final int WIDTH = 400;
69. private static final int HEIGHT = 300;
70. private JList wordList;
71. private JLabel label;
72. private String prefix = "The ";
73. private String suffix = "fox jumps over the lazy dog.";
74. }

javax.swing.JList

JList(Object[] items)

constructs a list that displays these items.

void setVisibleRowCount(int c)

sets the preferred number of rows in the list that can be displayed without a scroll bar.

void setSelectionMode(int mode)

gra

determines whether single-item or multiple-item selections are allowed.

void addListSelectionListener(ListSelectionListener
listener)

adds to the list a listener that's notified each time a change to the selection occurs.

Object[] getSelectedValues()

returns the selected values or an empty array if the selection is empty.

Object getSelectedValue()

returns the first selected value or null if the selection is empty.

javax.swing.event.ListSelectionListener

void valueChanged(ListSelectionEvent e)

is called whenever the list selection changes.

List Models

In the preceding section, you have seen the most common method for using a list component:

Specify a fixed set of strings for display in the list,

Add a scrollbar,

Trap the list selection events.

In the remainder of the section on lists, we will cover more complex situations that require a bit
more finesse:

Very long lists

Lists with changing contents

Parameters: mode one of SINGLE_SELECTION,
SINGLE_INTERVAL_SELECTION,
MULTIPLE_INTERVAL_SELECTION

gra

Lists that don't contain strings

In the first example, we constructed a JList component that held a fixed collection of strings.
However, the collection of choices in a list box is not always fixed. How do we add or remove
items in the list box? Somewhat surprisingly, there are no methods in the JList class to
achieve this. Instead, you have to understand a little more about the internal design of the list
component. As with text components, the list component uses the model-view-controller
design pattern to separate the visual appearance (a column of items that are rendered in some
way) from the underlying data (a collection of objects).

The JList class is responsible for the visual appearance of the data. It actually knows very
little about how the data is stored—all it knows is that it can retrieve the data through some
object that implements the ListModel interface:

public interface ListModel
{
 public int getSize();
 public Object getElementAt(int i);
 public void addListDataListener(ListDataListener l);
 public void removeListDataListener(ListDataListener l);
}

Through this interface, the JList can get a count of elements and retrieve each one of the
elements. Also, the JList object can add itself as a list data listener. It then gets notified if
the collection of elements changes, so that it can repaint the list.

Why is this generality useful? Why doesn't the JList object simply store a vector of objects?

Note that the interface doesn't specify how the objects are stored. In particular, it doesn't force
them to be stored at all! The getElementAt method is free to recompute each value
whenever it is called. This is potentially useful if you want to show a very large collection
without having to store the values.

Here is a somewhat silly example: we let the user choose among all three-letter words in a list
box (see Figure 6-2).

Figure 6-2. Choosing from a very long list of selections

There are 26 26 26 = 17,576 three-letter combinations. Rather than storing all these
combinations, we recompute them as requested when the user scrolls through them.

This turns out to be easy to implement. The tedious part, adding and removing listeners, has
been done for us in the AbstractListModel class which we extend. We only need to
supply the getSize and getElementAt methods:

class WordListModel extends AbstractListModel
{
 public WordListModel(int n) { length = n; }
 public int getSize() { return (int)Math.pow(26, length); }
 public Object getElementAt(int n)
 {
 // compute nth string
 . . .
 }
 . . .
}

The computation of the nth string is a bit technical—you'll find the details in the code listing in
Example 6-2.

Now that we supplied a model, we can simply build a list that lets the user scroll through the
elements supplied by the model:

JList wordList = new JList(new WordListModel(3));
wordList.setSelectionMode(ListSelectionModel.SINGLE_SELECTION)
JScrollPane scrollPane = new JScrollPane(wordList);

The point is that the strings are never stored. Only those strings that the user actually requests

to see are generated.

There is one other setting that we must make. We must tell the list component that all items
have a fixed width and height:

wordList.setFixedCellWidth(50);
wordList.setFixedCellHeight(15);

Otherwise, the list component would compute each item to measure its width and height. That
would take a long time.

As a practical matter, such very long lists are rarely useful. It is extremely cumbersome for a
user to scroll through a huge selection. For that reason, we believe that the list control has
been completely over-engineered. A selection that a user can comfortably manage on the
screen is certainly small enough to be stored directly in the list component. That arrangement
would have saved programmers from the pain of having to deal with the list model as a
separate entity. On the other hand, the JList class is consistent with the JTree and
JTable class where this generality is useful.

Example 6-2 LongListTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import javax.swing.*;
 4. import javax.swing.event.*;
 5.
 6.
 7. /**
 8. This program demonstrates a list that dynamically comp
 9. list entries.
 10. */
 11. public class LongListTest
 12. {
 13. public static void main(String[] args)
 14. {
 15. JFrame frame = new LongListFrame();
 16. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 17. frame.show();
 18. }
 19.}
 20.
 21. /**
 22. This frame contains a long word list and a label that
 23. sentence made up from the chosen word.
 24. */
 25. class LongListFrame extends JFrame

 26. {
 27. public LongListFrame()
 28. {
 29. setTitle("LongListTest");
 30. setSize(WIDTH, HEIGHT);
 31.
 32. wordList = new JList(new WordListModel(3));
 33. wordList.setSelectionMode
 34. (ListSelectionModel.SINGLE_SELECTION);
 35.
 36. wordList.setFixedCellWidth(50);
 37. wordList.setFixedCellHeight(15);
 38.
 39. JScrollPane scrollPane = new JScrollPane(wordList);
 40.
 41. JPanel p = new JPanel();
 42. p.add(scrollPane);
 43. wordList.addListSelectionListener(new
 44. ListSelectionListener()
 45. {
 46. public void valueChanged(ListSelectionEvent e
 47. {
 48. StringBuffer word
 49. = (StringBuffer)wordList.getSelectedVal
 50. setSubject(word.toString());
 51. }
 52.
 53. });
 54.
 55. Container contentPane = getContentPane();
 56. contentPane.add(p, BorderLayout.SOUTH);
 57. label = new JLabel(prefix + suffix);
 58. contentPane.add(label, BorderLayout.CENTER);
 59. setSubject("fox");
 60. }
 61.
 62. /**
 63. Sets the subject in the label.
 64. @param word the new subject that jumps over the laz
 65. */
 66. public void setSubject(String word)
 67. {
 68. StringBuffer text = new StringBuffer(prefix);
 69. text.append(word);

 70. text.append(suffix);
 71. label.setText(text.toString());
 72. }
 73.
 74. private static final int WIDTH = 400;
 75. private static final int HEIGHT = 300;
 76. private JList wordList;
 77. private JLabel label;
 78. private String prefix = "The quick brown ";
 79. private String suffix = " jumps over the lazy dog.";
 80.}
 81.
 82. /**
 83. A model that dynamically generates n-letter words.
 84. */
 85. class WordListModel extends AbstractListModel
 86. {
 87. /**
 88. Constructs the model.
 89. @param n the word length
 90. */
 91. public WordListModel(int n) { length = n; }
 92.
 93. public int getSize()
 94. {
 95. return (int)Math.pow(LAST - FIRST + 1, length);
 96. }
 97.
 98. public Object getElementAt(int n)
 99. {
100. StringBuffer r = new StringBuffer();;
101. for (int i = 0; i < length; i++)
102. {
103. char c = (char)(FIRST + n % (LAST - FIRST + 1));
104. r.insert(0, c);
105. n = n / (LAST - FIRST + 1);
106. }
107. return r;
108. }
109.
110. private int length;
111. public static final char FIRST = 'a';
112. public static final char LAST = 'z';
113.}

javax.swing.JList

JList(ListModel dataModel)

constructs a list that displays the elements in the specified model.

void setFixedCellWidth(int width)

if the width is greater than zero, specifies the width of every cell in the list. The default
value is -1, which forces the size of each cell to be measured.

void setFixedCellHeight(int height)

if the height is greater than zero, specifies the height of every cell in the list. The default
value is -1, which forces the size of each cell to be measured.

javax.swing.ListModel

int getSize()

returns the number of elements of the model.

Object getElementAt(int index)

returns an element of the model.

Inserting and Removing Values

You cannot directly edit the collection of list values. Instead, you must access the model and
then add or remove elements. That, too, is easier said than done. Suppose you want to add
more values to a list. You can obtain a reference to the model:

ListModel model = list.getModel();

But that does you no good—as you saw in the preceding section, the ListModel interface
has no methods to insert or remove elements since, after all, the whole point of having a list
model is that it need not store the elements.

Let's try it the other way around. One of the constructors of JList takes a vector of objects:

gra

gra

Vector values = new Vector();
values.addElement("quick");
values.addElement("brown");
. . .
JList list = new JList(values);

Of course, you can now edit the vector and add or remove elements, but the list does not know
that this is happening, so it cannot react to the changes. In particular, the list cannot update its
view when you add the values.

NOTE

Instead, you have to construct a particular model, the DefaultListModel, fill it with the
initial values, and associate it with the list.

DefaultListModel model = new DefaultListModel();
model.addElement("quick");
model.addElement("brown");
. . .
JList list = new JList(model);

Now you can add or remove values from the model object. The model object then notifies
the list of the changes, and the list repaints itself.

model.removeElement("quick");
model.addElement("slow");

As you can see, the DefaultListModel class doesn't uses the same method names as
the collection classes.

The default list model uses a vector internally to store the values. It inherits the list notification
mechanism from AbstractListModel, just as the example model class of the preceding
section.

CAUTION

There is no JList constructor that takes an ArrayList parameter. But,
since construction from a Vector isn't all that useful, that's not a real
limitation.

There are JList constructors that construct a list from an array or vector of
objects or strings. You might think that these constructors use a
DefaultListModel to store these values. That is not the case—the
constructors build a trivial model that can access the values without any provisions
for notification if the contents changes. For example, here is the code for the
constructor that constructs a JList from a Vector:

javax.swing.JList

ListModel getModel()

gets the model of this list.

javax.swing.DefaultListModel

void addElement(Object obj)

adds the object to the end of the model.

boolean removeElement(Object obj)

removes the first occurrence of the object from the model. Returns true if the object
was contained in the model, false otherwise.

Rendering Values

So far, all lists that you saw in this chapter contained only strings. It is actually just as easy to

public JList(final Vector listData)
{
 this (new AbstractListModel()
 {
 public int getSize() { return listData.size(); }
 public Object getElementAt(int i)
 { return listData.elementAt(i); }
 });
}

That means, if you change the contents of the vector after the list is constructed,
then the list may show a confusing mix of old and new values until it is completely
repainted. (The keyword final in the constructor above does not prevent you
from changing the vector elsewhere—it only means that the constructor itself won'
modify the value of the listData reference; the keyword is required because
the listData object is used in the inner class.)

gra

gra

show a list of icons—simply pass an array or vector filled with Icon objects. More
interestingly, you can easily represent your list values with any drawing whatsoever.

While the JList class can display strings and icons automatically, you need to install a list
cell renderer into the JList object for all custom drawing. A list cell renderer is any class that
implements the following interface:

interface ListCellRenderer
{
 Component getListCellRendererComponent(JList list,
 Object value, int index,
 boolean isSelected, boolean cellHasFocus);
}

If you install a list cell renderer into a list, it gets called for each list value: first, if you did not
select fixed-sized cells, to measure the size of the graphical representation of the value; then,
to draw it. You must provide a class that returns an object of type Component, such that the
getPreferredSize and paint methods of the returned object carry out these tasks as
appropriate for your list values.

A simple way to do this is to create an inner class with these two methods:

class MyCellRenderer implements ListCellRenderer
{
 public Component getListCellRendererComponent(final JList l
 final Object value, final int index,
 final boolean isSelected, final boolean cellHasFocus)
 {
 return new
 JPanel()
 {
 public void paintComponent(Graphics g)
 {
 // paint code goes here
 }
 public Dimension getPreferredSize()
 {
 // size measurement code goes here
 }
 };
 }
}

In Example 6-3, we display the font choices graphically by showing the actual appearance of
each font (see Figure 6-3). In the paintComponent method, we display each name in its
own font. We also need to make sure to match the usual colors of the look and feel of the

JList class. We obtain these colors by calling the getForeground/getBackground
and getSelectionForeground/getSelectionBackground methods of the
JList class. In the getPreferredSize method, we need to measure the size of the
string, using the techniques that you saw in Chapter 7 of Volume 1.

Figure 6-3. A list box with rendered cells

To install the cell renderer, simply call the setCellRenderer method:

fontList.setCellRenderer(new FontCellRenderer());

Now all list cells are drawn with the custom renderer.

There is actually a simpler method for writing custom renderers that works in many cases. If
the rendered image just contains text, an icon, and possibly a change of color, then you can
get by with configuring a JLabel. For example, to show the font name in its own font, we can
use the following renderer:

class FontCellRenderer implements ListCellRenderer
{
 public Component getListCellRendererComponent(JList list,
 Object value, int index, boolean isSelected,
 boolean cellHasFocus)
 {
 JLabel label = new JLabel();
 Font font = (Font)value;
 label.setText(font.getFamily());
 label.setFont(font);
 label.setOpaque(true);
 label.setBackground(isSelected

 ? list.getSelectionBackground()
 : list.getBackground());
 label.setForeground(isSelected
 ? list.getSelectionForeground()
 : list.getForeground());
 return label;
 }
}

Note that here we don't write any paintComponent or getPreferredSize methods;
the JLabel class already implements these methods to our satisfac-tion. All we need to do is
to configure the label appropriately by setting its text, font, and color.

For added conciseness, the FontCellRenderer can even extend JLabel, configure
itself with every call to getListCellRendererComponent, and then return this:

class FontCellRenderer extends JLabel implements ListCellRende
{
 public Component getListCellRendererComponent(JList list,
 Object value, int index, boolean isSelected,
 boolean cellHasFocus)
 {
 Font font = (Font)value;
 setText(font.getFamily());
 setFont(font);
 setOpaque(true);
 setBackground(isSelected
 ? list.getSelectionBackground()
 : list.getBackground());
 setForeground(isSelected
 ? list.getSelectionForeground()
 : list.getForeground());
 return this;
 }
}

This code is a convenient shortcut for those cases where an existing component—in this case,
JLabel—already provides all functionality that is needed to render a cell value.

Example 6-3 ListRenderingTest.java

 1. import java.util.*;
 2. import java.awt.*;
 3. import java.awt.event.*;
 4. import javax.swing.*;

 5. import javax.swing.event.*;
 6.
 7. /**
 8. This program demonstrates the use of cell renderers in
 9. a list box.
 10. */
 11. public class ListRenderingTest
 12. {
 13. public static void main(String[] args)
 14. {
 15. JFrame frame = new ListRenderingFrame();
 16. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 17. frame.show();
 18. }
 19. }
 20.
 21. /**
 22. This frame contains a list with a set of fonts and a t
 23. area that is set to the selected font.
 24. */
 25. class ListRenderingFrame extends JFrame
 26. {
 27. public ListRenderingFrame()
 28. {
 29. setTitle("ListRenderingTest");
 30. setSize(WIDTH, HEIGHT);
 31.
 32. ArrayList fonts = new ArrayList();
 33. final int SIZE = 24;
 34. fonts.add(new Font("Serif", Font.PLAIN, SIZE));
 35. fonts.add(new Font("SansSerif", Font.PLAIN, SIZE));
 36. fonts.add(new Font("Monospaced", Font.PLAIN, SIZE))
 37. fonts.add(new Font("Dialog", Font.PLAIN, SIZE));
 38. fonts.add(new Font("DialogInput", Font.PLAIN, SIZE)
 39. fontList = new JList(fonts.toArray());
 40. fontList.setVisibleRowCount(4);
 41. fontList.setSelectionMode
 42. (ListSelectionModel.SINGLE_SELECTION);
 43. fontList.setCellRenderer(new FontCellRenderer());
 44. JScrollPane scrollPane = new JScrollPane(fontList);
 45.
 46. JPanel p = new JPanel();
 47. p.add(scrollPane);
 48. fontList.addListSelectionListener(new

 49. ListSelectionListener()
 50. {
 51. public void valueChanged(ListSelectionEvent e
 52. {
 53. Font font = (Font)fontList.getSelectedValu
 54. text.setFont(font);
 55. }
 56
 57. });
 58.
 59. Container contentPane = getContentPane();
 60. contentPane.add(p, BorderLayout.SOUTH);
 61. text = new JTextArea(
 62. "The quick brown fox jumps over the lazy dog");
 63. text.setFont((Font)fonts.get(0));
 64. text.setLineWrap(true);
 65. text.setWrapStyleWord(true);
 66. contentPane.add(text, BorderLayout.CENTER);
 67. }
 68
 69. private JTextArea text;
 70. private JList fontList;
 71. private static final int WIDTH = 400;
 72. private static final int HEIGHT = 300;
 73. }
 74.
 75. /**
 76. A cell renderer for Font objects that renders the font
 77. in its own font.
 78. */
 79. class FontCellRenderer implements ListCellRenderer
 80. {
 81. public Component getListCellRendererComponent
 82. (final JList list, final Object value,
 83. final int index, final boolean isSelected,
 84. final boolean cellHasFocus)
 85. {
 86. return new
 87. JPanel()
 88. {
 89. public void paintComponent(Graphics g)
 90. {
 91. Font font = (Font)value;
 92. String text = font.getFamily();

 93. FontMetrics fm = g.getFontMetrics(font);
 94. g.setColor(isSelected
 95. ? list.getSelectionBackground()
 96. : list.getBackground());
 97. g.fillRect(0, 0, getWidth(), getHeight());
 98. g.setColor(isSelected
 99. ? list.getSelectionForeground()
100 : list.getForeground());
101. g.setFont(font);
102. g.drawString(text, 0, fm.getAscent());
103. }
104.
105. public Dimension getPreferredSize()
106. {
107. Font font = (Font)value;
108. String text = font.getFamily();
109. Graphics g = getGraphics();
110. FontMetrics fm = g.getFontMetrics(font);
111. return new Dimension(fm.stringWidth(text),
112. fm.getHeight());
113. }
114. };
115. }
116.}

javax.swing.JList

Color getBackground()

returns the background color for unselected cells.

Color getSelectionBackground()

returns the background color for selected cells.

void setCellRenderer(ListCellRenderer cellRenderer)

sets the renderer that is used to paint the cells in the list.

javax.swing.ListCellRenderer

gra

Component getListCellRendererComponent(JList list, Object
item, int index, boolean isSelected, boolean hasFocus)

returns a component whose paint method will draw the cell contents. If the list cells do
not have fixed size, that component must also implement getPreferredSize.

Trees
Every computer user who uses a hierarchical file system has encountered tree displays such
as the one in Figure 6-4. Of course, directories and files form only one of the many examples
of treelike organizations. Programmers are familiar with inheritance trees for classes. There
are many tree structures that arise in everyday life, such as the hierarchy of countries, states,
and cities shown in Figure 6-5.

Figure 6-4. A directory tree

gra

Parameters: list the list whose cell is being drawn
 item the item to be drawn
 index the index where the item is stored in the model
 isSelected true if the specified cell was selected
 hasFocus true if the specified cell has the focus

Figure 6-5. A hierarchy of countries, states, and cities

As programmers, we often have to display these tree structures. Fortunately, the Swing library
has a JTree class for this purpose. The JTree class (together with its helper classes) takes
care of laying out the tree and of processing user requests for expanding and collapsing
nodes. In this section, you will learn how to put the JTree class to use. As with the other
complex Swing components, we must focus on the common and useful cases and cannot
cover every nuance—we recommend that you consult Core Java Foundation Classes by Kim

Topley [Prentice-Hall 1998] or Graphic Java 2 by David M. Geary [Prentice-Hall 1999] if you
want to achieve an unusual effect.

Before going any further, let's settle on some terminology (see Figure 6-6). A tree is composed
of nodes. Every node is either a leaf, or it has child nodes. Every node, with the exception of
the root node, has exactly one parent. A tree has exactly one root node. Sometimes you have
a collection of trees, each of which has its own root node. Such a collection is called a forest.

Figure 6-6. Tree terminology

Simple Trees

In our first example program, we simply display a tree with a few nodes (see Figure 6-8). As
with most other Swing components, the JTree component follows the model/view/controller
pattern. You provide a model of the hierarchical data, and the component displays it for you.
To construct a JTree, you supply the tree model in the constructor:

Figure 6-8. A simple tree

TreeModel model = . . .;
JTree tree = new JTree(model);

NOTE

How do you obtain a tree model? You can construct your own model by creating a class that
implements the TreeModel interface. You will see later in this chapter how to do that. For
now, we'll stick with the DefaultTreeModel that the Swing library supplies.

To construct a default tree model, you must supply a root node.

TreeNode root = . . .;
DefaultTreeModel model = new DefaultTreeModel(root);

TreeNode is another interface. You populate the default tree model with objects of any class
that implements the interface. For now, we will use the concrete node class that Swing
supplies, namely DefaultMutableTreeNode. This class implements the
MutableTreeNode interface, a subinterface of TreeNode (see Figure 6-7).

Figure 6-7. Tree classes

There are also constructors that construct trees out of a collection of elements:

JTree(Object[] nodes)
JTree(Vector nodes)
JTree(Hashtable nodes) // the values become the nodes

These constructors are not very useful. They merely build a forest of trees, each
with a single node. The third constructor seems particularly useless since the
nodes appear in the essentially random order given by the hash codes of the
keys.

A default mutable tree node holds an object, the user object. The tree renders the user objects
for all nodes. Unless you specify a renderer, the tree simply displays the string that is the result
of the toString method.

In our first example, we use strings as user objects. In practice, you would usually populate a
tree with more expressive user objects. For example, when displaying a directory tree, it
makes sense to use File objects for the nodes.

You can specify the user object in the constructor, or you can set it later with the
setUserObject method.

DefaultMutableTreeNode node
 = new DefaultMutableTreeNode("Texas");
node.setUserObject("California");

Next, you establish the parent/child relationships between the nodes. Start with the root node,
and use the add method to add the children:

DefaultMutableTreeNode root
 = new DefaultMutableTreeNode("World");
DefaultMutableTreeNode country
 = new DefaultMutableTreeNode("USA");
root.add(country);
DefaultMutableTreeNode state
 = new DefaultMutableTreeNode("California");
country.add(state);

Figure 6-8 illustrates how the tree will look.

Link up all nodes in this fashion. Then, construct a DefaultTreeModel with the root node.
Finally, construct a JTree with the tree model.

DefaultTreeModel treeModel = new DefaultTreeModel(root);
JTree tree = new JTree(treeModel);

Or, as a shortcut, you can simply pass the root node to the JTree constructor. Then the tree
automatically constructs a default tree model:

JTree tree = new JTree(root);

Example 6-4 contains the complete code.

Example 6-4 SimpleTree.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import javax.swing.*;
 4. import javax.swing.tree.*;
 5.
 6. /**
 7. This program shows a simple tree.
 8. */
 9. public class SimpleTree
10. {
11. public static void main(String[] args)
12. {
13. JFrame frame = new SimpleTreeFrame();
14. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE)
15. frame.show();
16. }
17. }
18.
19. /**
20. This frame contains a simple tree that displays a
21. manually constructed tree model.
22. */
23. class SimpleTreeFrame extends JFrame
24. {
25. public SimpleTreeFrame()
26. {
27. setTitle("SimpleTree");
28. setSize(WIDTH, HEIGHT);

29.
30. // set up tree model data
31.
32. DefaultMutableTreeNode root
33. = new DefaultMutableTreeNode("World");
34. DefaultMutableTreeNode country
35. = new DefaultMutableTreeNode("USA");
36. root.add(country);
37. DefaultMutableTreeNode state
38. = new DefaultMutableTreeNode("California");
39. country.add(state);
40. DefaultMutableTreeNode city
41. = new DefaultMutableTreeNode("San Jose");
42. state.add(city);
43. city = new DefaultMutableTreeNode("Cupertino");
44. state.add(city);
45. state = new DefaultMutableTreeNode("Michigan");
46. country.add(state);
47. city = new DefaultMutableTreeNode("Ann Arbor");
48. state.add(city);
49. country = new DefaultMutableTreeNode("Germany");
50. root.add(country);
51. state = new DefaultMutableTreeNode("Schleswig-Holste
52. country.add(state);
53. city = new DefaultMutableTreeNode("Kiel");
54. state.add(city);
55.
56. // construct tree and put it in a scroll pane
57.
58. JTree tree = new JTree(root);
59. Container contentPane = getContentPane();
60. contentPane.add(new JScrollPane(tree));
61. }
62.
63. private static final int WIDTH = 300;
64. private static final int HEIGHT = 200;
65. }

When you run the program, the tree first looks as in Figure 6-9. Only the root node and its
children are visible. Click on the circle icons (the handles) to open up the subtrees. The line
sticking out from the handle icon points to the right when the subtree is collapsed, and it points
down when the subtree is expanded (see Figure 6-10). We don't know what the designers of
the Metal look and feel had in mind, but we think of the icon as a door handle. You push down
on the handle to open the subtree.

Figure 6-9. The initial tree display

Figure 6-10. Collapsed and expanded subtrees

NOTE

Of course, the display of the tree depends on the selected look and feel.
We just described the Java look and feel (a.k.a. "Metal"). In the Windows
and Motif look and feel, the handles have the more familiar look—a "+" or "-
" in a box (see Figure 6-11).

Figure 6-11. A tree with the Windows look and feel

Up to SDK 1.3, the Java look and feel does not display the tree outline by default (see Figure
6-12). As of SDK 1.4, the default line style is "angled."

Figure 6-12. A tree with no connecting lines

In SDK 1.4, use the following magic incantation to turn off the lines joining parents and
children:

tree.putClientProperty("JTree.lineStyle", "None");

Conversely, to make sure that the angled lines are shown, use

tree.putClientProperty("JTree.lineStyle", "Angled");

There is also another line style, "Horizontal", that is shown in Figure 6-13. The tree is
displayed with horizontal lines separating only the children of the root. We aren't quite sure
what it is good for.

Figure 6-13. A tree with the horizontal line style

By default, there is no handle for collapsing the root of the tree. If you like, you can add one
with the call

tree.setShowsRootHandles(true);

Figure 6-14 shows the result. Now you can collapse the entire tree into the root node.

Figure 6-14. A tree with a root handle

Conversely, you can hide the root altogether. You do that to display a forest, a set of trees,
each of which has its own root. You still must join all trees in the forest to a common root.
Then, you hide the root with the instruction

tree.setRootVisible(false);

Look at Figure 6-15. There appear to be two roots, labeled "USA" and "Germany." The actual
root that joins the two is made invisible.

Figure 6-15. A forest

Let's turn from the root to the leaves of the tree. Note that the leaves have a different icon than
the other nodes (see Figure 6-16).

Figure 6-16. Leaf icons

When displaying the tree, each node is drawn with an icon. There are actually three kinds of
icons: a leaf icon, an opened non-leaf icon, and a closed non-leaf icon. For simplicity, we'll
refer to the last two as folder icons.

The node renderer needs to know which icon to use for each node. By default, the decision
process works like this: If the isLeaf method of a node returns true, then the leaf icon is
used. Otherwise, a folder icon is used.

The isLeaf method of the DefaultMutableTreeNode class returns true if the node
has no children. Thus, nodes with children get folder icons, and nodes without children get leaf
icons.

Sometimes, that behavior is not appropriate. Suppose we added a node "Montana" to our
sample tree, but we're at a loss as to what cities to add. We would not want the state node to
get a leaf icon since conceptually only the cities are leaves.

The JTree class has no idea which nodes should be leaves. It asks the tree model. If a
childless node isn't automatically a conceptual leaf, you can ask the tree model to use a
different criterion for leafiness, namely to query the "allows children" node property.

For those nodes that should not have children, call

node.setAllowsChildren(false);

Then, tell the tree model to ask the value of the "allows children" property to determine
whether a node should be displayed with a leaf icon. You use the
setAsksAllowsChildren method of the DefaultTreeModel class to set this
behavior:

model.setAsksAllowsChildren(true);

With this decision criterion, nodes that allow children get folder icons, and nodes that don't
allow children get leaf icons.

Alternatively, if you construct the tree by supplying the root node, supply the setting for the
"asks allows children" property in the constructor.

JTree tree = new JTree(root, true);
 // nodes that don't allow children get leaf icons

javax.swing.JTree

JTree(TreeModel model)

constructs a tree from a tree model.

JTree(TreeNode root)

JTree(TreeNode root, boolean asksAllowChildren)

construct a tree with a default tree model that displays the root and its children.

void setShowsRootHandles(boolean b)

If b is true, then the root node has a handle for collapsing or expanding its children.

void setRootVisible(boolean b)

If b is true, then the root node is displayed. Otherwise, it is hidden.

javax.swing.tree.TreeNode

boolean isLeaf()

returns true if this node is conceptually a leaf.

boolean getAllowsChildren()

gra

Parameters: root The root node
 asksAllowsChildren true to use the "allows children" node

property for determining whether a node is a
leaf

gra

returns true if this node can have child nodes.

javax.swing.tree.MutableTreeNode

void setUserObject(Object userObject)

sets the "user object" that the tree node uses for rendering.

javax.swing.tree.TreeModel

boolean isLeaf(Object node)

returns true if node should be displayed as a leaf node.

javax.swing.tree.DefaultTreeModel

void setAsksAllowsChildren(boolean b)

If b is true, then nodes are displayed as leaves when their getAllowsChildren
method returns false. Otherwise, they are displayed as leaves when their isLeaf
method returns true.

javax.swing.tree.DefaultMutableTreeNode

DefaultMutableTreeNode(Object userObject)

constructs a mutable tree node with the given user object.

void add(MutableTreeNode child)

gra

gra

gra

gra

adds a node as the last child of this node.

void setAllowsChildren(boolean b)

If b is true, then children can be added to this node.

javax.swing.JComponent

void putClientProperty(Object key, Object value)

adds a key/value pair to a small table that each component manages. This is an "escape
hatch" mechanism that some Swing components use for storing look-and-feel specific
properties.

Editing trees and tree paths

In the next example program, you will see how to edit a tree. Figure 6-17 shows the user
interface. If you click on the "Add Sibling" or "Add Child" button, the program adds a new node
(with title New) to the tree. If you click on the "Delete" button, the program deletes the currently
selected node.

Figure 6-17. Editing a tree

To implement this behavior, you need to find out which tree node is currently selected. The
JTree class has a surprising way of identifying nodes in a tree. It does not deal with tree
nodes, but with paths of objects, called tree paths. A tree path starts at the root and consists of
a sequence of child nodes—see Figure 6-18.

Figure 6-18. A tree path

gra

You may wonder why the JTree class needs the whole path. Couldn't it just get a
TreeNode and keep calling the getParent method? In fact, the JTree class knows
nothing about the TreeNode interface. That interface is never used by the TreeModel
interface; it is only used by the DefaultTreeModel implementation. You can have other
tree models in which the nodes do not implement the TreeNode interface at all. If you use a
tree model that manages other types of objects, then those objects may not have
getParent and getChild methods. They would of course need to have some other
connection to each other. It is the job of the tree model to link nodes together. The JTree
class itself has no clue about the nature of their linkage. For that reason, the JTree class
always needs to work with complete paths.

The TreePath class manages a sequence of Object (not TreeNode!) references. A
number of JTree methods return TreePath objects. When you have a tree path, you
usually just need to know the terminal node, which you get with the
getLastPathComponent method. For example, to find out the currently selected node in
a tree, you use the getSelectionPath method of the JTree class. You get a
TreePath object back, from which you can retrieve the actual node.

TreePath selectionPath = tree.getSelectionPath();
DefaultMutableTreeNode selectedNode = (DefaultMutableTreeNode)
 selectionPath.getLastPathComponent();

Actually, because this particular query is so common, there is a convenience method that
gives the selected node immediately.

DefaultMutableTreeNode selectedNode = (DefaultMutableTreeNode)
 tree.getLastSelectedPathComponent();

This method is not called getSelectedNode because the tree does not know that it
contains nodes—its tree model only deals with paths of objects.

NOTE

Tree paths are one of two ways that the JTree class uses to describe
nodes. There are also quite a few JTree methods that take or return an

Once you have the selected node, you can edit it. However, do not simply add children to a
tree node:

selectedNode.add(newNode); // NO!

If you change the structure of the nodes, you change the model but the associated view is not
notified. You could send out a notification yourself, but if you use the insertNodeInto
method of the DefaultTreeModel class, the model class takes care of that. For example,
the following call appends a new node as the last child of the selected node and notifies the
tree view.

model.insertNodeInto(newNode, selectedNode,
 selectedNode.getChildCount());

The analogous call removeNodeFromParent removes a node and notifies the view:

model.removeNodeFromParent(selectedNode);

If you keep the node structure in place but you changed the user object, you should call the
following method:

model.nodeChanged(changedNode);

The automatic notification is a major advantage of using the DefaultTreeModel. If you
supply your own tree model, you have to implement it by hand. (See Core Java Foundation
Classes by Kim Topley for details.)

CAUTION

When the view is notified of a change in the node structure, it updates the display but it does
not automatically expand a node to show newly added children. In particular, if a user in our
sample program adds a new child node to a node whose children are currently collapsed, then
the new node is silently added to the collapsed subtree. This gives the user no feedback that
the command was actually carried out. In such a case, you should make a special effort to

integer index, the row position. A row position is simply the row number
(starting with 0) of the node in the tree display. Only visible nodes have row
numbers, and the row number of a node changes if other nodes before it
are expanded, collapsed, or modified. For that reason, you should avoid
row positions. All JTree methods that use rows have equivalents that use
tree paths instead.

The DefaultTreeModel class has a reload method that reloads the
entire model. However, don't call reload simply to update the tree after
making a few changes. When the tree is regenerated, all nodes beyond the
root's children are collapsed again. It is quite disconcerting to your users if
they have to keep expanding the tree after every change.

expand all parent nodes so that the newly added node becomes visible. You use the
makeVisible method of the JTree class for this purpose. The makeVisible method
expects a tree path leading to the node that should become visible.

Thus, you need to construct a tree path from the root to the newly inserted node. To get a tree
path, you first call the getPathToRoot method of the DefaultTreeModel class. It
returns a TreeNode[] array of all nodes from a node to the root node. You pass that array
to a TreePath constructor.

For example, here is how you make the new node visible:

TreeNode[] nodes = model.getPathToRoot(newNode);
TreePath path = new TreePath(nodes);
tree.makeVisible(path);

NOTE

But now suppose your tree is contained inside a scroll pane. After the tree node expansion, the
new node may still not be visible because it falls outside the viewport. To overcome that
problem, call

tree.scrollPathToVisible(path);

instead of calling makeVisible. This call expands all nodes along the path, and it tells the
ambient scroll pane to scroll the node at the end of the path into view (see Figure 6-19).

Figure 6-19. The scroll pane scrolls to display a new node

By default, tree nodes cannot be edited. However, if you call

It is curious that the DefaultTreeModel class feigns almost complete
ignorance about the TreePath class, even though its job is to
communicate with a JTree. The JTree class uses tree paths a lot, and it
never uses arrays of node objects.

tree.setEditable(true);

then the user can edit a node simply by double-clicking, editing the string, and pressing the
ENTER key. Double-clicking invokes the default cell editor, which is implemented by the
DefaultCellEditor class (see Figure 6-20). It is possible to install other cell editors, but
we will defer our discussion of cell editors until the section on tables, where cell editors are
more commonly used.

Figure 6-20. The Default Cell Editor

Example 6-5 shows the complete source code of the tree editing program. Run the program,
add a few nodes, and edit them by double-clicking them. Observe how collapsed nodes
expand to show added children and how the scroll pane keeps added nodes in the viewport.

Example 6-5 TreeEditTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import javax.swing.*;
 4. import javax.swing.tree.*;
 5.
 6. /**
 7. This program demonstrates tree editing.
 8. */
 9. public class TreeEditTest
 10. {
 11. public static void main(String[] args)
 12. {
 13. JFrame frame = new TreeEditFrame();
 14. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 15. frame.show();
 16. }
 17. }
 18.
 19. /**

 20. A frame with a tree and buttons to edit the tree.
 21. */
 22. class TreeEditFrame extends JFrame
 23. {
 24. public TreeEditFrame()
 25. {
 26. setTitle("TreeEditTest");
 27. setSize(WIDTH, HEIGHT);
 28.
 29. // construct tree
 30.
 31. TreeNode root = makeSampleTree();
 32. model = new DefaultTreeModel(root);
 33. tree = new JTree(model);
 34. tree.setEditable(true);
 35.
 36. // add scroll pane with tree to content pane
 37.
 38. JScrollPane scrollPane = new JScrollPane(tree);
 39. getContentPane().add(scrollPane, BorderLayout.CENTE
 40.
 41. makeButtons();
 42. // make button panel
 43.
 44. }
 45.
 46. public TreeNode makeSampleTree()
 47. {
 48. DefaultMutableTreeNode root
 49. = new DefaultMutableTreeNode("World");
 50. DefaultMutableTreeNode country
 51. = new DefaultMutableTreeNode("USA");
 52. root.add(country);
 53. DefaultMutableTreeNode state
 54. = new DefaultMutableTreeNode("California");
 55. country.add(state);
 56. DefaultMutableTreeNode city
 57. = new DefaultMutableTreeNode("San Jose");
 58. state.add(city);
 59. city = new DefaultMutableTreeNode("Cupertino");
 60. state.add(city);
 61. state = new DefaultMutableTreeNode("Michigan");
 62. country.add(state);
 63. city = new DefaultMutableTreeNode("Ann Arbor");

 64. state.add(city);
 65. country = new DefaultMutableTreeNode("Germany");
 66. root.add(country);
 67. state = new DefaultMutableTreeNode("Schleswig-Holst
 68. country.add(state);
 69. city = new DefaultMutableTreeNode("Kiel");
 70. state.add(city);
 71. return root;
 72. }
 73.
 74. /**
 75. Makes the buttons to add a sibling, add a child, an
 76. delete a node.
 77. */
 78. public void makeButtons()
 79. {
 80. JPanel panel = new JPanel();
 81. JButton addSiblingButton = new JButton("Add Sibling
 82. addSiblingButton.addActionListener(new
 83. ActionListener()
 84. {
 85. public void actionPerformed(ActionEvent event
 86. {
 87. DefaultMutableTreeNode selectedNode
 88. = (DefaultMutableTreeNode)
 89. tree.getLastSelectedPathComponent();
 90.
 91. if (selectedNode == null) return;
 92.
 93. DefaultMutableTreeNode parent
 94. = (DefaultMutableTreeNode)
 95. selectedNode.getParent();
 96.
 97. if (parent == null) return;
 98.
 99. DefaultMutableTreeNode newNode
100. = new DefaultMutableTreeNode("New");
101.
102. int selectedIndex = parent.getIndex(select
103. model.insertNodeInto(newNode, parent,
104. selectedIndex + 1);
105.
106. // now display new node
107.

108. TreeNode[] nodes = model.getPathToRoot(new
109. TreePath path = new TreePath(nodes);
110. tree.scrollPathToVisible(path);
111. }
112. });
113. panel.add(addSiblingButton);
114.
115. JButton addChildButton = new JButton("Add Child");
116. addChildButton.addActionListener(new
117. ActionListener()
118. {
119. public void actionPerformed(ActionEvent event
120. {
121. DefaultMutableTreeNode selectedNode
122. = (DefaultMutableTreeNode)
123. tree.getLastSelectedPathComponent();
124.
125. if (selectedNode == null) return;
126.
127. DefaultMutableTreeNode newNode
128. = new DefaultMutableTreeNode("New");
129. model.insertNodeInto(newNode, selectedNode
130. selectedNode.getChildCount());
131.
132. // now display new node
133.
134. TreeNode[] nodes = model.getPathToRoot(new
135. TreePath path = new TreePath(nodes);
136. tree.scrollPathToVisible(path);
137. }
138. });
139. panel.add(addChildButton);
140.
141. JButton deleteButton = new JButton("Delete");
142. deleteButton.addActionListener(new
143. ActionListener()
144. {
145. public void actionPerformed(ActionEvent event
146. {
147. DefaultMutableTreeNode selectedNode
148. = (DefaultMutableTreeNode)
149. tree.getLastSelectedPathComponent();
150.
151. if (selectedNode != null &&

152. selectedNode.getParent() != null)
153. model.removeNodeFromParent(selectedNode
154. }
155. });
156. panel.add(deleteButton);
157. getContentPane().add(panel, BorderLayout.SOUTH);
158. }
159.
160. private DefaultTreeModel model;
161. private JTree tree;
162. private static final int WIDTH = 400;
163. private static final int HEIGHT = 200;
164. }

javax.swing.JTree

TreePath getSelectionPath()

gets the path to the currently selected node (or the path to the first selected node if
multiple nodes are selected). Returns null if no node is selected.

Object getLastSelectedPathComponent()

gets the node object that represents the currently selected node (or the first node if
multiple nodes are selected). Returns null if no node is selected.

void makeVisible(TreePath path)

expands all nodes along the path.

void scrollPathToVisible(TreePath path)

expands all nodes along the path and, if the tree is contained in a scroll pane, scrolls to
ensure that the last node on the path is visible.

javax.swing.tree.TreePath

Object getLastPathComponent()

gra

gra

gets the last object on this path, i.e., the node object that the path represents.

javax.swing.tree.TreeNode

TreeNode getParent()

returns the parent node of this node.

TreeNode getChildAt(int index)

looks up the child node at the given index. The index must be between 0 and
getChildCount() - 1.

int getChildCount()

returns the number of children of this node.

Enumeration children()

returns an enumeration object that iterates through all children of this node.

javax.swing.DefaultTreeModel

void insertNodeInto(MutableTreeNode newChild,
MutableTreeNode parent, int index)

inserts newChild as a new child node of parent at the given index.

void removeNodeFromParent(MutableTreeNode node)

removes node from this model.

void nodeChanged(TreeNode node)

notifies the tree model listeners that node has changed.

void nodesChanged(TreeNode parent, int[]
changedChildIndexes)

gra

gra

notifies the tree model listeners that all child nodes of parent with the given indexes
have changed.

void reload()

reloads all nodes into the model. This is a drastic operation that you should only use if
the nodes have changed completely due to some outside influence.

Node Enumeration

Sometimes you need to find a node in a tree by starting at the root and visiting all children until
you have found a match. The DefaultMutableTreeNode class has several convenience
methods for iterating through nodes.

The breadthFirstEnumeration and depthFirstEnumeration methods return
enumeration objects whose nextElement method visits all children of the current node,
using either a breadth-first or depth-first traversal. Figure 6-21 shows the traversals for a
sample tree—the node labels indicate the order in which the nodes are traversed.

Figure 6-21. Tree traversal orders

Breadth-first enumeration is the easiest to visualize. The tree is traversed in layers. The root is
visited first, followed by all of its children, then followed by the grandchildren, and so on.

To visualize depth-first enumeration, imagine a rat trapped in a tree-shaped maze. It rushes
along the first path until it comes to a leaf. Then, it backtracks and turns around to the next
path, and so on.

Computer science types also call this postorder traversal, because the search process first
visits the children before visiting the parents. The postOrderTraversal method is a
synonym for depthFirstTraversal. For completeness, there is also a
preOrderTraversal, a depth-first search that enumerates parents before the children.

Here is the typical usage pattern:

Enumeration breadthFirst = node.breadthFirstEnumeration();
while (breadthFirst.hasMoreElements())

 do something with breadthFirst.nextElement();

Finally, there is a related method pathFromAncestorEnumeration that finds a path
from an ancestor to a given node and then enumerates the nodes along that path. That's no
big deal—it just keeps calling getParent until the ancestor is found and then presents the
path in reverse order.

In our next example program, we put node enumeration to work. The program displays
inheritance trees of classes. Type the name of a class into the text field on the bottom of the
frame. The class and all of its superclasses are added to the tree (see Figure 6-22).

Figure 6-22. An inheritance tree

In this example, we take advantage of the fact that the user objects of the tree nodes can be
objects of any type. Since our nodes describe classes, we will store Class objects in the
nodes.

Of course, we don't want to add the same class object twice, so we need to check whether a
class already exists in the tree. The following method finds the node with a given user object if
it exists in the tree.

 public DefaultMutableTreeNode findUserObject(Object obj)
 {
 Enumeration e = root.breadthFirstEnumeration();
 while (e.hasMoreElements())
 {
 DefaultMutableTreeNode node
 = (DefaultMutableTreeNode)e.nextElement();
 if (node.getUserObject().equals(obj))
 return node;

 }
 return null;
 }

Rendering Nodes

In your applications, you will often need to change the way in which a tree component draws
the nodes. The most common change is, of course, to choose different icons for nodes and
leaves. Other changes might involve changing the font of the node labels or drawing images at
the nodes. All these changes are made possible by installing a new tree cell renderer into the
tree. By default, the JTree class uses DefaultTreeCellRenderer objects to draw
each node. The DefaultTreeCellRenderer class extends the JLabel class. The
label contains the node icon and the node label.

NOTE

You can customize the display in three ways.

1. You can change the icons, font, and background color used by a
DefaultTreeCellRenderer. These settings are used for all nodes in the tree.

2. You can install a renderer that extends the DefaultTreeCellRenderer class and
vary the icons, fonts, and background color for each node.

3. You can install a renderer that implements the TreeCellRenderer interface, to draw
a custom image for each node.

Let us look at these possibilities one by one. The easiest customization is to construct a
DefaultTreeCellRenderer object, change the icons, and install it into the tree:

DefaultTreeCellRenderer renderer
 = new DefaultTreeCellRenderer();
renderer.setLeafIcon(new ImageIcon("blue-ball.gif"));
 // used for leaf nodes
renderer.setClosedIcon(new ImageIcon("red-ball.gif"));
 // used for collapsed nodes
renderer.setOpenIcon(new ImageIcon("yellow-ball.gif"));
 // used for expanded nodes
tree.setCellRenderer(renderer);

You can see the effect in Figure 6-22. We just use the "ball" icons as placeholders—
presumably your user interface designer would supply you with appropriate icons to use for

The cell renderer does not draw the "handles" for expanding and collapsing
subtrees. The handles are part of the look and feel, and it is recommended
that you not change them.

your applications.

We don't recommend that you change the font or background color for an entire tree—that is
really the job of the look and feel.

However, it can be useful to change the font for individual nodes in a tree to highlight some of
them. If you look carefully at Figure 6-22, you will notice that the abstract classes are set in
italics.

To change the appearance of individual nodes, you install a tree cell renderer. Tree cell
renderers are very similar to the list cell renderers we discussed in Chapter 9 of Volume 1. The
TreeCellRenderer interface has a single method

Component getTreeCellRendererComponent(JTree tree,
 Object value, boolean selected, boolean expanded,
 boolean leaf, int row, boolean hasFocus)

This method is called for each node. It returns a component whose paint method renders
the node in the tree display. The paint method is invoked with an appropriate Graphics
object, with coordinates and clip rectangle set so that the drawing appears at the correct
location.

NOTE

The getTreeCellRendererComponent method of the
DefaultTreeCellRenderer class returns this—in other words, a label. (Recall that
the DefaultTreeCellRenderer class extends the JLabel class.) To customize the
component, extend the DefaultTreeCellRenderer class. Override the
getTreeCellRendererComponent method as follows: call the superclass method, so
that it can prepare the label data. Customize the label properties, and finally return this.

class MyTreeCellRenderer extends DefaultTreeCellRenderer
{
 public Component getTreeCellRendererComponent(JTree tree,
 Object value, boolean selected, boolean expanded,
 boolean leaf, int row, boolean hasFocus)
 {
 super.getTreeCellRendererComponent(tree, value,
 selected, expanded, leaf, row, hasFocus);

You may wonder why you don't simply get to place a paint method into
the class that implements the tree cell renderer interface. There is a very
good reason. It is usually easier for you to tweak existing components than
to program the actual drawing code. For example, the default tree cell
renderer simply extends JLabel and lets the label worry about the correct
spacing between the icon and the label text.

 DefaultMutableTreeNode node
 = (DefaultMutableTreeNode)value;
 look at node.getUserObject();
 Font font = appropriate font;
 setFont(font);
 return this;
 }
};

CAUTION

CAUTION

We will not show an example for a tree cell renderer that draws arbitrary graphics. You can
look at the list cell renderer at the beginning of this chapter—the technique is entirely
analogous.

Let's put tree cell renderers to work. Example 6-6 shows the complete source code for the
class tree program. The program displays inheritance hierarchies, and it customizes the
display to show abstract classes in italics. You can type the name of any class into the text
field at the bottom of the frame. Press the ENTER key or click the "Add" button to add the
class and its superclasses to the tree. You must enter the full package name, such as
java.util.ArrayList.

This program is a bit tricky because it uses reflection to construct the class tree. This work is
contained inside the addClass method. (The details are not that important. We use the class
tree in this example because inheritance trees yield a nice supply of trees without laborious
coding. If you display trees in your own applications, you will have your own source of
hierarchical data.) The method uses the breadth-first search algorithm to find whether the
current class is already in the tree by calling the findUserObject method that we
implemented in the preceding section. If the class is not already in the tree, we add the
superclass to the tree, then make the new class node a child and make that node visible.

The value parameter of the getTreeCellRendererComponent
method is the node object, not the user object! Recall that the user object is
a feature of the DefaultMutableTreeNode, and that a JTree can
contain nodes of an arbitrary type. If your tree uses
DefaultMutableTreeNode nodes, then you must retrieve the user
object in a second step, as we did in the preceding code sample.

The DefaultTreeCellRenderer uses the same label object for all
nodes, only changing the label text for each node. If you change the font for
a particular node, you must set it back to its default value when the method
is called again. Otherwise, all subsequent nodes will be drawn in the
changed font! Look at the code in Example 6-6 to see how to restore the
font to the default.

The ClassNameTreeCellRenderer sets the class name in either the normal or italic
font, depending on the ABSTRACT modifier of the Class object. We don't want to set a
particular font since we don't want to change whatever font the look and feel normally uses for
labels. For that reason, we use the font from the label and derive an italic font from it. Recall
that there is only a single shared JLabel object that is returned by all calls. We need to hang
on to the original font and restore it in the next call to the
getTreeCellRendererComponent method.

Finally, note how we change the node icons in the ClassTreeFrame constructor.

Example 6-6 ClassTree.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.lang.reflect.*;
 4. import java.util.*;
 5. import javax.swing.*;
 6. import javax.swing.event.*;
 7. import javax.swing.tree.*;
 8.
 9. /**
 10. This program demonstrates cell rendering by showing
 11. a tree of classes and their superclasses.
 12. */
 13. public class ClassTree
 14. {
 15. public static void main(String[] args)
 16. {
 17. JFrame frame = new ClassTreeFrame();
 18. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 19. frame.show();
 20. }
 21. }
 22.
 23. /**
 24. This frame displays the class tree and a text field an
 25. add button to add more classes into the tree.
 26. *
 27. class ClassTreeFrame extends JFrame
 28. {
 29. public ClassTreeFrame()
 30. {
 31. setTitle("ClassTree");
 32. setSize(WIDTH, HEIGHT);
 33.

 34. // the root of the class tree is Object
 35. root = new DefaultMutableTreeNode(java.lang.Object.
 36. model = new DefaultTreeModel(root);
 37. tree = new JTree(model);
 38.
 39. // add this class to populate the tree with some da
 40. addClass(getClass());
 41.
 42. // set up node icons
 43. ClassNameTreeCellRenderer renderer
 44. = new ClassNameTreeCellRenderer();
 45. renderer.setClosedIcon(new ImageIcon("red-ball.gif"
 46. renderer.setOpenIcon(new ImageIcon("yellow-ball.gif
 47. renderer.setLeafIcon(new ImageIcon("blue-ball.gif")
 48. tree.setCellRenderer(renderer);
 49.
 50. getContentPane().add(new JScrollPane(tree),
 51. BorderLayout.CENTER);
 52.
 53. addTextField();
 54. }
 55.
 56. /**
 57. Add the text field and "Add" button to add a new cl
 58. */
 59. public void addTextField()
 60. {
 61. JPanel panel = new JPanel();
 62.
 63. ActionListener addListener = new
 64. ActionListener()
 65. {
 66. public void actionPerformed(ActionEvent event
 67. {
 68. // add the class whose name is in the text
 69. try
 70. {
 71. String text = textField.getText();
 72. addClass(Class.forName(text));
 73. // clear text field to indicate success
 74. textField.setText("");
 75. }
 76. catch (ClassNotFoundException e)
 77. {

 78. JOptionPane.showMessageDialog(null,
 79. "Class not found");
 80. }
 81. }
 82. };
 83.
 84. // new class names are typed into this text field
 85. textField = new JTextField(20);
 86. textField.addActionListener(addListener);
 87. panel.add(textField);
 88.
 89. JButton addButton = new JButton("Add");
 90. addButton.addActionListener(addListener);
 91. panel.add(addButton);
 92.
 93. getContentPane().add(panel, BorderLayout.SOUTH);
 94. }
 95.
 96. /**
 97. Finds an object in the tree.
 98. @param obj the object to find
 99. @return the node containing the object or null
100. if the object is not present in the tree
101. */
102. public DefaultMutableTreeNode findUserObject(Object ob
103. {
104. // find the node containing a user object
105. Enumeration e = root.breadthFirstEnumeration();
106. while (e.hasMoreElements())
107. {
108. DefaultMutableTreeNode node
109. = (DefaultMutableTreeNode)e.nextElement();
110. if (node.getUserObject().equals(obj))
111. return node;
112. }
113. return null;
114. }
115.
116. /**
117. Adds a new class and any parent classes that aren't
118. yet part of the tree
119. @param c the class to add
120. @return the newly added node.
121. */

122. public DefaultMutableTreeNode addClass(Class c)
123. {
124. // add a new class to the tree
125.
126. // skip non-class types
127. if (c.isInterface() || c.isPrimitive()) return null
128.
129. // if the class is already in the tree, return its
130. DefaultMutableTreeNode node = findUserObject(c);
131. if (node != null) return node;
132.
133. // class isn't present--first add class parent recu
134.
135. Class s = c.getSuperclass();
136.
137. DefaultMutableTreeNode parent;
138. if (s == null)
139. parent = root;
140. else
141. parent = addClass(s);
142.
143. // add the class as a child to the parent
144. DefaultMutableTreeNode newNode
145. = new DefaultMutableTreeNode(c);
146. model.insertNodeInto(newNode, parent,
147. parent.getChildCount());
148.
149. // make node visible
150. TreePath path = new TreePath(model.getPathToRoot(ne
151. tree.makeVisible(path);
152.
153. return newNode;
154. }
155.
156. private DefaultMutableTreeNode root;
157. private DefaultTreeModel model;
158. private JTree tree;
159. private JTextField textField;
160. private static final int WIDTH = 400;
161. private static final int HEIGHT = 300;
162. }
163.
164. /**
165. This class renders a class name either in plain or ita

166. Abstract classes are italic.
167. */
168. class ClassNameTreeCellRenderer extends DefaultTreeCellRe
169. {
170. public Component getTreeCellRendererComponent(JTree tr
171. Object value, boolean selected, boolean expanded,
172. boolean leaf, int row, boolean hasFocus)
173. {
174. super.getTreeCellRendererComponent(tree, value,
175. selected, expanded, leaf, row, hasFocus);
176. // get the user object
177. DefaultMutableTreeNode node
178. = (DefaultMutableTreeNode)value;
179. Class c = (Class)node.getUserObject();
180.
181. // the first time, derive italic font from plain fo
182. if (plainFont == null)
183. {
184. plainFont = getFont();
185. /*
186. the tree cell renderer is sometimes called wi
187. label that has a null font
188. */
189. if (plainFont != null)
190. italicFont = plainFont.deriveFont(Font.ITALIC
191. }
192.
193. // set font to italic if the class is abstract
194. if ((c.getModifiers() & Modifier.ABSTRACT) == 0)
195. setFont(plainFont);
196. else
197. setFont(italicFont);
198. return this;
199. }
200.
201. private Font plainFont = null;
202. private Font italicFont = null;
203. }

javax.swing.tree.DefaultMutableTreeNode

gra

Enumeration breadthFirstEnumeration()

Enumeration depthFirstEnumeration()

Enumeration preOrderEnumeration()

Enumeration postOrderEnumeration()

return enumeration objects for visiting all nodes of the tree model in a particular order. In
breadth-first traversal, children that are closer to the root are visited before those that are
farther away. In depth-first traversal, all children of a node are completely enumerated
before its siblings are visited. The postOrderEnumeration method is a synonym
for depthFirstEnumeration. The preorder traversal is identical to the postorder
traversal except that parents are enumerated before their children.

javax.swing.tree.TreeCellRenderer

Component getTreeCellRendererComponent(JTree tree, Object
value, boolean selected, boolean expanded, boolean leaf,
int row, boolean hasFocus)

returns a component whose paint method is invoked to render a tree cell.

javax.swing.tree.DefaultTreeCellRenderer

void setLeafIcon(Icon icon)

gra

Parameters: tree the tree containing the node to be rendered
 value the node to be rendered
 selected true if the node is currently selected
 expanded true if the children of the node are visible
 leaf true if the node needs to be displayed as a tree
 row the display row containing the node
 hasFocus true if the node currently has input focus

gra

void setOpenIcon(Icon icon)

void setClosedIcon(Icon icon)

set the icon to show for a leaf node, an expanded node, and a collapsed node.

Listening to Tree Events

Most commonly, a tree component is paired with some other component. When the user
selects tree nodes, some information shows up in another window. Look at Figure 6-23 for an
example. When the user selects a class, the instance and static variables of that class are
displayed in the text area to the right.

Figure 6-23. A class browser

To obtain this behavior, you install a tree selection listener. The listener must implement the
TreeSelectionListener interface, an interface with a single method

void valueChanged(TreeSelectionEvent event)

That method is called whenever the user selects or deselects tree nodes.

You add the listener to the tree in the normal way:

tree.addTreeSelectionListener(listener);

You can specify whether the user is allowed to select a single node, a contiguous range of
nodes, or an arbitrary, potentially discontiguous, set of nodes. The JTree class uses a
TreeSelectionModel to manage node selection. You need to retrieve the model to set
the selection state to one of SINGLE_TREE_SELECTION,
CONTIGUOUS_TREE_SELECTION, or DISCONTIGUOUS_TREE_SELECTION.

(Discontiguous selection mode is the default.) For example, in our class browser, we only want
to allow selection of a single class:

int mode = TreeSelectionModel.SINGLE_TREE_SELECTION;
tree.getSelectionModel().setSelectionMode(mode);

Apart from setting the selection mode, you need not worry about the tree selection model.

NOTE

To find out the current selection, you query the tree with the getSelectionPaths
method:

TreePath[] selectedPaths = tree.getSelectionPaths();

If you restricted the user to a single selection, you can use the convenience method
getSelectionPath, which returns the first selected path, or null if no path was
selected.

CAUTION

Example 6-7 puts tree selection to work. This program builds upon Example 6-6; however, to
keep the program short, we did not use a custom tree cell renderer. In the frame constructor,
we restrict the user to single item selection and add a tree selection listener. When the
valueChanged method is called, we ignore its event parameter and simply ask the tree for
the current selection path. As always, we need to get the last node of the path and look up its
user object. We then call the getFieldDescription method, which uses reflection to
assemble a string with all fields of the selected class. Finally, that string is displayed in the text
area.

Example 6-7 ClassBrowserTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.lang.reflect.*;
 4. import java.util.*;
 5. import javax.swing.*;

How the user selects multiple items depends on the look and feel. In the
Metal look and feel, hold down the ctrl key while clicking on an item to add
the item to the selection, or to remove it if it was currently selected. Hold
down the SHIFT key while clicking on an item to select a range of items,
extending from the previously selected item to the new item.

The TreeSelectionEvent class has a getPaths method that
returns an array of TreePath objects, but that array describes selection
changes, not the current selection.

 6. import javax.swing.event.*;
 7. import javax.swing.tree.*;
 8.
 9. /**
 10. This program demonstrates tree selection events.
 11. */
 12. public class ClassBrowserTest
 13. {
 14. public static void main(String[] args)
 15. {
 16. JFrame frame = new ClassBrowserTestFrame();
 17. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 18. frame.show();
 19. }
 20. }
 21.
 22. /**
 23. A frame with a class tree, a text area to show the pro
 24. of the selected class, and a text field to add new cla
 25. */
 26. class ClassBrowserTestFrame extends JFrame
 27. {
 28. public ClassBrowserTestFrame()
 29. {
 30. setTitle("ClassBrowserTest");
 31. setSize(WIDTH, HEIGHT);
 32.
 33. // the root of the class tree is Object
 34. root = new DefaultMutableTreeNode(java.lang.Object.
 35. model = new DefaultTreeModel(root);
 36. tree = new JTree(model);
 37.
 38. // add this class to populate the tree with some da
 39. addClass(getClass());
 40.
 41. // set up selection mode
 42. tree.addTreeSelectionListener(new
 43. TreeSelectionListener()
 44. {
 45. public void valueChanged(TreeSelectionEvent e
 46. {
 47. // the user selected a different node
 48. // --update description
 49. TreePath path = tree.getSelectionPath();

 50. if (path == null) return;
 51. DefaultMutableTreeNode selectedNode
 52. = (DefaultMutableTreeNode)
 53. path.getLastPathComponent();
 54. Class c = (Class)selectedNode.getUserObjec
 55. String description = getFieldDescription(c
 56. textArea.setText(description);
 57. }
 58. });
 59. int mode = TreeSelectionModel.SINGLE_TREE_SELECTION
 60. tree.getSelectionModel().setSelectionMode(mode);
 61.
 62. // this text area holds the class description
 63. textArea = new JTextArea();
 64.
 65. // add tree and text area to the content pane
 66. JPanel panel = new JPanel();
 67. panel.setLayout(new GridLayout(1, 2));
 68. panel.add(new JScrollPane(tree));
 69. panel.add(new JScrollPane(textArea));
 70.
 71. getContentPane().add(panel, BorderLayout.CENTER);
 72.
 73. addTextField();
 74. }
 75.
 76. /**
 77. Add the text field and "Add" button to add a new cl
 78. */
 79. public void addTextField()
 80. {
 81. JPanel panel = new JPanel();
 82.
 83. ActionListener addListener = new
 84. ActionListener()
 85. {
 86. public void actionPerformed(ActionEvent event
 87. {
 88. // add the class whose name is in the text
 89. try
 90. {
 91. String text = textField.getText();
 92. addClass(Class.forName(text));
 93. // clear text field to indicate success

 94. textField.setText("");
 95. }
 96. catch (ClassNotFoundException e)
 97. {
 98. JOptionPane.showMessageDialog(null,
 99. "Class not found");
100. }
101. }
102. };
103.
104. // new class names are typed into this text field
105. textField = new JTextField(20);
106. textField.addActionListener(addListener);
107. panel.add(textField);
108.
109. JButton addButton = new JButton("Add");
110. addButton.addActionListener(addListener);
111. panel.add(addButton);
112.
113. getContentPane().add(panel, BorderLayout.SOUTH);
114. }
115.
116. /**
117. Finds an object in the tree.
118. @param obj the object to find
119. @return the node containing the object or null
120. if the object is not present in the tree
121. */
122. public DefaultMutableTreeNode findUserObject(Object ob
123. {
124. // find the node containing a user object
125. Enumeration e = root.breadthFirstEnumeration();
126. while (e.hasMoreElements())
127. {
128. DefaultMutableTreeNode node
129. = (DefaultMutableTreeNode)e.nextElement();
130. if (node.getUserObject().equals(obj))
131. return node;
132. }
133. return null;
134. }
135.
136. /**
137. Adds a new class and any parent classes that aren't

138. yet part of the tree
139. @param c the class to add
140. @return the newly added node.
141. */
142. public DefaultMutableTreeNode addClass(Class c)
143. {
144. // add a new class to the tree
145.
146. // skip non-class types
147. if (c.isInterface() || c.isPrimitive()) return null
148.
149. // if the class is already in the tree, return its
150. DefaultMutableTreeNode node = findUserObject(c);
151. if (node != null) return node;
152.
153. // class isn't present--first add class parent recu
154.
155. Class s = c.getSuperclass();
156.
157. DefaultMutableTreeNode parent;
158. if (s == null)
159. parent = root;
160. else
161. parent = addClass(s);
162.
163. // add the class as a child to the parent
164. DefaultMutableTreeNode newNode
165. = new DefaultMutableTreeNode(c);
166. model.insertNodeInto(newNode, parent,
167. parent.getChildCount());
168.
169. // make node visible
170. TreePath path = new TreePath(model.getPathToRoot(ne
171. tree.makeVisible(path);
172.
173. return newNode;
174. }
175.
176. /**
177. Returns a description of the fields of a class.
178. @param the class to be described
179. @return a string containing all field types and nam
180. */
181. public static String getFieldDescription(Class c)

182. {
183. // use reflection to find types and names of fields
184. StringBuffer r = new StringBuffer();
185. Field[] fields = c.getDeclaredFields();
186. for (int i = 0; i < fields.length; i++)
187. {
188. Field f = fields[i];
189. if ((f.getModifiers() & Modifier.STATIC) != 0)
190. r.append("static ");
191. r.append(f.getType().getName());
192. r.append(" ");
193. r.append(f.getName());
194. r.append("\n");
195. }
196. return r.toString();
197. }
198.
199. private DefaultMutableTreeNode root;
200. private DefaultTreeModel model;
201. private JTree tree;
202. private JTextField textField;
203. private JTextArea textArea;
204. private static final int WIDTH = 400;
205. private static final int HEIGHT = 300;
206.}

javax.swing.JTree

TreePath getSelectionPath()

TreePath[] getSelectionPaths()

returns the first selected path, or an array of paths to all selected nodes. If no paths are
selected, both methods return null.

javax.swing.event.TreeSelectionListener

gra

gra

void valueChanged(TreeSelectionEvent event)

is called whenever nodes are selected or deselected.

javax.swing.event.TreeSelectionEvent

TreePath getPath()

TreePath[] getPaths()

get the first path, or all paths, that have changed in this selection event. If you want to
know the current selection, not the selection change, you should call
JTree.getSelectionPaths instead.

Custom Tree Models

In the final example, we implement a program that inspects the contents of a variable, just like
a debugger does (see Figure 6-24).

Figure 6-24. An object inspection tree

Before going further, compile and run the example program! Each node corresponds to an
instance variable. If the variable is an object, expand it to see its instance variables. The
program inspects the contents of the frame window. If you poke around a few of the instance
variables, you should be able to find some familiar classes. You'll also gain some respect for
how complex the Swing user interface components are under the hood.

gra

What's remarkable about the program is that the tree does not use the
DefaultTreeModel. If you already have data that is hierarchically organized, you may not
want to build a duplicate tree and worry about keeping both trees synchronized. That is the
situation in our case—the inspected objects are already linked to each other through the object
references, so there is no need to replicate the linking structure.

The TreeModel interface has only a handful of methods. The first group of methods enables
the JTree to find the tree nodes by first getting the root, then the children. The JTree class
only calls these methods when the user actually expands a node.

Object getRoot()
int getChildCount(Object parent)
Object getChild(Object parent, int index)

This example shows why the TreeModel interface, like the JTree class itself, does not
need an explicit notion of nodes. The root and its children can be any objects. The
TreeModel is responsible for telling the JTree how they are connected.

The next method of the TreeModel interface is the reverse of getChild:

int getIndexOfChild(Object parent, Object child)

Actually, this method can be implemented in terms of the first three—see the code in Example
6-8.

The tree model tells the JTree which nodes should be displayed as leaves:

boolean isLeaf(Object node)

If your code changes the tree model, then the tree needs to be notified so that it can redraw
itself. The tree adds itself as a TreeModelListener to the model. Thus, the model must
support the usual listener management methods:

void addTreeModelListener(TreeModelListener l)
void removeTreeModelListener(TreeModelListener l)

You can see implementations for these methods in Example 6-8.

When the model modifies the tree contents, it calls one of the four methods of the
TreeModelListener interface:

void treeNodesChanged(TreeModelEvent e)
void treeNodesInserted(TreeModelEvent e)
void treeNodesRemoved(TreeModelEvent e)
void treeStructureChanged(TreeModelEvent e)

The TreeModelEvent object describes the location of the change. The details of

assembling a tree model event that describes an insertion or removal event are quite technical.
You only need to worry about firing these events if your tree can actually have nodes added
and removed. In Example 6-8, we show you how to fire one event: replacing the root with a
new object.

TIP

Finally, if the user edits a tree node, your model gets called with the change:

void valueForPathChanged(TreePath path, Object newValue)

If you don't allow editing, this method is never called.

If you don't need to support editing, then it is very easy to construct a tree model. Implement
the three methods

Object getRoot()
int getChildCount(Object parent)
Object getChild(Object parent, int index)

These methods describe the structure of the tree. Supply routine implementations of the other
five methods, as in Example 6-8. Then, you are ready to display your tree.

Now let's turn to the implementation of the example program. Our tree will contain objects of
type Variable.

NOTE

For example, suppose you inspect the variable

Employee joe;

That variable has a type Employee.class, a name "joe", and a value, the value of the
object reference joe. We define a class Variable that describes a variable in a program:

Variable v = new Variable(Employee.class, "joe", joe);

If the type of the variable is a primitive type, you must use an object wrapper for the value.

The Swing programmers evidently got tired enough of event firing that they
provide a convenience class javax.swing.EventListenerList
that collects listeners. See Chapter 8 in Volume 1 for more information on
this class.

Had we used the DefaultTreeModel, our nodes would have been
objects of type DefaultMutableTreeNode with user objects of type
Variable.

new Variable(double.class, "salary", new Double(salary));

If the type of the variable is a class, then the variable has fields. Using reflection, we
enumerate all fields and collect them in an ArrayList. Since the getFields method of
the Class class does not return fields of the superclass, we need to call getFields on all
superclasses as well. You will find the code in the Variable constructor. The getFields
method of our Variable class returns the array of fields. Finally, the toString method of
the Variable class formats the node label. The label always contains the variable type and
name. If the variable is not a class, the label also contains the value.

NOTE

Let's move on to the tree model. The first two methods are very simple.

public Object getRoot()
{
 return root;
}

public int getChildCount(Object parent)
{
 return ((Variable)parent).getFields().size();
}

The getChild method returns a new Variable object that describes a particular field.
The getType and getName method of the Field class yield the field type and name. By
using reflection, you can read the field value as f.get(parentValue). That method can
throw an IllegalAccessException. However, we made all fields accessible in the
Variable constructor, so this won't happen in practice.

Here is the complete code of the getChild method.

public Object getChild(Object parent, int index)
{
 ArrayList fields = ((Variable)parent).getFields();
 Field f = (Field)fields.get(index);
 Object parentValue = ((Variable)parent).getValue();
 try
 {
 return new Variable(f.getType(), f.getName(),
 f.get(parentValue));

If the type is an array, then we do not display the elements of the array.
This would not be difficult to do; we leave it as the proverbial "exercise for
the reader."

 }
 catch(IllegalAccessException e)
 {
 return null;
 }
}

These three methods reveal the structure of the object tree to the JTree component. The
remaining methods are routine—see the source code in Example 6-8.

There is one remarkable fact about this tree model: it actually describes an infinite tree. You
can verify this by following one of the WeakReference objects. Click on the variable named
referent. It leads you right back to the original object. You get an identical subtree, and
you can open its WeakReference object again, ad infinitum. Of course, you cannot store an
infinite set of nodes. The tree model simply generates the nodes on demand, as the user
expands the parents.

This example concludes our discussion on trees. We move on to the table component, another
complex Swing component. Superficially, trees and tables don't seem to have much in
common, but you will find that they both use the same concepts for data models and cell
rendering.

Example 6-8 ObjectInspectorTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.lang.reflect.*;
 4. import java.util.*;
 5. import javax.swing.*;
 6. import javax.swing.event.*;
 7. import javax.swing.tree.*;
 8.
 9. /**
 10. This program demonstrates how to use a custom tree
 11. model. It displays the fields of an object.
 12. */
 13. public class ObjectInspectorTest
 14. {
 15. public static void main(String[] args)
 16. {
 17. JFrame frame = new ObjectInspectorFrame();
 18. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 19. frame.show();
 20. }
 21. }
 22.

 23. /**
 24. This frame holds the object tree.
 25. */
 26. class ObjectInspectorFrame extends JFrame
 27. {
 28. public ObjectInspectorFrame()
 29. {
 30. setTitle("ObjectInspectorTest");
 31. setSize(WIDTH, HEIGHT);
 32.
 33. // we inspect this frame object
 34.
 35. Variable v = new Variable(getClass(), "this", this)
 36. ObjectTreeModel model = new ObjectTreeModel();
 37. model.setRoot(v);
 38.
 39. // construct and show tree
 40.
 41. tree = new JTree(model);
 42. getContentPane().add(new JScrollPane(tree),
 43. BorderLayout.CENTER);
 44. }
 45.
 46. private JTree tree;
 47. private static final int WIDTH = 400;
 48. private static final int HEIGHT = 300;
 49. }
 50.
 51. /**
 52. This tree model describes the tree structure of a Java
 53. object. Children are the objects that are stored in in
 54. variables.
 55. */
 56. class ObjectTreeModel implements TreeModel
 57. {
 58. /**
 59. Constructs an empty tree.
 60. */
 61. public ObjectTreeModel()
 62. {
 63. root = null;
 64. }
 65.
 66. /**

 67. Sets the root to a given variable.
 68. @param v the variable that is being described by th
 69. */
 70. public void setRoot(Variable v)
 71. {
 72. Variable oldRoot = v;
 73. root = v;
 74. fireTreeStructureChanged(oldRoot);
 75. }
 76.
 77. public Object getRoot()
 78. {
 79. return root;
 80. }
 81.
 82. public int getChildCount(Object parent)
 83. {
 84. return ((Variable)parent).getFields().size();
 85. }
 86.
 87. public Object getChild(Object parent, int index)
 88. {
 89. ArrayList fields = ((Variable)parent).getFields();
 90. Field f = (Field)fields.get(index);
 91. Object parentValue = ((Variable)parent).getValue();
 92. try
 93. {
 94. return new Variable(f.getType(), f.getName(),
 95. f.get(parentValue));
 96. }
 97. catch(IllegalAccessException e)
 98. {
 99. return null;
100. }
101. }
102.
103. public int getIndexOfChild(Object parent, Object child
104. {
105. int n = getChildCount(parent);
106. for (int i = 0; i < n; i++)
107. if (getChild(parent, i).equals(child))
108. return i;
109. return -1;
110. }

111.
112. public boolean isLeaf(Object node)
113. {
114. return getChildCount(node) == 0;
115. }
116.
117. public void valueForPathChanged(TreePath path,
118. Object newValue)
119. {}
120.
121. public void addTreeModelListener(TreeModelListener l)
122. {
123. listenerList.add(TreeModelListener.class, l);
124. }
125.
126. public void removeTreeModelListener(TreeModelListener
127. {
128. listenerList.remove(TreeModelListener.class, l);
129. }
130.
131. protected void fireTreeStructureChanged(Object oldRoot
132. {
133. TreeModelEvent event
134. = new TreeModelEvent(this, new Object[] {oldRoot
135. EventListener[] listeners = listenerList.getListene
136. TreeModelListener.class);
137. for (int i = 0; i < listeners.length; i++)
138. ((TreeModelListener)listeners[i]).treeStructureC
139. event);
140. }
141.
142. private Variable root;
143. private EventListenerList listenerList
144. = new EventListenerList();
145. }
146.
147. /**
148. A variable with a type, name, and value.
149. */
150. class Variable
151. {
152. /**
153. Construct a variable
154. @param aType the type

155. @param aName the name
156. @param aValue the value
157. */
158. public Variable(Class aType, String aName, Object aVal
159. {
160. type = aType;
161. name = aName;
162. value = aValue;
163. fields = new ArrayList();
164.
165. /*
166. find all fields if we have a class type
167. except we don't expand strings and null values
168. */
169.
170. if (!type.isPrimitive() && !type.isArray() &&
171. !type.equals(String.class) && value != null)
172. {
173. // get fields from the class and all superclasse
174. for (Class c = value.getClass(); c != null;
175. c = c.getSuperclass())
176. {
177. Field[] f = c.getDeclaredFields();
178. AccessibleObject.setAccessible(f, true);
179.
180. // get all nonstatic fields
181. for (int i = 0; i < f.length; i++)
182. if ((f[i].getModifiers() & Modifier.STATIC
183. fields.add(f[i]);
184. }
185. }
186. }
187.
188. /**
189. Gets the value of this variable.
190. @return the value
191. */
192. public Object getValue()
193. {
194. return value;
195. }
196.
197. /**
198. Gets all nonstatic fields of this variable.

199. @return an array list of variables describing the f
200. */
201. public ArrayList getFields()
202. {
203. return fields;
204. }
205.
206. public String toString()
207. {
208. String r = type + " " + name;
209. if (type.isPrimitive())
210. r += "=" + value;
211. else if (type.equals(String.class))
212. r += "=" + value;
213. else if (value == null)
214. r += "=null";
215. return r;
216. }
217.
218. private Class type;
219. private String name;
220. private Object value;
221. private ArrayList fields;
222. }

javax.swing.tree.TreeModel

Object getRoot()

returns the root node.

int getChildCount(Object parent)

gets the number of children of the parent node.

Object getChild(Object parent, int index)

gets the child node of the parent node at the given index.

int getIndexOfChild(Object parent, Object child)

gra

gets the index of the child node. It must be a child of the parent node.

boolean isLeaf(Object node)

returns true if node is conceptually a leaf of the tree.

void addTreeModelListener(TreeModelListener l)

void removeTreeModelListener(TreeModelListener l)

add and remove listeners that are notified when the information in the tree model
changes.

void valueForPathChanged(TreePath path, Object newValue)

is called when a cell editor has modified the value of a node.

javax.swing.event.TreeModelListener

void treeNodesChanged(TreeModelEvent e)

void treeNodesInserted(TreeModelEvent e)

void treeNodesRemoved(TreeModelEvent e)

void treeStructureChanged(TreeModelEvent e)

are called by the tree model when the tree has been modified.

javax.swing.event.TreeModelEvent

TreeModelEvent(Object eventSource, TreePath node)

Parameters: path the path to the node that has been edited
 newValue the replacement value returned by the editor

gra

gra

constructs a tree model event.

Tables
The JTable component displays a two-dimensional grid of objects. Of course, tables are
very common in user interfaces. The Swing team has put a lot of effort into the table control.
Tables are inherently complex, but—perhaps more successfully than with other Swing
classes—the JTable component hides much of that complexity. You can produce fully
functional tables with rich behavior by writing a few lines of code. Of course, you can write
more code and customize the display and behavior for your specific applications.

In this section, we explain how to make simple tables, how the user interacts with them, and
how to make some of the most common adjustments. As with the other complex Swing
controls, it is impossible to cover all aspects in complete detail. If you need more information,
you can find it in Core Java Foundation Classes by Kim Topley or Graphic Java 2 by David
Geary.

A Simple Table

As with the tree control, a JTable does not store its own data, but obtains its data from a
table model. The JTable class has a constructor that wraps a two-dimensional array of
objects into a default model. That is the strategy that we will use in our first example. Later in
this chapter, we will turn to table models.

Figure 6-25 shows a typical table, describing properties of the planets of the solar system. (A
planet is gaseous if it consists mostly of hydrogen and helium. You should take the "Color"
entries with a grain of salt—that column was added because it will be useful in a later code
example.)

Figure 6-25. A simple table

As you can see from the code in Example 6-9, the data of the table is stored as a two-
dimensional array of Object values:

Parameters: eventSource the tree model generating this event
 node the path to the node that is being changed

Object[][] cells =
{
 {
 "Mercury", new Double(2440), new Integer(0),
 Boolean.FALSE, Color.yellow
 },
 {
 "Venus", new Double(6052), new Integer(0),
 Boolean.FALSE, Color.yellow
 },
 . . .
}

The table simply invokes the toString method on each object to display it. That's why the
colors show up as java.awt.Color[r=...,g=...,b=...].

You supply the column names in a separate array of strings:

String[] columnNames =
 {
 "Planet", "Radius", "Moons", "Gaseous", "Color"
 };

Then, you construct a table from the cell and column name arrays. Finally, add scroll bars in
the usual way, by wrapping the table in a JScrollPane.

JTable table = new JTable(cells, columnNames);
JScrollPane pane = new JScrollPane(table);

The resulting table already has surprisingly rich behavior. Resize the table vertically until the
scroll bar shows up. Then, scroll the table. Note that the column headers don't scroll out of
view!

Next, click on one of the column headers and drag it to the left or right. See how the entire
column becomes detached (see Figure 6-26). You can drop it to a different location. This
rearranges the columns in the view only. The data model is not affected.

Figure 6-26. Moving a column

To resize columns, simply place the cursor between two columns until the cursor shape
changes to an arrow. Then, drag the column boundary to the desired place (see Figure 6-27).

Figure 6-27. Resizing columns

Users can select rows by clicking anywhere in a row. The selected rows are highlighted; you
will see later how to get selection events. Users can also edit the table entries by clicking on a
cell and typing into it. However, in this code example, the edits do not change the underlying
data. In your programs, you should either make cells uneditable or handle cell editing events
and update your model. We will discuss those topics later in this section.

Example 6-9 PlanetTable.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import javax.swing.*;
 4. import javax.swing.table.*;
 5.
 6. /**
 7. This program demonstrates how to show a simple table
 8. */
 9. public class PlanetTable
10. {
11. public static void main(String[] args)
12. {

13. JFrame frame = new PlanetTableFrame();
14. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE)
15. frame.show();
16. }
17. }
18.
19. /**
20. This frame contains a table of planet data.
21. */
22. class PlanetTableFrame extends JFrame
23. {
24. public PlanetTableFrame()
25. {
26. setTitle("PlanetTable");
27. setSize(WIDTH, HEIGHT);
28.
29. JTable table = new JTable(cells, columnNames);
30.
31. getContentPane().add(new JScrollPane(table),
32. BorderLayout.CENTER);
33. }
34.
35. private Object[][] cells =
36. {
37. {
38. "Mercury", new Double(2440), new Integer(0),
39. Boolean.FALSE, Color.yellow
40. },
41. {
42. "Venus", new Double(6052), new Integer(0),
43. Boolean.FALSE, Color.yellow
44. },
45. {
46. "Earth", new Double(6378), new Integer(1),
47. Boolean.FALSE, Color.blue
48. },
49. {
50. "Mars", new Double(3397), new Integer(2),
51. Boolean.FALSE, Color.red
52. },
53. {
54. "Jupiter", new Double(71492), new Integer(16),
55. Boolean.TRUE, Color.orange
56. },

57. {
58. "Saturn", new Double(60268), new Integer(18),
59. Boolean.TRUE, Color.orange
60. },
61. {
62. "Uranus", new Double(25559), new Integer(17),
63. Boolean.TRUE, Color.blue
64. },
65. {
66. "Neptune", new Double(24766), new Integer(8),
67. Boolean.TRUE, Color.blue
68. },
69. {
70. "Pluto", new Double(1137), new Integer(1),
71. Boolean.FALSE, Color.black
72. }
73. };
74.
75. private String[] columnNames =
76. {
77. "Planet", "Radius", "Moons", "Gaseous", "Color"
78. };
79.
80. private static final int WIDTH = 400;
81. private static final int HEIGHT = 200;
82.}

javax.swing.JTable

JTable(Object[][] entries, Object[] columnNames)

constructs a table with a default table model.

Table Models

In the preceding example, the table-rendered objects were stored in a two-dimensional array.
However, you should generally not use that strategy in your own code. If you find yourself
dumping data into an array to display it as a table, you should instead think about

gra

Parameters: entries the cells in the table
 colummNames the titles for the columns

implementing your own table model.

Table models are particularly simple to implement because you can take advantage of the
AbstractTableModel class that implements most of the required methods. You only
need to supply three methods:

public int getRowCount();
public int getColumnCount();
public Object getValueAt(int row, int column);

There are many ways for implementing the getValueAt method. You can simply compute
the answer. Or you can look up the value from a database or from some other repository. Let
us look at a couple of examples.

In the first example, we construct a table that simply shows some computed values, namely,
the growth of an investment under different interest rate scenarios (see Figure 6-28).

Figure 6-28. Growth of an investment

The getValueAt method computes the appropriate value and formats it:

public Object getValueAt(int r, int c)
{
 double rate = (c + minRate) / 100.0;
 int nperiods = r;

 double futureBalance = INITIAL_BALANCE
 * Math.pow(1 + rate, nperiods);

 return
 NumberFormat.getCurrencyInstance().format(futureBalance);
}

The getRowCount and getColumnCount methods simply return the number of rows
and columns.

public int getRowCount()
{
 return years;
}

public int getColumnCount()
{
 return maxRate - minRate + 1;
}

If you don't supply column names, the getColumnName method of the
AbstractTableModel names the columns A, B, C, and so on. To change column names,
override the getColumnName method. You will usually want to override that default
behavior. In this example, we simply label each column with the interest rate.

public String getColumnName(int c)
{
 double rate = (c + minRate) / 100.0;
 return
 NumberFormat.getPercentInstance().format(rate);
}

You can find the complete source code in Example 6-10.

Example 6-10 InvestmentTable.java

 1.import java.awt.*;
 2.import java.awt.event.*;
 3.import java.text.*;
 4.import javax.swing.*;
 5.import javax.swing.table.*;
 6.
 7./**
 8. This program shows how to build a table from a table mod
 9.*/
10. public class InvestmentTable
11. {
12. public static void main(String[] args)
13. {
14. JFrame frame = new InvestmentTableFrame();
15. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE)
16. frame.show();

17. }
18. }
19.
20. /**
21. This frame contains the investment table.
22. */
23. class InvestmentTableFrame extends JFrame
24. {
25. public InvestmentTableFrame()
26. {
27. setTitle("InvestmentTable");
28. setSize(WIDTH, HEIGHT);
29.
30. TableModel model = new InvestmentTableModel(30, 5, 1
31. JTable table = new JTable(model);
32. getContentPane().add(new JScrollPane(table), "Center
33. }
34.
35. private static final int WIDTH = 600;
36. private static final int HEIGHT = 300;
37. }
38.
39. /**
40. This table model computes the cell entries each time th
41. are requested. The table contents shows the growth of
42. an investment for a number of years under different int
43. rates.
44. */
45. class InvestmentTableModel extends AbstractTableModel
46. {
47. /**
48. Constructs an investment table model.
49. @param y the number of years
50. @param r1 the lowest interest rate to tabulate
51. @param r2 the highest interest rate to tabulate
52. */
53. public InvestmentTableModel(int y, int r1, int r2)
54. {
55. years = y;
56. minRate = r1;
57. maxRate = r2;
58. }
59.
60. public int getRowCount()

61. {
62. return years;
63. }
64.
65. public int getColumnCount()
66. {
67. return maxRate - minRate + 1;
68. }
69.
70. public Object getValueAt(int r, int c)
71. {
72. double rate = (c + minRate) / 100.0;
73. int nperiods = r;
74.
75. double futureBalance = INITIAL_BALANCE
76. * Math.pow(1 + rate, nperiods);
77.
78. return
79. NumberFormat.getCurrencyInstance().format(futureB
80. }
81.
82. public String getColumnName(int c)
83. {
84. double rate = (c + minRate) / 100.0;
85. return
86. NumberFormat.getPercentInstance().format(rate);
87. }
88.
89. private int years;
90. private int minRate;
91. private int maxRate;
92.
93. private static double INITIAL_BALANCE = 100000.0;
94. }

Displaying database records

Probably the most common information to be displayed in a table is a set of records from a
database. If you use a professional development environment, it almost certainly includes
convenient JavaBeans for accessing database information. However, if you don't have
database beans or if you are simply curious what goes on under the hood, you will find the
next example interesting. Figure 6-29 shows the output—the result of a query for all rows in a
database table.

Figure 6-29. Displaying a query result in a table

In the example program, we define a ResultSetTableModel that fetches data from the
result set of a database query. (See Chapter 4 for more information on Java database access
and result sets.)

You can obtain the column count and the column names from the result set metadata object
rsmd:

public String getColumnName(int c)
{
 try
 {
 return rsmd.getColumnName(c + 1);
 }
 catch(SQLException e)
 {
 . . .
 }
}

public int getColumnCount()

{
 try
 {
 return rsmd.getColumnCount();
 }
 catch(SQLException e)
 {
 . . .
 }
}

If the database supports scrolling cursors, then it is particularly easy to get a cell value: just
move the cursor to the requested row and fetch the column value.

public Object getValueAt(int r, int c)
{
 try
 {
 ResultSet rs = getResultSet();
 rs.absolute(r + 1);
 return rs.getObject(c + 1);
 }
 catch(SQLException e)
 {
 e.printStackTrace();
 return null;
 }
}

It makes a lot of sense to use this data model instead of the DefaultTableModel. If you
created an array of values, then you would duplicate the cache that the database driver is
already managing.

If the database does not support scrolling cursors or if you are using a JDBC 1 driver, then the
query data must be cached manually. The example program contains such a manual cache.
We factored out the common behavior in a base class ResultSetTableModel. The
subclass ScrollingResultSetTableModel uses a scrolling cursor, and the subclass
CachingResultSetTableModel caches the result set.

Example 6-11 ResultSetTable.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.io.*;
 4. import java.sql.*;

 5. import java.util.*;
 6. import javax.swing.*;
 7. import javax.swing.table.*;
 8.
 9. /**
 10. This program shows how to display the result of a
 11. database query in a table.
 12. */
 13. public class ResultSetTable
 14. {
 15. public static void main(String[] args)
 16. {
 17. JFrame frame = new ResultSetFrame();
 18. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 19. frame.show();
 20. }
 21. }
 22.
 23. /**
 24. This frame contains a combo box to select a database t
 25. and a table to show the data stored in the table
 26. */
 27. class ResultSetFrame extends JFrame
 28. {
 29. public ResultSetFrame()
 30. {
 31. setTitle("ResultSet");
 32. setSize(WIDTH, HEIGHT);
 33.
 34. /* find all tables in the database and add them to
 35. a combo box
 36. */
 37.
 38. Container contentPane = getContentPane();
 39. tableNames = new JComboBox();
 40. tableNames.addActionListener(new
 41. ActionListener()
 42. {
 43. public void actionPerformed(ActionEvent evt)
 44. {
 45. try
 46. {
 47. if (scrollPane != null)
 48. getContentPane().remove(scrollPane);

 49. String tableName
 50. = (String)tableNames.getSelectedItem
 51. if (rs != null) rs.close();
 52. String query = "SELECT * FROM " + table
 53. rs = stat.executeQuery(query);
 54. if (scrolling)
 55. model
 56. = new ScrollingResultSetTableMode
 57. else
 58. model = new CachingResultSetTableMod
 59.
 60. JTable table = new JTable(model);
 61. scrollPane = new JScrollPane(table);
 62. getContentPane().add(scrollPane,
 63. BorderLayout.CENTER);
 64. pack();
 65. doLayout();
 66. }
 67. catch(SQLException e)
 68. {
 69. e.printStackTrace();
 70. }
 71. }
 72. });
 73. JPanel p = new JPanel();
 74. p.add(tableNames);
 75. contentPane.add(p, BorderLayout.NORTH);
 76.
 77. try
 78. {
 79. conn = getConnection();
 80. DatabaseMetaData meta = conn.getMetaData();
 81. if (meta.supportsResultSetType(
 82. ResultSet.TYPE_SCROLL_INSENSITIVE))
 83. {
 84. scrolling = true;
 85. stat = conn.createStatement(
 86. ResultSet.TYPE_SCROLL_INSENSITIVE,
 87. ResultSet.CONCUR_READ_ONLY);
 88. }
 89. else
 90. {
 91. stat = conn.createStatement();
 92. scrolling = false;

 93. }
 94. ResultSet tables = meta.getTables(null, null, nu
 95. new String[] { "TABLE" });
 96. while (tables.next())
 97. tableNames.addItem(tables.getString(3));
 98. tables.close();
 99. }
100. catch(IOException e)
101. {
102. e.printStackTrace();
103. }
104. catch(SQLException e)
105. {
106. e.printStackTrace();
107. }
108.
109. addWindowListener(new
110. WindowAdapter()
111. {
112. public void windowClosing(WindowEvent event)
113. {
114. try
115. {
116. conn.close();
117. }
118. catch (SQLException e)
119. {
120. e.printStackTrace();
121. }
122. }
123. });
124. }
125.
126. /**
127. Gets a connection from the properties specified in
128. the file database.properties.
129. @return the database connection
130. */
131. public static Connection getConnection()
132. throws SQLException, IOException
133. {
134. Properties props = new Properties();
135. FileInputStream in
136. = new FileInputStream("database.properties");

137. props.load(in);
138. in.close();
139.
140. String drivers = props.getProperty("jdbc.drivers");
141. if (drivers != null)
142. System.setProperty("jdbc.drivers", drivers);
143. String url = props.getProperty("jdbc.url");
144. String username = props.getProperty("jdbc.username"
145. String password = props.getProperty("jdbc.password"
146.
147. return
148. DriverManager.getConnection(url, username, passw
149. }
150.
151. private JScrollPane scrollPane;
152. private ResultSetTableModel model;
153. private JComboBox tableNames;
154. private ResultSet rs;
155. private Connection conn;
156. private Statement stat;
157. private boolean scrolling;
158.
159. private static final int WIDTH = 400;
160. private static final int HEIGHT = 300;
161. }
162.
163. /**
164. This class is the superclass for the scrolling and the
165. caching result set table model. It stores the result s
166. and its metadata.
167. */
168. abstract class ResultSetTableModel extends AbstractTableM
169. {
170. /**
171. Constructs the table model.
172. @param aResultSet the result set to display.
173. */
174. public ResultSetTableModel(ResultSet aResultSet)
175. {
176. rs = aResultSet;
177. try
178. {
179. rsmd = rs.getMetaData();
180. }

181. catch(SQLException e)
182. {
183. e.printStackTrace();
184. }
185. }
186.
187. public String getColumnName(int c)
188. {
189. try
190. {
191. return rsmd.getColumnName(c + 1);
192. }
193. catch(SQLException e)
194. {
195. e.printStackTrace();
196. return "";
197. }
198. }
199.
200. public int getColumnCount()
201. {
202. try
203. {
204. return rsmd.getColumnCount();
205. }
206. catch(SQLException e)
207. {
208. e.printStackTrace();
209. return 0;
210. }
211. }
212.
213. /**
214. Gets the result set that this model exposes.
215. @return the result set
216. */
217. protected ResultSet getResultSet()
218. {
219. return rs;
220. }
221.
222. private ResultSet rs;
223. private ResultSetMetaData rsmd;
224. }

225.
226. /**
227. This class uses a scrolling cursor, a JDBC 2 feature,
228. to locate result set elements.
229. */
230. class ScrollingResultSetTableModel extends ResultSetTable
231. {
232. /**
233. Constructs the table model.
234. @param aResultSet the result set to display.
235. */
236. public ScrollingResultSetTableModel(ResultSet aResultS
237. {
238. super(aResultSet);
239. }
240.
241. public Object getValueAt(int r, int c)
242. {
243. try
244. {
245. ResultSet rs = getResultSet();
246. rs.absolute(r + 1);
247. return rs.getObject(c + 1);
248. }
249. catch(SQLException e)
250. {
251. e.printStackTrace();
252. return null;
253. }
254. }
255.
256. public int getRowCount()
257. {
258. try
259. {
260. ResultSet rs = getResultSet();
261. rs.last();
262. return rs.getRow();
263. }
264. catch(SQLException e)
265. {
266. e.printStackTrace();
267. return 0;
268. }

269. }
270. }
271.
272. /*
273. This class caches the result set data; it can be used
274. if scrolling cursors are not supported
275. */
276. class CachingResultSetTableModel extends ResultSetTableMo
277. {
278. public CachingResultSetTableModel(ResultSet aResultSet
279. {
280. super(aResultSet);
281. try
282. {
283. cache = new ArrayList();
284. int cols = getColumnCount();
285. ResultSet rs = getResultSet();
286.
287. /* place all data in an array list of Object[] a
288. We don't use an Object[][] because we don't k
289. how many rows are in the result set
290. */
291.
292. while (rs.next())
293. {
294. Object[] row = new Object[cols];
295. for (int j = 0; j < row.length; j++)
296. row[j] = rs.getObject(j + 1);
297. cache.add(row);
298. }
299. }
300. catch(SQLException e)
301. {
302. System.out.println("Error " + e);
303. }
304. }
305.
306. public Object getValueAt(int r, int c)
307. {
308. if (r < cache.size())
309. return ((Object[])cache.get(r))[c];
310. else
311. return null;
312. }

313.
314. public int getRowCount()
315. {
316. return cache.size();
317. }
318.
319. private ArrayList cache;
320. }

A Sort Filter

The last two examples drove home the point that tables don't store the cell data; they get them
from a model. The model need not store the data either. It can compute the cell values or fetch
them from somewhere else.

In this section, we introduce another useful technique, a filter model that presents information
from another table in a different form. In our example, we will sort the rows in a table. Run the
program in Example 6-12 and double-click on one of the column headers. You will see how the
rows are rearranged so that the column entries are sorted (See Figure 6-30).

Figure 6-30. Sorting the rows of a table

However, we won't physically rearrange the rows in the data model. Instead, we will use a filter
model that keeps an array with the permuted row indexes.

The filter model stores a reference to the actual table model. When the JTable needs to look
up a value, the filter model computes the actual row index and gets the value from the model.
For example,

public Object getValueAt(int r, int c)
{
 return model.getValueAt(actual row index, c);
}

All other methods are simply passed on to the original model.

public String getColumnName(int c)
{
 return model.getColumnName(c);
}

Figure 6-31 shows how the filter sits between the JTable object and the actual table model.

Figure 6-31. A table model filter

There are two complexities when you implement such a sort filter. First, you need to be notified
when the user double-clicks on one of the column headers. We don't want to go into too much
detail on this technical point. You can find the code in the addMouseListener method of
the SortFilterModel in Example 6-12. Here is the idea behind the code. First, get the
table header component and attach a mouse listener. When a double click is detected, you
need to find out in which table column the mouse click fell. Then, you need to translate the
table column to the model column—they can be different if the user moved the table columns
around. Once you know the model column, you can start sorting the table rows.

There is a problem with sorting the table rows. We don't want to physically rearrange the rows.
What we want is a sequence of row indexes that tell us how we would rearrange them if they
were being sorted. However, the sort algorithms in the Arrays and Collections classes
don't tell us how they rearrange the elements. Of course, you could reimplement a sorting
algorithm and keep track of the object rearrangements. But there is a much smarter way. The
trick is to come up with custom objects and a custom comparison method so that the library
sorting algorithm can be pressed into service.

We will sort objects of a type Row. A Row object contains the index r of a row in the model.
Compare two such objects as follows: find the elements in the model and compare them. In
other words, the compareTo method for Row objects computes

model.getValueAt(r1, c).compareTo(model.getValueAt(r2, c))

Here r1 and r2 are the row indexes of the Row objects, and c is the column whose elements
should be sorted.

If the entries of a particular column aren't comparable, we simply compare their string
representations. That way, the columns with Boolean and Color values can still be sorted.
(Neither of those two classes implement the Comparable interface.)

We make the Row class into an inner class of the SortFilterModel because the
compareTo method needs to access the current model and column. Here is the code:

class SortFilterModel extends AbstractTableModel
{ . . .
 private class Row implements Comparable
 {
 public int index;
 public int compareTo(Object other)
 {
 Row otherRow = (Row)other;
 Object a = model.getValueAt(index, sortColumn);
 Object b = model.getValueAt(otherRow.index, sortColum
 if (a instanceof Comparable)
 return ((Comparable)a).compareTo(b);
 else
 return a.toString().compareTo(b.toString());
 }
 }

 private TableModel model;
 private int sortColumn;
 private Row[] rows;
}

In the constructor, we build an array rows, initialized such that rows[i] is set to i:

public SortFilterModel(TableModel m)
{
 model = m;
 rows = new Row[model.getRowCount()];
 for (int i = 0; i < rows.length; i++)
 {
 rows[i] = new Row();
 rows[i].index = i;
 }
}

In the sort method, we invoke the Arrays.sort algorithm. It sorts the Row objects.
Because the comparison criterion looks at the model elements in the appropriate column, the
elements are arranged so that afterwards row[0] contains the index of the smallest element
in the column, row[1] contains the index of the next-smallest element, and so on.

When the array is sorted, we notify all table model listeners (in particular, the JTable) that
the table contents have changed and must be redrawn.

public void sort(int c)
{

 sortColumn = c;
 Arrays.sort(rows);
 fireTableDataChanged();
}

Finally, we can show you the exact computation of the getValueAt method of the filter
class. It simply translates a row index r to the model row index rows[r].index:

public Object getValueAt(int r, int c)
{
 return model.getValueAt(rows[r].index, c);
}

The sort model filter shows again the power of the model-view pattern. Because the data and
the display are separated, we are able to change the mapping between the two.

Example 6-12 TableSortTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.util.*;
 4. import javax.swing.*;
 5. import javax.swing.event.*;
 6. import javax.swing.table.*;
 7.
 8. /**
 9. This program demonstrates how to sort a table column.
 10. Double-click on a table column to sort it.
 11. */
 12. public class TableSortTest
 13. {
 14. public static void main(String[] args)
 15. {
 16. JFrame frame = new TableSortFrame();
 17. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 18. frame.show();
 19. }
 20. }
 21.
 22. /**
 23. This frame contains a table of planet data.
 24. */
 25. class TableSortFrame extends JFrame
 26. {
 27. public TableSortFrame()

 28. {
 29. setTitle("TableSortTest");
 30. setSize(WIDTH, HEIGHT);
 31.
 32. // set up table model and interpose sorter
 33.
 34. DefaultTableModel model
 35. = new DefaultTableModel(cells, columnNames);
 36. final SortFilterModel sorter = new SortFilterModel(
 37.
 38. // show table
 39.
 40. final JTable table = new JTable(sorter);
 41. getContentPane().add(new JScrollPane(table),
 42. BorderLayout.CENTER);
 43.
 44. // set up double click handler for column headers
 45.
 46. table.getTableHeader().addMouseListener(new
 47. MouseAdapter()
 48. {
 49. public void mouseClicked(MouseEvent event)
 50. {
 51. // check for double click
 52. if (event.getClickCount() < 2) return;
 53.
 54. // find column of click and
 55. int tableColumn
 56. = table.columnAtPoint(event.getPoint())
 57.
 58. // translate to table model index and sort
 59. int modelColumn
 60. = table.convertColumnIndexToModel(table
 61. sorter.sort(modelColumn);
 62. }
 63. });
 64. }
 65.
 66. private Object[][] cells =
 67. {
 68. {
 69. "Mercury", new Double(2440), new Integer(0),
 70. Boolean.FALSE, Color.yellow
 71. },

 72.
 73. {
 74. "Venus", new Double(6052), new Integer(0),
 75. Boolean.FALSE, Color.yellow
 76. },
 77. {
 78. "Earth", new Double(6378), new Integer(1),
 79. Boolean.FALSE, Color.blue
 80. },
 81. {
 82. "Mars", new Double(3397), new Integer(2),
 83. Boolean.FALSE, Color.red
 84. },
 85. {
 86. "Jupiter", new Double(71492), new Integer(16),
 87. Boolean.TRUE, Color.orange
 88. },
 89. {
 90. "Saturn", new Double(60268), new Integer(18),
 91. Boolean.TRUE, Color.orange
 92. },
 93. {
 94. "Uranus", new Double(25559), new Integer(17),
 95. Boolean.TRUE, Color.blue
 96. },
 97. {
 98. "Neptune", new Double(24766), new Integer(8),
 99. Boolean.TRUE, Color.blue
100. },
101. {
102. "Pluto", new Double(1137), new Integer(1),
103. Boolean.FALSE, Color.black
104. }
105. };
106.
107. private String[] columnNames =
108. {
109. "Planet", "Radius", "Moons", "Gaseous", "Color"
110. };
111.
112. private static final int WIDTH = 400;
113. private static final int HEIGHT = 200;
114. }
115.

116. /**
117. This table model takes an existing table model and pro
118. a new model that sorts the rows so that the entries in
119. a particular column are sorted.
120. */
121. class SortFilterModel extends AbstractTableModel
122. {
123. /**
124. Constructs a sort filter model.
125. @param m the table model to filter
126. */
127. public SortFilterModel(TableModel m)
128. {
129. model = m;
130. rows = new Row[model.getRowCount()];
131. for (int i = 0; i < rows.length; i++)
132. {
133. rows[i] = new Row();
134. rows[i].index = i;
135. }
136. }
137.
138. /**
139. Sorts the rows.
140. @param c the column that should become sorted
141. */
142. public void sort(int c)
143. {
144. sortColumn = c;
145. Arrays.sort(rows);
146. fireTableDataChanged();
147. }
148.
149. // Compute the moved row for the three methods that ac
150. // model elements
151.
152. public Object getValueAt(int r, int c)
153. {
154. return model.getValueAt(rows[r].index, c);
155. }
156.
157. public boolean isCellEditable(int r, int c)
158. {
159. return model.isCellEditable(rows[r].index, c);

160. }
161.
162. public void setValueAt(Object aValue, int r, int c)
163. {
164. model.setValueAt(aValue, rows[r].index, c);
165. }
166.
167. // delegate all remaining methods to the model
168.
169. public int getRowCount()
170. {
171. return model.getRowCount();
172. }
173.
174. public int getColumnCount()
175. {
176. return model.getColumnCount();
177. }
178.
179. public String getColumnName(int c)
180. {
181. return model.getColumnName(c);
182. }
183.
184. public Class getColumnClass(int c)
185. {
186. return model.getColumnClass(c);
187. }
188.
189. /**
190. This inner class holds the index of the model row
191. Rows are compared by looking at the model row entri
192. in the sort column.
193. */
194. private class Row implements Comparable
195. {
196. public int index;
197. public int compareTo(Object other)
198. {
199. Row otherRow = (Row)other;
200. Object a = model.getValueAt(index, sortColumn);
201. Object b = model.getValueAt(otherRow.index, sortC
202. if (a instanceof Comparable)
203. return ((Comparable)a).compareTo(b);

204. else
205. return a.toString().compareTo(b.toString());
206.
207. // return index - otherRow.index;
208. }
209. }
210.
211. private TableModel model;
212. private int sortColumn;
213. private Row[] rows;
214. }

javax.swing.table.TableModel

int getRowCount()

int getColumnCount()

get the number of rows and columns in the table model.

Object getValueAt(int row, int column)

gets the value at the given row and column.

void setValueAt(Object newValue, int row, int column)

sets a new value at the given row and column.

boolean isCellEditable(int row, int column)

returns true if the cell at the given row and column is editable.

String getColumnName(int column)

gets the column title.

javax.swing.table.AbstractTableModel

gra

gra

void fireTableDataChanged()

notifies all table model listeners that the table data has changed.

javax.swing.JTable

JTableHeader getTableHeader()

returns the table header component of this table.

int columnAtPoint(Point p)

returns the number of the table column that falls under the pixel position p.

int convertColumnIndexToModel(int tableColumn)

returns the model index of the column with the given index. This value is different from
tableColumn if some of the table columns are moved or hidden.

Cell Rendering and Editing

In the next example, we again display our planet data, but this time, we want to give the table
more information about the column types. If you define the method

Class getColumnClass(int columnIndex)

of your table model to return the class that describes the column type, then the JTable class
picks an appropriate renderer for the class. Table 6-1 shows the renderers that the JTable
class provides by default.

You can see the check boxes and images in Figure 6-32. (Thanks to Jim Evins,
http://www.snaught.com/JimsCoolIcons/Planets, for providing the planet images!)

Figure 6-32. A table with cell renderers

gra

For other types, you can supply your own cell renderers. Table cell renderers are similar to the
tree cell renderers that you saw earlier. They implement the TableCellRenderer
interface, which has a single method

Component getTableCellRendererComponent(JTable table,
 Object value, boolean isSelected, boolean hasFocus,
 int row, int column)

That method is called when the table needs to draw a cell. You return a component whose
paint method is then invoked to fill the cell area.

To display a cell of type Color, you can simply return a panel whose background color you
set to the color object stored in the cell. The color is passed as the value parameter.

class ColorTableCellRenderer implements TableCellRenderer
{
 public Component getTableCellRendererComponent(JTable table
 Object value, boolean isSelected, boolean hasFocus,
 int row, int column)

Table 6-1. Default renderers
Type Rendered as
ImageIcon image
Boolean check box
Object string

 {
 panel.setBackground((Color)value);
 return panel;
 }

 private JPanel panel = new JPanel();
}

You need to tell the table to use this renderer with all objects of type Color. The
setDefaultRenderer method of the JTable class lets you establish this association.
You supply a Class object and the renderer:

table.setDefaultRenderer(Color.class,
 new ColorTableCellRenderer());

That renderer is now used for all objects of the given type.

NOTE

TIP

Cell editing

To enable cell editing, the table model must indicate which cells are editable by defining the
isCellEditable method. Most commonly, you will want to make certain columns
editable. In the example program, we allow editing in four columns.

 public boolean isCellEditable(int r, int c)
 {
 return c == NAME_COLUMN
 || c == MOON_COLUMN
 || c == GASEOUS_COLUMN

For a more realistic cell renderer, you would want to give visual clues when
the cell is selected and when it has editing focus. To do that, you need the
cell dimensions and the color schemes for selection and focus. In the Java
look and feel, selection is indicated by a pale blue background.

To get the cell dimensions, call the getCellRect method of the
JTable class. For the selection colors, call
getSelectionBackground and getSelectionForeground.

If your renderer simply draws a text string or an icon, you can extend the
DefaultTableCellRenderer class. It takes care of selection
handling and focus for you.

 || c == COLOR_COLUMN;
}

 private static final int NAME_COLUMN = 0;
 private static final int MOON_COLUMN = 2;
 private static final int GASEOUS_COLUMN = 3;
 private static final int COLOR_COLUMN = 4;

NOTE

If you run the program in Example 6-13, note that you can click on the check boxes in the
Gaseous column and turn the check marks on and off. If you click on the Moons column, a
combo box appears (see Figure 6-33). You will see in a minute how to install such a combo
box as cell editor.

Figure 6-33. A cell editor

Finally, click on a cell in the first column. The cell gains focus. You can start typing and the cell
contents change.

What you just saw in action are the three variations of the DefaultCellEditor class. A
DefaultCellEditor can be constructed with a JTextField, a JCheckBox, or a

The AbstractTableModel defines the isCellEditable method
to always return false. The DefaultTableModel overrides the
method to always return true.

JComboBox. The JTable class automatically installs a check box editor for Boolean cells
and a text field editor for all editable cells that don't supply their own renderer. The text fields
let the user edit the strings that result from applying toString to the return value of the
getValueAt method of the table model.

When the edit is complete, the cell editor passes the result back to the model by calling its
setValueAt method. It is up to you to define the setValueAt method of your model to
turn the edited result back into an appropriate value.

CAUTION

To get a combo box editor, you set a cell editor manually—the JTable component has no
idea what values might be appropriate for a particular type. For the Moons column, we wanted
to enable the user to pick any value between 0 and 20. Here is the code for initializing the
combo box.

JComboBox moonCombo = new JComboBox();
for (int i = 0; i <= 20; i++)
 moonCombo.addItem(new Integer(i));

To construct a DefaultCellEditor, supply the combo box in the constructor:

TableCellEditor moonEditor = new DefaultCellEditor(moonCombo);

Next, we need to install the editor. Unlike the color cell renderer, this editor does not depend
on the object type—we don't necessarily want to use it for all objects of type Integer.
Instead, we need to install it into a particular column.

The JTable class stores information about table columns in objects of type TableColumn.
A TableColumnModel class manages the columns. (Figure 6-34 shows the relationships
among the most important table classes.) If you don't want to insert or remove columns
dynamically, you won't use the table column model much. However, to get a particular
TableColumn object, you need to get the column model to ask it for the column object:

Figure 6-34. Relationship between Table classes

It is easy for the default text field editor to turn your cell value into a string,
simply by calling getValueAt and applying toString. However, for
the reverse conversion, the monkey is on your back. When the editing is
finished, the cell editor calls setValueAt with the resulting String
object. Your setValueAt method needs to know how to parse that
string. For example, if your cell stores integers, you need to call
Integer.parseInt.

TableColumnModel columnModel = table.getColumnModel()
TableColumn moonColumn
 = columnModel.getColumn(PlanetTableModel.MOON_COLUMN);

Finally, you can install the cell editor:

moonColumn.setCellEditor(moonEditor);

If your cells are taller than the default, you also want to set the row height.

table.setRowHeight(height);

By default, all rows of the table have the same height. You can set the heights of individual
rows with the call

table.setRowHeight(row, height);

The actual row height equals the row height that has been set with these methods, reduced by
the row margin. The default row margin is 1, but you can change it with the call

table.setRowMargin(margin);

Custom editors

Run the example program again and click on a color. A color chooser pops up to let you pick a
new color for the planet. Select a color and click OK. The cell color is updated (See Figure 6-
35).

Figure 6-35. Editing the cell color with a color chooser

The color cell editor is not a standard table cell editor but a custom implementation. To create
a custom cell editor, you implement the TableCellEditor interface. That interface is a bit
tedious, and as of SDK 1.3, an AbstractCellEditor class is provided to take care of the
event handling details.

The getTableCellEditorComponent method of the TableCellEditor interface
requests a component to render the cell. It is exactly the same as the
getTableCellRenderer method of the TableCellRenderer interface, except that
there is no focus parameter. Since the cell is being edited, it is presumed to have focus. The
editor component temporarily replaces the renderer when the editing is in progress. In our
example, we return a blank panel that is not colored. This is an indication to the user that the
cell is currently being edited.

Next, you want to have your editor pop up when the user clicks on the cell.

The JTable class calls your editor with an event (such as a mouse click) to find out if that
event is acceptable to initiate the editing process. The AbstractCellEditor class
defines the method to accept all events.

public boolean isCellEditable(EventObject anEvent)
{
 return true;
}

However, if you override this method to false, then the table would not go through the
trouble of inserting the editor component.

Once the editor component is installed, the shouldSelectCell method is called,
presumably with the same event. You should initiate editing in this method, for example, by
popping up an external edit dialog.

public boolean shouldSelectCell(EventObject anEvent)
{
 colorDialog.setVisible(true);
 return true;
}

If the table wants to cancel or stop the edit (because the user has clicked on another table
cell), it calls the cancelCellEditing or stopCellEditing method. You should then
hide the dialog. When your stopCellEditing method is called, the table would like to use
the partially edited value. You should return true if the current value is valid. In the color
chooser, any value is valid. But if you edit other data, you can ensure that only valid data is
retrieved from the editor.

Also, you should call the superclass methods that take care of event firing—otherwise, the
editing won't be properly canceled.

public void cancelCellEditing()
{
 colorDialog.setVisible(false);
 super.cancelCellEditing();
}

Finally, you need to supply a method that yields the value that the user supplied in the editing
process:

public Object getCellEditorValue()
{
 return colorChooser.getColor();
}

To summarize, your custom editor should do the following:

1. Extend the AbstractCellEditor class and implement the TableCellEditor
interface.

2. Define the getTableCellEditorComponent method to supply a component.
This can either be a dummy component (if you pop up a dialog) or a component for in-
place editing such as a combo box or text field.

3. Define the shouldSelectCell, stopCellEditing and
cancelCellEditing methods to handle the start, completion, and cancellation of
the editing process. The stopCellEditing and cancelCellEditing should
call the superclass methods to ensure that listeners are notified.

4. Define the getCellEditorValue method to return the value that is the result of the
editing process.

Finally, you need to indicate when the user is finished editing by calling the
stopCellEditing and cancelCellEditing methods. When constructing the color
dialog, we install accept and cancel callbacks that fire these events.

colorDialog = JColorChooser.createDialog(null,
 "Planet Color", false, colorChooser,
 new
 ActionListener() // OK button listener
 {
 public void actionPerformed(ActionEvent event)
 {
 stopCellEditing();
 }
 },
 new
 ActionListener() // Cancel button listener
 {
 public void actionPerformed(ActionEvent event)
 {
 cancelCellEditing();
 }
 });

Also, when the user closes the dialog, editing should be canceled. This is achieved by
installing a window listener:

colorDialog.addWindowListener(new
 WindowAdapter()
 {
 public void windowClosing(WindowEvent event)
 {
 cancelCellEditing();
 }
 });

This completes the implementation of the custom editor.

You now know how to make a cell editable and how to install an editor. There is one remaining
issue—how to update the model with the value that the user edited. When editing is complete,
the JTable class calls the following method of the table model:

void setValueAt(Object value, int r, int c)

You need to override the method to store the new value. The value parameter is the object
that was returned by the cell editor. If you implemented the cell editor, then you know the type
of the object that you return from the getCellEditorValue method. In the case of the
DefaultCellEditor, there are three possibilities for that value. It is a Boolean if the
cell editor is a check box, a string if it is a text field. If the value comes from a combo box, then
it is the object that the user selected.

If the value object does not have the appropriate type, then you need to convert it. That
happens most commonly when a number is edited in a text field. In our example, we populated
the combo box with Integer objects so that no conversion is necessary.

Example 6-13 TableCellRenderTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.util.*;
 4. import javax.swing.*;
 5. import javax.swing.event.*;
 6. import javax.swing.table.*;
 7.
 8. /**
 9. This program demonstrates cell rendering and editing
 10. in a table.
 11. */
 12. public class TableCellRenderTest
 13. {
 14. public static void main(String[] args)
 15. {
 16. JFrame frame = new TableCellRenderFrame();
 17. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 18. frame.show();
 19. }
 20. }
 21.
 22. /**
 23. This frame contains a table of planet data.
 24. */
 25. class TableCellRenderFrame extends JFrame

 26. {
 27. public TableCellRenderFrame()
 28. {
 29. setTitle("TableCellRenderTest");
 30. setSize(WIDTH, HEIGHT);
 31.
 32. TableModel model = new PlanetTableModel();
 33. JTable table = new JTable(model);
 34.
 35. // set up renderers and editors
 36.
 37. table.setDefaultRenderer(Color.class,
 38. new ColorTableCellRenderer());
 39. table.setDefaultEditor(Color.class,
 40. new ColorTableCellEditor());
 41.
 42. JComboBox moonCombo = new JComboBox();
 43. for (int i = 0; i <= 20; i++)
 44. moonCombo.addItem(new Integer(i));
 45. TableColumnModel columnModel = table.getColumnModel
 46. TableColumn moonColumn
 47. = columnModel.getColumn(PlanetTableModel.MOON_CO
 48. moonColumn.setCellEditor(new DefaultCellEditor(moon
 49.
 50. // show table
 51.
 52. table.setRowHeight(100);
 53. getContentPane().add(new JScrollPane(table),
 54. BorderLayout.CENTER);
 55. }
 56.
 57. private static final int WIDTH = 600;
 58. private static final int HEIGHT = 400;
 59. }
 60.
 61. /**
 62. The planet table model specifies the values, rendering
 63. and editing properties for the planet data.
 64. */
 65. class PlanetTableModel extends AbstractTableModel
 66. {
 67. public String getColumnName(int c)
 68. {
 69. return columnNames[c];

 70. }
 71.
 72. public Class getColumnClass(int c)
 73. {
 74. return cells[0][c].getClass();
 75. }
 76.
 77. public int getColumnCount()
 78. {
 79. return cells[0].length;
 80. }
 81.
 82. public int getRowCount()
 83. {
 84. return cells.length;
 85. }
 86.
 87. public Object getValueAt(int r, int c)
 88. {
 89. return cells[r][c];
 90. }
 91.
 92. public void setValueAt(Object obj, int r, int c)
 93. {
 94. cells[r][c] = obj;
 95. }
 96.
 97. public boolean isCellEditable(int r, int c)
 98. {
 99. return c == NAME_COLUMN
100. || c == MOON_COLUMN
101. || c == GASEOUS_COLUMN
102. || c == COLOR_COLUMN;
103. }
104.
105. public static final int NAME_COLUMN = 0;
106. public static final int MOON_COLUMN = 2;
107. public static final int GASEOUS_COLUMN = 3;
108. public static final int COLOR_COLUMN = 4;
109.
110. private Object[][] cells =
111. {
112. {
113. "Mercury", new Double(2440), new Integer(0),

114. Boolean.FALSE, Color.yellow,
115. new ImageIcon("Mercury.gif")
116. },
117. {
118. "Venus", new Double(6052), new Integer(0),
119. Boolean.FALSE, Color.yellow,
120. new ImageIcon("Venus.gif")
121. },
122. {
123. "Earth", new Double(6378), new Integer(1),
124. Boolean.FALSE, Color.blue,
125. new ImageIcon("Earth.gif")
126. },
127. {
128. "Mars", new Double(3397), new Integer(2),
129. Boolean.FALSE, Color.red,
130. new ImageIcon("Mars.gif")
131. },
132. {
133. "Jupiter", new Double(71492), new Integer(16),
134. Boolean.TRUE, Color.orange,
135. new ImageIcon("Jupiter.gif")
136. },
137. {
138. "Saturn", new Double(60268), new Integer(18),
139. Boolean.TRUE, Color.orange,
140. new ImageIcon("Saturn.gif")
141. },
142. {
143. "Uranus", new Double(25559), new Integer(17),
144. Boolean.TRUE, Color.blue,
145. new ImageIcon("Uranus.gif")
146. },
147. {
148. "Neptune", new Double(24766), new Integer(8),
149. Boolean.TRUE, Color.blue,
150. new ImageIcon("Neptune.gif")
151. },
152. {
153. "Pluto", new Double(1137), new Integer(1),
154. Boolean.FALSE, Color.black,
155. new ImageIcon("Pluto.gif")
156. }
157. };

158.
159. private String[] columnNames =
160. {
161. "Planet", "Radius", "Moons", "Gaseous", "Color", "I
162. };
163. }
164.
165. /**
166. This renderer renders a color value as a panel with th
167. given color.
168. */
169. class ColorTableCellRenderer implements TableCellRenderer
170. {
171. public Component getTableCellRendererComponent(JTable
172. Object value, boolean isSelected, boolean hasFocus,
173. int row, int column)
174. {
175. panel.setBackground((Color)value);
176. return panel;
177. }
178.
179. // the following panel is returned for all cells, with
180. // the background color set to the Color value of the
181.
182. private JPanel panel = new JPanel();
183. }
184.
185. /**
186. This editor pops up a color dialog to edit a cell valu
187. */
188. class ColorTableCellEditor extends AbstractCellEditor
189. implements TableCellEditor
190. {
191. ColorTableCellEditor()
192. {
193. panel = new JPanel();
194. // prepare color dialog
195.
196. colorChooser = new JColorChooser();
197. colorDialog = JColorChooser.createDialog(null,
198. "Planet Color", false, colorChooser,
199. new
200. ActionListener() // OK button listener
201. {

202. public void actionPerformed(ActionEvent ev
203. {
204. stopCellEditing();
205. }
206. },
207. new
208. ActionListener() // Cancel button listener
209. {
210. public void actionPerformed(ActionEvent ev
211. {
212. cancelCellEditing();
213. }
214. });
215. colorDialog.addWindowListener(new
216. WindowAdapter()
217. {
218. public void windowClosing(WindowEvent event)
219. {
220. cancelCellEditing();
221. }
222. });
223. }
224.
225. public Component getTableCellEditorComponent(JTable ta
226. Object value, boolean isSelected, int row, int colu
227. {
228. // this is where we get the current Color value. We
229. // store it in the dialog in case the user starts e
230. colorChooser.setColor((Color)value);
231. return panel;
232. }
233.
234. public boolean shouldSelectCell(EventObject anEvent)
235. {
236. // start editing
237. colorDialog.setVisible(true);
238.
239. // tell caller it is ok to select this cell
240. return true;
241. }
242.
243. public void cancelCellEditing()
244. {
245. // editing is canceled--hide dialog

246. colorDialog.setVisible(false);
247. super.cancelCellEditing();
248. }
249.
250. public boolean stopCellEditing()
251. {
252. // editing is complete--hide dialog
253. colorDialog.setVisible(false);
254. super.stopCellEditing();
255.
256. // tell caller is is ok to use color value
257. return true;
258. }
259.
260. public Object getCellEditorValue()
261. {
262. return colorChooser.getColor();
263. }
264.
265. private Color color;
266. private JColorChooser colorChooser;
267. private JDialog colorDialog;
268. private JPanel panel;
269. }

javax.swing.JTable

void setRowHeight(int height)

sets the height of all rows of the table to height pixels.

void setRowHeight(int row, int height)

sets the height of the given row of the table to height pixels.

void setRowMargin(int margin)

sets the amount of empty space between cells in adjacent rows.

int getRowHeight()

gra

gets the default height of all rows of the table.

int getRowHeight(int row)

gets the height of the given row of the table.

int getRowMargin()

gets the amount of empty space between cells in adjacent rows.

Rectangle getCellRect(int row, int column, boolean
includeSpacing)

returns the bounding rectangle of a table cell.

Color getSelectionBackground()

Color getSelectionForeground()

return the background and foreground colors to use for selected cells.

javax.swing.table.TableModel

Class getColumnClass(int columnIndex)

gets the class for the values in this column. This information is used by the cell renderer
and editor.

javax.swing.table.TableCellRenderer

Component getTableCellRendererComponent(JTable table,
Object value, boolean selected, boolean hasFocus, int row,

Parameters: row, column the row and column of the cell
 includeSpacing true if the space around the cell should be

included

gra

gra

int column)

returns a component whose paint method is invoked to render a table cell.

javax.swing.table.TableColumnModel

TableColumn getColumn(int index)

gets the table column object that describes the column with the given index.

javax.swing.table.TableColumn

void setCellEditor(TableCellEditor editor)

void setCellRenderer(TableCellRenderer renderer)

set the cell editor or renderer for all cells in this column.

javax.swing.DefaultCellEditor

DefaultCellEditor(JComboBox comboBox)

constructs a cell editor that presents the combo box for selecting cell values.

javax.swing.CellEditor

Parameters: table the table containing the cell to be rendered
 value the cell to be rendered
 selected true if the cell is currently selected
 hasFocus true if the cell currently has focus
 row, column the row and column of the cell

gra

gra

gra

boolean isCellEditable(EventObject event)

returns true if the event is suitable for initiating the editing process for this cell.

boolean shouldSelectCell(EventObject anEvent)

starts the editing process. Returns true if the edited cell should be selected. Normally,
you want to return true, but you can return false if you don't want the editing process
to change the cell selection.

void cancelCellEditing()

cancels the editing process. You can abandon partial edits.

boolean stopCellEditing()

stops the editing process, with the intent of using the result. Returns true if the edited
value is in a proper state for retrieval.

Object getCellEditorValue()

returns the edited result.

void addCellEditorListener(CellEditorListener l)

void removeCellEditorListener(CellEditorListener l)

add and remove the obligatory cell editor listener.

javax.swing.table.TableCellEditor

Component getTableCellEditorComponent(JTable table, Object
value, boolean selected, int row, int column)

returns a component whose paint method renders a table cell.

gra

gra

Parameters: table the table containing the cell to be rendered
 value the cell to be rendered

javax.swing.JColorChooser

JColorChooser()

constructs a color chooser with an initial color of white.

Color getColor()

void setColor(Color c)

get and set the current color of this color chooser.

static JDialog createDialog(Component parent, String
title, boolean modal, JColorChooser chooser,
ActionListener okListener, ActionListener cancelListener)

creates a dialog box that contains a color chooser.

static Color showDialog(Component component, String title,
Color initialColor)

creates and shows a modal dialog box that contains a color chooser.

 selected true if the cell is currently selected
 row, column the row and column of the cell

gra

Parameters: parent the component over which to pop up the
dialog

 title the title for the dialog box frame
 modal true if this call should block until the

dialog is closed
 chooser the color chooser to add to the dialog
 okListener,

cancelListener
the listeners of the OK and Cancel
buttons

Parameters: component the component over which to pop up the dialog
 title the title for the dialog box frame

Working with Rows and Columns

In this subsection, you will see how to manipulate the rows and columns in a table. As you
read through this material, you should keep in mind that a Swing table is quite asymmetric—
there are different operations that you can carry out on rows and columns. The table
component was optimized to display rows of information with the same structure, such as the
result of a database query, not an arbitrary two-dimensional grid of objects. You will see this
asymmetry throughout this subsection.

Resizing columns

The TableColumn class gives you control over the resizing behavior of columns. You can
set the preferred, minimum, and maximum width with the methods

void setPreferredWidth(int width)
void setMinWidth(int width)
void setMaxWidth(int width)

This information is used by the table component to lay out the columns.

Use the method

void setResizable(boolean resizable)

to control whether the user is allowed to resize the column.

You can programmatically resize a column with the method

void setWidth(int width)

When a column is resized, the default is to leave the total size of the table unchanged. Of
course, the width increase or decrease of the resized column must then be distributed over
other columns. The default behavior is to change the size of all columns to the right of the
resized column. That's a good default because it allows a user to adjust all columns to a
desired width, moving from left to right.

You can set another behavior from Table 6-2 by using the method

void setAutoResizeMode(int mode)

of the JTable class.

 initialColor the initial selected color

Table 6-2. Resize modes
Mode Behavior
AUTO_RESIZE_OFF Don't resize other columns; change the table

Selecting Rows, Columns, and Cells

Depending on the selection mode, the user can select rows, columns, or individual cells in the
table. By default, row selection is enabled. Clicking inside a cell selects the entire row (see
Figure 6-36). Call

Figure 6-36. Selecting a row

table.setRowSelectionAllowed(false)

to disable row selection.

When row selection is enabled, you can control whether the user is allowed to select a single
row, a contiguous set of rows, or any set of rows. You need to retrieve the selection model and
use its setSelectionMode method:

table.getSelectionModel().setSelectionMode(mode);

Here, mode is one of the three values:

size
AUTO_RESIZE_NEXT_COLUMN Resize the next column only
AUTO_RESIZE_SUBSEQUENT_COLUMNS Resize all subsequent columns equally; this is

the default behavior
AUTO_RESIZE_LAST_COLUMN Resize the last column only
AUTO_RESIZE_ALL_COLUMNS Resize all columns in the table; this is not a

good choice because it makes it challenging for
the user to adjust multiple columns to a desired
size

ListSelectionModel.SINGLE_SELECTION
ListSelectionModel.SINGLE_INTERVAL_SELECTION
ListSelectionModel.MULTIPLE_INTERVAL_SELECTION

Column selection is disabled by default. You turn it on with the call

table.setColumnSelectionAllowed(true)

Enabling both row and column selection is equivalent to enabling cell selection. Then the user
selects ranges of cells (see Figure 6-37). You can also enable that setting with the call

Figure 6-37. Selecting a range of cells

table.setCellSelectionEnabled(true)

NOTE

You can find out which rows and columns are selected by calling the getSelectedRows
and getSelectedColumns methods. Both return an int[] array of the indexes of the
selected items.

You can run the program in Example 6-14 to watch cell selection in action. Enable row,
column, or cell selection in the Selection menu and watch how the selection behavior changes.

Hiding and displaying columns

In early versions of the Swing toolkit, when setting both row and column
selections, every mouse click selects a "+" shaped area consisting of both
the row and the column containing the cursor.

The removeColumn method of the JTable class removes a column from the table view.
The column data is not actually removed from the model—it is just hidden from view. The
removeColumn method takes a TableColumn argument. If you have the column number
(for example, from a call to getSelectedColumns), you need to ask the table model for
the actual table column object:

TableColumnModel columnModel = table.getColumnModel();
TableColumn column = columnModel.getColumn(i);
table.removeColumn(column);

If you remember the column, you can later add it back in:

table.addColumn(column);

This method adds the column to the end. If you want it to appear elsewhere, you have to call
the moveColumn method.

You can also add a new column that corresponds to a column index in the table model, by
adding a new TableColumn object:

table.addColumn(new TableColumn(modelColumnIndex));

You can have multiple table columns that view the same column of the model.

However, there is no JTable method to actually insert a new column into the model or to
remove a column from the model. There are also no JTable methods for hiding or showing
rows. If you want to hide rows, you can create a filter model similar to the sort filter that you
saw earlier.

Adding and removing rows in the default table model

The DefaultTableModel class is a concrete class that implements the TableModel
interface. It stores a two-dimensional grid of objects. If you already have your data in a tabular
arrangement, then there is no point in copying all the data into a default table model, but it is
handy if you quickly need to make a table from a small data set. The DefaultTableModel
class has methods for adding rows and columns, and for removing rows.

The addRow and addColumn methods add a row or column of new data. You supply an
Object[] array or a vector that holds the new data. With the addColumn method, you
also need to supply a name for the new column. These methods add the new data to the end
of the grid. To insert a row in the middle, use the insertRow method. There is no method
for inserting a column in the middle of the grid.

Conversely, the removeRow method removes a row from the model. There is no method for
removing a column.

Since the JTable object registers itself as a table model listener, the model notifies the table

when data is inserted or removed. At that time, the table refreshes the display.

The program in Example 6-14 shows both selection and editing at work. A default table model
contains a simple data set (a multiplication table). The Edit menu contains these commands:

Hide all selected columns.

Show all columns that you've ever hidden.

Remove selected rows from the model.

Add a row of data to the end of the model.

This example concludes the discussion of Swing tables. Tables are conceptually a bit easier to
grasp than trees because the underlying data model—a grid of objects—is easy to visualize.
However, under the hood, the table component is actually quite a bit more complex than the
tree component. Column headers, resizable columns, and column-specific renderers and
editors all add to the complexity. In this section, we focused on those topics that you are most
likely to encounter in practice: displaying database information, sorting, and custom cell
rendering and editing. If you have special advanced needs, we once again refer you to Core
Java Foundation Classes by Kim Topley and Graphic Java 2 by David Geary.

Example 6-14 TableSelectionTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.util.*;
 4. import java.text.*;
 5. import javax.swing.*;
 6. import javax.swing.table.*;
 7.
 8. /**
 9. This program demonstrates selection, addition, and rem
 10. of rows and columns.
 11. */
 12. public class TableSelectionTest
 13. {
 14. public static void main(String[] args)
 15. {
 16. JFrame frame = new TableSelectionFrame();
 17. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 18. frame.show();
 19. }
 20. }
 21.
 22. /**
 23. This frame shows a multiplication table and has menus

 24. setting the row/column/cell selection modes, and for
 25. adding and removing rows and columns.
 26. */
 27. class TableSelectionFrame extends JFrame
 28. {
 29. public TableSelectionFrame()
 30. {
 31. setTitle("TableSelectionTest");
 32. setSize(WIDTH, HEIGHT);
 33.
 34. // set up multiplication table
 35.
 36. model = new DefaultTableModel(10, 10);
 37.
 38. for (int i = 0; i < model.getRowCount(); i++)
 39. for (int j = 0; j < model.getColumnCount(); j++)
 40. model.setValueAt(
 41. new Integer((i + 1) * (j + 1)), i, j);
 42.
 43. table = new JTable(model);
 44. Container contentPane = getContentPane();
 45. contentPane.add(new JScrollPane(table), "Center");
 46.
 47. removedColumns = new ArrayList();
 48.
 49. // create menu
 50.
 51. JMenuBar menuBar = new JMenuBar();
 52. setJMenuBar(menuBar);
 53.
 54. JMenu selectionMenu = new JMenu("Selection");
 55. menuBar.add(selectionMenu);
 56.
 57. final JCheckBoxMenuItem rowsItem
 58. = new JCheckBoxMenuItem("Rows");
 59. final JCheckBoxMenuItem columnsItem
 60. = new JCheckBoxMenuItem("Columns");
 61. final JCheckBoxMenuItem cellsItem
 62. = new JCheckBoxMenuItem("Cells");
 63.
 64. rowsItem.setSelected(table.getRowSelectionAllowed()
 65. columnsItem.setSelected(table.getColumnSelectionAll
 66. cellsItem.setSelected(table.getCellSelectionEnabled
 67.

 68. rowsItem.addActionListener(new
 69. ActionListener()
 70. {
 71. public void actionPerformed(ActionEvent event
 72. {
 73. table.clearSelection();
 74. table.setRowSelectionAllowed(
 75. rowsItem.isSelected());
 76. cellsItem.setSelected(
 77. table.getCellSelectionEnabled());
 78. }
 79. });
 80. selectionMenu.add(rowsItem);
 81.
 82. columnsItem.addActionListener(new
 83. ActionListener()
 84. {
 85. public void actionPerformed(ActionEvent event
 86. {
 87. table.clearSelection();
 88. table.setColumnSelectionAllowed(
 89. columnsItem.isSelected());
 90. cellsItem.setSelected(
 91. table.getCellSelectionEnabled());
 92. }
 93. });
 94. selectionMenu.add(columnsItem);
 95.
 96. cellsItem.addActionListener(new
 97. ActionListener()
 98. {
 99. public void actionPerformed(ActionEvent event
100. {
101. table.clearSelection();
102. table.setCellSelectionEnabled(
103. cellsItem.isSelected());
104. rowsItem.setSelected(
105. table.getRowSelectionAllowed());
106. columnsItem.setSelected(
107. table.getColumnSelectionAllowed());
108. }
109. });
110. selectionMenu.add(cellsItem);
111.

112. JMenu tableMenu = new JMenu("Edit");
113. menuBar.add(tableMenu);
114.
115. JMenuItem hideColumnsItem = new JMenuItem("Hide Col
116. hideColumnsItem.addActionListener(new
117. ActionListener()
118. {
119. public void actionPerformed(ActionEvent event
120. {
121. int[] selected = table.getSelectedColumns(
122. TableColumnModel columnModel
123. = table.getColumnModel();
124.
125. // remove columns from view, starting at t
126. // index so that column numbers aren't aff
127.
128.
129. for (int i = selected.length - 1; i >= 0;
130. {
131. TableColumn column
132. = columnModel.getColumn(selected[i])
133. table.removeColumn(column);
134.
135. // store removed columns for "show colu
136. // command
137.
138. removedColumns.add(column);
139. }
140. }
141. });
142. tableMenu.add(hideColumnsItem);
143.
144. JMenuItem showColumnsItem = new JMenuItem("Show Col
145. showColumnsItem.addActionListener(new
146. ActionListener()
147. {
148. public void actionPerformed(ActionEvent event
149. {
150. // restore all removed columns
151. for (int i = 0; i < removedColumns.size();
152. table.addColumn(
153. (TableColumn)removedColumns.get(i));
154. removedColumns.clear();
155. }

156. });
157. tableMenu.add(showColumnsItem);
158.
159. JMenuItem addRowItem = new JMenuItem("Add Row");
160. addRowItem.addActionListener(new
161. ActionListener()
162. {
163. public void actionPerformed(ActionEvent event
164. {
165. // add a new row to the multiplication tab
166. // the model
167.
168. Integer[] newCells
169. = new Integer[model.getColumnCount()];
170. for (int i = 0; i < newCells.length; i++)
171. newCells[i] = new Integer((i + 1)
172. * (model.getRowCount() + 1));
173. model.addRow(newCells);
174. }
175. });
176. tableMenu.add(addRowItem);
177.
178. JMenuItem removeRowsItem = new JMenuItem("Remove R
179. removeRowsItem.addActionListener(new
180. ActionListener()
181. {
182. public void actionPerformed(ActionEvent event
183. {
184. int[] selected = table.getSelectedRows();
185.
186. // remove rows from model, starting at the
187. // index so that the row numbers aren't af
188.
189.
190. for (int i = selected.length - 1; i >= 0; i
191. model.removeRow(selected[i]);
192. }
193. });
194. tableMenu.add(removeRowsItem);
195.
196. JMenuItem clearCellsItem = new JMenuItem("Clear Ce
197. clearCellsItem.addActionListener(new
198. ActionListener()
199. {

200. public void actionPerformed(ActionEvent event
201. {
202. // set all selected cells to 0
203.
204. for (int i = 0; i < table.getRowCount(); i
205. for (int j = 0; j < table.getColumnCount(
206. if (table.isCellSelected(i, j))
207. table.setValueAt(new Integer(0),
208. }
209. });
210. tableMenu.add(clearCellsItem);
211. }
212.
213. private DefaultTableModel model;
214. private JTable table;
215. private ArrayList removedColumns;
216.
217. private static final int WIDTH = 400;
218. private static final int HEIGHT = 300;
219. }

javax.swing.JTable

void setAutoResizeMode(int mode)

sets the mode for automatic resizing of table columns.

ListSelectionModel getSelectionModel()

returns the list selection model. You need that model to choose between row, column,
and cell selection.

gra

Parameters: mode one of AUTO_RESIZE_OFF,

AUTO_RESIZE_NEXT_COLUMN,
AUTO_RESIZE_SUBSEQUENT_COLUMNS,
AUTO_RESIZE_LAST_COLUMN,
AUTO_RESIZE_ALL_COLUMNS

void setRowSelectionAllowed(boolean b)

If b is true, then rows can be selected when the user clicks on cells.

void setColumnSelectionAllowed(boolean b)

If b is true, then columns can be selected when the user clicks on cells.

void setCellSelectionEnabled(boolean b)

If b is true, then individual cells are selected. This is equivalent to calling both
setRowSelectionAllowed(b) and setColumnSelectionAllowed(b).

boolean getRowSelectionAllowed()

Returns true if row selection is allowed.

boolean getColumnSelectionAllowed()

Returns true if column selection is allowed.

boolean getCellSelectionEnabled()

Returns true if both row and column selection are allowed.

void addColumn(TableColumn column)

adds a column to the table view.

void moveColumn(int from, int to)

moves the column at table index from so that its index becomes to. Only the view is
affected.

void removeColumn(TableColumn column)

removes the given column from the view.

javax.swing.table.TableColumn

TableColumn(int modelColumnIndex)

gra

constructs a table column for viewing the model column with the given index.

void setPreferredWidth(int width)

void setMinWidth(int width)

void setMaxWidth(int width)

set the preferred, minimum, and maximum width of this table column to width.

void setWidth(int width)

sets the actual width of this column to width.

void setResizable(boolean b)

If b is true, this column is resizable.

javax.swing.ListSelectionModel

void setSelectionMode(int mode)

javax.swing.table.DefaultTableModel

void addRow(Object[] rowData)

void addColumn(Object columnName, Object[] columnData)

add a row or column of data to the end of the table model.

void insertRow(int row, Object[] rowData)

gra

Parameters: mode one of SINGLE_SELECTION,

SINGLE_INTERVAL_SELECTION,

and MULTIPLE_INTERVAL_SELECTION

gra

adds a row of data at index row.

void removeRow(int row)

removes the given row from the model.

void moveRow(int start, int end, int to)

moves all rows with indexes between start and end to a new location starting at to.

Styled Text Components
In Volume 1, we discussed the basic text component classes JTextField and
JTextArea. Of course, these classes are very useful for obtaining text input from the user.
There is another useful class, JEditorPane, that displays and edits text in HTML and RTF
format. (RTF is the "rich text format" that is used by a number of Microsoft applications for
document interchange. It is a poorly documented format that doesn't work well even between
Microsoft's own applications. We do not cover the RTF capabilities in this book; Sun claims
only "limited" support for it. We wouldn't be surprised to see this feature dropped in the future
since it would make more sense for Sun to spend its resources on improving the HTML
support.)

Frankly, at this point, the JEditorPane is pretty limited. The HTML renderer can display
simple files, but it chokes at many complex pages that you typically find on the Web. The
HTML editor is limited and unstable. Of course, except for HTML editors, few applications
require users to edit HTML text, so this is not a major restriction.

We think that the perfect application for the JEditorPane is to display program help in
HTML format. Since you have control over the help files that you provide, you can stay away
from features that the JEditorPane does not display well.

NOTE

NOTE

The program in Example 6-15 contains an editor pane that shows the contents of an HTML

For more information on an industrial-strength help system, check out
JavaHelp at http://java.sun.com/products/javahelp/index.html.

The subclass JTextPane of JEditorPane can hold styled text with
special fonts and text formats, as well as embedded components. We will
not cover that component in this book. If you need to implement a
component that allows users of your program to enter styled text, have a
look at the implementation of the StylePad demo that is included in the
SDK.

page. Type a URL into the text field. The URL must start with http: or file:. Then, click
the Load button. The selected HTML page is displayed in the editor pane (see Figure 6-38).

Figure 6-38. The editor pane displaying an HTML page

The hyperlinks are active: if you click on a link, the application loads it. The Back button returns
to the previous page.

This program is in fact a very simple browser. Of course, it does not have any of the comfort
features, such as page caching or bookmark lists, that you expect from a commercial browser.
Also, the editor pane does not yet display applets.

If you click on the Editable check box, then the editor pane becomes editable. You can type in
text and use the BACKSPACE key to delete text. The component also understands the
CTRL+X, CTRL+C, and CTRL+V shortcuts for cut, copy, and paste.

However, you would have to do quite a bit of programming to add support for fonts and
formatting.

When the component is editable, then hyperlinks are not active. Also, with some web pages
you can see JavaScript commands, comments, and other tags when edit mode is turned on
(see Figure 6-39). The example program lets you investigate the editing feature, but we
recommend that you omit that feature in your programs.

Figure 6-39. The editor pane in edit mode

TIP

The features of the editor pane that you saw in the example program are very easy to use. You
use the setPage method to load a new document. The parameter is either a string or a URL
object. The JEditorPane class extends the JTextComponent class. Therefore, you can
call the setText method as well—it simply displays plain text.

To listen to hyperlink clicks, you add a HyperlinkListener. The
HyperlinkListener interface has a single method, hyperlinkUpdate, that is called
when the user moves over or clicks on a link. The method has a parameter of type
HyperlinkEvent.

You need to call the getEventType method to find out what kind of event occurred. There
are three possible return values:

HyperlinkEvent.EventType.ACTIVATED
HyperlinkEvent.EventType.ENTERED
HyperlinkEvent.EventType.EXITED

The first value indicates that the user clicked on the hyperlink. In that case, you typically want
to open the new link. You can use the second and third values to give some visual feedback,
such as a tooltip, when the mouse hovers over the link.

NOTE

By default, the JEditorPane is in edit mode. You should call
editorPane.setEditable(false) to turn it off.

The getURL method of the HyperlinkEvent class returns the URL of the hyperlink. For
example, here is how you can install a hyperlink listener that follows the links that a user
activates:

editorPane.addHyperlinkListener(new
 HyperlinkListener()
 {
 public void hyperlinkUpdate(HyperlinkEvent event)
 {
 if (event.getEventType()
 == HyperlinkEvent.EventType.ACTIVATED)
 {
 try
 {
 editorPane.setPage(event.getURL());
 }
 catch(IOException e)
 {
 editorPane.setText("Exception: " + e);
 }
 }
 }
 });

The event handler simply gets the URL and updates the editor pane. The set Page method
can throw an IOException. In that case, we display an error message as plain text.

The program in Example 6-15 shows all the features that you need to put together an HTML
help system. Under the hood, the JEditorPane is even more complex than the tree and
table components. However, if you don't need to write a text editor or a renderer of a custom
text format, that complexity is hidden from you.

Example 6-15 EditorPaneTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.io.*;
 4. import java.util.*;
 5. import javax.swing.*;
 6. import javax.swing.event.*;

It is a complete mystery why there aren't three separate methods to handle
activation, entry, and exit in the HyperlinkListener interface.

 7.
 8. /**
 9. This program demonstrates how to display HTML document
 10. in an editor pane.
 11. */
 12. public class EditorPaneTest
 13. {
 14. public static void main(String[] args)
 15. {
 16. JFrame frame = new EditorPaneFrame();
 17. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 18. frame.show();
 19. }
 20. }
 21.
 22. /**
 23. This frame contains an editor pane, a text field and b
 24. to enter a URL and load a document, and a Back button
 25. return to a previously loaded document.
 26. */
 27. class EditorPaneFrame extends JFrame
 28. {
 29. public EditorPaneFrame()
 30. {
 31. setTitle("EditorPaneTest");
 32. setSize(WIDTH, HEIGHT);
 33.
 34. final Stack urlStack = new Stack();
 35. final JEditorPane editorPane = new JEditorPane();
 36. final JTextField url = new JTextField(30);
 37.
 38. // set up hyperlink listener
 39.
 40. editorPane.setEditable(false);
 41. editorPane.addHyperlinkListener(new
 42. HyperlinkListener()
 43. {
 44. public void hyperlinkUpdate(HyperlinkEvent ev
 45. {
 46. if (event.getEventType()
 47. == HyperlinkEvent.EventType.ACTIVATED)
 48. {
 49. try
 50. {

 51. // remember URL for back button
 52. urlStack.push(event.getURL().toStrin
 53. // show URL in text field
 54. url.setText(event.getURL().toString(
 55.
 56. editorPane.setPage(event.getURL());
 57. }
 58. catch(IOException e)
 59. {
 60. editorPane.setText("Exception: " + e
 61. }
 62. }
 63. }
 64. });
 65.
 66. // set up checkbox for toggling edit mode
 67.
 68. final JCheckBox editable = new JCheckBox();
 69. editable.addActionListener(new
 70. ActionListener()
 71. {
 72. public void actionPerformed(ActionEvent event
 73. {
 74. editorPane.setEditable(editable.isSelected
 75. }
 76. });
 77.
 78. // set up load button for loading URL
 79.
 80. ActionListener listener = new
 81. ActionListener()
 82. {
 83. public void actionPerformed(ActionEvent event
 84. {
 85. try
 86. {
 87. // remember URL for back button
 88. urlStack.push(url.getText());
 89.
 90. editorPane.setPage(url.getText());
 91. }
 92. catch(IOException e)
 93. {
 94. editorPane.setText("Exception: " + e);

 95. }
 96. }
 97. };
 98.
 99. JButton loadButton = new JButton("Load");
100. loadButton.addActionListener(listener);
101. url.addActionListener(listener);
102.
103. // set up back button and button action
104.
105. JButton backButton = new JButton("Back");
106. backButton.addActionListener(new
107. ActionListener()
108. {
109. public void actionPerformed(ActionEvent event
110. {
111. if (urlStack.size() <= 1) return;
112. try
113. {
114. // get URL from back button
115. urlStack.pop();
116. // show URL in text field
117. String urlString = (String)urlStack.pee
118. url.setText(urlString);
119.
120. editorPane.setPage(urlString);
121. }
122. catch(IOException e)
123. {
124. editorPane.setText("Exception: " + e);
125. }
126. }
127. });
128.
129. Container contentPane = getContentPane();
130. contentPane.add(new JScrollPane(editorPane),
131. BorderLayout.CENTER);
132.
133. // put all control components in a panel
134.
135. JPanel panel = new JPanel();
136. panel.add(new JLabel("URL"));
137. panel.add(url);
138. panel.add(loadButton);

139. panel.add(backButton);
140. panel.add(new JLabel("Editable"));
141. panel.add(editable);
142.
143. contentPane.add(panel, BorderLayout.SOUTH);
144. }
145.
146. private static final int WIDTH = 600;
147. private static final int HEIGHT = 400;
148. }

javax.swing.JEditorPane

void setPage(URL url)

loads the page from url into the editor pane.

void addHyperlinkListener(HyperLinkListener listener)

adds a hyperlink listener to this editor pane.

javax.swing.event.HyperlinkListener

void hyperlinkUpdate(HyperlinkEvent event)

is called whenever a hyperlink was selected.

javax.swing.HyperlinkEvent

URL getURL()

returns the URL of the selected hyperlink.

gra

gra

gra

Component Organizers
We conclude the discussion of advanced Swing features with a presentation of components
that help organize other components. These include the split pane, a mechanism for splitting
an area into multiple parts whose boundaries can be adjusted, the tabbed pane, which uses
tab dividers to allow a user to flip through multiple panels, and the desktop pane, which can be
used to implement applications that display multiple internal frames.

Split Panes

Split panes are used to split a component into two parts, with an adjustable boundary in
between. Figure 6-40 shows a frame with two split panes. The outer pane is split horizontally,
with a text area on the bottom and another split pane on the top. That pane is split vertically,
with a list on the left and a label containing an image on the right.

Figure 6-40. A frame with two nested split panes

You construct a split pane by specifying the orientation, one of
JSplitPane.HORIZONTAL_SPLIT or JSplitPane.VERTICAL_SPLIT, followed
by the two components. For example,

JSplitPane innerPane
 = new JSplitPane(JSplitPane.HORIZONTAL_SPLIT,
 planetList, planetImage);

That's all you have to do. If you like, you can add "one touch expand" icons to the splitter bar.
You see those icons in the top pane in Figure 6-40 . In the Metal look and feel, they are small
triangles. If you click on one of them, the splitter moves all the way in the direction of the tip of
the triangle, expanding one of the panes completely.

To add this capability, call

innerPane.setOneTouchExpandable(true);

The "continuous layout" feature continuously repaints the contents of both components as the
user adjusts the splitter. That looks classier, but it can be slow. You turn on that feature with
the call

innerPane.setContinuousLayout(true);

In the example program, we left the bottom splitter at the default (no continuous layout). When
you drag it, you only move a black outline. When you are done, the components are repainted.

The program in Example 6-16 is very straightforward. It populates a list box with planets. When
the user makes a selection, the planet image is displayed to the right and a description is
placed in the text area on the bottom. When you run the program, adjust the splitters and try
out the "one touch expansion" and "continuous layout" features.

Example 6-16 SplitPaneTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.util.*;
 4. import javax.swing.*;
 5. import javax.swing.event.*;
 6.
 7. /**
 8. This program demonstrates the split pane component
 9. organizer.
 10. */
 11. public class SplitPaneTest
 12. {
 13. public static void main(String[] args)
 14. {
 15. JFrame frame = new SplitPaneFrame();
 16. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 17. frame.show();
 18. }
 19. }
 20.

 21. /**
 22. This frame consists of two nested split panes to demon
 23. planet images and data.
 24. */
 25. class SplitPaneFrame extends JFrame
 26. {
 27. public SplitPaneFrame()
 28. {
 29. setTitle("SplitPaneTest");
 30. setSize(WIDTH, HEIGHT);
 31.
 32. // set up components for planet names, images, desc
 33.
 34. final JList planetList = new JList(planets);
 35. final JLabel planetImage = new JLabel();
 36. final JTextArea description = new JTextArea();
 37.
 38. planetList.addListSelectionListener(new
 39. ListSelectionListener()
 40. {
 41. public void valueChanged(ListSelectionEvent e
 42. {
 43. Planet value
 44. = (Planet)planetList.getSelectedValue();
 45.
 46. // update image and description
 47.
 48. planetImage.setIcon(value.getImage());
 49. description.setText(value.getDescription()
 50. }
 51. });
 52.
 53. // set up split panes
 54.
 55. JSplitPane innerPane
 56. = new JSplitPane(JSplitPane.HORIZONTAL_SPLIT,
 57. planetList, planetImage);
 58.
 59. innerPane.setContinuousLayout(true);
 60. innerPane.setOneTouchExpandable(true);
 61.
 62. JSplitPane outerPane
 63. = new JSplitPane(JSplitPane.VERTICAL_SPLIT,
 64. innerPane, description);

 65.
 66. getContentPane().add(outerPane, "Center");
 67. }
 68.
 69. private Planet[] planets =
 70. {
 71. new Planet("Mercury", 2440, 0),
 72. new Planet("Venus", 6052, 0),
 73. new Planet("Earth", 6378, 1),
 74. new Planet("Mars", 3397, 2),
 75. new Planet("Jupiter", 71492, 16),
 76. new Planet("Saturn", 60268, 18),
 77. new Planet("Uranus", 25559, 17),
 78. new Planet("Neptune", 24766, 8),
 79. new Planet("Pluto", 1137, 1),
 80. };
 81. private static final int WIDTH = 300;
 82. private static final int HEIGHT = 200;
 83. }
 84.
 85. /**
 86. Describes a planet.
 87. */
 88. class Planet
 89. {
 90. /**
 91. Constructs a planet.
 92. @param n the planet name
 93. @param r the planet radius
 94. @param m the number of moons
 95. */
 96. public Planet(String n, double r, int m)
 97. { name = n;
 98. radius = r;
 99. moons = m;
100. image = new ImageIcon(name + ".gif");
101. }
102.
103. public String toString()
104. {
105. return name;
106. }
107.
108. /**

109. Gets a description of the planet.
110. @return the description
111. */
112. public String getDescription()
113. {
114. return "Radius: " + radius + "\nMoons: " + moons +
115. }
116.
117. /**
118. Gets an image of the planet.
119. @return the image
120. */
121. public ImageIcon getImage()
122. {
123. return image;
124. }
125.
126. private String name;
127. private double radius;
128. private int moons;
129. private ImageIcon image;
130.}

javax.swing.JSplitPane

JSplitPane()

JSplitPane(int direction)

JSplitPane(int direction, boolean continuousLayout)

JSplitPane(int direction, Component first, Component
second)

JSplitPane(int direction, boolean continuousLayout,
Component first, Component second)

construct a new split pane.

gra

Parameters: direction one of HORIZONTAL_SPLIT or
VERTICAL_SPLIT

boolean isOneTouchExpandable()

void setOneTouchExpandable(boolean b)

get and set the "one-touch expandable" property. When this property is set, the splitter
has two icons to completely expand one or the other component.

boolean isContinuousLayout()

void setContinuousLayout(boolean b)

get and set the "continuous layout" property. When this property is set, then the
components are continuously updated when the splitter is moved.

void setLeftComponent(Component c)

void setTopComponent(Component c)

These operations have the same effect, to set c as the first component in the split pane.

void setRightComponent(Component c)

void setBottomComponent(Component c)

These operations have the same effect, to set c as the second component in the split
pane.

Tabbed Panes

Tabbed panes are a familiar user interface device to break up a complex dialog in7to subsets
of related options. You can also use tabs to let a user flip through a set of documents or
images (see Figure 6-41). That is what we will do in our sample program.

Figure 6-41. A tabbed pane

 continousLayout true if the components are continuously updated
when the splitter is moved

 first, second the components to add

To create a tabbed pane, you first construct a JTabbedPane object, then you add tabs to it.

JTabbedPane tabbedPane = new JTabbedPane();
tabbedPane.addTab(title, icon, component);

The last parameter of the addTab method has type Component. If you want to add multiple
components into the same tab, you first pack them up in a container, such as a JPanel.

The icon is optional; there is an addTab method that does not require an icon:

tabbedPane.addTab(title, component);

You can also add a tab in the middle of the tab collection with the insertTab method:

tabbedPane.insertTab(title, icon, component, index);

To remove a tab from the tab collection, use

tabPane.removeTabAt(index);

When you add a new tab to the tab collection, it is not automatically displayed. You must select
it with the setSelectedIndex method. For example, here is how you show a tab that you
just added to the end:

tabbedPane.setSelectedIndex(tabbedPane.getTabCount() - 1);

If you have a lot of tabs, then they can take up quite a bit of space. Starting with SDK 1.4, you
can display the tabs in scrolling mode, where only one row of tabs is displayed, together with a
set of arrow buttons that allow the user to scroll through the tab set (see Figure 6-42).

Figure 6-42. A tabbed pane with scrolling tabs

You set the tab layout to wrapped or scrolling mode by calling

tabbedPane.setTabLayoutPolicy(JTabbedPane.WRAP_TAB_LAYOUT);

or

tabbedPane.setTabLayoutPolicy(JTabbedPane.SCROLL_TAB_LAYOUT);

The example program shows a useful technique with tabbed panes. Sometimes, you want to
update a component just before it is displayed. In our example program, we will load the planet
image only when the user actually clicks on a tab.

To be notified whenever the user clicks on a new tab, you install a ChangeListener with
the tabbed pane. Note that you must install the listener with the tabbed pane itself, not with any
of the components.

tabbedPane.addChangeListener(listener);

When the user selects a tab, the stateChanged method of the change listener is called.
You retrieve the tabbed pane as the source of the event. Call the getSelectedIndex
method to find out which pane is about to be selected.

public void stateChanged(ChangeEvent event)
{
 int n = tabbedPane.getSelectedIndex();
 . . .
}

In Example 6-17 , we first set all tab components to null. When a new tab is selected, we
test if its component is still null. If so, we replace it with the image. (This happens
instantaneously when you click on the tab. You will not see an empty pane.) Just for fun, we
also change the icon from a yellow ball to a red ball to indicate which panes have been visited.

Example 6-17 TabbedPaneTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.util.*;
 4. import javax.swing.*;
 5. import javax.swing.event.*;
 6.
 7. /**
 8. This program demonstrates the tabbed pane component or
 9. */
 10. public class TabbedPaneTest
 11. {
 12. public static void main(String[] args)
 13. {
 14. JFrame frame = new TabbedPaneFrame();
 15. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 16. frame.show();
 17. }
 18. }
 19.
 20. /**
 21. This frame shows a tabbed pane and radio buttons to
 22. switch between wrapped and scrolling tab layout.
 23. */
 24. class TabbedPaneFrame extends JFrame
 25. {
 26. public TabbedPaneFrame()
 27. {
 28. setTitle("TabbedPaneTest");
 29. setSize(WIDTH, HEIGHT);
 30.
 31. final JTabbedPane tabbedPane = new JTabbedPane();

 32. // we set the components to null and delay their
 33. // loading until the tab is shown for the first tim
 34.
 35. ImageIcon icon = new ImageIcon("yellow-ball.gif");
 36.
 37. tabbedPane.addTab("Mercury", icon, null);
 38. tabbedPane.addTab("Venus", icon, null);
 39. tabbedPane.addTab("Earth", icon, null);
 40. tabbedPane.addTab("Mars", icon, null);
 41. tabbedPane.addTab("Jupiter", icon, null);
 42. tabbedPane.addTab("Saturn", icon, null);
 43. tabbedPane.addTab("Uranus", icon, null);
 44. tabbedPane.addTab("Neptune", icon, null);
 45. tabbedPane.addTab("Pluto", icon, null);
 46.
 47. getContentPane().add(tabbedPane, "Center");
 48.
 49. tabbedPane.addChangeListener(new
 50. ChangeListener()
 51. {
 52. public void stateChanged(ChangeEvent event)
 53. {
 54.
 55. // check if this tab still has a null comp
 56.
 57. if (tabbedPane.getSelectedComponent() == n
 58. {
 59. // set the component to the image icon
 60.
 61. int n = tabbedPane.getSelectedIndex();
 62. String title = tabbedPane.getTitleAt(n)
 63. ImageIcon planetIcon
 64. = new ImageIcon(title + ".gif");
 65. tabbedPane.setComponentAt(n,
 66. new JLabel(planetIcon));
 67.
 68. // indicate that this tab has been
 69. // visited--just for fun
 70.
 71. tabbedPane.setIconAt(n,
 72. new ImageIcon("red-ball.gif"));
 73. }
 74. }
 75. });

 76.
 77. JPanel buttonPanel = new JPanel();
 78. ButtonGroup buttonGroup = new ButtonGroup();
 79. JRadioButton wrapButton = new JRadioButton("Wrap ta
 80. wrapButton.addActionListener(new
 81. ActionListener()
 82. {
 83. public void actionPerformed(ActionEvent event
 84. {
 85. tabbedPane.setTabLayoutPolicy(
 86. JTabbedPane.WRAP_TAB_LAYOUT);
 87. }
 88. });
 89. buttonPanel.add(wrapButton);
 90. buttonGroup.add(wrapButton);
 91. wrapButton.setSelected(true);
 92. JRadioButton scrollButton
 93. = new JRadioButton("Scroll tabs");
 94. scrollButton.addActionListener(new
 95. ActionListener()
 96. {
 97. public void actionPerformed(ActionEvent event
 98. {
 99. tabbedPane.setTabLayoutPolicy(
100. JTabbedPane.SCROLL_TAB_LAYOUT);
101. }
102. });
103. buttonPanel.add(scrollButton);
104. buttonGroup.add(scrollButton);
105. getContentPane().add(buttonPanel, BorderLayout.SOUT
106. }
107.
108. private static final int WIDTH = 400;
109. private static final int HEIGHT = 300;
110. }
111.

javax.swing.JTabbedPane

JTabbedPane()

gra

JTabbedPane(int placement)

construct a tabbed pane.

void addTab(String title, Component component)

void addTab(String title, Icon icon, Component c)

void addTab(String title, Icon icon, Component c, String
tooltip)

add a tab to the end of the tabbed pane.

void insertTab(String title, Icon icon, Component c,
String tooltip, int index)

inserts a tab to the tabbed pane at the given index.

void removeTabAt(int index)

removes the tab at the given index.

void setSelectedIndex(int index)

selects the tab at the given index.

int getSelectedIndex()

returns the index of the selected tab.

Component getSelectedComponent()

returns the component.

String getTitleAt(int index)

void setTitleAt(int index, String title)

Icon getIconAt(int index)

Parameters: placement one of SwingConstants.TOP,
SwingConstants.LEFT,
SwingConstants.RIGHT,or
SwingConstants.BOTTOM

void setIconAt(int index, Icon icon)

Component getComponentAt(int index)

void setComponentAt(int index, Component c)

get or set the title, icon, or component at the given index.

int indexOfTab(Icon icon)

int indexOfTab(String title)

int indexOfComponent(Component c)

return the index of the tab with the given title, icon, or component.

int getTabCount()

returns the total number of tabs in this tabbed pane.

void setTabLayoutPolicy(int policy)

sets the tab layout policy. Tabs can be wrapped or scrolling.

void addChangeListener(ChangeListener listener)

adds a change listener that is notified when the user selects a different tab.

Desktop Panes and Internal Frames

Many applications present information in multiple windows that are all contained inside a large
frame. If you minimize the application frame, all of its windows are hidden at the same time. In
the Windows environment, this user interface is sometimes called the multiple document
interface or MDI. Figure 6-43 shows a typical application that utilizes this interface.

Figure 6-43. A multiple document interface application

Parameters: policy one of JTabbedPane.WRAP_TAB_LAYOUT or
JTabbedPane.SCROLL_TAB_LAYOUT
JTabbedPane.SCROLL_TAB_LAYOUT

For some time, this user interface style was very popular, but it has become less prevalent in
recent years. In particular, most browsers display a separate top-level frame for each web
page. (A conspicuous exception is the Opera browser, shown in Figure 6-43). Which is better?
There are advantages and disadvantages to both approaches. MDI reduces window clutter.
But having separate top-level windows means that you can use the buttons and hotkeys of the
host windowing system to flip through your windows.

In the world of Java, where you can't rely on a rich host windowing system, it makes a lot of
sense to have your application manage its frames.

Figure 6-44 shows a Java application with three internal frames. Two of them have decorations
on the border to maximize and iconify them. The third is in its iconified state.

Figure 6-44. A Java application with three internal frames

In the Metal look and feel, the internal frames have distinctive "grabber" areas that you use to
move the frames around. You can resize the windows by dragging the resize corners.

To achieve this capability, follow these steps:

1. Use a regular JFrame window for the application.

2. Set the content pane of the JFrame to a JDesktopPane.

desktop = new JDesktopPane();
setContentPane(desktop);

3. Construct JInternalFrame windows. You can specify whether you want the icons
for resizing or closing the frame. Normally, you want all icons.

JInternalFrame iframe = new JInternalFrame(title,
 true, // resizable
 true, // closable
 true, // maximizable
 true); // iconifiable

4. Add components to the content pane of the frame.

iframe.getContentPane().add(c);

5. Set a frame icon. The icon is shown in the top-left corner of the frame.

iframe.setFrameIcon(icon);

NOTE

6. Set the size of the internal frame. As with regular frames, internal frames initially have a
size of 0 by 0 pixels. Since you don't want to have all internal frames display on top of
each other, you should use a variable position for the next frame. Use the reshape
method to set both the position and size of the frame:

iframe.reshape(nextFrameX, nextFrameY, width, height);

7. As with JFrames, you need to make the frame visible.

iframe.setVisible(true);

NOTE

8. Add the frame to the JDesktopPane:

desktop.add(iframe);

9. You probably want to make the new frame the selected frame. Of the internal frames on
the desktop, only the selected frame receives keyboard focus. In the Metal look and feel,
the selected frame has a blue title bar, whereas the other frames have a gray title bar.
You use the setSelected method to select a frame. However, the "selected" property
can be vetoed —the currently selected frame can refuse to give up focus. In that case,
the setSelected method throws a PropertyVetoException that you need to
handle.

try
{
 iframe.setSelected(true);

In the current version of the Metal look and feel, the frame icon is not
displayed in iconized frames.

In earlier versions of Swing, internal frames were automatically visible and
this call was not necessary.

}
catch(PropertyVetoException e)
{
 // attempt was vetoed
}

10. You probably want to move the position for the next internal frame down so that it won't
overlay the existing frame. A good distance between frames is the height of the title bar,
which you can obtain as

int frameDistance =
 iframe.getHeight() - iframe.getContentPane().getHeight()

11. Use that distance to determine the next internal frame position.

nextFrameX += frameDistance;
nextFrameY += frameDistance;
if (nextFrameX + width > desktop.getWidth())
 nextFrameX = 0;
if (nextFrameY + height > desktop.getHeight())
 nextFrameY = 0;

Cascading and Tiling

In Windows, there are standard commands for cascading and tiling windows (see Figures 6-45
and 6-46). The Java JDesktopPane and JInternalFrame classes have no built-in
support for these operations. In Example 6-18 , we show you how you can implement these
operations yourself.

Figure 6-45. Cascaded internal frames

Figure 6-46. Tiled internal frames

To cascade all windows, you reshape windows to the same size and stagger their positions.
The getAllFrames method of the JDesktopPane class returns an array of all internal
frames.

JInternalFrame[] frames = desktop.getAllFrames();

However, you need to pay attention to the frame state. An internal frame can be in one of three
states:

Icon

Resizable

Maximum

You use the isIcon method to find out which internal frames are currently icons and should
be skipped. However, if a frame is in the maximum state, you have to first set it to be resizable
by calling setMaximum(false). This is another property that can be vetoed. Therefore,
you have to catch the PropertyVetoException.

The following loop cascades all internal frames on the desktop:

for (int i = 0; i < frames.length; i++)
{
 if (!frames[i].isIcon())
 {
 try
 {
 // try to make maximized frames resizable
 // this might be vetoed
 frames[i].setMaximum(false);
 frames[i].reshape(x, y, width, height);

 x += frameDistance;
 y += frameDistance;
 // wrap around at the desktop edge
 if (x + width > desktop.getWidth()) x = 0;
 if (y + height > desktop.getHeight()) y = 0;
 }
 catch(PropertyVetoException e)
 {}
 }
}

Tiling frames is trickier, particularly if the number of frames is not a perfect square. First, count
the number of frames that are not icons. Then, compute the number of columns as

int cols = (int)Math.sqrt(frameCount);

Then the number of rows is

int rows = frameCount / cols;

except that the last

extra = frameCount % cols

columns have rows + 1 rows.

Here is the loop for tiling all frames on the desktop.

int width = desktop.getWidth() / cols;
int height = desktop.getHeight() / rows;
int r = 0;
int c = 0;
for (int i = 0; i < frames.length; i++)
{
 if (!frames[i].isIcon())
 {
 try
 {
 frames[i].setMaximum(false);
 frames[i].reshape(c * width,
 r * height, width, height);
 r++;
 if (r == rows)
 {
 r = 0;
 c++;
 if (c == cols - extra)
 {
 // start adding an extra row
 rows++;
 height = desktop.getHeight() / rows;
 }
 }
 }
 catch(PropertyVetoException e)
 {}
 }
}

The example program shows another common frame operation: to move the selection from the
current frame to the next frame that isn't an icon. The JDesktopPane class has no method
to return the selected frame. Instead, you must traverse all frames and call isSelected
until you find the currently selected frame. Then, look for the next frame in the sequence that
isn't an icon, and try to select it by calling

frames[next].setSelected(true);

As before, that method can throw a PropertyVetoException, in which case you keep
looking. If you come back to the original frame, then no other frame was selectable, and you
give up. Here is the complete loop:

for (int i = 0; i < frames.length; i++)
{
 if (frames[i].isSelected())
 {
 // find next frame that isn't an icon and can be
 // selected
 try
 {
 int next = (i + 1) % frames.length;
 while (next != i && frames[next].isIcon())
 next = (next + 1) % frames.length;
 if (next == i) return;
 // all other frames are icons
 frames[next].setSelected(true);
 frames[next].toFront();
 return;
 }
 catch(PropertyVetoException e)
 {}
 }
}

Vetoing Property Settings

Now that you have seen all these veto exceptions, you may wonder how your frames can
issue a veto. The JInternalFrame class uses a general JavaBeans mechanism for
monitoring the setting of properties. We discuss this mechanism in full detail in Chapter 8 . For
now, we just want to show you how your frames can veto requests for property changes.

Frames don't usually want to use a veto to protest iconization or loss of focus. But it is very
common for frames to check whether it is okay to close them. You close a frame with the
setClosed method of the JInternalFrame class. Because the method is vetoable, it

calls all registered vetoable change listeners before proceeding to make the change. That
gives each of the listeners the opportunity to throw a PropertyVetoException and
thereby terminate the call to setClosed before it changed any settings.

In our example program, we put up a dialog to ask the user whether it is okay to close the
window (see Figure 6-47). If the user doesn't agree, the window stays open.

Figure 6-47. The user can veto the close property

Here is how you achieve such a notification.

1. Add a listener object to each frame. The object must belong to some class that
implements the VetoableChangeListener interface. It is best to do that right after
constructing the frame. In our example, we use the frame class that constructs the
internal frames. Another option would be to use an anonymous inner class.

iframe.addVetoableChangeListener(listener);

2. Implement the vetoableChange method, the only method required by the
VetoableChangeListener interface. The method receives a
PropertyChangeEvent object. Use the getName method to find the name of the
property that is about to be changed (such as "closed" if the method call to veto is
setClosed(true). As you will see in Chapter 8, the property name is obtained by
removing the "set" prefix from the method name and changing the next letter to
lowercase.

Use the getNewValue method to get the proposed new value.

String name = event.getPropertyName();
Object value = event.getNewValue();
if (name.equals("closed") && value.equals(Boolean.TRUE))
{
 ask user for confirmation
}

3. Simply throw a PropertyVetoException to block the property change. Return
normally if you don't want to veto the change.

class DesktopFrame extends JFrame
 implements VetoableChangeListener
{
 . . .
 public void vetoableChange(PropertyChangeEvent event)
 throws PropertyVetoException
 {
 . . .
 if (not ok)
 throw new PropertyVetoException("reason", event);
 // return normally if ok
 }
}

Dialogs in internal frames

If you use internal frames, you should not use the JDialog class for dialogs. Those dialogs
have two disadvantages:

They are heavyweight since they create a new frame in the windowing system.

The windowing system does not know how to position them relative to the internal frame
that spawned them.

Instead, for simple dialogs, use the showInternalXxxDialog methods of the
JOptionPane class. They work exactly like the showXxxDialog methods, except they
position a lightweight window over an internal frame.

As for more complex dialogs, construct them with a JInternalFrame. Unfortunately, then
you have no built-in support for modal dialogs.

In our sample program, we use an internal dialog to ask the user whether it is okay to close a
frame.

int result
 = JOptionPane.showInternalConfirmDialog(iframe,
 "OK to close?");

NOTE

Outline dragging

One criticism that developers have leveled against internal frames is that performance has not
been great. By far the slowest operation is to drag a frame with complex content across the
desktop. The desktop manager keeps asking the frame to repaint itself as it is being dragged,
which is quite slow.

Actually, if you use Windows or X Windows with a poorly written video driver, you'll experience
the same problem. Window dragging appears fast on most systems because the video
hardware supports the dragging operation by mapping the image inside the frame to different
screen location during the dragging process.

To improve performance without greatly degrading the user experience, you can set "outline
dragging" on. When the user drags the frame, only the outline of the frame is continuously
updated. The inside is repainted only when the user drops the frame to its final resting place.

To turn on outline dragging, call

desktop.setDragMode(JDesktopPane.OUTLINE_DRAG_MODE);

This setting is the equivalent of "continuous layout" in the JSplitPane class.

NOTE

If you simply want to be notified when a frame is closed, then you should
not use the veto mechanism. Instead, install an
InternalFrameListener. An internal frame listener works just like a
WindowListener. When the internal frame is closing, the
internalFrameClosing method is called instead of the familiar
windowClosing method. The other six internal frame notifications
(opened/closed, iconified/deiconified, activated/deactivated) also
correspond to the window listener methods.

In early versions of Swing, you had to use the magic incantation

desktop.putClientProperty(
 "JDesktopPane.dragMode", "outline");

In the sample program, you can use the Window -> Drag Outline check box menu selection to
toggle outline dragging on or off.

NOTE

Example 6-18 populates a desktop with internal frames that show HTML pages. The File ->
Open menu option pops up a file dialog for reading a local HTML file into a new nternal frame.
If you click on any link, the linked document is displayed in another internal frame. Try out the
Window -> Cascade and Window -> Tile commands. This example concludes our discussion
of advanced Swing features.

Example 6-18 InternalFrameTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.beans.*;
 4. import java.io.*;
 5. import java.net.*;
 6. import java.util.*;
 7. import javax.swing.*;
 8. import javax.swing.event.*;
 9.
 10. /**
 11. This program demonstrates the use of internal frames.
 12. */
 13. public class InternalFrameTest
 14. {
 15. public static void main(String[] args)
 16. {
 17. JFrame frame = new DesktopFrame();
 18. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 19. frame.show();
 20. }
 21. }
 22.
 23. /**
 24. This desktop frames contains editor panes that show HT
 25. documents.

to turn on outline dragging.

The internal frames on the desktop are managed by a DesktopManager
class. You don't need to know about this class for normal programming. It is
possible to implement different desktop behavior by installing a new
desktop manager, but we won't cover that.

 26. */
 27. class DesktopFrame extends JFrame
 28. {
 29. public DesktopFrame()
 30. {
 31. setTitle("InternalFrameTest");
 32. setSize(WIDTH, HEIGHT);
 33.
 34. desktop = new JDesktopPane();
 35. setContentPane(desktop);
 36.
 37.
 38. // set up menus
 39.
 40. JMenuBar menuBar = new JMenuBar();
 41. setJMenuBar(menuBar);
 42. JMenu fileMenu = new JMenu("File");
 43. menuBar.add(fileMenu);
 44. JMenuItem openItem = new JMenuItem("Open");
 45. openItem.addActionListener(new
 46. ActionListener()
 47. {
 48. public void actionPerformed(ActionEvent event
 49. {
 50. openFile();
 51. }
 52. });
 53. fileMenu.add(openItem);
 54. JMenuItem exitItem = new JMenuItem("Exit");
 55. exitItem.addActionListener(new
 56. ActionListener()
 57. {
 58. public void actionPerformed(ActionEvent event
 59. {
 60. System.exit(0);
 61. }
 62. });
 63. fileMenu.add(exitItem);
 64. JMenu windowMenu = new JMenu("Window");
 65. menuBar.add(windowMenu);
 66. JMenuItem nextItem = new JMenuItem("Next");
 67. nextItem.addActionListener(new
 68. ActionListener()
 69. {

 70. public void actionPerformed(ActionEvent event
 71. {
 72. selectNextWindow();
 73. }
 74. });
 75. windowMenu.add(nextItem);
 76. JMenuItem cascadeItem = new JMenuItem("Cascade");
 77. cascadeItem.addActionListener(new
 78. ActionListener()
 79. {
 80. public void actionPerformed(ActionEvent event
 81. {
 82. cascadeWindows();
 83. }
 84. });
 85. windowMenu.add(cascadeItem);
 86. JMenuItem tileItem = new JMenuItem("Tile");
 87. tileItem.addActionListener(new
 88. ActionListener()
 89. {
 90. public void actionPerformed(ActionEvent event
 91. {
 92. tileWindows();
 93. }
 94. });
 95. windowMenu.add(tileItem);
 96. final JCheckBoxMenuItem dragOutlineItem
 97. = new JCheckBoxMenuItem("Drag Outline");
 98. dragOutlineItem.addActionListener(new
 99. ActionListener()
100. {
101. public void actionPerformed(ActionEvent event
102. {
103. desktop.setDragMode(dragOutlineItem.isSele
104. ? JDesktopPane.OUTLINE_DRAG_MODE
105. : JDesktopPane.LIVE_DRAG_MODE);
106. }
107. });
108. windowMenu.add(dragOutlineItem);
109. }
110.
111. /**
112. Creates an internal frame on the desktop.
113. @param c the component to display in the internal f

114. @param t the title of the internal frame.
115. */
116. public void createInternalFrame(Component c, String t)
117. {
118. final JInternalFrame iframe = new JInternalFrame(t,
119. true, // resizable
120. true, // closable
121. true, // maximizable
122. true); // iconifiable
123.
124. iframe.getContentPane().add(c);
125. desktop.add(iframe);
126.
127. iframe.setFrameIcon(new ImageIcon("document.gif"));
128.
129. // add listener to confirm frame closing
130. iframe.addVetoableChangeListener(new
131. VetoableChangeListener()
132. {
133. public void vetoableChange(PropertyChangeEven
134. throws PropertyVetoException
135. {
136. String name = event.getPropertyName();
137. Object value = event.getNewValue();
138.
139. // we only want to check attempts to close
140. if (name.equals("closed")
141. && value.equals(Boolean.TRUE))
142. {
143. // ask user if it is ok to close
144. int result
145. = JOptionPane.showInternalConfirmDia
146. iframe, "OK to close?");
147.
148. // if the user doesn't agree, veto the
149. if (result != JOptionPane.YES_OPTION)
150. throw new PropertyVetoException(
151. "User canceled close", event);
152. }
153. }
154. });
155.
156. // position frame
157. int width = desktop.getWidth() / 2;

158. int height = desktop.getHeight() / 2;
159. iframe.reshape(nextFrameX, nextFrameY, width, heigh
160.
161. iframe.show();
162.
163. // select the frame--might be vetoed
164. try
165. {
166. iframe.setSelected(true);
167. }
168. catch(PropertyVetoException e)
169. {}
170.
171. /* if this is the first time, compute distance betw
172. cascaded frames
173. */
174.
175. if (frameDistance == 0)
176. frameDistance = iframe.getHeight()
177. - iframe.getContentPane().getHeight();
178.
179. // compute placement for next frame
180.
181. nextFrameX += frameDistance;
182. nextFrameY += frameDistance;
183. if (nextFrameX + width > desktop.getWidth())
184. nextFrameX = 0;
185. if (nextFrameY + height > desktop.getHeight())
186. nextFrameY = 0;
187. }
188.
189. /**
190. Cascades the non-iconified internal frames of the d
191. */
192. public void cascadeWindows()
193. {
194. JInternalFrame[] frames = desktop.getAllFrames();
195. int x = 0;
196. int y = 0;
197. int width = desktop.getWidth() / 2;
198. int height = desktop.getHeight() / 2;
199.
200. for (int i = 0; i < frames.length; i++)
201. {

202. if (!frames[i].isIcon())
203. {
204. try
205. {
206. // try to make maximized frames resizable
207. // this might be vetoed
208. frames[i].setMaximum(false);
209. frames[i].reshape(x, y, width, height);
210.
211. x += frameDistance;
212. y += frameDistance;
213. // wrap around at the desktop edge
214. if (x + width > desktop.getWidth()) x = 0;
215. if (y + height > desktop.getHeight()) y =
216. }
217. catch(PropertyVetoException e)
218. {}
219. }
220. }
221. }
222.
223. /**
224. Tiles the non-iconified internal frames of the desk
225. */
226. public void tileWindows()
227. {
228. JInternalFrame[] frames = desktop.getAllFrames();
229.
230. // count frames that aren't iconized
231. int frameCount = 0;
232. for (int i = 0; i < frames.length; i++)
233. {
234. if (!frames[i].isIcon())
235. frameCount++;
236. }
237.
238. int rows = (int)Math.sqrt(frameCount);
239. int cols = frameCount / rows;
240. int extra = frameCount % rows;
241. // number of columns with an extra row
242.
243. int width = desktop.getWidth() / cols;
244. int height = desktop.getHeight() / rows;
245. int r = 0;

246. int c = 0;
247. for (int i = 0; i < frames.length; i++)
248. {
249. if (!frames[i].isIcon())
250. {
251. try
252. {
253. frames[i].setMaximum(false);
254. frames[i].reshape(c * width,
255. r * height, width, height);
256. r++;
257. if (r == rows)
258. {
259. r = 0;
260. c++;
261. if (c == cols - extra)
262. {
263. // start adding an extra row
264. rows++;
265. height = desktop.getHeight() / rows;
266. }
267. }
268. }
269. catch(PropertyVetoException e)
270. {}
271. }
272. }
273. }
274.
275. /**
276. Brings the next non-iconified internal frame to the
277. */
278. public void selectNextWindow()
279. {
280. JInternalFrame[] frames = desktop.getAllFrames();
281. for (int i = 0; i < frames.length; i++)
282. {
283. if (frames[i].isSelected())
284. {
285. // find next frame that isn't an icon and can
286. // selected
287. try
288. {
289. int next = (i + 1) % frames.length;

290. while (next != i && frames[next].isIcon())
291. next = (next + 1) % frames.length;
292. if (next == i) return;
293. // all other frames are icons or veto s
294. frames[next].setSelected(true);
295. frames[next].toFront();
296. return;
297. }
298. catch(PropertyVetoException e)
299. {}
300. }
301. }
302. }
303.
304. /**
305. Asks the user to open an HTML file.
306. */
307. public void openFile()
308. {
309. // let user select file
310.
311. JFileChooser chooser = new JFileChooser();
312. chooser.setCurrentDirectory(new File("."));
313. chooser.setFileFilter(new
314. javax.swing.filechooser.FileFilter()
315. {
316. public boolean accept(File f)
317. {
318. String fname = f.getName().toLowerCase();
319. return fname.endsWith(".html")
320. || fname.endsWith(".htm")
321. || f.isDirectory();
322. }
323. public String getDescription()
324. {
325. return "HTML Files";
326. }
327. });
328. int r = chooser.showOpenDialog(this);
329.
330. if (r == JFileChooser.APPROVE_OPTION)
331. {
332. // open the file that the user selected
333.

334. String filename = chooser.getSelectedFile().getP
335. try
336. {
337. URL fileUrl = new URL("file:" + filename);
338. createInternalFrame(createEditorPane(fileUrl)
339. filename);
340. }
341. catch(MalformedURLException e)
342. {
343. }
344. }
345. }
346.
347. /**
348. Creates an editor pane.
349. @param u the URL of the HTML document
350. */
351. public Component createEditorPane(URL u)
352. {
353. // create an editor pane that follows hyperlink cli
354.
355. JEditorPane editorPane = new JEditorPane();
356. editorPane.setEditable(false);
357. editorPane.addHyperlinkListener(new
358. HyperlinkListener()
359. {
360. public void hyperlinkUpdate(HyperlinkEvent ev
361. {
362. if (event.getEventType()
363. == HyperlinkEvent.EventType.ACTIVATED)
364. createInternalFrame(createEditorPane(
365. event.getURL()), event.getURL().toSt
366. }
367. });
368. try
369. {
370. editorPane.setPage(u);
371. }
372. catch(IOException e)
373. {
374. editorPane.setText("Exception: " + e);
375. }
376. return new JScrollPane(editorPane);
377. }

378.
379. private JDesktopPane desktop;
380. private int nextFrameX;
381. private int nextFrameY;
382. private int frameDistance;
383.
384. private static final int WIDTH = 600;
385. private static final int HEIGHT = 400;
386. }

javax.swing.JDesktopPane

JInternalFrame[] getAllFrames()

gets all internal frames in this desktop pane.

void setDragMode(int mode)

sets the drag mode to live or outline drag mode.

javax.swing.JInternalFrame

JInternalFrame()

JInternalFrame(String title)

JInternalFrame(String title, boolean resizable)

JInternalFrame(String title, boolean resizable, boolean
closable)

JInternalFrame(String title, boolean resizable, boolean
closable, boolean maximizable)

gra

Parameters: mode one of JDesktopPane.LIVE_DRAG_MODE or
JDesktopPane.OUTLINE_DRAG_MODE

gra

JInternalFrame(String title, boolean resizable, boolean
closable, boolean maximizable, boolean iconifiable)

construct a new internal frame.

boolean isResizable()

boolean isClosable()

boolean isMaximizable()

boolean isIconifiable()

get and set the resizable, closable, maximizable, and iconifiable
properties. When the property is true, an icon appears in the frame title to resize,
close, maximize, or iconify the internal frame.

boolean isIcon()

void setIcon(boolean b)

boolean isMaximum()

void setMaximum(boolean b)

boolean isClosed()

void setClosed(boolean b)

get or set the icon, maximum, or closed property. When this property is true, the
internal frame is iconified, maximized, or closed.

boolean isSelected()

void setSelected(boolean b)

get or set the selected property. When this property is true, the current internal

Parameters: title the string to display in the title bar
 resizable true if the frame can be resized
 closable true if the frame can be closed
 maximizable true if the frame can be maximized
 iconifiable true if the frame can be iconified

frame becomes the selected frame on the desktop.

void moveToFront()

void moveToBack()

move this internal frame to the front or the back of the desktop.

void reshape(int x, int y, int width, int height)

moves and resizes this internal frame.

Container getContentPane()

void setContentPane(Container c)

get and set the content pane of this internal frame.

JDesktopPane getDesktopPane()

gets the desktop pane of this internal frame.

Icon getFrameIcon()

void setFrameIcon(Icon anIcon)

get and set the frame icon that is displayed in the title bar.

boolean isVisible()

void setVisible(boolean b)

get and set the "visible" property.

void show()

makes this internal frame visible and brings it to the front.

javax.swing.JComponent

Parameters: x, y the top-left corner of the frame
 width, height the width and height of the frame

void addVetoableChangeListener(VetoableChangeListener
listener)

adds a vetoable change listener that is notified when an attempt is made to change a
constrained property.

java.beans.VetoableChangeListener

void vetoableChange(PropertyChangeEvent event)

is called when the set method of a constrained property notifies the vetoable change
listeners.

java.beans.PropertyChangeEvent

String getPropertyName()

returns the name of the property that is about to be changed.

Object getNewValue()

returns the proposed new value for the property.

java.beans.PropertyVetoException

PropertyVetoException(String reason, PropertyChangeEvent
event)

constructs a property veto exception.

gra

gra

gra

gra

Parameters: reason the reason for the veto
 event the vetoed event

CONTENTS

Chapter 7. Advanced AWT
The Rendering Pipeline

Shapes

Areas

Strokes

Paint

Coordinate transformations

Clipping

Transparency and Composition

Rendering Hints

Reading and Writing Images

Image Manipulation

Printing

The Clipboard

Drag and Drop

In Volume 1, you have seen how to use the methods of the Graphics class to create simple
drawings. Those methods are sufficient for simple applets and applications, but they fall short
for complex shapes or when you require complete control over the appearance of the graphics.
The Java 2D API is a more recent class library that you can use to produce high-quality
drawings. In this chapter, we give you an overview of that API.

We then turn to the topic of printing and show how you can implement printing capabilities into
your programs.

Finally, we cover two techniques for transferring data between programs: the system clipboard
and the drag-and-drop mechanism. You can use these techniques to transfer data between
two Java applications, or between a Java application and a native program.

The Rendering Pipeline

CONTENTS

The original JDK 1.0 had a very simple mechanism for drawing shapes. You select color and
paint mode, and call methods of the Graphics class such as drawRect or fillOval.
The Java 2D API supports many more options.

You can easily produce a wide variety of shapes.

You have control over the stroke, the pen that traces shape boundaries.

You can fill shapes with solid colors, varying hues, and repeating patterns.

You can use transformations to move, scale, rotate, or stretch shapes.

You can clip shapes to restrict them to arbitrary areas.

You can select composition rules to describe how to combine the pixels of a new shape
with existing pixels.

You can give rendering hints to make trade-offs between speed and drawing quality.

To draw a shape, you go through the following steps:

1. Obtain an object of the Graphics2D class. This class is a subclass of the Graphics
class. If you use a version of the JDK that is enabled for Java 2D technology, methods
such as paint and paintComponent automatically receive an object of the
Graphics2D class. Simply use a cast, as follows:

public void paintComponent(Graphics g)
{
 Graphics2D g2 = (Graphics2D)g;
 . . .
}

2. Use the setRenderingHints method to set rendering hints: trade-offs between
speed and drawing quality.

RenderingHints hints = . . .;
g2.setRenderingHints(hints);

3. Use the setStroke method to set the stroke. The stroke is used to draw the outline of
the shape. You can select the thickness and choose among solid and dotted lines.

Stroke stroke = . . .;
g2.setStroke(stroke);

4. Use the setPaint method to set the paint. The paint is used to fill areas such as the
stroke path or the interior of a shape. You can create solid color paint, paint with
changing hues, or tiled fill patterns.

Paint paint = . . .;
g2.setPaint(paint);

5. Use the setClip method to set the clipping region.

Shape clip = . . .;
g2.clip(clip);

6. Use the setTransform method to set a transformation from user space to device
space. You use transformations if it is easier for you to define your shapes in a custom
coordinate system than by using pixel coordinates.

AffineTransform transform = . . .;
g2.transform(transform);

7. Use the setComposite method to set a composition rule that describes how to
combine the new pixels with the existing pixels.

Composite composite = . . .;
g2.setComposite(composite);

8. Create a shape. The Java 2D API supplies many shape objects and methods to combine
shapes.

Shape shape = . . .;

9. Draw or fill the shape. If you draw the shape, its outline is stroked. If you fill the shape,
the interior is painted.

g2.draw(shape);
g2.fill(shape);

Of course, in many practical circumstances, you don't need all these steps. There are
reasonable defaults for the settings of the 2D graphics context. You only need to change the
settings if you want to change the defaults.

In the following sections, you will see how to describe shapes, strokes, paints, transformations,
and composition rules.

The various set methods simply set the state of the 2D graphics context. They don't cause
any drawing. Similarly, when you construct Shape objects, no drawing takes place. A shape
is only rendered when you call draw or fill. At that time, the new shape is computed in a
rendering pipeline (see Figure 7-1).

Figure 7-1. The rendering pipeline

In the rendering pipeline, the following steps take place to render a shape.

1. The path of the shape is stroked.

2. The shape is transformed.

3. The shape is clipped. If there is no intersection between the shape and the clipping area,
then the process stops.

4. The remainder of the shape after clipping is filled.

5. The pixels of the filled shape are composed with the existing pixels.(In Figure 7-1, the
circle is part of the existing pixels, and the cup shape is superimposed over it.)

In the next section, you will see how to define shapes. Then, we turn to the 2D graphics
context settings.

java.awt.Graphics2D

void draw(Shape s)

draws the outline of the given shape with the current stroke.

void fill(Shape s)

fills the interior of the given shape with the current paint.

Shapes
Here are some of the methods in the Graphics class to draw shapes:

drawLine
drawRectangle
drawRoundRect
draw3DRect
drawPolygon

drawPolyline
drawOval
drawArc

There are also corresponding fill methods. These methods have been in the Graphics
class ever since JDK 1.0. The Java 2D API uses a completely different, object-oriented
approach. Instead of methods, there are classes:

Line2D
Rectangle2D
RoundRectangle2D
Ellipse2D
Arc2D
QuadCurve2D
CubicCurve2D
GeneralPath

These classes all implement the Shape interface.

Finally, there is a Point2D class that describes a point with an x- and a y-coordinate. Points
are useful to define shapes, but they aren't themselves shapes.

To draw a shape, you first create an object of a class that implements the Shape interface
and then call the draw method of the Graphics2D class.

The Line2D, Rectangle2D, RoundRectangle2D, Ellipse2D, and Arc2D
classes correspond to the drawLine, drawRectangle, drawRoundRect,
drawOval, and drawArc methods. (The concept of a "3D rectangle" has died the death
that it so richly deserved—there is no analog to the draw3DRect method.) The Java 2D API
supplies two additional classes: quadratic and cubic curves. We discuss these shapes later in
this section. There is no Polygon2D class. Instead, the GeneralPath class describes
paths that are made up from lines, quadratic and cubic curves. You can use a
GeneralPath to describe a polygon; we show you how later in this section.

The classes

Rectangle2D
RoundRectangle2D
Ellipse2D
Arc2D

all inherit from a common superclass RectangularShape. Admittedly, ellipses and arcs
are not rectangular, but they have a bounding rectangle (see Figure 7-2).

Figure 7-2. The bounding rectangle of an ellipse and an arc

Each of the classes whose name ends in "2D" has two subclasses for specifying coordinates
as float or double quantities. In Volume 1, you already encountered

Rectangle2D.Float
Rectangle2D.Double

The same scheme is used for the other classes, such as

Arc2D.Float
Arc2D.Double

Internally, all graphics classes use float coordinates since float numbers use less
storage space, and they have sufficient precision for geometric computations. However, the
Java programming language makes it a bit more tedious to manipulate float numbers. For
that reason, most methods of the graphics classes use double parameters and return
values. Only when constructing a 2D object, you need to choose between a constructor with
float or double coordinates. For example,

Rectangle2D floatRect
 = new Rectangle2D.Float(5F, 10F, 7.5F, 15F);
Rectangle2D doubleRect
 = new Rectangle2D.Double(5, 10, 7.5, 15);

The Xxx2D.Float and Xxx2D.Double classes are subclasses of the Xxx2D classes.
After object construction, there is essentially no benefit in remembering the subclass, and you
can just store the constructed object in a superclass variable, just like in the code example.

As you can see from the curious names, the Xxx2D.Float and Xxx2D.Double classes
are also inner classes of the Xxx2D classes. That is just a minor syntactical convenience, to
avoid an inflation of outer class names.

Figure 7-3 shows the relationships between the shape classes. However, the Double and
Float subclasses are omitted. Legacy classes from the pre-2D library are marked with a
gray fill.

Figure 7-3. Relationships between the shape classes

Using the Shape Classes

You already saw how to use the Rectangle2D, Ellipse2D, and Line2D classes in
Chapter 7 of Volume 1. In this section, you will learn how to work with the remaining 2D
shapes.

For the RoundRectangle2D shape, you specify the top left corner, width and height, and
the x- and y-dimension of the corner area that should be rounded (see Figure 7-4). For
example, the call

Figure 7-4. Constructing a RoundRectangle2D

RoundRectangle2D r = new RoundRectangle2D.Double(150, 200,
 100, 50, 20, 20);

produces a rounded rectangle with circles of radius 20 at each of the corners.

To construct an arc, you specify the bounding box, followed by the start angle and the angle
swept out by the arc (see Figure 7-5) and the closure type, one of Arc2D.OPEN,
Arc2D.PIE, or Arc2D.CHORD.

Figure 7-5. Constructing an elliptical arc

Arc2D a = new Arc2D(x, y, width, height,
 startAngle, arcAngle, closureType);

Figure 7-6 illustrates the arc types.

Figure 7-6. Arc types

However, the angles are not simply given in degrees, but they are distorted such that a 45-
degree angle denotes the diagonal position, even if width and height are not the same. If you
draw circular arcs (for example in a pie chart), then you don't need to worry about this.
However, for elliptical arcs, be prepared for an adventure in trigonometry—see the sidebar for
details.

The Java 2D package supplies quadratic and cubic curves. In this chapter, we do not want to
get into the mathematics of these curves. We suggest you get a feel for how the curves look by
running the program in Example 7-1. As you can see in Figures 7-7 and 7-8, quadratic and
cubic curves are specified by two end points and one or two control points. Moving the control
points changes the shape of the curves.

Figure 7-7. A quadratic curve

Figure 7-8. A cubic curve

Specifying Angles for Elliptical Arcs
The algorithm for drawing elliptical arcs uses distorted angles, which the caller must
precompute. This sidebar tells you how. If you belong to the large majority of
programmers who never draw elliptical arcs, just skip the sidebar. However, since
the official documentation completely glosses over this topic, we thought it is worth
recording it to save those who need this information a few hours of trigonometric
agony.

You convert actual angles to distorted angles with the following formula.

distortedAngle = Math.atan2(Math.sin(angle) * width,
 Math.cos(angle) * height);

Sometimes (such as in the example program at the end of this section), you know
an end point of the arc, or another point on the line joining the center of the ellipse
and that end point. In that case, first compute

dx = p.getX() - center.getX();
dy = p.getY() - center.getY();

Then, the distorted angle is

distortedAngle = Math.atan2(-dy * width, dx * height);

(The minus sign in front of dy is necessary because in the pixel coordinate system,
the y-axis points downwards, which leads to angle measurements that are
clockwise, but you need to supply an angle that is measured counterclockwise.)

Convert the result from radians to degrees:

distortedAngle = Math.toDegrees(distortedAngle);

The result is a value between –180 and 180.

Compute both the distorted start and end angles in this way. Then, compute the
difference between the two distorted angles.

If either the start angle or the difference is negative, add 360. Then, supply the start
angle and the angle difference to the arc constructor.

Arc2D a = new Arc2D(x, y, width, height,
 distortedStartAngle, distortedAngleDifference,
 closureType);

Not only is the documentation vague on the exact nature of the distortion, it is also
quite misleading in calling the distorted angle difference value the "arc angle."
Except for the case of a circular arc, that value is neither the actual arc angle nor its
distortion.

If you run the example program at the end of this section, then you can visually
check that this calculation yields the correct values for the arc constructor (see
Figure 7-9).

Figure 7-9. The ShapeTest program

To construct quadratic and cubic curves, you give the coordinates of the end points and the
control points. For example,

QuadCurve2D q = new QuadCurve2D.Double(startX, startY,
 controlX, controlY, endX, endY);
CubicCurve2D c = new CubicCurve2D.Double(startX, startY,
 control1X, control1Y, control2X, control2Y, endX, endY);

Quadratic curves are not very flexible, and they are not commonly used in practice. Cubic
curves (such as the Bezier curves drawn by the CubicCurve3D class) are, however, very
common. By combining many cubic curves so that the slopes at the connection points match,
you can create complex smooth-looking curved shapes. For more information, we refer you to
Computer Graphics: Principles and Practice, Second Edition in C by James D. Foley, Andries
van Dam, Steven K. Feiner, et al. [Addison Wesley 1995].

You can build arbitrary sequences of line segments, quadratic curves, and cubic curves, and
store them in a GeneralPath object. You specify the first coordinate of the path with the
moveTo method. For example,

GeneralPath path = new GeneralPath();
path.moveTo(10, 20);

Then, you extend the path by calling one of the methods lineTo, quadTo, or curveTo.
These methods extend the path by a line, a quadratic curve, or a cubic curve. To call
lineTo, supply the end point. For the two curve methods, supply the control points, then the
end point. For example,

path.lineTo(20, 30);
path.curveTo(control1X, control1Y, control2X, control2Y, endX,

You can close the path by calling the closePath method. It draws a line back to the last
moveTo.

To make a polygon, simply call moveTo to go to the first corner point, followed by repeated
calls to lineTo to visit the other corner points. Finally, call closePath to close the
polygon. The program in Example 7-1 shows this in more detail.

A general path does not have to be connected. You can call moveTo at any time to start a
new path segment.

Finally, you can use the append method to add arbitrary Shape objects to a general path.
The outline of the shape is added to the end to the path. The second parameter of the
append method is true if the new shape should be connected to the last point on the path,
false if it should not be connected. For example, the call

Rectangle2D r = . . .;
path.append(r, false);

appends the outline of a rectangle to the path without connecting it to the existing path. But

path.append(r, true);

adds a straight line from the end point of the path to the starting point of the rectangle, and
then adds the rectangle outline to the path.

The program in Example 7-1 lets you create sample paths. Figures 7-7 and 7-8 show sample
runs of the program. You pick a shape maker from the combo box. The program contains
shape makers for

Straight lines

Rectangles, round rectangles, and ellipses

Arcs (showing lines for the bounding rectangle and the start and end angles, in addition
to the arc itself)

Polygons (using a GeneralPath)

Quadratic and cubic curves

Use the mouse to adjust the control points. As you move them, the shape continuously
repaints itself.

The program is a bit complex because it handles a multiplicity of shapes and it supports
dragging of the control points.

An abstract superclass ShapeMaker encapsulates the commonality of the shape maker
classes. Each shape has a fixed number of control points that the user can move around. The

getPointCount method returns that value. The abstract method

Shape makeShape(Point2D[] points)

computes the actual shape, given the current positions of the control points. The toString
method returns the class name so that the ShapeMaker objects can simply be dumped into
a JComboBox.

To enable dragging of the control points, the ShapePanel class handles both mouse and
mouse motion events. If the mouse is pressed on top of a rectangle, subsequent mouse drags
move the rectangle.

The majority of the shape maker classes are simple—their makeShape methods just
construct and return the requested shape. However, the ArcMaker class needs to compute
the distorted start and end angles. Furthermore, to demonstrate that the computation is indeed
correct, the returned shape is a GeneralPath containing the arc itself, the bounding
rectangle, and the lines from the center of the arc to the angle control points (see Figure 7-9).

Example 7-1 ShapeTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.awt.geom.*;
 4. import java.util.*;
 5. import javax.swing.*;
 6.
 7. /**
 8. This program demonstrates the various 2D shapes.
 9. */
 10. public class ShapeTest
 11. {
 12. public static void main(String[] args)
 13. {
 14. JFrame frame = new ShapeTestFrame();
 15. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 16. frame.show();
 17. }
 18. }
 19.
 20. /**
 21. This frame contains a combo box to select a shape
 22. and a panel to draw it.
 23. */
 24. class ShapeTestFrame extends JFrame
 25. {

 26. public ShapeTestFrame()
 27. {
 28. setTitle("ShapeTest");
 29. setSize(WIDTH, HEIGHT);
 30.
 31. Container contentPane = getContentPane();
 32.
 33. final ShapePanel panel = new ShapePanel();
 34. contentPane.add(panel, BorderLayout.CENTER);
 35. final JComboBox comboBox = new JComboBox();
 36. comboBox.addItem(new LineMaker());
 37. comboBox.addItem(new RectangleMaker());
 38. comboBox.addItem(new RoundRectangleMaker());
 39. comboBox.addItem(new EllipseMaker());
 40. comboBox.addItem(new ArcMaker());
 41. comboBox.addItem(new PolygonMaker());
 42. comboBox.addItem(new QuadCurveMaker());
 43. comboBox.addItem(new CubicCurveMaker());
 44. comboBox.addActionListener(new
 45. ActionListener()
 46. {
 47. public void actionPerformed(ActionEvent event
 48. {
 49. ShapeMaker shapeMaker =
 50. (ShapeMaker)comboBox.getSelectedItem();
 51. panel.setShapeMaker(shapeMaker);
 52. }
 53. });
 54. contentPane.add(comboBox, BorderLayout.NORTH);
 55. }
 56.
 57. private static final int WIDTH = 300;
 58. private static final int HEIGHT = 300;
 59. }
 60.
 61. /**
 62. This panel draws a shape and allows the user to
 63. move the points that define it.
 64. */
 65. class ShapePanel extends JPanel
 66. {
 67. public ShapePanel()
 68. {
 69. addMouseListener(new

 70. MouseAdapter()
 71. {
 72. public void mousePressed(MouseEvent event)
 73. {
 74. Point p = event.getPoint();
 75. for (int i = 0; i < points.length; i++)
 76. {
 77. double x = points[i].getX() - SIZE / 2;
 78. double y = points[i].getY() - SIZE / 2;
 79. Rectangle2D r
 80. = new Rectangle2D.Double(x, y, SIZE,
 81. if (r.contains(p))
 82. {
 83. current = i;
 84. return;
 85. }
 86. }
 87. }
 88.
 89. public void mouseReleased(MouseEvent event)
 90. {
 91. current = -1;
 92. }
 93. });
 94. addMouseMotionListener(new
 95. MouseMotionAdapter()
 96. {
 97. public void mouseDragged(MouseEvent event)
 98. {
 99. if (current == -1) return;
100. points[current] = event.getPoint();
101. repaint();
102. }
103. });
104. current = -1;
105. }
106.
107. /**
108. Set a shape maker and initialize it with a random
109. point set.
110. @param aShapeMaker a shape maker that defines a sha
111. from a point set
112. */
113. public void setShapeMaker(ShapeMaker aShapeMaker)

114. {
115. shapeMaker = aShapeMaker;
116. int n = shapeMaker.getPointCount();
117. points = new Point2D[n];
118. for (int i = 0; i < n; i++)
119. {
120. double x = generator.nextDouble() * getWidth();
121. double y = generator.nextDouble() * getHeight();
122. points[i] = new Point2D.Double(x, y);
123. }
124. repaint();
125. }
126.
127. public void paintComponent(Graphics g)
128. {
129. super.paintComponent(g);
130. if (points == null) return;
131. Graphics2D g2 = (Graphics2D)g;
132. for (int i = 0; i < points.length; i++)
133. { double x = points[i].getX() - SIZE / 2;
134. double y = points[i].getY() - SIZE / 2;
135. g2.fill(new Rectangle2D.Double(x, y, SIZE, SIZE)
136. }
137.
138. g2.draw(shapeMaker.makeShape(points));
139. }
140.
141. private Point2D[] points;
142. private static Random generator = new Random();
143. private static int SIZE = 10;
144. private int current;
145. private ShapeMaker shapeMaker;
146. }
147.
148. /**
149. A shape maker can make a shape from a point set.
150. Concrete subclasses must return a shape in the makeSha
151. method.
152. */
153. abstract class ShapeMaker
154. {
155. /**
156. Constructs a shape maker.
157. @param aPointCount the number of points needed to d

158. this shape.
159. */
160. public ShapeMaker(int aPointCount)
161. {
162. pointCount = aPointCount;
163. }
164.
165. /**
166. Gets the number of points needed to define this sha
167. @return the point count
168. */
169. public int getPointCount()
170. {
171. return pointCount;
172. }
173.
174. /**
175. Makes a shape out of the given point set.
176. @param p the points that define the shape
177. @return the shape defined by the points
178. */
179. public abstract Shape makeShape(Point2D[] p);
180.
181. public String toString()
182. {
183. return getClass().getName();
184. }
185.
186. private int pointCount;
187. }
188.
189. /**
190. Makes a line that joins two given points.
191. */
192. class LineMaker extends ShapeMaker
193. {
194. public LineMaker() { super(2); }
195.
196. public Shape makeShape(Point2D[] p)
197. {
198. return new Line2D.Double(p[0], p[1]);
199. }
200. }
201.

202. /**
203. Makes a line that joins two given corner points.
204. */
205. class RectangleMaker extends ShapeMaker
206. {
207. public RectangleMaker() { super(2); }
208.
209. public Shape makeShape(Point2D[] p)
210. {
211. Rectangle2D s = new Rectangle2D.Double();
212. s.setFrameFromDiagonal(p[0], p[1]);
213. return s;
214. }
215. }
216.
217. /**
218. Makes a round rectangle that joins two given corner po
219. */
220. class RoundRectangleMaker extends ShapeMaker
221. {
222. public RoundRectangleMaker() { super(2); }
223.
224. public Shape makeShape(Point2D[] p)
225. {
226. RoundRectangle2D s
227. = new RoundRectangle2D.Double(0, 0, 0, 0, 20, 20
228. s.setFrameFromDiagonal(p[0], p[1]);
229. return s;
230. }
231. }
232.
233. /**
234. Makes an ellipse contained in a bounding box with two
235. corner points.
236. */
237. class EllipseMaker extends ShapeMaker
238. {
239. public EllipseMaker() { super(2); }
240.
241. public Shape makeShape(Point2D[] p)
242. {
243. Ellipse2D s = new Ellipse2D.Double();
244. s.setFrameFromDiagonal(p[0], p[1]);
245. return s;

246. }
247. }
248.
249. /**
250. Makes an arc contained in a bounding box with two give
251. corner points, and with starting and ending angles giv
252. by lines emanating from the center of the bounding box
253. ending in two given points. To show the correctness of
254. the angle computation, the returned shape contains the
255. the bounding box, and the lines.
256. */
257. class ArcMaker extends ShapeMaker
258. {
259. public ArcMaker() { super(4); }
260.
261. public Shape makeShape(Point2D[] p)
262. {
263. double centerX = (p[0].getX() + p[1].getX()) / 2;
264. double centerY = (p[0].getY() + p[1].getY()) / 2;
265. double width = Math.abs(p[1].getX() - p[0].getX());
266. double height = Math.abs(p[1].getY() - p[0].getY())
267.
268. double distortedStartAngle
269. = Math.toDegrees(Math.atan2(-(p[2].getY() - cent
270. * width, (p[2].getX() - centerX) * height));
271. double distortedEndAngle
272. = Math.toDegrees(Math.atan2(-(p[3].getY() - cent
273. * width, (p[3].getX() - centerX) * height));
274. double distortedAngleDifference
275. = distortedEndAngle - distortedStartAngle;
276. if (distortedStartAngle < 0)
277. distortedStartAngle += 360;
278. if (distortedAngleDifference < 0)
279. distortedAngleDifference += 360;
280.
281. Arc2D s = new Arc2D.Double(0, 0, 0, 0,
282. distortedStartAngle, distortedAngleDifference,
283. Arc2D.OPEN);
284. s.setFrameFromDiagonal(p[0], p[1]);
285.
286. GeneralPath g = new GeneralPath();
287. g.append(s, false);
288. Rectangle2D r = new Rectangle2D.Double();
289. r.setFrameFromDiagonal(p[0], p[1]);

290. g.append(r, false);
291. Point2D center = new Point2D.Double(centerX, center
292. g.append(new Line2D.Double(center, p[2]), false);
293. g.append(new Line2D.Double(center, p[3]), false);
294. return g;
295. }
296. }
297.
298. /**
299. Makes a polygon defined by six corner points.
300. */
301. class PolygonMaker extends ShapeMaker
302. {
303. public PolygonMaker() { super(6); }
304.
305. public Shape makeShape(Point2D[] p)
306. {
307. GeneralPath s = new GeneralPath();
308. s.moveTo((float)p[0].getX(), (float)p[0].getY());
309. for (int i = 1; i < p.length; i++)
310. s.lineTo((float)p[i].getX(), (float)p[i].getY())
311. s.closePath();
312. return s;
313. }
314. }
315.
316. /**
317. Makes a quad curve defined by two end points and a con
318. point.
319. */
320. class QuadCurveMaker extends ShapeMaker
321. {
322. public QuadCurveMaker() { super(3); }
323.
324. public Shape makeShape(Point2D[] p)
325. {
326. return new QuadCurve2D.Double(p[0].getX(), p[0].get
327. p[1].getX(), p[1].getY(), p[2].getX(), p[2].getY
328. }
329. }
330.
331. /**
332. Makes a cubic curve defined by two end points and two
333. points.

334. */
335. class CubicCurveMaker extends ShapeMaker
336. {
337. public CubicCurveMaker() { super(4); }
338.
339. public Shape makeShape(Point2D[] p)
340. {
341. return new CubicCurve2D.Double(p[0].getX(), p[0].ge
342. p[1].getX(), p[1].getY(), p[2].getX(), p[2].getY
343. p[3].getX(), p[3].getY());
344. }

java.awt.geom.RoundRectangle2D.Double

RoundRectangle2D.Double(double x, double y, double w,
double h, double arcWidth, double arcHeight)

constructs a round rectangle with the given bounding rectangle and arc dimensions.

java.awt.geom.Arc2D.Double

Arc2D.Double(double x, double y, double w, double h,
double startAngle, double arcAngle, int type)

constructs an arc with the given bounding rectangle, start, and arc angle and arc type.

Parameters: x, y top-left corner of bounding rectangle
 w, h width and height of bounding rectangle
 arcWidth the horizontal distance from the center to the end of the

elliptical boundary arc
 arcHeight the vertical distance from the center to the end of the

elliptical boundary arc

Parameters: x, y top-left corner of bounding rectangle
 w, h width and height of bounding rectangle

java.awt.geom.QuadCurve2D.Double

QuadCurve2D.Double(double x1, double y1, double ctrlx,
double ctrly, double x2, double y2)

constructs a quadratic curve from a start point, a control point, and an end point.

java.awt.geom.CubicCurve2D.Double

CubicCurve2D.Double(double x1, double y1, double ctrlx1,
double ctrly1, double ctrlx2, double ctrly2, double x2,
double y2)

constructs a cubic curve from a start point, two control points, and an end point.

 startAngle the angular measurement between the x-axis and the line
joining the center of the bounding rectangle with the
starting point of the arc, in radians, and distorted so that
an "angle" of π/4 corresponds to the angle between the x-
axis and the line joining the center and top-right corner of
the bounding rectangle

 arcAngle the difference between the distorted end and start
angles—see the sidebar on page 567. For a circular arc,
this value equals the angle swept out by the arc.

 type one of Arc2D.OPEN, Arc2D.PIE, and
Arc2D.CHORD

Parameters: x1, y1 the start point
 ctrlx, ctrly the control point
 x2, y2 the end points

Parameters: x1, y1 the start point
 ctrlx1, ctrly1 the first control point

java.awt.geom.GeneralPath

GeneralPath()

constructs an empty general path.

void moveTo(float x, float y)

makes (x, y) the current point, i.e., the starting point of the next segment.

void lineTo(float x, float y)

void quadTo(float ctrlx, float ctrly, float x, float y)

void curveTo(float ctrl1x, float ctrl1y, float ctrl2x,
float ctrl2y, float x, float y)

draw a line, quadratic curve, or cubic curve from the current point to the end point (x, y),
and make that end point the current point.

void append(Shape s, boolean connect)

adds the outline of the given shape to the general path. If connect is true, the
current point of the general path is connected to the starting point of the added shape by
a straight line.

void closePath()

closes the path by drawing a straight line from the current point to the first point in the
path.

Areas
In the preceding section, you saw how you can specify complex shapes by constructing
general paths that are composed of lines and curves. By using a sufficient number of lines and
curves, you can draw essentially any shape. For example, the shapes of characters in the
fonts that you see on the screen and on your printouts are all made up of lines and cubic

 ctrlx2, ctrly2 the second control point
 x2, y2 the end points

curves.

However, occasionally, it is easier to describe a shape by composing it from areas, such as
rectangles, polygons, or ellipses. The Java 2D API supports four constructive area geometry
operations that combine two areas to a new area:

add— The combined area contains all points that are in the first or the second area.

subtract— The combined area contains all points that are in the first but not the
second area.

intersect— The combined area contains all points that are in the first and the
second area.

exclusiveOr— The combined area contains all points that are in either the first or the
second area, but not in both.

Figure 7-10 shows these operations.

Figure 7-10. Constructive Area Geometry Operations

To construct a complex area, you start out with a default area object.

Area a = new Area();

Then, you combine the area with any shape:

a.add(new Rectangle2D.Double(. . .));

a.subtract(path);
. . .

The Area class implements the Shape interface. You can stroke the boundary of the area
with the draw method or paint the interior with the fill method of the Graphics2D class.

The program in Example 7-2 shows the constructive area geometry operations. Select one of
the four operations, and see the result of combining an ellipse and a rectangle with the
operation that you selected (see Figure 7-11).

Figure 7-11. The AreaTest Program

Example 7-2 AreaTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.awt.geom.*;
 4. import java.util.*;
 5. import javax.swing.*;
 6.
 7. /**
 8. This program demonstrates constructive area geometry
 9. operations.
 10. */
 11. public class AreaTest

 12. {
 13. public static void main(String[] args)
 14. {
 15. JFrame frame = new AreaTestFrame();
 16. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 17. frame.show();
 18. }
 19. }
 20.
 21. /**
 22. This frame contains a set of radio buttons to define
 23. area operations and a panel to show their result.
 24. */
 25. class AreaTestFrame extends JFrame
 26. {
 27. public AreaTestFrame()
 28. {
 29. setTitle("AreaTest");
 30. setSize(WIDTH, HEIGHT);
 31.
 32. area1
 33. = new Area(new Ellipse2D.Double(100, 100, 150, 1
 34. area2
 35. = new Area(new Rectangle2D.Double(150, 150, 150,
 36.
 37. Container contentPane = getContentPane();
 38. panel = new
 39. JPanel()
 40. {
 41. public void paintComponent(Graphics g)
 42. {
 43. super.paintComponent(g);
 44. Graphics2D g2 = (Graphics2D)g;
 45. g2.draw(area1);
 46. g2.draw(area2);
 47. if (area != null) g2.fill(area);
 48. }
 49. };
 50.
 51. contentPane.add(panel, BorderLayout.CENTER);
 52.
 53. JPanel buttonPanel = new JPanel();
 54. ButtonGroup group = new ButtonGroup();
 55.

 56. JRadioButton addButton = new JRadioButton("Add", fa
 57. buttonPanel.add(addButton);
 58. group.add(addButton);
 59. addButton.addActionListener(new
 60. ActionListener()
 61. {
 62. public void actionPerformed(ActionEvent event
 63. {
 64. area = new Area();
 65. area.add(area1);
 66. area.add(area2);
 67. panel.repaint();
 68. }
 69. });
 70.
 71. JRadioButton subtractButton
 72. = new JRadioButton("Subtract", false);
 73. buttonPanel.add(subtractButton);
 74. group.add(subtractButton);
 75. subtractButton.addActionListener(new
 76. ActionListener()
 77. {
 78. public void actionPerformed(ActionEvent event
 79. {
 80. area = new Area();
 81. area.add(area1);
 82. area.subtract(area2);
 83. panel.repaint();
 84. }
 85. });
 86.
 87. JRadioButton intersectButton
 88. = new JRadioButton("Intersect", false);
 89. buttonPanel.add(intersectButton);
 90. group.add(intersectButton);
 91. intersectButton.addActionListener(new
 92. ActionListener()
 93. {
 94. public void actionPerformed(ActionEvent event
 95. {
 96. area = new Area();
 97. area.add(area1);
 98. area.intersect(area2);
 99. panel.repaint();

100. }
101. });
102.
103. JRadioButton exclusiveOrButton
104. = new JRadioButton("Exclusive Or", false);
105. buttonPanel.add(exclusiveOrButton);
106. group.add(exclusiveOrButton);
107. exclusiveOrButton.addActionListener(new
108. ActionListener()
109. {
110. public void actionPerformed(ActionEvent event
111. {
112. area = new Area();
113. area.add(area1);
114. area.exclusiveOr(area2);
115. panel.repaint();
116. }
117. });
118.
119. contentPane.add(buttonPanel, BorderLayout.NORTH);
120. }
121.
122. private JPanel panel;
123. private Area area;
124. private Area area1;
125. private Area area2;
126.
127. private static final int WIDTH = 400;
128. private static final int HEIGHT = 400;
129. }

java.awt.geom.Area

void add(Area other)

void subtract(Area other)

void intersect(Area other)

void exclusiveOr(Area other)

carry out the constructive area geometry operation with this area and the other area and
set this area to the result.

Strokes
The draw operation of the Graphics2D class draws the boundary of a shape by using the
currently selected stroke. By default, the stroke is a solid line that is one pixel wide. You can
select a different stroke by calling the setStroke method. You supply an object of a class
that implements the Stroke interface. The Java 2D API defines only one such class, called
BasicStroke. In this section, we look at the capabilities of the BasicStroke class.

You can construct strokes of arbitrary thickness. For example, here is how you draw lines that
are 10 pixels wide.

g2.setStroke(new BasicStroke(10.0F));
g2.draw(new Line2D.Double(. . .));

When a stroke is more than a pixel thick, then the end of the stroke can have different styles.
Figure 7-12 shows these so-called end cap styles. There are three choices:

Figure 7-12. End Cap Styles

A butt cap simply ends the stroke at its end point.

A round cap adds a half-circle to the end of the stroke.

A square cap adds a half-square to the end of the stroke.

When two thick strokes meet, there are three choices for the join style (see Figure 7-13).

Figure 7-13. Join Styles

A bevel join joins the strokes with a straight line that is perpendicular to the bisector of
the angle between the two strokes.

A round join extends each stroke to have a round cap.

A miter join extends both strokes by adding a "spike."

The miter join is not suitable for lines that meet at small angles. If two lines join with an angle
that is less than the miter limit, then a bevel join is used instead. That usage prevents
extremely long spikes. By default, the miter limit is ten degrees.

You specify these choices in the BasicStroke constructor, for example:

g2.setStroke(new BasicStroke(10.0F, BasicStroke.CAP_ROUND,
 BasicStroke.JOIN_ROUND));
g2.setStroke(new BasicStroke(10.0F, BasicStroke.CAP_BUTT,
 BasicStroke.JOIN_MITER, 15.0F /* miter limit */));

Finally, you can specify dashed lines by setting a dash pattern. In the program in Example 7-3,
you can select a dash pattern that spells out SOS in Morse code. The dash pattern is a
float[] array of numbers that contains the lengths of the "on" and "off" strokes (see Figure
7-14).

Figure 7-14. A dash pattern

You specify the dash pattern and a dash phase when constructing the BasicStroke. The
dash phase indicates where in the dash pattern each line should start. Normally, you set this
value to 0.

float[] dashPattern
 = { 10, 10, 10, 10, 10, 10, 30, 10, 30, ... };
g2.setStroke(new BasicStroke(10.0F, BasicStroke.CAP_BUTT,
 BasicStroke.JOIN_MITER, 10.0F /* miter limit */,
 dashPattern, 0 /* dash phase */));

NOTE

The program in Example 7-3 lets you specify end cap styles, join styles, and dashed lines (see
Figure 7-15). You can move the ends of the line segments to test out the miter limit: select the
miter join, then move the line segment to form a very acute angle. You will see the miter join
turn into a bevel join.

Figure 7-15. The StrokeTest program

End cap styles are applied to the ends of each dash in a dash pattern.

The program is similar to the program in Example 7-1. The mouse listener remembers if you
click on the end point of a line segment, and the mouse motion listener monitors the dragging
of the end point. A set of radio buttons signal the user choices for the end cap style, join style,
and solid or dashed line. The paintComponent method of the StrokePanel class
constructs a GeneralPath consisting of the two line segments that join the three points that
the user can move with the mouse. It then constructs a BasicStroke, according to the
selections that the user made, and finally draws the path.

Example 7-3 StrokeTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.awt.geom.*;
 4. import java.util.*;
 5. import javax.swing.*;
 6.
 7. /**
 8. This program demonstrates different stroke types.
 9. */
 10. public class StrokeTest
 11. {
 12. public static void main(String[] args)
 13. {
 14. JFrame frame = new StrokeTestFrame();

 15. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 16. frame.show();
 17. }
 18. }
 19.
 20. /**
 21. This frame lets the user choose the cap, join, and
 22. line style, and shows the resulting stroke.
 23. */
 24. class StrokeTestFrame extends JFrame
 25. {
 26. public StrokeTestFrame()
 27. {
 28. setTitle("StrokeTest");
 29. setSize(WIDTH, HEIGHT);
 30.
 31. Container contentPane = getContentPane();
 32. canvas = new StrokePanel();
 33. contentPane.add(canvas, BorderLayout.CENTER);
 34.
 35. buttonPanel = new JPanel();
 36. buttonPanel.setLayout(new GridLayout(3, 3));
 37. contentPane.add(buttonPanel, BorderLayout.NORTH);
 38.
 39. ButtonGroup group1 = new ButtonGroup();
 40. makeCapButton("Butt Cap", BasicStroke.CAP_BUTT, gro
 41. makeCapButton("Round Cap", BasicStroke.CAP_ROUND, g
 42. makeCapButton("Square Cap", BasicStroke.CAP_SQUARE,
 43. group1);
 44.
 45. ButtonGroup group2 = new ButtonGroup();
 46. makeJoinButton("Bevel Join", BasicStroke.JOIN_BEVEL
 47. group2);
 48. makeJoinButton("Miter Join", BasicStroke.JOIN_MITER
 49. group2);
 50. makeJoinButton("Round Join", BasicStroke.JOIN_ROUND
 51. group2);
 52.
 53. ButtonGroup group3 = new ButtonGroup();
 54. makeDashButton("Solid Line", false, group3);
 55. makeDashButton("Dashed Line", true, group3);
 56. }
 57.
 58. /**

 59. Makes a radio button to change the cap style.
 60. @param label the button label
 61. @param style the cap style
 62. @param group the radio button group
 63. */
 64. private void makeCapButton(String label, final int sty
 65. ButtonGroup group)
 66. {
 67. // select first button in group
 68. boolean selected = group.getButtonCount() == 0;
 69. JRadioButton button = new JRadioButton(label, selec
 70. buttonPanel.add(button);
 71. group.add(button);
 72. button.addActionListener(new
 73. ActionListener()
 74. {
 75. public void actionPerformed(ActionEvent event
 76. {
 77. canvas.setCap(style);
 78. }
 79. });
 80. }
 81.
 82. /**
 83. Makes a radio button to change the join style.
 84. @param label the button label
 85. @param style the join style
 86. @param group the radio button group
 87. */
 88. private void makeJoinButton(String label, final int st
 89. ButtonGroup group)
 90. {
 91. // select first button in group
 92. boolean selected = group.getButtonCount() == 0;
 93. JRadioButton button = new JRadioButton(label, selec
 94. buttonPanel.add(button);
 95. group.add(button);
 96. button.addActionListener(new
 97. ActionListener()
 98. {
 99. public void actionPerformed(ActionEvent event
100. {
101. canvas.setJoin(style);
102. }

103. });
104. }
105.
106. /**
107. Makes a radio button to set solid or dashed lines
108. @param label the button label
109. @param style false for solid, true for dashed lines
110. @param group the radio button group
111. */
112. private void makeDashButton(String label, final boolea
113. ButtonGroup group)
114. {
115. // select first button in group
116. boolean selected = group.getButtonCount() == 0;
117. JRadioButton button = new JRadioButton(label, selec
118. buttonPanel.add(button);
119. group.add(button);
120. button.addActionListener(new
121. ActionListener()
122. {
123. public void actionPerformed(ActionEvent event
124. {
125. canvas.setDash(style);
126. }
127. });
128. }
129.
130. private StrokePanel canvas;
131. private JPanel buttonPanel;
132.
133. private static final int WIDTH = 400;
134. private static final int HEIGHT = 400;
135. }
136.
137. /**
138. This panel draws two joined lines, using different
139. stroke objects, and allows the user to drag the three
140. points defining the lines.
141. */
142. class StrokePanel extends JPanel
143. {
144. public StrokePanel()
145. {
146. addMouseListener(new

147. MouseAdapter()
148. {
149. public void mousePressed(MouseEvent event)
150. {
151. Point p = event.getPoint();
152. for (int i = 0; i < points.length; i++)
153. {
154. double x = points[i].getX() - SIZE / 2;
155. double y = points[i].getY() - SIZE / 2;
156. Rectangle2D r
157. = new Rectangle2D.Double(x, y, SIZE,
158. if (r.contains(p))
159. {
160. current = i;
161. return;
162. }
163. }
164. }
165.
166. public void mouseReleased(MouseEvent event)
167. {
168. current = -1;
169. }
170. });
171.
172. addMouseMotionListener(new
173. MouseMotionAdapter()
174. {
175. public void mouseDragged(MouseEvent event)
176. {
177. if (current == -1) return;
178. points[current] = event.getPoint();
179. repaint();
180. }
181. });
182.
183. points = new Point2D[3];
184. points[0] = new Point2D.Double(200, 100);
185. points[1] = new Point2D.Double(100, 200);
186. points[2] = new Point2D.Double(200, 200);
187. current = -1;
188. width = 10.0F;
189. }
190.

191. public void paintComponent(Graphics g)
192. {
193. super.paintComponent(g);
194. Graphics2D g2 = (Graphics2D)g;
195. GeneralPath path = new GeneralPath();
196. path.moveTo((float)points[0].getX(),
197. (float)points[0].getY());
198. for (int i = 1; i < points.length; i++)
199. path.lineTo((float)points[i].getX(),
200. (float)points[i].getY());
201. BasicStroke stroke;
202. if (dash)
203. {
204. float miterLimit = 10.0F;
205. float[] dashPattern = { 10F, 10F, 10F, 10F, 10F,
206. 30F, 10F, 30F, 10F, 30F, 10F,
207. 10F, 10F, 10F, 10F, 10F, 30F };
208. float dashPhase = 0;
209. stroke = new BasicStroke(width, cap, join,
210. miterLimit, dashPattern, dashPhase);
211. }
212. else
213. stroke = new BasicStroke(width, cap, join);
214. g2.setStroke(stroke);
215. g2.draw(path);
216. }
217.
218. /**
219. Sets the join style.
220. @param j the join style
221. */
222. public void setJoin(int j)
223. {
224. join = j;
225. repaint();
226. }
227.
228. /**
229. Sets the cap style.
230. @param c the cap style
231. */
232. public void setCap(int c)
233. {
234. cap = c;

235. repaint();
236. }
237.
238. /**
239. Sets solid or dashed lines
240. @param d false for solid, true for dashed lines
241. */
242. public void setDash(boolean d)
243. {
244. dash = d;
245. repaint();
246. }
247.
248. private Point2D[] points;
249. private static int SIZE = 10;
250. private int current;
251. private float width;
252. private int cap;
253. private int join;
254. private boolean dash;
255. }

java.awt.Graphics2D

void setStroke(Stroke s)

sets the stroke of this graphics context to the given object that implements the Stroke
interface.

java.awt.BasicStroke

BasicStroke(float width)

BasicStroke(float width, int cap, int join)

BasicStroke(float width, int cap, int join, float
miterlimit)

BasicStroke(float width, int cap, int join, float
miterlimit, float[] dash, float dashPhase)

construct a stroke object with the given attributes.

Paint
When you fill a shape, its inside is covered with paint. You use the setPaint method to set
the paint style to an object whose class implements the Paint interface. In the Java 2D API,
there are three such classes:

The Color class implements the Paint interface. To fill shapes with a solid color,
simply call setPaint with a Color object, such as g2.setPaint(Color.red);

The GradientPaint class varies colors by interpolating between two given color
values (see Figure 7-16).

Figure 7-16. Gradient paint

Parameters: width the width of the pen
 cap the end cap style, one of CAP_BUTT, CAP_ROUND, and

CAP_SQUARE
 join the join style, one of JOIN_BEVEL, JOIN_MITER, and

JOIN_ROUND
 miterlimit the angle, in degrees, below which a miter join is

rendered as a bevel join
 dash an array of the lengths of the alternating filled and blank

portions of a dashed stroke
 dashPhase the "phase" of the dash pattern. A segment of this length,

preceding the starting point of the stroke, is assumed to
have the dash pattern already applied.

The TexturePaint class fills an area with repetitions of an image (see Figure 7-17).

Figure 7-17. Texture paint

You construct a GradientPaint object by giving two points and the colors that you want at
these two points.

g2.setPaint(new GradientPaint(p1, Color.red, p2, Color.blue));

Colors are interpolated along the line joining the two points. Colors are constant along lines
that are perpendicular to that joining line. Points beyond an end point of the line are given the
color at the end point.

Alternatively, if you call the GradientPaint constructor with true for the cyclic
parameter,

g2.setPaint(new GradientPaint(p1, Color.red, p2, Color.blue, t

then the color variation cycles and keeps varying beyond the end points.

To construct a TexturePaint object, you need to specify a BufferedImage and an
anchor rectangle. The anchor rectangle is extended indefinitely in x- and y-directions to tile the
entire coordinate plane. The image is scaled to fit into the anchor and then replicated into each
tile.

We will introduce the BufferedImage class later in this chapter when we discuss images in
detail. You create a BufferedImage object by giving the image size and the image type.
The most common image type is TYPE_INT_ARGB, in which each pixel is specified by an
integer that describes the alpha or transparency, red, green, and blue values. For example,

BufferedImage bufferedImage = new BufferedImage(width, height,
 TYPE_INT_ARGB);

Then, you obtain a graphics context to draw into the buffered image.

Graphics2D g2 = bufferedImage.createGraphics();

Any drawing operations on g2 now fill the buffered image with pixels. When you are done,
then you can create your TexturePaint object:

g2.setPaint(new TexturePaint(bufferedImage, anchorRectangle));

The program in Example 7-4 lets the user choose between a solid color paint, a gradient paint,
and a texture paint. Then, an ellipse is filled with the specified paint.

The texture paint uses an image that is read from a GIF file. As you will see later in this
chapter, the ImageIO class makes it simple to read a graphics file into a buffered image, by
calling

bufferedImage = ImageIO.read(new File("blue-ball.gif"));

NOTE

To show the significance of the anchor rectangle, we specify the anchor to have twice the size
of the image:

Rectangle2D anchor = new Rectangle2D.Double(0, 0,
 2 * bufferedImage.getWidth(),
 2 * bufferedImage.getHeight());
paint = new TexturePaint(bufferedImage, anchor);

As you can see when you select Texture Paint, the image is scaled to fit the anchor, and it is
then replicated to fill the shape. Tiles that meet the boundary of the shape are clipped.

Example 7-4 PaintTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.awt.geom.*;
 4. import java.awt.image.*;
 5. import java.io.*;
 6. import java.util.*;
 7. import javax.imageio.*;
 8. import javax.swing.*;
 9.
 10. /**
 11. This program demonstrates the various paint modes.
 12. */
 13. public class PaintTest
 14. {
 15. public static void main(String[] args)
 16. {

The ImageIO class was added in SDK version 1.4. If you have an older version o
the SDK, you need to use the following code instead:

Image image = Toolkit.getDefaultToolkit().getImage
 ("blue-ball.gif");
MediaTracker tracker = new MediaTracker(this);
tracker.addImage(image, 0);
try { tracker.waitForID(0); }
catch (InterruptedException e) {}
bufferedImage = new BufferedImage(image.getWidth(null)
 image.getHeight(null), BufferedImage.TYPE_INT_ARGB)
Graphics2D g2 = bufferedImage.createGraphics();
g2.drawImage(image, 0, 0, null);

 17. JFrame frame = new PaintTestFrame();
 18. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 19. frame.show();
 20. }
 21. }
 22.
 23. /**
 24. This frame contains radio buttons to choose the paint
 25. and a panel that draws a circle in the selected paint
 26. */
 27. class PaintTestFrame extends JFrame
 28. {
 29. public PaintTestFrame()
 30. {
 31. setTitle("PaintTest");
 32. setSize(WIDTH, HEIGHT);
 33.
 34. Container contentPane = getContentPane();
 35. canvas = new PaintPanel();
 36. contentPane.add(canvas, BorderLayout.CENTER);
 37.
 38. JPanel buttonPanel = new JPanel();
 39. ButtonGroup group = new ButtonGroup();
 40.
 41. JRadioButton colorButton = new JRadioButton("Color"
 42. buttonPanel.add(colorButton);
 43. group.add(colorButton);
 44. colorButton.addActionListener(new
 45. ActionListener()
 46. {
 47. public void actionPerformed(ActionEvent event
 48. {
 49. canvas.setColor();
 50. }
 51. });
 52.
 53. JRadioButton gradientPaintButton
 54. = new JRadioButton("Gradient Paint", false);
 55. buttonPanel.add(gradientPaintButton);
 56. group.add(gradientPaintButton);
 57. gradientPaintButton.addActionListener(new
 58. ActionListener()
 59. {
 60. public void actionPerformed(ActionEvent event

 61. {
 62. canvas.setGradientPaint();
 63. }
 64. });
 65.
 66. JRadioButton texturePaintButton
 67. = new JRadioButton("Texture Paint", false);
 68. buttonPanel.add(texturePaintButton);
 69. group.add(texturePaintButton);
 70. texturePaintButton.addActionListener(new
 71. ActionListener()
 72. {
 73. public void actionPerformed(ActionEvent event
 74. {
 75. canvas.setTexturePaint();
 76. }
 77. });
 78.
 79. contentPane.add(buttonPanel, BorderLayout.NORTH);
 80. }
 81.
 82. private PaintPanel canvas;
 83. private static final int WIDTH = 400;
 84. private static final int HEIGHT = 400;
 85. }
 86.
 87. /**
 88. This panel paints a circle in various paint modes.
 89. */
 90. class PaintPanel extends JPanel
 91. {
 92. public PaintPanel()
 93. {
 94. try
 95. {
 96. bufferedImage = ImageIO.read(new File("blue-ball
 97. }
 98. catch (IOException exception)
 99. {
100. exception.printStackTrace();
101. }
102. setColor();
103. }
104.

105. public void paintComponent(Graphics g)
106. {
107. super.paintComponent(g);
108. Graphics2D g2 = (Graphics2D)g;
109. g2.setPaint(paint);
110. Ellipse2D circle
111. = new Ellipse2D.Double(0, 0, getWidth(), getHeig
112. g2.fill(circle);
113. }
114.
115. /**
116. Paints in a plain color.
117. */
118. public void setColor()
119. {
120. paint = Color.red; // Color implements Paint
121. repaint();
122. }
123.
124. /**
125. Sets the paint mode to gradient paint.
126. */
127. public void setGradientPaint()
128. {
129. paint = new GradientPaint(0, 0, Color.red,
130. (float)getWidth(), (float)getHeight(), Color.blu
131. repaint();
132. }
133.
134. /**
135. Sets the paint mode to texture paint.
136. */
137. public void setTexturePaint()
138. {
139. Rectangle2D anchor = new Rectangle2D.Double(0, 0,
140. 2 * bufferedImage.getWidth(),
141. 2 * bufferedImage.getHeight());
142. paint = new TexturePaint(bufferedImage, anchor);
143. repaint();
144. }
145.
146. private Paint paint;
147. private BufferedImage bufferedImage;
148. }

java.awt.Graphics2D

void setPaint(Paint s)

sets the paint of this graphics context to the given object that implements the Paint
interface.

java.awt.GradientPaint

GradientPaint(float x1, float y1, Color color1, float x2,
float y2, Color color2)

GradientPaint(float x1, float y1, Color color1, float x2,
float y2, Color color2, boolean cyclic)

GradientPaint(Point2D p1, Color color1, Point2D p2, Color
color2)

GradientPaint(Point2D p1, Color color1, Point2D p2, Color
color2, boolean cyclic)

construct a gradient paint object that fills shapes with color such that the start point is
colored with color1, the end point is colored with color2, and the colors in between
are linearly interpolated. Colors are constant along lines that are perpendicular to the line
joining the start and the end point. By default, the gradient paint is not cyclic, that is,
points beyond the start and end points are colored with the same color as the start and
end point. If the gradient paint is cyclic, then colors continue to be interpolated, first
returning to the starting point color and then repeating indefinitely in both directions.

Parameters: x1, y1, or
p1

the start point

 color1 the color to use for the start point
 x2, y2, or

p2
the end point

 color2 the color to use for the end point
 cyclic true if the color change pattern repeats, false if the

colors beyond the start and end point are constant

java.awt.TexturePaint

TexturePaint(BufferedImagetexture, Rectangle2D anchor)
creates a texture paint object.

Coordinate Transformations
Suppose you need to draw an object such as an automobile. You know, from the
manufacturer's specifications, the height, wheelbase, and total length. You could, of course,
figure out all pixel positions, assuming some number of pixels per meter. However, there is an
easier way. You can ask the graphics context to carry out the conversion for you.

g2.scale(pixelsPerMeter, pixelsPerMeter);
g2.draw(new Line2D.Double(coordinates in meters));
 // converts to pixels and draws scaled line

The scale method of the Graphics2D class sets the coordinate transformation of he
graphics context to a scaling transformation. That transformation changes user coordinates
(the units that the user specifies) to device coordinates (pixels). Figure 7-18 shows how the
transformation works.

Figure 7-18. User and device coordinates

Coordinate transformations are very useful in practice. They allow you to work with convenient
coordinate values. The graphics context takes care of the dirty work of transforming them to

Parameters: texture the texture to use for filling shapes
 anchor the anchor rectangle that defines the tiling of the space to be

painted. The rectangle is repeated indefinitely in x- and y-
directions, and the texture image is scaled to fill each tile.

pixels.

There are four fundamental transformations:

Scaling: blowing up, or shrinking, all distances from a fixed point;

Rotation: rotating all points around a fixed center;

Translation: moving all points by a fixed amount;

Shear: leaving one line fixed and "sliding" the lines parallel to it by an amount that is
proportional to the distance from the fixed line.

Figure 7-19 shows how these four fundamental transformations act on a unit square.

Figure 7-19. The fundamental transformations

The scale, rotate, translate, and shear methods of the Graphics2D class set
the coordinate transformation of the graphics context to one of these fundamental
transformations.

You can compose the transformations. For example, you may want to rotate shapes and
double their size. Then, you need to supply both a rotation and a scaling transformation.

g2.rotate(angle);
g2.scale(2, 2);
g2.draw(. . .);

In this case, it does not matter in which order you supply the transformations. However, with
most transformations, order does matter. For example, if you want to rotate and shear, then it
makes a difference which of the transformations you supply first. You need to figure out what
your intention is. The graphics context will apply the transformations in the opposite order in
which you supplied them. That is, the last transformation that you supply is applied first.

You can supply as many transformations as you like. For example, consider the following
sequence of transformations:

g2.translate(x, y);
g2.rotate(a);
g2.translate(-x, -y);

The last transformation (which is applied first) moves the point (x, y) to the origin. The second
transformation rotates with an angle a around the origin. The final transformation moves the
origin back to (x, y). The overall effect is a rotation with center point (x, y)—see Figure 7-20.
Because rotating about a point other than the origin is such a common operation, there is a
shortcut:

Figure 7-20. Composing transformations

g2.rotate(a, x, y);

If you know some matrix theory, you are probably aware that all rotations, translations,
scalings, shears, and their compositions can be expressed by matrix transformations of the
form:

Such a transformation is called an affine transformation. In the Java 2D API, the
AffineTransform class describes such a transformation. If you know the components of
a particular transformation matrix, you can construct it directly as

AffineTransform t = new AffineTransform(a, b, c, d, e, f);

There are also factory methods getRotateInstance, getScaleInstance,
getTranslateInstance, and getShearInstance that construct the matrices that
represent these transformation types. For example, the call

t = AffineTransform.getScaleInstance(2.0F, 0.5F);

returns a transformation that corresponds to the matrix

Finally, there are instance methods setToRotation, setToScale,
setToTranslation, and setToShear that set a transformation object to a new type.
Here is an example.

t.setToRotation(angle); // sets t to a rotation

You can set the coordinate transformation of the graphics context to an AffineTransform
object.

g2.setTransform(t); // replaces current transformation

However, in practice, you don't want to call the setTransform operation since it replaces
any existing clipping shape that the graphics context may have. For example, a graphics
context for printing in landscape mode already contains a 90-degree rotation transformation. If
you call setTransform, you obliterate that rotation. Instead, call the transform method.

g2.transform(t); // composes current transformation with t

It composes the existing transformation with the new AffineTransform object.

If you just want to apply a transformation temporarily, then you should first get the old

transformation, then compose with your new transformation, and finally restore the old
transformation when you are done.

AffineTransform oldTransform = g2.getTransform();
 // save old transform
g2.transform(t); // apply temporary transform
 // now draw on g2
g2.setTransform(oldTransform); // restore old transform

The program in Example 7-5 lets the user choose among the four fundamental
transformations. The paintComponent method draws a square, then applies the selected
transformation and redraws the square. However, for a good visual appearance, we want to
have the square and its transform appear on the center of the display panel. For that reason,
the paintComponent method first sets the coordinate transformation to a translation.

g2.translate(getWidth() / 2, getHeight() / 2);

This translation moves the origin to the center of the component.

Then, the paintComponent method draws a square that is centered around the origin.

square = new Rectangle2D.Double(-50, -50, 100, 100);
. . .
g2.setPaint(Color.gray);
g2.draw(square);

However, because the graphics context applies the translation to the shape, the square is
actually drawn with its center lying at the center of the component.

Next, the transformation that the user selected is composed with the current transformation,
and the square is drawn once again.

g2.transform(t);
g2.setPaint(Color.black);
g2.draw(square);

The original square is drawn in gray, and the transformed one in black (see Figure 7-21).

Figure 7-21. The TransformTest program

Example 7-5 TransformTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.awt.geom.*;
 4. import java.util.*;
 5. import javax.swing.*;
 6.
 7. /**
 8. This program displays the effects of various transform
 9. */
 10. public class TransformTest
 11. {
 12. public static void main(String[] args)
 13. {
 14. JFrame frame = new TransformTestFrame();
 15. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 16. frame.show();
 17. }
 18. }
 19.
 20. /**
 21. This frame contains radio buttons to choose a transfor
 22. and a panel to display the effect of the chosen
 23. transformation.
 24. */
 25. class TransformTestFrame extends JFrame
 26. {
 27. public TransformTestFrame()

 28. {
 29. setTitle("TransformTest");
 30. setSize(WIDTH, HEIGHT);
 31.
 32. Container contentPane = getContentPane();
 33. canvas = new TransformPanel();
 34. contentPane.add(canvas, BorderLayout.CENTER);
 35.
 36. JPanel buttonPanel = new JPanel();
 37. ButtonGroup group = new ButtonGroup();
 38.
 39. JRadioButton rotateButton
 40. = new JRadioButton("Rotate", true);
 41. buttonPanel.add(rotateButton);
 42. group.add(rotateButton);
 43. rotateButton.addActionListener(new
 44. ActionListener()
 45. {
 46. public void actionPerformed(ActionEvent event
 47. {
 48. canvas.setRotate();
 49. }
 50. });
 51.
 52. JRadioButton translateButton
 53. = new JRadioButton("Translate", false);
 54. buttonPanel.add(translateButton);
 55. group.add(translateButton);
 56. translateButton.addActionListener(new
 57. ActionListener()
 58. {
 59. public void actionPerformed(ActionEvent event
 60. {
 61. canvas.setTranslate();
 62. }
 63. });
 64.
 65. JRadioButton scaleButton
 66. = new JRadioButton("Scale", false);
 67. buttonPanel.add(scaleButton);
 68. group.add(scaleButton);
 69. scaleButton.addActionListener(new
 70. ActionListener()
 71. {

 72. public void actionPerformed(ActionEvent event
 73. {
 74. canvas.setScale();
 75. }
 76. });
 77.
 78. JRadioButton shearButton
 79. = new JRadioButton("Shear", false);
 80. buttonPanel.add(shearButton);
 81. group.add(shearButton);
 82. shearButton.addActionListener(new
 83. ActionListener()
 84. {
 85. public void actionPerformed(ActionEvent event
 86. {
 87. canvas.setShear();
 88. }
 89. });
 90.
 91. contentPane.add(buttonPanel, BorderLayout.NORTH);
 92. }
 93.
 94. private TransformPanel canvas;
 95. private static final int WIDTH = 300;
 96. private static final int HEIGHT = 300;
 97. }
 98.
 99. /**
100. This panel displays a square and its transformed image
101. under a transformation.
102. */
103. class TransformPanel extends JPanel
104. {
105. public TransformPanel()
106. {
107. square = new Rectangle2D.Double(-50, -50, 100, 100)
108. t = new AffineTransform();
109. setRotate();
110. }
111.
112. public void paintComponent(Graphics g)
113. {
114. super.paintComponent(g);
115. Graphics2D g2 = (Graphics2D)g;

116. g2.translate(getWidth() / 2, getHeight() / 2);
117. g2.setPaint(Color.gray);
118. g2.draw(square);
119. g2.transform(t);
120. /* we don't use setTransform because we want
121. to compose with the current translation
122. */
123. g2.setPaint(Color.black);
124. g2.draw(square);
125. }
126.
127. /**
128. Set the transformation to a rotation.
129. */
130. public void setRotate()
131. {
132. t.setToRotation(Math.toRadians(30));
133. repaint();
134. }
135.
136. /**
137. Set the transformation to a translation.
138. */
139. public void setTranslate()
140. {
141. t.setToTranslation(20, 15);
142. repaint();
143. }
144.
145. /**
146. Set the transformation to a scale transformation.
147. */
148. public void setScale()
149. {
150. t.setToScale(2.0, 1.5);
151. repaint();
152. }
153.
154. /**
155. Set the transformation to a shear transformation.
156. */
157. public void setShear()
158. {
159. t.setToShear(-0.2, 0);

160. repaint();
161. }
162.
163. private Rectangle2D square;
164. private AffineTransform t;
165. }

java.awt.geom.AffineTransform

AffineTransform(double a, double b, double c, double d,
double e, double f)

AffineTransform(float a, float b, float c, float d, float
e, float f)

construct the affine transform with matrix

AffineTransform(double[] m)

AffineTransform(float[] m)

construct the affine transform with matrix

static AffineTransform getRotateInstance(double a)

creates a counterclockwise rotation around the origin by the angle a (in radians). The

transformation matrix is

static AffineTransform getRotateInstance(double a, double
x, double y)

creates a counterclockwise rotation around the point (x,y) by the angle a (in radians).

static AffineTransform getScaleInstance(double sx, double
sy)

creates a scaling transformation that scales the x-axis by sx and the y-axis by sy. The
transformation matrix is

static AffineTransform getShearInstance(double shx, double
shy)

creates a shear transformation that shears the x-axis by shx and the y-axis by shy. The
transformation matrix is

static AffineTransform getTranslateInstance(double tx,
double ty)

creates a translation that moves the x-axis by tx and the y-axis by ty. The
transformation matrix is

void setToRotation(double a)

void setToRotation(double a, double x, double y)

void setToScale(double sx, double sy)

void setToShear(double sx, double sy)

void setToTranslation(double tx, double ty)

set this affine transformation to a basic transformation with the given parameters. See
the getXxxInstance method for an explanation of the basic transformations and
their parameters.

java.awt.Graphics2D

void setTransform(AffineTransform t)

replaces the existing coordinate transformation of this graphics context with t.

void transform(AffineTransform t)

composes the existing coordinate transformation of this graphics context with t.

void rotate(double a)

void rotate(double a, double x, double y)

void scale(double sx, double sy)

void shear(double sx, double sy)

void translate(double tx, double ty)

compose the existing coordinate transformation of this graphics context with a basic

transformation with the given parameters. See the
AffineTransform.getXxxInstance method for an explanation of the basic
transformations and their parameters.

Clipping
By setting a clipping shape in the graphics context, you constrain all drawing operations the
interior of that clipping shape.

g2.setClip(clipShape); // but see below
g2.draw(shape);
 // draws only the part that falls inside the clipping shape

However, in practice, you don't want to call the setClip operation since it replaces any
existing clipping shape that the graphics context may have. For example, as you will see later
in this chapter, a graphics context for printing comes with a clip rectangle that ensures that you
don't draw on the margins. Instead, call the clip method.

g2.clip(clipShape); // better

The clip method intersects the existing clipping shape with the new one that you supply.

If you just want to apply a clipping area temporarily, then you should first get the old clip, then
add your new clip, and finally restore the old clip when you are done:

Shape oldClip = g2.getClip(); // save old clip
g2.clip(clipShape); // apply temporary clip
// now draw on g2
g2.setClip(oldClip); // restore old clip

In Example 7-6, we show off the clipping capability with a rather dramatic drawing of a line
pattern that is clipped by a complex shape, namely, the outline of a set of characters (see
Figure 7-22).

Figure 7-22. The ClipTest program

To obtain character outlines, you need a font render context. Use the
getFontRenderContext method of the Graphics2D class.

FontRenderContext context = g2.getFontRenderContext();

Next, using

a string

a font

the font render context

create a TextLayout object:

TextLayout layout = new TextLayout("Hello", font, context);

This text layout object describes the layout of a sequence of characters, as rendered by a
particular font render context. The layout depends on the font render context—the same
characters will appear differently on a screen or a printer.

More importantly for our current application, the getOutline method returns a Shape
object that describes the shape of the outline of the characters in the text layout. The outline
shape starts at the origin (0, 0), which is not suitable for most drawing operations. Therefore,
you need to supply an affine transform to the getOutline operation that specifies where
you would like the outline to appear. We simply supply a translation that moves the base point
to the point (0, 100).

AffineTransform transform
 = AffineTransform.getTranslateInstance(0, 100);
Shape outline = layout.getOutline(transform);

Then, we append the outline to the clipping shape.

GeneralPath clipShape = new GeneralPath();
clipShape.append(outline, false);

Finally, we set the clipping shape and draw a set of lines. The lines appear only inside the
character boundaries.

g2.setClip(clipShape);
Point2D p = new Point2D.Double(0, 0);
for (int i = 0; i < NLINES; i++)
{
 double x = . . .;
 double y = . . .;
 Point2D q = new Point2D.Double(x, y);
 g2.draw(new Line2D.Double(p, q)); // lines are clipped
}

Here is the complete program.

Example 7-6 ClipTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.awt.font.*;
 4. import java.awt.geom.*;
 5. import java.util.*;
 6. import javax.swing.*;
 7.
 8. /**
 9. This program demonstrates the use of a clip shape.
10. */
11. public class ClipTest
12. {
13. public static void main(String[] args)
14. {
15. JFrame frame = new ClipTestFrame();
16. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE)
17. frame.show();
18. }
19. }
20.
21. /**
22. This frame contains radio buttons to turn a clip off
23. and on, and a panel to draw a set of lines with or with

24. clipping.
25. */
26. class ClipTestFrame extends JFrame
27. {
28. public ClipTestFrame()
29. {
30. setTitle("ClipTest");
31. setSize(WIDTH, HEIGHT);
32.
33. Container contentPane = getContentPane();
34.
35. final JCheckBox checkBox = new JCheckBox("Clip");
36. checkBox.addActionListener(new
37. ActionListener()
38. {
39. public void actionPerformed(ActionEvent event)
40. {
41. panel.repaint();
42. }
43. });
44. contentPane.add(checkBox, BorderLayout.NORTH);
45.
46. panel = new
47. JPanel()
48. {
49. public void paintComponent(Graphics g)
50. {
51. super.paintComponent(g);
52. Graphics2D g2 = (Graphics2D)g;
53.
54. if (clipShape == null)
55. clipShape = makeClipShape(g2);
56.
57. g2.draw(clipShape);
58.
59. if (checkBox.isSelected())
60. g2.clip(clipShape);
61.
62. // draw line pattern
63. final int NLINES =50;
64. Point2D p = new Point2D.Double(0, 0);
65. for (int i = 0; i < NLINES; i++)
66. {
67. double x = (2 * getWidth() * i) / NLINES

68. double y = (2 * getHeight() * (NLINES - 1
69. / NLINES;
70. Point2D q = new Point2D.Double(x, y);
71. g2.draw(new Line2D.Double(p, q));
72. }
73. }
74. };
75. contentPane.add(panel, BorderLayout.CENTER);
76. }
77.
78. /**
79. Makes the clip shape.
80. @param g2 the graphics context
81. @return the clip shape
82. */
83. Shape makeClipShape(Graphics2D g2)
84. {
85. FontRenderContext context = g2.getFontRenderContext(
86. Font f = new Font("Serif", Font.PLAIN, 100);
87. GeneralPath clipShape = new GeneralPath();
88.
89. TextLayout layout = new TextLayout("Hello", f, conte
90. AffineTransform transform
91. = AffineTransform.getTranslateInstance(0, 100);
92. Shape outline = layout.getOutline(transform);
93. clipShape.append(outline, false);
94.
95. layout = new TextLayout("World", f, context);
96. transform
97. = AffineTransform.getTranslateInstance(0, 200);
98. outline = layout.getOutline(transform);
99. clipShape.append(outline, false);
100. return clipShape;
101. }
102.
103. private JPanel panel;
104. private Shape clipShape;
105. private static final int WIDTH = 300;
106. private static final int HEIGHT = 300;
107. }

java.awt.Graphics

void setClip(Shape s)

sets the current clipping shape to the shape s.

Shape getClip()

returns the current clipping shape.

java.awt.Graphics2D

void clip(Shape s)

intersects the current clipping shape with the shape s.

FontRenderContext getFontRenderContext()

returns a font render context that is necessary for constructing TextLayout objects.

java.awt.font.TextLayout

TextLayout(String s, Font f, FontRenderContext context)

constructs a text layout object from a given string and font, using the font render context
to obtain font properties for a particular device.

float getAdvance()

returns the width of this text layout.

float getAscent()

float getDescent()

return the height of this text layout above and below the baseline.

float getLeading()

returns the distance between successive lines in the font used by this text layout.

Transparency and Composition
In the standard RGB color model, every color is described by its red, green, and blue
components. However, it is also convenient to be able to describe areas of an image that are
transparent or partially transparent. When you superimpose an image onto an existing
drawing, the transparent pixels do not obscure the pixels under them at all, whereas partially
transparent pixels are mixed with the pixels under them. Figure 7-23 shows the effect of
overlaying a partially transparent rectangle on an image. You can still see the details of the
image shine through from under the rectangle.

Figure 7-23. Overlaying a partially transparent rectangle on an image

In the Java 2D API, transparency is described by an alpha channel. Each pixel has, in addition
to its red, green, and blue color components, an alpha value between 0 (fully transparent) and
1 (fully opaque). For example, the rectangle in Figure 7-23 was filled with a pale yellow color
with 50% transparency:

new Color(0.7F, 0.7F, 0.0F, 0.5F);

Now let us look at what happens if you superimpose two shapes. You need to blend or
compose the colors and alpha values of the source and destination pixels. Porter and Duff, two
researchers in the field of computer graphics, have formulated twelve possible composition
rules for this blending process. The Java 2D API implements eight of these rules. Before we go
any further, we'd like to point out that only two of these rules have practical significance. If you
find the rules arcane or confusing, just use the SRC_OVER rule. It is the default rule for a
Graphics2D object, and it gives the most intuitive results.

Here is the theory behind the rules. Suppose you have a source pixel with alpha value aS.In
the image, there is already a destination pixel with alpha value aD. You want to compose the
two. The diagram in Figure 7-24 shows how to design a composition rule.

Figure 7-24. Designing a Composition Rule

Porter and Duff consider the alpha value as the probability that the pixel color should be used.
From the perspective of the source, there is a probability aS that it wants to use the source
color and a probability of 1 -aS that it doesn't care. The same holds for the destination. When
composing the colors, let us assume that the probabilities are independent. Then there are
four cases, as shown in Figure 7-24. If the source wants to use the source color, and the
destination doesn't care, then it seems reasonable to let the source have its way. That's why
the upper-right corner of the diagram is labeled "S." The probability for that event is aS·(1 - aD).
Similarly, the lower-left corner is labeled "D." What should one do if both destination and
source would like to select their color? That's where the Porter-Duff rules come in. If we decide
that the source is more important, then we label the lower-right corner with an "S" as well. That
rule is called SRC_OVER. In that rule, you combine the source colors with a weight of aS and
the destination colors with a weight of (1 - aS)·aD.

The visual effect is a blending of the source and destination, with preference given to the
source. In particular, if aS is 1, then the destination color is not taken into account at all. If aS is
zero, then the source pixel is completely transparent and the destination color is unchanged.

There are other rules, depending on what letters you put in the boxes of the probability
diagram. Table 7-1 and Figure 7-25 show all rules that are supported by the Java 2D API. The
images in the figure show the results of the rules when a rectangular source region with an
alpha of 0.75 is combined with an elliptical destination region with an alpha of 1.0.

Figure 7-25. Porter-Duff Composition Rules

As you can see, most of the rules aren't very useful. Consider, as an extreme case, the
DST_IN rule. It doesn't take the source color into account at all, but it uses the alpha of the
source to affect the destination. The SRC rule is potentially useful—it forces the source color to
be used, turning off blending with the destination.

The DST, SRC_ATOP, DST_ATOP, and XOR rules have been added in SDK 1.4.

For more information on the Porter-Duff rules, see, for example, Foley, van Dam, Feiner, et al.,
Section 17.6.1.

Table 7-1. The Porter-Duff Composition Rules
CLEAR Source clears destination.
SRC Source overwrites destination and empty pixels.
DST Source does not affect destination.
SRC_OVER Source blends with destination and overwrites empty pixels.
DST_OVER Source does not affect destination and overwrites empty pixels.
SRC_IN Source overwrites destination.
SRC_OUT Source clears destination and overwrites empty pixels.
DST_IN Source alpha modifies destination.
DST_OUT Source alpha complement modifies destination.
SRC_ATOP Source blends with destination.
DST_ATOP Source alpha modifies destination. Source overwrites empty pixels.
XOR Source alpha complement modifies destination. Source overwrites empty pixels.

You use the setComposite method of the Graphics2D class to install an object of a
class that implements the Composite interface. The Java 2D API supplies one such class,
AlphaComposite, that implements the eight Porter-Duff rules in Figure 7-25.

The factory method getInstance of the AlphaComposite class yields an
AlphaComposite object. You need to supply the rule and the alpha value to be used for
source pixels. For example, consider the following code.

int rule = AlphaComposite.SRC_OVER;
float alpha = 0.5;
g2.setComposite(AlphaComposite.getInstance(rule, alpha));
g2.setPaint(Color.blue);
g2.fill(rectangle);

Then, the rectangle is painted with blue color and an alpha value of 0.5. Because the
composition rule is SRC_OVER, it is transparently overlaid on the existing image.

The program in Example 7-7 lets you explore these composition rules. Pick a rule from the
combo box and use the slider to set the alpha value of the AlphaComposite object.

Furthermore, the program displays a verbal description of each rule. Note that the descriptions
are computed from the composition rule diagrams. For example, a "DS" in the second row
stands for "blends with destination."

The program has one important twist. There is no guarantee that the graphics context that
corresponds to the screen has an alpha channel. (In fact, it generally does not.) When pixels
are deposited to a destination without an alpha channel, then the pixel colors are multiplied
with the alpha value and the alpha value is discarded. Since several of the Porter-Duff rules
use the alpha values of the destination, a destination alpha channel is important. For that
reason, we use a buffered image with the ARGB color model to compose the shapes. After the
images have been composed, we draw the resulting image to the screen.

BufferedImage image = new BufferedImage(getWidth(),
 getHeight(), BufferedImage.TYPE_INT_ARGB);
Graphics2D gImage = image.createGraphics();
// now draw to gImage
g2.drawImage(image, null, 0, 0);

Here is the complete code for the program. Figure 7-26 shows the screen display. As you run
the program, move the alpha slider from left to right to see the effect on the composed shapes.
In particular, note that the only difference between the DST_IN and DST_OUT rules is how
the destination (!) color changes when you change the source alpha.

Figure 7-26. The CompositeTest program

Example 7-7 CompositeTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.awt.image.*;
 4. import java.awt.geom.*;
 5. import java.util.*;
 6. import javax.swing.*;
 7. import javax.swing.event.*;
 8.
 9. /**
 10. This program demonstrates the Porter-Duff composition
 11. */
 12. public class CompositeTest
 13. {
 14. public static void main(String[] args)
 15. {
 16. JFrame frame = new CompositeTestFrame();
 17. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE

 18. frame.show();
 19. }
 20. }
 21.
 22. /**
 23. This frame contains a combo box to choose a compositio
 24. rule, a slider to change the source alpha channel,
 25. and a panel that shows the composition.
 26. */
 27. class CompositeTestFrame extends JFrame
 28. {
 29. public CompositeTestFrame()
 30. {
 31. setTitle("CompositeTest");
 32. setSize(WIDTH, HEIGHT);
 33.
 34. Container contentPane = getContentPane();
 35. canvas = new CompositePanel();
 36. contentPane.add(canvas, BorderLayout.CENTER);
 37.
 38. ruleCombo = new JComboBox(new
 39. Object[]
 40. {
 41. new Rule("CLEAR", " ", " "),
 42. new Rule("SRC", " S", " S"),
 43. new Rule("DST", " ", "DD"),
 44. new Rule("SRC_OVER", " S", "DS"),
 45. new Rule("DST_OVER", " S", "DD"),
 46. new Rule("SRC_IN", " ", " S"),
 47. new Rule("SRC_OUT", " S", " "),
 48. new Rule("DST_IN", " ", " D"),
 49. new Rule("DST_OUT", " ", "D "),
 50. new Rule("SRC_ATOP", " ", "DS"),
 51. new Rule("DST_ATOP", " S", " D"),
 52. new Rule("XOR", " S", "D "),
 53. });
 54. ruleCombo.addActionListener(new
 55. ActionListener()
 56. {
 57. public void actionPerformed(ActionEvent event
 58. {
 59. Rule r = (Rule)ruleCombo.getSelectedItem()
 60. canvas.setRule(r.getValue());
 61. explanation.setText(r.getExplanation());

 62. }
 63. });
 64.
 65. alphaSlider = new JSlider(0, 100, 75);
 66. alphaSlider.addChangeListener(new
 67. ChangeListener()
 68. {
 69. public void stateChanged(ChangeEvent event)
 70. {
 71. canvas.setAlpha(alphaSlider.getValue());
 72. }
 73. });
 74. JPanel panel = new JPanel();
 75. panel.add(ruleCombo);
 76. panel.add(new JLabel("Alpha"));
 77. panel.add(alphaSlider);
 78. contentPane.add(panel, BorderLayout.NORTH);
 79.
 80. explanation = new JTextField();
 81. contentPane.add(explanation, BorderLayout.SOUTH);
 82.
 83. canvas.setAlpha(alphaSlider.getValue());
 84. Rule r = (Rule)ruleCombo.getSelectedItem();
 85. canvas.setRule(r.getValue());
 86. explanation.setText(r.getExplanation());
 87. }
 88.
 89. private CompositePanel canvas;
 90. private JComboBox ruleCombo;
 91. private JSlider alphaSlider;
 92. private JTextField explanation;
 93. private static final int WIDTH = 400;
 94. private static final int HEIGHT = 400;
 95. }
 96.
 97. /**
 98. This class describes a Porter-Duff rule.
 99. */
100. class Rule
101. {
102. /**
103. Constructs a Porter-Duff rule
104. @param n the rule name
105. @param pd1 the first row of the Porter-Duff square

106. @param pd2 the second row of the Porter-Duff square
107. */
108. public Rule(String n, String pd1, String pd2)
109. {
110. name = n;
111. porterDuff1 = pd1;
112. porterDuff2 = pd2;
113. }
114.
115. /**
116. Gets an explanation of the behavior of this rule.
117. @return the explanation
118. */
119. public String getExplanation()
120. {
121. StringBuffer r = new StringBuffer("Source ");
122. if (porterDuff2.equals(" "))
123. r.append("clears");
124. if (porterDuff2.equals(" S"))
125. r.append("overwrites");
126. if (porterDuff2.equals("DS"))
127. r.append("blends with");
128. if (porterDuff2.equals(" D"))
129. r.append("alpha modifies");
130. if (porterDuff2.equals("D "))
131. r.append("alpha complement modifies");
132. if (porterDuff2.equals("DD"))
133. r.append("does not affect");
134. r.append(" destination");
135. if (porterDuff1.equals(" S"))
136. r.append(" and overwrites empty pixels");
137. r.append(".");
138. return r.toString();
139. }
140.
141. public String toString()
142. {
143. return name;
144. }
145.
146. /**
147. Gets the value of this rule in the AlphaComposite c
148. @return the AlphaComposite constant value, or -1 if
149. there is no matching constant.

150. */
151. public int getValue()
152. {
153. try
154. {
155. Integer i = (Integer)
156. AlphaComposite.class.getField(name).get(null)
157. return i.intValue();
158. }
159. catch (Exception ex)
160. {
161. return -1;
162. }
163. }
164.
165. private String name;
166. private String porterDuff1;
167. private String porterDuff2;
168. }
169.
170. /**
171. This panel draws two shapes, composed with a
172. composition rule.
173. */
174. class CompositePanel extends JPanel
175. {
176. public CompositePanel()
177. {
178. shape1 = new Ellipse2D.Double(100, 100, 150, 100);
179. shape2 = new Rectangle2D.Double(150, 150, 150, 100)
180. }
181.
182. public void paintComponent(Graphics g)
183. {
184. super.paintComponent(g);
185. Graphics2D g2 = (Graphics2D)g;
186.
187. BufferedImage image = new BufferedImage(getWidth(),
188. getHeight(), BufferedImage.TYPE_INT_ARGB);
189. Graphics2D gImage = image.createGraphics();
190. gImage.setPaint(Color.red);
191. gImage.fill(shape1);
192. AlphaComposite composite
193. = AlphaComposite.getInstance(rule, alpha);

194. gImage.setComposite(composite);
195. gImage.setPaint(Color.blue);
196. gImage.fill(shape2);
197. g2.drawImage(image, null, 0, 0);
198. }
199.
200. /**
201. Sets the composition rule.
202. @param r the rule (as an AlphaComposite constant)
203. */
204. public void setRule(int r)
205. {
206. rule = r;
207. repaint();
208. }
209.
210. /**
211. Sets the alpha of the source
212. @param a the alpha value between 0 and 100
213. */
214. public void setAlpha(int a)
215. {
216. alpha = (float)a / 100.0F;
217. repaint();
218. }
219.
220. private int rule;
221. private Shape shape1;
222. private Shape shape2;
223. private float alpha;
224. }

java.awt.Graphics2D

void setComposite(Composite s)

sets the composite of this graphics context to the given object that implements the
Composite interface.

java.awt.AlphaComposite

static AlphaComposite getInstance(int rule)

static AlphaComposite getInstance(int rule, float alpha)

construct an alpha composite object.

Rendering Hints
In the preceding sections you have seen that the rendering process is quite complex. While the
Java 2D API is surprisingly fast in most cases, there are cases when you would like to have
control over trade-offs between speed and quality. You achieve this by setting rendering hints.
The setRenderingHint method of the Graphics2D class lets you set a single hint.
The hint keys and values are declared in the RenderingHints class. Table 7-2
summarizes the choices.

The most useful of these settings involves antialiasing. This is a technique to remove the
"jaggies" from slanted lines and curves. As you can see in Figure 7-27, a slanted line must be
drawn as a "staircase" of pixels. Especially on low-resolution screens, this can look ugly. But if,
rather than drawing each pixel completely on or off, you color in the pixels that are partially
covered, with the color value proportional to the area of the pixel that the line covers, then the
result looks much smoother. This technique is called antialiasing. Of course, antialiasing takes
a bit longer because it takes time to compute all those color values.

Figure 7-27. Antialiasing

Parameters: rule One of CLEAR, SRC, SRC_OVER, DST_OVER, SRC_IN,
SRC_OUT, DST_IN, DST_OUT

 alpha the alpha value for the source pixels

Table 7-2. Rendering Hints
Key Values Exp
KEY_ANTIALIASING VALUE_ANTIALIAS_ON Tur

ant
for
on

VALUE_ANTIALIAS_OFF
VALUE_ANTIALIAS_DEFAULT

KEY_RENDERING VALUE_RENDER_QUALITY Wh
ava
sele
ren
alg
for
qua
spe

VALUE_RENDER_SPEED

VALUE_RENDER_DEFAULT

KEY_DITHERING VALUE_DITHER_ENABLE Tur
dith
colo
off.
app
colo
by
gro
pixe
sim
colo

VALUE_DITHER_DISABLE

VALUE_DITHER_DEFAULT

KEY_TEXT_ANTIALIASING VALUE_TEXT_ANTIALIAS_ON Tur
ant
for

VALUE_TEXT_ANTIALIAS_OFF

For example, here is how you can request the use of antialiasing.

g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);

It also makes sense to use antialiasing for fonts.

g2.setRenderingHint(RenderingHints.KEY_TEXT_ANTIALIASING,
 RenderingHints.VALUE_TEXT_ANTIALIAS_ON);

The other rendering hints are not as commonly used.

You can also put a bunch of key/value hint pairs into a map and set them all at once by calling
the setRenderingHints method. Any collection class implementing the map interface will
do, but you may as well use the RenderingHints class itself. It implements the Map

VALUE_TEXT_ANTIALIAS_DEFAULT or o
KEY_FRACTIONAL_METRICS VALUE_FRACTIONALMETRICS_ON Tur

com
of f
cha
dim
on
Fra
cha
dim
lea
pla
cha

VALUE_FRACTIONALMETRICS_OFF

VALUE_FRACTIONALMETRICS_DEFAULT

KEY_ALPHA_INTERPOLATION VALUE_ALPHA_INTERPOLATION_QUALITY Tur
com
of a
com
on

VALUE_ALPHA_INTERPOLATION_SPEED

VALUE_ALPHA_INTERPOLATION_DEFAULT

KEY_COLOR_RENDERING VALUE_COLOR_RENDER_QUALITY Sel
or s
colo
ren

VALUE_COLOR_RENDER_SPEED
VALUE_COLOR_RENDER_DEFAULT

KEY_INTERPOLATION VALUE_INTERPOLATION_NEAREST_NEIGHBOR Sel
for
inte
pixe
sca
ima

VALUE_INTERPOLATION_BILINEAR

VALUE_INTERPOLATION_BICUBIC

KEY_STROKE_CONTROL VALUE_STROKE_NORMALIZE Sel
for
stro

VALUE_STROKE_PURE
VALUE_STROKE_DEFAULT

interface and supplies a default map implementation if you pass null to the constructor. For
example,

RenderingHints hints = new RenderingHints(null);
hints.put(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);
hints.put(RenderingHints.KEY_TEXT_ANTIALIASING,
 RenderingHints.VALUE_TEXT_ANTIALIAS_ON);
g2.setRenderingHints(hints);

That is the technique that we use in Example 7-8. The program draws an image that we
thought might benefit from some of the hints. You can turn various rendering hints on or off.
Not all platforms support all the hints, so you should not expect every one of the settings to
have an effect. On Windows 98, antialiasing smooths out the ellipse, and text antialiasing
improves the look of the italic font. The other hints seemed to have no effect, but they might
with other platforms or with more complex images.

Figure 7-28 shows a screen capture of the program.

Figure 7-28. The RenderingHints program

Example 7-8 RenderQualityTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.awt.geom.*;
 4. import java.io.*;
 5. import java.util.*;
 6. import javax.imageio.*;

 7. import javax.swing.*;
 8.
 9. /**
 10. This program demonstrates the effect of the various
 11. rendering hints.
 12. */
 13. public class RenderQualityTest
 14. {
 15. public static void main(String[] args)
 16. {
 17. JFrame frame = new RenderQualityTestFrame();
 18. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 19. frame.show();
 20. }
 21. }
 22.
 23. /**
 24. This frame contains buttons to set rendering hints
 25. and an image that is drawn with the selected hints.
 26. */
 27. class RenderQualityTestFrame extends JFrame
 28. {
 29. public RenderQualityTestFrame()
 30. {
 31. setTitle("RenderQualityTest");
 32. setSize(WIDTH, HEIGHT);
 33.
 34. buttonBox = new JPanel();
 35. buttonBox.setLayout(new GridLayout(9, 3));
 36. hints = new RenderingHints(null);
 37.
 38. makeButtons("KEY_ANTIALIASING",
 39. "VALUE_ANTIALIAS_ON",
 40. "VALUE_ANTIALIAS_OFF");
 41. makeButtons("KEY_RENDERING",
 42. "VALUE_RENDER_QUALITY",
 43. "VALUE_RENDER_SPEED");
 44. makeButtons("KEY_DITHERING",
 45. "VALUE_DITHER_ENABLE",
 46. "VALUE_DITHER_DISABLE");
 47. makeButtons("KEY_TEXT_ANTIALIASING",
 48. "VALUE_TEXT_ANTIALIAS_ON",
 49. "VALUE_TEXT_ANTIALIAS_OFF");
 50. makeButtons("KEY_FRACTIONALMETRICS",

 51. "VALUE_FRACTIONALMETRICS_ON",
 52. "VALUE_FRACTIONALMETRICS_OFF");
 53. makeButtons("KEY_ALPHA_INTERPOLATION",
 54. "VALUE_ALPHA_INTERPOLATION_QUALITY",
 55. "VALUE_ALPHA_INTERPOLATION_SPEED");
 56. makeButtons("KEY_COLOR_RENDERING",
 57. "VALUE_COLOR_RENDER_QUALITY",
 58. "VALUE_COLOR_RENDER_SPEED");
 59. makeButtons("KEY_INTERPOLATION",
 60. "VALUE_INTERPOLATION_NEAREST NEIGHBOR",
 61. "VALUE_INTERPOLATION_BILINEAR");
 62. makeButtons("KEY_STROKE_CONTROL",
 63. "VALUE_STROKE_NORMALIZE",
 64. "VALUE_STROKE_PURE");
 65.
 66. Container contentPane = getContentPane();
 67. canvas = new RenderQualityPanel();
 68. contentPane.add(canvas, BorderLayout.CENTER);
 69. contentPane.add(buttonBox, BorderLayout.NORTH);
 70. }
 71.
 72. /**
 73. Makes a set of buttons for a rendering hint key and
 74. @param key the key name
 75. @param value1 the name of the first value for the k
 76. @param value2 the name of the second value for the
 77. */
 78. void makeButtons(String key, String value1, String val
 79. {
 80. try
 81. {
 82. final RenderingHints.Key k = (RenderingHints.Key
 83. RenderingHints.class.getField(key).get(null);
 84. final Object v1
 85. = RenderingHints.class.getField(value1).get(n
 86. final Object v2
 87. = RenderingHints.class.getField(value2).get(n
 88. JLabel label = new JLabel(key);
 89. buttonBox.add(label);
 90. ButtonGroup group = new ButtonGroup();
 91. JRadioButton b1 = new JRadioButton(value1, true)
 92. buttonBox.add(b1);
 93. group.add(b1);
 94. b1.addActionListener(new

 95. ActionListener()
 96. {
 97. public void actionPerformed(ActionEvent ev
 98. {
 99. hints.put(k, v1);
100. canvas.setRenderingHints(hints);
101. }
102. });
103. JRadioButton b2 = new JRadioButton(value2, false
104. buttonBox.add(b2);
105. group.add(b2);
106. b2.addActionListener(new
107. ActionListener()
108. {
109. public void actionPerformed(ActionEvent ev
110. {
111. hints.put(k, v2);
112. canvas.setRenderingHints(hints);
113. }
114. });
115. hints.put(k, v1);
116. }
117. catch (Exception ex)
118. {
119. }
120. }
121.
122. private RenderQualityPanel canvas;
123. private JPanel buttonBox;
124. private RenderingHints hints;
125. private static final int WIDTH = 600;
126. private static final int HEIGHT = 500;
127. }
128.
129. /**
130. This panel produces a drawing that hopefully shows som
131. of the difference caused by rendering hints.
132. */
133. class RenderQualityPanel extends JPanel
134. {
135. public RenderQualityPanel()
136. {
137. color1 = new Color(0. 7F, 0. 7F, 0. 0F, 0. 5F);
138. color2 = new Color(0. 0F, 0. 3F, 0. 3F, 0. 5F);

139. try
140. {
141. image = ImageIO.read(new File("clouds.jpg"));
142. }
143. catch (IOException exception)
144. {
145. exception.printStackTrace();
146. }
147. }
148.
149. public void paintComponent(Graphics g)
150. {
151. super.paintComponent(g);
152. Graphics2D g2 = (Graphics2D)g;
153. g2. setRenderingHints(hints);
154.
155. g2. drawImage(image, 0, 0, null);
156. g2. draw(new Ellipse2D.Double(0, 0,
157. image.getWidth(null), image.getHeight(null)));
158. g2. setFont(new Font("Serif", Font.ITALIC, 40));
159. g2. drawString("Hello", 75, 75);
160. g2. setPaint(color1);
161. g2. translate(0,-80);
162. g2. fill(new Rectangle2D.Double(100, 100, 200, 100)
163. g2. setPaint(color2);
164. g2. fill(new Rectangle2D.Double(120, 120, 200, 100)
165. }
166.
167. /**
168. Sets the hints and repaints.
169. @param h the rendering hints
170. */
171. public void setRenderingHints(RenderingHints h)
172. {
173. hints = h;
174. repaint();
175. }
176.
177. private RenderingHints hints = new RenderingHints(null
178. private Color color1;
179. private Color color2;
180. private Image image;
181. }

java.awt.Graphics2D

void setRenderingHint(RenderingHints.Key key, Object
value)

sets a rendering hint for this graphics context.

void setRenderingHints(Map m)

sets all rendering hints whose key/value pairs are stored in the map.

java.awt.RenderingHints

RenderingHints(Map m)

constructs a rendering hints map for storing rendering hints. If m is null, a default map
implementation is provided.

Reading and Writing Images
Prior to version 1.4, the Java SDK had very limited capabilities for reading and writing image
files. It was possible to read GIF and JPEG images, but there was no official support for writing
images at all.

This situation is now much improved. SDK 1.4 introduces the javax.imageio package
that contains "out of the box" support for reading and writing several common file formats, as
well as a framework that enables third parties to add readers and writers for other formats.
Specifically, the SDK contains readers for the GIF, JPEG, and PNG formats and writers for
JPEG and PNG. (We suspect that writing GIF files is not supported due to patent issues.)

NOTE

If you use an older version of the SDK, you need to look elsewhere to write
GIF and JPEG files. You can find a GIF encoder at www.acme.com/java.
There is a package, com.sun.image.codec.jpeg, that is part of the
SDK from Sun Microsystems and that supports saving images in JPEG
format. You can find more information about this package at
http://java.sun.com/products/jdk/1.2/docs/guide/2d/api-jpeg/overview-
summary.html.

The basics of the library are extremely straightforward. To load an image, use the static read
method of the ImageIO class:

File f = . . .;
BufferedImage image = ImageIO.read(f);

The ImageIO class picks an appropriate reader, based on the file type. It may consult the file
extension and the "magic number" at the beginning of the file for that purpose. If no suitable
reader can be found or the reader can't decode the file contents, then the read method
returns null.

Writing an image to a file is just as simple:

File f = . . .;
String format = . . .;
ImageIO.write(image, format, f);

Here the format string is a string identifying the image format, such as "JPEG" or "PNG".
The ImageIO class picks an appropriate writer and saves the file.

Obtaining Readers and Writers for Image File Types

For more advanced image reading and writing operations that go beyond the static read and
write methods of the ImageIO class, you first need to get the appropriate ImageReader
and ImageWriter objects. The ImageIO class enumerates readers and writers that
match one of the following:

an image format (such as "JPEG")

a file suffix (such as "jpg")

a MIME type (such as "image/jpeg")

NOTE

For example, you can obtain a reader that reads JPEG files as follows:

ImageReader reader = null;
Iterator iter = ImageIO.getImageReadersByFormatName("JPEG");
if (iter.hasNext) reader = (ImageReader)iter.next();

MIME is the Multipurpose Internet Mail Extensions standard. The MIME
standard defines common data formats such as "image/jpeg" and
"application/pdf". For an HTML version of the RFC (Request for Comments)
that defines the MIME format, see
http://www.oac.uci.edu/indiv/ehood/MIME.

The getImageReadersBySuffix and getImageReadersByMIMEType method
enumerate readers that match a file extension or MIME type.

It is possible that the ImageIO class can locate multiple readers that can all read a particular
image type. In that case, you have to pick one of them, but it isn't clear how you can decide
which one is the best. To find out more information about a reader, obtain its service provider
interface:

ImageReaderSpi spi = reader.getOriginatingProvider();

Then you can get the vendor name and version number:

String vendor = spi.getVendor();
String version = spi.getVersion();

Perhaps that information can help you to decide among the choices, or you may just present a
list of readers to your program users and make them choose. However, for now, we will
assume that the first enumerated reader is at least adequate.

In the sample program at the end of this section, we have a couple of problems that the API
doesn't address well. First, we want to find all file suffixes of all available readers, so that we
can use them in a file filter. The IOImage class is willing to tell us the names of all reader
formats and the names of all supported MIME types. But we can't enumerate all supported file
suffixes, nor can we get all readers. So, we first enumerate all format names, then we get all
readers for a given format name. An ImageReader won't reveal the supported file suffixes,
but the associated service provider interface object does. With a couple of nested loops and
the handy addAll method of the Set interface, we manage to collect all file suffixes. You
can find the full code in the getReaderSuffixes method in Example 7-9.

For saving files, we have a similar problem. We'd like to present the user a menu of all
supported image types. Unfortunately, the getWriterFormatNames of the IOImage
class returns a rather curious list with redundant names, such as

JPG
jpeg
jpg
PNG
JPEG
png

That's not something one would want to present in a menu. It would be nice if there was some
notion of a "preferred" format name. To pare down the list, we pick the first format name and
look up the first writer associated with it. Then we ask it what its format names are, in the hope
that it will list the most popular one first. Indeed, for the JPEG writer, this works fine: It lists
"JPEG" before the other options. The PNG writer, on the other hand, lists "png" in
lowercase before "PNG". Hopefully, that will be addressed at some time in the future. (We
don't want to force the format name into uppercase—that wouldn't work for a format such as

"PostScript".)

Once we pick a writer, we add the first format name to the format name set and remove all of
its format names from the original set. We keep going until all format names are handled. The
details are in the getWriterFormats method of Example 7-9. Note that this method
would break down if someone would provide a single writer that can write multiple image
formats.

As a practical matter, most programmers won't be bothered by these issues. If you have a
fixed number of file formats that your application supports, then you can simply find the
appropriate readers, writers, and file suffixes for them.

Reading and Writing Files with Multiple Images

Some files, in particular, animated GIF files, contain multiple images. The read method of the
ImageIO class reads a single image. To read multiple images, turn the input source (for
example, an input stream or file) into an ImageInputStream.

InputStream in = . . .;
ImageInputStream imageIn = ImageIO.createImageInputStream(in);

Then attach the image input stream to the reader:

reader.setInput(imageIn, true);

The second parameter indicates that the input is in "seek forward only" mode. Otherwise,
random access is used, either by buffering stream input as it is read, or by using random file
access. Random access is required for certain operations. For example, to find out the number
of images in a GIF file, you need to read the entire file. If you then want to fetch an image, the
input must be read again.

This consideration is only important if you read from a stream, and if the input contains multiple
images, and the image format doesn't have the information that you request (such as the
image count) in the header. If you read from a file, simply use

File f = . . .;
ImageInputStream imageIn = ImageIO.createImageInputStream(f);
reader.setInput(imageIn);

Once you have a reader, you can read the images in the input by calling

BufferedImage image = reader.read(index);

where index is the image index, starting with 0.

If the input is in "seek forward only" mode, you need to keep reading images until the read
method throws an IndexOutOfBoundsException. Otherwise, you can call the

getNumImages method:

int n = reader.getNumImages(true);

Here, the parameter indicates that you allow a search of the input to determine the number of
images. That method throws an IllegalStateException if the input is in "seek forward
only" mode. Alternatively, you can set the "allow search" parameter to false. Then the
getNumImages method returns -1 if it can't determine the number of images without a
search. In that case, you'll have to switch to Plan B and keep reading images until you get an
IndexOutOfBoundsException.

Some files contain thumbnails, smaller versions of an image for preview purposes. You can
get the number of thumbnails of an image with the call

int count = reader.getNumThumbnails(index);

Then you get a particular index as

BufferedImage thumbnail = reader.getThumbnail(index,
 thumbnailIndex);

Another consideration is that you sometimes want to get the image size before actually getting
the image, in particular, if the image comes from a slow network connection. Use

the calls

int width = reader.getWidth(index);
int height = reader.getHeight(index);

to get the dimensions of an image with a given index. The image dimensions should be
available before the actual image data. If there is no image with the given index, the methods
throw an IndexOutOfBoundsException.

To write a file with multiple images, you first need an ImageWriter. The IOImage class
can enumerate the writers that are capable of writing a particular image format:

String format = . . .;
ImageWriter writer = null;
Iterator iter = IOImage.getImageWritersByFormatName(format);
if (iter.hasNext()) writer = (ImageWriter)iter.next();

Next, turn an output stream or file into an ImageOutputStream and attach it to the writer.
For example,

File f = . . .;
ImageOutputStream imageOut = ImageIO.createImageOutputStream(f
writer.setOutput(imageOut);

You need to wrap each image into an IIOImage object. You can optionally supply a list of
thumbnails and image metadata (such as compression algorithms and color information). In
this example, we just use null for both; see the SDK documentation for additional
information.

IIOImage iioImage = new IIOImage(images[i], null, null);

Write out the first image using the write method:

writer.write(new IIOImage(images[0], null, null));

For subsequent images, use

if (writer.canInsertImage(i))
 writer.writeInsert(i, iioImage, null);

The third parameter can contain an ImageWriteParam object to set image writing details
such as tiling and compression; use null for default values.

Not all file formats can handle multiple images. In that case, the canInsertImage method
returns false for i > 0, and only a single image is saved.

The program in Example 7-9 lets you load and save files in the formats for which the SDK
supplies readers and writers. The program displays multiple images (see Figure 7-29), but not
thumbnails.

Figure 7-29. An Animated GIF Image

Example 7-9 ImageIOTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.awt.image.*;
 4. import java.io.*;
 5. import java.util.*;
 6. import java.util.List;
 7. import javax.imageio.*;
 8. import javax.imageio.stream.*;
 9. import javax.swing.*;
 10.
 11. /**
 12. This program lets you read and write image files in th
 13. formats that the SDK supports. Multi-file images are
 14. supported.
 15. */
 16. public class ImageIOTest
 17. {
 18. public static void main(String[] args)
 19. {
 20. JFrame frame = new ImageIOFrame();
 21. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE

 22. frame.show();
 23. }
 24. }
 25.
 26. /**
 27. This frame displays the loaded images. The menu has it
 28. for loading and saving files.
 29. */
 30. class ImageIOFrame extends JFrame
 31. {
 32. public ImageIOFrame()
 33. {
 34. setTitle("ImageIOTest");
 35. setSize(WIDTH, HEIGHT);
 36.
 37. JMenu fileMenu = new JMenu("File");
 38. JMenuItem openItem = new JMenuItem("Open");
 39. openItem.addActionListener(new
 40. ActionListener()
 41. {
 42. public void actionPerformed(ActionEvent event
 43. {
 44. openFile();
 45. }
 46. });
 47. fileMenu.add(openItem);
 48.
 49. JMenu saveMenu = new JMenu("Save");
 50. fileMenu.add(saveMenu);
 51. Iterator iter = writerFormats.iterator();
 52. while (iter.hasNext())
 53. {
 54. final String formatName = (String)iter.next();
 55. JMenuItem formatItem = new JMenuItem(formatName)
 56. saveMenu.add(formatItem);
 57. formatItem.addActionListener(new
 58. ActionListener()
 59. {
 60. public void actionPerformed(ActionEvent ev
 61. {
 62. saveFile(formatName);
 63. }
 64. });
 65. }

 66.
 67. JMenuItem exitItem = new JMenuItem("Exit");
 68. exitItem.addActionListener(new
 69. ActionListener()
 70. {
 71. public void actionPerformed(ActionEvent event
 72. {
 73. System.exit(0);
 74. }
 75. });
 76. fileMenu.add(exitItem);
 77.
 78.
 79. JMenuBar menuBar = new JMenuBar();
 80. menuBar.add(fileMenu);
 81. setJMenuBar(menuBar);
 82. }
 83.
 84. /**
 85. Open a file and load the images.
 86. */
 87. public void openFile()
 88. {
 89. JFileChooser chooser = new JFileChooser();
 90. chooser.setCurrentDirectory(new File("."));
 91.
 92. chooser.setFileFilter(new
 93. javax.swing.filechooser.FileFilter()
 94. {
 95. public boolean accept(File f)
 96. {
 97. if (f.isDirectory()) return true;
 98. String name = f.getName();
 99. int p = name.lastIndexOf('.');
100. if (p == -1) return false;
101. String suffix
102. = name.substring(p + 1).toLowerCase();
103. return readerSuffixes.contains(suffix);
104. }
105. public String getDescription()
106. {
107. return "Image files";
108. }
109. });

110. int r = chooser.showOpenDialog(this);
111. if (r != JFileChooser.APPROVE_OPTION) return;
112. File f = chooser.getSelectedFile();
113. Box box = Box.createVerticalBox();
114. try
115. {
116. String name = f.getName();
117. String suffix
118. = name.substring(name.lastIndexOf('.') + 1);
119. Iterator iter
120. = ImageIO.getImageReadersByFormatName(suffix)
121. ImageReader reader = (ImageReader)iter.next();
122. ImageInputStream imageIn
123. = ImageIO.createImageInputStream(f);
124. reader.setInput(imageIn);
125. int count = reader.getNumImages(true);
126. images = new BufferedImage[count];
127. for (int i = 0; i < count; i++)
128. {
129. images[i] = reader.read(i);
130. box.add(new JLabel(new ImageIcon(images[i])))
131. }
132. }
133. catch (IOException exception)
134. {
135. JOptionPane.showMessageDialog(this, exception);
136. }
137. setContentPane(new JScrollPane(box));
138. validate();
139. }
140.
141. /**
142. Save the current image in a file
143. @param formatName the file format
144. */
145. public void saveFile(final String formatName)
146. {
147. if (images == null) return;
148. Iterator iter = ImageIO.getImageWritersByFormatName
149. formatName);
150. ImageWriter writer = (ImageWriter)iter.next();
151. final List writerSuffixes = Arrays.asList(
152. writer.getOriginatingProvider().getFileSuffixes(
153. JFileChooser chooser = new JFileChooser();

154. chooser.setCurrentDirectory(new File("."));
155.
156. chooser.setFileFilter(new
157. javax.swing.filechooser.FileFilter()
158. {
159. public boolean accept(File f)
160. {
161. if (f.isDirectory()) return true;
162. String name = f.getName();
163. int p = name.lastIndexOf('.');
164. if (p == -1) return false;
165. String suffix
166. = name.substring(p + 1).toLowerCase();
167. return writerSuffixes.contains(suffix);
168. }
169. public String getDescription()
170. {
171. return formatName + " files";
172. }
173. });
174.
175. int r = chooser.showSaveDialog(this);
176. if (r != JFileChooser.APPROVE_OPTION) return;
177. File f = chooser.getSelectedFile();
178. try
179. {
180. ImageOutputStream imageOut
181. = ImageIO.createImageOutputStream(f);
182. writer.setOutput(imageOut);
183.
184. writer.write(new IIOImage(images[0], null, null)
185. for (int i = 1; i < images.length; i++)
186. {
187. IIOImage iioImage
188. = new IIOImage(images[i], null, null);
189. if (writer.canInsertImage(i))
190. writer.writeInsert(i, iioImage, null);
191. }
192. }
193. catch (IOException exception)
194. {
195. JOptionPane.showMessageDialog(this, exception);
196. }
197. }

198.
199. /**
200. Gets a set of all file suffixes that are recognized
201. by image readers.
202. @return the file suffix set
203. */
204. public static Set getReaderSuffixes()
205. {
206. TreeSet readerSuffixes = new TreeSet();
207. String[] informalNames = ImageIO.getReaderFormatNam
208. for (int i = 0; i < informalNames.length; i++)
209. {
210. Iterator iter = ImageIO.getImageReadersByFormatN
211. informalNames[i]);
212. while (iter.hasNext())
213. {
214. ImageReader reader = (ImageReader)iter.next()
215. String[] s = reader.getOriginatingProvider()
216. .getFileSuffixes();
217. readerSuffixes.addAll(Arrays.asList(s));
218. }
219. }
220. return readerSuffixes;
221. }
222.
223. /**
224. Gets a set of "preferred" format names of all
225. image writers. The preferred format name is the fir
226. format name that a writer specifies.
227. @return the format name set
228. */
229. public static Set getWriterFormats()
230. {
231. TreeSet writerFormats = new TreeSet();
232. TreeSet formatNames = new TreeSet(Arrays.asList(
233. ImageIO.getWriterFormatNames()));
234. while (formatNames.size() > 0)
235. {
236. String name = (String)formatNames.iterator().nex
237. Iterator iter = ImageIO.getImageWritersByFormatN
238. name);
239. ImageWriter writer = (ImageWriter)iter.next();
240. String[] names = writer.getOriginatingProvider()
241. .getFormatNames();

242. writerFormats.add(names[0]);
243. formatNames.removeAll(Arrays.asList(names));
244. }
245. return writerFormats;
246. }
247.
248. private BufferedImage[] images;
249. private static Set readerSuffixes = getReaderSuffixes(
250. private static Set writerFormats = getWriterFormats();
251. private static final int WIDTH = 400;
252. private static final int HEIGHT = 400;
253. }

javax.imageio.ImageIO

static BufferedImage read(File input)

static BufferedImage read(InputStream input)

static BufferedImage read(URL input)

read an image from input.

static boolean write(RenderedImage image, String
formatName, File output)

static boolean write(RenderedImage image, String
formatName, OutputStream output)

write an image in the given format to output. Returns false if no appropriate writer
was found.

static Iterator getImageReadersByFormatName(String
formatName)

static Iterator getImageReadersBySuffix(String fileSuffix)

static Iterator getImageReadersByMIMEType(String mimeType)

static Iterator getImageWritersByFormatName(String
formatName)

static Iterator getImageWritersBySuffix(String fileSuffix)

static Iterator getImageWritersByMIMEType(String mimeType)

get all readers and writers that are able to handle the given format (e.g. "JPEG", file
suffix (e.g. "jpg"), or MIME type (e.g. "image/jpeg").

static String[] getReaderFormatNames()

static String[] getReaderMIMETypes()

static String[] getWriterFormatNames()

static String[] getWriterMIMETypes()

get all format names and MIME type names supported by readers and writers.

ImageInputStream createImageInputStream(Object input)

ImageOutputStream createImageOutputStream(Object output)

create an image input or image output stream from the given object. The object can be a
file, a stream, a RandomAccessFile, or another object for which a service provider
exists. Return null if no registered service provider can handle the object.

javax.imageio.ImageReader

void setInput(Object input)

void setInput(Object input, boolean seekForwardOnly)

set the input source of the reader.

BufferedImage read(int index)

Parameters: input an ImageInputStream object, or another
object that this reader can accept.

 seekForwardOnly true if the reader should read forward only. By
default, the reader uses random access and, if
necessary, buffers image data.

reads the image with the given image index (starting at 0). Throws an
IndexOutOfBoundsException if no such image is available.

int getNumImages(boolean allowSearch)

gets the number of images in this reader. If allowSearch is false, and the number
of images cannot be determined without reading forward, then -1 is returned. If
allowSearch is true and the reader is in "seek forward only" mode, an
IllegalStateException is thrown.

int getNumThumbnails(int index)

gets the number of thumbnails of the image with the given index.

BufferedImage readThumbnail(int index, int thumbnailIndex)

gets the thumbnail with index thumbnailIndex of the image with the given index.

int getWidth(int index)

int getHeight(int index)

get the image width and height. Throw an IndexOutOfBoundsException if no
such image is available.

ImageReaderSpi getOriginatingProvider()

gets the service provider that constructed this reader.

javax.imageio.spi.IIOServiceProvider

String getVendorName()

String getVersion()

get the vendor name and version of this service provider.

javax.imageio.spi.ImageReaderWriterSpi

String[] getFormatNames()

String[] getFileSuffixes()

String[] getMIMETypes()

get the format names, file suffixes, and MIME types supported by the readers or writers
that this service provider creates.

javax.imageio.ImageWriter

void setOutput(Object output)

void write(IIOImage image)

void write(RenderedImage image)

write a single image to the output.

void writeInsert(int index, IIOImage image,
ImageWriteParam param)

write an image into a multi-image file.

boolean canInsertImage(int index)

returns true if it is possible to insert an image at the given index.

ImageWriterSpi getOriginatingProvider()

gets the service provider that constructed this writer.

Parameters: output an ImageOutputStream object, or another object that this
writer can accept

Parameters: index the image index
 image the image to write
 param the write parameters, or null

javax.imageio.IIOImage

IIOImage(RenderedImage image, List thumbnails, IIOMetadata
metadata)

constructs an IIOImage from an image, optional thumbnails and optional metadata.

Image Manipulation
Suppose you have an image and you would like to improve its appearance. You then need to
access the individual pixels of the image and replace them with other pixels. Or perhaps you
want to compute the pixels of an image from scratch, for example, to show the result of
physical measurements or a mathematical computation. The BufferedImage class gives
you control over the pixels in an image, and classes that implement the BufferedImageOp
interface let you transform images.

This is a major change from the image support in JDK 1.0. At that time, the image classes
were optimized to support incremental rendering. The original purpose of the classes was to
render GIF and JPEG images that are downloaded from the web, a scan line at a time, as
soon as partial image data is available. In fact, scan lines can be interlaced, with all even scan
lines coming first, followed by the odd scan lines. That mechanism lets a browser display an
approximation of the image quickly while fetching the remainder of the image data. The
ImageProducer, ImageFilter, and ImageConsumer interfaces in JDK 1.0 expose
all the complexities of incremental rendering. Writing an image manipulation that fit well into
that framework was quite complex.

Fortunately, the need for using these classes has completely gone away. The Java 2 platform
replaces the "push model" of JDK 1.0 with a "direct" model that lets you access pixels directly
and conveniently. We cover only the direct model in this chapter. The only disadvantage of the
direct model is that it requires all image pixels to be in memory. (In practice, the "push model"
had the same restriction. It would have required fiendish cunning to write image manipulation
algorithms that processed pixels as they became available. Most users of the old model simply
buffered the entire image before processing it.) Future versions of the Java platform may
support a "pull" model where a processing pipeline can reduce memory consumption and
increase speed by fetching and processing pixels only when they are actually needed.

Accessing Image Data

Most of the images that you manipulate are simply read in from an image file—they were either

Parameters: image an image
 thumbnails a list of BufferedImage objects, or null
 metadata metadata, or null

produced by a device such as a digital camera or scanner, or constructed by a drawing
program. In this section, we will show you a different technique for constructing an image,
namely, to build up an image a pixel at a time.

To create an image, construct a BufferedImage object in the usual way.

image = new BufferedImage(width, height,
 BufferedImage.TYPE_INT_ARGB);

Now, call the getRaster method to obtain an object of type WritableRaster. You use
this object to access and modify the pixels of the image.

WritableRaster raster = image.getRaster();

The setPixel method lets you set an individual pixel. The complexity here is that you can't
simply set the pixel to a Color value. You must know how the buffered image specifies color
values. That depends on the type of the image. If your image has a type of
TYPE_INT_ARGB, then each pixel is described by four values, for red, green, blue, and
alpha, each of which is between 0 and 255. You need to supply them in an array of four
integers.

int[] black = { 0, 0, 0, 255 };
raster.setPixel(i, j, black);

In the lingo of the Java 2D API, these values are called the sample values of the pixel.

CAUTION

You can supply batches of pixels with the setPixels method. Specify the starting pixel
position and the width and height of the rectangle that you want to set. Then, supply an array
that contains the sample values for all pixels. For example, if your buffered image has a type of
TYPE_INT_ARGB, then you supply the red, green, blue, and alpha value of the first pixel,
then the red, green, blue, and alpha value for the second pixel, and so on.

int[] pixels = new int[4 * width * height];
pixels[0] = . . . // red value for first pixel

There are also setPixel methods that take array parameters of types
float[] and double[]. However, the values that you need to place
into these arrays are not normalized color values between 0.0 and 1.0.

float[] red = { 1.0F, 0.0F, 0.0F, 1.0F };
raster.setPixel(i, j, red); // ERROR

You need to supply values between 0 and 255, no matter what the type of
the array is.

pixels[1] = . . . // green value for first pixel
pixels[2] = . . . // blue value for first pixel
pixels[3] = . . . // alpha value for first pixel
. . .
raster.setPixels(x, y, width, height, pixels);

Conversely, to read a pixel, you use the getPixel method. Supply an array of four integers
to hold the sample values.

int[] sample = new int[4];
raster.getPixel(x, y, sample);
Color c = new Color(sample[0], sample[1], sample[2], sample[3]

You can read multiple pixels with the getPixels method.

raster.getPixels(x, y, width, height, samples);

If you use an image type other than TYPE_INT_ARGB and you know how that type
represents pixel values, then you can still use the getPixel/setPixel methods.
However, you have to know the encoding of the sample values in the particular image type.

If you need to manipulate an image with an arbitrary, unknown image type, then you have to
work a bit harder. Every image type has a color model that can translate between sample
value arrays and the standard RGB color model.

NOTE

The RGB color model isn't as standard as you might think. The exact look
of a color value depends on the characteristics of the imaging device.
Digital cameras, scanners, monitors, and LCD displays all have their own
idiosyncrasies. As a result, the same RGB value can look quite different on
different devices. The International Color Consortium (www.color.org)
recommends that all color data be accompanied by an ICC profile that
specifies how the colors map to a standard form such as the 1931 CIE XYZ
color specification. That specification was designed by the Commission
Internationale de l'Eclairage or CIE (www.cie.co.at/cie), the international
organization in charge of providing technical guidance in all matters of
illumination and color. The specification is a standard method for
representing all colors that the human eye can perceive as a triple of
coordinates called X, Y, Z. (See, for example, Foley, van Dam, Feiner, et
al., Chapter 13, for more information on the 1931 CIE XYZ specification.)
However, ICC profiles are complex. A simpler proposed standard, called
sRGB (http://www.w3.org/Graphics/Color/sRGB.html), specifies an exact
mapping between RGB values and the 1931 CIE XYZ values that was
designed to work well with typical color monitors. The Java 2D API uses
that mapping when converting between RGB and other color spaces.

The getColorModel method returns the color model.

ColorModel model = image.getColorModel();

To find the color value of a pixel, you call the getDataElements method of the Raster
class. That call returns an Object that contains a color-model-specific description of the
color value.

Object data = raster.getDataElements(x, y, null);

NOTE

The color model can translate the object to standard ARGB values. The getRGB method
returns an int value that has the alpha, red, green, and blue values packed in four blocks of
8 bits each. You can construct a Color value out of that integer with the Color(int
argb, boolean hasAlpha) constructor.

int argb = model.getRGB(data);
Color color = new Color(argb, true);

When you want to set a pixel to a particular color, you have to reverse these steps. The
getRGB method of the Color class yields an int value with the alpha, red, green, and blue
values. Supply that value to the getDataElements method of the ColorModel class.
The return value is an Object that contains the color-model-specific description of the color
value. Pass the object to the setDataElements method of the WritableRaster
class.

int argb = color.getRGB();
Object data = model.getDataElements(argb, null);
raster.setDataElements(x, y, data);

To illustrate how to use these methods to build an image from individual pixels, we bow to
tradition and draw a Mandelbrot set, as shown in Figure 7-30.

Figure 7-30. A Mandelbrot set

The object that is returned by the getDataElements method is actually
an array of sample values. You don't need to know this to process the
object, but it explains why the method is called getDataElements.

The idea of the Mandelbrot set is that you associate with each point in the plane a sequence of
numbers. If that sequence stays bounded, you color the point. If it "escapes to infinity," you
leave it transparent. The formulas for the number sequences come ultimately from the
mathematics of complex numbers. We just take them for granted. For more on the
mathematics of fractals, there are hundreds of books out there; one that is quite thick and
comprehensive is Chaos and Fractals: New Frontiers of Science by Heinz-Otto Peitgen,
Dietmar Saupe, and Hartmut Jurgens [Springer Verlag 1992].

Here is how you can construct the simplest Mandelbrot set. For each point (a,b), you look at
sequences that start with (x, y) = (0, 0) and iterate:

Check whether the sequence stays bounded or "escapes to infinity," that is, whether x and y
keep getting larger. It turns out that if x or y ever get larger than 2, then the sequence escapes
to infinity. Only the pixels that correspond to points (a,b) leading to a bounded sequence are
colored.

Example 7-10 shows the code. In this program, we demonstrate how to use the
ColorModel class for translating Color values into pixel data. That process is
independent of the image type. Just for fun, change the color type of the buffered image to
TYPE_BYTE_GRAY. You don't need to change any other code—the color model of the image

automatically takes care of the conversion from colors to sample values.

Example 7-10 MandelbrotTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.awt.image.*;
 4. import javax.swing.*;
 5.
 6. /**
 7. This program demonstrates how to build up an image from
 8. individual pixels.
 9. */
10. public class MandelbrotTest
11. {
12. public static void main(String[] args)
13. {
14. JFrame frame = new MandelbrotFrame();
15. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE)
16. frame.show();
17. }
18. }
19.
20. /**
21. This frame shows an image with a Mandelbrot set.
22. */
23. class MandelbrotFrame extends JFrame
24. {
25. public MandelbrotFrame()
26. {
27. setTitle("MandelbrotTest");
28. setSize(WIDTH, HEIGHT);
29. BufferedImage image = makeMandelbrot(WIDTH, HEIGHT);
30. getContentPane().add(new JLabel(new ImageIcon(image)
31. BorderLayout.CENTER);
32. }
33.
34. /**
35. Makes the Mandelbrot image.
36. @param width the width
37. @parah height the height
38. @return the image
39. */
40. public BufferedImage makeMandelbrot(int width, int heig

41. {
42. BufferedImage image = new BufferedImage(width, heigh
43. BufferedImage.TYPE_INT_ARGB);
44. WritableRaster raster = image.getRaster();
45. ColorModel model = image.getColorModel();
46.
47. Color fractalColor = Color.red;
48. int argb = fractalColor.getRGB();
49. Object colorData = model.getDataElements(argb, null)
50.
51. for (int i = 0; i < width; i++)
52. for (int j = 0; j < height; j++)
53. {
54. double a = XMIN + i * (XMAX - XMIN) / width;
55. double b = YMIN + j * (YMAX - YMIN) / height;
56. if (!escapesToInfinity(a, b))
57. raster.setDataElements(i, j, colorData);
58. }
59. return image;
60. }
61.
62. private boolean escapesToInfinity(double a, double b)
63. {
64. double x = 0. 0;
65. double y = 0. 0;
66. int iterations = 0;
67. do
68. {
69. double xnew = x * x - y * y + a;
70. double ynew = 2 * x * y + b;
71. x = xnew;
72. y = ynew;
73. iterations++;
74. if (iterations == MAX_ITERATIONS) return false;
75. }
76. while (x <= 2 && y <= 2);
77. return true;
78. }
79.
80. private static final double XMIN = -2;
81. private static final double XMAX = 2;
82. private static final double YMIN = -2;
83. private static final double YMAX = 2;
84. private static final int MAX_ITERATIONS = 16;

85. private static final int WIDTH = 400;
86. private static final int HEIGHT = 400;
87. }

java.awt.image.BufferedImage

BufferedImage(int width, int height, int imageType)

constructs a buffered image object.

ColorModel getColorModel()

returns the color model of this buffered image.

WritableRaster getRaster()

gets the raster for accessing and modifying pixels of this buffered image.

java.awt.image.Raster

Object getDataElements(intx, int y, Object data)

returns the sample data for a raster point, in an array whose element type and length
depends on the color model. If data is not null, it is assumed to be an array that is
appropriate for holding sample data, and it is filled. If data is null, a new array is
allocated.

Parameters: width,
height

the image dimensions

 imageType a type such as TYPE_INT_RGB, TYPE_INT_ARGB,
TYPE_BYTE_GRAY, TYPE_BYTE_INDEXED,
TYPE_USHORT_555_RGB, and so on

Parameters: x, y the pixel location
 data null or an array that is suitable for being filled with the sample

int[] getPixel(int x, int y, int w, int h, int[]
sampleValues)

float[] getPixel(int x, int y, int w, int h, float[]
sampleValues)

double[] getPixel(int x, int y, int w, int h, double[]
sampleValues)

int[] getPixels(int x, int y, int w, int h, int[]
sampleValues)

float[] getPixels(int x, int y, int w, int h, float[]
sampleValues)

double[] getPixels(int x, int y, int w, int h, double[]
sampleValues)

return the sample values for a raster point, or a rectangle of raster points, in an array
whose length depends on the color model. If sampleValues is not null, it is
assumed to be sufficiently long for holding the sample values and it is filled. If
sampleValues is null, a new array is allocated. These methods are only useful if
you know the meaning of the sample values for a color model.

java.awt.image.WritableRaster

void setDataElements(int x, int y, Object data)

sets the sample data for a raster point.

data for a pixel. Its element type and length depend on the color
model.

Parameters: x, y the raster point location, or the top-left corner of the
rectangle

 w, h the width and height of the rectangle of raster points
 sampleValues null or an array that is sufficiently long to be filled

with the sample values

void setPixel(int x, int y, int w, int h, int[]
sampleValues)

void setPixel(int x, int y, int w, int h, float[]
sampleValues)

void setPixel(int x, int y, int w, int h, double[]
sampleValues)

void setPixels(int x, int y, int w, int h, int[]
sampleValues)

void setPixels(int x, int y, int w, int h, float[]
sampleValues)

void setPixels(int x, int y, int w, int h, double[]
sampleValues)

set the sample values for a raster point or a rectangle of raster points. These methods
are only useful if you know the encoding of the sample values for a color model.

java.awt.image.ColorModel

int getRGB(Object data)

returns the ARGB value that corresponds to the sample data passed in data.

Parameters: x, y the pixel location.
 data an array filled with the sample data for a pixel. Its element type and

length depend on the color model.

Parameters: x, y the raster point location, or the top-left corner of the
rectangle.

 w, h the width and height of the rectangle of raster points.
 sampleValues an array filled with the sample data. Its element type

and length depend on the color model.

Parameters: data an array filled with the sample data for a pixel. Its element type and
length depend on the color model.

Object getDataElements(int argb, Object data);

returns the sample data for a color value. If data is not null, it is assumed to be an
array that is appropriate for holding sample data, and it is filled. If data is null, a new
array is allocated.

java.awt.Color

Color(int argb, boolean hasAlpha)

creates a color with the specified combined ARGB value if hasAlpha is true, or the
specified RGB value if hasAlpha is false.

int getRGB()

returns the ARGB color value corresponding to this color.

Filtering Images

In the preceding section, you saw how to build up an image from scratch. However, often you
want to access image data for a different reason: you already have an image and you want to
improve it in some way.

Of course, you can use the getPixel/getDataElements methods that you saw in the
preceding section to read the image data, manipulate them, and then write them back. But
fortunately, Java 2 technology already supplies a number of filters that carry out common
image processing operations for you.

The image manipulations all implement the BufferedImageOp interface. After you
construct the operation, you simply call the filter method to transform an image into
another.

BufferedImageOp op = . . .;
BufferedImage filteredImage
 = new BufferedImage(image.getWidth(), image.getHeight(),

Parameters: argb the color value.
 data null or an array that is suitable for being filled with the sample

data for a color value. Its element type and length depend on the
color model.

 image.getType());
op.filter(image, filteredImage);

Some operations can transform an image in place (op.filter(image, image)), but
most can't.

There are five classes that implement the BufferedImageOp interface:

AffineTransformOp
RescaleOp
LookupOp
ColorConvertOp
ConvolveOp

The AffineTransformOp carries out an affine transformation on the pixels. For example,
here is how you can rotate an image about its center.

AffineTransform transform
 = AffineTransform.getRotateInstance(Math.toRadians(angle),
 image.getWidth() / 2, image.getHeight() / 2);
AffineTransformOp op
 = new AffineTransformOp(transform, interpolation);
op.filter(image, filteredImage);

The AffineTransformOp constructor requires an affine transform and an interpolation
strategy. Interpolation is necessary to determine pixels in the target image if the source pixels
are transformed somewhere between target pixels. For example, if you rotate source pixels,
then they will generally not fall exactly onto target pixels. There are two interpolation strategies:
AffineTransformOp.TYPE_BILINEAR and AffineTransformOp
TYPE_NEAREST_NEIGHBOR. Bilinear interpolation takes a bit longer but looks better.

The program in Example 7-11 lets you rotate an image by 5 degrees (see Figure 7-31).

Figure 7-31. A rotated image

The RescaleOp carries out a rescaling operation

for all sample values x in the image. Sample values that are too large or small after the
rescaling are set to the largest or smallest legal value. If the image is in ARGB format, the
scaling is carried out separately for the red, green, and blue values, but not for the alpha
values. The effect of rescaling with a > 1 is to brighten the image. You construct the
RescaleOp by specifying the scaling parameters and optional rendering hints. In Example 7-
11, we use

float a = 1.5f;
float b = -20.0f;
RescaleOp op = new RescaleOp(a, b, null);

The LookupOp operation lets you specify an arbitrary mapping of sample values. You supply
a table that specifies how each value should be mapped. In the example program, we compute
the negative of all colors, changing the color c to 255 — c.

The LookupOp constructor requires an object of type LookupTable and a map of optional
hints. The LookupTable class is abstract. There are two concrete subclasses:
ByteLookupTable and ShortLookupTable. Since RGB color values are bytes, we
use the ByteLookupTable. You construct such a table from an array of bytes and an
integer offset into that array. Here is how we construct the LookupOp for the example
program.

byte negative[] = new byte[256];
for (int i = 0; i < 256; i++)
 negative[i] = (byte)(255 - i);
ByteLookupTable table = new ByteLookupTable(0, negative);
LookupOp op = new LookupOp(table, null);

The lookup is applied to each color value separately, but not to the alpha value.

NOTE

The ColorConvertOp is useful for color space conversions. We do not discuss it here.

The most powerful of the transformations is the ConvolveOp, which carries out a
mathematical convolution. We do not want to get too deeply into the mathematical details of
convolution, but the basic idea is simple. Consider, for example, the blur filter (see Figure 7-
32).

Figure 7-32. Blurring an image

You cannot apply a LookupOp to an image with an indexed color model.
(In those images, each sample value is an offset into a color palette).

The blurring is achieved by replacing each pixel with the average value from the pixel and its
eight neighbors. Intuitively, it makes sense why this operation would blur out the picture.
Mathematically, the averaging can be expressed as a convolution operation with the following
kernel:

The kernel of a convolution is a matrix that tells what weights should be applied to the
neighboring values. The kernel above leads to a blurred image. A different kernel

carries out edge detection, locating areas of color changes (see Figure 7-33). Edge detection
is an important technique for analyzing photographic images.

Figure 7-33. Edge detection

To construct a convolution operation, you first set up an array of the values for the kernel and
construct a Kernel object. Then, construct a ConvolveOp object from the kernel and use
it for filtering.

float[] elements =
 {
 0.0f, -1.0f, 0.0f,
 -1.0f, 4.f, -1.0f,
 0.0f, -1.0f, 0.0f
 };
Kernel kernel = new Kernel(3, 3, elements);
ConvolveOp op = new ConvolveOp(kernel);
op.filter(image, filteredImage);

The program in Example 7-11 allows a user to load in a GIF or JPEG image and to carry out
the image manipulations that we discussed. Thanks to the power of the image operations that
the Java 2D API provides, the program is very simple.

Example 7-11 ImageProcessingTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.awt.geom.*;
 4. import java.awt.image.*;
 5. import java.io.*;
 6. import javax.imageio.*;
 7. import javax.swing.*;
 8.
 9. /**
 10. This program demonstrates various image processing ope
 11. */
 12. public class ImageProcessingTest
 13. {
 14. public static void main(String[] args)
 15. {
 16. JFrame frame = new ImageProcessingFrame();
 17. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 18. frame.show();
 19. }
 20. }
 21.
 22. /**
 23. This frame has a menu to load an image and to specify

 24. various transformations, and a panel to show the resul
 25. image.
 26. */
 27. class ImageProcessingFrame extends JFrame
 28. {
 29. public ImageProcessingFrame()
 30. {
 31. setTitle("ImageProcessingTest");
 32. setSize(WIDTH, HEIGHT);
 33.
 34. JPanel panel = new
 35. JPanel()
 36. {
 37. public void paintComponent(Graphics g)
 38. {
 39. super.paintComponent(g);
 40. if (image != null)
 41. g.drawImage(image, 0, 0, null);
 42. }
 43. };
 44.
 45. getContentPane().add(panel, BorderLayout.CENTER);
 46.
 47. JMenu fileMenu = new JMenu("File");
 48. JMenuItem openItem = new JMenuItem("Open");
 49. openItem.addActionListener(new
 50. ActionListener()
 51. {
 52. public void actionPerformed(ActionEvent event
 53. {
 54. openFile();
 55. }
 56. });
 57. fileMenu.add(openItem);
 58.
 59. JMenuItem exitItem = new JMenuItem("Exit");
 60. exitItem.addActionListener(new
 61. ActionListener()
 62. {
 63. public void actionPerformed(ActionEvent event
 64. {
 65. System.exit(0);
 66. }
 67. });

 68. fileMenu.add(exitItem);
 69.
 70. JMenu editMenu = new JMenu("Edit");
 71. JMenuItem blurItem = new JMenuItem("Blur");
 72. blurItem.addActionListener(new
 73. ActionListener()
 74. {
 75. public void actionPerformed(ActionEvent event
 76. {
 77. float weight = 1. 0f/9. 0f;
 78. float[] elements = new float[9];
 79. for (int i = 0; i < 9; i++)
 80. elements[i] = weight;
 81. convolve(elements);
 82. }
 83. });
 84. editMenu.add(blurItem);
 85.
 86. JMenuItem sharpenItem = new JMenuItem("Sharpen");
 87. sharpenItem.addActionListener(new
 88. ActionListener()
 89. {
 90. public void actionPerformed(ActionEvent event
 91. {
 92. float[] elements =
 93. { 0.0f, -1.0f, 0.0f,
 94. -1.0f, 5.f, -1.0f,
 95. 0.0f, -1.0f, 0.0f
 96. };
 97. convolve(elements);
 98. }
 99. });
100. editMenu.add(sharpenItem);
101.
102. JMenuItem brightenItem = new JMenuItem("Brighten");
103. brightenItem.addActionListener(new
104. ActionListener()
105. {
106. public void actionPerformed(ActionEvent event
107. {
108. float a = 1. 5f;
109. float b = -20. 0f;
110. RescaleOp op = new RescaleOp(a, b, null);
111. filter(op);

112. }
113. });
114. editMenu.add(brightenItem);
115.
116. JMenuItem edgeDetectItem = new JMenuItem("Edge dete
117. edgeDetectItem.addActionListener(new
118. ActionListener()
119. {
120. public void actionPerformed(ActionEvent event
121. {
122. float[] elements =
123. { 0.0f, -1.0f, 0.0f,
124. -1.0f, 4.f, -1.0f,
125. 0.0f, -1.0f, 0.0f
126. };
127. convolve(elements);
128. }
129. });
130. editMenu.add(edgeDetectItem);
131.
132. JMenuItem negativeItem = new JMenuItem("Negative");
133. negativeItem.addActionListener(new
134. ActionListener()
135. {
136. public void actionPerformed(ActionEvent event
137. {
138. byte negative[] = new byte[256];
139. for (int i = 0; i < 256; i++)
140. negative[i] = (byte)(255 - i);
141. ByteLookupTable table
142. = new ByteLookupTable(0, negative);
143. LookupOp op = new LookupOp(table, null);
144. filter(op);
145. }
146. });
147. editMenu.add(negativeItem);
148.
149. JMenuItem rotateItem = new JMenuItem("Rotate");
150. rotateItem.addActionListener(new
151. ActionListener()
152. {
153. public void actionPerformed(ActionEvent event
154. {
155. AffineTransform transform

156. = AffineTransform.getRotateInstance(
157. Math.toRadians(5),
158. image.getWidth() / 2,
159. image.getHeight() / 2);
160. AffineTransformOp op
161. = new AffineTransformOp(transform,
162. AffineTransformOp.TYPE_BILINEAR);
163. filter(op);
164. }
165. });
166. editMenu.add(rotateItem);
167.
168. JMenuBar menuBar = new JMenuBar();
169. menuBar.add(fileMenu);
170. menuBar.add(editMenu);
171. setJMenuBar(menuBar);
172. }
173.
174. /**
175. Open a file and load the image.
176. */
177. public void openFile()
178. {
179. JFileChooser chooser = new JFileChooser();
180. chooser.setCurrentDirectory(new File("."));
181.
182. chooser.setFileFilter(new
183. javax.swing.filechooser.FileFilter()
184. {
185. public boolean accept(File f)
186. {
187. String name = f.getName().toLowerCase();
188. return name.endsWith(".gif")
189. || name.endsWith(".jpg")
190. || name.endsWith(".jpeg")
191. || f.isDirectory();
192. }
193. public String getDescription()
194. {
195. return "Image files";
196. }
197. });
198.
199. int r = chooser.showOpenDialog(this);

200. if(r != JFileChooser.APPROVE_OPTION) return;
201.
202. try
203. {
204. image = ImageIO.read(chooser.getSelectedFile());
205. }
206. catch (IOException exception)
207. {
208. JOptionPane.showMessageDialog(this, exception);
209. }
210. repaint();
211. }
212.
213. /**
214. Apply a filter and repaint.
215. @param op the image operation to apply
216. */
217. private void filter(BufferedImageOp op)
218. {
219. BufferedImage filteredImage
220. = new BufferedImage(image.getWidth(), image.getH
221. image.getType());
222. op.filter(image, filteredImage);
223. image = filteredImage;
224. repaint();
225. }
226.
227. /**
228. Apply a convolution and repaint.
229. @param elements the convolution kernel (an array of
230. 9 matrix elements)
231. */
232. private void convolve(float[] elements)
233. {
234. Kernel kernel = new Kernel(3, 3, elements);
235. ConvolveOp op = new ConvolveOp(kernel);
236. filter(op);
237. }
238.
239. private BufferedImage image;
240. private static final int WIDTH = 400;
241. private static final int HEIGHT = 400;
242. }

java.awt.image.BufferedImageOp

BufferedImage filter(BufferedImage source, BufferedImage
dest)

applies the image operation to the source image and stores the result in the destination
image. If dest is null, a new destination image is created. The destination image is
returned.

java.awt.image.AffineTransformOp

AffineTransformOp(AffineTransform t, int
interpolationType)

constructs an affine transform operator.

java.awt.image.RescaleOp

RescaleOp(float a, float b, RenderingHints hints)

constructs a rescale operator.

java.awt.image.LookupOp

Parameters: t an affine transform
 interpolationType one of TYPE_BILINEAR or

TYPE_NEAREST_NEIGHBOR

Parameters: a, b coefficients of the transformation xnew = a·x + b that is applied to
the sample values

 hints rendering hints for color matching; can be null

LookupOp(LookupTable table, RenderingHints hints)

constructs a lookup operator.

java.awt.image.ByteLookupTable

ByteLookupTable(int offset, byte[] data)

constructs a byte lookup table.

java.awt.image.ConvolveOp

ConvolveOp(Kernel kernel)

ConvolveOp(Kernel kernel, int edgeCondition,
RenderingHints hints)

construct a convolution operator.

Parameters: table the table for mapping the sample values
 hints rendering hints for color matching; can be null

Parameters: offset position of first data value to be used
 data the table data

Parameters: kernel the kernel matrix for the convolution.
 edgeCondition specifies how edge values should be treated: one of

EDGE_NO_OP and EDGE_ZERO_FILL. Edge
values need to be treated specially because they
don't have sufficient neighboring values to compute
the convolution. The default is EDGE_ZERO_FILL.

 hints rendering hints for color matching; can be null.

java.awt.image.Kernel

Kernel(int width, int height, float[] data)

constructs a kernel.

Printing
The original Java Development Kit had no support for printing at all. It was not possible to print
from applets, and you had to get a third-party library if you wanted to print in an application.
SDK 1.1 introduced very lightweight printing support, just enough to produce simple printouts,
as long as you were not too particular about the print quality. The 1.1 printing model was
designed to allow browser vendors to print the surface of an applet as it appears on a web
page (which, however, the browser vendors have not embraced). Apart from that, it is best if
the 1.1 printing model sinks into the obscurity it so richly deserves.

SDK 1.2 introduced the beginnings of a robust printing model that is fully integrated with 2D
graphics, and SDK 1.3 provided minor improvements. SDK 1.4 adds important enhancements,
such as discovery of printer features and streaming print jobs for server-side print
management.

In this section, we show you how you can easily print a drawing on a single sheet of paper,
how you can manage a multipage printout, and how you can benefit from the elegance of the
Java 2D imaging model and easily generate a print preview dialog.

NOTE

Printing Graphics

In this section, we will tackle what is probably the most common printing situation: to print a 2D
graphic. Of course, the graphic can contain text in various fonts, or even consist entirely of
text.

To generate a printout, you need to take care of these two items:

Parameters: width, height dimensions of the kernel matrix
 data entries of the kernel matrix

The Java platform also has support for printing user interface components.
We do not cover this topic because it is mostly of interest to implementors of
browsers, screen grabbers, and so on. For more information on printing
components, see
http://java.sun.com/products/jdk/1.1/docs/guide/awt/designspec/printing.html.

You need to supply an object that implements the Printable interface.

You need to start a print job.

The Printable interface has a single method:

int print(Graphics g, PageFormat format, int page)

That method is called whenever the print engine needs to have a page formatted for printing.
Your code draws the text and image that need to be printed onto the graphics context. The
page format tells you the paper size and the print margins. The page number tells you which
page you need to render.

To start a print job, you use the PrinterJob class. First, you call the static
getPrinterJob method to get a print job object. Then set the Printable object that
you want to print.

Printable canvas = . . .;
PrinterJob job = PrinterJob.getPrinterJob();
job.setPrintable(canvas);

CAUTION

Before starting the print job, you should call the printDialog method to display a print
dialog (see Figure 7-34). That dialog gives the user a chance to select the printer to be used
(in case there are multiple printers available), the page range that should be printed, and
various printer settings.

Figure 7-34. A Cross-Platform Print Dialog

There is a class PrintJob that handles JDK 1.1 style printing. That class
is now obsolete. Do not confuse it with the PrinterJob class.

NOTE

You collect printer settings in an object of a class that implements the
PrintRequestAttributeSet interface to the printDialog method. The SDK
provides a HashPrintRequestAttributeSet class for that purpose.

HashPrintRequestAttributeSet attributes
 = new HashPrintRequestAttributeSet();
. . .

Pass the attributes object to the printDialog method.

The printDialog method returns true if the user clicked OK and false if the user
canceled the dialog. If the user accepted, call the print method of the PrinterJob class
to start the printing process. The print method may throw a PrinterException. Here
is the outline of the printing code.

if (job.printDialog(attributes))
{
 try

At the time of this writing, the Java printing dialogs do not yet work properly
on Linux. To print on Linux, you need to generate a PostScript file with the
stream print service that is described later in this chapter, and then spool
the resulting file.

 {
 job.print();
 }
 catch (PrinterException exception)
 {
 . . .
 }
}

NOTE

During printing, the print method of the PrinterJob class makes repeated calls to the
print method of the Printable object associated with the job.

Since the job does not know how many pages you want to print, it simply keeps calling the
print method. As long as the print method returns the value
Printable.PAGE_EXISTS, the print job keeps producing pages. When the print
method returns Printable.NO_SUCH_PAGE, the print job stops.

CAUTION

Therefore, the print job doesn't have an accurate page count until after the printout is
complete. For that reason, the print dialog can't display the correct page range and instead
displays a page range of "Pages 1 to 1." You will see in the next section how to avoid this
blemish by supplying a Book object to the print job.

During the printing process, the print job repeatedly calls the print method of the
Printable object. The print job is allowed to make multiple calls for the same page. You
should therefore not count pages inside the print method, but always rely on the page
number parameter. There is a good reason why the print job may call the print method
repeatedly for the same page. Some printers, in particular dot-matrix and inkjet printers, use
banding. They print one band at a time, advance the paper, and then print the next band. The
print job may use banding even for laser printers that print a full page at a time—it gives the
print job a way of managing the size of the spool file.

If the print job needs the Printable object to print a band, then it sets the clip area of the
graphics context to the requested band and calls the print method. Its drawing operations
will be clipped against the band rectangle, and only those drawing elements that show up in

If you need to support SDK 1.2 or 1.3, you must modify your program to
display the native print dialog instead of the cross-platform dialog that was
added in SDK 1.4. See the sidebar at the end of this section for details.

The page numbers that the print job passes to the print method start
with page 0.

the band will be rendered. Your print method does not need to be aware of that process,
with one caveat: it should not interfere with the clip area.

CAUTION

The PageFormat parameter of the print method contains information about the printed
page. The methods

getWidth
getHeight

return the paper size, measured in points. One point is 1/72 of an inch. (An inch equals 25.4
millimeters.) For example, A4 paper is approximately 595 by 842 points, and US letter-size
paper is 612 by 792 points.

Points are a common measurement in the printing trade in the United States. Much to the
chagrin of the rest of the world, the printing package uses point units for two purposes. Paper
sizes and paper margins are measured in points. And the default unit for all print graphics
contexts is one point. You can verify that in the example program at the end of this section.
The program prints two lines of text that are 72 units apart from another. Run the example
program and measure the distance between the baselines. They are exactly 1 inch or 25.4
millimeters apart.

The getWidth and getHeight methods of the PageFormat class give you the
complete paper size. Not all of the paper area is printable. Users typically select margins, and
even if they don't, printers need to somehow grip the sheets of paper on which they print and
therefore have a small unprintable area around the edges. The methods

getImageableWidth
getImageableHeight

tell you the dimensions of the area that you can actually fill. However, the margins need not be
symmetrical, so you also need to know the top-left corner of the imageable area (see Figure 7-
35), which is obtained by the methods

Figure 7-35. Page format measurements

The Graphics object that your print method gets is also clipped
against the page margins. If you replace the clip area, you can draw outside
the margins. Especially in a printer graphics context, you need to respect
the clipping area. Call clip, not setClip, to further restrict the clipping
area. If you must remove a clip area, then make sure to call getClip at
the beginning of your print method, and restore that clip area.

getImageableX
getImageableY

TIP

If you want to have your users choose the settings for the page margins or have them switch
between portrait and landscape orientation without setting other printing attributes, then you
can call the pageDialog method of the PrinterJob class:

PageFormat format = job.pageDialog(attributes);

NOTE

The graphics context that you receive in the print method is clipped to
exclude the margins. But the origin of the coordinate system is nevertheless
the top-left corner of the paper. It makes sense to translate the coordinate
system to start at the top-left corner of the imageable area. Simply start
your print method with

g.translate(pageFormat.getImageableX(),
 pageFormat.getImageableY());

One of the tabs of the print dialog contains the page setup dialog (see
Figure 7-36). You may still want to give users an option to set the page
format before printing, especially if your program presents a "what you see

Example 7-12 shows you how to render the same set of shapes on the screen and on the
printed page. A subclass of JPanel implements the Printable interface. Both the
paintComponent and the print methods call the same method to carry out the actual
drawing.

class PrintPanel extends JPanel implements Printable
{
 public void paintComponent(Graphics g)
 {
 super.paintComponent(g);
 Graphics2D g2 = (Graphics2D)g;
 drawPage(g2);
 }

 public int print(Graphics g, PageFormat pf, int page)
 throws PrinterException
 {
 if (page >= 1) return Printable.NO_SUCH_PAGE;
 Graphics2D g2 = (Graphics2D)g;
 g2.translate(pf.getImageableX(), pf.getImageableY());

is what you get" display of the pages to be printed. The pageDialog
method returns a PageFormat object with the user settings.

Figure 7-36. A Cross-Platform Page Setup Dialog

 drawPage(g2);
 return Printable.PAGE_EXISTS;
 }

 public void drawPage(Graphics2D g2)
 {
 // shared drawing code goes here
 . . .
 }
 . . .
}

CAUTION

This example displays and prints the same image as Example 7-6 , namely the outline of the
message "Hello, World" that is used as a clipping area for a pattern of lines (see Figure 7-22).

Click on the Print button to start printing, or on the Page setup button to bring up the page
setup dialog. Example 7-12 shows the code.

SDK 1.2 does not set the paint to black when setting up a printer graphics
context. If your pages come out all white, add a line g2.setPaint
(Color.black) at the top of the print method. This problem has
been fixed in SDK 1.3.

Using Native Print Dialogs
Prior to SDK 1.4, the printing system used the native print and page setup dialogs of the host
platform. To show a native print dialog, call the printDialog method with no parameters.
(There is no way to collect user settings in an attribute set.) Figure 7-37 shows a Windows print
dialog.

Figure 7-37. A Windows print dialog

One potential advantage of using the native print dialog is that some printer drivers have specia
features that are not accessible through the cross-platform dialog. At any rate, if you want to
support SDK 1.2 and 1.3, you need to show the native dialogs.

To show a native page setup dialog, you pass a default PageFormat object to the
pageDialog method. The method clones that object, modifies it according to the user
selections in the dialog, and returns the cloned object.

PageFormat defaultFormat = printJob.defaultPage();
PageFormat selectedFormat = printJob.pageDialog(defaultFormat)

Figure 7-38 shows a page setup dialog for the Windows operating system.

Figure 7-38. A Windows page setup dialog

Example 7-12 PrintTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.awt.font.*;
 4. import java.awt.geom.*;
 5. import java.awt.print.*;
 6. import java.util.*;
 7. import javax.print.*;
 8. import javax.print.attribute.*;
 9. import javax.swing.*;
 10.
 11. /**
 12. This program demonstrates how to print 2D graphics
 13. */
 14. public class PrintTest
 15. {
 16. public static void main(String[] args)
 17. {
 18. JFrame frame = new PrintTestFrame();
 19. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 20. frame.show();

 21. }
 22. }
 23.
 24. /**
 25. This frame shows a panel with 2D graphics and buttons
 26. to print the graphics and to set up the page format.
 27. */
 28. class PrintTestFrame extends JFrame
 29. {
 30. public PrintTestFrame()
 31. {
 32. setTitle("PrintTest");
 33. setSize(WIDTH, HEIGHT);
 34.
 35. Container contentPane = getContentPane();
 36. canvas = new PrintPanel();
 37. contentPane.add(canvas, BorderLayout.CENTER);
 38.
 39. attributes = new HashPrintRequestAttributeSet();
 40.
 41. JPanel buttonPanel = new JPanel();
 42. JButton printButton = new JButton("Print");
 43. buttonPanel.add(printButton);
 44. printButton.addActionListener(new
 45. ActionListener()
 46. {
 47. public void actionPerformed(ActionEvent event
 48. {
 49. try
 50. {
 51. PrinterJob job = PrinterJob.getPrinterJ
 52. job.setPrintable(canvas);
 53. if (job.printDialog(attributes))
 54. {
 55. job.print(attributes);
 56. }
 57. }
 58. catch (PrinterException exception)
 59. {
 60. JOptionPane.showMessageDialog(
 61. PrintTestFrame.this, exception);
 62. }
 63. }
 64. });

 65.
 66. JButton pageSetupButton = new JButton("Page setup")
 67. buttonPanel.add(pageSetupButton);
 68. pageSetupButton.addActionListener(new
 69. ActionListener()
 70. {
 71. public void actionPerformed(ActionEvent event
 72. {
 73. PrinterJob job = PrinterJob.getPrinterJob(
 74. job.pageDialog(attributes);
 75. }
 76. });
 77.
 78. contentPane.add(buttonPanel, BorderLayout.NORTH);
 79. }
 80.
 81. private PrintPanel canvas;
 82. private PrintRequestAttributeSet attributes;
 83.
 84. private static final int WIDTH = 300;
 85. private static final int HEIGHT = 300;
 86. }
 87.
 88. /**
 89. This panel generates a 2D graphics image for screen di
 90. and printing.
 91. */
 92. class PrintPanel extends JPanel implements Printable
 93. {
 94. public void paintComponent(Graphics g)
 95. {
 96. super.paintComponent(g);
 97. Graphics2D g2 = (Graphics2D)g;
 98. drawPage(g2);
 99. }
100.
101. public int print(Graphics g, PageFormat pf, int page)
102. throws PrinterException
103. {
104. if (page >= 1) return Printable.NO_SUCH_PAGE;
105. Graphics2D g2 = (Graphics2D)g;
106. g2.translate(pf.getImageableX(), pf.getImageableY()
107. g2.draw(new Rectangle2D.Double(0, 0,
108. pf.getImageableWidth(), pf.getImageableHeight())

109.
110. drawPage(g2);
111. return Printable.PAGE_EXISTS;
112. }
113.
114. /**
115. This method draws the page both on the screen and t
116. printer graphics context.
117. @param g2 the graphics context
118. */
119. public void drawPage(Graphics2D g2)
120. {
121. FontRenderContext context = g2. getFontRenderContex
122. Font f = new Font("Serif", Font.PLAIN, 72);
123. GeneralPath clipShape = new GeneralPath();
124.
125. TextLayout layout = new TextLayout("Hello", f, cont
126. AffineTransform transform
127. = AffineTransform.getTranslateInstance(0, 72);
128. Shape outline = layout.getOutline(transform);
129. clipShape.append(outline, false);
130.
131. layout = new TextLayout("World", f, context);
132. transform
133. = AffineTransform.getTranslateInstance(0, 144);
134. outline = layout.getOutline(transform);
135. clipShape.append(outline, false);
136.
137. g2.draw(clipShape);
138. g2.clip(clipShape);
139.
140. final int NLINES =50;
141. Point2D p = new Point2D.Double(0, 0);
142. for (int i = 0; i < NLINES; i++)
143. {
144. double x = (2 * getWidth() * i) / NLINES;
145. double y = (2 * getHeight() * (NLINES - 1 - i))
146. / NLINES;
147. Point2D q = new Point2D.Double(x, y);
148. g2. draw(new Line2D.Double(p, q));
149. }
150. }
151. }

java.awt.print.Printable

int print(Graphics g, PageFormat format, int pageNumber)

renders a page and returns PAGE_EXISTS, or returns NO_SUCH_PAGE.

java.awt.print.PrinterJob

static PrinterJob getPrinterJob()

returns a printer job object.

PageFormat defaultPage()

returns the default page format for this printer.

boolean printDialog(PrintRequestAttributeSet attributes)

boolean printDialog()

bring up print dialogs to give the user an opportunity to select the pages to be printed and
to change print settings. The first method displays a cross-platform dialog, the second a
native dialog. The first method modifies the attributes object to reflect the user
settings. Both methods return true if the user accepts the dialog.

PageFormat pageDialog(PrintRequestAttributeSet attributes)

PageFormat pageDialog(PageFormat defaults)

display page setup dialogs. The first method displays a cross-platform dialog, the second
a native dialog. Both methods return a PageFormat object with the format that the
user requested in the dialog. The first method modifies the attributes object to
reflect the user settings. The second method does not modify the defaults object.

Parameters: g the graphics context onto which the page is rendered
 format the format of the page to draw on
 pageNumber the number of the requested page

void setPrintable(Printable p)

void setPrintable(Printable p, PageFormat format)

set the Printable of this print job and an optional page format.

void print()

prints the current Printable by repeatedly calling its print method and sending the
rendered pages to the printer, until no more pages are available.

java.awt.print.PageFormat

double getWidth()

double getHeight()

return the width and height of the page.

double getImageableWidth()

double getImageableHeight()

return the width and height of the imageable area of the page.

double getImageableX()

double getImageableY()

return the position of the top-left corner of the imageable area.

int getOrientation()

returns one of PORTRAIT, LANDSCAPE, REVERSE_LANDSCAPE. Page orientation is
transparent to programmers since the page format and graphics context settings
automatically reflect the page orientation.

Printing Multiple Pages

In practice, you don't usually want to pass a raw Printable object to a print job. Instead,
you should obtain an object of a class that implements the Pageable interface. The Java
platform supplies one such class, called Book. A book is made up of sections, each of which

is a Printable. You make a book by adding Printable objects and their page counts.

Book book = new Book();
Printable coverPage = . . .;
Printable bodyPages = . . .;
book.append(coverPage, pageFormat); // append 1 page
book.append(bodyPages, pageFormat, pageCount);

Then, you use the setPageable method to pass the Book object to the print job.

printJob.setPageable(book);

Now the print job knows exactly how many pages to print. Then, the print dialog displays an
accurate page range, and the user can select the entire range or subranges.

CAUTION

From a programmer's perspective, the biggest challenge about using the Book class is that
you need to know how many pages each section will have when you print it. Your
Printable class needs a layout algorithm that computes the layout of the material on the
printed pages. Before printing starts, invoke that algorithm to compute the page breaks and the
page count. You can retain the layout information so you have it handy during the printing
process.

You must guard against the possibility that the user has changed the page format. If that
happens, you must recompute the layout, even if the information that you want to print has not
changed.

Example 7-13 shows how to produce a multipage printout. This program prints a message in
very large characters on a number of pages (see Figure 7-39). You can then trim the margins
and tape the pages together to form a banner.

Figure 7-39. A banner

The layoutPages method of the Banner class computes the layout. We first lay out the

When the print job calls the print methods of the Printable sections,
it passes the current page number of the book, and not of each section, as
the current page number. That is a huge pain—each section must know the
page counts of the preceding sections to make sense of the page number
parameter.

message string in a 72-point font. Then, we compute the height of the resulting string and
compare it against the imageable height of the page.We derive a scale factor from these two
measurements. When printing the string, we will magnify it by that scale factor.

CAUTION

The getPageCount method of the Banner class first calls the layout method. Then it
scales up the width of the string and divides it by the imageable width of each page. The
quotient, rounded up to the next integer, is the page count.

It sounds like it might be difficult to print the banner since characters can be broken across
multiple pages. However, thanks to the power of the Java 2D API, this turns out not to be a
problem at all. When a particular page is requested, we simply use the translate method
of the Graphics2D class to shift the top-left corner of the string to the left. Then, we set a
clip rectangle that equals the current page (see Figure 7-40). Finally, we scale the graphics
context with the scale factor that the layout method computed.

Figure 7-40. Printing a page of a banner

This example shows the power of transformations. The drawing code is kept simple, and the
transformation does all the work of placing the drawing at the appropriate place. Finally, the
clip cuts away the part of the image that falls outside the page. In the next section, you will see
another compelling use of transformations, to display a print preview.

Print Preview

Most professional programs have a print preview mechanism that lets you look at your pages
on the screen so that you won't waste paper on a printout that you don't like. The printing

To lay out your information precisely, you usually need access to the printer
graphics context. Unfortunately, there is no way to obtain that graphics
context until printing actually starts. In our example program, we make do
with the screen graphics context and hope that the font metrics of the
screen and printer match.

classes of the Java platform do not supply a standard "print preview" dialog. But it is easy to
design your own (see Figure 7-41). In this section, we show you how. The
PrintPreviewDialog class in Example 7-13 is completely generic—you can reuse it to
preview any kind of printout.

Figure 7-41. A print preview dialog

To construct a PrintPreviewDialog, you supply either a Printable or a Book,
together with a PageFormat object. The surface of the dialog contains a
PrintPreviewCanvas. As you use the Next and Previous buttons to flip through the
pages, the paintComponent method calls the print method of the Printable object
for the requested page.

Normally, the print method draws the page context on a printer graphics context. However,
we supply the screen graphics context, suitably scaled so that the entire printed page fits
inside a small screen rectangle.

float xoff = . . .; // left of page
float yoff = . . .; // top of page
float scale = . . .; // to fit printed page onto screen
g2.translate(xoff, yoff);
g2.scale(scale, scale);
Printable printable = book.getPrintable(currentPage);
printable.print(g2, pageFormat, currentPage);

The print method never knows that it doesn't actually produce printed pages. It simply
draws onto the graphics context, thereby producing a microscopic print preview on the screen.
This is a very compelling demonstration of the power of the Java 2D imaging model.

Example 7-13 contains the code for the banner printing program and the print preview dialog.
Type "Hello, World!" into the text field and look at the print preview, then print out the banner.

Example 7-13 BookTest.java

 1. import java.awt.*;

 2. import java.awt.event.*;
 3. import java.awt.font.*;
 4. import java.awt.geom.*;
 5. import java.awt.print.*;
 6. import java.util.*;
 7. import javax.print.*;
 8. import javax.print.attribute.*;
 9. import javax.swing.*;
 10.
 11. /**
 12. This program demonstrates the printing of a multi-page
 13. book. It prints a "banner", by blowing up a text strin
 14. to fill the entire page vertically. The program also
 15. contains a generic print preview dialog.
 16. */
 17. public class BookTest
 18. {
 19. public static void main(String[] args)
 20. {
 21. JFrame frame = new BookTestFrame();
 22. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 23. frame.show();
 24. }
 25. }
 26.
 27. /**
 28. This frame has a text field for the banner text and
 29. buttons for printing, page setup, and print preview.
 30. */
 31. class BookTestFrame extends JFrame
 32. {
 33. public BookTestFrame()
 34. {
 35. setTitle("BookTest");
 36. setSize(WIDTH, HEIGHT);
 37.
 38. Container contentPane = getContentPane();
 39. text = new JTextField();
 40. contentPane.add(text, BorderLayout.NORTH);
 41.
 42. attributes = new HashPrintRequestAttributeSet();
 43.
 44. JPanel buttonPanel = new JPanel();
 45.

 46. JButton printButton = new JButton("Print");
 47. buttonPanel.add(printButton);
 48. printButton.addActionListener(new
 49. ActionListener()
 50. {
 51. public void actionPerformed(ActionEvent event
 52. {
 53. try
 54. {
 55. PrinterJob job = PrinterJob.getPrinterJ
 56. job.setPageable(makeBook());
 57. if (job.printDialog(attributes))
 58. {
 59. job.print(attributes);
 60. }
 61. }
 62. catch (PrinterException exception)
 63. {
 64. JOptionPane.showMessageDialog(
 65. BookTestFrame.this, exception);
 66. }
 67. }
 68. });
 69.
 70. JButton pageSetupButton = new JButton("Page setup")
 71. buttonPanel.add(pageSetupButton);
 72. pageSetupButton.addActionListener(new
 73. ActionListener()
 74. {
 75. public void actionPerformed(ActionEvent event
 76. {
 77. PrinterJob job = PrinterJob.getPrinterJob(
 78. pageFormat = job.pageDialog(attributes);
 79. }
 80. });
 81.
 82. JButton printPreviewButton = new JButton("Print pre
 83. buttonPanel.add(printPreviewButton);
 84. printPreviewButton.addActionListener(new
 85. ActionListener()
 86. {
 87. public void actionPerformed(ActionEvent event
 88. {
 89. PrintPreviewDialog dialog

 90. = new PrintPreviewDialog(makeBook());
 91. dialog.show();
 92. }
 93. });
 94.
 95. contentPane.add(buttonPanel, BorderLayout.SOUTH);
 96. }
 97.
 98. /**
 99. Makes a book that contains a cover page and the
100. pages for the banner.
101. */
102. public Book makeBook()
103. {
104. if (pageFormat == null)
105. {
106. PrinterJob job = PrinterJob.getPrinterJob();
107. pageFormat = job.defaultPage();
108. }
109. Book book = new Book();
110. String message = text.getText();
111. Banner banner = new Banner(message);
112. int pageCount
113. = banner.getPageCount((Graphics2D)getGraphics(),
114. pageFormat);
115. book.append(new CoverPage(message + " (" + pageCoun
116. + " pages)"), pageFormat);
117. book.append(banner, pageFormat, pageCount);
118. return book;
119. }
120.
121. private JTextField text;
122. private PageFormat pageFormat;
123. private PrintRequestAttributeSet attributes;
124.
125. private static final int WIDTH = 300;
126. private static final int HEIGHT = 100;
127. }
128.
129. /**
130. A banner that prints a text string on multiple pages.
131. */
132. class Banner implements Printable
133. {

134. /**
135. Constructs a banner
136. @param m the message string
137. */
138. public Banner(String m)
139. {
140. message = m;
141. }
142.
143. /**
144. Gets the page count of this section.
145. @param g2 the graphics context
146. @param pf the page format
147. @return the number of pages needed
148. */
149. public int getPageCount(Graphics2D g2, PageFormat pf)
150. {
151. if (message.equals("")) return 0;
152. FontRenderContext context = g2. getFontRenderContex
153. Font f = new Font("Serif", Font.PLAIN, 72);
154. Rectangle2D bounds = f.getStringBounds(message, con
155. scale = pf.getImageableHeight() / bounds.getHeight(
156. double width = scale * bounds.getWidth();
157. int pages = (int)Math.ceil(width / pf.getImageableW
158. return pages;
159. }
160.
161. public int print(Graphics g, PageFormat pf, int page)
162. throws PrinterException
163. {
164. Graphics2D g2 = (Graphics2D)g;
165. if (page > getPageCount(g2, pf))
166. return Printable.NO_SUCH_PAGE;
167. g2. translate(pf.getImageableX(), pf.getImageableY(
168.
169. drawPage(g2, pf, page);
170. return Printable.PAGE_EXISTS;
171. }
172.
173. public void drawPage(Graphics2D g2, PageFormat pf, int
174. {
175. if (message.equals("")) return;
176. page--; // account for cover page
177.

178. drawCropMarks(g2, pf);
179. g2. clip(new Rectangle2D.Double(0, 0,
180. pf.getImageableWidth(), pf.getImageableHeight()
181. g2. translate(-page * pf.getImageableWidth(), 0);
182. g2. scale(scale, scale);
183. FontRenderContext context = g2. getFontRenderContex
184. Font f = new Font("Serif", Font.PLAIN, 72);
185. TextLayout layout = new TextLayout(message, f, cont
186. AffineTransform transform
187. = AffineTransform.getTranslateInstance(0,
188. layout.getAscent());
189. Shape outline = layout.getOutline(transform);
190. g2. draw(outline);
191. }
192.
193. /**
194. Draws 1/2" crop marks in the corners of the page.
195. @param g2 the graphics context
196. @param pf the page format
197. */
198. public void drawCropMarks(Graphics2D g2, PageFormat pf
199. {
200. final double C = 36; // crop mark length = 1/2 inch
201. double w = pf.getImageableWidth();
202. double h = pf.getImageableHeight();
203. g2.draw(new Line2D.Double(0, 0, 0, C));
204. g2.draw(new Line2D.Double(0, 0, C, 0));
205. g2.draw(new Line2D.Double(w, 0, w, C));
206. g2.draw(new Line2D.Double(w, 0, w - C, 0));
207. g2.draw(new Line2D.Double(0, h, 0, h - C));
208. g2.draw(new Line2D.Double(0, h, C, h));
209. g2.draw(new Line2D.Double(w, h, w, h - C));
210. g2.draw(new Line2D.Double(w, h, w - C, h));
211. }
212.
213. private String message;
214. private double scale;
215. }
216.
217. /**
218. This class prints a cover page with a title.
219. */
220. class CoverPage implements Printable
221. {

222. /**
223. Constructs a cover page.
224. @param t the title
225. */
226. public CoverPage(String t)
227. {
228. title = t;
229. }
230.
231. public int print(Graphics g, PageFormat pf, int page)
232. throws PrinterException
233. {
234. if (page >= 1) return Printable.NO_SUCH_PAGE;
235. Graphics2D g2 = (Graphics2D)g;
236. g2. setPaint(Color.black);
237. g2. translate(pf.getImageableX(), pf.getImageableY(
238. FontRenderContext context = g2.getFontRenderContext
239. Font f = g2.getFont();
240. TextLayout layout = new TextLayout(title, f, contex
241. float ascent = layout.getAscent();
242. g2.drawString(title, 0, ascent);
243. return Printable.PAGE_EXISTS;
244. }
245.
246. private String title;
247. }
248.
249. /**
250. This class implements a generic print preview dialog.
251. */
252. class PrintPreviewDialog extends JDialog
253. {
254. /**
255. Constructs a print preview dialog.
256. @param p a Printable
257. @param pf the page format
258. @param pages the number of pages in p
259. */
260. public PrintPreviewDialog(Printable p, PageFormat pf,
261. int pages)
262. {
263. Book book = new Book();
264. book.append(p, pf, pages);
265. layoutUI(book);

266. }
267.
268. /**
269. Constructs a print preview dialog.
270. @param b a Book
271. */
272. public PrintPreviewDialog(Book b)
273. {
274. layoutUI(b);
275. }
276.
277. /**
278. Lays out the UI of the dialog.
279. @param book the book to be previewed
280. */
281. public void layoutUI(Book book)
282. {
283. setSize(WIDTH, HEIGHT);
284.
285. Container contentPane = getContentPane();
286. canvas = new PrintPreviewCanvas(book);
287. contentPane.add(canvas, BorderLayout.CENTER);
288.
289. JPanel buttonPanel = new JPanel();
290.
291. JButton nextButton = new JButton("Next");
292. buttonPanel.add(nextButton);
293. nextButton.addActionListener(new
294. ActionListener()
295. {
296. public void actionPerformed(ActionEvent event)
297. {
298. canvas.flipPage(1);
299. }
300. });
301.
302. JButton previousButton = new JButton("Previous");
303. buttonPanel.add(previousButton);
304. previousButton.addActionListener(new
305. ActionListener()
306. {
307. public void actionPerformed(ActionEvent event
308. {
309. canvas.flipPage(-1);

310. }
311. });
312.
313. JButton closeButton = new JButton("Close");
314. buttonPanel.add(closeButton);
315. closeButton.addActionListener(new
316. ActionListener()
317. {
318. public void actionPerformed(ActionEvent event
319. {
320. setVisible(false);
321. }
322. });
323.
324. contentPane.add(buttonPanel, BorderLayout.SOUTH);
325. }
326.
327. private PrintPreviewCanvas canvas;
328.
329. private static final int WIDTH = 300;
330. private static final int HEIGHT = 300;
331. }
332.
333. /**
334. The canvas for displaying the print preview.
335. */
336. class PrintPreviewCanvas extends JPanel
337. {
338. /**
339. Constructs a print preview canvas.
340. @param b the book to be previewed
341. */
342. public PrintPreviewCanvas(Book b)
343. {
344. book = b;
345. currentPage = 0;
346. }
347.
348. public void paintComponent(Graphics g)
349. {
350. super.paintComponent(g);
351. Graphics2D g2 = (Graphics2D)g;
352. PageFormat pageFormat = book.getPageFormat(currentP
353.

354. double xoff; // x offset of page start in window
355. double yoff; // y offset of page start in window
356. double scale; // scale factor to fit page in window
357. double px = pageFormat.getWidth();
358. double py = pageFormat.getHeight();
359. double sx = getWidth() - 1;
360. double sy = getHeight() - 1;
361. if (px / py < sx / sy) // center horizontally
362. {
363. scale = sy / py;
364. xoff = 0. 5 * (sx - scale * px);
365. yoff = 0;
366. }
367. else // center vertically
368. {
369. scale = sx / px;
370. xoff = 0;
371. yoff = 0. 5 * (sy - scale * py);
372. }
373. g2. translate((float)xoff, (float)yoff);
374. g2. scale((float)scale, (float)scale);
375.
376. // draw page outline (ignoring margins)
377. Rectangle2D page = new Rectangle2D.Double(0, 0, px,
378. g2.setPaint(Color.white);
379. g2.fill(page);
380. g2.setPaint(Color.black);
381. g2. draw(page);
382.
383. Printable printable = book.getPrintable(currentPage
384. try
385. {
386. printable.print(g2, pageFormat, currentPage);
387. }
388. catch (PrinterException exception)
389. {
390. g2.draw(new Line2D.Double(0, 0, px, py));
391. g2.draw(new Line2D.Double(0, px, 0, py));
392. }
393. }
394.
395. /**
396. Flip the book by the given number of pages.
397. @param by the number of pages to flip by. Negative

398. values flip backwards.
399. */
400. public void flipPage(int by)
401. {
402. int newPage = currentPage + by;
403. if (0 <= newPage && newPage < book.getNumberOfPages
404. {
405. currentPage = newPage;
406. repaint();
407. }
408. }
409.
410. private Book book;
411. private int currentPage;
412. }

java.awt.print.PrinterJob

void setPageable(Pageable p)

sets a Pageable (such as a Book) to be printed.

java.awt.print.Book

void append(Printable p, PageFormat format)

void append(Printable p, PageFormat format, int pageCount)

append a section to this book. If the page count is not specified, the first page is added.

Printable getPrintable(int page)

gets the printable for the specified page.

Print Services

So far, you have seen how to print 2D graphics. However, the printing API introduced in SDK
1.4 allows for far greater flexibility. The API defines a number of data types and lets you find

print services that are able to print them. Among the data types are:

Images in GIF, JPEG, or PNG format

Documents in text, HTML, PostScript, or PDF format

Raw printer code data

Objects of a class that implements Printable, Pageable, or

RenderableImage

The data themselves can be stored in a source of bytes or characters such as an input stream,
a URL, or an array. A document flavor describes the combination of a data source and a data
type. The DocFlavor class defines a number of inner classes for the various data sources.
Each of the inner classes defines constants to specify the flavors. For example, the constant

DocFlavor.INPUT_STREAM.GIF

describes a GIF image that is read from an input stream. Table 7-3 lists the combinations.

Suppose you want to print a GIF image that is located in a file. You need to find out whether
there is a print service that is capable of handling the task. The static
lookupPrintServices method of the PrintServiceLookup class returns an array
of PrintService objects that can handle the given document flavor.

DocFlavor flavor = DocFlavor.INPUT_STREAM.GIF;
PrintService[] services
 = PrintServiceLookup.lookupPrintServices(flavor, null);

The second parameter of the lookupPrintServices method is null to indicate that we
don't want to constrain the search by specifying printer attributes. We will cover attributes in
the next section.

NOTE

If the lookup yields an array with more than one element, you need to pick among the listed
print services. You can call the getName method of the PrintService class to get the
printer names, and then let the user choose.

Next, get a document print job from the service:

DocPrintJob job = services[i].createPrintJob();

The SDK 1.4 supplies print services for basic document flavors such as
images and 2D graphics. But if you try to print text or HTML documents, the
lookup will return an empty array.

Table 7-3. Document Flavors for Print Services
Data Source Data Type MIME Type
INPUT_STREAM GIF image/gif
URL JPEG image/jpeg
BYTE_ARRAY PNG image/png
 POSTSCRIPT application/postscript
 PDF application/pdf
 TEXT_HTML_HOST text/html (using host encoding)
 TEXT_HTML_US_ASCII text/html;

charset=us-ascii
 TEXT_HTML_UTF_8 text/html;

charset=utf-8
 TEXT_HTML_UTF_16 text/html;

charset=utf-16
 TEXT_HTML_UTF_16LE text/html;

charset=utf-16le (little-
endian)

 TEXT_HTML_UTF_16BE text/html;

charset=utf-16le (big-endian)
 TEXT_PLAIN_HOST text/plain (using host encoding)
 TEXT_PLAIN_US_ASCII text/plain;

charset=us-ascii
 TEXT_PLAIN_UTF_8 text/plain;

charset=utf-8
 TEXT_PLAIN_UTF_16 text/plain;

charset=utf-16
 TEXT_PLAIN_UTF_16LE text/plain;

charset=utf-16le (little-
endian)

 TEXT_PLAIN_UTF_16BE text/plain;

charset=utf-16be (big-endian)

For printing, you need an object that implements the Doc interface. The SDK supplies a class
SimpleDoc for that purpose. The SimpleDoc constructor requires the data source object,
the document flavor, and an optional attribute set. For example,

InputStream in = new FileInputStream(fileName);
Doc doc = new SimpleDoc(in, flavor, null);

Finally, you are ready to print:

job.print(doc, null);

As before, the null parameter can be replaced by an attribute set.

Note that this printing process is quite different from that of the preceding section. There isn't
any user interaction through print dialogs. For example, you can implement a server-side
printing mechanism in which users submit print jobs through a web form.

The program in Example 7-14 demonstrates how to use a print service to print an image file.

Example 7-14 PrintServiceTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.awt.image.*;
 4. import java.io.*;
 5. import java.util.*;
 6. import javax.print.*;
 7. import javax.swing.*;
 8.
 9. /**

 PCL application/vnd.hp-PCL
(Hewlett Packard Printer Control
Language)

 AUTOSENSE application/octet-stream
(raw printer data)

READER TEXT_HTML text/html; charset=utf-
16

STRING TEXT_PLAIN text/plain; charset=utf-
16

CHAR_ARRAY
SERVICE_FORMATTED PRINTABLE N/A
 PAGEABLE N/A
 RENDERABLE_IMAGE N/A

 10. This program demonstrates the use of print services.
 11. The program lets you print a GIF image to any of the p
 12. services that support the GIF document flavor.
 13. */
 14. public class PrintServiceTest
 15. {
 16. public static void main(String[] args)
 17. {
 18. JFrame frame = new PrintServiceFrame();
 19. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 20. frame.show();
 21. }
 22. }
 23.
 24. /**
 25. This frame displays the image to be printed. It contai
 26. menus for opening an image file, printing, and selecti
 27. a print service.
 28. */
 29. class PrintServiceFrame extends JFrame
 30. {
 31. public PrintServiceFrame()
 32. {
 33. setTitle("PrintServiceTest");
 34. setSize(WIDTH, HEIGHT);
 35.
 36. // set up menu bar
 37. JMenuBar menuBar = new JMenuBar();
 38. setJMenuBar(menuBar);
 39.
 40. JMenu menu = new JMenu("File");
 41. menuBar.add(menu);
 42.
 43. JMenuItem openItem = new JMenuItem("Open");
 44. menu.add(openItem);
 45. openItem.addActionListener(new
 46. ActionListener()
 47. {
 48. public void actionPerformed(ActionEvent event
 49. {
 50. openFile();
 51. }
 52. });
 53.

 54. JMenuItem printItem = new JMenuItem("Print");
 55. menu.add(printItem);
 56. printItem.addActionListener(new
 57. ActionListener()
 58. {
 59. public void actionPerformed(ActionEvent event
 60. {
 61. printFile();
 62. }
 63. });
 64.
 65. JMenuItem exitItem = new JMenuItem("Exit");
 66. menu.add(exitItem);
 67. exitItem.addActionListener(new
 68. ActionListener()
 69. {
 70. public void actionPerformed(ActionEvent event
 71. {
 72. System.exit(0);
 73. }
 74. });
 75.
 76. menu = new JMenu("Printer");
 77. menuBar.add(menu);
 78. DocFlavor flavor = DocFlavor.INPUT_STREAM.GIF;
 79. addPrintServices(menu, flavor);
 80.
 81. // use a label to display the images
 82. label = new JLabel();
 83. Container contentPane = getContentPane();
 84. contentPane.add(label);
 85. }
 86.
 87. /**
 88. Adds print services to a menu
 89. @param menu the menu to which to add the services
 90. @param flavor the flavor that the services need to
 91. */
 92. public void addPrintServices(JMenu menu, DocFlavor fla
 93. {
 94. PrintService[] services
 95. = PrintServiceLookup.lookupPrintServices(flavor,
 96. ButtonGroup group = new ButtonGroup();
 97. for (int i = 0; i < services.length; i++)

 98. {
 99. final PrintService service = services[i];
100. JRadioButtonMenuItem item
101. = new JRadioButtonMenuItem(service.getName())
102. menu.add(item);
103. if (i == 0)
104. {
105. item.setSelected(true);
106. currentService = service;
107. }
108. group.add(item);
109. item.addActionListener(new
110. ActionListener()
111. {
112. public void actionPerformed(ActionEvent ev
113. {
114. currentService = service;
115. }
116. });
117. }
118. }
119.
120. /**
121. Open a GIF file and display the image.
122. */
123. public void openFile()
124. {
125. // set up file chooser
126. JFileChooser chooser = new JFileChooser();
127. chooser.setCurrentDirectory(new File("."));
128.
129. // accept all files ending with .gif
130. chooser.setFileFilter(new
131. javax.swing.filechooser.FileFilter()
132. {
133. public boolean accept(File f)
134. {
135. return f.getName().toLowerCase()
136. .endsWith(".gif")
137. || f.isDirectory();
138. }
139. public String getDescription()
140. {
141. return "GIF Images";

142. }
143. });
144.
145. // show file chooser dialog
146. int r = chooser.showOpenDialog(PrintServiceFrame.th
147.
148. // if image file accepted, set it as icon of the la
149. if(r == JFileChooser.APPROVE_OPTION)
150. {
151. fileName = chooser.getSelectedFile().getPath();
152. label.setIcon(new ImageIcon(fileName));
153. }
154. }
155.
156. /**
157. Print the current file using the current print serv
158. */
159. public void printFile()
160. {
161. try
162. {
163. if (fileName == null) return;
164. if (currentService == null) return;
165. FileInputStream in = new FileInputStream(fileNam
166. DocFlavor flavor = DocFlavor.INPUT_STREAM.GIF;
167. Doc doc = new SimpleDoc(in, flavor, null);
168. DocPrintJob job = currentService.createPrintJob(
169. job.print(doc, null);
170. }
171. catch (FileNotFoundException exception)
172. {
173. JOptionPane.showMessageDialog(this, exception);
174. }
175. catch (PrintException exception)
176. {
177. JOptionPane.showMessageDialog(this, exception);
178. }
179. }
180.
181. private JLabel label;
182. private String fileName;
183. private PrintService currentService;
184. private static final int WIDTH = 300;
185. private static final int HEIGHT = 400;

186. }

javax.print.PrintServiceLookup

PrintService[] lookupPrintServices(DocFlavor flavor,
AttributeSet attributes)

looks up the print services that can handle the given document flavor and attributes.

javax.print.PrintService

DocPrintJob createPrintJob()

creates a print job for printing an object of a class that implements the Doc interface,
such as a SimpleDoc.

javax.print.DocPrintJob

void print(Doc doc, PrintRequestAttributeSet attributes)

prints the given document with the given attributes

javax.print.SimpleDoc

Parameters: flavor the document flavor
 attributes the required printing attributes, or null if attributes

should not be taken into consideration

Parameters: doc the Doc to be printed
 attributes the required printing attributes, or null if no printing

attributes are required

SimpleDoc(Object data, DocFlavor flavor, DocAttributeSet
attributes)

constructs a SimpleDoc that can be printed with a DocPrintJob

Stream Print Services

A print service sends print data to a printer. A stream print service generates the same print
data but instead sends them to a stream, perhaps for delayed printing or because the print
data format can be interpreted by other programs. In particular, if the print data format is
PostScript, then it is useful to save the print data to a file since there are many programs that
can process PostScript files.

SDK 1.4 includes a stream print service that can produce PostScript output from images and
2D graphics. You can use that service on all systems, even if there are no local printers.

Enumerating stream print services is a bit more tedious than locating regular print services.
You need both the DocFlavor of the object to be printed and the MIME type of the stream
output. You then get a StreamPrintServiceFactory array of factories.

DocFlavor flavor = DocFlavor.SERVICE_FORMATTED.PRINTABLE;
String mimeType = "application/postscript";
StreamPrintServiceFactory[] factories
 = StreamPrintServiceFactory.lookupStreamPrintServiceFactori
 (flavor, mimeType);

The StreamPrintServiceFactory class doesn't have any methods that would help
you distinguish any one factory from another, so we'll just take factories[0]. Call the
getPrintService method with an output stream parameter to get a
StreamPrintService object.

OutputStream out = new FileOutputStream(fileName);
StreamPrintService service = factories[0].getPrintService(out)

The StreamPrintService class is a subclass of PrintService. To produce a
printout, simply follow the steps of the preceding section.

Parameters: data the object with the print data, such as an input stream or a
Printable

 flavor the document flavor of the print data
 attributes document attributes, or null if attributes are not required

Example 7-15 prints the "Hello, World" graphic from the preceding examples to a PostScript
file.

NOTE

Example 7-15 StreamPrintServiceTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.awt.font.*;
 4. import java.awt.geom.*;
 5. import java.awt.print.*;
 6. import java.io.*;

Unlike the other printing programs, this program works fine on Linux. You
can use GhostScript (http://www.cs.wisc.edu/~ghost/) to view or print the
resulting output (see Figure 7-42).

Figure 7-42. Viewing a PostScript File

 7. import java.util.*;
 8. import javax.print.*;
 9. import javax.print.attribute.*;
 10. import javax.swing.*;
 11.
 12.
 13. /**
 14. This program demonstrates the use of a stream print se
 15. It prints a 2D graphic to a PostScript file.
 16. */
 17. public class StreamPrintServiceTest
 18. {
 19. public static void main(String[] args)
 20. {
 21. JFrame frame = new StreamPrintServiceFrame();
 22. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 23. frame.show();
 24. }
 25. }
 26.
 27. /**
 28. This frame shows a panel with 2D graphics and buttons
 29. to print the graphics to a PostScript file and to set
 30. the page format.
 31. */
 32. class StreamPrintServiceFrame extends JFrame
 33. {
 34. public StreamPrintServiceFrame()
 35. {
 36. setTitle("StreamPrintServiceTest");
 37. setSize(WIDTH, HEIGHT);
 38.
 39. Container contentPane = getContentPane();
 40. canvas = new PrintPanel();
 41. contentPane.add(canvas, BorderLayout.CENTER);
 42.
 43. attributes = new HashPrintRequestAttributeSet();
 44.
 45. JPanel buttonPanel = new JPanel();
 46. JButton printButton = new JButton("Print");
 47. buttonPanel.add(printButton);
 48. printButton.addActionListener(new
 49. ActionListener()
 50. {

 51. public void actionPerformed(ActionEvent event
 52. {
 53. String fileName = getFile();
 54. if (fileName != null)
 55. printPostScript(fileName);
 56. }
 57. });
 58.
 59. JButton pageSetupButton = new JButton("Page setup")
 60. buttonPanel.add(pageSetupButton);
 61. pageSetupButton.addActionListener(new
 62. ActionListener()
 63. {
 64. public void actionPerformed(ActionEvent event
 65. {
 66. PrinterJob job = PrinterJob.getPrinterJob(
 67. job.pageDialog(attributes);
 68. }
 69. });
 70.
 71. contentPane.add(buttonPanel, BorderLayout.NORTH);
 72. }
 73.
 74. /**
 75. Allows the user to select a PostScript file.
 76. @return the file name, or null if the user didn't
 77. select a file.
 78. */
 79. public String getFile()
 80. {
 81. // set up file chooser
 82. JFileChooser chooser = new JFileChooser();
 83. chooser.setCurrentDirectory(new File("."));
 84.
 85. // accept all files ending with .ps
 86. chooser.setFileFilter(new
 87. javax.swing.filechooser.FileFilter()
 88. {
 89. public boolean accept(File f)
 90. {
 91. return f.getName().toLowerCase()
 92. .endsWith(".ps")
 93. || f.isDirectory();
 94. }

 95. public String getDescription()
 96. {
 97. return "PostScript Files";
 98. }
 99. });
100.
101. // show file chooser dialog
102. int r = chooser.showSaveDialog(this);
103.
104. // if file accepted, return path
105. if(r == JFileChooser.APPROVE_OPTION)
106. return chooser.getSelectedFile().getPath();
107. else
108. return null;
109. }
110.
111. /**
112. Prints the 2D graphic to a PostScript file.
113. @param fileName the name of the PostScript file
114. */
115. public void printPostScript(String fileName)
116. {
117. try
118. {
119. DocFlavor flavor
120. = DocFlavor.SERVICE_FORMATTED.PRINTABLE;
121. String mimeType = "application/postscript";
122. StreamPrintServiceFactory[] factories =
123. StreamPrintServiceFactory
124. .lookupStreamPrintServiceFactories(flavor, mi
125.
126. FileOutputStream out = new FileOutputStream(file
127. if (factories.length == 0) return;
128. StreamPrintService service
129. = factories[0].getPrintService(out);
130.
131. Doc doc = new SimpleDoc(canvas, flavor, null);
132. DocPrintJob job = service.createPrintJob();
133. job.print(doc, attributes);
134. }
135. catch (FileNotFoundException exception)
136. {
137. JOptionPane.showMessageDialog(this, exception);
138. }

139. catch (PrintException exception)
140. {
141. JOptionPane.showMessageDialog(this, exception);
142. }
143.
144. }
145.
146. private PrintPanel canvas;
147. private PrintRequestAttributeSet attributes;
148.
149. private static final int WIDTH = 300;
150. private static final int HEIGHT = 300;
151. }
152.
153. /**
154. This panel generates a 2D graphics image for screen di
155. and printing.
156. */
157. class PrintPanel extends JPanel implements Printable
158. {
159. public void paintComponent(Graphics g)
160. {
161. super.paintComponent(g);
162. Graphics2D g2 = (Graphics2D)g;
163. drawPage(g2);
164. }
165.
166. public int print(Graphics g, PageFormat pf, int page)
167. throws PrinterException
168. {
169. if (page >= 1) return Printable.NO_SUCH_PAGE;
170. Graphics2D g2 = (Graphics2D)g;
171. g2.translate(pf.getImageableX(), pf.getImageableY()
172. g2.draw(new Rectangle2D.Double(0, 0,
173. pf.getImageableWidth(), pf.getImageableHeight()
174.
175. drawPage(g2);
176. return Printable.PAGE_EXISTS;
177. }
178.
179. /**
180. This method draws the page both on the screen and t
181. printer graphics context.
182. @param g2 the graphics context

183. */
184. public void drawPage(Graphics2D g2)
185. {
186. FontRenderContext context = g2.getFontRenderContext
187. Font f = new Font("Serif", Font.PLAIN, 72);
188. GeneralPath clipShape = new GeneralPath();
189.
190. TextLayout layout = new TextLayout("Hello", f, cont
191. AffineTransform transform
192. = AffineTransform.getTranslateInstance(0, 72);
193. Shape outline = layout.getOutline(transform);
194. clipShape.append(outline, false);
195.
196. layout = new TextLayout("World", f, context);
197. transform
198. = AffineTransform.getTranslateInstance(0, 144);
199. outline = layout.getOutline(transform);
200. clipShape.append(outline, false);
201.
202. g2.draw(clipShape);
203. g2.clip(clipShape);
204.
205. final int NLINES =50;
206. Point2D p = new Point2D.Double(0, 0);
207. for (int i = 0; i < NLINES; i++)
208. {
209. double x = (2 * getWidth() * i) / NLINES;
210. double y = (2 * getHeight() * (NLINES - 1 - i))
211. / NLINES;
212. Point2D q = new Point2D.Double(x, y);
213. g2.draw(new Line2D.Double(p, q));
214. }
215. }
216. }

javax.print.StreamPrintServiceFactory

StreamPrintServiceFactory[]
lookupStreamPrintServiceFactories (DocFlavor flavor,
String mimeType)

looks up the stream print service factories that can print the given document flavor and
produce an output stream of the given MIME type.

StreamPrintService getPrintService(OutputStream out)

gets a print service that sends the printing output to the given output stream.

Printing Attributes

The print service API contains a complex set of interfaces and classes to specify various kinds
of attributes. There are four important groups of attributes. The first two specify requests to the
printer.

Print request attributes are used to request particular features for all doc objects in a print
job, such as two-sided printing or the paper size.

Doc attributes are request attributes that apply only to a single doc object.

The other two contain information about the printer and job status.

Print service attributes give information about the print service, such as the printer make
and model, or whether the printer is currently accepting jobs.

Print job attributes give information about the status of a particular print job, such as
whether the job is already completed.

To describe the various attributes, there is an interface Attribute with subinterfaces:

PrintRequestAttribute
DocAttribute
PrintServiceAttribute
PrintJobAttribute
SupportedValuesAttribute

Individual attribute classes implement one or more of these interfaces. For example, objects of
the Copies class are used to describe the number of copies of a printout. That class
implements both the PrintRequestAttribute and the PrintJobAttribute
interfaces. Clearly, a print request may contain a request for multiple copies. Conversely, an
attribute of the print job may be how many of these copies were actually printed. That number
might be lower, perhaps because of printer limitations or because the printer ran out of paper.

The SupportedValuesAttribute interface indicates that an attribute value does not
reflect actual request or status data but the capability of a service. For example, there is a
CopiesSupported class implementing the SupportedValuesAttribute interface.
An object of that class might describe that a printer supports 1 through 99 copies of a printout.

Figure 7-43 shows a class diagram of the attribute hierarchy:

Figure 7-43. The Attribute Hierarchy

In addition to the interfaces and classes for individual attributes, the print service API defines
interfaces and classes for attribute sets. There is a superinterface AttributeSet with four
subinterfaces

PrintRequestAttributeSet
DocAttributeSet
PrintServiceAttributeSet
PrintJobAttributeSet

For each of these interfaces, there is an implementing class, yielding the five classes:

HashAttributeSet
HashPrintRequestAttributeSet
HashDocAttributeSet
HashPrintServiceAttributeSet
HashPrintJobAttributeSet

(See Figure 7-44.) For example, you construct a print request attribute set like this:

Figure 7-44. The Attribute Set Hierarchy

PrintRequestAttributeSet attributes
 = new HashPrintRequestAttributeSet();

After constructing the set, you no longer need to worry about the Hash prefix.

Why have all these interfaces? They make it possible to check for correct attribute usage. For
example, a DocAttributeSet only accepts objects that implement the DocAttribute
interface. Any attempt to add another attribute results in a runtime error.

An attribute set is a very specialized kind of map, where the keys are of type Class and the
values belong to a class that implements the Attribute interface. For example, if you insert
an object

new Copies(10)

into an attribute set, then its key is the Class object Copies.class. That key is called the
category of the attribute. The Attribute interface declares a method

Class getCategory()

that returns the category of an attribute. The Copies class defines the method to return the
object Copies.class, but it isn't a requirement that the category is the same as the class
of the attribute.

When adding an attribute to an attribute set, the category is extracted automatically. You just
add the attribute value:

attributes.add(new Copies(10));

If you subsequently add another attribute with the same category, it overwrites the first one.

To retrieve an attribute, you need to use the category as the key, for example

AttributeSet attributes = job.getAttributes();
Copies copies = (Copies)attribute.get(Copies.class);

Finally, attributes are organized by the values they can have. The Copies attribute can have
any integer value. The Copies class extends the IntegerSyntax class which takes care
of all integer-valued attributes. The getValue method returns the integer value of the
attribute, for example

int n = copies.getValue();

There are also classes

TextSyntax
DateTimeSyntax
URISyntax

that encapsulate a string, date and time, or a URI (Uniform Resource Identifier).

Finally, there are many attributes that can take a finite number of values. For example, the
PrintQuality attribute has three settings: draft, normal, and high.

They are represented by three constants:

PrintQuality.DRAFT
PrintQuality.NORMAL
PrintQuality.HIGH

Attribute classes with a finite number of values extend the EnumSyntax class which
provides a number of convenience methods to set up these enumerations in a typesafe
manner. You don't need to worry about the mechanism when using such an attribute. Simply
add the named values to attribute sets:

attributes.add(PrintQuality.HIGH);

Here is how you check the value of an attribute.

if (attributes.get(PrintQuality.class) == PrintQuality.HIGH)
 . . .

Table 7-4 lists the printing attributes. The second column lists the superclass of the attribute
class (for example, IntegerSyntax for the Copies attribute), or the set of enumeration
values for the attributes with a finite set of values. The last four columns indicate whether the
attribute class implements the DocAttribute (DA), PrintJobAttribute (PJA),

PrintRequestAttribute (PRA), and PrintServiceAttribute (PSA) interfaces.

NOTE

This concludes our discussion on printing. You now know how to print 2D graphics and other
document types, how to enumerate printers and stream print services, and how to set and
retrieve attributes. Next, we will turn to two important user interface issues, the clipboard and
support for the drag-and-drop mechanism.

NOTE

As you can see, there are lots of attributes, many of which are quite
specialized. The source for most of the attributes is the Internet Printing
Protocol 1.1 (RFC 2911).

SDK 1.3 introduced the JobAttributes and PageAttributes
classes, whose purpose is similar to the printing attributes covered in this
section. Unless you need to specifically support SDK 1.3, you should
instead use the more robust SDK 1.4 print service mechanism.

Table 7-4. Printing Attributes
Attribute Superclass orenumeration constants DA P
Chromaticity MONOCHROME, COLOR x x
ColorSupported SUPPORTED, NOT_SUPPORTED
Compression COMPRESS, DEFLATE, GZIP, NONE x
Copies IntegerSyntax x
DateTimeAtCompleted DateTimeSyntax x
DateTimeAtCreation DateTimeSyntax x
DateTimeAtProcessing DateTimeSyntax x
Destination URISyntax x
DocumentName TextSyntax x
Fidelity FIDELITY_TRUE, FIDELITY_FALSE x
Finishings NONE, STAPLE, EDGE_STITCH, BIND,

SADDLE_STITCH, COVER, . . .
x x

JobHoldUntil DateTimeSyntax x
JobImpressions IntegerSyntax x
JobImpressionsCompleted IntegerSyntax x
JobKOctets IntegerSyntax x
JobKOctetsProcessed IntegerSyntax x
JobMediaSheets IntegerSyntax x

JobMediaSheetsCompleted IntegerSyntax x
JobMessageFromOperator TextSyntax x
JobName TextSyntax x
JobOriginatingUserName TextSyntax x
JobPriority IntegerSyntax x
JobSheets STANDARD, NONE x
JobState ABORTED, CANCELED, COMPLETED,

PENDING, PENDING_HELD, PROCESSING,
PROCESSING_STOPPED

 x

JobStateReason ABORTED_BY_SYSTEM,
DOCUMENT_FORMAT_ERROR, many others

JobStateReasons HashSet x
MediaName ISO_A4_WHITE, ISO_A4_TRANSPARENT,

NA_LETTER_WHITE,
NA_LETTER_TRANSPARENT

x x

MediaSize ISO.A0 - ISO.A10, ISO.B0 - ISO.B10,
ISO.C0 - ISO.C10, NA.LETTER,
NA.LEGAL, various other paper and envelope sizes

MediaSizeName ISO_A0 - ISO_A10, ISO_B0 - ISO_B10,
ISO_C0 - ISO_C10, NA_LETTER,
NA_LEGAL, various other paper and envelope size
names

x x

MediaTray TOP, MIDDLE, BOTTOM, SIDE, ENVELOPE,
LARGE_CAPACITY, MAIN, MANUAL,

x x

MultipleDocumentHandling SINGLE_DOCUMENT,
SINGLE_DOCUMENT_NEW_SHEET,
SEPARATE_DOCUMENTS_COLLATED_COPIES,
SEPARATE_DOCUMENTS_UNCOLLATED_COPIES

 x

NumberOfDocuments IntegerSyntax x
NumberOfInterveningJobs IntegerSyntax x
NumberUp IntegerSyntax x x
OrientationRequested PORTRAIT, LANDSCAPE,

REVERSE_PORTRAIT, REVERSE_LANDSCAPE
x x

OutputDeviceAssigned TextSyntax x
PageRanges SetOfInteger x x
PagesPerMinute IntegerSyntax
PagesPerMinuteColor IntegerSyntax
PDLOverrideSupported ATTEMPTED, NOT_ATTEMPTED
PresentationDirection TORIGHT_TOBOTTOM, TORIGHT_TOTOP, x

javax.print.attribute.Attribute

Class getCategory()

gets the category of this attribute.

String getName()

gets the name of this attribute.

TOBOTTOM_TORIGHT, TOBOTTOM_TOLEFT,
TOLEFT_TOBOTTOM, TOLEFT_TOTOP,
TOTOP_TORIGHT, TOTOP_TOLEFT

PrinterInfo TextSyntax
PrinterIsAcceptingJobs ACCEPTING_JOBS, NOT_ACCEPTING_JOBS
PrinterLocation TextSyntax
PrinterMakeAndModel TextSyntax
PrinterMessageFromOperator TextSyntax
PrinterMoreInfo URISyntax
PrinterMoreInfoManufacturer URISyntax
PrinterName TextSyntax
PrinterResolution ResolutionSyntax x x
PrinterState PROCESSING, IDLE, STOPPED, UNKNOWN
PrinterStateReason COVER_OPEN, FUSER_OVER_TEMP,

MEDIA_JAM, and many others

PrinterStateReasons HashMap
PrinterURI URISyntax
PrintQuality DRAFT, NORMAL, HIGH x x
QueuedJobCount IntegerSyntax
ReferenceUriSchemesSupported FILE, FTP, GOPHER, HTTP, HTTPS,

NEWS, NNTP, WAIS

RequestingUserName TextSyntax
Severity ERROR, REPORT, WARNING
SheetCollate COLLATED, UNCOLLATED x x
Sides ONE_SIDED, DUPLEX

(=TWO_SIDED_LONG_EDGE), TUMBLE
(=TWO_SIDED_SHORT_EDGE)

x x

javax.print.attribute.AttributeSet

boolean add(Attribute attr)

adds an attribute to this set. If the set has another attribute with the same category, that
attribute is replaced by the given attribute. Returns true if the set changed as a result
of this operation.

Attribute get(Class category)

retrieves the attribute with the given category key, or null if no such attribute exists.

boolean remove(Attribute attr)

boolean remove(Class category)

remove the given attribute, or the attribute with the given category, from the set. Return
true if the set changed as a result of this operation.

Attribute[] toArray()

returns an array with all attributes in this set.

javax.print.PrintService

PrintServiceAttributeSet getAttributes()

gets the attributes of this print service.

javax.print.DocPrintJob

PrintJobAttributeSet getAttributes()

gets the attributes of this print job.

The Clipboard
One of the most useful and convenient user interface mechanisms of graphical user interface
environments (such as Windows and the X Window System) is cut and paste. You select some
data in one program and cut or copy it to the clipboard. Then, you select another program and
paste the clipboard contents into that application. Using the clipboard, you can transfer text,
images, or other data from one document to another, or, of course, from one place in a
document to another place in the same document. Cut and paste is so natural that most
computer users never think about it.

However, in SDK 1.0, there was no support for cut and paste. You could not cut and paste
between Java applications. For example, if you have a browser written in the Java
programming language, then you could not copy text and images from a web page and
transfer them into a word processor based on Java technology. SDK 1.1 implemented a
rudimentary clipboard mechanism.

That mechanism has been gradually improved and is now quite usable on a number of
platforms.

Even though the clipboard is conceptually simple, implementing clipboard services is actually
harder than you might think. Suppose you copy text from a word processor into the clipboard.
If you paste that text into another word processor, then you expect that the fonts and
formatting will stay intact. That is, the text in the clipboard needs to retain the formatting
information. But if you paste the text into a plain text field, then you expect that just the
characters are pasted in, without additional formatting codes. To support this flexibility, the
data provider can offer the clipboard data in multiple formats, and the data consumer can pick
one of them.

The system clipboard implementations of Microsoft Windows, OS/2, and the Macintosh are
similar, but, of course, there are slight differences. However, the X Window System clipboard
mechanism is much more limited—cutting and pasting of anything but plain text is only
sporadically supported. You should consider these limitations when trying out the programs in
this section.

NOTE

Often, programs need to support cut and paste of data types that the system clipboard cannot
handle. The data transfer API supports the transfer of arbitrary local object references in the
same virtual machine. Between different virtual machines, you can transfer serialized objects
and references to remote objects.

Table 7-5 summarizes the data transfer capabilities of the clipboard mechanism.

Check out the file jre/lib/flavormap.properties on your
platform to get an idea what kinds of objects can be transferred between
Java programs and the system clipboard.

Table 7-5. Capabilities of the Java data transfer mechanism

Classes and Interfaces for Data Transfer

Data transfer in the Java technology is implemented in a package called
java.awt.datatransfer. Here is an overview of the most important classes and
interfaces of that package.

Objects that can be transferred via a clipboard must implement the Transferable
interface.

The Clipboard class describes a clipboard. Transferable objects are the only items
that can be put on or taken off a clipboard. The system clipboard is a concrete example
of a Clipboard.

The DataFlavor class describes data flavors that can be placed on the clipboard.

The StringSelection class is a concrete class that implements the
Transferable interface. It is used to transfer text strings.

A class must implement the ClipboardOwner interface if it wants to be notified when
the clipboard contents have been overwritten by someone else. Clipboard ownership
enables "delayed formatting" of complex data. If a program transfers simple data (such
as a string), then it simply sets the clipboard contents and moves on to do the next thing.
However, if a program wants to place complex data that can be formatted in multiple
flavors onto the clipboard, then it may not actually want to prepare all the flavors, since
there is a good chance that most of them are never needed. However, then it needs to
hang on to the clipboard data so that it can create the flavors later when they are
requested. The clipboard owner is notified (by calling its lostOwnership method)
when the contents of the clipboard change. That tells it that the information is no longer
needed. In our sample programs, we don't need to worry about clipboard ownership.

Transferring Text

The best way to get comfortable with the data transfer classes is to start with the simplest
situation: transferring text to and from the system clipboard. The idea of the following program
is simple. First, get a reference to the system clipboard.

Clipboard clipboard =
 Toolkit.getDefaultToolkit().getSystemClipboard();

Transfer Format
Between a program in Java programming language
and a native program

Text, images, file lists, … (depending on
the host platform)

Between two cooperating programs in the Java
programming language

Serialized and remote objects

Within one program in the Java programming
language

Any object

For strings to be transferred to the clipboard, they need to be wrapped into
StringSelection objects. The constructor takes the text you want to transfer.

String text = . . .
StringSelection selection = new StringSelection(text);

The actual transfer is done by a call to setContents, which takes a StringSelection
object and a ClipBoardOwner as parameters. If you are not interested in designating a
clipboard owner, set the second parameter to null.

clipboard.setContents(selection, null);

Let us look at the reverse operation, reading a string from the clipboard. Call the
getContents method of the clipboard to get a Transferable object.

Transferable contents = clipBoard.getContents(null);

According to the API documentation, the parameter of the getContents call is an Object
reference of the requesting object. It is not clear why the clipboard collects this information.

The return value of getContents may be null. That indicates that the clipboard is either
empty or that it has no data that the Java platform knows how to retrieve.

The Transferable object can tell you in which flavors the clipboard information is
available. We will discuss the details of flavor discovery later. For now, we want only the
standard flavor called DataFlavor.stringFlavor. Use the
isDataFlavorSupported method to find out whether the flavor that you want is actually
available.

Finally, you pass the desired flavor to the getTransferData method. The method call
must be enclosed in a try block because the method threatens to throw an
UnsupportedFlavorException if the requested flavor is not available, or an
IOException if it cannot read the data.

DataFlavor flavor = DataFlavor.stringFlavor;
if (contents.isDataFlavorSupported(flavor))
{
 try
 {
 String text = (String)(contents.getTransferData(flavor);
 do something with text;
 }
 catch(UnsupportedFlavorException exception)
 {
 . . .
 }

 catch(IOException exception)
 {
 . . .
 }
}

Example 7-16 is a program that demonstrates cutting and pasting between a Java application
and the system clipboard. Figure 7-45 shows a screen shot. If you select an area of text in the
text area and click on Copy, then the selected text is copied to the system clipboard. As Figure
7-46 shows, the copied text does indeed get stored on the system clipboard. When you
subsequently click on the Paste button, the contents of the clipboard (which may come from a
native program) are pasted at the cursor position.

Figure 7-45. The TextTransferTest program

Figure 7-46. The Windows clipboard viewer after a copy

Example 7-16 TextTransferTest.java

 1. import java.awt.*;
 2. import java.awt.datatransfer.*;
 3. import java.awt.event.*;
 4. import java.io.*;
 5. import javax.swing.*;
 6.
 7. /**
 8. This program demonstrates the transfer of text
 9. between a Java application and the system clipboard.
 10. */
 11. public class TextTransferTest
 12. {
 13. public static void main(String[] args)
 14. {
 15. JFrame frame = new TextTransferFrame();
 16. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 17. frame.show();
 18. }
 19. }
 20.
 21. /**
 22. This frame has a text area and buttons for copying and

 23. pasting text.
 24. */
 25. class TextTransferFrame extends JFrame
 26. {
 27. public TextTransferFrame()
 28. {
 29. setTitle("TextTransferTest");
 30. setSize(WIDTH, HEIGHT);
 31.
 32. Container contentPane = getContentPane();
 33.
 34. textArea = new JTextArea();
 35. contentPane.add(new JScrollPane(textArea),
 36. BorderLayout.CENTER);
 37. JPanel panel = new JPanel();
 38.
 39. JButton copyButton = new JButton("Copy");
 40. panel.add(copyButton);
 41. copyButton.addActionListener(new
 42. ActionListener()
 43. {
 44. public void actionPerformed(ActionEvent event
 45. {
 46. copy();
 47. }
 48. });
 49.
 50. JButton pasteButton = new JButton("Paste");
 51. panel.add(pasteButton);
 52. pasteButton.addActionListener(new
 53. ActionListener()
 54. {
 55. public void actionPerformed(ActionEvent event
 56. {
 57. paste();
 58. }
 59. });
 60.
 61. contentPane.add(panel, BorderLayout.SOUTH);
 62. }
 63.
 64. /**
 65. Copies the selected text to the system clipboard.
 66. */

 67. private void copy()
 68. {
 69. Clipboard clipboard
 70. = Toolkit.getDefaultToolkit().getSystemClipboard
 71. String text = textArea.getSelectedText();
 72. if (text == null) text = textArea.getText();
 73. StringSelection selection = new StringSelection(tex
 74. clipboard.setContents(selection, null);
 75. }
 76.
 77. /**
 78. Pastes the text from the system clipboard into the
 79. text area.
 80. */
 81. private void paste()
 82. {
 83. Clipboard clipboard
 84. = Toolkit.getDefaultToolkit().getSystemClipboar
 85. Transferable contents = clipboard.getContents(this)
 86. if (contents == null) return;
 87. DataFlavor flavor = DataFlavor.stringFlavor;
 88. if (contents.isDataFlavorSupported(flavor))
 89. {
 90. try
 91. {
 92. String text
 93. = (String)(contents.getTransferData(flavor
 94. textArea.replaceSelection(text);
 95. }
 96. catch(UnsupportedFlavorException exception)
 97. {
 98. JOptionPane.showMessageDialog(this, exception
 99. }
100. catch(IOException exception)
101. {
102. JOptionPane.showMessageDialog(this, exception
103. }
104. }
105. }
106.
107. private JTextArea textArea;
108.
109. private static final int WIDTH = 300;
110. private static final int HEIGHT = 300;

111. }

java.awt.Toolkit

Clipboard getSystemClipboard()

gets the system clipboard.

java.awt.datatransfer.Clipboard

Transferable getContents(Object requester)

gets the clipboard contents.

void setContents(Transferable contents, ClipboardOwner
owner)

puts contents on the clipboard.

java.awt.datatransfer.ClipboardOwner

void lostOwnership(Clipboard clipboard, Transferable
contents)

Parameters: requester the object requesting the clipboard contents. This value is
not actually used.

Parameters: contents the Transferable encapsulating the contents
 owner the object to be notified (via its lostOwnership method)

when new information is placed on the clipboard, or null if
no notification is desired

notifies this object that it is no longer the owner of the contents of the clipboard.

java.awt.datatransfer.Transferable

boolean isDataFlavorSupported(DataFlavor flavor)

returns true if the specified flavor is one of the supported data flavors; false
otherwise.

Object getTransferData(DataFlavor flavor)

returns the data, formatted in the requested flavor. Throws an
UnsupportedFlavorException if the flavor requested is not supported.

The Transferable Interface and Data Flavors

The clipboard holds an object that implements the Transferable interface. You can find
out all data flavors that a transferable object supports:

DataFlavor[] flavors = transferable.getTransferDataFlavors()

A DataFlavor is defined by two characteristics:

A MIME type name (such as "image/gif")

A representation class for accessing the data (such as java.awt.Image)

In addition, every data flavor has a human-readable name (such as "GIF Image").

The representation class can be specified with a class parameter in the MIME type, for
example,

image/gif;class=java.awt.Image

NOTE

Parameters: clipboard the clipboard onto which the contents were placed
 contents the item that this owner had placed onto the clipboard

This is just an example to show the syntax. There is no standard data flavor
for transferring GIF image data.

If no class parameter is given, then the representation class is InputStream.

Sun Microsystems defines three MIME types:

application/x-java-jvm-local-objectref
application/x-java-serialized-object
application/x-java-remote-object

for transferring local, serialized, and remote Java objects.

NOTE

For example, the standard stringFlavor data flavor is described by the MIME type

application/x-java-serialized-object;class=java.lang.String

java.awt.datatransfer.DataFlavor

DataFlavor(String mimeType, String humanPresentableName)

creates a data flavor that describes stream data in a format described by a MIME type.

DataFlavor(Class class, String humanPresentableName)

creates a data flavor that describes a Java platform class. Its MIME type is
application/x-java-serialized-object;class=className.

The x- prefix indicates that this is an experimental name, not one that is
sanctioned by IANA, the organization that assigns standard MIME type
names.

Parameters: mimeType a MIME type string
 humanPresentableName a more readable version of the name

Parameters: class the class that is retrieved from the
Transferable

 humanPresentableName a readable version of the name

String getMimeType()

returns the MIME type string for this data flavor.

boolean isMimeTypeEqual(String mimeType)

tests whether this data flavor has the given MIME type.

String getHumanPresentableName()

returns the human-presentable name for the data format of this data flavor.

Class getRepresentationClass()

returns a Class object that represents the class of the object that a Transferable
will return when called with this data flavor. This is either the class parameter of the
MIME type or InputStream.

java.awt.datatransfer.Transferable

DataFlavor[] getTransferDataFlavors()

returns an array of the supported flavors.

Building an Image Transferable

Objects that you want to transfer via the clipboard must implement the Transferable
interface. The StringSelection class is currently the only public class in the Java
standard library that implements the Transferable interface. In this section, you will see
how to transfer images into the clipboard. Since the SDK does not supply a class for image
transfer, you must implement it yourself.

The class is completely trivial. It simply reports that the only available data format is
DataFlavor.imageFlavor, and it holds an image object.

class ImageSelection implements Transferable
{
 public ImageSelection(Image image)
 {
 theImage = image;
 }

 public DataFlavor[] getTransferDataFlavors()
 {
 return new DataFlavor[] { DataFlavor.imageFlavor };
 }

 public boolean isDataFlavorSupported(DataFlavor flavor)
 {
 return flavor.equals(DataFlavor.imageFlavor);
 }

 public Object getTransferData(DataFlavor flavor)
 throws UnsupportedFlavorException
 {
 if(flavor.equals(DataFlavor.imageFlavor))
 {
 return theImage;
 }
 else
 {
 throw new UnsupportedFlavorException(flavor);
 }
 }

 private Image theImage;
}

NOTE

The program of Example 7-17 demonstrates the transfer of images between a Java application
and the system clipboard. When the program starts, it generates a Mandelbrot image. Click the
Copy button to copy the image to the clipboard and then paste it into another application. (See
Figure 7-47). From another application, copy an image into the system clipboard. Then click
the Paste button and see the image being pasted into the example program. (See Figure 7-
48).

Figure 7-47. Copying from a Java program to a native program

The SDK supplies the DataFlavor.imageFlavor constant and does
all the heavy lifting to convert between Java images and native clipboard
images. But, curiously, it does not supply the wrapper class that is
necessary to place images into the clipboard.

Figure 7-48. Copying from a native program to a Java program

The program is a straightforward modification of the text transfer program. The data flavor is
now DataFlavor.imageFlavor, and we use the ImageSelection class to transfer
an image to the system clipboard.

Example 7-17 ImageTransferTest.java

 1. import java.io.*;
 2. import java.awt.*;
 3. import java.awt.datatransfer.*;
 4. import java.awt.event.*;
 5. import java.awt.image.*;

 6. import javax.swing.*;
 7.
 8. /**
 9. This program demonstrates the transfer of images
 10. between a Java application and the system clipboard.
 11. */
 12. public class ImageTransferTest
 13. {
 14. public static void main(String[] args)
 15. {
 16. JFrame frame = new ImageTransferFrame();
 17. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 18. frame.show();
 19. }
 20. }
 21.
 22. /**
 23. This frame has an image label and buttons for copying
 24. pasting text.
 25. */
 26. class ImageTransferFrame extends JFrame
 27. {
 28. public ImageTransferFrame()
 29. {
 30. setTitle("ImageTransferTest");
 31. setSize(WIDTH, HEIGHT);
 32.
 33. Container contentPane = getContentPane();
 34.
 35. label = new JLabel();
 36. image = makeMandelbrot(WIDTH, HEIGHT);
 37. label.setIcon(new ImageIcon(image));
 38. contentPane.add(new JScrollPane(label),
 39. BorderLayout.CENTER);
 40. JPanel panel = new JPanel();
 41.
 42. JButton copyButton = new JButton("Copy");
 43. panel.add(copyButton);
 44. copyButton.addActionListener(new
 45. ActionListener()
 46. {
 47. public void actionPerformed(ActionEvent event
 48. {
 49. copy();

 50. }
 51. });
 52.
 53. JButton pasteButton = new JButton("Paste");
 54. panel.add(pasteButton);
 55. pasteButton.addActionListener(new
 56. ActionListener()
 57. {
 58. public void actionPerformed(ActionEvent event
 59. {
 60. paste();
 61. }
 62. });
 63.
 64. contentPane.add(panel, BorderLayout.SOUTH);
 65. }
 66.
 67. /**
 68. Copies the current image to the system clipboard.
 69. */
 70. private void copy()
 71. {
 72. Clipboard clipboard
 73. = Toolkit.getDefaultToolkit().getSystemClipboard
 74. ImageSelection selection = new ImageSelection(image
 75. clipboard.setContents(selection, null);
 76. }
 77.
 78. /**
 79. Pastes the image from the system clipboard into the
 80. image label.
 81. */
 82. private void paste()
 83. {
 84. Clipboard clipboard
 85. = Toolkit.getDefaultToolkit().getSystemClipboard
 86. Transferable contents = clipboard.getContents(null)
 87. if (contents == null) return;
 88. DataFlavor flavor = DataFlavor.imageFlavor;
 89. if (contents.isDataFlavorSupported(flavor))
 90. {
 91. try
 92. {
 93. image = (Image)(contents.getTransferData(flav

 94. label.setIcon(new ImageIcon(image));
 95. }
 96. catch(UnsupportedFlavorException exception)
 97. {
 98. JOptionPane.showMessageDialog(this, exception
 99. }
100. catch(IOException exception)
101. {
102. JOptionPane.showMessageDialog(this, exception
103. }
104. }
105. }
106.
107. /**
108. Makes the Mandelbrot image.
109. @param width the width
110. @parah height the height
111. @return the image
112. */
113. public BufferedImage makeMandelbrot(int width, int hei
114. {
115. BufferedImage image = new BufferedImage(width, heig
116. BufferedImage.TYPE_INT_ARGB);
117. WritableRaster raster = image.getRaster();
118. ColorModel model = image.getColorModel();
119.
120. Color fractalColor = Color.red;
121. int argb = fractalColor.getRGB();
122. Object colorData = model.getDataElements(argb, null
123.
124. for (int i = 0; i < width; i++)
125. for (int j = 0; j < height; j++)
126. {
127. double a = XMIN + i * (XMAX - XMIN) / width;
128. double b = YMIN + j * (YMAX - YMIN) / height;
129. if (!escapesToInfinity(a, b))
130. raster.setDataElements(i, j, colorData);
131. }
132. return image;
133. }
134.
135. private boolean escapesToInfinity(double a, double b)
136. {
137. double x = 0. 0;

138. double y = 0. 0;
139. int iterations = 0;
140. do
141. {
142. double xnew = x * x - y * y + a;
143. double ynew = 2 * x * y + b;
144. x = xnew;
145. y = ynew;
146. iterations++;
147. if (iterations == MAX_ITERATIONS) return false;
148. }
149. while (x <= 2 && y <= 2);
150. return true;
151. }
152.
153. private JLabel label;
154. private Image image;
155.
156. private static final double XMIN = -2;
157. private static final double XMAX = 2;
158. private static final double YMIN = -2;
159. private static final double YMAX = 2;
160. private static final int MAX_ITERATIONS = 16;
161.
162. private static final int WIDTH = 300;
163. private static final int HEIGHT = 300;
164. }
165.
166. /**
167. This class is a wrapper for the data transfer of image
168. objects.
169. */
170. class ImageSelection implements Transferable
171. {
172. /**
173. Constructs the selection.
174. @param image an image
175. */
176. public ImageSelection(Image image)
177. {
178. theImage = image;
179. }
180.
181. public DataFlavor[] getTransferDataFlavors()

182. {
183. return new DataFlavor[] { DataFlavor.imageFlavor };
184. }
185.
186. public boolean isDataFlavorSupported(DataFlavor flavor
187. {
188. return flavor.equals(DataFlavor.imageFlavor);
189. }
190.
191. public Object getTransferData(DataFlavor flavor)
192. throws UnsupportedFlavorException
193. {
194. if(flavor.equals(DataFlavor.imageFlavor))
195. {
196. return theImage;
197. }
198. else
199. {
200. throw new UnsupportedFlavorException(flavor);
201. }
202. }
203.
204. private Image theImage;
205. }

Using a Local Clipboard to Transfer Object References

Suppose you want to copy and paste a data type that isn't one of the data types supported by
the system clipboard. For example, in a drawing program, you may want to allow your users to
copy and paste arbitrary shapes.

The program in Example 7-18 demonstrates this capability. As you can see in Figure 7-49, the
program displays two panels. By moving the rectangle "grabbers" in the left panel, you can
change the shape of a cubic curve. The panel on the right side can display an arbitrary shape.

Figure 7-49. Transferring Local Objects

When you click on the Copy button, the current cubic curve shape is copied. Click on Paste,
and the Shape object in the clipboard is displayed in the panel on the right hand side. You
can see that the shape is held in a clipboard by copying a curve and then modifying the curve
before pasting. The copied shape, and not the current shape of the curve, is pasted into the
right side panel.

To transfer an arbitrary Java object reference within the same JVM, you use the MIME type

application/x-java-jvm-local-objectref;class=className

However, the SDK doesn't include a Transferable wrapper for this type. You can find the
code for the wrapper in the example program. It is entirely analogous to the
ImageSelection wrapper of the preceding section.

An object reference is only meaningful within a single virtual machine. For that reason, you
cannot copy the shape object to the system clipboard. Instead, this program uses a local
clipboard:

Clipboard clipboard = new Clipboard("local");

The construction parameter is the clipboard name.

However, using a local clipboard has one major disadvantage. You need to synchronize the
local and the system clipboard, so that users don't get confused between the two. Currently,
the Java platform doesn't do that synchronization for you.

Example 7-18 LocalTransferTest.java

 1. import java.awt.*;
 2. import java.awt.datatransfer.*;

 3. import java.awt.event.*;
 4. import java.awt.geom.*;
 5. import java.io.*;
 6. import java.util.*;
 7. import javax.swing.*;
 8.
 9. /**
 10. This program demonstrates the transfer of object refer
 11. within the same virtual machine.
 12. */
 13. public class LocalTransferTest
 14. {
 15. public static void main(String[] args)
 16. {
 17. JFrame frame = new LocalTransferFrame();
 18. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 19. frame.show();
 20. }
 21. }
 22.
 23. /**
 24. This frame contains a panel to edit a cubic curve, a
 25. panel that can display an arbitrary shape, and copy an
 26. paste buttons.
 27. */
 28. class LocalTransferFrame extends JFrame
 29. {
 30. public LocalTransferFrame()
 31. {
 32. setTitle("LocalTransferTest");
 33. setSize(WIDTH, HEIGHT);
 34.
 35. Container contentPane = getContentPane();
 36.
 37. curvePanel = new CubicCurvePanel();
 38. curvePanel.setPreferredSize(new Dimension(WIDTH / 2
 39. HEIGHT));
 40. shapePanel = new ShapePanel();
 41.
 42. contentPane.add(new JSplitPane(JSplitPane.HORIZONTA
 43. curvePanel, shapePanel), BorderLayout.CENTER);
 44. JPanel panel = new JPanel();
 45.
 46. JButton copyButton = new JButton("Copy");

 47. panel.add(copyButton);
 48. copyButton.addActionListener(new
 49. ActionListener()
 50. {
 51. public void actionPerformed(ActionEvent event
 52. {
 53. copy();
 54. }
 55. });
 56.
 57. JButton pasteButton = new JButton("Paste");
 58. panel.add(pasteButton);
 59. pasteButton.addActionListener(new
 60. . ActionListener()
 61. {
 62. public void actionPerformed(ActionEvent event
 63. {
 64. paste();
 65. }
 66. });
 67.
 68. contentPane.add(panel, BorderLayout.SOUTH);
 69. }
 70.
 71. /**
 72. Copies the current cubic curve to the local clipboa
 73. */
 74. private void copy()
 75. {
 76. LocalSelection selection = new LocalSelection(
 77. curvePanel.getShape());
 78. clipboard.setContents(selection, null);
 79. }
 80.
 81. /**
 82. Pastes the shape from the local clipboard into the
 83. shape panel.
 84. */
 85. private void paste()
 86. {
 87. Transferable contents = clipboard.getContents(null)
 88. if (contents == null) return;
 89. try
 90. {

 91. DataFlavor flavor = new DataFlavor(
 92. "application/x-java-jvm-local-objectref;class=java.awt.Sh
 93. if (contents.isDataFlavorSupported(flavor))
 94. shapePanel.setShape(
 95. (Shape)contents.getTransferData(flavor));
 96. }
 97. catch(ClassNotFoundException exception)
 98. {
 99. JOptionPane.showMessageDialog(this, exception);
100. . }
101. catch(UnsupportedFlavorException exception)
102. {
103. JOptionPane.showMessageDialog(this, exception);
104. }
105. catch(IOException exception)
106. {
107. JOptionPane.showMessageDialog(this, exception);
108. }
109. }
110.
111. private CubicCurvePanel curvePanel;
112. private ShapePanel shapePanel;
113. private Clipboard clipboard = new Clipboard("local");
114.
115. private static final int WIDTH = 30. 0. ;
116. private static final int HEIGHT = 30. 0. ;
117. }
118.
119.
120. /**
121. This panel draws a shape and allows the user to
122. move the points that define it.
123. */
124. class CubicCurvePanel extends JPanel
125. {
126. public CubicCurvePanel()
127. {
128. addMouseListener(new
129. MouseAdapter()
130. {
131. public void mousePressed(MouseEvent event)
132. {
133. for (int i = 0. ; i < p.length; i++)
134. {

135. double x = p[i].getX() - SIZE / 2;
136. double y = p[i].getY() - SIZE / 2;
137. Rectangle2D r
138. = new Rectangle2D.Double(x, y, SIZE,
139. if (r.contains(event.getPoint()))
140. . {
141. current = i;
142. return;
143. }
144. }
145. }
146.
147. public void mouseReleased(MouseEvent event)
148. {
149. current = -1;
150. }
151. });
152.
153. addMouseMotionListener(new
154. MouseMotionAdapter()
155. {
156. public void mouseDragged(MouseEvent event)
157. {
158. if (current == -1) return;
159. p[current] = event.getPoint();
160. . repaint();
161. }
162. });
163.
164. current = -1;
165. }
166.
167. public void paintComponent(Graphics g)
168. {
169. super.paintComponent(g);
170. Graphics2D g2 = (Graphics2D)g;
171. for (int i = 0. ; i < p.length; i++)
172. {
173. double x = p[i].getX() - SIZE / 2;
174. double y = p[i].getY() - SIZE / 2;
175. g2.fill(new Rectangle2D.Double(x, y, SIZE, SIZE)
176. }
177.
178. g2.draw(getShape());

179. }
180.
181. /**
182. Gets the current cubic curve.
183. @return the curve shape
184. */
185. public Shape getShape()
186. {
187. return new CubicCurve2D.Double(p[0.].getX(), p[0.
188. p[1].getX(), p[1].getY(), p[2].getX(), p[2].getY
189. p[3].getX(), p[3].getY());
190. }
191.
192. private Point2D[] p =
193. {
194. new Point2D.Double(10. , 10.),
195. new Point2D.Double(10. , 10. 0.),
196. new Point2D.Double(10. 0. , 10.),
197. new Point2D.Double(10. 0. , 20. 0.)
198. };
199. private static int SIZE = 10. ;
200. private int current;
201. }
202.
203. /**
204. This panel displays an arbitrary shape.
205. */
206. class ShapePanel extends JPanel
207. {
208. /**
209. Set the shape to be displayed in this panel.
210. @param aShape any shape
211. */
212. public void setShape(Shape aShape)
213. {
214. shape = aShape;
215. repaint();
216. }
217.
218. public void paintComponent(Graphics g)
219. {
220. super.paintComponent(g);
221. Graphics2D g2 = (Graphics2D)g;
222. if (shape != null) g2.draw(shape);

223. }
224.
225. private Shape shape;
226. }
227.
228. /**
229. This class is a wrapper for the data transfer of
230. object references that are transferred within the same
231. virtual machine.
232. */
233. class LocalSelection implements Transferable
234. {
235. /**
236. Constructs the selection.
237. @param o any object
238. */
239. LocalSelection(Object o)
240. {
241. obj = o;
242. }
243.
244. public DataFlavor[] getTransferDataFlavors()
245. {
246. DataFlavor[] flavors = new DataFlavor[1];
247. Class type = obj.getClass();
248. String mimeType
249. = "application/x-java-jvm-local-objectref;class=
250. + type.getName();
251. try
252. {
253. flavors[0.] = new DataFlavor(mimeType);
254. return flavors;
255. }
256. catch (ClassNotFoundException exception)
257. {
258. return new DataFlavor[0.];
259. }
260. }
261.
262. public boolean isDataFlavorSupported(DataFlavor flavor
263. {
264. return "application".equals(flavor.getPrimaryType()
265. && "x-java-jvm-local-objectref".equals(
266. flavor.getSubType())

267. && flavor.getRepresentationClass().isAssignableF
268. obj.getClass());
269. }
270.
271. public Object getTransferData(DataFlavor flavor)
272. throws UnsupportedFlavorException
273. {
274. if (! isDataFlavorSupported(flavor))
275. throw new UnsupportedFlavorException(flavor);
276.
277. return obj;
278. }
279.
280. private Object obj;
281. }

java.awt.datatransfer.Clipboard

Clipboard(String name)

constructs a local clipboard with the given name.

Transferring Java Objects via the System Clipboard

Suppose you want to copy and paste objects from one Java application to another. Then you
cannot use local clipboards. Fortunately, you can place serialized Java objects onto the
system clipboard.

The program in Example 7-19 demonstrates this capability. The program shows a color
chooser. The Copy button copies the current color to the system clipboard as a serialized
Color object. The Paste button checks whether the system clipboard contains a serialized
Color object. If so, it fetches the color and sets it as the current choice of the color chooser.

You can transfer the serialized object between two Java applications (see Figure 7-50). Run
two copies of the SerialTransferTest program. Click on "Copy" in the first program,
then on "Paste" in the second program. The Color object is transferred from one virtual
machine to the other.

Figure 7-50. Data is copied between two instances of a Java application

To enable the data transfer, the Java platform places binary data on the system clipboard that
contain the serialized object. Another Java program—not necessarily of the same type as the
one that generated the clipboard data—can retrieve the clipboard data and deserialize the
object.

Of course, a non-Java application will not know what to do with the clipboard data. For that
reason, the example program offers the clipboard data in a second flavor, as text. The text is
simply the result of the toString method, applied to the transferred object. To see the
second flavor, run the program, click on a color, and then select the "Paste" command in your
text editor. A string such as

java.awt.Color[r=255,g=51,b=51]

will be inserted into your document.

Essentially no additional programming is required to transfer a serializable object. You use the
MIME type

application/x-java-serialized-object;class=className

As before, you have to build your own transfer wrapper—see the example code for details.

Example 7-19 SerialTransferTest.java

 1. import java.io.*;
 2. import java.awt.*;
 3. import java.awt.datatransfer.*;
 4. import java.awt.event.*;
 5. import java.awt.image.*;

 6. import javax.swing.*;
 7.
 8. /**
 9. This program demonstrates the transfer of serialized o
 10. between virtual machines.
 11. */
 12. public class SerialTransferTest
 13. {
 14. public static void main(String[] args)
 15. {
 16. JFrame frame = new SerialTransferFrame();
 17. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 18. frame.show();
 19. }
 20. }
 21.
 22. /**
 23. This frame contains a color chooser, and copy and
 24. paste buttons.
 25. */
 26. class SerialTransferFrame extends JFrame
 27. {
 28. public SerialTransferFrame()
 29. {
 30. setTitle("SerialTransferTest");
 31.
 32. Container contentPane = getContentPane();
 33.
 34. chooser = new JColorChooser();
 35. contentPane.add(chooser, BorderLayout.CENTER);
 36. JPanel panel = new JPanel();
 37.
 38. JButton copyButton = new JButton("Copy");
 39. panel.add(copyButton);
 40. copyButton.addActionListener(new
 41. ActionListener()
 42. {
 43. public void actionPerformed(ActionEvent event
 44. {
 45. copy();
 46. }
 47. });
 48.
 49. JButton pasteButton = new JButton("Paste");

 50. panel.add(pasteButton);
 51. pasteButton.addActionListener(new
 52. ActionListener()
 53. {
 54. public void actionPerformed(ActionEvent event
 55. {
 56. paste();
 57. }
 58. });
 59.
 60. contentPane.add(panel, BorderLayout.SOUTH);
 61. pack();
 62. }
 63.
 64. /**
 65. Copies the chooser's color into the system clipboar
 66. */
 67. private void copy()
 68. {
 69. Clipboard clipboard
 70. = Toolkit.getDefaultToolkit().getSystemClipboard
 71. Color color = chooser.getColor();
 72. SerialSelection selection = new SerialSelection(col
 73. clipboard.setContents(selection, null);
 74. }
 75.
 76. /**
 77. Pastes the color from the system clipboard into the
 78. chooser.
 79. */
 80. private void paste()
 81. {
 82. Clipboard clipboard
 83. = Toolkit.getDefaultToolkit().getSystemClipboar
 84. Transferable contents = clipboard.getContents(null)
 85. if (contents == null) return;
 86. try
 87. {
 88. DataFlavor flavor = new DataFlavor(
 89. "application/x-java-serialized-object;class=java.awt.Colo
 90. if (contents.isDataFlavorSupported(flavor))
 91. {
 92. Color color
 93. = (Color)contents.getTransferData(flavor);

 94. chooser.setColor(color);
 95. }
 96. }
 97. catch(ClassNotFoundException exception)
 98. {
 99. JOptionPane.showMessageDialog(this, exception);
100. }
101. catch(UnsupportedFlavorException exception)
102. {
103. JOptionPane.showMessageDialog(this, exception);
104. }
105. catch(IOException exception)
106. {
107. JOptionPane.showMessageDialog(this, exception);
108. }
109. }
110.
111. private JColorChooser chooser;
112. }
113.
114. /**
115. This class is a wrapper for the data transfer of
116. serialized objects.
117. */
118. class SerialSelection implements Transferable
119. {
120. /**
121. Constructs the selection.
122. @param o any serializable object
123. */
124. SerialSelection(Serializable o)
125. {
126. obj = o;
127. }
128.
129. public DataFlavor[] getTransferDataFlavors()
130. {
131. DataFlavor[] flavors = new DataFlavor[2];
132. Class type = obj.getClass();
133. String mimeType
134. = "application/x-java-serialized-object;class="
135. + type.getName();
136. try
137. {

138. flavors[0] = new DataFlavor(mimeType);
139. flavors[1] = DataFlavor.stringFlavor;
140. return flavors;
141. }
142. catch (ClassNotFoundException exception)
143. {
144. return new DataFlavor[0];
145. }
146. }
147.
148. public boolean isDataFlavorSupported(DataFlavor flavor
149. {
150. return
151. DataFlavor.stringFlavor.equals(flavor)
152. || "application".equals(flavor.getPrimaryType())
153. && "x-java-serialized-object".equals(
154. flavor.getSubType())
155. && flavor.getRepresentationClass().isAssignableF
156. obj.getClass());
157. }
158.
159. public Object getTransferData(DataFlavor flavor)
160. throws UnsupportedFlavorException
161. {
162. if (!isDataFlavorSupported(flavor))
163. throw new UnsupportedFlavorException(flavor);
164.
165. if (DataFlavor.stringFlavor.equals(flavor))
166. return obj.toString();
167.
168. return obj;
169. }
170.
171. private Serializable obj;
172. }

Drag and Drop
When you use cut and paste to transmit information between two programs, the clipboard acts
as an intermediary. The drag and drop metaphor cuts out the middleman and lets two
programs communicate directly. The Java 2 platform offers basic support for drag and drop.
You can carry out drag and drop operations between Java applications and native
applications. This section shows you how to write a Java application that is a drop target, and
an application that is a drag source.

Before going deeper into the Java platform support for drag and drop, let us have a quick look
at the drag and drop user interface. We'll use the Windows Explorer and WordPad programs
as examples—on another platform, you can experiment with locally available programs with
drag and drop capabilities.

You initiate a drag operation with a gesture inside a drag source—usually, by first selecting
one or more elements and then dragging the selection away from its initial location (see Figure
7-51).

Figure 7-51. Initiating a drag operation

When you release the mouse button over a drop target that accepts the drop operation, then
the drop target queries the drag source for information about the dropped elements, and it
initiates some operation. For example, if you drop a file icon from Windows Explorer to
WordPad, then WordPad opens the file. However, if you drag a file icon on top of a directory
icon in Windows Explorer, then it moves the file into that directory.

If you hold down the SHIFT or CTRL key while dragging, then the type of the drop action
changes from a move action to a copy action, and a copy of the file is placed into the directory.
If you hold down both SHIFT and CTRL keys, then a link to the file is placed into the directory.
(Other platforms may use other keyboard combinations for these operations.)

Thus, there are three types of drop actions with different gestures:

Move

Copy

Link

The intention of the link action is to establish a reference to the dropped element. Such links
typically require support from the host operating system (such as symbolic links for files, or
object linking for document components) and don't usually make a lot of sense in cross-
platform programs. In this section, we'll focus on using drag and drop for copying and moving.

Not all programs are sensitive to the drop action types. For example, if you drop a file onto
WordPad, it ignores the action type and always opens the file.

There is usually some visual feedback for the drag operation. Minimally, the cursor shape will
change. As the cursor moves over possible drop targets, the cursor shape indicates whether
the drop is possible or not. If a drop is possible, the cursor shape also indicates the type of the
drop action. Figure 7-52 shows several cursor shapes over drop targets.

Figure 7-52. Cursor shapes over drop targets

You can also drag other elements besides file icons. For example, you can select text in
WordPad and drag it. Try dropping text fragments into willing drop targets and see how they
react.

NOTE

Drop Targets

In this section, we will construct a simple Java application that is a drop target. The example
program does nothing useful; it simply demonstrates how you can detect that a user would like
to initiate a drop, how to accept the drop, and how to analyze the data that is being dropped.

You can designate any AWT component to be a drop target. To do so, you need to construct a
DropTarget object and pass the component and a drop target listener to the constructor.
The constructor registers the object with the drag and drop system.

DropTarget target = new DropTarget(component, listener);

You can activate or deactivate the target with the setActive method. By default, the target
is active.

target.setActive(b);

You can call the setDefaultActions method to set the drop operations that you want to
accept by default. The operations are:

This experiment shows a disadvantage of drag and drop as a user interface
mechanism. It can be difficult for users to anticipate what you can drag,
where you can drop it, and what happens when you do. Because the
default "move" action can remove the original, many users are
understandably cautious about experimenting with drag and drop.

DndConstants.ACTION_COPY
DndConstants.ACTION_MOVE
DndConstants.ACTION_COPY_OR_MOVE
DndConstants.ACTION_LINK

By default, all operations are allowed.

Now you need to implement a drop target listener. The DropTargetListener interface
has five methods:

void dragEnter(DropTargetDragEvent event)
void dragExit(DropTargetEvent event)
void dragOver(DropTargetDragEvent event)
void dropActionChanged(DropTargetDragEvent event)
void drop(DropTargetDropEvent event)

The dragEnter and dragExit methods are called when the cursor enters or exits the
drop target component. In the dragEnter method, you have the chance to set the cursor
shape to indicate whether the drop target is willing to accept the drop.

You don't usually worry about the dragExit method. However, if you built up some
elaborate mechanism for visual feedback, then you can dispose of it in this method.

The dragOver method is called continuously as the user moves the mouse over the drop
target component. You can use it to give detailed visual feedback about the effect of a drop.
For example, if the drop target is a tree component, you can highlight the node under the
cursor or even open up a subtree if the cursor hovers over a node.

The dropActionChanged method is called if the user changes the action gesture. For
example, if the user presses or lifts the SHIFT or CTRL keys while moving the mouse over the
drop target component, then this method is called. That gives you a chance to modify the
visual feedback and match it to the changed action.

The most important method is the drop method. It is called when the user has committed to a
drop by finishing the drop gesture, usually by releasing the mouse button. Note that this
method is called whether or not you previously indicated that you would accept the drop.

Look carefully at the parameters of the DropTargetListener methods. Three of them
are a DropTargetDragEvent. However, the drop method receives a
DropTargetDropEvent, and the dragExit method receives a DropTargetEvent.
The DropTargetEvent class is the superclass of the other two event classes. It has only
one method, getDropTargetContext, which returns a class with no interesting public
methods. Since the purpose of a dragExit method is to do cleanup, you probably won't
even look at the parameter.

The DropTargetDragEvent and DropTargetDropEvent classes each have the
following methods:

int getDropAction()
Point getLocation()
DataFlavor[] getCurrentDataFlavors()
boolean isDataFlavorSupported(DataFlavor flavor)

You need these methods to test whether to encourage a drag or allow a drop, and how to give
visual feedback.

Unfortunately, since the methods are not available in the common superclass, you'll have to
implement the test logic twice, once for the drag and then again for the drop.

If you don't want to encourage a drag, you should call the rejectDrag method of the
DropTargetDragEvent class in the dragEnter or dropActionChanged method.
As a result, the cursor changes to a warning icon. If the user drops an item despite the
warning, then you should call the rejectDrop method of the DropTargetDropEvent
class.

The getDropAction method returns the drop action that the user intends to carry out. In
many drag and drop operations, you don't want the action taken literally. For example, if you
move a file icon into WordPad, then you don't want the drag source to delete the file. But you
also don't want the drop target to insist that the user hold down a key when dragging. In this
situation, the drop target should accept either copy or move actions. In the drop method, call
the acceptDrop method of the DropTargetDropEvent with the actual action. If you
call

event.acceptDrop(DnDConstants.ACTION_MOVE);
 // drag source deletes dragged items!

then the drag source will delete the dragged items.

TIP

Here is an overview of a typical drop target listener:

class ADropTargetListener implements DropTargetListener

Are you certain that your users understand the distinction between move
and copy operations and the role of the SHIFT and CTRL modifiers? Do
they realize that the default drag gesture (without a modifier) deletes the
dragged items from the source? If not, you should accept a drop as

event.acceptDrop(DnDConstants.ACTION_COPY);

On the other hand, if you really want to make a distinction between move
and copy, simply call

event.acceptDrop(event.getDropEvent()).

{
 // convenience methods
 public boolean isDragAcceptable(DropTargetDragEvent event)
 {
 look at drop action and available data flavors
 }

 public boolean isDropAcceptable(DropTargetDropEvent event)
 {
 carry out the same test as in isDragAcceptable
 }

 // listener methods
 public void dragEnter(DropTargetDragEvent event)
 {
 if (!isDragAcceptable(event))
 {
 event.rejectDrag();
 return;
 }
 }

 public void dragExit(DropTargetEvent event)
 {
 }

 public void dragOver(DropTargetDragEvent event)
 {
 // you can provide visual feedback here
 }

 public void dropActionChanged(DropTargetDragEvent event)
 {
 if (!isDragAcceptable(event))
 {
 event.rejectDrag();
 return;
 }
 }

 public void drop(DropTargetDropEvent event)
 {
 if (!isDropAcceptable(event))
 {

 event.rejectDrop();
 return;
 }
 event.acceptDrop(actual action);
 process data from drag source
 event.dropComplete(true);
 }
 . . .
}

Once you accept a drop, you need to analyze the data from the drag source. The
getTransferable method of the DropTargetDropEvent class returns a reference
to a Transferable object. This is the same interface that is used for copy and paste.

One data type that is more commonly used for drag and drop than for copy and paste is the
DataFlavor.javaFileListFlavor. A file list describes a set of file icons that was
dropped onto the target. The Transferable object yields an object of type
java.util.List whose items are File objects. Here is the code for retrieving the files:

DataFlavor[] flavors = transferable.getTransferDataFlavors();
DataFlavor flavor = flavors[i];
if (flavor.equals(DataFlavor.javaFileListFlavor))
{
 java.util.List fileList
 = (java.util.List)transferable.getTransferData(flavor);
 Iterator iterator = fileList.iterator();
 while (iterator.hasNext())
 {
 File f = (File)iterator.next();
 do something with f;
 }
}

Another flavor that can be dropped is text. You can retrieve the text in various flavors. The
most convenient is DataFlavor.stringFlavor. The other flavors have a MIME type of
text/plain and a variety of representation classes, including InputStream and [B
(byte array).

CAUTION

Earlier versions of the Java platform did not go through the effort of
converting dragged text to Unicode and giving you a stringFlavor.
Instead, you had to retrieve the text through an InputStream. The
text/plain MIME type contains a charset parameter that indicates
the character encoding. To compound the inconvenience, those Java

Depending on the drag source, you may also find data in other formats such as

text/html
text/rtf

If you want to read the data in that format, pick a convenient flavor, for example an input
stream, and obtain the data like this:

if (flavor.isMimeTypeEqual("text/html")
 && flavor.getRepresentationClass() == InputStream.class)
{
 String charset = flavor.getParameter("charset");
 InputStreamReader in = new InputStreamReader(
 transferable.getTransferData(flavor), charset);
 read data from in
}

Our sample program does not attempt to do anything useful. It simply lets you drop items onto
a text area. When you start dragging over the text area, the drop action is displayed. Once you
initiate a drop, the dropped data is displayed. If the data is in text format, the program reads
both ascii and unicode encodings.

In our sample program, we will not give any visual feedback of the dragging process beyond
the change to a warning cursor that automatically happens when calling the rejectDrag
method.

The purpose of this program is simply to give you a drop target for experimentation. Try
dropping a selection of file names from Windows Explorer, or a text fragment from WordPad
(see Figure 7-53). Also see how a link attempt is rejected. If you press both the SHIFT and
CTRL keys, then a warning icon appears when you drag an item over the text area.

Figure 7-53. The DropTargetTest program

platform versions also used character encoding names that were different
from the names that the InputStreamReader constructor expects. In
particular, you had to convert ascii to ISO-8859-1 and unicode to
Unicode.

Under Windows, you ran into additional problems. The end of input was
indicated by a null character, and you should not read past it. The Unicode
data didn't start with a Unicode byte order marker that the
InputStreamReader expects, resulting in a
sun.io.MalformedInputException. Thus, programmers had to
bypass the InputStreamReader and construct the Unicode characters
from pairs of bytes.

Fortunately, these growing pains have been overcome in SDK 1.4.

Example 7-20 shows the complete program.

Example 7-20 DropTargetTest.java

 1. import java.awt.*;
 2. import java.awt.datatransfer.*;
 3. import java.awt.event.*;
 4. import java.awt.dnd.*;
 5. import java.io.*;
 6. import java.util.*;
 7. import javax.swing.*;
 8.
 9. /**
 10. This is a test class to test drag and drop behavior. D
 11. items into the text area to see the MIME types of the
 12. drop target.
 13. */
 14. public class DropTargetTest
 15. {
 16. public static void main(String[] args)
 17. {
 18. JFrame frame = new DropTargetFrame();
 19. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 20. frame.show();
 21. }
 22. }
 23.
 24. /**

 25. This frame contains a text area that is a simple drop
 26. */
 27. class DropTargetFrame extends JFrame
 28. {
 29. public DropTargetFrame()
 30. {
 31. setTitle("DropTarget");
 32. setSize(WIDTH, HEIGHT);
 33.
 34. Container contentPane = getContentPane();
 35. JTextArea textArea
 36. = new JTextArea("Drop items into this text area.
 37.
 38. new DropTarget(textArea,
 39. new TextDropTargetListener(textArea));
 40. contentPane.add(new JScrollPane(textArea), "Center"
 41. }
 42.
 43. private static final int WIDTH = 300;
 44. private static final int HEIGHT = 300;
 45. }
 46.
 47. /**
 48. This listener displays the properties of a dropped obj
 49. */
 50. class TextDropTargetListener implements DropTargetListene
 51. {
 52. /**
 53. Constructs a listener.
 54. @param aTextArea the text area in which to display
 55. properties of the dropped object.
 56. */
 57. public TextDropTargetListener(JTextArea aTextArea)
 58. {
 59. textArea = aTextArea;
 60. }
 61.
 62. public void dragEnter(DropTargetDragEvent event)
 63. {
 64. int a = event.getDropAction();
 65. if ((a & DnDConstants.ACTION_COPY) != 0)
 66. textArea.append("ACTION_COPY\n");
 67. if ((a & DnDConstants.ACTION_MOVE) != 0)
 68. textArea.append("ACTION_MOVE\n");

 69. if ((a & DnDConstants.ACTION_LINK) != 0)
 70. textArea.append("ACTION_LINK\n");
 71.
 72. if (!isDragAcceptable(event))
 73. {
 74. event.rejectDrag();
 75. return;
 76. }
 77. }
 78.
 79. public void dragExit(DropTargetEvent event)
 80. {
 81. }
 82.
 83. public void dragOver(DropTargetDragEvent event)
 84. {
 85. // you can provide visual feedback here
 86. }
 87.
 88. public void dropActionChanged(DropTargetDragEvent even
 89. {
 90. if (!isDragAcceptable(event))
 91. {
 92. event.rejectDrag();
 93. return;
 94. }
 95. }
 96.
 97. public void drop(DropTargetDropEvent event)
 98. {
 99. if (!isDropAcceptable(event))
100. {
101. event.rejectDrop();
102. return;
103. }
104.
105. event.acceptDrop(DnDConstants.ACTION_COPY);
106.
107. Transferable transferable = event.getTransferable()
108.
109. DataFlavor[] flavors
110. = transferable.getTransferDataFlavors();
111. for (int i = 0; i < flavors.length; i++)
112. {

113. DataFlavor d = flavors[i];
114. textArea.append("MIME type=" + d.getMimeType() +
115.
116. try
117. {
118. if (d.equals(DataFlavor.javaFileListFlavor))
119. {
120. java.util.List fileList = (java.util.List)
121. transferable.getTransferData(d);
122. Iterator iterator = fileList.iterator();
123. while (iterator.hasNext())
124. {
125. File f = (File)iterator.next();
126. textArea.append(f + "\n");
127. }
128. }
129. else if (d.equals(DataFlavor.stringFlavor))
130. {
131. String s = (String)
132. transferable.getTransferData(d);
133. textArea.append(s + "\n");
134. }
135. }
136. catch(Exception e)
137. {
138. textArea.append(e + "\n");
139. }
140. }
141. textArea.append("\n");
142. event.dropComplete(true);
143. }
144.
145. public boolean isDragAcceptable(DropTargetDragEvent ev
146. {
147. // usually, you check the available data flavors he
148. // in this program, we accept all flavors
149. return (event.getDropAction()
150. & DnDConstants.ACTION_COPY_OR_MOVE) != 0;
151. }
152.
153. public boolean isDropAcceptable(DropTargetDropEvent ev
154. {
155. // usually, you check the available data flavors he
156. // in this program, we accept all flavors

157. return (event.getDropAction()
158. & DnDConstants.ACTION_COPY_OR_MOVE) != 0;
159. }
160.
161. private JTextArea textArea;
162. }

java.awt.dnd.DropTarget

DropTarget(Component c, DropTargetListener listener)

constructs a drop target that coordinates the drag and drop action onto a component

void setActive(boolean b)

activates or deactivates this drop target.

void setDefaultActions(int actions)

sets the actions that are permissible by default for this drop target. actions is a bit
mask composed of constants defined in the DnDConstants class such as
ACTION_COPY, ACTION_MOVE, ACTION_COPY_OR_MOVE, or ACTION_LINK.

java.awt.dnd.DropTargetListener

void dragEnter(DropTargetDragEvent event)

is called when the cursor enters the drop target.

void dragExit(DropTargetEvent event)

is called when the cursor exits the drop target.

Parameters: c the drop target
 listener the listener to be notified in the drop process

void dragOver(DropTargetDragEvent event)

is called when the cursor moves over the drop target.

void dropActionChanged(DropTargetDragEvent event)

is called when the user changes the drop action while the cursor is over the drop target.

void drop(DropTargetDropEvent event)

is called when the user drops items into the drop target.

java.awt.dnd.DropTargetDragEvent

int getDropAction()

gets the currently selected drop action. Possible values are defined in the
DnDConstants class.

void acceptDrag(int action)

should be called if the drop target wants to accept a drop action that is different from the
currently selected action.

void rejectDrag()

notifies the drag and drop mechanism that this component rejects the current drop
attempt.

Point getLocation()

returns the current location of the mouse over the drop target.

DataFlavor[] getCurrentDataFlavors()

returns the data flavors that the drag source can deliver.

boolean isDataFlavorSupported(DataFlavor flavor)

tests whether drag source supports the given flavor.

java.awt.dnd.DropTargetDropEvent

int getDropAction()

gets the currently selected drop action. Possible values are defined in the
DnDConstants class.

void acceptDrop(int action)

should be called if the drop target has carried out a drop action that is different from the
currently selected action.

void rejectDrop()

notifies the drag and drop mechanism that this component rejects the drop.

void dropComplete(boolean success)

notifies the drag source that the drop is complete and whether it was successful.

Point getLocation()

returns the current location of the mouse over the drop target.

DataFlavor[] getCurrentDataFlavors()

returns the data flavors that the drag source can deliver.

boolean isDataFlavorSupported(DataFlavor flavor)

tests whether the drag source supports the given flavor.

Drag Sources

Now that you saw how to implement a program that contains a drop target, we want to show
you how to implement a drag source.

The program in Example 7-21 fills a JList with all files in the current directory (see Figure 7-
54.) The list component is a drag source. You can drag file items from the list component to
any drop target that is willing to accept a list of files.

Figure 7-54. The DragSourceTest program

To turn a component into a drag source, you need to obtain a DragSource object—you can
simply call the static DragSource.getDefaultDragSource method. Then, call the
createDefaultDragGestureRecognizer method and supply it with:

The component that you want to turn into a drag source

The drop actions that you want to allow

An object that implements the DragGestureListener interface

For example,

DragSource dragSource = DragSource.getDefaultDragSource();
dragSource.createDefaultDragGestureRecognizer(component,
 DnDConstants.ACTION_COPY_OR_MOVE, dragGestureListener);

The DragGestureListener interface has a single method,
dragGestureRecognized. The gesture recognizer calls that method as soon as it has
noticed that the user wants to initiate a drag operation. In that method, you need to build the
Transferable that the drop target will ultimately read in its drop method. Once you have
assembled the Transferable, you call the startDrag method of the
DragGestureEvent class. You supply an optional cursor, or null if you want to use the
default drag cursor, followed by the Transferable and an object that implements the
DragSourceListener interface. For example,

event.startDrag(null, transferable, dragSourceListener);

You need to do the usual busywork of defining a Transferable wrapper—see the code in
the example program for details.

The drag source listener is notified repeatedly as the drag operation progresses. The interface
has five methods:

void dragEnter(DragSourceDragEvent event)

void dragOver(DragSourceDragEvent event)
void dragExit(DragSourceEvent event)
void dropActionChanged(DragSourceDragEvent event)
void dragDropEnd(DragSourceDropEvent event)

You can use the first four methods to give the user visual feedback of the drag operation.
However, generally, such feedback should be the role of the drop target. Only the last method,
dragDropEnd, is very important. This method is called when the drop method has
finished. For a move operation, you need to check whether the drop has succeeded. In that
case, you need to update the drag source. (For a copy operation, you probably don't have to
do anything.)

NOTE

Here is the dragDropEnd method for our example program. When a move has succeeded,
we remove the moved items from the list model.

public void dragDropEnd(DragSourceDropEvent event)
{
 if (event.getDropSuccess())
 {
 int action = event.getDropAction();
 if (action == DnDConstants.ACTION_MOVE)
 {
 for (int i = 0; i < draggedValues.length; i++)
 model.removeElement(draggedValues[i]);
 }
 }
}

In this method, we rely on the drop method to tell us what drop was actually carried out.
Recall that the drop method can change a move action to a copy action if the source allowed
both actions. The event.getDropAction of the DragSourceDropEvent class
returns the action that the drop target reported when calling the acceptDrop method of the
DropTargetDropEvent.

Try out the program in Example 7-21 and drag file items to various drop targets, such as the
program in Example 7-20 or a native program such as Windows Explorer or WordPad.

NOTE

SDK 1.4 introduces a DragSourceAdapter helper class that
implements all methods of the DragSourceListener interface as do-
nothing methods. The sample program at the end of this section uses that
class. If you use an earlier version of the SDK, you need to define the do-
nothing methods yourself.

CAUTION

As you have seen, support for the system clipboard and the drag and drop mechanism are still
very much a work in progress. The basics work, but, hopefully, future versions of the Java
platform will offer more robust and comprehensive support.

In this section, we have covered the basic mechanics of the drag and drop mechanism. For
more information, particularly about programming visual feedback, we recommend Core
Swing: Advanced Programming by Kim Topley [Prentice Hall 1999].

Example 7-21 DragSourceTest.java

 1. import java.awt.*;
 2. import java.awt.datatransfer.*;
 3. import java.awt.dnd.*;
 4. import java.awt.event.*;
 5. import java.io.*;
 6. import java.util.*;
 7. import javax.swing.*;
 8.
 9. /**
 10. This is a sample drag source for testing purposes. It
 11. of a list of files in the current directory.
 12. */
 13. public class DragSourceTest
 14. {
 15. public static void main(String[] args)
 16. {
 17. JFrame frame = new DragSourceFrame();
 18. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE)
 19. frame.show();
 20. }
 21. }
 22.
 23. /**

When you try the dragging, you have to be careful that the drag gesture
doesn't interfere with the normal mouse effects of the list control. Select one
or more items. Press the mouse button on a selected item and move the
mouse sideways, until it leaves the list component. Now the drag gesture is
recognized. After the mouse has left the list component, press the SHIFT or
CTRL key to modify the drop action.

The default drop action is a move. If you drag a file item from the list
component and drop it into Windows Explorer, then Explorer moves the file
into the target folder.

 24. This frame contains a list of files in the current
 25. directory with support for dragging files to a drop ta
 26. Moved files are removed from the list.
 27. */
 28. class DragSourceFrame extends JFrame
 29. {
 30. public DragSourceFrame()
 31. {
 32. setTitle("DragSourceTest");
 33. setSize(WIDTH, HEIGHT);
 34.
 35. Container contentPane = getContentPane();
 36. File f = new File(".").getAbsoluteFile();
 37. File[] files = f.listFiles();
 38. model = new DefaultListModel();
 39. for (int i = 0; i < files.length; i++)
 40. try
 41. {
 42. model.addElement(files[i].getCanonicalFile())
 43. }
 44. catch (IOException exception)
 45. {
 46. JOptionPane.showMessageDialog(this, exception
 47. }
 48. fileList = new JList(model);
 49. contentPane.add(new JScrollPane(fileList),
 50. BorderLayout.CENTER);
 51. contentPane.add(new JLabel("Drag files from this li
 52. BorderLayout.NORTH);
 53.
 54. DragSource dragSource = DragSource.getDefaultDragSo
 55. dragSource.createDefaultDragGestureRecognizer(fileL
 56. DnDConstants.ACTION_COPY_OR_MOVE, new
 57. DragGestureListener()
 58. {
 59. public void dragGestureRecognized(
 60. DragGestureEvent event)
 61. {
 62. draggedValues = fileList.getSelectedVal
 63. Transferable transferable
 64. = new FileListTransferable(draggedVa
 65. event.startDrag(null, transferable,
 66. new FileListDragSourceListener());
 67. }

 68. });
 69. }
 70.
 71. /**
 72. A drag source listener that removes moved
 73. files from the file list.
 74. */
 75. private class FileListDragSourceListener
 76. extends DragSourceAdapter
 77. {
 78. public void dragDropEnd(DragSourceDropEvent event)
 79. {
 80. if (event.getDropSuccess())
 81. {
 82. int action = event.getDropAction();
 83. if (action == DnDConstants.ACTION_MOVE)
 84. {
 85. for (int i = 0; i < draggedValues.length;
 86. model.removeElement(draggedValues[i]);
 87. }
 88. }
 89. }
 90. }
 91.
 92. private JList fileList;
 93. private DefaultListModel model;
 94. private Object[] draggedValues;
 95. private static final int WIDTH = 300;
 96. private static final int HEIGHT = 200;
 97. }
 98.
 99. class FileListTransferable implements Transferable
100. {
101. public FileListTransferable(Object[] files)
102. {
103. fileList = new ArrayList(Arrays.asList(files));
104. }
105.
106. public DataFlavor[] getTransferDataFlavors()
107. {
108. return flavors;
109. }
110.
111. public boolean isDataFlavorSupported(DataFlavor flavor

112. {
113. return Arrays.asList(flavors).contains(flavor);
114. }
115.
116. public Object getTransferData(DataFlavor flavor)
117. throws UnsupportedFlavorException
118. {
119. if(flavor.equals(DataFlavor.javaFileListFlavor))
120. return fileList;
121. else if(flavor.equals(DataFlavor.stringFlavor))
122. return fileList.toString();
123. else
124. throw new UnsupportedFlavorException(flavor);
125. }
126.
127. private static DataFlavor[] flavors =
128. {
129. DataFlavor.javaFileListFlavor,
130. DataFlavor.stringFlavor
131. };
132.
133. private java.util.List fileList;
134. }

java.awt.dnd.DragSource

static DragSource getDefaultDragSource()

gets a DragSource object to coordinate drag actions on components.

DragGestureRecognizer createDefaultDragGestureRecognizer
(Component component, int actions, DragGestureListener
listener)

creates a drag gesture recognizer.

Parameters: component the drag source
 actions the permissible drop actions
 listener the listener to be notified when a drag gesture has been

recognized

java.awt.dnd.DragGestureListener

void dragGestureRecognized(DragGestureEvent event)

is called when the drag gesture recognizer has recognized a gesture.

java.awt.dnd.DragGestureEvent

void startDrag(Cursor dragCursor, Transferable
transferable, DragSourceListener listener)

starts the drag action.

java.awt.dnd.DragSourceListener

void dragEnter(DragSourceDragEvent event)

is called when the drag cursor enters the drag source.

void dragExit(DragSourceEvent event)

is called when the drag cursor exits the drag source.

void dragOver(DragSourceDragEvent event)

is called when the drag cursor moves over the drag source.

void dropActionChanged(DragSourceDragEvent event)

Parameters: dragCursor an optional cursor to use for the drag. May be null,
in which case a default cursor is used.

 transferable the data to be transferred to the drop target.
 listener the listener to be notified of the drag process.

is called when the user changed the drop action.

void dragDropEnd(DragSourceDropEvent event)

is called after the drag and drop operation was completed or canceled.

java.awt.dnd.DragSourceDropEvent

boolean getDropSuccess()

returns true if the drop target reported a successful drop.

int getDropAction()

returns the action that the drop target actually carried out.

Data Transfer Support in Swing

Starting with SDK 1.4, Swing components have built-in support for data transfer that frees
programmers from much of the burden of implementing copy and paste or drag and drop.

For example, start the TableSelectionTest program from Chapter 6 and highlight a
range of cells. Then press CTRL+C and paste the clipboard contents into a text editor. The
result is HTML-formatted text like this:

<html>
<table>
<tr>
 <th id=2>C
 <th id=3>D
 <th id=4>E
 <th id=5>F
<tr id=3>
 <td>12
 <td>16
 <td>20
 <td>24
. . .
</table>
</html>

If you add the line

table.setDragEnabled(true);

after the table constructor and recompile the program, then you can drag the selection area to
drop targets. The drop target receives the table selection as HTML formatted data.

Table 7-6 summarizes the Swing components that are sources and targets for data transfer.
The standard "Cut," "Copy," and "Paste" keyboard shortcuts are enabled for all components
except the JColorChooser. Dragging is not enabled by default. You must call the
setDragEnabled method to activate it.

The Swing package provides a potentially useful mechanism to quickly turn a component into
a drop target. If the component has a method

void setName(Type t)

then you turn it into a drop target for data flavors with representation class Type simply by
calling

component.setTransferHandler("name");

When a drop occurs, then the transfer handler checks whether one of the data flavors has
representation class Type. If so, it invokes the setName method.

NOTE

Table 7-6. Data Transfer Support in Swing Components
Component Transfer source Transfer target
JFileChooser Exports file list N/A
JColorChooser Exports local reference to

dolor object
Accepts any color object

JTextField

JFormattedTextField

Exports selected text Accepts text

JPasswordField N/A (for security reasons) Accepts text
JTextArea

JTextPane

JEditorPane

Exports selected text Accepts text and file lists. Text is
inserted. Files are opened.

JList

JLabel

JTree

Exports HTML description
of selection

N/A

For example, suppose you want to use drag and drop to change the background color of a text
field. You need a transfer handler that invokes the

void setBackground(Color c)

method when a Color object is dragged onto the text field. Simply call

textField.setTransferHandler(new TransferHandler("background")

Example 7-22 demonstrates this behavior. As you can see in Figure 7-55, the top of the frame
contains a color chooser, and the bottom, a text field with the text "Drag color here." You need
to drag the color from the inside of the "Preview" panel, not from one of the color swatches.
When you drag it onto the text field, its background color changes.

Figure 7-55. The Swing Drag and Drop Test Program

CAUTION

In JavaBeans terminology, the transfer handler sets the value of the name
property. JavaBean properties are covered in Chapter 8.

By installing this transfer handler into the text field, you disable the standard
transfer handler. You can no longer cut, copy, paste, drag, or drop text in
the text field. A Swing component can only have one transfer handler.

Example 7-22 SwingDnDTest.java

 1. import java.awt.*;
 2. import javax.swing.*;
 3.
 4. /**
 5. This program demonstrates how to easily add data transf
 6. capabilities to Swing components. Drag a color from the
 7. "Preview" panel of the color chooser into the text fiel
 8. */
 9. public class SwingDnDTest
10. {
11. public static void main(String[] args)
12. {
13. JFrame frame = new SwingDnDFrame();
14. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE)
15. frame.show();
16. }
17. }
18.
19. /**
20. This frame contains a color chooser and a text field. D
21. a color into the text field changes its background colo
22. */
23. class SwingDnDFrame extends JFrame
24. {
25. public SwingDnDFrame()
26. {
27. setTitle("SwingDnDTest");
28.
29. Container contentPane = getContentPane();
30. JColorChooser chooser = new JColorChooser();
31. chooser.setDragEnabled(true);
32. contentPane.add(chooser, BorderLayout.CENTER);
33. JTextField textField = new JTextField("Drag color he
34. textField.setDragEnabled(true);
35. textField.setTransferHandler(
36. new TransferHandler("background"));
37. contentPane.add(textField, BorderLayout.SOUTH);
38. pack();
39. }
40. }

javax.swing.JComponent

void setTransferHandler(TransferHandler handler)

sets a transfer handler to handle data transfer operations (cut, copy, paste, drag, drop).

javax.swing.TransferHandler

TransferHandler(String propertyName)

constructs a transfer handler that reads or writes the JavaBean property with the given
name when a data transfer operation is executed.

javx.swing.JFileChooser

javax.swing.JColorChooser

javax.swing.JTextComponent

javax.swing.JList

javax.swing.JTable

javax.swing.JTree

void setDragEnabled(boolean b)

enables or disables dragging of data out of this component.

CONTENTS

Chapter 8. JavaBeans™
Why Beans?

The Bean-Writing Process

Using Beans to Build an Application

Naming Patterns for Bean Properties and Events

Bean Property Types

Adding Custom Bean Events

Property Editors

Going Beyond Naming Patterns

Customizers

The Bean Context

The official definition of a bean, as given in the JavaBeans specification, is: "A bean is a
reusable software component based on Sun's JavaBeans specification that can be
manipulated visually in a builder tool."

Once you implement a bean, others can use it in a builder environment such as Forte,
JBuilder, VisualAge, or Visual Café to produce applications or applets more efficiently.

We will not tell you in detail how to use those environments—you should refer to the
documentation that the vendors provide. This chapter explains what you need to know about
beans in order to implement them so that other programmers can use your beans easily.

Why Beans?
Programmers coming from a Windows background (specifically, Visual Basic or Delphi) will
immediately know why beans are so important. Programmers coming from an environment
where the tradition is to "roll your own" for everything may not understand at once. In our
experience, programmers who do not come from a Visual Basic background often find it hard
to believe that Visual Basic is one of the most successful examples of reusable object
technology. One reason for the popularity of Visual Basic becomes clear if you consider how
you build a Visual Basic application. For those who have never worked with Visual Basic, here,
in a nutshell, is how you do it:

1. You build the interface by dropping components (called controls in Visual Basic) onto a
form window.

CONTENTS

2. Through property sheets, you set properties of the components such as height, color, or
other behavior.

3. The property sheets also list the events to which components can react. For some of
those events, you write short snippets of event handling code.

For example, in Chapter 2 of Volume 1, we wrote a program that displays an image in a frame.
It took a over a page of code. Here's what you would do in Visual Basic to create a program
with pretty much the same functionality.

1. Add two controls to a window: an Image control for displaying graphics and a Common
Dialog control for selecting a file.

2. Set the Filter properties of the CommonDialog control so that only files that the Image
control can handle will show up. This is done in what Visual Basic calls the Properties
window, as shown in Figure 8-1.

Figure 8-1. The Properties window in Visual Basic for an image application

Now, we need to write the five lines of Visual Basic code that will be activated when the project
first starts running. This corresponds to an event called the Form_Load, so the code goes in
the Form_Load event procedure. The following code pops up the file dialog box—but only
files with the right extension are shown because of how we set the filter property. After the user
selects an image file, the code then tells the Image control to display it. All the code you need
for this sequence looks like this:

Private Sub Form_Load()

 On Error Resume Next
 CommonDialog1.ShowOpen
 Image1.Picture = LoadPicture(CommonDialog1.FileName)
End Sub

That's it. The layout activity, combined with these five lines of code, give essentially the same
functionality as a page of Java programming language code. Clearly, it is a lot easier to learn
how to drop down components and set properties than it is to write a page of code.

The point is that right now the Java programming language is still a tool used mostly by top-
notch, object-oriented programmers. And, realistically, even such programmers are unlikely to
be as productive as a good Visual Basic programmer for designing the user interface of a
client application. The JavaBeans technology enables vendors to create environments that
make it dramatically easier to develop user interfaces for Java applications.

Note that we do not want to imply that Visual Basic is a good solution for every problem. It is
clearly optimized for a particular kind of problems—UI-intensive Windows programs. In
contrast, Java technology will always have a much wider range of uses. And the good news is
that with the advent of JavaBeans technology, some of the benefits of Visual Basic-style
application building are on the horizon for programmers. In particular:

1. Beans with the same functionality as the most common Visual Basic controls are readily
available.

2. Java technology builder tools have come much closer to the ease of use of the Visual
Basic environment.

NOTE

The Bean-Writing Process
Most of the rest of this chapter shows you the techniques that you will use to write beans.
Before we go into details, we give an overview of the process. First, we want to stress that
writing a bean is not technically difficult—there are only a few new classes and interfaces for
you to master.

In particular, the simplest kind of bean is really nothing more than a Java platform class that
follows some fairly strict naming conventions for its event listeners and its methods. Example
8-1 at the end of this section shows the code for an Image Viewer Bean that could give a
builder environment based on Java technology the same functionality as the Visual Basic
image control that we mentioned in the previous section.

Once you have built a bean, users of any environment enabled for
JavaBeans technology can readily use it. Developers can even, through the
magic of the ActiveX bridge technology, deploy JavaBeans in Visual Basic
applications and Microsoft Office (see
http://java.sun.com/products/javabeans/software).

When you look at this code, notice that the ImageViewerBean class really doesn't look any
different from any other class. For example, all accessor methods begin with get, all mutator
methods begin with set. As you will soon see, builder tools use this standard naming
convention to discover properties. For example, fileName is a property of this bean
because it has get and set methods.

Note that a property is not the same as an instance variable. In this particular example, the
fileName property is computed from the file instance variable. Properties are
conceptually at a higher level than instance variables—they are features of the interface,
whereas instance variables belong to the implementation of the class.

NOTE

One point that you need to keep in mind when you read through the examples in this chapter is
that real-world beans are much more elaborate and tedious to code than our brief examples,
for two reasons.

1. Beans need to be usable by less-than-expert programmers. Such people will access
most of the functionality of your bean with a visual design tool that uses essentially no
programming. You need to expose lots of properties to make it easy to customize the
bean behavior.

2. The same bean needs to be usable in a wide variety of contexts. A bean that is too
simplistic to be usable in the real world won't get much respect. Of course, that is why
people can charge hundreds of dollars for a professional component, such as a full-
featured chart control. For example, at the time of this writing, a popular chart control has

60 properties

14 methods

47 events

178 pages of documentation

Another good example of a bean with rich behavior is the CalendarBean by Kai Tödter
(see Figure 8-2). The bean and its source code are freely available from
http://www.toedter.com/en/jcalendar.html. This bean gives users a convenient way of entering
dates, simply by locating them in a calendar display. This is obviously pretty complex and not
something one would want to program from scratch. By using JavaBeans such as this one,

For full support in a bean environment, beans should have a default
constructor (or no constructor at all, in which case a default constructor is
automatically provided), and they should be serializable. This allows the
environment to instantiate new beans and to save beans between sessions.
However, these are just practical recommendations, not requirements. The
ImageViewerBean is serializable because it extends the serializable
JLabel class.

you can take advantage of the work of others, simply by dropping the bean into a builder tool.

Figure 8-2. A Calendar Bean

Obviously, a chart or calendar control is about as full-featured a control as one can imagine,
but even a bean as simple as a text field for entering numbers turns out to be not quite so
simple to code as one might first imagine.

Consider, for example, what should happen as the user types digits into the text field. Should
the new numbers be immediately reported to the listeners? On the one hand, this approach is
attractive because it gives instant feedback to the user of your bean. But many applications
restrict the range for valid entries, and partial entries that can go into an eventual valid entry
might not themselves be valid.

For example, suppose a listener wanted to receive only even numbers from the input field. If a
user tried to enter 256, the listener would receive an invalid input 25. So, in this case,
incremental update is a bad idea because the incremental value could be inappropriate. In
cases like this, your bean should report the value to listeners only when the user has finished
entering the number, that is, when the user presses ENTER or if the text field loses focus.

If you are writing a program for a single application, then you will simply choose one behavior
or the other. But if you are building a bean, you aren't programming for yourself but for a wide
audience of users with different needs. Therefore, it would be best to add a property called
something like incrementalUpdate and implement both behaviors, depending on the
value of that property. Add a few more options like this, and even a simple IntTextBean
will end up with a dozen properties.

Fortunately, you need to master only a small number of concepts to write beans with a rich set
of behaviors. The example beans in this chapter, while not trivial, are kept simple enough to
illustrate the necessary concepts.

TIP

You will find full-featured beans available for sale from many programming
product stores, bundled with Java development environments, or for free at
sites such as http://www.gamelan.com and the IBM alphaWorks site
http://alphaworks.ibm.com.

Example 8-1 ImageViewerBean.java

 1. import java.awt.*;
 2. import java.io.*;
 3. import javax.imageio.*;
 4. import javax.swing.*;
 5.
 6. /**
 7. A bean for viewing an image.
 8. */
 9. public class ImageViewerBean extends JLabel
10. {
11.
12. public ImageViewerBean()
13. {
14. setBorder(BorderFactory.createEtchedBorder());
15. }
16.
17. /**
18. Sets the fileName property.
19. @param fileName the image file name
20. */
21. public void setFileName(String fileName)
22. {
23. try
24. {
25. file = new File(fileName);
26. setIcon(new ImageIcon(ImageIO.read(file)));
27. }
28. catch (IOException exception)
29. {
30. file = null;
31. setIcon(null);
32. }
33. }
34.
35. // Use this version for SDK1.3
36. /*
37. public void setFileName(String fileName)
38. {
39. file = new File(fileName);
40. Image image
41. = Toolkit.getDefaultToolkit().getImage(fileNam
42. MediaTracker tracker = new MediaTracker(this);

43. tracker.addImage(image, 0);
44. try { tracker.waitForID(0); } catch (Exception e)
45. setIcon(new ImageIcon(image));
46. repaint();
47. }
48. */
49.
50. /**
51. Gets the fileName property.
52. @return the image file name
53. */
54. public String getFileName()
55. {
56. if (file == null) return null;
57. else return file.getPath();
58. }
59.
60. public Dimension getPreferredSize()
61. {
62. return new Dimension(XPREFSIZE, YPREFSIZE);
63. }
64.
65. private File file = null;
66. private static final int XPREFSIZE = 200;
67. private static final int YPREFSIZE = 200;
68. }

Using Beans to Build an Application
Before we get into the mechanics of writing beans, we want you to see how you might use or
test them. The ImageViewerBean is a perfectly usable bean, but outside a builder
environment it can't show off its special features. In particular, the only way to use it in an
ordinary program in the Java programming language would be to write code that constructs an
object of the bean class, places the object into a container, and calls the setFileName
method. That's not rocket science, but it is more code than an overworked programmer may
want to write. Builder environments aim to reduce the amount of drudgery that is involved in
wiring together components into an application.

Each builder environment uses its own set of strategies to ease the programmer's life. We will
cover one environment, the Forte Community Edition. We don't want to claim that Forte is
better than other products—in fact, as you will see, it has its share of idiosyncrasies. We
simply use Forte because it is a fairly typical programming environment, and because it is
freely available.

If you prefer another builder environment, you can still follow the steps of the next sections.
The basic principles are the same for most environments. Of course, the details differ.

If you don't want to download a large environment, you can use the BeanBox from Sun
Microsystems. The BeanBox is a demonstration of bean capabilities that was designed as a
showcase for tool developers. It has advanced features for bean composition, but it doesn't
offer any facilities for laying out components nicely. At this point, the BeanBox is somewhat
dated—it hasn't been updated since SDK 1.1.

NOTE

In this example, we will use two beans, ImageViewerBean and FileNameBean. You
have already seen the code for the ImageViewerBean. The code for the
FileNameBean is a bit more sophisticated. We'll analyze it in depth later in this chapter. For
now, all you have to know is that clicking on the button with the "…" label will open a standard
File Open dialog box where you can select a file.

Before we can go any further with showing you how to use these beans, we need to explain
how to package the bean for import into a builder tool.

Packaging Beans in JAR files

To make any bean usable in a builder tool, package all class files that are used by the bean
code into a JAR file. Unlike the JAR files for an applet that you saw previously, a JAR file for a
bean needs a manifest file that specifies which class files in the archive are beans and should
be included in the Toolbox. For example, here is the manifest file ImageViewerBean.mf
for the ImageViewerBean.

Manifest-Version: 1.0

Name: ImageViewerBean.class
Java-Bean: True

Note the blank line between the manifest version and bean name.

If your class is in a package, use slashes to indicate the package, like this:

Name: com/horstmann/beans/ImageViewerBean.class

If your bean contains multiple class files, you only mention in the manifest those class files that
are beans and that you want to have displayed in the toolbox. For example, you could place a
ImageViewerBean and a FileNameBean into the same JAR file and use the manifest

Manifest-Version: 1.0

Name: ImageViewerBean.class

You can download the Forte Community Edition at no charge from
http://www.sun.com/forte/ffj/buy.html. The BeanBox is at
http://java.sun.com/products/javabeans/software.

Java-Bean: True

Name: FileNameBean.class
Java-Bean: True

CAUTION

To make the JAR file, follow these steps:

1. Edit the manifest file.

2. Gather all needed class files in a directory.

3. Run the jar tool as follows:

jar cfm JarFile ManifestFile *.class

For example,

jar cfm ImageViewerBean.jar ImageViewerBean.mf *.class

You can also add other items, such as GIF files for icons, to the JAR file. We will discuss bean
icons later in this chapter.

CAUTION

Builder environments have a mechanism for adding new beans, typically by loading JAR files.
Here is what you need to do to import beans into Forte.

Compile the ImageViewerBean and FileNameBean classes and package them into
JAR files. Then start Forte and follow these steps.

1. Select Tools -> Install new Java Bean from the menu.

2. In the file dialog, move to the ImageViewerBean directory and select
ImageViewerBean.jar

3. Now a dialog pops up that lists all the beans that were found in the JAR file. Select

grap Some builder tools are extremely fussy about manifests. Make sure that
there are no spaces after the ends of each line, that there are blank lines
after the version and between bean entries, and that the last line ends in a
newline.

grap Make sure to include all files that your bean needs in the JAR file. In
particular, pay attention to inner class files such as
ImageViewerBean$1.class.

ImageViewerBean.

4. Finally, you are asked into which palette you want to place the beans. Select
"Beans." (There are other palettes for Swing components, AWT components, and so on.)

5. Have a look at the "Beans" palette. It now contains an icon representing the new bean
(see Figure 8-3). However, the icon is just a default icon—you will see later how to add
icons to a bean.

Figure 8-3. Adding a Bean to a Palette in Forte

Repeat this step with the FileNameBean. Now you are ready to compose these beans into
an application.

Composing Beans in a Builder Environment

In Forte, select File -> New from the menu. A dialog pops up. Open the "Swing Forms" node of
the tree on the left and select JFrame. On the right, specify the name of the frame as
ImageViewer (see Figure 8-4).

Figure 8-4. Building a New Form

Now you get two windows: a form editor (Figure 8-5) and the familiar code editor (Figure 8-6).
The form editor shows the outlines of a border layout, and the code editor contains a few lines
of routine code.

Figure 8-5. The Form Editor Window

Figure 8-6. The Code Editor Window

To add a bean to the form, select the bean in the palette and click on one of the border layout
regions.

NOTE

Other builders have different user interfaces. For example, you may need to
drag the bean to the right place on the form.

Figure 8-7 shows the result of adding an image viewer bean to the center region of the frame.

Figure 8-7. Adding a Bean to a Form

If you look into the code editor window, you will find that the source code now contains the
Java instructions to add an ImageViewerBean object to the content pane of the frame.
The source code is bracketed by dire warnings that you should not edit it. Any edits would be
lost when the builder environment updates the code as you modify the form.

NOTE

Now click on the ImageViewerBean in the form and select View->Properties from the
menu. You get a property inspector that lists the bean property names and their current values
(see Figure 8-8). This is a vital part of component-based development tools since setting
properties at design time is how you set the initial state of a component.

Figure 8-8. A Property Inspector

Not all builder environments update source code as you build an
application. A builder environment may generate source code when you are
done editing, serialize the beans you customized, or perhaps produce an
entirely different description of your building activity.

In particular, SDK1.4 has methods for saving and loading XML descriptions
of collections of JavaBeans. This technology is still somewhat experimental
and mostly of interest to builder tool manufacturers. See
http://java.sun.com/products/jfc/tsc/articles/persistence2/index.html for more
information on this topic.

For example, you can modify the text property of the label used for the image bean by
simply typing in a new name into the property inspector. Changing the text property is
simple—you just edit a string in a text field. Try it out—set the label text to "Hello". The
form is immediately updated to reflect your change. When you are done, set the text to the
empty string since we don't want text to appear next to the image icon.

NOTE

Properties don't have to be strings; they can be values of any Java platform type. To make it
possible for users to set values for properties of any type, builder tools access specialized
property editors. (Property editors either come with the builder or are supplied by the bean
developer. You'll see how to write your own property editors later in this chapter.)

To see a simple property editor at work, look at the background property. The property type
is Color. You can see the color editor, with a combo box containing standard color names,
and a button labeled "…" that brings up a color dialog (see Figure 8-9).

Figure 8-9. Using a property editor to set properties

When you change the setting of a property, the Forte environment updates
the source code to reflect your action. For example, if you set the text
field to Hello, the instruction

imageViewerBean.setText("Hello");

is added to the initComponents method. As already mentioned, other
builder tools may have different strategies for recording property settings.

Go ahead and change the background to orange. Notice that you'll immediately see the
change to the background color—the border changes color.

More interestingly, choose a file name for an image file in the property inspector. Once you do
so, the ImageViewerBean automatically displays the image (see Figure 8-10).

Figure 8-10. The ImageViewerBean at work

NOTE

If you look at the property inspector in Figure 8-10, you will find a large
number of mysterious properties such as focusCycleRoot and

To complete our application, place a FileNameBean at the south end of the frame. Now we
want the image to be loaded when the fileName property of the FileNameBean is
changed. This happens through a PropertyChange event; we discuss these kinds of
events a little later in this chapter.

To react to the event, select the FileNameBean and select the Events tab from its property
inspector (see Figure 8-11). Then click on the <none> entry. A dialog appears that shows that
there are currently no handlers associated with this event. Click on the Add button of the
dialog. You will be prompted for a method name. Type in loadImage.

Figure 8-11. The Events Tab of the Property Inspector

Now have a look at the edit window (see Figure 8-12). It now contains additional event
handling code and a new method

Figure 8-12. Event Handling Code in The Edit Window

iconTextGap. These are inherited from the JLabel superclass. You
will see later in this chapter how you can suppress them from the property
inspector.

private void loadImage(java.beans.PropertyChange evt)
{
 // Add your handling code here
}

Add the following line of code:

imageViewerBean1.setFileName(fileNameBean1.getFileName());

Then compile and execute the application. Click on the button with the "…" label and select an
image file. The image is displayed in the image viewer.

This process demonstrates that you can create a Java application from Java beans, by setting
properties and providing a small amount of code for event handlers.

Some builder environments, such as the BeanBox, go even further, eliminating the need for
writing any code at all. The BeanBox has built-in mechanisms for various common situations,
among them:

Calling a method when an event is triggered

Setting a property when another property changes

With the BeanBox, you can build simple applications entirely without programming, just by
dragging components onto a form, setting properties, and wiring events to methods or property
setters.

By themselves, the mechanisms of the BeanBox are not sufficient to implement sophisticated
applications. In contrast, the Forte mechanism allows the programmer to write applications
with a mixture of visual manipulation and coding.

The JavaBeans mechanism doesn't attempt to force an implementation strategy on a builder
tool. Instead, it aims to supply information about beans to builder tools that can choose to take
advantage of the information in one way or another. You will see in the following sections how
to program beans so that tools accurately discover that information.

Naming Patterns for Bean Properties and Events
First, we want to stress there is no cosmic beans class that you extend to build your beans.
Visual beans directly or indirectly extend the Component class, but nonvisual beans don't
have to extend any particular superclass. Remember, a bean is simply any class that can be
manipulated in a builder tool. The builder tool does not look at the superclass to determine the
bean nature of a class, but it analyzes the names of its methods. To enable this analysis, the
method names for beans must follow certain patterns.

NOTE

Other languages for visual design environments, such as Visual Basic and Delphi, have
special keywords such as "Property" and "Event" to express these concepts directly. The
designers of the Java specification decided not to add keywords to the language to support
visual programming. Therefore, they needed an alternative so that a builder tool could analyze
a bean to learn its properties or events. Actually, there are two alternate mechanisms. If the
bean writer uses standard naming patterns for properties and events, then the builder tool can
use the reflection mechanism to understand what properties and events the bean is supposed
to expose. Alternatively, the bean writer can supply a bean information class that tells the
builder tool about the properties and events of the bean. We'll start out using the naming
patterns because they are easy to use. You'll see later in this chapter how to supply a bean
information class.

NOTE

There is a java.beans.Beans class, but all methods in it are static.
Extending it would, therefore, be rather pointless, even though you will see
it done occasionally, supposedly for greater "clarity." Clearly, since a bean
can't extend both Beans and Component, this approach can't work for
visual beans. In fact, the Beans class contains methods that are designed
to be called by builder tools, for example, to check whether the tool is
operating at design time or run time.

Although the documentation calls these standard naming patterns "design
patterns," these are really only naming conventions and have nothing to do

The naming pattern for properties is simple: Any pair of methods

public X getPropertyName()
public void setPropertyName(X x)

corresponds to a read/write property of type X.

For example, in our ImageViewerBean, there is only one read/write property (for the
file name to be viewed), with the following methods:

public String getFileName()
public void setFileName(String f)

If you have a get method but not an associated set method, you define a read-only
property.

Be careful with the capitalization pattern you use for your method names. The designers of the
JavaBeans specification decided that the name of the property in our example would be
fileName, with a lowercase f, even though the get and set methods contain an
uppercase F (getFileName, setFileName). The bean analyzer performs a process
called decapitalization to derive the property name. (That is, the first character after get or
set is converted to lower case.) The rationale is that this process results in method and
property names that are more natural to programmers.

NOTE

NOTE

with the design patterns that are used in object-oriented programming.

The get and set methods you create can do more than simply get and
set a private data field. Like any Java method, they can carry out arbitrary
actions. For example, the setFileName method of the
ImageViewerBean class not only sets the value of the fileName
data field, but also opens the file and loads the image.

In Visual Basic, properties also come from get and set methods. (Delphi
uses read and write.) But, in both these languages there is a
Property keyword so that the compiler doesn't have to second-guess
the programmer's intentions by analyzing method names. And using a
keyword in those languages has another advantage: Using a property name
on the left side of an assignment automatically calls the set method. Using
a property name in an expression automatically calls the get method. For
example, in Visual Basic you can write

imageBean.fileName = "corejava.gif"

There is one exception to the get/set naming pattern. Properties that have Boolean values
should use an is/set naming pattern, as in the following examples:

public boolean isPropertyName()
public void setPropertyName(boolean b)

For example, an animation might have a property running, with two methods

public boolean isRunning()
public void setRunning(boolean b)

The setRunning method would start and stop the animation. The isRunning method
would report its current status.

For events, the naming pattern is even simpler. A bean builder environment will infer that your
bean generates events when you supply methods to add and remove event listeners. Suppose
your bean generates events of type EventNameEvent. (All events must end in Event.)
Then, the listener interface must be called EventNameListener, and the methods to add
and remove a listener must be called.

public void addEventNameListener(EventNameListener e)
public void removeEventNameListener(EventNameListener e)

If you look at the code for the ImageViewerBean, you'll see that it has no events to
expose. Later, we will see a timer bean that generates TimerEvent objects and has the
following methods to manage event listeners:

public void addTimerListener(TimerListener e)
public void removeTimerListener(TimerListener e)

NOTE

instead of

imageBean.setFileName("corejava.gif");

What do you do if your class has a pair of get and set methods that don't
correspond to a property that you want users to manipulate in a property
inspector? In your own classes, you can of course avoid that situation by
renaming your methods. But if you extend another class, then you inherit
the method names from the superclass. This happens, for example, when
your bean extends JPanel or JLabel—a large number of uninteresting
properties show up in the property inspector. This shows that naming
patterns are really a lousy way for designating properties. You will see later
in this chapter how you can override the automatic property discovery
process by supplying bean information that specifies exactly which methods

Bean Property Types
A sophisticated bean will have lots of different kinds of properties that it should expose in a
builder tool for a user to set at design time or get at run time. It can also trigger both standard
and custom events. Properties can be as simple as the fileName property that you saw in
the ImageViewerBean and the FileNameBean or as sophisticated as a color value or
even an array of data points—we encounter both of these cases later in this chapter.
Furthermore, properties can fire events, as you will see in this section.

Getting the properties of your beans right is probably the most complex part of building a bean
because the model is quite rich. The JavaBeans specification allows four types of properties,
which we illustrate by various examples.

Simple Properties

A simple property is one that takes a single value such as a string or a number. The
fileName property of the ImageViewer is an example of a simple property. Simple
properties are easy to program: just use the set/get naming convention we indicated
earlier. For example, if you look at the code in Example 8-1, you can see that all it took to
implement a simple string property is:

public void setFileName(String f)
{
 fileName = f;
 image = . . .
 repaint();
}
public String getFileName()
{
 if (file == null) return null;
 else return file.getPath();
}

Notice that, as far as the JavaBeans specification is concerned, we also have a read-only
property of this bean because we have a method with this signature inside the class

public Dimension getPreferredSize()

without a corresponding setPreferredSize method. You would not normally be able to
see read-only properties at design time in a property inspector.

Indexed Properties

An indexed property is one that gets or sets an array. A chart bean (see below) would use an

correspond to properties.

indexed property for the data points. With an indexed property, you supply two pairs of get
and set methods: one for the array and one for individual entries. They must follow the
pattern:

X[] getPropertyName()
void setPropertyName(X[] x)
X getPropertyName(int i)
void setPropertyName(int i, X x)

Here's an example of the indexed property we use in the chart bean that you will see later in
this chapter.

public double[] getValues() { return values; }
public void setValues(double[] v) { values = v; }
public double getValues(int i) { return values[i]; }
public void setValues(int i, double v) { values[i] = v; }
. . .
private double[] values;

The get/set functions that set individual array entries can assume that i is within the legal
range. Builder tools will not call them with an index that is less than 0 or larger than the length
of the array. In particular, the

setPropertyName(int i, X[] x)

method cannot be used to grow the array. To grow the array, you must manually build a new
array and then pass it to this method:

setPropertyName(X[] x)

As a practical matter, however, the get and set methods can still be called
programmatically, not just by the builder environment. Therefore, it is best to add some error
checking, after all. For example, here is the code that we really use in the ChartBean class.

public double getValues(int i)
{
 if (0 <= i && i < values.length) return values[i];
 return 0;
}

public void setValues(int i, double value)
{
 if (0 <= i && i < values.length) values[i] = value;
}

NOTE

Bound Properties

Bound properties tell interested listeners that their value has changed. For example, the
fileName property in the FileNameBean is a bound property. When the file name
changes, then the ImageViewerBean is automatically notified and it loads the new file.

To implement a bound property, you must implement two mechanisms.

1. Whenever the value of the property changes, the bean must send a
PropertyChange event to all registered listeners. This change can occur when the
set method is called or when the program user carries out an action, such as editing
text or selecting a file.

2. To enable interested listeners to register themselves, the bean has to implement the
following two methods:

void addPropertyChangeListener(PropertyChangeListener
 listener)
void removePropertyChangeListener(PropertyChangeListener
 listener)

The java.beans package has a convenience class, called PropertyChangeSupport,
that manages the listeners for you. To use this convenience class, your bean must have a data
field of this class that looks like this:

private PropertyChangeSupport changeSupport
 = new PropertyChangeSupport(this);

You delegate the task of adding and removing property change listeners to that object.

public void addPropertyChangeListener(PropertyChangeListener
 listener)
{
 changeSupport.addPropertyChangeListener(listener);
}
public void removePropertyChangeListener(PropertyChangeListene
 listener)
{
 changeSupport.removePropertyChangeListener(listener);
}

Whenever the value of the property changes, use the firePropertyChange method of

As we write this, neither Forte nor the BeanBox support indexed properties
in the property inspector. You will see later in this chapter how to overcome
this limitation by supplying a custom property editor for arrays.

the PropertyChangeSupport object to deliver an event to all the registered listeners.
That method has three parameters: the name of the property, the old value, and the new
value. For example,

changeSupport.firePropertyChange("fileName",
 oldValue, newValue);

The values must be objects. If the property type is not an object, then you must use an object
wrapper. For example,

changeSupport.firePropertyChange("running",
 new Boolean(false), new Boolean(true));

TIP

Other beans that want to be notified when the property value changes must implement the
PropertyChangeListener interface. That interface contains only one method:

void propertyChange(PropertyChangeEvent event)

The code in the propertyChange method is triggered whenever the property value
changes, provided, of course, that you have added the recipient to the property change
listeners of the bean that generates the event. The PropertyChange-Event object
encapsulates the old and new value of the property, obtainable with

Object oldValue = event.getOldValue();
Object newValue = event.getNewValue();

If the property type is not a class type, then the returned objects are the usual wrapper types.
For example, if a boolean property is changed, then a Boolean is returned and you need
to retrieve the Boolean value with the booleanValue method.

If your bean extends any Swing class that ultimately extends the JComponent
class, then you do not need to implement the addPropertyChangeListene
and removePropertyChangeListener methods. These methods are
already implemented in the JComponent superclass.

To notify the listeners of a property change, simply call the
firePropertyChange method of the JComponent superclass:

firePropertyChange("propertyName", oldValue, newValue)

For your convenience, that method is overloaded for the types boolean, byte,
char, double, float, int, long, and short. If oldValue and
newValue belong to these types, you do not need to use object wrappers.

Thus, a listening object must follow this model:

class Listener
{
 public Listener()
 {
 bean.addPropertyChangeListener(new
 PropertyChangeListener()
 {
 void propertyChange(PropertyChangeEvent event)
 {
 Object newValue = event.getNewValue();
 . . .
 }
 });
 }
 . . .
}

Example 8-2 is the full code for the FileNameBean. Since the FileNameBean extends
the JPanel class, we did not have to explicitly use a PropertyChangeSupport object.
Instead, we rely on the ability of the JPanel class to manage property change listeners.

Example 8-2 FileNameBean.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.beans.*;
 4. import java.io.*;
 5. import javax.swing.*;
 6.
 7. /**
 8. A bean for specifying file names.
 9. */
 10. public class FileNameBean extends JPanel
 11. {
 12. public FileNameBean()
 13. {
 14. dialogButton = new JButton("...");
 15. nameField = new JTextField(30);
 16.
 17. chooser = new JFileChooser();
 18. chooser.setCurrentDirectory(new File("."));
 19.
 20. chooser.setFileFilter(new

 21. javax.swing.filechooser.FileFilter()
 22. {
 23. public boolean accept(File f)
 24. {
 25. String name = f.getName().toLowerCase();
 26. return name.endsWith("." + defaultExtensio
 27. || f.isDirectory();
 28. }
 29. public String getDescription()
 30. {
 31. return defaultExtension + " files";
 32. }
 33. });
 34.
 35. setLayout(new GridBagLayout());
 36. GridBagConstraints gbc = new GridBagConstraints();
 37. gbc.weightx = 100;
 38. gbc.weighty = 100;
 39. gbc.anchor = GridBagConstraints.WEST;
 40. gbc.fill = GridBagConstraints.BOTH;
 41. add(nameField, gbc, 0, 0, 1, 1);
 42.
 43. dialogButton.addActionListener(
 44. new ActionListener()
 45. {
 46. public void actionPerformed(ActionEvent evt)
 47. {
 48. int r = chooser.showOpenDialog(null);
 49. if(r == JFileChooser.APPROVE_OPTION)
 50. {
 51. File f = chooser.getSelectedFile();
 52. try
 53. {
 54. String name = f.getCanonicalPath();
 55. setFileName(name);
 56. }
 57. catch (IOException exception)
 58. {
 59. }
 60. }
 61. }
 62. });
 63. nameField.setEditable(false);
 64.

 65. gbc.weightx = 0;
 66. gbc.anchor = GridBagConstraints.EAST;
 67. gbc.fill = GridBagConstraints.NONE;
 68. add(dialogButton, gbc, 1, 0, 1, 1);
 69. }
 70.
 71. /**
 72. A convenience method to add a component to given gr
 73. layout locations.
 74. @param c the component to add
 75. @param gbc the grid bag constraints to use
 76. @param x the x grid position
 77. @param y the y grid position
 78. @param w the grid width
 79. @param h the grid height
 80. */
 81. public void add(Component c, GridBagConstraints gbc,
 82. int x, int y, int w, int h)
 83. {
 84. gbc.gridx = x;
 85. gbc.gridy = y;
 86. gbc.gridwidth = w;
 87. gbc.gridheight = h;
 88. add(c, gbc);
 89. }
 90.
 91. /**
 92. Sets the fileName property.
 93. @param newValue the new file name
 94. */
 95. public void setFileName(String newValue)
 96. {
 97. String oldValue = nameField.getText();
 98. nameField.setText(newValue);
 99. firePropertyChange("fileName", oldValue, newValue);
100. }
101.
102. /**
103. Gets the fileName property.
104. @return the name of the selected file
105. */
106. public String getFileName()
107. {
108. return nameField.getText();

109. }
110.
111. /**
112. Sets the defaultExtension property.
113. @param s the new default extension
114. */
115. public void setDefaultExtension(String s)
116. {
117. defaultExtension = s;
118. }
119.
120. /**
121. Gets the defaultExtension property.
122. @return the default extension in the file chooser
123. */
124. public String getDefaultExtension()
125. {
126. return defaultExtension;
127. }
128.
129. public Dimension getPreferredSize()
130. {
131. return new Dimension(XPREFSIZE, YPREFSIZE);
132. }
133.
134. private static final int XPREFSIZE = 200;
135. private static final int YPREFSIZE = 20;
136. private JButton dialogButton;
137. private JTextField nameField;
138. private JFileChooser chooser;
139. private String defaultExtension = "gif";
140. }

java.beans.PropertyChangeListener

void propertyChange(PropertyChangeEvent event)

is called when a property change event is fired.

Parameters: event the property change event

java.beans.PropertyChangeSupport

PropertyChangeSupport(Object sourceBean)

constructs the (convenience) PropertyChangeSupport object.

void addPropertyChangeListener(PropertyChangeListener
listener)

registers an interested listener for the bound property.

void removePropertyChangeListener(PropertyChangeListener
listener)

removes a previously registered interested listener for the bound property.

void firePropertyChange(String propertyName, Object
oldValue, Object newValue)

sends a PropertyChangeEvent to registered listeners.

java.beans.PropertyChangeEvent

Parameters: sourceBean the bean that is the source of the property change
(usually this)

Parameters: listener the object that wants to be notified of a change in the bound
property

Parameters: listener the object to be removed from the list of listeners

Parameters: propertyName the name of the property
 oldValue the old value
 newValue the new value

PropertyChangeEvent(Object source, String propertyName,
Object oldValue, Object newValue)

constructs a new PropertyChangeEvent object.

Object getNewValue()

returns the new value of the property.

Object getOldValue();

returns the previous value of the property.

String getPropertyName()

returns the name of the property.

javax.swing.JComponent

void addPropertyChangeListener(String propertyName,
PropertyChangeListener listener)

registers an interested listener for the bound property.

Parameters: source the bean source for the property
 propertyName the name of the property
 oldValue the old value
 newValue the new value

Parameters: propertyName the name of the property to listen to
 listener the object that wants to be notified of a change in the

bound property

void addPropertyChangeListener(PropertyChangeListener
listener)

registers an interested listener for all bound properties of this component.

void removePropertyChangeListener(String propertyName,
PropertyChangeListener listener)

removes a previously registered interested listener for the bound property.

void removePropertyChangeListener(PropertyChangeListener
listener)

removes a previously registered interested listener for the bound properties of this
component.

void firePropertyChange(String propertyName, Xxx oldValue,
Xxx newValue)

sends a PropertyChangeEvent to registered listeners.

Constrained Properties

A constrained property is the most interesting of the properties, and also the most complex to
implement. Such a property is constrained by the fact that any listener can "veto" proposed
changes, forcing it to revert to the old setting.

Parameters: listener the object that wants to be notified of a change in the bound
property

Parameters: propertyName the name of the property to listen to
 listener the object to be removed from the list of listeners

Parameters: listener the object to be removed from the list of listeners

Parameters: propertyName the name of the property
 oldValue the old value
 newValue the new value

For example, consider a text field to enter a number, implemented as a bean IntTextBean.
A consumer of that number may have restrictions on the value; for example, perhaps the
number must be between 0 and 255. Such a restriction would be easy to implement: add a
minValue and maxValue to the IntTextBean. However, the restriction may be more
complex than that. Perhaps the number should be even. Or, it may depend on another number
that also changes. In that case, no simple property of the IntTextBean is able to
distinguish good user inputs from bad ones. Instead, the bean should notify its consumers of
the new value and give the consumers the chance to veto the change. A property that can be
vetoed is called a constrained property.

We will put this concept to use with a range bean (see Figure 8-13). This bean contains two
IntTextBean fields to specify the lower and the upper bound of a range. (You might use
such a bean in a print dialog where the user can specify the range of pages to be printed.) If
the user enters a to value that is less than the current from value (or a from value that is
greater than the current to value), then the RangeBean vetoes the change.

Figure 8-13. The range bean

In this example, the IntTextBean is the producer of the vetoable event, and the
RangeBean is the consumer that may issue a veto.

To build a constrained property, your bean must have the following two methods to let it
register VetoableChangeListener objects:

public void addVetoableChangeListener(VetoableChangeListener
 listener);
public void removeVetoableChangeListener(VetoableChangeListene
 listener);

Just as there is a convenience class to manage property change listeners, there is a
convenience class, called VetoableChangeSupport, that manages vetoable change
listeners. Your bean should contain an object of this class.

private VetoableChangeSupport vetoSupport
 = new VetoableChangeSupport(this);

Adding and removing listeners should be delegated to this object. For example:

public void addVetoableChangeListener(VetoableChangeListener
 listener)
{
 vetoSupport.addVetoableChangeListener(listener);

}
public void removeVetoableChangeListener(VetoableChangeListene
 listener)
{
 vetoSupport.removeVetoableChangeListener(listener);
}

TIP

An object that is able to veto changes needs to implement the
VetoableChangeListener interface. That interface contains one method:

void vetoableChange(PropertyChangeEvent event)
 throws PropertyVetoException

This method receives a PropertyChangeEvent object, from which it can retrieve the
current value and the proposed new value with the getOldValue and getNewValue
methods.

Notice that the vetoableChange method throws an exception. A listener indicates its
disapproval with the proposed change by throwing a PropertyVetoException. This
exception forces the bean that produced the event to abandon the new value.

To see how to implement the VetoableChangeListener interface, look at the code for
the RangeBean class. It attaches listeners to the from and to bean. Here is the code for
the from listener:

public void vetoableChange(PropertyChangeEvent event)
 throws PropertyVetoException
{
 int v = ((Integer)event.getNewValue()).intValue();
 if (v > to.getValue())
 throw new PropertyVetoException("from > to", event);
}

It is highly recommended that constrained properties also be bound properties. That is, your

The JComponent class has some support for constrained properties, but
it is not as extensive as that for bound properties. The JComponent class
keeps a single listener list for vetoable change listeners, not a separate list
for each property. And the fireVetoableChange method is not
overloaded for basic types. If your bean extends JComponent and has a
single constrained property (as is often the case), then the listener support
of the JComponent superclass is entirely adequate, and you do not need
a separate VetoableChangeSupport object.

bean should have methods to add PropertyChangeListener objects in addition to
VetoableChangeListener objects. You saw how to implement those methods in the
preceding section.

To update a constrained property value, a bean uses the following two-phase approach:

1. Notify all vetoable change listeners of the intent to change the property value. (Use the
fireVetoableChange method of the VetoableChangeSupport class.)

2. If none of the vetoable change listeners has thrown a PropertyVetoException,
then update the value of the property.

3. Notify all property change listeners to confirm that a change has occurred.

Here is a typical example from the IntTextBean code.

public void setValue(int v) throws PropertyVetoException
{
 Integer oldValue = new Integer(getValue());
 Integer newValue = new Integer(v);
 vetoSupport.fireVetoableChange("value", oldValue, newValue)
 // survived, therefore no veto
 value = v;
 setText("" + v);
 changeSupport.firePropertyChange("value", oldValue,
 newValue);
}

It is important that you don't change the property value until all the registered vetoable change
listeners have agreed with the proposed change. Conversely, a vetoable change listener
should never assume that a change that it agrees with is actually happening. The only reliable
way to get notified when a change is actually happening is through a property change listener.

Example 8-3 shows the code for the integer text bean that allows its values to be vetoed—it is
based on the IntTextField class from Volume 1. Example 8-4 shows the code for the
RangeBean. A range bean contains two IntTextBean objects and vetoes the change if it
would result in an invalid range.

Note that the integer text field sets a focus listener that tracks focus events. When the text field
gains focus, the original value is saved. When it gives up the focus, then the editComplete
method is called.

 public IntTextBean(int defval, int size)
 {
 super("" + defval, size);
 addFocusListener(new

 FocusListener()
 {
 public void focusGained(FocusEvent event)
 {
 if (!event.isTemporary())
 lastValue = getValue();
 }
 public void focusLost(FocusEvent event)
 {
 if (!event.isTemporary())
 editComplete();
 }
 });
 }

The editComplete method is similar to the setValue method; however, if a property
change was vetoed, it restores the original value and resets the focus to the text field.

 public void editComplete()
 {
 Integer oldValue = new Integer(lastValue);
 Integer newValue = new Integer(getValue());
 try
 {
 fireVetoableChange("value", oldValue, newValue);
 // survived, therefore no veto
 firePropertyChange("value", oldValue, newValue);
 }

 catch(PropertyVetoException e)
 {
 // someone didn't like it
 JOptionPane.showMessageDialog(this, "" + e,
 "Input Error", JOptionPane.WARNING_MESSAGE);
 setText("" + lastValue);
 requestFocus();
 }
 }

CAUTION

grap The requestFocus method does not work for Swing components in
JDK 1.2—see bug #4128659 in the "bug parade" at
http://developer.java.sun.com for details.

To see the veto mechanism at work, add the range bean to a form. Type a value into the
from field that is larger than the value in the to field. Then, click inside the to field. You will
see that the contents of the from field instantly revert to the old value.

Here is what happens:

1. You type a value into the from field.

2. You click on the to field.

3. The from field loses focus, and the focus listener of the from field calls the
editComplete method.

4. That method fires a vetoable change.

5. The to field vetoes the change.

6. The catch clause in the editComplete method displays a warning dialog (see
Figure 8-14), restores the original value, and requests focus.

Figure 8-14. A Veto Message

Here is another interesting experiment. Rather than editing the values of the text fields, use a
property inspector to set the value of the from property to a value that is higher than the to
property. You will find that the property inspector won't let you do that. The setFrom method
throws a veto exception, and the value is never set. In some builder environments (but not
Forte 2.0), the property inspector attaches itself as a veto listener, so that it can give you an
error message and restore the old value in the inspector.

Whenever you build a constrained property into your bean, keep in mind that the bean may
have multiple listeners, any of which can veto the change. Therefore, a constrained property
that isn't bound doesn't make much sense. Listeners need to be notified when a proposed
property change has actually been accepted by all listeners. For this reason, we strongly
suggest that all your constrained properties be bound.

Example 8-3 IntTextBean.java

 1. import java.awt.*;
 2. import java.awt.event.*;

 3. import java.beans.*;
 4. import java.io.*;
 5. import javax.swing.*;
 6. import javax.swing.text.*;
 7.
 8. /**
 9. A bean for editing integer values
 10. */
 11. public class IntTextBean extends JTextField
 12. {
 13. public IntTextBean()
 14. {
 15. super("0", TEXTSIZE);
 16. setInputVerifier(new IntTextFieldVerifier());
 17. addActionListener(new
 18. ActionListener()
 19. {
 20. public void actionPerformed(ActionEvent event
 21. {
 22. editComplete();
 23. }
 24. });
 25. addFocusListener(new
 26. FocusListener()
 27. {
 28. public void focusGained(FocusEvent event)
 29. {
 30. if (!event.isTemporary())
 31. lastValue = getValue();
 32.
 33. }
 34. public void focusLost(FocusEvent event)
 35. {
 36. if (!event.isTemporary())
 37. editComplete();
 38. }
 39. });
 40. }
 41.
 42. protected Document createDefaultModel()
 43. {
 44. return new IntTextDocument();
 45. }
 46.

 47. /**
 48. This method is called when the text field loses
 49. focus or the user hits Enter.
 50. */
 51. public void editComplete()
 52. {
 53. Integer oldValue = new Integer(lastValue);
 54. Integer newValue = new Integer(getValue());
 55. try
 56. {
 57. fireVetoableChange("value", oldValue, newValue);
 58. // survived, therefore no veto
 59. firePropertyChange("value", oldValue, newValue);
 60. }
 61. catch(PropertyVetoException e)
 62. {
 63. // someone didn't like it
 64. JOptionPane.showMessageDialog(this, "" + e,
 65. "Input Error", JOptionPane.WARNING_MESSAGE);
 66. setText("" + lastValue);
 67. requestFocus();
 68. // doesn't work in all JDK versions--see bug
 69. }
 70. }
 71.
 72. /**
 73. Checks if the contents of this field is a valid int
 74. @return true of the field contents is valid
 75. */
 76. public boolean isValid()
 77. {
 78. return IntTextDocument.isValid(getText());
 79. }
 80.
 81. /**
 82. Gets the numeric value of the field contents.
 83. @param the number that the user typed into the fiel
 84. 0 if the field contents is not valid.
 85. */
 86. public int getValue()
 87. {
 88. try
 89. {
 90. return Integer.parseInt(getText());

 91. }
 92. catch(NumberFormatException e)
 93. {
 94. return 0;
 95. }
 96. }
 97.
 98. /**
 99. Sets the constrained value property.
100. @param v the new value
101. */
102. public void setValue(int v) throws PropertyVetoExcepti
103. {
104. Integer oldValue = new Integer(getValue());
105. Integer newValue = new Integer(v);
106. fireVetoableChange("value", oldValue, newValue);
107. // survived, therefore no veto
108. setText("" + v);
109. firePropertyChange("value", oldValue, newValue);
110. }
111.
112. public Dimension getPreferredSize()
113. {
114. return new Dimension(XPREFSIZE, YPREFSIZE);
115. }
116.
117. private int lastValue;
118. private static final int XPREFSIZE = 50;
119. private static final int YPREFSIZE = 20;
120. private static final int TEXTSIZE = 10;
121. }
122.
123. /**
124. A document that can only hold valid integers or their
125. substrings
126. */
127. class IntTextDocument extends PlainDocument
128. {
129. public void insertString(int offs, String str,
130. AttributeSet a)
131. throws BadLocationException
132. {
133. if (str == null) return;
134.

135. String oldString = getText(0, getLength());
136. String newString = oldString.substring(0, offs)
137. + str + oldString.substring(offs);
138.
139. if (canBecomeValid(newString))
140. super.insertString(offs, str, a);
141. }
142.
143. /**
144. A helper function that tests whether a string is a
145. integer
146. @param s a string
147. @return true if s is a valid integer
148. */
149. public static boolean isValid(String s)
150. {
151. try
152. {
153. Integer.parseInt(s);
154. return true;
155. }
156. catch(NumberFormatException e)
157. {
158. return false;
159. }
160. }
161.
162. /**
163. A helper function that tests whether a string is a
164. substring of a valid integer
165. @param s a string
166. @return true if s can be extended to a valid intege
167. */
168. public static boolean canBecomeValid(String s)
169. {
170. return s.equals("") || s.equals("-") || isValid(s);
171. }
172. }
173.
174. /**
175. A verifier that checks if the contents of a text compo
176. is a valid integer.
177. */
178. class IntTextFieldVerifier extends InputVerifier

179. {
180. public boolean verify(JComponent component)
181. {
182. String text = ((JTextComponent)component).getText()
183. return IntTextDocument.isValid(text);
184. }
185. }

Example 8-4 RangeBean.java

 1. import java.awt.*;
 2. import java.beans.*;
 3. import java.io.*;
 4. import javax.swing.*;
 5.
 6. /**
 7. A bean with two integer text fields to specify a range
 8. of values.
 9. */
10. public class RangeBean extends JPanel
11. {
12. public RangeBean()
13. {
14. add(new JLabel("From"));
15. add(from);
16. add(new JLabel("To"));
17. add(to);
18.
19. from.addVetoableChangeListener(new
20. VetoableChangeListener()
21. {
22. public void vetoableChange(PropertyChangeEvent
23. throws PropertyVetoException
24. {
25. int v = ((Integer)event.getNewValue()).intV
26. if (v > to.getValue())
27. throw new PropertyVetoException("from >
28. event);
29. }
30. });
31.
32. to.addVetoableChangeListener(new
33. VetoableChangeListener()
34. {

35. public void vetoableChange(PropertyChangeEvent
36. throws PropertyVetoException
37. {
38. int v = ((Integer)event.getNewValue()).intV
39. if (v < from.getValue())
40. throw new PropertyVetoException("to < fr
41. event);
42. }
43. });
44. }
45.
46. /**
47. Sets the from property.
48. @param v the new lower bound of the range
49. */
50. public void setFrom(int v) throws PropertyVetoException
51. {
52. from.setValue(v);
53. }
54.
55. /**
56. Gets the from property.
57. @return the lower bound of the range
58. */
59. public int getFrom() { return from.getValue(); }
60.
61. /**
62. Sets the to property.
63. @param v the new upper bound of the range.
64. */
65. public void setTo(int v) throws PropertyVetoException
66. {
67. to.setValue(v);
68. }
69.
70. /**
71. Gets the to property.
72. @return the upper bound of the range
73. */
74. public int getTo() { return to.getValue(); }
75.
76. private IntTextBean from = new IntTextBean();
77. private IntTextBean to = new IntTextBean();
78. }

java.beans.VetoableChangeListener

void vetoableChange(PropertyChangeEvent event)

is called when a property is about to be changed. It should throw a
PropertyVetoException if the change is not acceptable.

java.beans.VetoableChangeSupport

VetoableChangeSupport(Object sourceBean)

constructs the (convenience) VetoableChangeSupport object.

void addVetoableChangeListener(VetoableChangeListener
listener)

registers an interested listener for the constrained property.

void removeVetoableChangeListener(VetoableChangeListener
listener)

removes a previously registered interested listener for the constrained property.

Parameters: event the event object describing the property change

Parameters: sourceBean the bean that is the source of the vetoable change
(usually this)

Parameters: listener the bean that wants to have a chance to veto the constrained
property

Parameters: listener the bean to be removed from the list of listeners

void fireVetoableChange(String propertyName, Object
oldValue, Object newValue)

sends a (convenience) PropertyChangeEvent to registered listeners prior to
updating the property value.

javax.swing.JComponent

void addVetoableChangeListener(VetoableChangeListener
listener)

registers an interested listener for all constrained properties of this component.

void removeVetoableChangeListener(VetoableChangeListener
listener)

removes a previously registered interested listener for the constrained properties of this
component.

void fireVetoableChange(String propertyName, Object
oldValue, Object newValue)

sends a PropertyChangeEvent to registered listeners.

Parameters: propertyName the name of the property
 oldValue the current value
 newValue the proposed new value

Parameters: listener the object that wants to be notified of a change in the bound
property

Parameters: listener the object to be removed from the list of listeners

Parameters: propertyName the name of the property
 oldValue the old value
 newValue the new value

java.beans.PropertyVetoException

PropertyVetoException(String reason, PropertyChangeEvent
event)

creates a new PropertyVetoException.

PropertyChangeEvent getPropertyChangeEvent()

returns the PropertyChangeEvent used to construct the exception.

Adding Custom Bean Events
When you add a bound or constrained property to a bean, you also enable the bean to fire
events whenever the value of that property changes. However, there are other events that a
bean can send out, for example,

When the program user has clicked on a control within the bean;

When new information is available;

Or, simply when some amount of time has elapsed.

Unlike the PropertyChangeEvent events, these events belong to custom classes and
need to be captured by custom listeners.

Here is how to write a bean that generates custom events. (Please consult Chapter 8 of
Volume 1 for more details on event-handling in the Java platform.) Be sure to follow the first
two steps precisely or the introspection mechanism will not recognize that you are trying to
define a custom event.

1. Write a class CustomEvent that extends EventObject. (The event name must end
in Event in order for a builder to use the naming patterns to find it.)

2. Write an interface CustomListener with one or more notification methods. Those
methods can have any name, but they must have a single parameter of type

Parameters: reason a string that describes the reason for the veto
 event the PropertyChangeEvent for the constrained property

you want to veto

CustomEvent and return type void.

3. Supply the following two methods in the bean:

public void addCustomListener(CustomListener e)
public void removeCustomListener(CustomListener e)

CAUTION

To implement the methods needed for adding, removing, and delivering custom events, you
can no longer rely on convenience classes that automatically manage the event listeners.
Instead, you need to collect and manage all the event listeners. As we discussed in Chapter 8
of Volume 1, the EventListenerList is a con-venience class that is designed for this
purpose. Because it is possible for a listener object to implement multiple event listener
interfaces, an event listener list entry is specified by the class object of the listener interface
and the listener object.

Implementing the methods for adding and removing listeners is straightforward:

public void addCustomListener(CustomListener listener)
{
 listenerList.add(CustomListener.class, listener);
}

public void removeCustomListener(CustomListener listener)
{
 listenerList.remove(CustomListener.class, listener);
}

For each method in the listener interface, you should provide a convenience method for event
firing.

public void fireMethodName(CustomEvent event)
{
 EventListener[] listeners = listenerList.getListeners(
 CustomListener.class);

 for (int i = 0; i < listeners.length; i++)
 {

grap If your event class doesn't extend EventObject, chances are that your
code will compile just fine because none of the methods of the
EventObject class are actually needed, and none of the various other
methods ever try to cast the event objects to the EventObject class.
However, your bean will mysteriously fail—the introspection mechanism will
not recognize the events.

 CustomListener listener = (CustomListener)listeners[i];
 listener.methodName(event);
 }
}

That method is not required by the JavaBeans specification—it just makes it easier to send
events to all interested listeners.

Now, let's apply this technique to implementing a TimerBean. This bean should send
TimerEvent objects to its listeners. (This is a modification of the Timer class from chapter
8 of Volume 1.) Timer events are generated at regular intervals, measured in milliseconds,
provided that the running property is set to true. The interval length is determined by the
interval property. Examples 8-5 through 8-7 show the code for the following:

The TimerEvent class, the custom event that is generated by this bean;

The TimerListener class with a notification method that we called timeElapsed;

The TimerBean with methods addTimerListener and
removeTimerListener.

Here is how you can test the bean in Forte.

1. Start a new application based on a JFrame, as previously described. Drop a timer bean
into the frame. This is a nonvisual bean—it does not extend the Component class. It
shows up in the frame's inspector under the heading "Non-visual Components" (see
Figure 8-15).

Figure 8-15. A Non-visual Bean

2. Set its running property to true.

3. Add a scroll pane to the center of the frame. (Look inside the "Swing" tab in the
component panel.)

4. Add a text area inside the scroll pane.

5. Hook up the timeElapsed event to a method with name updateTextArea and
body

jTextArea1.append(evt + "\n");

6. Compile and run

You will see messages filling the text area (see Figure 8-16). If the messages don't show
up, double-check that you set the running property to true.

Figure 8-16. Listening to a Custom Event

In the bean box, you can have a slightly more fun display by hooking up a TimerBean with
an EventMonitor bean. You can then start and stop the timer by toggling the running
property in the property editor.

Here's the complete code for the TimerBean.

Example 8-5 TimerBean.java

 1. import java.io.*;
 2. import java.util.*;
 3. import javax.swing.event.*;
 4.
 5. /**
 6. A nonvisual bean that sends timer events.
 7. */
 8. public class TimerBean implements Serializable
 9. {
 10. public TimerBean()
 11. {
 12. listenerList = new EventListenerList();
 13. }
 14.
 15. /**
 16. Sets the interval property.
 17. @param i the interval between timer ticks (in milli
 18. */
 19. public void setInterval(int i) { interval = i; }
 20.
 21. /**
 22. Gets the interval property.
 23. @return the interval between timer ticks (in millis
 24. */
 25. public int getInterval() { return interval; }
 26.
 27. /**
 28. Sets the running property.
 29. @param b true if the timer is running
 30. */
 31. public void setRunning(boolean b)
 32. {
 33. if (b && runner == null)
 34. {
 35. if (interval <= 0) return;
 36. runner = new
 37. Thread()
 38. {
 39. public void run()
 40. {
 41. try
 42. {
 43. while (!Thread.interrupted())
 44. {

 45. Thread.sleep(interval);
 46. fireTimeElapsed(new TimerEvent(th
 47. }
 48. }
 49. catch(InterruptedException e)
 50. {
 51. }
 52. }
 53. };
 54. runner.start();
 55. }
 56. else if (!b && runner != null)
 57. {
 58. runner.interrupt();
 59. runner = null;
 60. }
 61. }
 62.
 63. /**
 64. Gets the running property.
 65. @return true if the timer is running
 66. */
 67. public boolean isRunning() { return runner != null; }
 68.
 69. /**
 70. Adds a timer listener.
 71. @param listener the listener to add
 72. */
 73. public void addTimerListener(TimerListener listener)
 74. {
 75. listenerList.add(TimerListener.class, listener);
 76. }
 77.
 78. /**
 79. Removes a timer listener.
 80. @param listener the listener to remove
 81. */
 82. public void removeTimerListener(TimerListener listener
 83. {
 84. listenerList.add(TimerListener.class, listener);
 85. }
 86.
 87. /**
 88. Sends a timer event to all listeners.

 89. @param event the event to send
 90. */
 91. public void fireTimeElapsed(TimerEvent event)
 92. {
 93. EventListener[] listeners = listenerList.getListene
 94. TimerListener.class);
 95.
 96. for (int i = 0; i < listeners.length; i++)
 97. {
 98. TimerListener listener = (TimerListener)listener
 99. listener.timeElapsed(event);
100. }
101. }
102.
103. private int interval = 1000;
104. private EventListenerList listenerList;
105. private Thread runner;
106. }

Example 8-6 TimerListener.java

 1. import java.util.*;
 2.
 3. /**
 4. An interface for being notified when a timer tick occur
 5. */
 6. public interface TimerListener extends EventListener
 7. {
 8. /**
 9. This method is called whenever the time between
10. notifications has elapsed.
11. @param evt the timer event that contains
12. the time of notification
13. */
14. public void timeElapsed(TimerEvent evt);
15. }

Example 8-7 TimerEvent.java

 1. import java.util.*;
 2.
 3. /**
 4. A class to describe timer events.
 5. */
 6. public class TimerEvent extends EventObject

 7. {
 8. /**
 9. Constructs a timer event.
10. @param source the event source
11. */
12. public TimerEvent(Object source)
13. {
14. super(source);
15. now = new Date();
16. }
17.
18. /**
19. Reports when the event was constructed.
20. @return the construction date and time
21. */
22. public Date getDate()
23. {
24. return now;
25. }
26.
27. public String toString()
28. {
29. return now + ":" + super.toString();
30. }
31.
32. private Date now;
33. }

Property Editors
If you add an integer or string property to a bean, then that property is automatically displayed
in the bean's property inspector. But what happens if you add a property whose values cannot
easily be edited in a text field, for example, a date or a Color? Then, you need to provide a
separate component that the user can use to specify the property value. Such components are
called property editors. For example, a property editor for a date object might be a calendar
that lets the user scroll through the months and pick a date. A property editor for a Color
object would let the user select the red, green, and blue components of the color.

Actually, Forte already has a property editor for colors—you saw it in Figure 8-9. Also, of
course, there are property editors for basic types such as String (a text field) and
boolean (a choice list with values true and false). These property editors are registered
with the property editor manager.

The process for supplying a new property editor is slightly involved. First, you create a bean
info class to accompany your bean. The bean info is a collection of miscellaneous information

about your bean. For example, if you have a property whose type is int or String but
whose legal values are restricted in some way, you may not want to use the general-purpose
property editor that is supplied by the builder tool. Instead, you can supply a specific editor for
a particular property by naming it in the bean info.

The name of the bean info class must be the name of the bean, followed by the word
BeanInfo. That class must implement the BeanInfo interface, an interface with eight
methods. It is simpler to extend the SimpleBeanInfo class instead. This convenience
class has do-nothing implementations for the eight methods. For example,

// bean info class for ChartBean
class ChartBeanBeanInfo
 extends SimpleBeanInfo
{
 . . .
}

To request a specific editor for a particular bean, you override the
getPropertyDescriptors method. That method returns an array of
PropertyDescriptor objects. You create one object for each property that should be
displayed on a property editor, even those for which you just want the default editor.

You construct a PropertyDescriptor by supplying the name of the property and the
class of the bean that contains it.

PropertyDescriptor descriptor
 = new PropertyDescriptor("titlePosition", ChartBean.class);

To request a specific editor for the property, you call the setPropertyEditorClass
method of the PropertyDescriptor class.

descriptor.setPropertyEditorClass(TitlePositionEditor.class);

Next, you build an array of descriptors for properties of your bean. For example, the chart bean
that we discuss in this section has four properties:

A String property, title

An int property, titlePosition

A double[] property, values

A boolean property, inverse

Figure 8-17 shows the chart bean. You can see the title on the top. Its position can be set to
left, center, or right. The values property specifies the graph values. If the inverse
property is true, then the background is colored and the bars of the chart are white. Example 8-

8 lists the code for the chart bean; the bean is simply a modification of the chart applet in
Volume 1, Chapter 10.

Figure 8-17. The chart bean

The code in Example 8-9 shows the ChartBeanBeanInfo class that specifies the property
editors for these properties. It achieves the following:

1. In the static block, the DoubleArrayEditor is registered as an editor for any
double[] array.

2. The getPropertyDescriptors method returns a descriptor for each property.
The title and graphColor properties are used with the default editors, that is, the
string and color editors that come with the builder tool.

3. The titlePosition, values, and inverse properties use special editors of type
TitlePositionEditor, DoubleArrayEditor and InverseEditor,
respectively.

Figure 8-18 shows the resulting property inspector. You'll see in the following sections how to
implement these kinds of editors.

Figure 8-18. The property inspector for the chart bean

It is also possible to add property editors with the static registerEditor method of the
PropertyEditorManager class, setting a property editor for all properties of a given
type. Here is an example:

PropertyEditorManager.registerEditor(Date.class,
 CalendarSelector.class);

NOTE

You can use the findEditor method in the PropertyEditorManager class to check
whether a property editor exists for a given type in your builder tool. That method does the
following:

1. It looks first to see which property editors are already registered with it. (These will be the
editors supplied by the builder tool and by calls to the registerEditor method.)

2. Then, it looks for a class whose name consists of the name of the type plus the word
Editor.

3. If neither lookup succeeds, then findEditor returns null.

For example, if a CalendarSelector class is registered for java.util.Date objects,
then it would be used to edit a Date property. Otherwise, a java.util.DateEditor
would be searched.

You should not call the registerEditor method in your beans—the
default editor for a type is a global setting that is properly the responsibility
of the builder environment.

Example 8-8 ChartBean.java

 1. import java.awt.*;
 2. import java.awt.font.*;
 3. import java.awt.geom.*;
 4. import java.util.*;
 5. import java.beans.*;
 6. import java.io.*;
 7. import javax.swing.*;
 8.
 9. /**
 10. A bean to draw a bar chart.
 11. */
 12. public class ChartBean extends JPanel
 13. {
 14. public void paint(Graphics g)
 15. {
 16. Graphics2D g2 = (Graphics2D)g;
 17.
 18. if (values == null || values.length == 0) return;
 19. double minValue = 0;
 20. double maxValue = 0;
 21. for (int i = 0; i < values.length; i++)
 22. {
 23. if (minValue > getValues(i)) minValue = getValue
 24. if (maxValue < getValues(i)) maxValue = getValue
 25. }
 26. if (maxValue == minValue) return;
 27.
 28. Dimension d = getSize();
 29. Rectangle2D bounds = getBounds();
 30. double clientWidth = bounds.getWidth();
 31. double clientHeight = bounds.getHeight();
 32. double barWidth = clientWidth / values.length;
 33.
 34. g2.setColor(inverse ? color : Color.white);
 35. g2.fill(bounds);
 36. g2.setColor(Color.black);
 37.
 38. Font titleFont = new Font("SansSerif", Font.BOLD, 2
 39. FontRenderContext context = g2.getFontRenderContext
 40. Rectangle2D titleBounds
 41. = titleFont.getStringBounds(title, context);
 42.

 43. double titleWidth = titleBounds.getWidth();
 44. double y = -titleBounds.getY();
 45. double x;
 46. if (titlePosition == LEFT)
 47. x = 0;
 48. else if (titlePosition == CENTER)
 49. x = (clientWidth - titleWidth) / 2;
 50. else
 51. x = clientWidth - titleWidth;
 52.
 53. g2.setFont(titleFont);
 54. g2.drawString(title, (float)x, (float)y);
 55.
 56. double top = titleBounds.getHeight();
 57. double scale = (clientHeight - top)
 58. / (maxValue - minValue);
 59. y = clientHeight;
 60.
 61. for (int i = 0; i < values.length; i++)
 62. {
 63. double x1 = i * barWidth + 1;
 64. double y1 = top;
 65. double value = getValues(i);
 66. double height = value * scale;
 67. if (value >= 0)
 68. y1 += (maxValue - value) * scale;
 69. else
 70. {
 71. y1 += (int)(maxValue * scale);
 72. height = -height;
 73. }
 74.
 75. g2.setColor(inverse ? Color.white : color);
 76. Rectangle2D bar = new Rectangle2D.Double(x1, y1,
 77. barWidth - 2, height);
 78. g2.fill(bar);
 79. g2.setColor(Color.black);
 80. g2.draw(bar);
 81. }
 82. }
 83.
 84. /**
 85. Sets the title property.
 86. @param t the new chart title.

 87. */
 88. public void setTitle(String t) { title = t; }
 89.
 90. /**
 91. Gets the title property.
 92. @return the chart title.
 93. */
 94. public String getTitle() { return title; }
 95.
 96. /**
 97. Sets the indexed values property.
 98. @param v the values to display in the chart.
 99. */
100. public void setValues(double[] v) { values = v; }
101.
102. /**
103. Gets the indexed values property.
104. @return the values to display in the chart.
105. */
106. public double[] getValues() { return values; }
107.
108. /**
109. Sets the indexed values property.
110. @param i the index of the value to set
111. @param value the new value for that index
112. */
113. public void setValues(int i, double value)
114. {
115. if (0 <= i && i < values.length) values[i] = value;
116. }
117.
118. /**
119. Gets the indexed values property.
120. @param i the index of the value to get
121. @return the value for that index
122. */
123. public double getValues(int i)
124. {
125. if (0 <= i && i < values.length) return values[i];
126. return 0;
127. }
128.
129. /**
130. Sets the inverse property.

131. @param b true if the display is inverted (white bar
132. on colored background)
133. */
134. public void setInverse(boolean b) { inverse = b; }
135.
136. /**
137. Gets the inverse property.
138. @return true if the display is inverted
139. */
140. public boolean isInverse() { return inverse; }
141.
142. /**
143. Sets the titlePosition property.
144. @param p LEFT, CENTER, or RIGHT
145. */
146. public void setTitlePosition(int p) { titlePosition =
147.
148. /**
149. Gets the titlePosition property.
150. @return LEFT, CENTER, or RIGHT
151. */
152. public int getTitlePosition() { return titlePosition;
153.
154. /**
155. Sets the graphColor property.
156. @param c the color to use for the graph
157. */
158. public void setGraphColor(Color c) { color = c; }
159.
160. /**
161. Gets the graphColor property.
162. @param c the color to use for the graph
163. */
164. public Color getGraphColor() { return color; }
165.
166. public Dimension getPreferredSize()
167. {
168. return new Dimension(XPREFSIZE, YPREFSIZE);
169. }
170.
171. private static final int LEFT = 0;
172. private static final int CENTER = 1;
173. private static final int RIGHT = 2;
174.

175. private static final int XPREFSIZE = 300;
176. private static final int YPREFSIZE = 300;
177. private double[] values = { 1, 2, 3 };
178. private String title = "Title";
179. private int titlePosition = CENTER;
180. private boolean inverse;
181. private Color color = Color.red;
182. }

Example 8-9 ChartBeanBeanInfo.java

 1. import java.beans.*;
 2.
 3. /**
 4. The bean info for the chart bean, specifying the
 5. property editors.
 6. */
 7. public class ChartBeanBeanInfo extends SimpleBeanInfo
 8. {
 9. public PropertyDescriptor[] getPropertyDescriptors()
10. {
11. try
12. {
13. PropertyDescriptor titlePositionDescriptor
14. = new PropertyDescriptor("titlePosition",
15. ChartBean.class);
16. titlePositionDescriptor.setPropertyEditorClass(
17. TitlePositionEditor.class);
18. PropertyDescriptor inverseDescriptor
19. = new PropertyDescriptor("inverse",
20. ChartBean.class);
21. inverseDescriptor.setPropertyEditorClass(
22. InverseEditor.class);
23. PropertyDescriptor valuesDescriptor
24. = new PropertyDescriptor("values",
25. ChartBean.class);
26. valuesDescriptor.setPropertyEditorClass(
27. DoubleArrayEditor.class);
28.
29. return new PropertyDescriptor[]
30. {
31. new PropertyDescriptor("title",
32. ChartBean.class),
33. titlePositionDescriptor,

34. valuesDescriptor,
35. new PropertyDescriptor("graphColor",
36. ChartBean.class),
37. inverseDescriptor
38. };
39. }
40. catch(IntrospectionException e)
41. {
42. e.printStackTrace();
43. return null;
44. }
45. }
46. }

java.beans.PropertyEditorManager

static PropertyEditor findEditor(Class targetType)

returns a property editor for the given type, or null if none is registered.

static void registerEditor(Class targetType, Class
editorClass)

registers an editor class to edit values of the given type.

java.beans.PropertyDescriptor

PropertyDescriptor(String name, Class beanClass)

Parameters: targetType the Class object for the type to be edited, such as
Class.Color

Parameters: targetType the Class object for the type to be edited
 editorClass the Class object for the editor class (null will

unregister the current editor)

constructs a PropertyDescriptor object.

void setPropertyEditorClass(Class editorClass)

sets the class of the property editor to be used with this property.

java.beans.BeanInfo

PropertyDescriptor[] getPropertyDescriptors()

returns a descriptor for each property that should be displayed in the property inspector
for the bean.

Writing a Property Editor

Before we begin showing you how to write a property editor, we want to point out that while
each property editor works with a value of one specific type, it can nonetheless be quite
elaborate. For example, a font property editor (which edits an object of type Font) could show
font samples to allow the user to pick a font in a more congenial way.

Next, any property editor you write must implement the PropertyEditor interface, an
interface with 12 methods. As with the BeanInfo interface, you will not want to do this
directly. Instead, it is far more convenient to extend the convenience
PropertyEditorSupport class that is supplied with the standard library. This support
class comes with methods to add and remove property change listeners, and with default
versions of all other methods of the PropertyEditor interface. For example, our editor for
editing the title position of a chart in our chart bean starts out like this:

// property editor class for title position
class TitlePositionEditor
 extends PropertyEditorSupport
{
 . . .
}

Note that if a property editor class has a constructor, it must also supply a default constructor,
that is, one without arguments.

Parameters: name the name of the property
 beanClass the class of the bean to which the property belongs

Finally, before we get into the mechanics of actually writing a property editor, we want to point
out that the editor is under the control of the builder, not the bean. The builder adheres to the
following procedure to display the current value of the property:

1. It instantiates property editors for each property of the bean.

2. It asks the bean to tell it the current value of the property.

3. It then asks the property editor to display the value.

The property editor can use either text-based or graphically-based methods to actually display
the value. We discuss these methods next.

Simple Property Editors

Simple property editors work with text strings. You override the setAsText and
getAsText methods. For example, our chart bean has a property that lets you set where the
title should be displayed: Left, Center, or Right. These choices are implemented as integer
constants.

private static final int LEFT = 0;
private static final int CENTER = 1;
private static final int RIGHT = 2;

But of course, we don't want them to appear as numbers 0, 1, 2 in the text field—unless we
are competing for inclusion in the User Interface Hall of Horrors. Instead, we define a property
editor whose getAsText method returns the value as a string. The method calls the
getValue method of the PropertyEditor to find the value of the property. Since this is
a generic method, the value is returned as an Object. If the property type is a basic type, we
need to return a wrapper object. In our case, the property type is int, and the call to
getValue returns an Integer.

class TitlePositionEditor
 extends PropertyEditorSupport
{
 public String getAsText()
 {
 int i = ((Integer)getValue()).intValue();
 if (0 <= i && i < options.length) return options[i];
 return "";
 }
 . . .
 private String[] options = { "Left", "Center", "Right" };
}

Now, the text field displays one of these fields. When the user edits the text field, this triggers a
call to the setAsText method to update the property value by invoking the setValue

method. It, too, is a generic method whose parameter is of type Object. To set the value of a
numeric type, we need to pass a wrapper object.

public void setAsText(String s)
{
 for (int i = 0; i < options.length; i++)
 {
 if (options[i].equals(s))
 {
 setValue(new Integer(i));
 return;
 }
 }
}

Actually, this property editor is not a good choice for the titlePosition property, unless,
of course, we are also competing for entry into the User Interface Hall of Shame. The user may
not know what the legal choices are. It would be better to display all valid settings (see Figure
8-19). The PropertyEditorSupport class gives a simple method to display the
selections in a property editor. We simply write a getTags method that returns an array of
strings.

Figure 8-19. The TitlePositionEditor at work

public String[] getTags() { return options; }

The default getTags method returns null. By returning a non-null value, we indicate a
choice field instead of a text field.

We still need to supply the getAsText and setAsText methods. The getTags method
simply specifies the values to be displayed in a combo box. The getAsText/setAsText
methods translate between the strings and the data type of the property (which may be a
string, an integer, or a completely different type).

Example 8-10 lists the complete code for this property editor.

Example 8-10 TitlePositionEditor.java

 1. import java.beans.*;
 2.
 3. /**
 4. A custom editor for the titlePosition property of the
 5. ChartBean. The editor lets the user choose between
 6. Left, Center, and Right
 7. */
 8. public class TitlePositionEditor
 9. extends PropertyEditorSupport
10. {
11. public String getAsText()
12. {
13. int value = ((Integer)getValue()).intValue();
14. return options[value];
15. }
16.
17. public void setAsText(String s)
18. {
19. for (int i = 0; i < options.length; i++)
20. {
21. if (options[i].equals(s))
22. {
23. setValue(new Integer(i));
24. return;
25. }
26. }
27. }
28.
29. public String[] getTags() { return options; }
30.
31. private String[] options = { "Left", "Center", "Right"
32. }

java.beans.PropertyEditorSupport

Object getValue()

returns the current value of the property. Basic types are wrapped into object wrappers.

void setValue(Object newValue)

sets the property to a new value. Basic types must be wrapped into object wrappers.

String getAsText()

Override this method to return a string representation of the current value of the property.
The default returns null to indicate that the property cannot be represented as a string.

void setAsText(String text)

Override this method to set the property to a new value that is obtained by parsing the
text. May throw an IllegalArgumentException if the text does not represent a
legal value or if this property cannot be represented as a string.

String[] getTags()

Override this method to return an array of all possible string representations of the
property values so they can be displayed in a Choice box. The default returns null to
indicate that there is not a finite set of string values.

GUI-Based Property Editors

More sophisticated property types can't be edited as text. Instead, they are represented in two
ways. The property inspector contains a small area (which otherwise would hold a text box or
combo box) onto which the property editor will draw a graphical representation of the current
value. When the user clicks on that area, a custom editor dialog box pops up (see Figure 8-
20). The dialog box contains a component to edit the property values, supplied by the property
editor, and various buttons, supplied by the builder environment.

Figure 8-20. A custom editor dialog

Parameters: newValue the new value of the object; should be a newly created object
that the property can own

To build a GUI-based property editor:

1. Tell the builder tool that you will paint the value and not use a string.

2. "Paint" the value the user enters onto the GUI.

3. Tell the builder tool that you will be using a GUI-based property editor.

4. Build the GUI.

5. Write the code to validate what the user tries to enter as the value.

For the first step, you override the getAsText method in the PropertyEditor interface
to return null and the isPaintable method to return true.

public String getAsText()
{
 return null;
}

public boolean isPaintable()

{
 return true;
}

Then, you implement the paintValue method. It receives a Graphics context and the
coordinates of the rectangle inside which you can paint. Note that this rectangle is typically
small, so you can't have a very elaborate representation. To graphically represent the
inverse property, we draw the string "Inverse" in white letters with a black background,
or the string "Normal" in black letters with a white background (see Figure 8-18).

public void paintValue(Graphics g, Rectangle box)
{
 Graphics2D g2 = (Graphics2D)g;
 boolean isInverse = ((Boolean)getValue()).booleanValue();
 String s = isInverse ? "Inverse" : "Normal";
 g2.setColor(isInverse ? Color.black : Color.white);
 g2.fill(box);
 g2.setColor(isInverse ? Color.white : Color.black);
 // compute string position to center string
 . . .
 g2.drawString(s, (float)x, (float)y);
}

Of course, this graphical representation is not editable. The user must click on it to pop up a
custom editor.

You indicate that you will have a custom editor by overriding the
supportsCustomEditor in the PropertyEditor interface to return true.

public boolean supportsCustomEditor()
{
 return true;
}

Now, you write the code that builds up the component that will hold the custom editor. You will
need to build a separate custom editor class for every property. For example, associated to our
InverseEditor class is an InverseEditorPanel class (see Example 8-9) that
describes a GUI with two radio buttons to toggle between normal and inverse mode. That code
is straightforward. However, the GUI actions must update the property values. We did this as
follows:

1. Have the custom editor constructor receive a reference to the property editor object and
store it in a variable editor.

2. To read the property value, we have the custom editor call editor.getValue().

3. To set the object value, we have the custom editor call editor.setValue
(newValue) followed by editor.firePropertyChange().

Next, the getCustomEditor method of the PropertyEditor interface constructs and
returns an object of the custom editor class.

public Component getCustomEditor()
{
 return new InverseEditorPanel(this);
}

Example 8-11 shows the complete code for the InverseEditor that displays the current
setting in the property inspector. Example 8-12 lists the code implementing the pop-up editor
panel.

The other custom editor that we built for the chart bean class lets you edit a double[] array.
Recall that neither Forte nor the BeanBox can edit array properties. We developed this custom
editor to fill this obvious gap. Figure 8-21 shows the custom editor in action. All array values
are shown in the list box, prefixed by their array index. Clicking on an array value places it into
the text field above it, and you can edit it. You can also resize the array. The code for the
DoubleArrayPanel class that implements the GUI is listed in Example 8-14.

Figure 8-21. The custom editor dialog for editing an array

The code for the property editor class (shown in Example 8-13) is almost identical to that of the
InverseEditor, except that we simply paint a string consisting of the first few array
values, followed by … in the paintValue method. And, of course, we return a different
custom editor in the getCustomEditor method. These examples complete the code for
the chart bean.

NOTE

Example 8-11 InverseEditor.java

 1. import java.awt.*;
 2. import java.awt.font.*;
 3. import java.awt.geom.*;

Unfortunately, we have to paint the array values. It would be more
convenient to return a string with the getAsText method. However,
some builder environments use a text field whenever the getAsText
method returns a non-null string. Those environments won't pop up a
custom editor if you click on the text, even if the getCustomEditor
method returns an editor component.

 4. import java.beans.*;
 5.
 6. /**
 7. The property editor for the inverse property of the Cha
 8. The inverse property toggles between colored graph bars
 9. and colored background.
10. */
11. public class InverseEditor extends PropertyEditorSupport
12. {
13. public Component getCustomEditor()
14. {
15. return new InverseEditorPanel(this);
16. }
17.
18. public boolean supportsCustomEditor()
19. {
20. return true;
21. }
22.
23. public boolean isPaintable()
24. {
25. return true;
26. }
27.
28. public void paintValue(Graphics g, Rectangle box)
29. {
30. Graphics2D g2 = (Graphics2D)g;
31. boolean isInverse = ((Boolean)getValue()).booleanVal
32. String s = isInverse ? "Inverse" : "Normal";
33. g2.setColor(isInverse ? Color.black : Color.white);
34. g2.fill(box);
35. g2.setColor(isInverse ? Color.white : Color.black);
36. FontRenderContext context = g2.getFontRenderContext(
37. Rectangle2D stringBounds = g2.getFont().getStringBou
38. s, context);
39. double w = stringBounds.getWidth();
40. double x = box.x;
41. if (w < box.width) x += (box.width - w) / 2;
42. double ascent = -stringBounds.getY();
43. double y = box.y
44. + (box.height - stringBounds.getHeight()) / 2 + a
45. g2.drawString(s, (float)x, (float)y);
46. }
47.

48. public String getAsText()
49. {
50. return null;
51. }
52. }

Example 8-12 InverseEditorPanel.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.text.*;
 4. import java.lang.reflect.*;
 5. import java.beans.*;
 6. import javax.swing.*;
 7.
 8. /**
 9. The panel for setting the inverse property. It contains
10. radio buttons to toggle between normal and inverse colo
11. */
12. public class InverseEditorPanel extends JPanel
13. {
14. public InverseEditorPanel(PropertyEditorSupport ed)
15. {
16. editor = ed;
17. ButtonGroup g = new ButtonGroup();
18. boolean isInverse
19. = ((Boolean)editor.getValue()).booleanValue();
20. normal = new JRadioButton("Normal", !isInverse);
21. inverse = new JRadioButton("Inverse", isInverse);
22.
23. g.add(normal);
24. g.add(inverse);
25. add(normal);
26. add(inverse);
27.
28. ActionListener buttonListener =
29. new ActionListener()
30. {
31. public void actionPerformed(ActionEvent event)
32. {
33. editor.setValue(
34. new Boolean(inverse.isSelected()));
35. editor.firePropertyChange();
36. }

37. };
38.
39. normal.addActionListener(buttonListener);
40. inverse.addActionListener(buttonListener);
41. }
42.
43. private JRadioButton normal;
44. private JRadioButton inverse;
45. private PropertyEditorSupport editor;
46. }

Example 8-13 DoubleArrayEditor.java

 1. import java.awt.*;
 2. import java.awt.font.*;
 3. import java.awt.geom.*;
 4. import java.beans.*;
 5.
 6. /**
 7. A custom editor for an array of floating point numbers.
 8. */
 9. public class DoubleArrayEditor extends PropertyEditorSuppo
10. {
11. public Component getCustomEditor()
12. {
13. return new DoubleArrayEditorPanel(this);
14. }
15.
16. public boolean supportsCustomEditor()
17. {
18. return true;
19. }
20.
21. public boolean isPaintable()
22. {
23. return true;
24. }
25.
26. public void paintValue(Graphics g, Rectangle box)
27. {
28. Graphics2D g2 = (Graphics2D)g;
29. double[] values = (double[]) getValue();
30. StringBuffer s = new StringBuffer();
31. for (int i = 0; i < 3; i++)

32. {
33. if (values.length > i) s.append(values[i]);
34. if (values.length > i + 1) s.append(", ");
35. }
36. if (values.length > 3) s.append("...");
37.
38. g2.setColor(Color.white);
39. g2.fill(box);
40. g2.setColor(Color.black);
41. FontRenderContext context = g2.getFontRenderContext(
42. Rectangle2D stringBounds = g2.getFont().getStringBou
43. s.toString(), context);
44. double w = stringBounds.getWidth();
45. double x = box.x;
46. if (w < box.width) x += (box.width - w) / 2;
47. double ascent = -stringBounds.getY();
48. double y = box.y
49. + (box.height - stringBounds.getHeight()) / 2 + a
50. g2.drawString(s.toString(), (float)x, (float)y);
51. }
52.
53. public String getAsText()
54. {
55. return null;
56. }
57. }

Example 8-14 DoubleArrayEditorPanel.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.text.*;
 4. import java.lang.reflect.*;
 5. import java.beans.*;
 6. import javax.swing.*;
 7. import javax.swing.event.*;
 8.
 9. /**
 10. The panel inside the DoubleArrayEditor. It contains
 11. a list of the array values, together with buttons to
 12. resize the array and change the currently selected lis
 13. */
 14. public class DoubleArrayEditorPanel extends JPanel
 15. {

 16. public DoubleArrayEditorPanel(PropertyEditorSupport ed
 17. {
 18. editor = ed;
 19. setArray((double[])ed.getValue());
 20.
 21. setLayout(new GridBagLayout());
 22. GridBagConstraints gbc = new GridBagConstraints();
 23.
 24. gbc.weightx = 100;
 25. gbc.weighty = 0;
 26. gbc.fill = GridBagConstraints.HORIZONTAL;
 27.
 28. add(sizeField, gbc, 0, 0, 1, 1);
 29. add(valueField, gbc, 0, 1, 1, 1);
 30.
 31. gbc.fill = GridBagConstraints.NONE;
 32.
 33. add(sizeButton, gbc, 1, 0, 1, 1);
 34. add(valueButton, gbc, 1, 1, 1, 1);
 35.
 36. sizeButton.addActionListener(new
 37. ActionListener()
 38. {
 39. public void actionPerformed(ActionEvent event
 40. {
 41. changeSize();
 42. }
 43. });
 44.
 45. valueButton.addActionListener(new
 46. ActionListener()
 47. {
 48. public void actionPerformed(ActionEvent event
 49. {
 50. changeValue();
 51. }
 52. });
 53.
 54. gbc.weighty = 100;
 55. gbc.fill = GridBagConstraints.BOTH;
 56.
 57. add(new JScrollPane(elementList), gbc, 0, 2, 2, 1);
 58.
 59. elementList.setSelectionMode(

 60. ListSelectionModel.SINGLE_SELECTION);
 61.
 62. elementList.addListSelectionListener(new
 63. ListSelectionListener()
 64. {
 65. public void valueChanged(ListSelectionEvent e
 66. {
 67. int i = elementList.getSelectedIndex();
 68. if (i < 0) return;
 69. valueField.setText("" + array[i]);
 70. }
 71. });
 72.
 73. elementList.setModel(model);
 74. elementList.setSelectedIndex(0);
 75. }
 76.
 77. /**
 78. A convenience method to add a component to given gr
 79. layout locations.
 80. @param c the component to add
 81. @param gbc the grid bag constraints to use
 82. @param x the x grid position
 83. @param y the y grid position
 84. @param w the grid width
 85. @param h the grid height
 86. */
 87. public void add(Component c, GridBagConstraints gbc,
 88. int x, int y, int w, int h)
 89. {
 90. gbc.gridx = x;
 91. gbc.gridy = y;
 92. gbc.gridwidth = w;
 93. gbc.gridheight = h;
 94. add(c, gbc);
 95. }
 96.
 97. /**
 98. This method is called when the user wants to change
 99. the size of the array.
100. */
101. public void changeSize()
102. {
103. fmt.setParseIntegerOnly(true);

104. int s = 0;
105. try
106. {
107. s = fmt.parse(sizeField.getText()).intValue();
108. if (s < 0)
109. throw new ParseException("Out of bounds", 0);
110. }
111. catch(ParseException e)
112. {
113. JOptionPane.showMessageDialog(this, "" + e,
114. "Input Error", JOptionPane.WARNING_MESSAGE);
115. sizeField.requestFocus();
116. return;
117. }
118. if (s == array.length) return;
119. setArray((double[])arrayGrow(array, s));
120. editor.setValue(array);
121. editor.firePropertyChange();
122. }
123.
124. /**
125. This method is called when the user wants to change
126. the currently selected array value.
127. */
128. public void changeValue()
129. {
130. double v = 0;
131. fmt.setParseIntegerOnly(false);
132. try
133. {
134. v = fmt.parse(valueField.getText()).doubleValue(
135. }
136. catch(ParseException e)
137. {
138. JOptionPane.showMessageDialog(this, "" + e,
139. "Input Error", JOptionPane.WARNING_MESSAGE);
140. valueField.requestFocus();
141. return;
142. }
143. int currentIndex = elementList.getSelectedIndex();
144. setArray(currentIndex, v);
145. editor.firePropertyChange();
146. }
147.

148. /**
149. Sets the indexed array property.
150. @param v the array to edit
151. */
152. public void setArray(double[] v)
153. {
154. if (v == null) array = new double[0];
155. else array = v;
156. model.setArray(array);
157. sizeField.setText("" + array.length);
158. if (array.length > 0)
159. {
160. valueField.setText("" + array[0]);
161. elementList.setSelectedIndex(0);
162. }
163. else
164. valueField.setText("");
165. }
166.
167. /**
168. Gets the indexed array property.
169. @return the array being edited
170. */
171. public double[] getArray()
172. {
173. return (double[])array.clone();
174. }
175.
176. /**
177. Sets the indexed array property.
178. @param i the index whose value to set
179. @param value the new value for the given index
180. */
181. public void setArray(int i, double value)
182. {
183. if (0 <= i && i < array.length)
184. {
185. model.setValue(i, value);
186. elementList.setSelectedIndex(i);
187. valueField.setText("" + value);
188. }
189. }
190.
191. /**

192. Gets the indexed array property.
193. @param i the index whose value to get
194. @return the value at the given index
195. */
196. public double getArray(int i)
197. {
198. if (0 <= i && i < array.length) return array[i];
199. return 0;
200. }
201.
202. /**
203. Resizes an array
204. @param a the array to grow
205. @param newLength the new length
206. @return an array with the given length and the same
207. elements as a in the common positions
208. */
209. private static Object arrayGrow(Object a, int newLengt
210. {
211. Class cl = a.getClass();
212. if (!cl.isArray()) return null;
213. Class componentType = a.getClass().getComponentType
214. int length = Array.getLength(a);
215.
216. Object newArray = Array.newInstance(componentType,
217. newLength);
218. System.arraycopy(a, 0, newArray, 0,
219. Math.min(length, newLength));
220. return newArray;
221. }
222.
223. private PropertyEditorSupport editor;
224. private double[] array;
225. private NumberFormat fmt = NumberFormat.getNumberInsta
226. private JTextField sizeField = new JTextField(4);
227. private JTextField valueField = new JTextField(12);
228. private JButton sizeButton = new JButton("Resize");
229. private JButton valueButton = new JButton("Change");
230. private JList elementList = new JList();
231. private DoubleArrayListModel model = new DoubleArrayLi
232. }
233.
234. /**
235. The list model for the element list in the editor.

236. */
237. class DoubleArrayListModel extends AbstractListModel
238. {
239. public int getSize()
240. {
241. return array.length;
242. }
243.
244. public Object getElementAt(int i)
245. {
246. return "[" + i + "] " + array[i];
247. }
248.
249. /**
250. Sets a new array to be displayed in the list.
251. @param a the new array
252. */
253. public void setArray(double[] a)
254. {
255. int oldLength = array == null ? 0 : array.length;
256. array = a;
257. int newLength = array == null ? 0 : array.length;
258. if (oldLength > 0) fireIntervalRemoved(this, 0, old
259. if (newLength > 0) fireIntervalAdded(this, 0, newLe
260. }
261.
262. /**
263. Changes a value in the array to be displayed in the
264. @param i the index whose value to change
265. @param value the new value for the given index
266. */
267. public void setValue(int i, double value)
268. {
269. array[i] = value;
270. fireContentsChanged(this, i, i);
271. }
272.
273. private double[] array;
274. }

Summing Up

For every property editor you write, you have to choose one of three ways to display and edit
the property value:

As a text string (define getAsText and setAsText)

As a choice field (define getAsText, setAsText, and getTags)

Graphically, by painting it (define isPaintable, paintValue,
supportsCustomEditor, and getCustomEditor)

You saw examples of all three cases in the chart bean.

Finally, some property editors might want to support a method called
getJavaInitializationString. With this method, you can give the builder tool the
Java programming language code that sets a property to allow automatic code generation. We
did not show you an example for this method.

java.beans.PropertyEditorSupport

boolean isPaintable()

Override this method to return true if the class uses the paintValue method to
display the property.

void paintValue(Graphics g, Rectangle box)

Override this method to represent the value by drawing into a graphics context in the
specified place on the component used for the property inspector.

boolean supportsCustomEditor()

Override this method to return true if the property editor has a custom editor.

Component getCustomEditor()

Override this method to return the component that contains a customized GUI for editing
the property value.

String getJavaInitializationString()

Parameters: g the graphics object to draw onto
 box a rectangle object that represents where on the property inspector

component to draw the value

Override this method to return a Java programming language code string that can be
used to generate code that initializes the property value. Examples are "0", "new
Color(64, 64, 64)".

Going Beyond Naming Patterns
You have already seen that if you use the standard naming conventions for the members of
your bean, then a builder tool can use reflection to determine the properties, events, and
methods of your bean. This process makes it simple to get started with bean programming but
is rather limiting in the end. As your beans become in any way complex, there will be features
of your bean that naming patterns and reflection will simply not reveal. (Not to mention that
using English naming patterns as the basis for all GUI builders in all languages for all times
seems to be rather against the spirit of providing support for your international customers.)
Moreover, as we already mentioned, there may well be get/set pairs that you do not want
to expose as bean properties.

Luckily, the JavaBeans specification allows a far more flexible and powerful mechanism for
storing information about your bean for use by a builder. As with many features of beans, the
mechanism is simple in theory but can be tedious to carry out in practice. The idea is that you
again use an object that implements the BeanInfo interface. (Recall that we used one
feature of the BeanInfo class when we supplied property editors for the chart bean class.)

When you implement this interface to describe your bean, a builder tool will look to the
methods from the BeanInfo interface to tell it (potentially quite detailed) information about
the properties, events, and methods your bean supports. The BeanInfo is supposed to free
you from the tyranny of naming patterns. Somewhat ironically, the JavaBeans specification
does require that you use a naming pattern to associate a BeanInfo object to the bean. You
specify the name of the bean info class by adding BeanInfo to the name of the bean. For
example, the bean info class associated to the class ChartBean must be named
ChartBeanBeanInfo. The bean info class must be part of the same package as the bean
itself.

NOTE

As you already saw, you won't normally write from scratch a class that implements the
BeanInfo interface. Instead, you will probably turn again to the SimpleBeanInfo
convenience class that has empty implementations (returning null) for all the methods in the
BeanInfo interface. This practice is certainly convenient—just override the methods you
really want to change. Moreover, this convenience class includes a useful method called
loadImage that you can use to load an image (such as an icon—see below) for your bean.
We use the SimpleBeanInfo class for all our examples of BeanInfo classes. For

Any descriptions you supply in the bean info associated to your bean
override any information that the builder might obtain by reflecting on the
member names. Moreover, if you supply information about a feature set
(such as the properties that your bean supports), you must then provide
information about all the properties in the associated bean info.

example, our ChartBeanBeanInfo class starts out:

public class ChartBeanBeanInfo extends SimpleBeanInfo

NOTE

For a taste of what you can do with the bean info mechanism, let's start with an easy-to-use,
but most useful, method in the BeanInfo interface: the getIcon method that lets you give
your bean a custom icon. This is useful since builder tools will usually want to have an icon for
the bean for some sort of palette. Builder environments show the icons next to the bean name
in the bean toolbox. Actually, you can specify separate icon bitmaps. The BeanInfo
interface has four constants that cover the standard sizes.

ICON_COLOR_16x16
ICON_COLOR_32x32
ICON_MONO_16x16
ICON_MONO_32x32

Here is an example of how you might use the loadImage convenience method in the
SimpleBeanInfo class to add an icon to a class:

public Image getIcon(int iconType)
{
 String name = "";
 if (iconType == BeanInfo.ICON_COLOR_16x16)
 name = "COLOR_16x16";
 else if (iconType == BeanInfo.ICON_COLOR_32x32)
 name = "COLOR_32x32";
 else if (iconType == BeanInfo.ICON_MONO_16x16)
 name = "MONO_16x16";
 else if (iconType == BeanInfo.ICON_MONO_32x32)
 name = "MONO_32x32";
 else return null;
 return loadImage("ChartBean_" + name + ".gif");
}

where we have cleverly named the image files to be

ChartBean_COLOR_16x16.gif
ChartBean_COLOR_32x32.gif

That the methods in the SimpleBeanInfo class return null is actually
quite important. This is exactly how the builder tool knows how to use
naming patterns to find out the members of that feature set. A non-null
return value turns off the reflective search.

and so on.

FeatureDescriptor Objects

The key to using any of the more advanced features of the BeanInfo class is the
FeatureDescriptor class and its various subclasses. As its name suggests, a
FeatureDescriptor object provides information about a feature. Examples of features
are properties, events, methods, and so on. More precisely, the FeatureDescriptor
class is the superclass for all descriptors, and it factors out the common operations that you
need to deal with when trying to describe any feature. For example, the name of the feature is
obtained through the getName method. Since this method is in the superclass, it works for all
feature descriptors, no matter what they describe. Here are the subclasses of the
FeatureDescriptor class:

BeanDescriptor

EventSetDescriptor

MethodDescriptor

ParameterDescriptor

PropertyDescriptor (with a further subclass—
IndexedPropertyDescriptor)

These classes all work basically the same. You create a descriptor object for each member
you are trying to describe, and you collect all descriptors of a feature set in an array and return
it as the return value of one of the BeanInfo methods.

For example, to turn off reflection for event sets, you'll return an array of
EventSetDescriptor objects in your bean info class.

class MyBeanBeanInfo extends SimpleBeanInfo
{ public EventSetDescriptor[] getEventSetDescriptors()

 { . . .

 }

 . . .
}

Next, you'll construct all the various EventSetDescriptor objects that will go into this
array. Generally, all the constructors for the various kinds of FeatureDescriptor objects
work in the same way. In particular, for events, the most common constructor takes:

The class of the bean that has the event;

The base name of the event;

The class of the EventListener interface that corresponds to the event;

The methods in the specified EventListener interface that are triggered by the
event.

Other constructors let you specify the methods of the bean that should be used to add and
remove EventListener objects.

A good example of all this can be found in the BeanInfo class associated with the
ExplicitButtonBean that ships with the BDK. Let's analyze the code that creates the
needed event descriptors for this bean. The ExplicitButtonBean fires two events: when
the button is pushed and when the state of the button has changed. Here's how you build
these two EventSetDescriptor objects associated to these two events:

EventSetDescriptor push = new EventSetDescriptor(beanClass,
 "actionPerformed",
 java.awt.event.ActionListener.class,
 "actionPerformed");

EventSetDescriptor changed = new EventSetDescriptor(beanClass,
 "propertyChange",
 java.beans.PropertyChangeListener.class,
 "propertyChange");

The next step is to set the various display names for the events for the
EventSetDescriptor. In the code for the ExplicitButton in the BeanInfo class,
this is done by

push.setDisplayName("button push");
changed.setDisplayName("bound property change");

Actually, it is a little messier to code the creation of the needed EventSetDescriptor
objects than the above fragments indicate because all constructors for feature descriptor
objects can throw an IntrospectionException. So, you actually have to build the
array of descriptors in a try/catch block, as the following code indicates.

public EventSetDescriptor[] getEventSetDescriptors()
{
 try
 {
 EventSetDescriptor push = new
 EventSetDescriptor(beanClass,

 "actionPerformed",
 java.awt.event.ActionListener.class,
 "actionPerformed");

 EventSetDescriptor changed = new
 EventSetDescriptor(beanClass,
 "propertyChange",
 java.beans.PropertyChangeListener.class,
 "propertyChange");

 push.setDisplayName("button push");
 changed.setDisplayName("bound property change");
 return new EventSetDescriptor[] { push, changed };
 }
 catch (IntrospectionException e)
 {
 throw new RuntimeException(e.toString());
 }
}

This particular event set descriptor is needed because the event descriptors differ from the
standard naming pattern. Specifically, there are two differences:

The listener classes are not the name of the bean + Listener.

The display names are not the same as the event names.

To summarize: When any feature of your bean differs from the standard naming pattern, you
must do the following:

Create feature descriptors for all features in that set (events, properties, methods).

Return an array of the descriptors in the appropriate BeanInfo method.

java.beans.BeanInfo

EventSetDescriptor[] getEventSetDescriptors()

MethodDescriptor[] getMethodDescriptors()

PropertyDescriptor[] getPropertyDescriptors()

return an array of the specified descriptor objects. A return of null signals the builder to
use the naming conventions and reflection to find the member. The
getPropertyDescriptors method returns a mixture of plain and indexed property
descriptors. Use instanceof to check if a specific PropertyDescriptor is an
IndexedPropertyDescriptor.

Image getIcon(int iconType)

returns an image object that can be used to represent the bean in toolboxes, tool bars,
and the like. There are four constants, as described earlier, for the standard types of
icons.

int getDefaultEventIndex()

int getDefaultPropertyIndex()

A bean can have a default event or property. Both of these methods return the array
index that specifies which element of the descriptor array to use as that default member,
or -1 if no default exists. A bean builder environment can visually enhance the default
feature, for example, by placing it first in a list of features or by displaying its name in
boldface.

BeanInfo[] getAdditionalBeanInfo()

returns an array of BeanInfo objects or null. Use this method when you want some
information about your bean to come from BeanInfo classes for other beans. For
example, you might use this method if your bean aggregated lots of other beans. The
current BeanInfo class rules in case of conflict.

java.beans.SimpleBeanInfo

Image loadImage(String resourceName)

returns an image object file associated to the resource. Currently only GIFs are
supported.

Parameters: iconType the type of icon to use (16 x 16 color, 32 x 32 color, etc.)

Parameters: resourceName a path name (taken relative to the directory containing
the current class)

java.beans.FeatureDescriptor

String getName()

returns the name used in the bean's code for the member.

void setName(String name)

sets the programmatic name for the feature.

String getDisplayName()

returns a localized display name for the feature. The default value is the value returned
by getName. However, currently there is no explicit support for supplying feature names
in multiple locales.

void setDisplayName(String displayName)

sets the localized display name for the feature.

String getShortDescription()

returns a localized string that a builder tool can use to provide a short description for this
feature. The default value is the return value of getDisplayName.

void setShortDescription(String text)

sets the descriptive string (short—usually less than 40 characters) that describes the
feature.

void setValue(String attributeName, Object value)

Parameters: name the name of the feature

Parameters: displayName the name to use

Parameters: text the localized short description to associate with this feature

associates a named attribute to this feature.

Object getValue(String attributeName)

gets the value of the feature with the given name.

Enumeration attributeNames()

returns an enumeration object that contains names of any attributes registered with
setValue.

void setExpert(boolean b)

lets you supply an expert flag that a builder can use to determine whether to hide the
feature from a naive user. (Not every builder is likely to support this feature.)

boolean isExpert()

returns true if this feature is marked for use by experts.

void setHidden(boolean b)

marks a feature for use only by the builder tool.

boolean isHidden()

returns true if the user of the builder shouldn't see this feature but the builder tool
needs to be aware of it.

java.beans.EventSetDescriptor

Parameters: attributeName the name of the attribute whose value you are setting

Parameters: attributeName the name for the attribute to be retrieved

Parameters: b true if you intend that this feature be used only by experts

Parameters: b true if you want to hide this feature

EventSetDescriptor(Class sourceClass, String eventSetName,
Class listener, String listenerMethod)

constructs an EventSetDescriptor. This constructor assumes that you follow the
standard pattern for the names of the event class and the names of the methods to add
and remove event listeners. Throws an IntrospectionException if an error
occurred during introspection.

EventSetDescriptor(Class sourceClass, String eventSetName,
Class listener, String[] listenerMethods, String
addListenerMethod, String removeListenerMethod)

constructs an EventSetDescriptor with multiple listener methods and custom
methods for adding and removing listeners . Throws an
IntrospectionException if an error occurred during introspection.

Method getAddListenerMethod()

returns the method used to register the listener.

Parameters: sourceClass the class firing the event
 eventSetName the name of the event
 listener the listener interface to which these events get

delivered
 listenerMethod the method triggered when the event gets delivered

to a listener

Parameters: sourceClass the class firing the event
 eventSetName the name of the event
 listener the listener interface to which these events

get delivered
 listenerMethods the methods of the listener interface

triggered when the event gets delivered to
a listener

 addListenerMethod the method to add a listener to the bean
 removeListenerMethod the method to remove a listener from the

bean

Method getRemoveListenerMethod()

returns the method used to remove a registered listener for the event.

Method[] getListenerMethods()

MethodDescriptor[] getListenerMethodDescriptors()

return an array of Method or MethodDescriptor objects for the methods triggered
in the listener interface.

Class getListenerType()

returns a Class object for the target listener interface associated with the event.

void setUnicast(boolean b)

is set to true if this event can be propagated to only one listener.

boolean isUnicast()

is set to true if the event set is unicast (default is false).

java.beans.PropertyDescriptor

PropertyDescriptor(String propertyName, Class beanClass)

PropertyDescriptor(String propertyName, Class beanClass,
String getMethod, String setMethod)

construct a PropertyDescriptor object. The methods throw an
IntrospectionException if an error occurred during introspection. The first
constructor assumes that you follow the standard convention for the names of the get
and set methods.

Parameters: propertyName the name of the property
 beanClass the Class object for the bean being described
 getMethod the name of the get method
 setMethod the name of the set method

Class getPropertyType()

returns a Class object for the property type.

Method getReadMethod()

returns the get method.

Method getWriteMethod()

returns the set method.

void setBound(boolean b)

is set to true if this property fires a PropertyChangeEvent when its value is
changed.

boolean isBound()

returns true if this is a bound property.

void setConstrained(boolean b)

is set to true if this property fires a VetoableChangeEvent before its value is
changed.

boolean isConstrained()

returns true if this is a constrained property.

java.beans.IndexedPropertyDescriptor

IndexedPropertyDescriptor(String propertyName, Class
beanClass)

IndexedPropertyDescriptor(String propertyName, Class
beanClass, String getMethod, String setMethod, String
indexedGetMethod, String indexedSetMethod)

construct an IndexedPropertyDescriptor for the index property. The methods
throw an IntrospectionException if an error occurred during introspection. The
first constructor assumes that you follow the standard convention for the names of the

get and set methods.

Class getIndexedPropertyType()

returns the Java platform class that describes the type of the indexed values of the
property, that is, the return type of the indexed get method.

Method getIndexedReadMethod()

returns the indexed get method.

Method getIndexedWriteMethod()

returns the indexed set method.

java.beans.MethodDescriptor

MethodDescriptor(Method method)

MethodDescriptor(Method method, ParameterDescriptor[]
parameterDescriptors)

construct a method descriptor for the given method with the associated parameters;
throw an IntrospectionException if an error occurred during introspection.

Method getMethod()

Parameters: propertyName the name of the property
 beanClass the Class object for the bean being described
 getMethod the name of the get method
 setMethod the name of the set method
 indexedGetMethod the name of the indexed get method
 indexedSetMethod the name of the indexed set method

Parameters: method method object
 parameterDescriptors an array of parameter descriptors that

describe the parameters for the method

returns the method object for that method.

ParameterDescriptor[] getParameterDescriptors()

returns an array of parameter descriptor objects for the methods parameters.

java.beans.ParameterDescriptor

ParameterDescriptor()

creates a new parameter descriptor object. Parameter descriptors carry no information
beyond that stored in the FeatureDescriptor superclass.

Customizers
A property editor, no matter how sophisticated, is responsible for allowing the user to set one
property at a time. Especially if certain properties of a bean relate to each other, it may be
more user friendly to give users a way to edit multiple properties at the same time. To enable
this feature, you supply a customizer instead of (or in addition to) multiple property editors.

In the example program for this section, we develop a customizer for the chart bean. The
customizer lets you set several properties of the chart bean at once, and it lets you specify a
file from which to read the data points for the chart. Figure 8-22 shows you one pane of the
customizer for the ChartBean.

Figure 8-22. The customizer for the ChartBean

To add a customizer to your bean, you must supply a BeanInfo class and override the
getBeanDescriptor method, as shown in the following example.

public BeanDescriptor getBeanDescriptor()
{

 return new BeanDescriptor(ChartBean.class,
 ChartBeanCustomizer.class);
}

The general procedure for your customizers follows the same model.

1. Override the getBeanDescriptor method by returning a new BeanDescriptor
object for your bean.

2. Specify the customizer class as the second parameter of the constructor for the
BeanDescriptor object.

Note that you need not follow any naming pattern for the customizer class. The builder can
locate it by

1. Finding the associated BeanInfo class;

2. Invoking its getBeanDescriptor method;

3. Calling the getCustomizerClass method.

(Nevertheless, it is customary to name the customizer as BeanNameCustomizer.)

Example 8-15 has the code for the ChartBeanBeanInfo class that references the
ChartBeanCustomizer. You will see in the next section how that customizer is
implemented.

Example 8-15 ChartBeanBeanInfo.java

 1. import java.awt.*;
 2. import java.beans.*;
 3.
 4. /**
 5. The bean info for the chart bean, specifying the
 6. icons and the customizer.
 7. */
 8. public class ChartBeanBeanInfo extends SimpleBeanInfo
 9. {
10. public BeanDescriptor getBeanDescriptor()
11. {
12. return new BeanDescriptor(ChartBean.class,
13. ChartBeanCustomizer.class);
14. }
15.
16. public Image getIcon(int iconType)
17. {

18. String name = "";
19. if (iconType == BeanInfo.ICON_COLOR_16x16)
20. name = "COLOR_16x16";
21. else if (iconType == BeanInfo.ICON_COLOR_32x32)
22. name = "COLOR_32x32";
23. else if (iconType == BeanInfo.ICON_MONO_16x16)
24. name = "MONO_16x16";
25. else if (iconType == BeanInfo.ICON_MONO_32x32)
26. name = "MONO_32x32";
27. else return null;
28. return loadImage("ChartBean_" + name + ".gif");
29. }
30. }

java.beans.BeanInfo

BeanDescriptor getBeanDescriptor()

returns a BeanDescriptor object that describes features of the bean.

java.beans.BeanDescriptor

BeanDescriptor(Class beanClass, Class customizerClass)

constructs a BeanDescriptor object for a bean that has a customizer.

Class getBeanClass()

returns the Class object that defines the bean.

Class getCustomizerClass()

Parameters: beanClass the Class object for the bean
 customizerClass the Class object for the bean's customizer

returns the Class object that defines the bean's customizer.

Writing a Customizer Class

Any customizer class you write must implement the Customizer interface. There are only
three methods in this interface:

The setObject method, which takes a parameter that specifies the bean being
customized;

The addPropertyChangeListener and
removePropertyChangeListener methods, which manage the collection of
listeners that are notified when a property is changed in the customizer.

It is a good idea to update the visual appearance of the target bean by broadcasting a
PropertyChangeEvent whenever the user changes any of the property values, not just
when the user is at the end of the customization process.

Unlike property editors, customizers are not automatically displayed. In the BeanBox, you must
select Edit -> Customize to pop up the customizer of a bean. At that point, the BeanBox will
call the setObject method of the customizer that takes the bean being customized as a
parameter. Notice that your customizer is thus created before it is actually linked to an instance
of your bean. Therefore, you cannot assume any information about the state of a bean in the
customizer, and you must provide a default constructor, that is, one without arguments.

There are three parts to writing a customizer class:

1. Building the visual interface;

2. Initializing the customizer in the setObject method;

3. Updating the bean by firing property change events when the user changes properties in
the interface.

By definition, a customizer class is visual. It must, therefore, extend Component or a
subclass of Component, such as JPanel. Since customizers typically present the user with
many options, it is often handy to use the tabbed pane interface. We use this approach and
have the customizer extend the JTabbedPane interface.

CAUTION

grap We had quite a bit of grief with placing a JTabbedPane inside the
customizer dialog of the BeanBox. The BeanBox uses the old AWT
components. Somehow the events became entangled between the AWT
and Swing components and clicking on the tabs did not flip the panes. By
trial and error, we found that trapping the tab clicks and calling validate
fixed this problem. Presumably, in the long run, this issue will go away

The customizer gathers the information in three panes:

Graph color and inverse mode

Title and title position

Data points

Of course, developing this kind of user interface can be tedious to code—our example devotes
over 100 lines just to set it up in the constructor. However, this task requires only the usual
Swing programming skills, and we won't dwell on the details here.

There is one trick that is worth keeping in mind. You often need to edit property values in a
customizer. Rather than implementing a new interface for setting the property value of a
particular class, you can simply locate an existing property editor and add it to your user
interface! For example, in our ChartBean customizer, we need to set the graph color. Since
we know that the BeanBox has a perfectly good property editor for colors, we locate it as
follows:

PropertyEditor colorEditor
 = PropertEditorManager.findEditor(Color.Class);

We then call getCustomEditor to get the component that contains the user interface for
setting the colors.

Component colorEditorComponent = colorEditor.getCustomEditor()
// now add this component to the UI

Once we have all components laid out, we initialize their values in the setObject method.
The setObject method is called when the customizer is displayed. Its parameter is the
bean that is being customized. To proceed, we store that bean reference—we'll need it later to
notify the bean of property changes. Then, we initialize each user interface component. Here is
a part of the setObject method of the chart bean customizer that does this initialization.

public void setObject(Object obj)
{
 bean = (ChartBean)obj;
 titleField.setText(bean.getTitle());
 colorEditor.setValue(bean.getGraphColor());
 . . .
}

Finally, we hook up event handlers to track the user's activities. Whenever the user changes
the value of a component, the component fires an event that our customizer must handle. The
event handler must update the value of the property in the bean and must also fire a

when all bean environments use Swing.

PropertyChangeEvent so that other listeners (such as the property inspector) can be
updated. Let us follow that process with a couple of user interface elements in the chart bean
customizer.

When the user types a new title, we want to update the title property. We attach a
DocumentListener to the text field into which the user types the title.

titleField.getDocument().addDocumentListener(new
 DocumentListener()
 {
 public void changedUpdate(DocumentEvent event)
 {
 setTitle(titleField.getText());
 }
 public void insertUpdate(DocumentEvent event)
 {
 setTitle(titleField.getText());
 }
 public void removeUpdate(DocumentEvent event)
 {
 setTitle(titleField.getText());
 }
 });

The three listener methods call the setTitle method of the customizer. That method calls
the bean to update the property value and then fires a property change event. (This update is
necessary only for properties that are not bound.) Here is the code for the setTitle
method.

public void setTitle(String newValue)
{
 if (bean == null) return;
 String oldValue = bean.getTitle();
 bean.setTitle(newValue);
 firePropertyChange("title", oldValue, newValue);
}

When the color value changes in the color property editor, we want to update the graph color
of the bean. We track the color changes by attaching a listener to the property editor. Perhaps
confusingly, that editor also sends out property change events.

colorEditor.addPropertyChangeListener(new
 PropertyChangeListener()
 {
 public void propertyChange(PropertyChangeEvent
 event)

 {
 setGraphColor((Color)colorEditor.getValue());
 }
 });

Whenever the color value of the color property editor changes, we call the setGraphColor
method of the customizer. That method updates the graphColor property of the bean and
fires a different property change event that is associated with the graphColor property.

public void setGraphColor(Color newValue)
{
 if (bean == null) return;
 Color oldValue = bean.getGraphColor();
 bean.setGraphColor(newValue);
 firePropertyChange("graphColor", oldValue, newValue);
}

Example 8-16 provides the full code of the chart bean customizer.

This particular customizer just sets properties of the bean. In general, customizers can call any
methods of the bean, whether or not they are property setters. That is, customizers are more
general than property editors. (Some beans may have features that are not exposed as
properties and that can be edited only through the customizer.)

Example 8-16 ChartBeanCustomizer.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.beans.*;
 4. import java.io.*;
 5. import java.text.*;
 6. import java.util.*;
 7. import javax.swing.*;
 8. import javax.swing.event.*;
 9.
 10. /**
 11. A customizer for the chart bean that allows the user t
 12. edit all chart properties in a single tabbed dialog.
 13. */
 14. public class ChartBeanCustomizer extends JTabbedPane
 15. implements Customizer
 16. {
 17. public ChartBeanCustomizer()
 18. {
 19. data = new JTextArea();

 20. JPanel dataPane = new JPanel();
 21. dataPane.setLayout(new BorderLayout());
 22. dataPane.add(new JScrollPane(data), BorderLayout.CE
 23. JButton dataButton = new JButton("Set data");
 24. dataButton.addActionListener(new
 25. ActionListener()
 26. {
 27. public void actionPerformed(ActionEvent event
 28. {
 29. setData(data.getText());
 30. }
 31. });
 32. JPanel p = new JPanel();
 33. p.add(dataButton);
 34. dataPane.add(p, BorderLayout.SOUTH);
 35.
 36. JPanel colorPane = new JPanel();
 37. colorPane.setLayout(new BorderLayout());
 38.
 39. normal = new JCheckBox("Normal", true);
 40. inverse = new JCheckBox("Inverse", false);
 41. p = new JPanel();
 42. p.add(normal);
 43. p.add(inverse);
 44. ButtonGroup g = new ButtonGroup();
 45. g.add(normal);
 46. g.add(inverse);
 47. normal.addActionListener(new
 48. ActionListener()
 49. {
 50. public void actionPerformed(ActionEvent event
 51. {
 52. setInverse(false);
 53. }
 54. });
 55.
 56. inverse.addActionListener(
 57. new ActionListener()
 58. {
 59. public void actionPerformed(ActionEvent event
 60. {
 61. setInverse(true);
 62. }
 63. });

 64.
 65. colorEditor
 66. = PropertyEditorManager.findEditor(Color.class);
 67. colorEditor.addPropertyChangeListener(
 68. new PropertyChangeListener()
 69. {
 70. public void propertyChange(PropertyChangeEven
 71. evt)
 72. {
 73. setGraphColor((Color)colorEditor.getValue(
 74. }
 75. });
 76.
 77. colorPane.add(p, BorderLayout.NORTH);
 78. colorPane.add(colorEditor.getCustomEditor(),
 79. BorderLayout.CENTER);
 80.
 81. JPanel titlePane = new JPanel();
 82. titlePane.setLayout(new BorderLayout());
 83.
 84. g = new ButtonGroup();
 85. position = new JCheckBox[3];
 86. position[0] = new JCheckBox("Left", false);
 87. position[1] = new JCheckBox("Center", true);
 88. position[2] = new JCheckBox("Right", false);
 89.
 90. p = new JPanel();
 91. for (int i = 0; i < position.length; i++)
 92. {
 93. final int value = i;
 94. p.add(position[i]);
 95. g.add(position[i]);
 96. position[i].addActionListener(new
 97. ActionListener()
 98. {
 99. public void actionPerformed(ActionEvent ev
100. {
101. setTitlePosition(value);
102. }
103. });
104. }
105.
106. titleField = new JTextField();
107. titleField.getDocument().addDocumentListener(

108. new DocumentListener()
109. {
110. public void changedUpdate(DocumentEvent evt)
111. {
112. setTitle(titleField.getText());
113. }
114. public void insertUpdate(DocumentEvent evt)
115. {
116. setTitle(titleField.getText());
117. }
118. public void removeUpdate(DocumentEvent evt)
119. {
120. setTitle(titleField.getText());
121. }
122. });
123.
124. titlePane.add(titleField, BorderLayout.NORTH);
125. titlePane.add(p, BorderLayout.SOUTH);
126. addTab("Color", colorPane);
127. addTab("Title", titlePane);
128. addTab("Data", dataPane);
129.
130. // workaround for a JTabbedPane bug in JDK 1.2
131. addChangeListener(new
132. ChangeListener()
133. {
134. public void stateChanged(ChangeEvent event)
135. {
136. validate();
137. }
138. });
139. }
140.
141. /**
142. Sets the data to be shown in the chart.
143. @param s a string containing the numbers to be disp
144. separated by white space
145. */
146. public void setData(String s)
147. {
148. StringTokenizer tokenizer = new StringTokenizer(s);
149.
150. int i = 0;
151. double[] values = new double[tokenizer.countTokens(

152. while (tokenizer.hasMoreTokens())
153. {
154. String token = tokenizer.nextToken();
155. try
156. {
157. values[i] = Double.parseDouble(token);
158. i++;
159. }
160. catch (NumberFormatException exception)
161. {
162. }
163. }
164. setValues(values);
165. }
166.
167. /**
168. Sets the title of the chart.
169. @param newValue the new title
170. */
171. public void setTitle(String newValue)
172. {
173. if (bean == null) return;
174. String oldValue = bean.getTitle();
175. bean.setTitle(newValue);
176. firePropertyChange("title", oldValue, newValue);
177. }
178.
179. /**
180. Sets the title position of the chart.
181. @param i the new title position (ChartBean.LEFT,
182. ChartBean.CENTER, or ChartBean.RIGHT)
183. */
184. public void setTitlePosition(int i)
185. {
186. if (bean == null) return;
187. Integer oldValue = new Integer(bean.getTitlePositio
188. Integer newValue = new Integer(i);
189. bean.setTitlePosition(i);
190. firePropertyChange("titlePosition", oldValue, newVa
191. }
192.
193. /**
194. Sets the inverse setting of the chart.
195. @param b true if graph and background color are inv

196. */
197. public void setInverse(boolean b)
198. {
199. if (bean == null) return;
200. Boolean oldValue = new Boolean(bean.isInverse());
201. Boolean newValue = new Boolean(b);
202. bean.setInverse(b);
203. firePropertyChange("inverse", oldValue, newValue);
204. }
205.
206. /**
207. Sets the values to be shown in the chart.
208. @param newValue the new value array
209. */
210. public void setValues(double[] newValue)
211. {
212. if (bean == null) return;
213. double[] oldValue = bean.getValues();
214. bean.setValues(newValue);
215. firePropertyChange("values", oldValue, newValue);
216. }
217.
218. /**
219. Sets the color of the chart
220. @param newValue the new color
221. */
222. public void setGraphColor(Color newValue)
223. {
224. if (bean == null) return;
225. Color oldValue = bean.getGraphColor();
226. bean.setGraphColor(newValue);
227. firePropertyChange("graphColor", oldValue, newValue
228. }
229.
230. public void setObject(Object obj)
231. {
232. bean = (ChartBean)obj;
233.
234. data.setText("");
235. double[] values = bean.getValues();
236. for (int i = 0; i < values.length; i++)
237. data.append(values[i] + "\n");
238.
239. normal.setSelected(!bean.isInverse());

240. inverse.setSelected(bean.isInverse());
241.
242. titleField.setText(bean.getTitle());
243.
244. for (int i = 0; i < position.length; i++)
245. position[i].setSelected(i == bean.getTitlePositi
246.
247. colorEditor.setValue(bean.getGraphColor());
248. }
249.
250. public Dimension getPreferredSize()
251. {
252. return new Dimension(XPREFSIZE, YPREFSIZE);
253. }
254.
255. private static final int XPREFSIZE = 200;
256. private static final int YPREFSIZE = 120;
257. private ChartBean bean;
258. private PropertyEditor colorEditor;
259.
260. private JTextArea data;
261. private JCheckBox normal;
262. private JCheckBox inverse;
263. private JCheckBox[] position;
264. private JTextField titleField;
265. }

java.beans.Customizer

void setObject(Object bean)

specifies the bean to customize.

The Bean Context
In this section, we show how you can write beans that take advantage of their environment.
This is useful to implement beans that interact with other beans or with services that the bean
context provides. In particular, you will see how to implement a bean that can change the value
of an arbitrary integer property of another bean, and how a bean can use a bean context
service.

CAUTION

Advanced Uses of Introspection

From the point of view of the JavaBeans specification, introspection is simply the process by
which a builder tool finds out which properties, methods, and events a bean supports.
Introspection is carried out in two ways:

By searching for classes and methods that follow certain naming patterns;

By querying the BeanInfo of a class.

Normally, introspection is an activity that is reserved for bean environments. The bean
environment uses introspection to learn about beans, but the beans themselves don't need to
carry out introspection. However, there are some cases when one bean needs to use
introspection to analyze other beans. A good example is when you want to tightly couple two
beans on a form in a builder tool. Consider, for example, a spin bean, a small control element
with two buttons, to increase or decrease a value (see Figure 8-23).

Figure 8-23. The spin bean

A spin bean by itself is not useful. It needs to be coupled with another bean. For example, a
spin bean can be coupled to an integer text bean. Each time the user clicks on one of the
buttons of the spin bean, the integer value is incremented or decremented. We will call the
coupled bean the buddy of the spin bean. The buddy does not have to be an IntTextBean.
It can be any other bean with an integer property.

You use the customizer of the spin bean to attach the buddy (see Figure 8-24).

Figure 8-24. The customizer of the SpinBean

grap Somewhat unhappily, the most commonly available builder environments
on the market today (including Forte) do not implement bean contexts. The
examples in this section work in the BeanBox, but they probably won't work
at all in your favorite builder tool.

Here is how you can try it out.

1. Compile the SpinBean and IntTextBean and create the JAR files.

2. Start the BeanBox.

3. Load the SpinBean.jar and IntTextBean.jar file.

4. Add the SpinBean and an IntTextBean on the form.

5. Pop up the customizer of the spin bean by selecting it and selecting Edit -> Customize
from the menu.

6. Select the IntTextBean in the Buddy list.

7. Watch how all the int properties in the Property list are automatically filled in (see
Figure 8-24).

8. Select value and click on Set Buddy.

9. Click on Done.

10. Then, click on + and - and watch the integer text field value increase and decrease (see
Figure 8-25).

Figure 8-25. The SpinBean coupled with an IntTextBean buddy

It looks easy, but there were two challenges to implementing this customization.

How do you find all properties of a bean whose values are of type int?

How do you program the getting and setting of a property if you know it only at run time?

We use introspection (that is, the reflection API) to solve both of these problems. To analyze
the properties of a bean, first get the bean info by calling the static getBeanInfo method of
the Introspector class.

BeanInfo info
 = Introspector.getBeanInfo(buddy.getClass());

Once we have the bean info, we can obtain an array of property descriptors:

PropertyDescriptor[] props = info.getPropertyDescriptors();

In the spin bean customizer, the next step is to loop through this array, picking out all
properties of type int and adding their names to a list component.

for (int i = 0; i < props.length; i++)
{
 Class propertyType = props[i].getPropertyType();
 if (int.class.equals(propertyType))
 {
 String name = props[i].getName();
 propModel.addElement(name);
 }
}

This code shows how you can find out about the properties of a bean.

Next, we need to be able to get and set the property that the user selected. We obtain the get
and set methods by calls to getReadMethod and getWriteMethod:

Method getMethod = prop.getReadMethod();
Method setMethod = prop.getWriteMethod();

(Why is it called getReadMethod? Probably because getGetMethod sounds too silly.)

Now, we invoke the methods to get a value, increment it, and set it. This process again uses
the reflection API—see, for example, Chapter 5 of Volume 1. Note that we must use an
Integer wrapper around the int value.

int value = ((Integer)getMethod.invoke(buddy,
 null)).intValue();

value += increment;
setMethod.invoke(buddy,
 new Object[] { new Integer(value) });

Could we have avoided reflection if we had demanded that the buddy have methods
getValue and setValue? No. You can only call

int value = buddy.getValue();

when the compiler knows that buddy is an object of a type that has a getValue method.
But buddy can be of any type—there is no type hierarchy for beans. Whenever one bean is
coupled with another arbitrary bean, then you need to use introspection.

Finding Sibling Beans

In the preceding section, you saw how the spin bean buttons were able to change the value of
the buddy component. However, there is another unrelated issue—how can the spin bean
customizer present all possible buddies to the user?

It is a bit more difficult to enumerate all beans on a form than you might think. In the BeanBox,
for example, you can't simply call

Component[] siblings = getParent().getComponents()

to get all the siblings of a bean. The reason you can't do this is that the BeanBox surrounds
every bean by a panel within a panel. (We suspect that is done to detect mouse clicks that
select the bean, and to draw the outline around a selected bean.) So, in the BeanBox, we'd
have to write

Component[] siblings
 = getParent().getParent().getParent().getComponents()

However, there is no guarantee that this solution would work in another builder environment—
since those environments might be smart enough not to need all these extra panels.

In the Java 2 platform, we can solve this problem. The JavaBeans architecture now supports
the concept of a bean context. Bean contexts express the logical containment between beans
and bean containers, which, as you just saw, can be quite different from the physical
containment.

A bean context can hold beans, services, and other bean contexts, just like an AWT container
can hold components and other containers (see Figure 8-26).

Figure 8-26. Bean Contexts

Currently, nested bean contexts aren't common. At best, you can expect that your beans live in
a single bean context, the builder environment. For example, the BeanBox in BDK 1.1 is a
bean context. The BeanBox provides a message tracing service that beans can use to display
logging messages. Other bean contexts may provide different services. In the next section, we
show you how your beans can use the message tracing service.

To communicate with its surrounding bean context, a bean can implement the
BeanContextChild interface. That interface has six methods:

void setBeanContext(BeanContext bc)
BeanContext getBeanContext()
void addPropertyChangeListener(String name,
 PropertyChangeListener listener)
void removePropertyChangeListener(String name,
 PropertyChangeListener listener)
void addVetoableChangeListener(String name,
 VetoableChangeListener listener)
void removeVetoableChangeListener(String name,
 VetoableChangeListener listener)

A bean context calls the setBeanContext method when it begins managing your bean.
You can hold on to the BeanContext parameter value and use it whenever you need to
access the ambient bean context.

Since it is tedious to implement the change listeners, a convenience class
BeanContextChildSupport implements these methods for you. However, there is a
technical issue if you want to use this convenience class. Since your bean can't simultaneously
extend a component class and the BeanContextChildSupport class, you use a proxy
mechanism. Follow these steps:

1. Implement the BeanContextProxy interface.

2. Construct an instance variable of type BeanContextChildSupport.

private BeanContextChildSupport childSupport
 = new BeanContextChildSupport();

3. Return that instance variable in the getBeanContextProxy method of the
BeanContextProxy interface.

public BeanContextChild getBeanContextProxy()
{
 return childSupport;
}

The bean context calls this method to retrieve the proxy object. Then, it invokes the
BeanContextChild methods on the returned object rather than on the bean itself.

4. Call the getBeanContext method of the childSupport object whenever you
want to know the current bean context.

BeanContext context = childSupport.getBeanContext();

Figure 8-27 shows the relationships between these classes.

Figure 8-27. Relationships between the bean context classes

Once you have the bean context, you can enumerate all beans that it contains. The
BeanContext class implements the Collection interface. Therefore, you can simply
enumerate the beans as follows:

Iterator iter = beanContext.iterator();
while (iter.hasNext())
{

 Object buddy = iter.next();
 do something with buddy
}

From a user interface perspective, our approach—to list the types of the potential buddies—is
still not satisfactory. If there is more than one sibling of the same class in the form, then the
user cannot tell them apart. It would be nice if we could physically move the spin bean next to
its buddy or draw a box around the selected buddy, but the BeanContext does not expose
position information. (It is useless to ask the buddy about its location. It only knows its location
with respect to its enclosing panel.) Perhaps a future version of the JavaBeans specification
will allow such manipulations.

Using Bean Context Services

In this section, we want to show you how your beans can access services that a bean context
provides. You have to know the class that provides the service that you want. For example, the
message tracer service that the BeanBox provides is implemented by the class
sunw.demo.methodtracer.MethodTracer. First, you need to make sure that the
bean context implements the BeanContextServices interface—not all bean contexts do.

if (beanContext implements BeanContextServices)
{
 BeanContextServices services
 = (BeanContextServices)beanContext;
 . . .
}

Then, you ask the bean context if it supports the desired service.

tracerClass = Class.forName
 ("sunw.demo.methodtracer.MethodTracer");
if (services.hasService(tracerClass))
{
 . . .
}

If you run this bean in an environment other than the BeanBox, the hasService call may
simply return false.

Finally, you need to get the object that carries out the service. You call the getService
method with five parameters:

The object that implements the ChildBeanContext interface; usually the proxy
BeanContextChildSupport object;

The requesting object;

The class of the service that you want to obtain;

An auxiliary object to select the right service, if the service requires it, or null
otherwise;

A BeanContextServiceRevokedListener object that is called when the
service ceases to be available.

Here is a typical call.

BeanContextServiceRevokedListener revokedListener =
 new BeanContextServiceRevokedListener()
 {
 public void serviceRevoked
 (BeanContextServiceRevokedEvent event)
 {
 tracer = null;
 }
 };
tracer = services.getService(childSupport, this, tracerClass,
 null, revokedListener);

Note that you typically do not have the service class available when you compile your program.
For example, the class file for the MethodTracer class is not part of the standard runtime
library, and the compiler will not find it even if you try to import the
sunw.demo.methodtracer package.

For that reason, we use reflection to call service methods. The following statements call the
logText method of the MethodTracer class to display a message in the method tracer
window.

if (tracer != null)
{
 String text = "spin: value=" + value
 + " increment=" + increment;
 Method logText = tracerClass.getMethod("logText",
 new Class[] { String.class });
 logText.invoke(tracer, new Object[] { text });
}

Of course, we don't call the method if the bean context doesn't support the service. If it does,
we use the invoke method to call it through the reflection mechanism.

When you try out this example, watch the Message Tracer window. It contains a message for
each click on one of the spin buttons (see Figure 8-28).

Figure 8-28. The Message Tracer window

Examples 8-17 through 8-19 contain the full code for the SpinBean, including the needed bean
info class to hook in the customizer.

Example 8-17 SpinBean.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.beans.*;
 4. import java.beans.beancontext.*;
 5. import java.lang.reflect.*;
 6. import java.io.*;
 7. import java.util.*;
 8. import javax.swing.*;
 9.
 10. /**
 11. A bean with + and - buttons that can increment or decr
 12. the value of a buddy bean.
 13. */
 14. public class SpinBean extends JPanel
 15. implements BeanContextProxy
 16. {
 17. public SpinBean()
 18. {
 19. setLayout(new GridLayout(2, 1));
 20. JButton plusButton = new JButton("+");
 21. JButton minusButton = new JButton("-");
 22. add(plusButton);
 23. add(minusButton);
 24. plusButton.addActionListener(new
 25. ActionListener()
 26. { public void actionPerformed(ActionEvent evt)

 27. {
 28. spin(1);
 29. }
 30. });
 31. minusButton.addActionListener(new
 32. ActionListener()
 33. { public void actionPerformed(ActionEvent evt)
 34. {
 35. spin(-1);
 36. }
 37. });
 38.
 39. childSupport = new
 40. BeanContextChildSupport()
 41. {
 42. public void setBeanContext(BeanContext contex
 43. throws PropertyVetoException
 44. {
 45. super.setBeanContext(context);
 46. setTracer(context);
 47. }
 48. };
 49. }
 50.
 51. public BeanContextChild getBeanContextProxy()
 52. {
 53. return childSupport;
 54. }
 55.
 56. /**
 57. Sets the buddy of this spin bean.
 58. @param b the buddy component
 59. @param p the descriptor of the integer property to
 60. increment or decrement
 61. */
 62. public void setBuddy(Component b, PropertyDescriptor p
 63. {
 64. buddy = b;
 65. prop = p;
 66. }
 67.
 68. /**
 69. Increments or decrements the value of the buddy.
 70. @param increment the amount by which to change the

 71. value
 72. */
 73. public void spin(int increment)
 74. {
 75. if (buddy == null) return;
 76. if (prop == null) return;
 77. Method readMethod = prop.getReadMethod();
 78. Method writeMethod = prop.getWriteMethod();
 79. try
 80. { int value = ((Integer)readMethod.invoke(buddy,
 81. null)).intValue();
 82.
 83. if (tracer != null)
 84. { String text = "spin: value=" + value
 85. + " increment=" + increment;
 86. Method logText = tracerClass.getMethod("logTe
 87. new Class[] { String.class });
 88. logText.invoke(tracer, new Object[] { text })
 89. }
 90.
 91. value += increment;
 92. writeMethod.invoke(buddy,
 93. new Object[] { new Integer(value) });
 94. }
 95. catch(Exception e)
 96. {
 97. }
 98. }
 99.
100. /**
101. Attempts to set the message tracing service.
102. @param context the bean context that may provide th
103. service.
104. */
105. public void setTracer(BeanContext context)
106. {
107. try
108. {
109. BeanContextServices services
110. = (BeanContextServices)context;
111. tracerClass = Class.forName
112. ("sunw.demo.methodtracer.MethodTracer");
113. if (services.hasService(tracerClass))
114. { BeanContextServiceRevokedListener revokedList

115. new BeanContextServiceRevokedListener()
116. { public void serviceRevoked
117. (BeanContextServiceRevokedEvent even
118. { tracer = null;
119. }
120. };
121. tracer = services.getService(childSupport, th
122. tracerClass, null, revokedListener);
123. }
124. }
125. catch (Exception exception)
126. {
127. tracer = null;
128. }
129. }
130.
131. public Dimension getPreferredSize()
132. {
133. return new Dimension(MINSIZE, MINSIZE);
134. }
135.
136. private static final int MINSIZE = 20;
137. private Component buddy;
138. private PropertyDescriptor prop;
139. private Object tracer;
140. private Class tracerClass;
141. private BeanContextChildSupport childSupport;
142. }

Example 8-18 SpinBeanCustomizer.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.beans.*;
 4. import java.beans.beancontext.*;
 5. import java.io.*;
 6. import java.text.*;
 7. import java.util.*;
 8. import javax.swing.*;
 9. import javax.swing.event.*;
 10.
 11. /**
 12. A customizer for the spin bean to pick its buddy.
 13. */

 14. public class SpinBeanCustomizer extends JPanel
 15. implements Customizer
 16. {
 17. public SpinBeanCustomizer()
 18. {
 19. setLayout(new GridBagLayout());
 20. GridBagConstraints gbc = new GridBagConstraints();
 21. gbc.weightx = 0;
 22. gbc.weighty = 100;
 23. gbc.fill = GridBagConstraints.NONE;
 24. gbc.anchor = GridBagConstraints.EAST;
 25. add(new JLabel("Buddy"), gbc, 0, 0, 1, 1);
 26. add(new JLabel("Property"), gbc, 0, 1, 1, 1);
 27. gbc.weightx = 100;
 28. gbc.anchor = GridBagConstraints.WEST;
 29. gbc.fill = GridBagConstraints.BOTH;
 30. buddyModel = new DefaultListModel();
 31. propModel = new DefaultListModel();
 32. buddyList = new JList(buddyModel);
 33. propList = new JList(propModel);
 34. add(new JScrollPane(buddyList), gbc, 1, 0, 1, 1);
 35. add(new JScrollPane(propList), gbc, 1, 1, 1, 1);
 36. JButton setButton = new JButton("Set Buddy");
 37. JPanel p = new JPanel();
 38. p.add(setButton);
 39. add(p, gbc, 0, 2, 2, 1);
 40.
 41. buddyList.addListSelectionListener(
 42. new ListSelectionListener()
 43. {
 44. public void valueChanged(ListSelectionEvent e
 45. {
 46. findBuddyMethods();
 47. }
 48. });
 49.
 50. setButton.addActionListener(
 51. new ActionListener()
 52. {
 53. public void actionPerformed(ActionEvent event
 54. { int buddyIndex = buddyList.getSelectedInde
 55. if (buddyIndex < 0) return;
 56. int propIndex = propList.getSelectedIndex(
 57. if (propIndex < 0) return;

 58. bean.setBuddy(buddies[buddyIndex],
 59. props[propIndex]);
 60. }
 61. });
 62. }
 63.
 64. /**
 65. A convenience method to add a component to given gr
 66. layout locations.
 67. @param c the component to add
 68. @param gbc the grid bag constraints to use
 69. @param x the x grid position
 70. @param y the y grid position
 71. @param w the grid width
 72. @param h the grid height
 73. */
 74. public void add(Component c, GridBagConstraints gbc,
 75. int x, int y, int w, int h)
 76. {
 77. gbc.gridx = x;
 78. gbc.gridy = y;
 79. gbc.gridwidth = w;
 80. gbc.gridheight = h;
 81. add(c, gbc);
 82. }
 83.
 84. /**
 85. Finds the methods of the selected buddy.
 86. */
 87. public void findBuddyMethods()
 88. {
 89. int buddyIndex = buddyList.getSelectedIndex();
 90. if (buddyIndex < 0) return;
 91. Component buddy = buddies[buddyIndex];
 92. propModel.removeAllElements();
 93. try
 94. {
 95. BeanInfo info
 96. = Introspector.getBeanInfo(buddy.getClass());
 97. props = info.getPropertyDescriptors();
 98. int j = 0;
 99. for (int i = 0; i < props.length; i++)
100. {
101. Class propertyType = props[i].getPropertyType

102. if (int.class.equals(propertyType))
103. {
104. String name = props[i].getName();
105. propModel.addElement(name);
106. props[j++] = props[i];
107. }
108. }
109. }
110. catch(IntrospectionException e){}
111. }
112.
113. public Dimension getPreferredSize()
114. {
115. return new Dimension(300, 200);
116. }
117.
118. public void setObject(Object obj)
119. {
120. bean = (SpinBean)obj;
121. BeanContext context
122. = bean.getBeanContextProxy().getBeanContext();
123. buddies = new Component[context.size()];
124. buddyModel.removeAllElements();
125. Iterator iter = context.iterator();
126. int i = 0;
127. while (iter.hasNext())
128. { Object buddy = iter.next();
129. if (buddy instanceof Component)
130. { buddies[i] = (Component)buddy;
131. String className = buddies[i].getClass().getN
132. buddyModel.addElement(className);
133. i++;
134. }
135. }
136. }
137.
138. private SpinBean bean;
139. private JList buddyList;
140. private JList propList;
141. private DefaultListModel buddyModel;
142. private DefaultListModel propModel;
143. private PropertyDescriptor[] props;
144. private Component[] buddies;
145. }

Example 8-19 SpinBeanBeanInfo.java

 1. import java.awt.*;
 2. import java.beans.*;
 3.
 4. /**
 5. The bean info for the chart bean, specifying the
 6. customizer.
 7. */
 8. public class SpinBeanBeanInfo extends SimpleBeanInfo
 9. {
10. public BeanDescriptor getBeanDescriptor()
11. {
12. return new BeanDescriptor(SpinBean.class,
13. SpinBeanCustomizer.class);
14. }
15. }

java.beans.Introspector

String decapitalize(String name)

converts a string to the Java platform naming convention. SillyMethod becomes
sillyMethod, for example. (When there are two consecutive capitals, nothing
happens.)

BeanInfo getBeanInfo(Class beanClass)

gets the BeanInfo class associated to the bean or creates one on the fly, using the
naming convention discussed earlier in this chapter; throws an
IntrospectionException if the introspection fails.

java.beans.beancontext.BeanContextChild

void setBeanContext(BeanContext bc)

is called when a bean context adds this bean as a child. Must fire a property change
event with property name "beanContext" to all vetoable listeners, then to all

property change listeners.

BeanContext getBeanContext()

returns the current bean context for this bean.

void addPropertyChangeListener(String name,
PropertyChangeListener listener)

adds a listener for the named property.

void removePropertyChangeListener(String name,
PropertyChangeListener listener)

removes a listener for the named property.

void addVetoableChangeListener(String name,
VetoableChangeListener listener)

adds a vetoable listener for the named property.

void removeVetoableChangeListener(String name,
VetoableChangeListener listener)

removes a vetoable listener for the named property.

java.beans.beancontext.BeanContextChildSupport

BeanContext getBeanContext()

returns the current bean context for this bean.

javax.beans.beancontext.BeanContextProxy

BeanContextChild getBeanContextProxy()

returns the proxy object that handles the BeanContextChild methods.

javax.beans.beancontext.BeanContextServices

boolean hasService(Class cl)

tests whether this bean context supports the service carried out by the given class.

Object getService(BeanContextChild child, Object
requestor, Class cl, Object selector,
BeanContextServiceRevokedListener listener)

gets the object that carries out a bean context service.

javax.beans.beancontext.BeanContextServiceRevokedListener

void serviceRevoked(BeanContextServiceRevokedEvent event)

is called when a service is revoked. You need to make sure the service is no longer
called after this notification.

javax.beans.beancontext.BeanContextServiceRevokedEvent

Class getServiceClass()

gets the class that carries out the revoked service.

Parameters: child the bean context child object that is linked as the child of
the bean context

 requestor the object requesting the service
 cl the service class
 selector an optional object to locate or instantiate the service
 listener the listener to be notified when the service is no longer

available

boolean isServiceClass(Class cl)

tests whether the given class object describes the class that carries out the revoked
service.

CONTENTS

Chapter 9. Security
Class Loaders

Bytecode Verification

Security Managers and Permissions

Digital Signatures

Code Signing

Encryption

When Java technology first appeared on the scene, the excitement was not about a well-
crafted programming language but about the possibility of safely executing applets that are
delivered over the Internet (see Chapter 10 of Volume 1 for more information about applets).
Obviously, delivering executable applets is practical only when the recipients are sure that the
code can't wreak havoc on their machines. For this reason, security was and is a major
concern of both the designers and the users of Java technology. This means that unlike the
case with other languages and systems where security was implemented as an afterthought or
a reaction to break-ins, security mechanisms are an integral part of Java technology.

Three mechanisms in Java technology help ensure safety:

Language design features (bounds checking on arrays, legal type conversions only, no
pointer arithmetic, and so on);

An access control mechanism that controls what the code can do (such as file access,
network access, and so on);

Code signing, whereby code authors can use standard cryptographic algorithms to
authenticate Java programming language code. Then, the users of the code can
determine exactly who created the code and whether the code has been altered after it
was signed.

The Java virtual machine checks for bad pointers, invalid array offsets, and so on. The other
steps require controlling what goes to the Java virtual machine.

When class files are loaded into the virtual machine, they are checked for integrity. We show
you in detail how that process works. More importantly, we show you how to control what goes
to the virtual machine by building your own class loader.

For maximum security, both the default mechanism for loading a class and a custom class
loader need to work with a security manager class that controls what actions code can
perform. You'll see how to write your own security manager class.

CONTENTS

Finally, you'll see the cryptographic algorithms supplied in the java.security package,
which allow for code signing and user authentication.

As always, we focus on those topics that are of greatest interest to application programmers.
For an in-depth view, we recommend the book Inside Java 2 Platform Security by Li Gong
[Addison-Wesley 1999].

Class Loaders
A Java programming language compiler converts source into the machine language of a
hypothetical machine, called the virtual machine. The virtual machine code is stored in a class
file with a .class extension. Class files contain the code for all the methods of one class.
These class files need to be interpreted by a program that can translate the instruction set of
the virtual machine into the machine language of the target machine.

Note that the virtual machine interpreter loads only those class files that are needed for the
execution of a program. For example, suppose program execution starts with
MyProgram.class. Here are the steps that the virtual machine carries out.

1. The virtual machine has a mechanism for loading class files, for example, by reading the
files from disk or by requesting them from the Web; it uses this mechanism to load the
contents of the MyProgram class file.

2. If the MyProgram class has instance variables or superclasses of another class type,
these class files are loaded as well. (The process of loading all the classes that a given
class depends on is called resolving the class.)

3. The virtual machine then executes the main method in MyProgram (which is static, so
no instance of a class needs to be created).

4. If the main method or a method that main calls requires additional classes, these are
loaded next.

The class loading mechanism doesn't just use a single class loader, however. Every Java
program has at least three class loaders:

The bootstrap class loader;

The extension class loader;

The system class loader (also sometimes called the application class loader).

The bootstrap class loader loads the system classes (typically, from the JAR file rt.jar). It
is an integral part of the virtual machine, and is usually implemented in C. There is no
ClassLoader object corresponding to the bootstrap class loader. For example,

String.class.getClassLoader()

returns null.

The extension class loader loads a standard extension from the jre/lib/ext directory.
You can drop JAR files into that directory, and the extension class loader will find the classes
in them, even without any class path. (Some people recommend this mechanism to avoid the
"class path from hell," but see the pitfall later in this section.) The extension class loader is
implemented in Java.

The system class loader loads the application classes. It locates classes in the directories and
JAR/ZIP files on the class path, as set by the CLASSPATH environment variable or the -
classpath command-line option. This class loader is also implemented in Java.

Class loaders have a parent/child relationship. Every class loader except for the bootstrap
class loader has a parent class loader. A class loader is supposed to give its parent a chance
to load any given class and only load it if the parent has failed. For example, when the system
class loader is asked to load a system class (say, java.util.ArrayList), then it first
asks the extension class loader. That class loader first asks the bootstrap class loader. The
bootstrap class loader finds and loads the class in rt.jar, and neither of the other class
loaders searches any further.

NOTE

Applets, servlets, and RMI stubs are loaded with custom class loaders. You can even write
your own class loader for specialized purposes. That lets you carry out specialized security
checks before you pass the bytecodes to the virtual machine. For example, you can write a
class loader that can refuse to load a class that has not been marked as "paid for." The next
section shows you how.

Given a class loader, you load a new class as follows:

ClassLoader loader = new MyClassLoader();
String className = ". . .";
Class cl = loader.loadClass(className);

Then that class loads other classes on which it depends.

With all these class loaders, you may wonder which one is in charge. Recall again when
classes are loaded:

1. Implicitly, when a class is resolved, that is, when the classes on which it depends are
loaded;

It is entirely possible to implement a class loader that doesn't delegate class
loading to its parent first. Such a class loader can even load its own version
of system classes. However, there seems no benefit to such an
arrangement. There is no security risk either—a class can load new code
with a class loader, but it can't change its own class loader.

2. Explicitly, but without a named class loader, by calling Class.forName
(className);

3. Through a class loader, by calling loader.loadClass(className).

In the first case, the resolution process uses the same class loader as the one that is loading
the original class. In the second case, the class loader of the class whose method contains the
Class.forName instruction is used. In the third case, the specified class loader is in
charge. This is the only way to switch to a new class loader.

CAUTION

NOTE

CAUTION

grap You can run into grief if you drop a JAR file into the jre/lib/ext
directory and one of its classes calls Class.forName. That call will only
use the extension class loader, and not the system class loader, to find the
class. In particular, the class path is never used. Keep that in mind before
you use the extension directory as a way to minimize your class file
hassles.

That pitfall begs the question of what you should do if you must dynamically
load classes in an extension library. You can call the static
ClassLoader.getSystemClassLoader method to get the system
class loader. However, that may not be the appropriate class loader to use
in all circumstances. After all, the extension code may have been called
from a class that was loaded with another class loader. To overcome this
problem, every thread has a "context class loader," the class loader that is
most reasonable to use when executing code in the thread. Call
loadClass with that class loader instead of calling Class.forName:

Thread t = Thread.currentThread();
ClassLoader loader = t.getContextClassLoader();
Class cl = loader.loadClass(className);

Conversely, before starting a new thread, you can set the context class
loader:

Thread t = new Thread(. . .);
t.setContextClassLoader(myClassLoader);
t.start();

If no context class loader is set, the thread takes the context class loader of
the parent thread. The main thread of an application has the system class
loader as its context class loader.

Every Java programmer knows that package names are used to eliminate name conflicts.
There are two classes called Date in the standard library, but of course their real names are
java.util.Date and java.sql.Date. The simple name is only a programmer
convenience and requires the inclusion of appropriate import statements. In a running
program, all class names contain their package name.

It may surprise you, however, that you can have two classes in the same virtual machine that
have the same class and package name. A class is determined by its full name and the class
loader. This technique is useful when loading code from multiple sources. For example, a
browser uses separate instances of the applet class loader class for each web page. This
allows the virtual machine to separate classes from different web pages, no matter what they
are named.

NOTE

Writing Your Own Class Loader

To write your own class loader, you simply extend the ClassLoader class and override the
method.

findClass(String className)

The loadClass method of the ClassLoader superclass takes care of the delegation to
the parent and only calls findClass if the class hasn't already been loaded and if the parent
class loader was unable to load the class.

NOTE

Your implementation of this method must:

1. Load the bytecodes for the class from the local file system or from some other source.

grap There is a second pitfall with dropping JAR files into the jre/lib/ext
directory. Sometimes, programmers forget about the files they placed there
months ago. Then they scratch their heads when the class loader seems to
ignore the class path, when it is actually loading long-forgotten classes from
the extension directory.

This technique has other uses as well, such as "hot deployment" of servlets
and Enterprise Java Beans. See
http://developer.java.sun.com/developer/TechTips/2000/tt1027.html for
more information.

In earlier versions of the SDK, programmers had to override the
loadClass method. That is no longer recommended.

2. Call the defineClass method of the ClassLoader superclass to present the
bytecodes to the virtual machine.

In the program of Example 9-1, we implement a class loader that loads encrypted class files.
The program asks the user for the name of the first class to load (that is, the class containing
main) and the decryption key. It then uses a special class loader to load the specified class
and calls the main method. The class loader decrypts the specified class and all nonsystem
classes that are referenced by it. Finally, the program calls the main method of the loaded
class (see Figure 9-1).

Figure 9-1. The ClassLoaderTest program

For simplicity, we ignore 2,000 years of progress in the field of cryptography and use the
venerable Caesar cipher for encrypting the class files.

NOTE

Our version of the Caesar cipher has as a key a number between 1 and 255. To decrypt,
simply add that key to every byte and reduce modulo 256. The Caesar.java program of
Example 9-2 carries out the encryption.

David Kahn's wonderful book The Codebreakers [Macmillan, NY, 1967, p.
84] refers to Suetonius as a historical source for the Caesar cipher. Caesar
shifted the 24 letters of the Roman alphabet by 3 letters. At the time of this
writing, the U.S. government restricts the export of strong encryption
methods. Therefore, we use Caesar's method for our example since it is so
weak that it is presumably legal for export.

In order not to confuse the regular class loader, we use a different extension, .caesar, for
the encrypted class files.

To decrypt, the class loader simply subtracts the key from every byte. On the CD-ROM for this
book, you will find four class files, encrypted with a key value of 3—the traditional choice. You
cannot load these classes via the regular bytecode interpreter, but you can run the encrypted
program by using the custom class loader defined in our ClassLoaderTest program.

Encrypting class files has a number of practical uses (provided, of course, that you use a
cipher stronger than the Caesar cipher). Without the decryption key, the class files are useless.
They can neither be executed by a standard bytecode interpreter nor readily disassembled.

This means that you can use a custom class loader to authenticate the user of the class or to
ensure that a program has been paid for before it will be allowed to run. Of course, encryption
is only one application of a custom class loader. You can use other types of class loaders to
solve other problems, for example, storing class files in a database.

Example 9-1 ClassLoaderTest.java

 1. import java.util.*;
 2. import java.io.*;
 3. import java.lang.reflect.*;
 4. import java.awt.*;
 5. import java.awt.event.*;
 6. import javax.swing.*;
 7.
 8. /**
 9. This program demonstrates a custom class loader that d
 10. class files.
 11. */
 12. public class ClassLoaderTest
 13. {
 14. public static void main(String[] args)
 15. {
 16. JFrame frame = new ClassLoaderFrame();
 17. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 18. frame.show();
 19. }
 20. }
 21.
 22. /**
 23. This frame contains two text fields for the name of th
 24. to load and the decryption key.
 25. */
 26. class ClassLoaderFrame extends JFrame
 27. {

 28. public ClassLoaderFrame()
 29. {
 30 setTitle("ClassLoaderTest");
 31. setSize(WIDTH, HEIGHT);
 32. getContentPane().setLayout(new GridBagLayout());
 33. GridBagConstraints gbc = new GridBagConstraints();
 34. gbc.weightx = 0;
 35. gbc.weighty = 100;
 36. gbc.fill = GridBagConstraints.NONE;
 37. gbc.anchor = GridBagConstraints.EAST;
 38. add(new JLabel("Class"), gbc, 0, 0, 1, 1);
 39. add(new JLabel("Key"), gbc, 0, 1, 1, 1);
 40. gbc.weightx = 100;
 41. gbc.fill = GridBagConstraints.HORIZONTAL;
 42. gbc.anchor = GridBagConstraints.WEST;
 43. add(nameField, gbc, 1, 0, 1, 1);
 44. add(keyField, gbc, 1, 1, 1, 1);
 45. gbc.fill = GridBagConstraints.NONE;
 46. gbc.anchor = GridBagConstraints.CENTER;
 47. JButton loadButton = new JButton("Load");
 48. add(loadButton, gbc, 0, 2, 2, 1);
 49. loadButton.addActionListener(new
 50. ActionListener()
 51. {
 52. public void actionPerformed(ActionEvent event
 53. {
 54. runClass(nameField.getText(), keyField.getT
 55. }
 56. });
 57. }
 58.
 59. /**
 60. A convenience method to add a component to given gr
 61. layout locations.
 62. @param c the component to add
 63. @param gbc the grid bag constraints to use
 64. @param x the x grid position
 65. @param y the y grid position
 66. @param w the grid width
 67. @param h the grid height
 68. */
 69. public void add(Component c, GridBagConstraints gbc,
 70. int x, int y, int w, int h)
 71. {

 72. gbc.gridx = x;
 73. gbc.gridy = y;
 74. gbc.gridwidth = w;
 75. gbc.gridheight = h;
 76. getContentPane().add(c, gbc);
 77. }
 78.
 79. /**
 80. Runs the main method of a given class.
 81. @param name the class name
 82. @param key the decryption key for the class files
 83. */
 84. public void runClass(String name, String key)
 85. {
 86. try
 87. {
 88. ClassLoader loader
 89. = new CryptoClassLoader(Integer.parseInt(key)
 90. Class c = loader.loadClass(name);
 91. String[] args = new String[] {};
 92.
 93. Method m = c.getMethod("main",
 94. new Class[] { args.getClass() });
 95. m.invoke(null, new Object[] { args });
 96. }
 97. catch (Throwable e)
 98. {
 99. JOptionPane.showMessageDialog(this, e);
100. }
101. }
102.
103. private JTextField keyField = new JTextField("3", 4);
104. private JTextField nameField = new JTextField(30);
105. private static final int WIDTH = 300;
106. private static final int HEIGHT = 200;
107. }
108.
109. /**
110. This class loader loads encrypted class files.
111. */
112. class CryptoClassLoader extends ClassLoader
113. {
114. /**
115. Constructs a crypto class loader.

116. @param k the decryption key
117. */
118. public CryptoClassLoader(int k)
119. {
120. key = k;
121. }
122.
123. protected Class findClass(String name)
124. throws ClassNotFoundException
125. {
126. byte[] classBytes = null;
127. try
128. {
129. classBytes = loadClassBytes(name);
130. }
131. catch (IOException exception)
132. {
133. throw new ClassNotFoundException(name);
134. }
135.
136. Class cl = defineClass(name, classBytes,
137. 0, classBytes.length);
138. if (cl == null)
139. throw new ClassNotFoundException(name);
140. return cl;
141. }
142.
143. /**
144. Loads and decrypt the class file bytes.
145. @param name the class name
146. @return an array with the class file bytes
147. */
148. private byte[] loadClassBytes(String name)
149. throws IOException
150. {
151. String cname = name.replace('.', '/') + ".caesar";
152. FileInputStream in = null;
153. try
154. {
155. in = new FileInputStream(cname);
156. ByteArrayOutputStream buffer
157. = new ByteArrayOutputStream();
158. int ch;
159. while ((ch = in.read()) != -1)

160. {
161. byte b = (byte)(ch - key);
162. buffer.write(b);
163. }
164. in.close();
165. return buffer.toByteArray();
166. }
167. finally
168. {
169. if (in != null)
170. in.close();
171. }
172. }
173.
174. private Map classes = new HashMap();
175. private int key;
176. }

Example 9-2 Caesar.java

 1. import java.io.*;
 2.
 3. /**
 4. Encrypts a file using the Caesar cipher.
 5. */
 6. public class Caesar
 7. {
 8. public static void main(String[] args)
 9. {
10. if (args.length != 3)
11. {
12. System.out.println("USAGE: java Caesar in out key
13. return;
14. }
15.
16. try
17. {
18. FileInputStream in = new FileInputStream(args[0])
19. FileOutputStream out = new FileOutputStream(args[
20. int key = Integer.parseInt(args[2]);
21. int ch;
22. while ((ch = in.read()) != -1)
23. {
24. byte c = (byte)(ch + key);

25. out.write(c);
26. }
27. in.close();
28. out.close();
29. }
30. catch(IOException exception)
31. {
32. exception.printStackTrace();
33. }
34. }
35. }

java.lang.Class

ClassLoader getClassLoader()

gets the class loader that loaded this class.

java.lang.ClassLoader

ClassLoader getParent()

returns the parent class loader, or null if the parent class loader is the bootstrap class
loader.

static ClassLoader getSystemClassLoader()

gets the system class loader, that is, the class loader that was used to load the first
application class.

protected Class findClass(String name)

A class loader should override this method to find the bytecodes for a class and present
them to the virtual machine by calling the defineClass method.

Parameters: name the name of the class. Use . as package name separator, and don't
use a .class suffix

Class defineClass(String name, byte[] data, int offset,
int length)

adds a new class to the virtual machine.

java.lang.Thread

ClassLoader getContextClassLoader()

gets the class loader that the creator of this thread has designated as the most
reasonable class loader to use when executing this thread.

void setContextClassLoader(ClassLoader loader)

sets a class loader for code in this thread to retrieve for loading classes. If no context
class loader is set explicitly when starting a thread, the parent's context class loader is
used.

Bytecode Verification
When a class loader presents the bytecodes of a newly loaded Java platform class to the
virtual machine, these bytecodes are first inspected by a verifier. The verifier checks that the
instructions cannot perform actions that are obviously damaging. All classes except for system
classes are verified. However, you can deactivate verification with the undocumented -
noverify option.

For example,

java -noverify Hello

Here are some of the checks that the verifier carries out:

That variables are initialized before they are used;

Parameters: name the name of the class. Use . as package name separator, and
don't use a .class suffix

 data an array holding the bytecodes of the class
 offset the start of the bytecodes in the array
 length the length of the bytecodes in the array

That method calls match the types of object references;

That rules for accessing private data and methods are not violated;

That local variable accesses fall within the runtime stack;

That the runtime stack does not overflow.

If any of these checks fail, then the class is considered corrupted and will not be loaded.

NOTE

This strict verification is an important security consideration. Accidental errors, such as
uninitialized variables, can easily wreak havoc if they are not caught. More importantly, in the
wide open world of the Internet, you must be protected against malicious programmers who
create evil effects on purpose. For example, by modifying values on the runtime stack or by
writing to the private data fields of system objects, a program can break through the security
system of a browser.

However, you may wonder why there is a special verifier to check all these features. After all,
the compiler would never allow you to generate a class file in which an uninitialized variable is
used or in which a private data field is accessed from another class. Indeed, a class file
generated by a compiler for the Java programming language always passes verification.
However, the bytecode format used in the class files is well documented, and it is an easy
matter for someone with some experience in assembly programming and a hex editor to
manually produce a class file that contains valid but unsafe instructions for the Java virtual
machine. Once again, keep in mind that the verifier is always guarding against maliciously
altered class files, not just checking the class files produced by a compiler.

Here's an example of how to construct such an altered class file. We start with the program
VerifierTest.java of Example 9-3. This is a simple program that calls a method and
displays the method result. The program can be run both as a console program and as an
applet. The fun method itself just computes 1 + 2.

static int fun()
{
 int m;

If you are familiar with Gödel's theorem, you may wonder how the verifier
can prove that a class file is free from type mismatches, uninitialized
variables, and stack overflows. Gödel's theorem states that it is impossible
to design algorithms whose inputs are program files and whose output is a
Boolean value that states whether the input program has a particular
property (such as being free from stack overflows). Is this a conflict
between the public relations department at Sun Microsystems and the laws
of logic? No—in fact, the verifier is not a decision algorithm in the sense of
Gödel. If the verifier accepts a program, it is indeed safe. However, there
may be many programs that the verifier rejects even though they would
actually be safe.

 int n;
 m = 1;
 n = 2;
 int r = m + n;
 return r;
}

As an experiment, try to compile the following modification of this program:

static int fun()
{
 int m = 1;
 int n;
 m = 1;
 m = 2;
 int r = m + n;
 return r;
}

In this case, n is not initialized, and it could have any random value. Of course, the compiler
detects that problem and refuses to compile the program. To create a bad class file, we have
to work a little harder. First, run the javap program to find out how the compiler translates the
fun method. The command

javap -c VerifierTest

shows the bytecodes in the class file in mnemonic form.

Method int fun()
 0 iconst_1
 1 istore_0
 2 iconst_2
 3 istore_1
 4 iload_0
 5 iload_1
 6 iadd
 7 istore_2
 8 iload_2
 9 ireturn

We will use a hex editor to change instruction 3 from istore_1 to istore_0. That is, local
variable 0 (which is m) is initialized twice, and local variable 1 (which is n) is not initialized at
all. We need to know the hexadecimal values for these instructions. These values are readily
available from The Java Virtual Machine Specification by Tim Lindholm and Frank Yellin
[Addison-Wesley, 1999].

0 iconst_1 04
1 istore_0 3B
2 iconst_2 05
3 istore_1 3C
4 iload_0 1A
5 iload_1 1B
6 iadd 60
7 istore_2 3D
8 iload_2 1C
9 ireturn AC

You can use a hex editor (such as Hex Workshop, which you can down-load from
http://www.bpsoft.com) to carry out the modification. Or, of course, you can use emacs in
hexl-mode. In Figure 9-2, you see the class file VerifierTest.class loaded into Hex
Workshop, with the bytecodes of the fun method highlighted.

Figure 9-2. Modifying bytecodes with a hex editor

Change 3C to 3B and save the class file. Then try running the VerifierTest program.
You get an error message:

Exception in thread "main" java.lang.VerifyError: (class: Veri
erTest, method:fun signature: ()I) Accessing value from unini-
tialized register 1

That is good—the virtual machine detected our modification.

Now run the program with the -noverify (or -Xverify:none) option.

java -noverify VerifierTest

The fun method returns a seemingly random value. This is actually 2 plus the value that
happened to be stored in the variable n, which never was initialized. Here is a typical printout:

1 + 2 = 15102330

To see how browsers handle verification, we wrote this program to run either as an application
or an applet. Load the applet into a browser, using a file URL such as

file:///C:/CoreJavaBook/v2ch9/VerifierTest/VerifierTest.html

Then, you see an error message displayed indicating that verification has failed (see Figure 9-
3).

Figure 9-3. Loading a corrupted class file raises a method verification error

NOTE

There is a curious hole in the verifier in the Java interpreter that has been
known by many people for a long time but that persists for compatibility
reasons. Suppose you have two class files A.java and B.java like this:

public class A { public int field; }

public class B
{
 public static void main(String[] args)
 {

Example 9-3 VerifierTest.java

 1. import java.awt.*;
 2. import java.applet.*;
 3.
 4. /**
 5. This application demonstrates the bytecode verifier of
 6. the virtual machine. If you use a hex editor to modify
 7. class file, then the virtual machine should detect the
 8. tampering.
 9. */
10. public class VerifierTest extends Applet
11. {
12. public static void main(String[] args)
13. {
14. System.out.println("1 + 2 == " + fun());
15. }
16.
17. /**
18. A function that computes 1 + 2
19. @return 3, if the code has not been corrupted
20. */
21. public static int fun()
22. {
23. int m;
24. int n;
25. m = 1;
26. n = 2;

 System.out.println(new A().field);
 }
}

This program compiles and runs, of course. Now edit only the file A.java
to make field private. Recompile only that file. The resulting program
should fail verification since B now attempts to access a private field of A.
However, up to SDK 1.4, the program will run and merrily access the
private field. Only if you run the Java interpreter with the -Xverify:all
option will the error be caught.

The reason is backwards compatibility with an obscure and ill-considered
optimization in JDK 1.0—see
http://developer.java.sun.com/developer/bugParade/bugs/4030988.html.
This is not considered a security risk because only classes loaded from the
local file system are exempt from verification.

27. // use hex editor to change to "m = 2" in class file
28. int r = m + n;
29. return r;
30. }
31.
32. public void paint(Graphics g)
33. {
34. g.drawString("1 + 2 == " + fun(), 20, 20);
35. }
36. }

Security Managers and Permissions
Once a class has been loaded into the virtual machine by a class loader or by the default class
loading mechanism and checked by the verifier, the third security mechanism of the Java
platform springs into action: the security manager. A security manager is a class that controls
whether a specific operation is permitted. Operations checked by a security manager include:

Whether the current thread can create a new class loader;

Whether the current thread can create a subprocess;

Whether the current thread can halt the virtual machine;

Whether the current thread can load a dynamic link library;

Whether a class can access a member of another class;

Whether the current thread can access a specified package;

Whether the current thread can define classes in a specified package;

Whether the current thread can access or modify system properties;

Whether the current thread can read from or write to a specified file;

Whether the current thread can delete a specified file;

Whether the current thread can accept a socket connection from a specified host and
port number;

Whether the current thread can open a socket connection to the specified host and port
number;

Whether the current thread can wait for a connection request on a specified local port
number;

Whether the current thread can use IP multicast;

Whether the current thread can invoke a stop, suspend, resume, destroy,
setPriority/setMaxPriority, setName, or setDaemon method of a given
thread or thread group;

Whether the current thread can set a socket or stream handler factory;

Whether a class can start a print job;

Whether a class can access the system clipboard;

Whether a class can access the AWT event queue;

Whether the current thread is trusted to bring up a top-level window.

The default behavior when running Java applications is that no security manager is installed,
so all these operations are permitted. The appletviewer, on the other hand, immediately installs
a security manager (called AppletSecurity) that is quite restrictive.

For example, applets are not allowed to exit the virtual machine. If they try calling the exit
method, then a security exception is thrown. Here is what happens in detail. The exit
method of the Runtime class calls the checkExit method of the security manager. Here
is the entire code of the exit method.

public void exit(int status)
{
 SecurityManager security = System.getSecurityManager();
 if (security != null)
 security.checkExit(status);
 exitInternal(status);
}

The security manager now checks if the exit request came from the browser or an individual
applet. If the security manager agrees with the exit request, then the checkExit method
simply returns, and normal processing continues. However, if the security manager doesn't
want to grant the request, the checkExit method throws a SecurityException.

The exit method continues only if no exception occurred. It then calls the private native
exitInternal method that actually terminates the virtual machine. There is no other way
of terminating the virtual machine, and since the exitInternal method is private, it cannot
be called from any other class. Thus, any code that attempts to exit the virtual machine must
go through the exit method and thus through the checkExit security check without
triggering a security exception.

Clearly, the integrity of the security policy depends on careful coding. The providers of system
services in the standard library must be careful to always consult the security manager before
attempting any sensitive operation.

When you run a Java application, the default is that no security manager is running. Your
program can install a specific security manager by a call to the static
setSecurityManager method in the System class. Once your program installs a
security manager, any attempt to install a second security manager only succeeds if the first
security manager agrees to be replaced. This is clearly essential; otherwise, a bad applet
could install its own security manager. Thus, while it is possible to have multiple class loaders,
a program in the Java programming language can be governed by only one security manager.
It is up to the implementor of that security manager to decide whether to grant all classes the
same access or whether to take the origins of the classes into account before deciding what to
do.

The default security manager of the Java 2 platform allows both programmers and system
administrators fine-grained control over individual security permissions. We describe these
features in the following section. First, we give you an overview of the Java 2 platform security
model. Then, we show how you can control permissions with policy files. Finally, you will see
how you can define your own permission types and how you can extend the default security
manager class.

Java 2 Platform Security

JDK 1.0 had a very simple security model: local classes had full permissions, and remote
classes were confined to the sandbox: the applet security manager denied all access to local
resources. JDK 1.1 implemented a slight modification: remote code that was signed by a
trusted entity was granted the same permissions as local classes. However, both versions of
the JDK provided an all-or-nothing approach. Programs either had full access or they had to
play in the sandbox.

The Java 2 platform has a much more flexible mechanism. A security policy maps code
sources to permission sets (see Figure 9-4).

Figure 9-4. A security policy

A code source has two properties: the code location (for example, a code base URL or a JAR
file) and certificates. You will see later in this chapter how code can be certified by trusted
parties.

A permission is any property that is checked by a security manager. SDK 1.2 implementation
supports a number of permission classes, each of which encapsulates the details of a
particular permission. For example, the following instance of the FilePermission class
states that it is ok to read and write any file in the /tmp directory.

FilePermission p = new FilePermission("/tmp/*", "read,write");

More importantly, the default implementation of the Policy class in SDK 1.2 reads
permissions from a permission file. Inside a permission file, the same read permission is
expressed as

permission java.io.FilePermission "/tmp/*", "read,write";

We discuss permission files in the next section.

Figure 9-5 shows the hierarchy of permission classes in SDK 1.2.

Figure 9-5. Permission hierarchy in JDK 1.2

In the preceding section, you saw that the SecurityManager class has security check
methods such as checkExit. These methods exist only for the convenience of the
programmer and for backward compatibility. All of them call one of the two following methods:

void checkPermission(Permission p)
void checkPermission(Permission p, Object context)

The second method is used if one thread carries out a security check for another thread. The
context encapsulates the call stack at the time of the check. (See Gong's book for details
on how to generate and use these context objects.)

For example, here is the source code for the checkExit method.

public void checkExit()
{
 checkPermission(new RuntimePermission("exitVM"));
}

Each security manager is free to provide its own implementation of the checkPermission
method. However, the JDK provides a "standard model" of how to carry out permission
checks. For the remainder of this section, we describe this standard model. The standard
model relies on two classes:

java.security.SecureClassLoader
java.lang.SecurityManager

These are the superclasses of the class loader and security manager that are used in all
practical settings (such as applets and remote method invocation). In principle, you can install
your own class loader and security manager. However, that is a complex undertaking that few
programmers will want to attempt. It is much more common to extend the standard classes.

The standard model relies on a Policy object to map code sources to permissions. There
can be only one Policy object in effect at any given time. The static getPolicy method of
the Policy class gets the current policy.

Policy currentPolicy = Policy.getPolicy();

The principal method of the Policy class is the getPermissions method that returns
the permission collection for a particular code source.

PermissionCollection permissions
 = currentPolicy.getPermissions(codeBase);

Each class has a protection domain, an object that encapsulates both the code source and the
collection of permissions of the class. The getProtectionDomain method of the Class
class returns that domain.

ProtectionDomain domain
 = anObject.getClass().getProtectionDomain();

The getCodeSource and getPermissions methods of the ProtectionDomain

method return the code source and permission collection.

In the standard model, the permission collection is entirely dependent on the code source. The
protection domain is set when the SecureClassLoader loads the class. The
SecureClassLoader queries the current policy for the permissions that match the code
source. It then creates a ProtectionDomain object with the given code source and
permissions. Finally, it passes that object to the defineClass method. Figure 9-6 shows
the relationships between these security classes.

Figure 9-6. Relationship between security classes

When the SecurityManager needs to check a permission, it looks at the classes of all
methods currently on the call stack. It then gets the protection domains of all classes and asks
each protection domain if its permission collection allows the operation that is currently being
checked. If all domains agree, then the check passes. Otherwise, a SecurityException
is thrown.

Why do all methods on the call stack need to allow a particular operation? Let us work through
an example. Suppose the init method of an applet wants to open a file. It might call

Reader in = new FileReader(name);

The FileReader constructor calls the FileInputStream constructor, which calls the
checkRead method of the security manager, which finally calls checkPermission with
a FilePermission(name, "read" object. Table 9-1 shows the call stack.

The FileInputStream and SecurityManager classes are system classes whose
CodeSource is null and whose permissions consist of an instance of the
AllPermission class, which allows all operations. Clearly, their permissions alone can't
determine the outcome of the check. As you can see, the checkPermission method must
take into account the restricted permissions of the applet class. By checking the entire call
stack, the security mechanism ensures that one class can never ask another class to carry out
a sensitive operation on its behalf.

NOTE

java.lang.SecurityManager

void checkPermission(Permission p)

void checkPermission(Permission p, Object context)

check whether the current security policy permits the given permission. The second
method receives an object that encapsulates the call stack. That method is used if one

Table 9-1. Call stack during permission checking
Class Method Code Source Permissions
SecurityManager SecurityManager null AllPermission
SecurityManager checkRead null AllPermission
FileInputStream constructor null AllPermission
FileReader constructor null AllPermission
applet init applet code source applet permissions
. . .

This brief discussion of permission checking shows you the basic concepts.
However, there are a number of technical details that we omit here. With
security, the devil lies in the details, and we encourage you to read the book
by Li Gong for more information. For a more critical view of the Java
platform security model, see the book Securing Java by Gary McGraw and
Ed Felten [John Wiley & Sons 1999]. You can find an online version of that
book at http://www.securingjava.com.

thread asks another thread to carry out a permission check on its behalf.

java.security.Policy

static Policy getPolicy()

gets the current policy object, or null if no security policy is in effect.

PermissionCollection getPermissions(CodeSource source)

gets the permissions associated with the given code source.

java.lang.Class

ProtectionDomain getProtectionDomain()

gets the protection domain for this class, or null if this class was loaded without a
protection domain.

java.lang.ClassLoader

Class defineClass(String name, byte[] data, int offset,
int length, ProtectionDomain domain)

adds a new class to the virtual machine.

Parameters: name the name of the class. Use . as package name separator, and
don't use a .class suffix.

 data an array holding the bytecodes of the class.
 offset the start of the bytecodes in the array.
 length the length of the bytecodes in the array.
 domain the protection domain for this class.

java.security.ProtectionDomain

ProtectionDomain(CodeSource source, PermissionCollection
collections)

constructs a protection domain with the given code source and permissions.

CodeSource getCodeSource()

gets the code source of this protection domain.

PermissionCollection getPermissions()

gets the permissions of this protection domain.

java.security.PermissionCollection

void add(Permission p)

adds a permission to this permission collection.

Enumeration elements()

returns an enumeration to iterate through all permissions in this collection.

java.security.CodeSource

Certificate[] getCertificates()

gets the certificates for class file signature associated with this code source.

URL getLocation()

gets the location of class files associated with this code source.

Security Policy Files

In the preceding section, you saw how the SecureClassLoader assigns permissions
when loading classes, by asking a Policy object to look up the permissions for the code
source of each class. In principle, you can install your own Policy class to carry out the
mapping from code sources to permissions. However, in this section, you will learn about the
standard policy class that the JDK 1.2 interpreter uses.

NOTE

The standard policy reads policy files that contain instructions for mapping code sources to
permissions. You have seen these policy files in Chapter 5, where they were required to grant
network access to programs that use the RMISecurityManager. Here is a typical policy
file:

grant codeBase "www.horstmann.com/classes"
{
 permission java.io.FilePermission "/tmp/*", "read,write";
}

This file grants permission to read and write files in the /tmp directory to all code that was
downloaded from www.horstmann.com/classes.

You can install policy files in standard locations. By default, there are two locations:

The file java.policy in the Java platform home directory;

The file .java.policy (notice the period at the beginning of the file name) in the user
home directory.

NOTE

The policy class is set in the file java.security in the jre/lib
subdirectory of the JDK home directory. By default, this file contains the line

policy.provider=sun.security.provider.PolicyFile

You can supply your own policy class and install it by changing this file.

You can change the locations of these files in the java.security configuratio
file. The defaults are specified as

policy.url.1=file:${java.home}/lib/security/java.polic
policy.url.2=file:${user.home}/.java.policy

A system administrator can modify the java.security file and specify policy

During testing, we don't like to constantly modify these standard files. Therefore, we prefer to
explicitly name the policy file that is required for each application. Simply place the permissions
into a separate file, say, MyApp.policy, and start the interpreter as

java -Djava.security.policy=MyApp.policy MyApp

For applets, you use instead

appletviewer -J-Djava.security.policy=MyApplet.policy MyApplet

(You can use the -J option of the appletviewer to pass any command-line argument to
the interpreter.)

In these examples, the MyApp.policy file is added to the other policies in effect. If you add
a second equals sign, such as

java -Djava.security.policy==MyApp.policy MyApp

then your application uses only the specified policy file, and the standard policy files are
ignored.

CAUTION

As you saw previously, by default, Java applications do not install a security manager.
Therefore, you won't see the effect of policy files until you install one. You can, of course, add
a line

System.setSecurityManager(new SecurityManager());

into your main method. Or you can add the command-line option -
Djava.security.manager when starting the interpreter.

java -Djava.security.manager
 -Djava.security.policy=MyApp.policy MyApp

URLs that reside on another server and that cannot be edited by users. There can
be any number of policy URLs (with consecutive numbers) in the policy file. The
permissions of all files are combined.

grap An easy mistake during testing is to accidentally leave a .java.policy
file that grants a lot of permissions, perhaps even AllPermission, in
the current directory. If you find that your application doesn't seem to pay
attention to the restrictions in your policy file, check for a left-
behind .java.policy file in your current directory. If you use a UNIX
system, this is a particularly easy mistake to make because files whose
names start with a period are not displayed by default.

In the remainder of this section, you will see in detail how to describe permissions in the policy
file. We will describe the entire policy file format, except for code certificates, which we cover
later in this chapter.

A policy file contains a sequence of grant entries. Each entry has the following form:

grant codesource
{
 permission_1;
 permission_2;
 . . .
}

The code source contains a code base (which can be omitted if the entry applies to code from
all sources) and the names of trusted certificate signers (which can be omitted if signatures are
not required for this entry).

The code base is specified as

codeBase "url"

If the URL ends in a /, then it refers to a directory. Otherwise, it is taken to be the name of a
JAR file. For example

grant codeBase "www.horstmann.com/classes/" { . . . }
grant codeBase "www.horstmann.com/classes/MyApp.jar" { . . . }

The code base is an URL and should always contain forward slashes as file separators, even
for file URLs in Windows. For example,

grant codeBase "file:C:/myapps/classes/"

NOTE

Everyone knows that http URLs start with two slashes (http://). But
there seems sufficient confusion about file URLs that the policy file
reader accepts two forms of file URLs, namely, file://localFile
and file:localFile. Furthermore, a slash before a Windows drive
letter is optional. That is, all of the following are acceptable:

file:C:/dir/filename.ext
file:/C:/dir/filename.ext
file://C:/dir/filename.ext
file:///C:/dir/filename.ext

Actually, we tested that file:////C:/dir/filename.ext is
acceptable as well, and we have no explanation for that. In UNIX/Linux, you

The permissions have the following structure:

permission className targetName, actionList;

The class name is the fully qualified class name of the permission class (such as
java.io.FilePermission). The target name is a permission-specific value, for
example, a file or directory name for the file permission, or a host and port for a socket
permission. The action list is also permission-specific. It is a list of actions, such as read or
connect, separated by commas. Some permission classes don't need target names and
action lists. Table 9-2 lists the standard permissions and their actions.

As you can see from Table 9-2, most permissions simply permit a particular operation. You
can think of the operation as the target with an implied action "permit". These permission
classes all extend the BasicPermission class (see Figure 9-5). However, the targets for
the file, socket, and property permissions are more complex, and we need to investigate them
in detail.

should use the form

file:/dir/filename.ext

Table 9-2. Permissions and their associated targets and actions
Permission Target
java.io.FilePermission file target (see text)

java.net.SocketPermission socket target (see text)

java.util.PropertyPermission property target (see text)

java.lang.RuntimePermission createClassLoader
getClassLoader
setContextClassLoader
createSecurityManager
setSecurityManager
exitVM
setFactory
setIO
modifyThread
modifyThreadGroup
getProtectionDomain

File permission targets can have the following form:

readFileDescriptor
writeFileDescriptor
loadLibrary.libraryName
accessClassInPackage.packag
defineClassInPackage.packag
accessDeclaredMembers.class
queuePrintJob
stopThread

java.awt.AWTPermission showWindowWithoutWarningBan
accessClipboard
accessEventQueue
listenToAllAWTEvents
readDisplayPixels

java.net.NetPermission setDefaultAuthenticator
specifyStreamHandler
requestPasswordAuthenticati

java.lang.reflect.ReflectPermission suppressAccessChecks
java.io.SerializablePermission enableSubclassImplementatio

enableSubstitution
java.security.SecurityPermission getPolicy

setPolicy
getProperty.key
setProperty.key
insertProvider.providerName
removeProvider.providerName
setSystemScope
setIdentityPublicKey
setIdentityInfo
setIdentityCertificate
removeIdentityCertificate
printIdentity
clearProviderProperties.pro
 Name
putProviderProperty.provide
removeProviderProperty.prov
 Name
getSignerPrivateKey
setSignerKeyPair

java.security.AllPermission

file a file

For example, the following permission entry gives access to all files in the directory /myapp
and any of its subdirectories.

permission java.io.FilePermission "/myapp/-",
 "read,write,delete";

You must use the \\ escape sequence to denote a backslash in a Windows file name.

permission java.io.FilePermission "c:\\myapp\\-",
 "read,write,delete";

Socket permission targets consist of a host and a port range. Host specifications have the
following form:

Port ranges are optional and have the form:

Here is an example:

permission java.net.SocketPermission
 "*.horstmann.com:8000-8999", "connect";

Finally, property permission targets can have one of two forms:

directory/ a directory
directory/* all files in the directory
* all files in the current directory
directory/- all files in the directory or one of its subdirectories
- all files in the current directory or one ofits subdirectories
<<ALL FILES>> all files in the file system

hostname or IPaddress a single host
localhost or the empty string the local host
*.domainSuffix any host whose domain ends with the given suffix
* all hosts

:n a single port
:n- all ports numbered n and above
:-n all ports numbered n and below
:n1-n2 all ports in the given range

property a specific property
propertyPrefix.* all properties with the given prefix

Examples are "java.home" and "java.vm.*".

For example, the following permission entry allows a program to read all properties that start
with java.vm.

permission java.util.PropertyPermission "java.vm.*", "read";

You can use system properties in policy files. The token ${property} is replaced by the
property value. For example, ${user.home} is replaced by the home directory of the user.
Here is a typical use of this system property in a permission entry.

permission java.io.FilePermission "${user.home}" "read,write";

To create platform-independent policy files, it is a good idea to use the file.separator
property instead of explicit / or \\ separators. To make this simpler, the special notation
${/} is a shortcut for ${file.separator}. For example,

permission java.io.FilePermission "${user.home}${/}-"
 "read,write";

is a portable entry for granting permission to read and write in the user's home directory and
any of its subdirectories.

The SDK comes with a rudimentary tool, called policytool, that you can use to edit policy
files. When you start the tool, you can read in a policy file. The tool then displays all code
sources that have permissions assigned to them (see Figure 9-7). When you click the "Edit
Policy Entry" button, then all permissions for that code source are displayed (see Figure 9-8). If
you select a permission and click the "Edit Permission" button, you get a dialog that lets you
edit the properties of a permission entry (see Figure 9-9). As you can see, the dialog displays
the valid choices for targets and actions, which can be a convenience.

Figure 9-7. The policy tool displaying code sources

Figure 9-8. The policy tool displaying the permissions for a code source

Figure 9-9. Editing a permission with the policy tool

Of course, this tool is not suitable for end users who would be completely mystified by most of
the settings. We view it as a proof of concept for an administration tool that might be used by
system administrators who don't want to worry about the exact file format of the policy files.
Still, what's missing is a sensible set of categories (such as low, medium, or high security) that
is meaningful to nonexperts. As a general observation, we believe that the Java 2 platform
certainly contains all the pieces for a fine-grained security model, but that it could benefit from
some polish in delivering these pieces to end users and system administrators.

Custom Permissions

In this section, you will see how you can supply your own permission class that users can refer
to in their policy files.

To implement your permission class, you extend the Permission class and supply the
following methods:

A constructor with two String parameters, for the target and the action list

String getActions()

boolean equals()

int hashCode()

boolean implies(Permission other)

The last method is the most important. Permissions have an ordering, in which more general
permissions imply more specific ones. Consider the file permission

p1 = new FilePermission("/tmp/-", "read, write");

This permission allows reading and writing of any file in the /tmp directory and any of its
subdirectories.

Here are some more-specific permissions that this permission implies:

p2 = new FilePermission("/tmp/-", "read");
p3 = new FilePermission("/tmp/aFile", "read, write");
p4 = new FilePermission("/tmp/aDirectory/-", "write");

In other words, a file permission p1 implies another file permission p2 if

1. The target file set of p1 contains the target file set of p2;

2. The action set of p1 contains the action set of p2.

Here is an example of the use of the implies method. When the FileInputStream
constructor wants to open a file for reading, it checks whether it has permission to do so. To
carry out that check, a specific file permission object is passed to the the
checkPermission method:

checkPermission(new FilePermission(fileName, "read"));

The security manager now asks all applicable permissions whether they imply this permission.
If any one of them implies it, then the check passes.

In particular, the AllPermission implies all other permissions.

If you define your own permission classes, then you need to define a suitable notion of
implication for your permission objects. Suppose, for example, that you define a
TVPermission for a set-top box powered by Java technology. A permission

new TVPermission("Tommy:2-12:1900-2200", "watch,record")

might allow Tommy to watch and record television channels 2–12 between 19:00 and 22:00.
You need to implement the implies method so that this permission implies a more specific
one, such as

new TVPermission("Tommy:4:2000-2100", "watch")

Implementing a Permission Class

In the next sample program, we implement a new permission for monitoring the insertion of
text into a text area. The program ensures that you cannot add "bad words" such as sex,
drugs, and C++ into a text area. We use a custom permission class so that the list of bad
words can be supplied in a policy file.

The following subclass of JTextArea asks the security manager whether it is ok to add new
text.

class WordCheckTextArea extends JTextArea
{
 public void append(String text)
 {
 WordCheckPermission p
 = new WordCheckPermission(text, "insert");
 SecurityManager manager = System.getSecurityManager();
 if (manager != null) manager.checkPermission(p);
 super.append(text);
 }
}

If the security manager grants the WordCheckPermission, then the text is appended.
Otherwise, the checkPermission method throws an exception.

Word check permissions have two possible actions: insert (the permission to insert a
specific text) and avoid (the permission to add any text that avoids certain bad words). You
should run this program with the following policy file:

grant
{
 permission WordCheckPermission "sex,drugs,C++", "avoid";
};

This policy file grants the permission to insert any text that avoids the bad words sex, drugs,
and C++.

When designing the WordCheckPermission class, we must pay particular attention to
the implies method. Here are the rules that control whether permission p1 implies
permission p2.

1. If p1 has action avoid and p2 has action insert, then the target of p2 must avoid
all words in p1. For example, the permission

WordCheckPermission "sex,drugs,C++", "avoid"

implies the permission

WordCheckPermission "Mary had a little lamb", "insert"

2. If p1 and p2 both have action avoid, then the word set of p2 must contain all words in
the word set of p1. For example, the permission

WordCheckPermission "sex,drugs,C++", "avoid"

implies the permission

WordCheckPermission "sex,drugs", "avoid"

3. If p1 and p2 both have action insert, then the text of p1 must contain the text of p2.
For example, the permission

WordCheckPermission "Mary had a little lamb", "insert"

implies the permission

WordCheckPermission "a little lamb", "insert"

You can find the implementation of this class in Example 9-5.

Note that you retrieve the permission target with the confusingly named getName method of
the Permission class.

Since permissions are described by a pair of strings in policy files, permission classes need to
be prepared to parse these strings. In particular, we use the following method to transform the
comma-separated list of bad words of an avoid permission into a genuine Set.

public Set badWordSet()
{
 StringTokenizer tokenizer

 = new StringTokenizer(getName(), ",");
 Set set = new HashSet();
 while (tokenizer.hasMoreTokens())
 set.add(tokenizer.nextToken());
 return set;
}

This code allows us to use the equals and containsAll methods to compare sets. As
you saw in Chapter 2, the equals method of a set class finds two sets to be equal if they
contain the same elements in any order. For example, the sets resulting from
"sex,drugs,C++" and "C++,drugs,sex" are equal.

CAUTION

The program in Example 9-5 shows how the WordCheckPermission class works. Type
any text into the text field and press the "Insert" button. If the security check passes, the text is
appended to the text area. If not, an error message appears (see Figure 9-10).

Figure 9-10. The PermissionTest program

Make sure to start the program with the appropriate policy file.

java -Djava.security.policy=PermissionTest.policy
 PermissionTest

grap Make sure that your permission class is a public class. The policy file loader
cannot load classes with package visibility outside the boot class path, and
it silently ignores any classes that it cannot find.

Otherwise, all attempts to insert text will fail.

CAUTION

Example 9-4 PermissionTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.io.*;
 4. import java.net.*;
 5. import java.security.*;
 6. import java.util.*;
 7. import javax.swing.*;
 8.
 9. /**
10. This class demonstrates the custom WordCheckPermission.
11. */
12. public class PermissionTest
13. {
14. public static void main(String[] args)
15. {
16. System.setSecurityManager(new SecurityManager());
17. JFrame frame = new PermissionTestFrame();
18. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE)
19. frame.show();
20. }
21. }
22.
23. /**
24. This frame contains a text field for inserting words in
25. a text area that is protected from "bad words".
26. */
27. class PermissionTestFrame extends JFrame
28. {
29. public PermissionTestFrame()
30. {
31. setTitle("PermissionTest");
32. setSize(WIDTH, HEIGHT);

grap If you carefully look at Figure 9-10, you will see that the frame window has a
warning border with the misleading caption "Java Applet Window."
The window caption is determined by the
showWindowWithoutWarningBanner target of the
java.awt.AWTPermission. If you like, you can edit the policy file to
grant that permission.

33.
34. textField = new JTextField(20);
35. JPanel panel = new JPanel();
36. panel.add(textField);
37. JButton openButton = new JButton("Insert");
38. panel.add(openButton);
39. openButton.addActionListener(new
40. ActionListener()
41. {
42. public void actionPerformed(ActionEvent event)
43. {
44. insertWords(textField.getText());
45. }
46. });
47.
48. Container contentPane = getContentPane();
49. contentPane.add(panel, BorderLayout.NORTH);
50.
51. textArea = new WordCheckTextArea();
52. contentPane.add(new JScrollPane(textArea),
53. BorderLayout.CENTER);
54. }
55.
56. /**
57. Tries to insert words into the text area.
58. Displays a dialog if the attempt fails.
59. @param words the words to insert
60. */
61. public void insertWords(String words)
62. {
63. try
64. {
65. textArea.append(words + "\n");
66. }
67. catch (SecurityException e)
68. {
69. JOptionPane.showMessageDialog(this,
70. "I am sorry, but I cannot do that.");
71. }
72. }
73.
74. private JTextField textField;
75. private WordCheckTextArea textArea;
76. private static final int WIDTH = 400;

77. private static final int HEIGHT = 300;
78. }
79.
80. /**
81. A text area whose append method makes a security check
82. to see that no bad words are added.
83. */
84. class WordCheckTextArea extends JTextArea
85. {
86. public void append(String text)
87. {
88. WordCheckPermission p
89. = new WordCheckPermission(text, "insert");
90. SecurityManager manager = System.getSecurityManager(
91. if (manager != null) manager.checkPermission(p);
92. super.append(text);
93. }
94. }

Example 9-5 WordCheckPermission.java

 1. import java.security.*;
 2. import java.util.*;
 3.
 4. /**
 5. A permission that checks for bad words.
 6. */
 7. public class WordCheckPermission extends Permission
 8. {
 9. /**
10. Constructs a word check permission
11. @param target a comma separated word list
12. @param anAction "insert" or "avoid"
13. */
14. public WordCheckPermission(String target, String anActi
15. {
16. super(target);
17. action = anAction;
18. }
19.
20. public String getActions() { return action; }
21.
22. public boolean equals(Object other)
23. {

24. if (other == null) return false;
25. if (!getClass().equals(other.getClass())) return fals
26. WordCheckPermission b = (WordCheckPermission)other;
27. if (!action.equals(b.action)) return false;
28. if (action.equals("insert"))
29. return getName().equals(b.getName());
30. else if (action.equals("avoid"))
31. return badWordSet().equals(b.badWordSet());
32. else return false;
33. }
34.
35. public int hashCode()
36. {
37. return getName().hashCode() + action.hashCode();
38. }
39.
40. public boolean implies(Permission other)
41. {
42. if (!(other instanceof WordCheckPermission)) return
43. WordCheckPermission b = (WordCheckPermission)other;
44. if (action.equals("insert"))
45. {
46. return b.action.equals("insert") &&
47. getName().indexOf(b.getName()) >= 0;
48. }
49. else if (action.equals("avoid"))
50. {
51. if (b.action.equals("avoid"))
52. return b.badWordSet().containsAll(badWordSet()
53. else if (b.action.equals("insert"))
54. {
55. Iterator iter = badWordSet().iterator();
56. while (iter.hasNext())
57. {
58. String badWord = (String)iter.next();
59. if (b.getName().indexOf(badWord) >= 0)
60. return false;
61. }
62. return true;
63. }
64. else return false;
65. }
66. else return false;
67. }

68.
69. /**
70. Gets the bad words that this permission rule describ
71. @return a set of the bad words
72. */
73. public Set badWordSet()
74. {
75. StringTokenizer tokenizer
76. = new StringTokenizer(getName(), ",");
77. Set set = new HashSet();
78. while (tokenizer.hasMoreTokens())
79. set.add(tokenizer.nextToken());
80. return set;
81. }
82.
83. private String action;
84. }

java.security.Permission

Permission(String name)

constructs a permission with the given target name.

String getName()

returns the target name of this permission.

boolean implies(Permission other)

checks whether this permission implies the other permission. That is the case if the other
permission describes a more specific condition that is a consequence of the condition
described by this permission.

A Custom Security Manager

In this section, we show you how to build a simple yet complete security manager. We call it
the WordCheckSecurityManager. It monitors all file access and ensures that you can't
open a text file if it contains forbidden words such as sex, drugs, and C++.

We monitor file access by overriding the checkPermission method of the standard
security manager class. If the permission isn't a file read permission, then we simply call

super.checkPermission. To check that it is permissible to read from a file, we open the
file and scan its contents. We grant access to the file only when it doesn't contain any of the
forbidden words. (We only monitor files with extension .txt since we don't want to block
access to system and property files.)

public class WordCheckSecurityManager extends SecurityManager
{
 public void checkPermission(Permission p)
 {
 if (p instanceof FilePermission
 && p.getActions().equals("read"))
 {
 String fileName = p.getName();
 if (containsBadWords(fileName))
 throw new SecurityException("Bad words in "
 + fileName);
 }
 else super.checkPermission(p);
 }
 . . .
}

NOTE

There is just one catch in our file check scenario. Consider one possible flow of events.

A method of some class opens a file.

Then, the security manager springs into action and uses its checkPermission
method.

The checkPermission method calls the containsBadWords method.

But the containsBadWords method must itself read the file to check its contents, which
calls the security manager again! This would result in an infinite regression unless the security

Another way of being notified of file read requests is to override the
checkRead method. The SecurityManager class implements this
method to call the checkPermission method with a
FilePermission object. There are close to 30 methods for other
security checks that all call the checkPermission method—see the
API note at the end of this section. These methods exist for historical
reasons. The permission system has been introduced in the Java 2
platform. We recommend that you do not override these methods but
instead carry out all permission checks in the checkPermission
method.

manager has a way of finding out in which context it was called. The getClassContext
method is the way to find out how the method was called. This method returns an array of
class objects that gives all the classes whose calls are currently pending. For example, when
the security manager is called for the first time, that array is

class WordCheckSecurityManager
class SecurityManager
class java.io.FileInputStream
class java.io.FileReader
class SecurityManagerFrame
. . .
class java.awt.EventDispatchThread

The class at index 0 gives the currently executing call. Unfortunately, you only get to see the
classes, not the names of the pending methods. When the security manager itself attempts to
open the file, it is called again and the getClassContext method returns the following
array.

class WordCheckSecurityManager
class SecurityManager
class java.io.FileInputStream
class java.io.FileReader
class WordCheckSecurityManager
class WordCheckSecurityManager
class SecurityManager
class java.io.FileInputStream
class java.io.FileReader
class SecurityManagerFrame
. . .
class java.awt.EventDispatchThread

In this case, the security manager should permit the file access. How can we do this? We
could test whether

getClassContext()[0] == getClassContext()[4]

but this approach is fragile. Here's an obvious case of where it can go wrong: Imagine that if
the implementation changed, for example, so the FileReader constructor calls the security
manager directly, then the test would be meaningless because the positions would not be the
same in the array. It is far more robust to test whether any of the pending calls came from the
same security manager.

Here is a method that carries out this test. Since this method is called from
checkPermission, there are at least two copies of the security manager class on the call
stack. We skip these first and then look for another instance of the same security manager.

boolean inSameManager()
{
 Class[] cc = getClassContext();

 // skip past current set of calls to this manager
 int i = 0;
 while (i < cc.length && cc[0] == cc[i])
 i++;

 // check if there is another call to this manager
 while (i < cc.length)
 {
 if (cc[0] == cc[i]) return true;
 i++;
 }
 return false;
}

We call this method in the checkPermission method. If we find that the security manager
is invoked recursively, then we do not call the containsBadWords method again.

if (p instanceof FilePermission
 && p.getActions().equals("read"))
{
 if (inSameManager())
 return;
 String fileName = p.getName();
 if (containsBadWords(fileName))
 throw new SecurityException("Bad words in "
 + fileName);
}

Example 9-6 shows a program that puts this security manager to work. The security manager
is installed in the main method. When running the program, you can specify a file. The
program will load its contents into the text area. However, if the file fails the security check, the
program catches the security exception and displays a message instead (see Figure 9-11). For
example, you can display "Alice in Wonderland," but the program refuses to load "The Count of
Monte Cristo."

Figure 9-11. The SecurityManagerTest program

NOTE

You need to be careful how you invoke this program. The WordCheckSecurityManager
class itself needs to be given AllPermission. The reason for this is subtle. The
WordCheckSecurityManager class calls the SecurityManager superclass for all
permissions other than file read permissions. When the SecurityManager class evaluates
a permission, it looks whether all methods on the call stack should be granted that particular
permission. The WordCheckSecurityManager is one of those classes. But it is not a
system class, so you must explicitly grant it all permissions without also granting all
permissions to the other classes of the program.

To separate the WordCheckSecurityManager class files from the other class files,
make a JAR file containing just that class file.

jar cvf WordCheck.jar WordCheckSecurityManager.class

Then delete the WordCheckSecurityManager.class file.

Next, create a policy file, WordCheck.policy, with the following contents:

grant codeBase "file:WordCheck.jar"
{
 permission java.security.AllPermission;
};

You may wonder why we don't use a JFileChooser to select a file
name. The JFileChooser class tries to read the files that it displays,
probably to find out which of them are files and which are directories.

This policy grants all permissions to the classes in the WordCheck.jar file. Finally, start
the application as follows:

java -Djava.security.policy=WordCheck.policy
 -classpath WordCheck.jar:. SecurityManagerTest

TIP

Example 9-6 SecurityManagerTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.io.*;
 4. import java.net.*;
 5. import java.util.*;
 6. import javax.swing.*;
 7.
 8. /**
 9. This class demonstrates the use of a custom security ma
10. that prohibits the reading of text files containing bad
11. */
12. public class SecurityManagerTest
13. {
14. public static void main(String[] args)
15. {
16. System.setSecurityManager(new WordCheckSecurityManag
17. JFrame frame = new SecurityManagerFrame();
18. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE)
19. frame.show();
20. }
21. }
22.
23. /**
24. This frame contains a text field to enter a file name a
25. a text area to show the contents of the loaded file.
26. */
27. class SecurityManagerFrame extends JFrame
28. {

If you are thinking of changing the security manager in your own programs,
you should first investigate whether you can instead use the standard
security manager and a custom permission, as described in the preceding
section. Writing a security manager is error prone and can cause subtle
security flaws. It is much better to use the standard security manager and
augment the permission system instead.

29. public SecurityManagerFrame()
30. {
31. setTitle("SecurityManagerTest");
32. setSize(WIDTH, HEIGHT);
33.
34. fileNameField = new JTextField(20);
35. JPanel panel = new JPanel();
36. panel.add(new JLabel("Text file:"));
37. panel.add(fileNameField);
38. JButton openButton = new JButton("Open");
39. panel.add(openButton);
40. openButton.addActionListener(new
41. ActionListener()
42. {
43. public void actionPerformed(ActionEvent event)
44. {
45. loadFile(fileNameField.getText());
46. }
47. });
48.
49. Container contentPane = getContentPane();
50. contentPane.add(panel, "North");
51.
52. fileText = new JTextArea();
53. contentPane.add(new JScrollPane(fileText), "Center")
54. }
55.
56. /**
57. Attempt to load a file into the text area. If a secu
58. exception is caught, a message is inserted into the
59. area instead.
60. @param filename the file name
61. */
62. public void loadFile(String filename)
63. {
64. try
65. {
66. fileText.setText("");
67. BufferedReader in
68. = new BufferedReader(new FileReader(filename))
69. String s;
70. while ((s = in.readLine()) != null)
71. fileText.append(s + "\n");
72. in.close();

73. }
74. catch (IOException e)
75. {
76. fileText.append(e + "\n");
77. }
78. catch (SecurityException e)
79. {
80. fileText.append("I am sorry, but I cannot do that
81. }
82. }
83.
84. private JTextField fileNameField;
85. private JTextArea fileText;
86. private static final int WIDTH = 400;
87. private static final int HEIGHT = 300;
88. }

Example 9-7 WordCheckSecurityManager.java

 1. import java.io.*;
 2. import java.security.*;
 3.
 4. /**
 5. This security manager checks whether bad words are
 6. encountered when reading a file.
 7. */
 8. public class WordCheckSecurityManager extends SecurityMana
 9. {
10. public void checkPermission(Permission p)
11. {
12. if (p instanceof FilePermission
13. && p.getActions().equals("read"))
14. {
15. if (inSameManager())
16. return;
17. String fileName = p.getName();
18. if (containsBadWords(fileName))
19. throw new SecurityException("Bad words in "
20. + fileName);
21. }
22. else super.checkPermission(p);
23. }
24.
25. /**

26. Returns true if this manager is called while there
27. is another call to itself pending.
28. @return true if there are multiple calls to this man
29. */
30. public boolean inSameManager()
31. {
32. Class[] cc = getClassContext();
33.
34. // skip past current set of calls to this manager
35. int i = 0;
36. while (i < cc.length && cc[0] == cc[i])
37. i++;
38.
39. // check if there is another call to this manager
40. while (i < cc.length)
41. {
42. if (cc[0] == cc[i]) return true;
43. i++;
44. }
45. return false;
46. }
47.
48. /**
49. Checks if a file contains bad words.
50. @param fileName the name of the file
51. @return true if the file name ends with .txt and it
52. contains at least one bad word.
53. */
54. boolean containsBadWords(String fileName)
55. {
56. if (!fileName.toLowerCase().endsWith(".txt")) return
57. // only check text files
58. BufferedReader in = null;
59. try
60. {
61. in = new BufferedReader(new FileReader(fileName))
62. String s;
63. while ((s = in.readLine()) != null)
64. {
65. for (int i = 0; i < badWords.length; i++)
66. if (s.toLowerCase().indexOf(badWords[i]) != -1
67. return true;
68. }
69. in.close();

70. return false;
71. }
72. catch(IOException e)
73. {
74. return true;
75. }
76. finally
77. {
78. if (in != null)
79. try { in.close(); } catch (IOException e) {}
80. }
81. }
82.
83. private String[] badWords = { "sex", "drugs", "c++" };
84. }

java.lang.System

void setSecurityManager(SecurityManager s)

sets the security manager for the remainder of this application. If s is null, no action is
taken. This method throws a security exception if the current security manager does not
permit the installation of a new security manager.

SecurityManager getSecurityManager()

gets the system security manager; returns null if none is installed.

java.lang.SecurityManager

Class[] getClassContext()

returns an array of the classes for the currently executing methods. The element at
position 0 is the class of the currently running method, the element at position 1 is the
class of the caller of the current method, and so on. Only the class names, not the
method names, are available.

void checkCreateClassLoader()

checks whether the current thread can create a class loader.

void checkAccess(Thread g)

checks whether the current thread can invoke the stop, suspend, resume,
setPriority, setName, and setDaemon methods on the thread g.

void checkAccess(ThreadGroup g)

checks whether the current thread can invoke the stop, suspend, resume,
destroy, and setMaxPriority methods on the thread group g.

void checkExit(int status)

checks whether the current thread can exit the virtual machine with status code
status.

void checkExec(String cmd)

checks whether the current thread can execute the system command cmd.

void checkLink(String lib)

checks whether the current thread can dynamically load the library lib.

void checkRead(FileDescriptor fd)

void checkRead(String file)

void checkWrite(FileDescriptor fd)

void checkWrite(String file)

void checkDelete(String file)

check whether the current thread can read, write, or delete the given file.

void checkRead(String file, Object context)

checks whether another thread can read the given file. The other thread must have
called getSecurityContext, and the return value of that call is passed as the
value of the context parameter.

void checkConnect(String host, int port)

checks whether the current thread can connect to the given host at the given port.

void checkConnect(String host, int port, Object context)

checks whether another thread can connect to the given host at the given port. The other
thread must have called getSecurityContext, and the return value of that call is
passed as the context parameter.

void checkListen(int port)

checks whether the current thread can listen for a connection to the given local port.

void checkAccept(String host, int port)

checks whether the current thread can accept a socket connection from the given host
and port.

void checkSetFactory()

checks whether the current thread can set the socket or stream handler factory.

void checkPropertiesAccess()

void checkPropertyAccess(String key)

check whether the current thread can access the system properties or the system
property with the given key.

void checkSecurityAccess(String key)

checks whether the current thread can access the security property with the given key.

boolean checkTopLevelWindow(Object window)

returns true if the given window can be displayed without a security warning.

void checkPrintJobAccess()

checks whether the current thread can access print jobs.

void checkSystemClipboardAccess()

checks whether the current thread can access the system clipboard.

void checkAwtEventQueueAccess()

checks whether the current thread can access the AWT event queue.

void checkPackageAccess(String pkg)

checks whether the current thread can load classes from the given package. This
method is called from the loadClass method of some class loaders.

void checkPackageDefinition(String pkg)

checks whether the current thread can define new classes that are in the given package.
This method is often called from the loadClass method of a custom class loader.

void checkMemberAccess(Class cl, int member_id)

checks whether the current thread can access a member of a class. (See Chapter 11 for
information on how to obtain member IDs.)

User Authentication

Starting with SDK 1.4, it is possible to attach permissions to users, so that you can specify, for
example, that Harry has a particular FilePermission but other users do not. The syntax
is like this:

grant principal com.sun.security.auth.UnixPrincipal "harry"
{
 permission java.io.FilePermission "<<ALL FILES>>";
};

Here, com.sun.security.auth.UnixPrincipal is a class whose getName
method returns the UNIX login name.

The Java Authentication and Authorization Service (JAAS) also supports NT logins, Kerberos
authentication, and certificate-based authentication.

You must program a user login to allow the security manager to check such a grant statement.
Here is the basic outline of the login code:

try
{
 System.setSecurityManager(new SecurityManager());
 LoginContext context = new LoginContext("Login1");
 context.login();
 System.out.println("Authentication successful.");
 // get the authenticated Subject
 Subject subject = context.getSubject();
 . . .
 context.logout();
}
catch (LoginException exception)
{

 exception.printStackTrace();
}

Now the subject denotes the individual who has been authenticated.

The string parameter "Login1" in the LoginContext constructor refers to an entry with
the same name in the JAAS configuration file. Here is a sample configuration file:

Login1
{
 com.sun.security.auth.module.UnixLoginModule required;
};

Login2
{
 com.whizzbang.auth.module.SmartCardModule sufficient;
 com.whizzbang.auth.module.RetinaScanModule sufficient;
}

This configuration file requires that the user have a UNIX login for the first login policy. It is also
possible to list other authentication modules, and label them sufficient, requisite, or
optional. The authentication modules are executed in turn, until a sufficient module
succeeds, a requisite module fails, or the end of the module list is reached.

Of course, there are no biometric login modules contained in the SDK. The SDK contains the
following modules in the com.sun.security.auth.module package:

UnixLoginModule
NTLoginModule
Krb5LoginModule
JndiLoginModule
KeyStoreLoginModule

A login authenticates a subject, which can have multiple principals. As you have seen in the
grant statement, principals govern permissions. Some permissions may be tied to a user
name, but more likely, permissions are tied to group membership. The
UnixNumericGroupPrincipal class can be used to test for membership in a UNIX
group.

When a user has logged in, then you need to run the code that requires checking of principals
in a separate access control context. Use the static doAs method to start a new
PrivilegedAction whose run method executes the code:

Subject.doAs(subject, new
 PrivilegedAction()
 {

 public Object run()
 {
 // actions here are checked against subject principals
 . . .
 return null;
 }
 });

If the actions can throw checked exceptions, then you need to implement the
PrivilegedExceptionAction interface instead.

The program in Example 9-8 demonstrates how to restrict permissions to certain users. The
AuthTest program runs another Java program after performing a login. The name of the
other program and its command line arguments are given on the command line, such as

java options AuthTest LineCount ../../gutenberg/alice30.txt

Here, LineCount is another program that simply counts the lines of all files specified on the
command line (see Example 9-9).

To make this example work, you need to package the code for the login classes and the
program classes into two separate JAR files:

javac AuthTest.java
jar cvf login.jar AuthTest*.class
javac LineCount.java
jar cvf prog.jar LineCount.class

If you look at the policy file in Example 9-10, you will see that the UNIX user with the name
harry has the permission to read all files. Change harry to your login name. (If you run this
test on Windows NT, change UNIX to NT in both AuthTest.policy and
jaas.config—see Example 9-11). Then run the command

java -classpath "login.jar:prog.jar"
 -Djava.security.policy=AuthTest.policy
 -Djava.security.auth.login.config=jaas.config
 AuthTest LineCount ../../gutenberg/alice30.txt

On Windows, use

java -classpath "login.jar;prog.jar"
 -Djava.security.policy=AuthTest.policy
 -Djava.security.auth.login.config=jaas.config
 AuthTest LineCount ..\..\gutenberg\alice30.txt

The LineCount program should now display a line count. However, if you change the login

name in the AuthTest.policy file, then a security exception should be thrown because
you no longer have the required permission.

CAUTION

In this section, we have only scratched the surface of the JAAS capabilities. For more
information, read the JAAS Reference Guide that is a part of the SDK documentation.

Example 9-8 AuthTest.java

 1. import java.lang.reflect.*;
 2. import java.security.*;
 3. import javax.security.auth.*;
 4. import javax.security.auth.login.*;
 5.
 6. /**
 7. This program authenticates a user via the Unix login
 8. and then executes the program specified by the command
 9. with the user's principals.
10. */
11. public class AuthTest
12. {
13. public static void main(final String[] args)
14. {
15. try
16. {
17. System.setSecurityManager(new SecurityManager())
18.
19. LoginContext context = new LoginContext("Login1"
20. context.login();
21. System.out.println("Authentication successful.")
22. Subject subject = context.getSubject();
23. Subject.doAs(subject, new
24. PrivilegedExceptionAction()
25. {
26. public Object run() throws Exception

grap Be careful to follow these instructions exactly. It is very easy to get the
setup wrong by making seemingly innocuous changes. In particular, note
that the permissions must be added both to the grant clause of the
login.jar file and the grant clause of the principal. (Only the
intersection of the rights is granted when the doAs method executes.)
Also, you must add the program files to a JAR file. If you use the class path
"login.jar:.", then the permissions are not applied to the classes
loaded from the file system. That may well be a bug.

27. {
28. // invoke the main method of the class
29. // specified in args[0], with command l
30. // arguments args[1] args[2] . . .
31. Class cl = Class.forName(args[0]);
32. Method mainMethod = cl.getMethod("main"
33. new Class[] { String[].class });
34. String[] args1 = new String[args.length
35. System.arraycopy(args, 1,
36. args1, 0, args1.length);
37. mainMethod.invoke(null,
38. new Object[] { args1 });
39. return null;
40. }
41. });
42.
43. context.logout();
44. }
45. catch (LoginException exception)
46. {
47. exception.printStackTrace();
48. }
49. catch (PrivilegedActionException exception)
50. {
51. exception.printStackTrace();
52. }
53. }
54. }

Example 9-9 LineCount.java

 1. import java.io.*;
 2.
 3. /**
 4. This is a demonstration program that can be launched fr
 5. the AuthTest program. It simply counts the lines in all
 6. files whose names are specified as command-line argumen
 7. */
 8. public class LineCount
 9. {
10. public static void main(String[] args) throws Exception
11. {
12. for (int i = 0; i < args.length; i++)
13. {

14. int count = 0;
15. String line;
16. BufferedReader reader
17. = new BufferedReader(new FileReader(args[i]));
18. while ((line = reader.readLine()) != null) count+
19. System.out.println(args[i] + ": " + count);
20. }
21. }
22. }

Example 9-10 AuthTest.policy

 1. grant codebase "file:login.jar"
 2. {
 3. permission javax.security.auth.AuthPermission
 4. "createLoginContext.Login1";
 5. permission javax.security.auth.AuthPermission "doAs";
 6. permission java.io.FilePermission "<<ALL FILES>>", "rea
 7. };
 8.
 9. grant principal com.sun.security.auth.UnixPrincipal "harry
10. {
11. permission java.io.FilePermission "<<ALL FILES>>", "rea
12. };

Example 9-11 jaas.config

 1. Login1
 2. {
 3. com.sun.security.auth.module.UnixLoginModule required;
 4. };

javax.security.auth.login.LoginContext

LoginContext(String name)

constructs a login context. The name corresponds to the login descriptor in the JAAS
configuration file.

void login()

establishes a login or throws a LoginException if the login failed. Invokes the
login method on the managers in the JAAS configuration file.

void logout()

logs out the subject. Invokes the logout method on the managers in the JAAS
configuration file.

Subject getSubject()

returns the authenticated subject.

javax.security.auth.Subject

Set getPrincipals()

gets the principals of this subject.

static Object doAs(Subject subject, PrivilegedAction
action)

static Object doAs(Subject subject,
PrivilegedActionException action)

execute the privileged action on behalf of the subject. Returns the return value of the
run method.

java.security.PrivilegedAction

Object run()

You must define this method to execute the code that you want to have executed on
behalf of a subject.

java.security.PrivilegedExceptionAction

Object run()

You must define this method to execute the code that you want to have executed on
behalf of a subject. This method may throw any checked exceptions.

java.security.Principal

String getName()

returns the identifying name of this principal.

Digital Signatures
As we said earlier, applets were what started the craze over the Java platform. In practice,
people discovered that although they could write animated applets like the famous "nervous
text" applet, applets could not do a whole lot of useful stuff in the JDK 1.0 security model. For
example, because applets under JDK 1.0 were so closely supervised, they couldn't do much
good on a corporate intranet, even though relatively little risk attaches to executing an applet
from your company's secure intranet. It quickly became clear to Sun that for applets to become
truly useful, it was important for users to be able to assign different levels of security,
depending on where the applet originated. If an applet comes from a trusted supplier and it has
not been tampered with, the user of that applet can then decide whether to give the applet
more privileges.

This added control is now possible because of the applet-signing mechanism in Java 1.1. To
give more trust to an applet, we need to know two things:

1. Where did the applet come from?

2. Was the code corrupted in transit?

In the past 50 years, mathematicians and computer scientists have developed sophisticated
algorithms for ensuring the integrity of data and for electronic signatures. The
java.security package contains implementations of many of these algorithms.
Fortunately, you don't need to understand the underlying mathematics to use the algorithms in
the java.security package. In the next sections, you will see how message digests can
detect changes in data files and how digital signatures can prove the identity of the signer.

Message Digests

A message digest is a digital fingerprint of a block of data. For example, the so called SHA1
(secure hash algorithm #1) condenses any data block, no matter how long, into a sequence of

160 bits (20 bytes). As with real fingerprints, one hopes that no two messages have the same
SHA1 fingerprint. Of course, that cannot be true—there are only 2160 SHA1 fingerprints, so
there must be some messages with the same fingerprint. But 2160 is so large that the
probability of duplication occurring is negligible. How negligible? According to James Walsh in
True Odds: How Risks Affect Your Everyday Life [Merritt Publishing 1996], the chance that you
will die from being struck by lightning is about one in 30,000. Now, think of 9 other people, for
example, your 9 least favorite managers or professors. The chance that you and all of them
will die from lightning strikes is higher than that of a forged message having the same SHA1
fingerprint as the original. (Of course, more than 10 people, none of whom you are likely to
know, will die from lightning. But we are talking about the far slimmer chance that your
particular choice of people will be wiped out.)

A message digest has two essential properties.

1. If one bit or several bits of the data are changed, then the message digest also changes.

2. A forger who is in possession of a given message cannot construct a fake message that
has the same message digest as the original.

The second property is again a matter of probabilities, of course. Consider the following
message by the billionaire father:

"Upon my death, my property shall be divided equally among my children; however,
my son George shall receive nothing."

That message has an SHA1 fingerprint of

2D 8B 35 F3 BF 49 CD B1 94 04 E0 66 21 2B 5E 57 70 49 E1 7E

The distrustful father has deposited the message with one attorney and the fingerprint with
another. Now, suppose George can bribe the lawyer holding the message. He wants to
change the message so that Bill gets nothing. Of course, that changes the fingerprint to a
completely different bit pattern:

2A 33 0B 4B B3 FE CC 1C 9D 5C 01 A7 09 51 0B 49 AC 8F 98 92

Can George find some other wording that matches the fingerprint? If he had been the proud
owner of a billion computers from the time the Earth was formed, each computing a million
messages a second, he would not yet have found a message he could substitute.

A number of algorithms have been designed to compute these message digests. The two best-
known are SHA1, the secure hash algorithm developed by the National Institute of Standards
and Technology, and MD5, an algorithm invented by Ronald Rivest of MIT. Both algorithms
scramble the bits of a message in ingenious ways. For details about these algorithms, see, for
example, Cryptography and Network Security by William Stallings [Prentice Hall 1998]. Note
that recently, subtle regularities have been discovered in MD5, and some cryptographers
recommend avoiding it and using SHA1 for that reason. (Both algorithms are easy to
compute.)

The Java programming language implements both SHA1 and MD5. The MessageDigest
class is a factory for creating objects that encapsulate the fingerprinting algorithms. It has a
static method, called getInstance, that returns an object of a class that extends the
MessageDigest class. This means the MessageDigest class serves double duty:

As a factory class;

As the superclass for all message digest algorithms.

For example, here is how you obtain an object that can compute SHA fingerprints.

MessageDigest alg = MessageDigest.getInstance("SHA-1");

(To get an object that can compute MD5, use the string "MD5" as the argument to
getInstance.)

After you have obtained a MessageDigest object, you feed it all the bytes in the message
by repeatedly calling the update method. For example, the following code passes all bytes in
a file to the alg object created above to do the fingerprinting:

FileInputStream in = new FileInputStream(f);
int ch;

while ((ch = in.read()) != -1)
 alg.update((byte)ch);

Alternatively, if you have the bytes in an array, you can update the entire array at once:

byte[] bytes = . . .;
alg.update(bytes);

When you are done, call the digest method. This method pads the input—as required by
the fingerprinting algorithm—does the computation, and returns the digest as an array of bytes.

byte[] hash = alg.digest();

The program in Example 9-12 computes a message digest, using either SHA or MD5. You can
load the data to be digested from a file, or you can type a message in the text area. Figure 9-
12 shows the application.

Figure 9-12. Computing a message digest

Example 9-12 MessageDigestTest.java

 1. import java.io.*;
 2. import java.security.*;
 3. import java.awt.*;
 4. import java.awt.event.*;
 5. import javax.swing.*;
 6.
 7. /**
 8. This program computes the message digest of a file
 9. or the contents of a text area.
 10. */
 11. public class MessageDigestTest
 12. {
 13. public static void main(String[] args)
 14. {
 15. JFrame frame = new MessageDigestFrame();
 16. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 17. frame.show();
 18. }
 19. }
 20.
 21. /**
 22. This frame contains a menu for computing the message
 23. digest of a file or text area, radio buttons to toggle
 24. SHA-1 and MD5, a text area, and a text field to show t
 25. message digest.
 26. */
 27. class MessageDigestFrame extends JFrame
 28. {
 29. public MessageDigestFrame()
 30. {
 31. setTitle("MessageDigestTest");

 32. setSize(WIDTH, HEIGHT);
 33.
 34. JPanel panel = new JPanel();
 35. ButtonGroup group = new ButtonGroup();
 36. addRadioButton(panel, "SHA-1", group);
 37. addRadioButton(panel, "MD5", group);
 38.
 39. Container contentPane = getContentPane();
 40.
 41. contentPane.add(panel, BorderLayout.NORTH);
 42. contentPane.add(new JScrollPane(message),
 43. BorderLayout.CENTER);
 44. contentPane.add(digest, BorderLayout.SOUTH);
 45. digest.setFont(new Font("Monospaced", Font.PLAIN, 1
 46.
 47. setAlgorithm("SHA-1");
 48.
 49. JMenuBar menuBar = new JMenuBar();
 50. JMenu menu = new JMenu("File");
 51. JMenuItem fileDigestItem = new JMenuItem("File dige
 52. fileDigestItem.addActionListener(new
 53. ActionListener()
 54. {
 55. public void actionPerformed(ActionEvent event
 56. {
 57. loadFile();
 58. }
 59. });
 60. menu.add(fileDigestItem);
 61. JMenuItem textDigestItem
 62. = new JMenuItem("Text area digest");
 63. textDigestItem.addActionListener(new
 64. ActionListener()
 65. {
 66. public void actionPerformed(ActionEvent event
 67. {
 68. String m = message.getText();
 69. computeDigest(m.getBytes());
 70. }
 71. });
 72. menu.add(textDigestItem);
 73. menuBar.add(menu);
 74. setJMenuBar(menuBar);
 75. }

 76.
 77. /**
 78. Adds a radio button to select an algorithm.
 79. @param c the container into which to place the butt
 80. @param name the algorithm name
 81. @param g the button group
 82. */
 83. public void addRadioButton(Container c, final String n
 84. ButtonGroup g)
 85. {
 86. ActionListener listener = new
 87. ActionListener()
 88. { public void actionPerformed(ActionEvent event
 89. {
 90. setAlgorithm(name);
 91. }
 92. };
 93. JRadioButton b
 94. = new JRadioButton(name, g.getButtonCount() == 0
 95. c.add(b);
 96. g.add(b);
 97. b.addActionListener(listener);
 98. }
 99.
100. /**
101. Sets the algorithm used for computing the digest.
102. @param alg the algorithm name
103. */
104. public void setAlgorithm(String alg)
105. {
106. try
107. {
108. currentAlgorithm = MessageDigest.getInstance(alg
109. digest.setText("");
110. }
111. catch(NoSuchAlgorithmException e)
112. {
113. digest.setText("" + e);
114. }
115. }
116.
117. /**
118. Loads a file and computes its message digest.
119. */

120. public void loadFile()
121. {
122. JFileChooser chooser = new JFileChooser();
123. chooser.setCurrentDirectory(new File("."));
124.
125. int r = chooser.showOpenDialog(this);
126. if (r == JFileChooser.APPROVE_OPTION)
127. {
128. String name
129. = chooser.getSelectedFile().getAbsolutePath()
130. computeDigest(loadBytes(name));
131. }
132. }
133.
134. /**
135. Loads the bytes in a file.
136. @param name the file name
137. @return an array with the bytes in the file
138. */
139. public byte[] loadBytes(String name)
140. {
141. FileInputStream in = null;
142.
143. try
144. { in = new FileInputStream(name);
145. ByteArrayOutputStream buffer
146. = new ByteArrayOutputStream();
147. int ch;
148. while ((ch = in.read()) != -1)
149. buffer.write(ch);
150. return buffer.toByteArray();
151. }
152. catch (IOException e)
153. {
154. if (in != null)
155. {
156. try { in.close(); } catch (IOException e2) {}
157. }
158. return null;
159. }
160. }
161.
162. /**
163. Computes the message digest of an array of bytes

164. and displays it in the text field.
165. @param b the bytes for which the message digest sho
166. be computed.
167. */
168. public void computeDigest(byte[] b)
169. {
170. currentAlgorithm.reset();
171. currentAlgorithm.update(b);
172. byte[] hash = currentAlgorithm.digest();
173. String d = "";
174. for (int i = 0; i < hash.length; i++)
175. {
176. int v = hash[i] & 0xFF;
177. if (v < 16) d += "0";
178. d += Integer.toString(v, 16).toUpperCase() + " "
179. }
180. digest.setText(d);
181. }
182.
183. private JTextArea message = new JTextArea();
184. private JTextField digest = new JTextField();
185. private MessageDigest currentAlgorithm;
186. private static final int WIDTH = 400;
187. private static final int HEIGHT = 300;
188. }

java.security.MessageDigest

static MessageDigest getInstance(String algorithm)

returns a MessageDigest object that implements the specified algorithm. Throws a
NoSuchAlgorithmException if the algorithm is not provided.

void update(byte input)

void update(byte[] input)

Parameters: algorithm the name of the algorithm, such as "SHA-1" or "MD5"

void update(byte[] input, int offset, int len)

update the digest, using the specified bytes.

byte[] digest()

completes the hash computation, returns the computed digest, and resets the algorithm
object.

void reset()

resets the digest.

Message Signing

In the last section, you saw how to compute a message digest, a fingerprint for the original
message. If the message is altered, then the fingerprint of the altered message will not match
the fingerprint of the original. If the message and its fingerprint are delivered separately, then
the recipient can check whether the message has been tampered with. However, if both the
message and the fingerprint were intercepted, it is an easy matter to modify the message and
then recompute the fingerprint. After all, the message digest algorithms are publicly known,
and they don't require any secret keys. In that case, the recipient of the forged message and
the recomputed fingerprint would never know that the message has been altered. In this
section, you will see how digital signatures can authenticate a message. When a message is
authenticated, you know

The message was not altered.

The message came from the claimed sender.

To understand how digital signatures work, we need to explain a few concepts from the field
called public key cryptography. Public key cryptography is based on the notion of a public key
and private key. The idea is that you tell everyone in the world your public key. However, only
you hold the private key, and it is important that you safeguard it and don't release it to anyone
else. The keys are matched by mathematical relationships, but it is believed to be practically
impossible to compute one from the other. That is, even though everyone knows your public
key, they can't compute your private key in your lifetime, no matter how many computing
resources they have available.

It may seem difficult to believe that nobody can compute the private key from the public keys,
but nobody has ever found an algorithm to do this for the encryption algorithms that are in
common use today. If the keys are sufficiently long, brute force—simply trying all possible
keys—would require more computers than can be built from all the atoms in the solar system,
crunching away for thousands of years. Of course, it is possible that someone could come up
with algorithms for computing keys that are much more clever than brute force. For example,
the RSA algorithm (the encryption algorithm invented by Rivest, Shamir, and Adleman)
depends on the difficulty of factoring large numbers. For the last 20 years, many of the best
mathematicians have tried to come up with good factoring algorithms, but so far with no
success. For that reason, most cryptographers believe that keys with a "modulus" of 2,000 bits

or more are currently completely safe from any attack.

There are two kinds of public/private key pairs: for encryption and for authentication. If anyone
sends you a message that was encrypted with your public encryption key, then you can
decrypt it with your private decryption key, but nobody else can. Conversely, if you sign a
message with your private authentication key, then anyone else can verify the signature by
checking with your public key. The verification passes only for messages that you signed, and
it fails if anyone else used his key to sign the message. (Kahn remarks in the new edition of his
book The Codebreakers that this was the first new idea in cryptography in hundreds of years.)

Many cryptographic algorithms, such as RSA and DSA (the Digital Signature Algorithm), use
this idea. The exact structure of the keys and what it means for them to match depend on the
algorithm. For example, here is a matching pair of public and private DSA keys.

Public key:

p: fca682ce8e12caba26efccf7110e526db078b05edecbcd1eb4a208f3ae1
17ae01f35b91a47e6df63413c5e12ed0899bcd132acd50d99151bdc43ee737
92e17

q: 962eddcc369cba8ebb260ee6b6a126d9346e38c5

g: 678471b27a9cf44ee91a49c5147db1a9aaf244f05a434d6486931d2d142
1b9e35030b71fd73da179069b32e2935630e1c2062354d0da20a6c416e50be
4ca4

y: c0b6e67b4ac098eb1a32c5f8c4c1f0e7e6fb9d832532e27d0bdab9ca2d2
8123ce5a8018b8161a760480fadd040b927281ddb22cb9bc4df596d7de4d1b
7d50

Private key:

p: fca682ce8e12caba26efccf7110e526db078b05edecbcd1eb4a208f3ae1
17ae01f35b91a47e6df63413c5e12ed0899bcd132acd50d99151bdc43ee737
2e17

q: 962eddcc369cba8ebb260ee6b6a126d9346e38c5

g: 678471b27a9cf44ee91a49c5147db1a9aaf244f05a434d6486931d2d142
1b9e35030b71fd73da179069b32e2935630e1c2062354d0da20a6c416e50be
4ca4

x: 146c09f881656cc6c51f27ea6c3a91b85ed1d70a

There is a mathematical relationship between these keys, but the exact nature of the
relationship is not interesting for practical programming. (If you are interested, you can look it
up in Cryptography & Network Security or The Handbook of Cryptography mentioned earlier.)

The obvious question is how to generate the pair of keys. Usually, this is done by feeding the
result of some random process in to a deterministic procedure that returns the key pair to you.
Luckily, how to get a random key pair for public key cryptography is not a question anyone but
cryptographers and mathematicians need to worry about.

Here is how it works in practice. Suppose Alice wants to send Bob a message, and Bob wants
to know this message came from Alice and not an impostor. Alice writes the message and then
signs the message digest with her private key. Bob gets a copy of her public key. Bob then
applies the public key to verify the signature. If the verification passes, then Bob can be
assured of two facts:

1. The original message has not been altered

2. The message was signed by Alice, the holder of the private key that matches the public
key that Bob used for verification

See Figure 9-13.

Figure 9-13. Public key signature exchange using DSA

You can see why security for private keys is all-important. If someone steals Alice's private key
or if a government can require her to turn it over, then she is in trouble. The thief or a
government agent can impersonate her by sending messages, money transfer instructions,

and so on, that others will believe to have come from Alice.

The Java security package comes with DSA. If you want to use RSA, you'll need to buy the
classes from RSA (www.rsa.com). Let us put the DSA algorithm to work. Actually, there are
three algorithms:

1. To generate a key pair;

2. To sign a message;

3. To verify a signature.

Of course, you generate a key pair only once and then use it for signing and verifying many
messages. To generate a new random key pair, make sure you use truly random numbers. For
example, the regular random number generator in the Random class, seeded by the current
date and time, is not random enough. (The jargon says the basic random number generator in
java.util is not "cryptographically secure.") For example, supposing the computer clock is
accurate to 1/10 of a second; then, there are at most 864,000 seeds per day. If an attacker
knows the day a key was issued (as can often be deduced from the expiration date), then it is
an easy matter to generate all possible seeds for that day.

The SecureRandom class generates random numbers that are far more secure than those
produced by the Random class. You still need to provide a seed to start the number sequence
at a random spot. The best method for doing this is to obtain random input from a hardware
device such as a white-noise generator. Another reasonable source for random input is to ask
the user to type away aimlessly on the keyboard. But each keystroke should contribute only
one or two bits to the random seed. Once you gather such random bits in an array of bytes,
you pass it to the setSeed method.

SecureRandom secrand = new SecureRandom();
byte[] b = new byte[20];
// fill with truly random bits
secrand.setSeed(b);

If you don't seed the random number generator, then it will compute its own 20-byte seed by
launching threads, putting them to sleep, and measuring the exact time when they are
awakened.

NOTE

Once you seed the generator, you can then draw random bytes with the nextBytes
method.

This is an innovative algorithm that, at this point, is not known to be safe.
And, in the past, algorithms that relied on timing other components of the
computer, such as hard disk access time, were later shown not to be
completely random.

byte[] randomBytes = new byte[64];
secrand.nextBytes(randomBytes);

Actually, to compute a new DSA key, you don't compute the random numbers yourself. You
just pass the random number generator object to the DSA key generation algorithm.

To make a new key pair, you need a KeyPairGenerator object. Just as with the
MessageDigest class of the preceding section, the KeyPairGenerator class is both a
factory class and the superclass for actual key pair generation algorithms. To get a DSA key
pair generator, you call the getInstance method with the string "DSA".

KeyPairGenerator keygen = KeyPairGenerator.getInstance("DSA");

The returned object is actually an object of the class
sun.security.provider.DSAKeyPairGenerator, which is a subclass of
KeyPairGenerator.

To generate keys, you must initialize the key generation algorithm object with the key strength
and a secure random number generator. Note that the key strength is not the length of the
generated keys but the size of one of the building blocks of the key. In the case of DSA, it is
the number of bits in the modulus, one of the mathematical quantities that makes up the public
and private keys. Suppose you want to generate a key with a modulus of 512 bits:

SecureRandom secrand = new SecureRandom();
secrand.setSeed(...);
keygen.initialize(512, secrand);

Now you are ready to generate key pairs.

KeyPair keys = keygen.generateKeyPair();
KeyPair morekeys = keygen.generateKeyPair();

Each key pair has a public and a private key.

PublicKey pubkey = keys.getPublic();
PrivateKey privkey = keys.getPrivate();

To sign a message, you need a signature algorithm object. You use the Signature factory
class:

Signature signalg = Signature.getInstance("DSA");

Signature algorithm objects can be used both to sign and to verify a message. To prepare the
object for message signing, use the initSign method and pass the private key to the
signature algorithm.

signalg.initSign(privkey);

Now, you use the update method to add bytes to the algorithm objects, in the same way as
with the message digest algorithm.

while ((ch = in.read()) != -1)
 signalg.update((byte)ch);

Finally, you can compute the signature with the sign method. The signature is returned as an
array of bytes.

byte[] signature = signalg.sign();

The recipient of the message must obtain a DSA signature algorithm object and prepare it for
signature verification by calling the initVerify method with the public key as parameter.

Signature verifyalg = Signature.getInstance("DSA");
verifyalg.initVerify(pubkey);

Then, the message must be sent to the algorithm object.

while ((ch = in.read()) != -1)
 verifyalg.update((byte)ch);

Finally, you can verify the signature.

boolean check = verifyalg.verify(signature);

If the verify method returns true, then the signature was a valid signature of the message
that was signed with the matching private key. That is, both the sender and the contents of the
message have been authenticated.

Example 9-13 demonstrates the key generation, signing, and verification processes.

Example 9-13 SignatureTest.java

 1. import java.security.*;
 2.
 3. /**
 4. This program demonstrates how to sign a message with a
 5. private DSA key and verify it with the matching public
 6. */
 7. public class SignatureTest
 8. {
 9. public static void main(String[] args)
10. {
11. try
12. {

13. KeyPairGenerator keygen
14. = KeyPairGenerator.getInstance("DSA");
15. SecureRandom secrand = new SecureRandom();
16. keygen.initialize(512, secrand);
17.
18. KeyPair keys1 = keygen.generateKeyPair();
19. PublicKey pubkey1 = keys1.getPublic();
20. PrivateKey privkey1 = keys1.getPrivate();
21.
22. KeyPair keys2 = keygen.generateKeyPair();
23. PublicKey pubkey2 = keys2.getPublic();
24. PrivateKey privkey2 = keys2.getPrivate();
25.
26. Signature signalg = Signature.getInstance("DSA");
27. signalg.initSign(privkey1);
28. String message
29. = "Pay authors a bonus of $20,000.";
30. signalg.update(message.getBytes());
31. byte[] signature = signalg.sign();
32.
33. Signature verifyalg = Signature.getInstance("DSA"
34. verifyalg.initVerify(pubkey1);
35. verifyalg.update(message.getBytes());
36. if (!verifyalg.verify(signature))
37. System.out.print("not ");
38. System.out.println("signed with private key 1");
39.
40. verifyalg.initVerify(pubkey2);
41. verifyalg.update(message.getBytes());
42. if (!verifyalg.verify(signature))
43. System.out.print("not ");
44. System.out.println("signed with private key 2");
45. }
46. catch(Exception e)
47. {
48. e.printStackTrace();
49. }
50. }
51. }

java.security.KeyPairGenerator

static KeyPairGenerator getInstance(String algorithm)

returns a KeyPairGenerator object that implements the specified algorithm. Throws
a NoSuchAlgorithmException if the algorithm is not provided.

void initialize(int strength, SecureRandom random)

KeyPair generateKeyPair()

generate a new key pair.

java.security.KeyPair

PrivateKey getPrivate()

returns the private key from the key pair.

PublicKey getPublic()

returns the public key from the key pair.

java.security.Signature

static Signature getInstance(String algorithm)

returns a Signature object that implements the specified algorithm.

Parameters: algorithm the name of the algorithm, such as "DSA"

Parameters: strength an algorithm-specific measurement, typically, the number of
bits of one of the algorithm parameters

 random the source of random bits for generating keys

Throws a NoSuchAlgorithmException if the algorithm is not provided.

void initSign(PrivateKey privateKey)

initializes this object for signing. Throws an InvalidKeyException if the key type
does not match the algorithm type.

void update(byte input)

void update(byte[] input)

void update(byte[] input, int offset, int len)

update the message buffer, using the specified bytes.

byte[] sign()

completes the signature computation and returns the computed signature.

void initVerify(PublicKey publicKey)

initializes this object for verification. Throws an InvalidKeyException if the key
type does not match the algorithm type.

boolean verify(byte[] signature)

checks whether the signature is valid.

Message Authentication

Suppose you get a message from your friend, signed by your friend with his private key, using
the method we just showed you. You may already have his public key, or you can easily get it
by asking him for a copy or by getting it from your friend's web page. Then, you can verify that
the message was in fact authored by your friend and has not been tampered with. Now,

Parameters: algorithm the name of the algorithm, such as "DSA"

Parameters: privateKey the private key of the identity whose signature is being
computed

Parameters: publicKey the public key of the identity to be verified

suppose you get a message from a stranger who claims to represent a famous software
company, urging you to run the program that is attached to the message. The stranger even
sends you a copy of his public key so you can verify that he authored the message. You check
that the signature is valid. This proves that the message was signed with the matching private
key and that it has not been corrupted.

Be careful: you still have no idea who wrote the message. Anyone could have generated a pair
of public and private keys, signed the message with the private key, and sent the signed
message and the public key to you. The problem of determining the identity of the sender is
called the authentication problem.

The usual way to solve the authentication problem is simple. Suppose the stranger and you
have a common acquaintance whom you both trust. Suppose the stranger meets your
acquaintance in person and hands over a disk with the public key. Your acquaintance later
meets you, assures you that he met the stranger and that the stranger indeed works for the
famous software company, and then gives you the disk (see Figure 9-14). That way, your
acquaintance vouches for the authenticity of the stranger.

Figure 9-14. Authentication through a trusted intermediary

In fact, your acquaintance does not actually need to meet you. Instead, he can apply his
private signature to the stranger's public key file (see Figure 9-15).

Figure 9-15. Authentication through a trusted intermediary's signature

When you get the public key file, you verify the signature of your acquaintance, and because
you trust him, you are confident that he did check the stranger's credentials before applying his
signature.

However, you may not have a common acquaintance. Some trust models assume that there is
always a "chain of trust"—a chain of mutual acquaintances— so that you trust every member
of that chain. In practice, of course, that isn't always true. You may trust your acquaintance,
Alice, and you know that Alice trusts Bob, but you don't know Bob and aren't sure that you trust
him. Other trust models assume that there is a benevolent big brother in whom we all trust.
Some companies are working to become such big brothers, such as Verisign, Inc.
(www.verisign.com), and, yes, the United States Postal Service.

You will often encounter digital signatures that are signed by one or more entities who will
vouch for the authenticity, and you will need to evaluate to what degree you trust the
authenticators. You might place a great deal of trust in Verisign, perhaps because you read
their ponderous certification practice statements, or because you heard that they require
multiple people with black attache cases to come together into a secure chamber whenever
new master keys are to be minted.

However, you should have realistic expectations about what is actually being authenticated.
Stratton Sclavos, the CEO of Verisign, does not personally meet every individual who has a
public key that is authenticated by Verisign. More likely, that individual just filled out a form on

a web page (see Figure 9-16).

Figure 9-16. Request for a digital ID

Such a form asks the requestor to specify the name, organization, country, and e-mail
address. Typically, the key (or instructions on how to fetch the key) is mailed to that e-mail
address. Thus, you can be reasonably assured that the e-mail address is genuine, but the
requestor could have filled in any name and organization. With a "class 1" ID from Verisign,
that information is not verified. There are more stringent classes of IDs. For example, with a
"class 3" ID, Verisign will require an individual requestor to appear before a notary public, and
it will check the financial rating of a corporate requestor. Other authenticators will have
different procedures. Thus, when you receive an authenticated message, it is important that
you understand what, in fact, is being authenticated.

The X.509 Certificate Format

One of the most common formats for signed certificates is the X.509 format. X.509 certificates
are widely used by Verisign, Microsoft, Netscape, and many other companies, for signing e-
mail messages, authenticating program code, and certifying many other kinds of data. The

X.509 standard is part of the X.500 series of recommendations for a directory service by the
international telephone standards body, the CCITT. In its simplest form, an X.509 certificate
contains the following data:

Version of certificate format;

Serial number of certificate;

Signature algorithm identifier (algorithm ID + parameters of the algorithm used to sign the
certificate);

Name of the signer of the certificate;

Period of validity (begin/end date);

Name of the identity being certified;

Public key of identity being certified (algorithm ID + parameters of the algorithm + public
key value);

Signature (hash code of all preceding fields, encoded with private key of signer).

Thus, the signer guarantees that a certain identity has a particular public key.

Extensions to the basic X.509 format make it possible for the certificates to contain additional
information. For more information on the structure of X.509 certificates, see
http://www.ietf.cnri.reston.va.us/ids.by.wg/X.509.html. Peter Gutmann's web site
(http://www.cs.auckland.ac.nz/~pgut001/pubs/x509guide.txt) contains an entertaining and
informative description of the many discrepancies in the X.509 format, as it is implemented by
different vendors.

The precise structure of X.509 certificates is described in a formal notation, called "abstract
syntax notation #1" or ASN.1. Figure 9-17 shows the ASN.1 definition of version 3 of the X.509
format. The exact syntax is not important for us, but, as you can see, ASN.1 gives a precise
definition of the structure of a certificate file. The basic encoding rules, or BER, describe
precisely how to save this structure in a binary file. That is, BER describes how to encode
integers, character strings, bit strings, and constructs such as SEQUENCE, CHOICE, and
OPTIONAL.

Figure 9-17. ASN.1 definition of X.509v3

Actually, the BER rules are not unique; there are several ways of specifying some elements.
The distinguished encoding rules (DER) remove these ambiguities. For a readable description
of the BER encoding format, we recommend A Layman's Guide to a Subset of ASN.1, BER,
and DER by Burton S. Kaliski, Jr., available from http://www.rsasecurity.com/rsalabs/pkcs/.
You can find the source code for a useful program for dumping BER encoded files at
http://www.cs.auckland.ac.nz/~pgut001/dumpasn1.c.

Generating Certificates

The JDK comes with the keytool program, which is a command-line tool to generate and

manage a set of certificates. We expect that ultimately the functionality of this tool will be
embedded in other, more user-friendly programs. But right now, we will use keytool to show
how Alice can sign a document and send it to Bob, and how Bob can verify that the document
really was signed by Alice and not an impostor. We do not discuss all of the keytool
features—see the JDK documentation for complete information.

The keytool program manages key stores, databases of certificates, and private keys. Each
entry in the key store has an alias. Here is how Alice creates a keystore alice.store and
generates a key pair with alias alice.

keytool -genkey -keystore alice.store -alias alice

When creating or opening a keystore, you will be prompted for a keystore password. For this
example, just use password. If you were to use the keytool-generated keystore for any
serious purpose, you would need to choose a good password and safeguard this file—it
contains private signature keys.

When generating a key, you will be prompted for the following information:

Enter keystore password: password
What is your first and last name?
 [Unknown]: Alice Lee
What is the name of your organizational unit?
 [Unknown]: Engineering Department
What is the name of your organization?
 [Unknown]: ACME Software
What is the name of your City or Locality?
 [Unknown]: Cupertino
What is the name of your State or Province?
 [Unknown]: California
What is the two-letter country code for this unit?
 [Unknown]: US
Is <CN=Alice Lee, OU=Engineering Department, O=ACME Software,
L=Cupertino, ST=California, C=US> correct?
 [no]: Y

NOTE

The keytool uses X.500 distinguished names, with components Common Name (CN),
Organizational Unit (OU), Organization (O), Location (L), State (ST), and Country (C) to

You can find more information on ASN.1 in ASN.1—Communication
Between Heterogeneous Systems by Olivier Dubuisson [Academic Press
2000] (http://www.oss.com/asn1/dubuisson.html) and ASN.1 Complete by
John Larmouth [Morgan Kaufmann Publishers 1999]
(http://www.nokalva.com/asn1/larmouth.html).

identify key owners and certificate issuers.

Finally, you need to specify a key password, or press enter to use the key store password as
the key password.

Suppose Alice wants to give her public key to Bob. She needs to export a certificate file:

keytool -export -keystore alice.store -alias alice -file alice

Now Alice can send the certificate to Bob. When Bob receives the certificate, he can print it:

keytool -printcert -file alice.cert

The printout looks like this:

Owner: CN=Alice Lee, OU=Engineering Department, O=ACME Softwar
L=Cupertino, ST=California, C=US

Issuer: CN=Alice Lee, OU=Engineering Department, O=ACME Softwa
L=Cupertino, ST=California, C=US

Serial number: 38107867

Valid from: Fri Oct 22 07:44:55 PDT 1999 until: Thu Jan 20
06:44:55 PST 2000

Certificate fingerprints:

MD5: 5D:00:0F:95:01:30:B4:FE:18:CE:9A:35:0F:C9:90:DD

SHA1:F8:C2:7C:E2:0B:1F:69:E2:6C:31:9A:F6:35:FA:A3:4F:83:81:6A:

This certificate is self-signed. Therefore, Bob cannot use another trusted certificate to check
that this certificate is valid. Instead, he can call up Alice and have her read the certificate
fingerprint over the phone.

Some certificate issuers publish certificate fingerprints on their web sites. For example, the
JRE includes a key store cacerts in the jre/lib/security directory. It contains
certificates from Thawte and VeriSign. To list the contents of a keystore, use the -list
option:

keytool -list -keystore jre/lib/security/cacerts

The password for this keystore is changeit. One of the certificates in this keystore is

thawtepremiumserverca, Fri Feb 12 12:15:26 PST 1999, trustedCe

Certificate fingerprint (MD5):
06:9F:69:79:16:66:90:02:1B:8C:8C:A2:C3:07:6F:3A

You can check that your certificate is valid by visiting the Thawte web site at
http://www.thawte.com/certs/trustmap.html.

NOTE

Once Bob trusts the certificate, he can import it into his keystore.

keytool -import -keystore bob.store -alias alice -file alice.c

CAUTION

Now Alice can start sending signed documents to Bob. The jarsigner tool signs and
verifies JAR files. Alice simply adds the document to be signed into a JAR file.

jar cvf document.jar document.txt

Then she uses the jarsigner tool to add the signature to the file. She needs to specify the
keystore, the JAR file and the alias of the key to use.

jarsigner -keystore alice.store document.jar alice

When Bob receives the file, he uses the -verify option of the jarsigner program.

jarsigner -verify -keystore bob.store document.jar

Bob does not need to specify the key alias. The jarsigner program finds the X.500 name
of the key owner in the digital signature and looks for matching certificates in the keystore.

If the JAR file is not corrupted and the signature matches, then the jarsigner program
prints

jar verified.

Of course, this check requires that you trust that your copy of keytool
(and the JRE code in rt.jar that the keytool program calls) has not
been tampered with. If you are paranoid, you may want to copy the file to
another machine (using a trusted file copy program) and check it on that
machine with a freshly downloaded copy of the SDK.

grap Never import a certificate into a keystore that you don't fully trust. Once a
certificate is added to the keystore, any program that uses the keystore
assumes that the certificate can be used to verify signatures.

Otherwise, the program displays an error message.

Signing Certificates

In the preceding section, you saw how to use a self-signed certificate to distribute a public key
to another party. However, the recipient of the certificate needed to ensure that the certificate
was valid by verifying the fingerprint with the issuer. More commonly, a certificate is signed by
a trusted intermediary.

The SDK does not contain tools for certificate signing. In this section, you will see how to write
a program that signs a certificate with a private key from a keystore. This program is useful in
its own right, and it shows you how to write programs that access the contents of certificates
and keystores.

Before looking inside the program code, let's see how to put it to use. Suppose Alice wants to
send her colleague Cindy a signed message. But Cindy doesn't want to call up everyone who
sends her a signature file to verify the signature fingerprint. There needs to be an entity that
Cindy trusts to verify signatures. In this example, we will suppose that Cindy trusts the
Information Resources Department at ACME Software to perform this service. To simulate this
process, you'll need to create an added keystore acmesoft.store. Generate a key and
export the self-signed certificate.

keytool -genkey -keystore acmesoft.store -alias acmeroot
keytool -export -alias acmeroot -keystore acmesoft.store
 -file acmeroot.cert

Then add it to Cindy's key store.

keytool -import -alias acmeroot -keystore cindy.store
 -file acmeroot.cert

Cindy still needs to verify the fingerprint of that root certificate, but from now on, she can simply
accept all certificates that are signed by it.

For Alice to send messages to Cindy and to everyone else at ACME Software, she needs to
bring her certificate to the Information Resources Department and have it signed. However, the
keytool program in the JDK does not have this functionality. That is where the certificate
signer program in Example 9-14 comes in. The program reads a certificate file and signs it with
a private key in a key store. An authorized staff member at ACME Software would verify Alice's
identity and generate a signed certificate as follows:

java CertificateSigner -keystore acmesoft.store -alias acmeroo
 -infile alice.cert -outfile alice_signedby_acmeroot.cert

The certificate signer program must have access to the ACME Software keystore, and the staff
member must know the keystore password. Clearly this is a sensitive operation.

Now Alice gives the file alice_signedby_acmeroot.cert file to Cindy and to anyone

else in ACME Software. Alternatively, ACME Software can simply store the file in a company
directory. Remember, this file contains Alice's public key and an assertion by ACME Software
that this key really belongs to Alice.

NOTE

When Cindy imports the signed certificate into her key store, the key store verifies that the key
was signed by a trusted root key that is already present in the key store and she is not asked
to verify the certificate fingerprint.

CAUTION

Once Cindy has added the root certificate and the certificates of the people who regularly send
her documents, she never has to worry about the keystore again.

Now let us look at the source code of Example 9-14. First, we load the keystore. The
getInstance factory method of the KeyStore class creates a keystore instance of the
appropriate type. The keytool-generated keystore has a type of "JKS". The provider of
this keystore type is "SUN".

KeyStore store = KeyStore.getInstance("JKS", "SUN");

Now, we need to load the keystore data. The load method requires an input stream and a
password. Note that the password is specified as a char[] array, not a string. The JVM can
keep strings around for a long time before they are garbage collected. Hackers could
potentially find these strings, for example, by examining the contents of swap files. But
character arrays can be cleared immediately after they are used.

Here is the code for loading the keystore. Note that we fill the password with spaces
immediately after use.

InputStream in = . . .;
char[] password = . . .;
store.load(in, password);
Arrays.fill(password, ' ');

The keytool program supports a different mechanism for key signing.
The -certreq option produces a certificate request in a standard format
that can be processed by certificate authorities such as Thawte and
Verisign, or local authorities running software such as the Netscape
certificate server.

grap This scenario is for illustrative purposes only. The keytool is really not
suitable as a tool for end-users. The keytool silently accepts certificates
that are signed by a party that it already trusts, and it asks the user to
confirm those that it cannot verify. It never rejects a certificate. It is all too
easy for a confused user to accept an invalid certificate.

in.close();

Next, we use the getKey method to retrieve the private key for signing. The getKey
method requires the key alias and key password. Its return type is Key, and we cast it to
PrivateKey since we know that the retrieved key is a private key.

char[] keyPassword = . . .;
PrivateKey issuerPrivateKey
 = (PrivateKey)store.getKey(alias, keyPassword);
Arrays.fill(keyPassword, ' ');

Now we are ready to read in the certificate that needs to be signed. The
CertificateFactory class can read in certificates from an input stream. First, you need
to get a factory of the appropriate type:

CertificateFactory factory
 = CertificateFactory.getInstance("X.509");

Then, call the generateCertificate method with an input stream:

in = new FileInputStream(inname);
X509Certificate inCert
 = (X509Certificate)factory.generateCertificate(in);
in.close();

The return type of the generateCertificate method is the abstract Certificate
class that is the superclass of concrete classes such as X509Certificate. Since we
know that the input file actually contains an X509Certificate, we use a cast.

CAUTION

The purpose of this program is to sign the bytes in the certificate. You retrieve the bytes with
the getTBSCertificate method:

byte[] inCertBytes = inCert.getTBSCertificate();

Next, we need the distinguished name of the issuer, which we will need to insert into the

grap There are two types called Certificate: a deprecated interface in the
java.security package, and an abstract class in the
java.security.cert package, which is the class that you want to
use. If you import both the java.security and the
java.security.cert package into your program, you need to
resolve the ambiguity and explicitly reference the
java.security.cert.Certificate class.

signed certificate. The name is stored in the issuer certificate in the keystore. You fetch
certificates from the keystore with the getCertificate method. Since certificates are
public information, you only supply the alias, not a password.

X509Certificate issuerCert
 = (X509Certificate)store.getCertificate(alias);

The getCertificate method has return type Certificate, but once again we know
that the returned value is actually an X509Certificate. We obtain the issuer identity from
the certificate by calling the getSubjectDN method. That method returns an object of some
type that implements the Principal interface. Conceptually, a principal is a real-world
entity such as a person, organization, or company.

Principal issuer = issuerCert.getSubjectDN();

We also retrieve the name of the signing algorithm.

String issuerSigAlg = issuerCert.getSigAlgName()

Now we must leave the realm of the standard security library. The standard library contains no
methods for generating new certificates. Libraries for certificate generation are available from
third-party vendors such as RSA Inc. and the Legion of Bouncy Castle
(http://www.bouncycastle.org). However, we will use the classes in the
sun.security.x509 package. The usual caveats apply. This package might not be
supplied by third-party vendors of Java technology, and Sun Microsystems might change the
behavior at any time.

The following code segment carries out these steps:

Generates a certificate information object from the bytes in the certificate that is to be
signed;

Sets the issuer name;

Creates the certificate and signs it with the issuer's private key;

Saves the signed certificate to a file.

X509CertInfo info = new X509CertInfo(inCertBytes);
info.set(X509CertInfo.ISSUER,
 new CertificateIssuerName((X500Name)issuer));
X509CertImpl outCert = new X509CertImpl(info);
outCert.sign(issuerPrivateKey, issuerSigAlg);
outCert.derEncode(out);

We will not discuss the use of these classes in detail since we do not recommend the use of
Sun libraries for production code. A future version of the SDK may contain classes for

certificate generation. In the meantime, you may want to rely on third-party libraries or simply
use existing certificate generation software.

Example 9-14 CertificateSigner.java

 1. import java.io.*;
 2. import java.security.*;
 3. import java.security.cert.*;
 4. import java.util.*;
 5.
 6. import sun.security.x509.X509CertInfo;
 7. import sun.security.x509.X509CertImpl;
 8. import sun.security.x509.X500Name;
 9. import sun.security.x509.CertificateIssuerName;
 10.
 11. /**
 12. This program signs a certificate, using the private ke
 13. another certificate in a keystore.
 14. */
 15. public class CertificateSigner
 16. {
 17. public static void main(String[] args)
 18. {
 19. String ksname = null; // the keystore name
 20. String alias = null; // the private key alias
 21. String inname = null; // the input file name
 22. String outname = null; // the output file name
 23. for (int i = 0; i < args.length; i += 2)
 24. {
 25. if (args[i].equals("-keystore"))
 26. ksname = args[i + 1];
 27. else if (args[i].equals("-alias"))
 28. alias = args[i + 1];
 29. else if (args[i].equals("-infile"))
 30. inname = args[i + 1];
 31. else if (args[i].equals("-outfile"))
 32. outname = args[i + 1];
 33. else usage();
 34. }
 35.
 36. if (ksname == null || alias == null ||
 37. inname == null || outname == null) usage();
 38.
 39. try
 40. {

 41. PushbackReader console = new PushbackReader(new
 42. InputStreamReader(System.in));
 43.
 44. KeyStore store = KeyStore.getInstance("JKS", "SU
 45. InputStream in = new FileInputStream(ksname);
 46. System.out.print("Keystore password: ");
 47. System.out.flush();
 48. char[] password = readPassword(console);
 49. store.load(in, password);
 50. Arrays.fill(password, ' ');
 51. in.close();
 52.
 53. System.out.print("Key password for " + alias + "
 54. System.out.flush();
 55. char[] keyPassword = readPassword(console);
 56. PrivateKey issuerPrivateKey
 57. = (PrivateKey)store.getKey(alias, keyPassword
 58. Arrays.fill(keyPassword, ' ');
 59.
 60. if (issuerPrivateKey == null)
 61. error("No such private key");
 62.
 63. in = new FileInputStream(inname);
 64.
 65. CertificateFactory factory
 66. = CertificateFactory.getInstance("X.509");
 67.
 68. X509Certificate inCert
 69. = (X509Certificate)factory.generateCertificat
 70. in.close();
 71. byte[] inCertBytes = inCert.getTBSCertificate();
 72.
 73. X509Certificate issuerCert
 74. = (X509Certificate)store.getCertificate(alias
 75. Principal issuer = issuerCert.getSubjectDN();
 76. String issuerSigAlg = issuerCert.getSigAlgName()
 77.
 78. FileOutputStream out = new FileOutputStream(outn
 79.
 80. X509CertInfo info = new X509CertInfo(inCertBytes
 81. info.set(X509CertInfo.ISSUER,
 82. new CertificateIssuerName((X500Name)issuer));
 83.
 84. X509CertImpl outCert = new X509CertImpl(info);

 85. outCert.sign(issuerPrivateKey, issuerSigAlg);
 86. outCert.derEncode(out);
 87.
 88. out.close();
 89. }
 90. catch (Exception exception)
 91. {
 92. exception.printStackTrace();
 93. }
 94. }
 95.
 96. /**
 97. Reads a password.
 98. @param in the reader from which to read the passwor
 99. @return an array of characters containing the passw
100. */
101. public static char[] readPassword(PushbackReader in)
102. throws IOException
103. {
104. final int MAX_PASSWORD_LENGTH = 100;
105. int length = 0;
106. char[] buffer = new char[MAX_PASSWORD_LENGTH];
107.
108. while (true)
109. {
110. int ch = in.read();
111. if (ch == '\r' || ch == '\n' || ch == -1
112. || length == MAX_PASSWORD_LENGTH)
113. {
114. if (ch == '\r') // handle DOS "\r\n" line end
115. {
116. ch = in.read();
117. if (ch != '\n' && ch != -1) in.unread(ch);
118. }
119. char[] password = new char[length];
120. System.arraycopy(buffer, 0, password, 0, leng
121. Arrays.fill(buffer, ' ');
122. return password;
123. }
124. else
125. {
126. buffer[length] = (char)ch;
127. length++;
128. }

129. }
130. }
131.
132. /**
133. Prints an error message and exits.
134. @param message
135. */
136. public static void error(String message)
137. {
138. System.out.println(message);
139. System.exit(1);
140. }
141.
142. /**
143. Prints a usage message and exits.
144. */
145. public static void usage()
146. {
147. System.out.println("Usage: java CertificateSigner"
148. + " -keystore keyStore -alias issuerKeyAlias"
149. + " -infile inputFile -outfile outputFile");
150. System.exit(1);
151. }
152. }

java.security.KeyStore

static getInstance(String type)

static getInstance(String type, String provider)

These messages construct a keystore object of the given type. If no provider is specified,
the default provider is used. To work with keystores generated by the keytool, specify
"JKS" as the type and "SUN" as the provider.

void load(InputStream in, char[] password)

loads a keystore from a stream. The password is kept in a character array so that it does
not become part of the JVM string pool.

Key getKey(String alias, char[] password)

returns a private key with the given alias that is stored in this keystore.

Certificate getCertificate(String alias)

returns a certificate for a public key with the given alias that is stored in this keystore.

java.security.cert.CertificateFactory

CertificateFactory getInstance(String type)

creates a certificate factory for the given type. The type is a certificate type such as
"X509".

Certificate generateCertificate(InputStream in)

loads a certificate from an input stream.

java.security.cert.Certificate

PublicKey getPublicKey()

returns the public key that is being guaranteed by this certificate.

byte[] getEncoded()

gets the encoded form of this certificate.

String getType()

returns the type of this certificate, such as "X509".

java.security.cert.X509Certificate

Principal getSubjectDN()

Principal getIssuerDN()

get the owner (or subject) and issuer distinguished names from the certificate.

Date getNotBefore()

Date getNotAfter()

get the validity period start and end dates of the certificate.

BigInteger getSerialNumber()

gets the serial number value from the certificate.

String getSigAlgName()

byte[] getSignature()

get the signature algorithm name and the owner signature from the certificate.

byte[] getTBSCertificate()

gets the DER-encoded certificate information that needs to be signed by the certificate
issuer.

Code Signing
One of the most important uses of authentication technology is signing executable programs. If
you download a program, you are naturally concerned about damage that a program can do.
For example, the program could have been infected by a virus. If you know where the code
comes from and that it has not been tampered with since it left its origin, then your comfort
level will be a lot higher than without this knowledge. In fact, if the program was also written in
the Java programming language, you can then use this information to make a rational decision
about what privileges you will allow that program to have. You might just want it to run in a
sandbox as a regular applet, or you might want to grant it a different set of rights and
restrictions. For example, if you download a word processing program, you might want to grant
it access to your printer and to files in a certain subdirectory. But you may not want to give it
the right to make network connections, so that the program can't try to send your files to a third
party without your knowledge.

You now know how to implement this sophisticated scheme.

1. First, use authentication to verify where the code came from.

2. Then, run the code with a security policy that enforces the permissions that you want to
grant the program, depending on its origin.

Signing JAR Files

At this point, code signing is still somewhat platform dependent. If you use JDK 1.1 applets
with Netscape or Internet Explorer, you need to use the Netscape or Microsoft tools to sign
your applets. See www.securingjava.com/appdx-c/ or
www.suitable.com/Doc_CodeSigning.shtml for more information on this topic.

In this section, we show you how to sign applets for use with the Java Plug-In software. There
are two scenarios:

1. Signed intranet applets;

2. Signed Internet applets.

In the first scenario, a system administrator installs certificates and policy files on local
machines. Whenever the Java Plug-in loads a signed applet, it consults the keystore for
signatures and the policy file for the applet permissions. Installing the certificates and policies
is straightforward and can be done once per desktop. End users can then run signed corporate
applets outside the sandbox. Whenever a new applet is created or an existing applet is
updated, it must be signed and deployed on the web server. However, no desktops need to be
touched as the applets evolve. We think this is a reasonable scenario that can be an attractive
alternative over deploying corporate applications on every desktop.

In the second scenario, software vendors obtain certificates that are signed by certificate
authorities such as Thawte and Verisign. When an end user visits a web site that contains a
signed applet, a dialog pops up that identifies the software vendor and gives the end user two
choices: to run the applet with full privileges, or to confine it to the sandbox. We discuss this
scenario in detail later.

For the remainder of this section, we describe how you can build policy files that grant specific
permissions to applets from known sources. Building and deploying these policy files is not for
casual end users. However, system administrators can carry out these tasks in preparation for
distributing intranet applets.

Suppose ACME Software wants its users to run certain applets that require local file access.
Since these applets cannot run inside the sandbox, ACME Software needs to install policy files
on employee machines. As you saw earlier in this chapter, ACME could identify the applets by
their code base. But that means that ACME would need to update the policy files each time the
applet code is moved to a different web server. Instead, ACME decides to sign the JAR files
that contain the applet code.

To make a signed JAR file, first add your class files to a JAR file.

jar cvf MyApplet.jar *.class

Then run the jarsigner tool and specify the JAR file and the alias of the private key:

jarsigner -keystore acmesoft.store MyApplet.jar acmeroot

In this example, the JAR file is signed with the self-signed root key. In practice, it would be
more likely that ACME issues its programmers individual keys that are themselves signed by

the root key.

Of course, the keystore containing the root key must be kept at a safe place. Let's make a
second keystore certs.store for certificates and add the acmeroot certificate into it.

keytool -export -keystore acmesoft.store -alias acmeroot -file
 acmeroot.cert
keytool -import -keystore certs.store -alias acmeroot -file
 acmeroot.cert

Next, you need to create a policy file that gives the permission for all applets that are signed
with signatures in that keystore.

You need to include the location of your keystore in the policy file. Add a line

keystore "keystoreURL", "keystoreType";

to the top of the policy file. The type is JKS if the keystore was generated by keytool.

keystore "file:certs.store", "JKS";

Then add signedBy "alias" to one or more grant clauses in the policy file. For
example,

grant signedBy "acmeroot"
{
 permission java.io.FilePermission "<<ALL FILES>>", "read";
 . . .
};

Any signed code that can be verified with the public key associated with the alias is now
granted these permissions.

You can try this out with the applet in Example 9-15. The applet tries to read from a local file
(see Figure 9-18). The default security policy lets the applet read files from its code base and
any subdirectories. Use appletviewer to run the applet and verify that you can view files
from the code base directory, but not from other directories.

Figure 9-18. The FileReadApplet program

Now place the applet in a JAR file and sign it with the acmeroot key. Then create a policy
file applets.policy with the contents:

keystore "file:certs.store", "JKS";
grant signedBy "acmeroot"
{
 permission java.io.FilePermission "<<ALL FILES>>", "read"
};

NOTE

For this test, make sure that the keystore, policy file, and JAR file are all in the same directory.

Finally, tell the appletviewer to use the policy file:

appletviewer -J-Djava.security.policy=applets.policy
 FileReadApplet.html

Now the applet can read all files.

This shows that the signing mechanism works. To actually deploy this mechanism, you need to
find appropriate places for the security files. We take up that topic in the next section.

You can also use the policytool to create the policy file.

As a final test, you may want to test your applet inside the Java Plug-In tool. Then, you need to
modify the file java.security in the jre/lib/security directory. Locate the section

The default is to have a single system wide policy file,
and a policy file in the user's home directory.
policy.url.1=file:${java.home}/lib/security/java.policy
policy.url.2=file:${user.home}/.java.policy

Add a line with a file URL for the policy file, such as

policy.url.3=file:///home/test/applet.policy

CAUTION

If you use the Java Plug-In software in Netscape 4 or Internet Explorer, you also need to
change the HTML file to load the plug-in with an EMBED or OBJECT tag. Opera and Netscape
6 automatically load the Java Plug-In software when you use the APPLET tag. (See Chapter
10 of Volume 1 for more information on how to load the Java Plug-In tool.)

CAUTION

Example 9-15 FileReadApplet.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.io.*;
 4. import java.util.*;
 5. import javax.swing.*;
 6.
 7. /**
 8. This applet can run "outside the sandbox" and
 9. read local files when it is given the right permissions
10. */
11. public class FileReadApplet extends JApplet

grap Be sure to modify the correct java.security file. The Java Plug-In
software uses the virtual machine in the JRE, not the one belonging to the
JDK. In particular, under Windows, the JRE files are located inside the
\Program Files\JavaSoft directory.

grap If you test your applet with the Java Plug-In instead of the appletviewer,
then you need to be aware that the plug-in only reads the policy file once,
when it is loaded for the first time. If you made a mistake in your policy file
or keystore, then you need to close down the browser, fix your mistake, and
restart the browser. Simply reloading the web page containing the applet
does not work.

12. {
13. public FileReadApplet()
14. {
15. fileNameField = new JTextField(20);
16. JPanel panel = new JPanel();
17. panel.add(new JLabel("File name:"));
18. panel.add(fileNameField);
19. JButton openButton = new JButton("Open");
20. panel.add(openButton);
21. openButton.addActionListener(new
22. ActionListener()
23. {
24. public void actionPerformed(ActionEvent event)
25. {
26. loadFile(fileNameField.getText());
27. }
28. });
29.
30. Container contentPane = getContentPane();
31. contentPane.add(panel, "North");
32.
33. fileText = new JTextArea();
34. contentPane.add(new JScrollPane(fileText), "Center")
35. }
36.
37. /**
38. Loads the contents of a file into the text area.
39. @param filename the file name
40. */
41. public void loadFile(String filename)
42. {
43. try
44. { fileText.setText("");
45. BufferedReader in
46. = new BufferedReader(new FileReader(filename))
47. String s;
48. while ((s = in.readLine()) != null)
49. fileText.append(s + "\n");
50. in.close();
51. }
52. catch (IOException e)
53. {
54. fileText.append(e + "\n");
55. }

56. catch (SecurityException e)
57. {
58. fileText.append("I am sorry, but I cannot do that
59. }
60. }
61.
62. private JTextField fileNameField;
63. private JTextArea fileText;
64. }

Deployment Tips

The first decision you need to make is where to deploy policy files. There are two default
locations:

java.policy in the ${java.home}/lib/security directory

.java.policy in the ${user.home} directory

We don't think either is a good choice. Instead, we recommend that you edit the
java.security file in the ${java.home}/jre/lib/security directory and add a
line to include a third policy file, such as:

policy.url.3=http://intranet.acmesoft.com/admin/applet.policy

Then, you can set up a policy file on an intranet server. That is an advantage since you only
need to manage a file in a single location.

Similarly, inside the policy file, you can specify the keystore location with an URL:

keystore "http://intranet.acmesoft.com/admin/certs.store", "JK

Add the certificate for the public key for corporate intranet applications to that keystore.

NOTE

Finally, sign the JAR files that contain the code for your intranet applications with the matching
private key.

We suggest that you don't simply grant AllPermission to intranet applets, but that you
augment the "sandbox" rights by specific privileges, such as accessing all directories inside a

You could add certificates to the cacerts keystore in the JRE. But then
you would need to keep updating the JRE on every desktop when you
change the keystore. We recommend that you don't touch the cacerts
file.

particular subdirectory, printing, network access within the intranet, and so on.

The deployment sounds a bit complex, but it is actually quite manageable. You need to
minimally customize the Java Plug-In configuration on each desktop. The rest can be
managed remotely. There are two benefits. At no time do you place a burden on your users to
make solitary security decisions. And you have fine-grained control over the privileges of the
remote code that your users execute.

NOTE

Software Developer Certificates

Up to now, we discussed scenarios where applets are delivered in an intranet and a system
administrator configures a security policy that controls the privileges of the applets. However,
that strategy only works with applets from known sources.

Suppose you surf the Internet and you encounter a web site that offers to run an applet from
an unfamiliar vendor, provided you grant it the permission to do so (see Figure 9-19). Such an
applet is signed with a software developer certificate that is issued by a certificate authority
such as Verisign. The pop-up dialog identifies the software developer and the certificate issuer.
You now have two choices:

Figure 9-19. Launching a signed applet

To run the applet with full privileges, or

To confine the applet to the sandbox.

Because Java platform security combines authentication and control over
code permissions, it offers a far more comprehensive security model than
does Microsoft's ActiveX technology. ActiveX code is authenticated, but
once it gains permission to run, it cannot be controlled at all.

What facts do you have at your disposal that might influence your decision? Here is what you
know:

1. Thawte sold a certificate to the software developer.

2. The applet really was signed with that certificate, and it hasn't been modified in transit.

3. The certificate really was signed by Thawte—it was verified by the public key in the local
cacerts file.

Does that tell you whether the code is safe to run? Do you trust the vendor if all you know is
the vendor name (*.netbizz.dk) and the fact that Thawte sold them a software developer
certificate? Presumably Thawte went to some degree of trouble to assure itself that
*.netbizz.dk is not an outright cracker.

However, no certificate issuer carries out a comprehensive audit of the honesty and
competence of software vendors.

In the situation of an unknown vendor, an end user is ill-equipped to make an intelligent
decision whether to let this applet run outside the sandbox, with all permissions of a local
application. If the vendor is a well-known company, then the user can at least take the past
track record of the company into account.

We don't like situations where a program demands "give me all rights, or I won't run at all."
Naïve users are too often cowed into granting access that can put them into danger. Would it
help if the applet explained what rights it needs and seeks specific permission for those rights?
Unfortunately, as you have seen, that can get pretty technical. It doesn't seem reasonable for
an end user to have to ponder whether an applet should really have the right to inspect the
AWT event queue. Perhaps, a future version of a plug-in can define permission sets that are
meaningful to an end user. Until that time, we remain unenthusiastic about applets that are
signed with software developer certificates.

If you want to deploy your applets to the world at large and you think that your users trust you
enough that they will allow your applets to run with full permissions on their machine, then you
may want to purchase a certificate from Thawte or Verisign and use it to sign your applets. See
http://java.sun.com/products/plugin/1.2/docs/nsobjsigning.html for more information.

Encryption
So far, we have discussed one important cryptographic technique that is implemented in the
Java security API, namely authentication through digital signatures. A second important aspect
of security is encryption. When information is authenticated, the information itself is plainly
visible. The digital signature merely verifies that the information has not been changed. In
contrast, when information is encrypted, it is not visible. It can only be decrypted with a
matching key.

Authentication is sufficient for code signing—there is no need for hiding the code. But
encryption is necessary when applets or applications transfer confidential information, such as
credit card numbers and other personal data.

Until recently, patents and export controls have prevented many companies, including Sun,
from offering strong encryption. Fortunately, export controls are now much less stringent, and
the patent for the RSA algorithm finally expired in October 2000. As of SDK 1.4, good
encryption support is part of the standard library. Crypto support is also available as a separate
extension (called JCE) for older versions of the SDK.

Symmetric Ciphers

The Java cryptographic extensions contain a class Cipher which is the superclass for all
encryption algorithms. You get a cipher object by calling the getInstance method:

Cipher cipher = Cipher.getInstance(algorithName);

or

Cipher cipher = Cipher.getInstance(algorithName, providerName)

The SDK comes with ciphers by the provider named "SunJCE". That is the default provider
that is used if you don't specify another provider name. You will see in the next section how to
add other providers.

The algorithm name is a string such as "DES" or "DES/CBC/PKCS5Padding".

DES, the Data Encryption Standard, is a venerable block cipher with a key length of 56 bits.
Nowadays, the DES algorithm is considered obsolete because it has become possible to crack
it with brute force (see, for example, http://www.eff.org/descracker/). A far better alternative is
its successor, the Advanced Encryption Standard (AES). See
http://csrc.nist.gov/encryption/aes/ for more information on AES. At the time of this writing, the
SunJCE provider supports DES but not AES.

Once you have a cipher object, you initialize it by setting the mode and the key.

int mode = . . .;
Key key = . . .;
cipher.init(mode, key);

The mode is one of

Cipher.ENCRYPT_MODE
Cipher.DECRYPT_MODE
Cipher.WRAP_MODE
Cipher.UNWRAP_MODE

The wrap and unwrap modes are used to encrypt one key with another—see the next section
for an example.

Now you can repeatedly call the update method to encrypt blocks of data:

int blockSize = cipher.blockSize();
byte[] inBytes = new byte[blockSize];
. . . // read inBytes
int outputSize = cipher.outputSize(inLength);
byte[] outBytes = new byte[outputSize];
int outLength = cipher.update(inBytes, 0, outputSize, outBytes
. . . // write outBytes

When you are done, you must call the doFinal method once. If there is a final block of input
data available (with fewer than blockSize bytes), then call

outBytes = cipher.doFinal(inBytes, 0, inLength);

If all input data have been encrypted, call

outBytes = cipher.doFinal();

instead.

The call to doFinal is necessary to carry out padding of the final block. Consider the DES
cipher. It has a block size of 8 bytes. Suppose the last block of the input data has less than 8
bytes. Of course, we can fill the remaining bytes with 0, to obtain one final block of 8 bytes,
and encrypt it. But when decrypting, the result will have several trailing 0 bytes appended to it,
and therefore it will be slightly different from the original input file. That may well be a problem,
and a padding scheme is needed to avoid it. A commonly used padding scheme is the one
described in the Public Key Cryptography Standard (PKCS) #5 by RSA Security Inc.
(http://www.rsasecurity.com/rsalabs/pkcs/pkcs-5). In this scheme, the last block is not padded
with a pad value of zero, but with a pad value that equals the number of pad bytes. In other
words, if L is the last (incomplete) block, then it is padded as follows:

L 01 if length(L) = 7
L 02 02 if length(L) = 6
L 03 03 03 if length(L) = 5
. . .
L 07 07 07 07 07 07 07 if length(L) = 1

Finally, if the length of the input is actually divisible by 8, then one block

08 08 08 08 08 08 08 08

is appended to the input and decrypted. When decrypting, the very last byte of the plaintext is
a count of the padding characters to discard.

Finally, we need to explain how to obtain a key. You can generate a completely random key by
following these steps.

1. Get a KeyGenerator for your algorithm.

2. Initialize the generator with a source for randomness. If the block length of the cipher is
variable, you also need to specify the desired block length.

3. Call the generateKey method.

For example, here is how you generate a DES key.

KeyGenerator keygen = KeyGenerator.getInstance("DES");
SecureRandom random = new SecureRandom();
keygen.init(random);
Key key = keygen.generateKey();

Alternatively, you may want to produce a key from a fixed set of raw data (perhaps derived
from a password or the timing of keystrokes). Then use a SecretKeyFactory like this:

SecretKeyFactory keyFactory
 = SecretKeyFactory.getInstance("DES");
byte[] keyData = . . .; // 8 bytes for DES
SecretKeySpec keySpec = new SecretKeySpec(keyData, "DES");
Key key = keyFactory.generateSecret(keySpec);

The sample program at the end of this section puts the DES cipher to work (see Example 9-
16). To use the program, you first need to generate a secret key. Run

java DESTest -genkey secret.key

The secret key is saved in the file secret.key

Now you can encrypt with the command

java DESTest -encrypt plaintextFile encryptedFile secret.key

Decrypt with the command

java DESTest -decrypt encryptedFile decryptedFile secret.key

The program is straightforward. The -genkey option produces a new secret key and
serializes it in the given file. That operation takes a long time because the initialization of the
secure random generator is time consuming. The -encrypt and -decrypt options both
call into the same crypt method that calls the update and doFinal methods of the
cipher. Note how the update method is called as long as the input blocks have the full
length, and the doFinal method is either called with a partial input block (which is then
padded) or with no additional data (to generate one pad byte).

Example 9-16 DESTest.java

 1. import java.io.*;

 2. import java.security.*;
 3. import javax.crypto.*;
 4. import javax.crypto.spec.*;
 5.
 6. /**
 7. This program tests the DES cipher. Usage:
 8. java DESTest -genkey keyfile
 9. java DESTest -encrypt plaintext encrypted keyfile
 10. java DESTest -decrypt encrypted decrypted keyfile
 11. */
 12. public class DESTest
 13. {
 14. public static void main(String[] args)
 15. {
 16. try
 17. {
 18. if (args[0].equals("-genkey"))
 19. {
 20. KeyGenerator keygen
 21. = KeyGenerator.getInstance("DES");
 22. SecureRandom random = new SecureRandom();
 23. keygen.init(random);
 24. SecretKey key = keygen.generateKey();
 25. ObjectOutputStream out = new ObjectOutputStre
 26. new FileOutputStream(args[1]));
 27. out.writeObject(key);
 28. out.close();
 29. }
 30. else
 31. {
 32. int mode;
 33. if (args[0].equals("-encrypt"))
 34. mode = Cipher.ENCRYPT_MODE;
 35. else
 36. mode = Cipher.DECRYPT_MODE;
 37.
 38. ObjectInputStream keyIn = new ObjectInputStre
 39. new FileInputStream(args[3]));
 40. Key key = (Key) keyIn.readObject();
 41. keyIn.close();
 42.
 43. InputStream in = new FileInputStream(args[1])
 44. OutputStream out = new FileOutputStream(args[
 45. Cipher cipher = Cipher.getInstance("DES");

 46. cipher.init(mode, key);
 47.
 48. crypt(in, out, cipher);
 49. in.close();
 50. out.close();
 51. }
 52. }
 53. catch (IOException exception)
 54. {
 55. exception.printStackTrace();
 56. }
 57. catch (GeneralSecurityException exception)
 58. {
 59. exception.printStackTrace();
 60. }
 61. catch (ClassNotFoundException exception)
 62. {
 63. exception.printStackTrace();
 64. }
 65. }
 66.
 67. /**
 68. Uses a cipher to transform the bytes in an input st
 69. and sends the transformed bytes to an output stream
 70. @param in the input stream
 71. @param out the output stream
 72. @param cipher the cipher that transforms the bytes
 73. */
 74. public static void crypt(InputStream in, OutputStream
 75. Cipher cipher) throws IOException, GeneralSecurityE
 76. {
 77. int blockSize = cipher.getBlockSize();
 78. int outputSize = cipher.getOutputSize(blockSize);
 79. byte[] inBytes = new byte[blockSize];
 80. byte[] outBytes = new byte[outputSize];
 81.
 82. int inLength = 0;;
 83. boolean more = true;
 84. while (more)
 85. {
 86. inLength = in.read(inBytes);
 87. if (inLength == blockSize)
 88. {
 89. int outLength

 90. = cipher.update(inBytes, 0, blockSize, out
 91. out.write(outBytes, 0, outLength);
 92. System.out.println(outLength);
 93. }
 94. else more = false;
 95. }
 96. if (inLength > 0)
 97. outBytes = cipher.doFinal(inBytes, 0, inLength);
 98. else
 99. outBytes = cipher.doFinal();
100. System.out.println(outBytes.length);
101. out.write(outBytes);
102. }
103. }

java.security.Cipher

static Cipher getInstance(String algorithm)

static Cipher getInstance(String algorithm, String
provider)

returns a Cipher object that implements the specified algorithm. Throws a
NoSuchAlgorithmException if the algorithm is not provided.

int getBlockSize()

returns the size (in bytes) of a cipher block, or 0 if the cipher is not a block cipher.

int getOutputSize(int inputLength)

returns the size of an output buffer that is needed if the next input has the given number
of bytes. This method takes into account any buffered bytes in the cipher object.

Parameters: algorithm The algorithm name, such as "DES" or
"DES/CBC/PKCS5Padding". Contact your provider
for information on valid algorithm names.

 provider The provider name, such as "SunJCE" or "BC".

void init(int mode, Key key)

initializes the cipher algorithm object.

byte[] update(byte[] in)

byte[] update(byte[] in, int offset, int length)

int update(byte[] in, int offset, int length, byte[] out)

transform one block of input data. The first two methods return the output. The third
method returns the number of bytes placed into out.

byte[] doFinal()

byte[] doFinal(byte[] in)

byte[] doFinal(byte[] in, int offset, int length)

int doFinal(byte[] in, int offset, int length, byte[] out)

transform the last block of input data and flush the buffer of this algorithm object. The first
three methods return the output. The fourth method returns the number of bytes placed
into out.

java.security.KeyGenerator

Parameters mode ENCRYPT_MODE, DECRYPT_MODE, WRAP_MODE, or
UNWRAP_MODE

 key the key to use for the transformation

Parameters: in the new input bytes to process
 offset the starting index of input bytes in the array in
 length the number of input bytes
 out the array into which to place the output bytes

Parameters: in the new input bytes to process
 offset the starting index of input bytes in the array in
 length the number of input bytes
 out the array into which to place the output bytes

static KeyGenerator getInstance(String algorithm)

returns a KeyGenerator object that implements the specified algorithm. Throws a
NoSuchAlgorithmException if the algorithm is not provided.

void initialize(SecureRandom random)

void initialize(int keySize, SecureRandom random

initialize the key generator.

Key generateKey()

generates a new key.

javax.crypto.SecretKeyFactory

static SecretKeyFactory getInstance(String algorithm)

static SecretKeyFactory getInstance(String algorithm,
String provider)

returns a SecretKeyFactory object for the specified algorithm.

Parameters: algorithm the name of the algorithm, such as "DES"

Parameters: keySize the desired key size
 random the source of randomness for generating keys

Parameters: algorithm the algorithm name, such as "DES"
 provider the provider name, such as "SunJCE" or "BC"

SecretKey generateSecret(KeySpec spec)

generates a new secret key from the given specification.

javax.crypto.spec.SecretKeySpec

SecretKeySpec(byte[] key, String algorithm)

constructs a key specification.

Public Key Ciphers

The DES cipher that you have seen in the preceding section is a symmetric cipher. The same
key is used for encryption and for decryption. The Achilles heel of symmetric ciphers is key
distribution. If Alice sends Bob an encrypted method, then Bob needs the same key that Alice
used. If Alice changes the key, then she needs to send Bob both the message, and, through a
secure channel, the new key. But perhaps she has no secure channel to Bob, which is why
she encrypts her messages to him in the first place.

Public key cryptography solves that problem. In a public key cipher, Bob has a key pair
consisting of a public key and a matching private key. Bob can publish the public key
anywhere, but he must closely guard the private key. Alice simply uses the public key to
encrypt her messages to Bob.

Actually, it's not quite that simple. All known public key algorithms are much slower than
symmetric key algorithms such as DES or AES. It would not be practical to use a public key
algorithm to encrypt large amounts of information. But that problem can be overcome easily by
combining a public key cipher with a fast symmetric cipher, like this:

1. Alice generates a random symmetric encryption key. She uses it to encrypt her plaintext.

2. Alice encrypts the symmetric key with Bob's public key.

3. Alice sends Bob both the encrypted symmetric key and the encrypted plaintext.

4. Bob uses his private key to decrypt the symmetric key.

5. Bob uses the decrypted symmetric key to decrypt the message.

Nobody but Bob can decrypt the symmetric key because only Bob has the private key for
decryption. Thus, the expensive public key encryption is only applied to a small amount of key

Parameters: key the bytes to use to make the key
 algorithm the algorithm name, such as "DES"

data.

The most commonly used public key algorithm is the RSA algorithm invented by Rivest,
Shamir, and Adleman. Until October 2000, the algorithm was protected by a patent assigned to
RSA Security Inc. Licenses were not cheap—typically a 3% royalty, with a minimum payment
of $50,000 per year. Now the algorithm is in the public domain. Unfortunately, the SunJCE
provider does not expose an RSA algorithm object, even though there is an RSA
implementation within the SDK.

We found another provider, the "Legion of Bouncy Castle," which supports RSA as well as a
number of other features missing from the SunJCE provider. Most importantly, the JAR file
with the provider code has been signed by Sun Microsystems so that you can combine it with
the JCE implementation of the SDK. (If an algorithm provider's code is not signed by Sun, you
need to use an alternate "cleanroom" implementation of the JCE, not the one that is part of the
SDK.) To test out the next sample program, you need to download the provider JAR file from
http://www.bouncycastle.org/index.html.

There are two ways for installing a new provider. You can add a line to the security description
file, jre/lib/security/java.security. By default, there are already several
providers. To add a new provider, add a line such as

security.provider.6=org.bouncycastle.jce.provider
 .BouncyCastleProvider

Or you can dynamically load another security provider with the addProvider method of the
Security class:

Security.addProvider(new BouncyCastleProvider());

In either case, you must make sure that the provider code is accessible. You can just move the
JAR file into the jre/lib/ext directory, or you can add it to the class path.

To use the RSA algorithm, you need a public/private key pair. You use a
KeyPairGenerator like this:

KeyPairGenerator pairgen
 = KeyPairGenerator.getInstance("RSA", "BC");
 SecureRandom random = new SecureRandom();
 pairgen.initialize(KEYSIZE, random);
 KeyPair keyPair = pairgen.generateKeyPair();
 Key publicKey = keyPair.getPublic();
 Key privateKey = keyPair.getPrivate();

The program in Example 9-17 has three options. The -genkey option produces a key pair.
The -encrypt option generates a DES key and wraps it with the public key.

Key key = . . .; // a DES key

Key publicKey = . . .; // a public RSA key
Cipher cipher = Cipher.getInstance("RSA", "BC");
cipher.init(Cipher.WRAP_MODE, publicKey);
byte[] wrappedKey = cipher.wrap(key);

It then produces a file that contains

the length of the wrapped key

the wrapped key bytes

the plaintext encrypted with the DES key

The -decrypt option decrypts such a file. To try out the program, first generate the RSA
keys:

java RSATest -genkey public.key private.key

Then encrypt a file

java RSATest -encrypt plaintextFile encryptedFile public.key

Finally, decrypt it and verify that the decrypted file matches the plain text.

java RSATest -decrypt encryptedFile decryptedFile private.key

NOTE

Example 9-17 RSATest.java

 1. import java.io.*;
 2. import java.security.*;
 3. import javax.crypto.*;
 4. import javax.crypto.spec.*;
 5.
 6. /**
 7. This program tests the RSA cipher. Usage:
 8. java RSATest -genkey public private
 9. java RSATest -encrypt plaintext encrypted public
 10. java RSATest -decrypt encrypted decrypted private

Before running this program, make sure you follow the instructions at the
beginning of this section for installing the "Bouncy Castle" provider. Either
edit the java.security file or edit the program and add a call to load
the provider. Place the provider JAR file into the extensions directory or add
it to the class path.

 11. */
 12. public class RSATest
 13. {
 14. public static void main(String[] args)
 15. {
 16. try
 17. {
 18. if (args[0].equals("-genkey"))
 19. {
 20. KeyPairGenerator pairgen
 21. = KeyPairGenerator.getInstance("RSA", "BC"
 22. SecureRandom random = new SecureRandom();
 23. pairgen.initialize(KEYSIZE, random);
 24. KeyPair keyPair = pairgen.generateKeyPair();
 25. ObjectOutputStream out = new ObjectOutputStre
 26. new FileOutputStream(args[1]));
 27. out.writeObject(keyPair.getPublic());
 28. out.close();
 29. out = new ObjectOutputStream(
 30. new FileOutputStream(args[2]));
 31. out.writeObject(keyPair.getPrivate());
 32. out.close();
 33. }
 34. else if (args[0].equals("-encrypt"))
 35. {
 36. KeyGenerator keygen
 37. = KeyGenerator.getInstance("DES");
 38. SecureRandom random = new SecureRandom();
 39. keygen.init(random);
 40. SecretKey key = keygen.generateKey();
 41.
 42. // wrap with RSA public key
 43. ObjectInputStream keyIn = new ObjectInputStre
 44. new FileInputStream(args[3]));
 45. Key publicKey = (Key) keyIn.readObject();
 46. keyIn.close();
 47.
 48. Cipher cipher = Cipher.getInstance("RSA", "BC
 49. cipher.init(Cipher.WRAP_MODE, publicKey);
 50. byte[] wrappedKey = cipher.wrap(key);
 51. DataOutputStream out = new DataOutputStream(n
 52. FileOutputStream(args[2]));
 53. out.writeInt(wrappedKey.length);
 54. out.write(wrappedKey);

 55.
 56. InputStream in = new FileInputStream(args[1])
 57. cipher = Cipher.getInstance("DES", "BC");
 58. cipher.init(Cipher.ENCRYPT_MODE, key);
 59. crypt(in, out, cipher);
 60. in.close();
 61. out.close();
 62. }
 63. else
 64. {
 65. DataInputStream in = new DataInputStream(new
 66. FileInputStream(args[1]));
 67. int length = in.readInt();
 68. byte[] wrappedKey = new byte[length];
 69. in.read(wrappedKey, 0, length);
 70.
 71. // unwrap with RSA private key
 72. ObjectInputStream keyIn = new ObjectInputStre
 73. new FileInputStream(args[3]));
 74. Key privateKey = (Key) keyIn.readObject();
 75. keyIn.close();
 76.
 77. Cipher cipher = Cipher.getInstance("RSA", "BC
 78. cipher.init(Cipher.UNWRAP_MODE, privateKey);
 79. Key key = cipher.unwrap(wrappedKey, "DES",
 80. Cipher.SECRET_KEY);
 81.
 82. OutputStream out = new FileOutputStream(args[
 83. cipher = Cipher.getInstance("DES", "BC");
 84. cipher.init(Cipher.DECRYPT_MODE, key);
 85.
 86. crypt(in, out, cipher);
 87. in.close();
 88. out.close();
 89. }
 90. }
 91. catch (IOException exception)
 92. {
 93. exception.printStackTrace();
 94. }
 95. catch (GeneralSecurityException exception)
 96. {
 97. exception.printStackTrace();
 98. }

 99. catch (ClassNotFoundException exception)
100. {
101. exception.printStackTrace();
102. }
103. }
104.
105. /**
106. Uses a cipher to transform the bytes in an input st
107. and sends the transformed bytes to an output stream
108. @param in the input stream
109. @param out the output stream
110. @param cipher the cipher that transforms the bytes
111. */
112. public static void crypt(InputStream in, OutputStream
113. Cipher cipher) throws IOException, GeneralSecurityE
114. {
115. int blockSize = cipher.getBlockSize();
116. int outputSize = cipher.getOutputSize(blockSize);
117. byte[] inBytes = new byte[blockSize];
118. byte[] outBytes = new byte[outputSize];
119.
120. int inLength = 0;;
121. boolean more = true;
122. while (more)
123. {
124. inLength = in.read(inBytes);
125. if (inLength == blockSize)
126. {
127. int outLength
128. = cipher.update(inBytes, 0, blockSize, out
129. out.write(outBytes, 0, outLength);
130. }
131. else more = false;
132. }
133. if (inLength > 0)
134. outBytes = cipher.doFinal(inBytes, 0, inLength);
135. else
136. outBytes = cipher.doFinal();
137. out.write(outBytes);
138. }
139.
140. public static final int KEYSIZE = 128;
141. }

java.security.Security

static int addProvider(Provider provider)

adds a provider to the set of providers.

static void removeProvider(String name)

removes the provider with the specified name, or does nothing if no matching provider
exists.

static Provider[] getProviders()

returns the currently installed providers

static Provider getProvider(String name)

returns the provider with the specified name, or null if no matching provider exists.

static String getProperty(String key)

gets a security property. By default, security properties are stored in the file
jre/lib/java.security.

static void setProperty(String key, String value)

gets a security property.

Cipher Streams

The JCE library provides a convenient set of stream classes that automatically encrypt or
decrypt stream data. For example, here is how you can encrypt data to a file:

Cipher cipher = . . .;
cipher.init(Cipher.ENCRYPT_MODE, key);
CipherOutputStream out = new CipherOutputStream(
 new FileOutputStream(outputFileName), cipher);
byte[] bytes = new byte[BLOCKSIZE];
int inLength = getData(bytes); // get data from data source
while (inLength != -1)
{
 out.write(bytes, 0, inLength);

 inLength = getData(bytes); // get more data from data sourc
}
out.flush();

Similarly, you can use a CipherInputStream to read and decrypt data from a file:

Cipher cipher = . . .;
cipher.init(Cipher.DECRYPT_MODE, key);
CipherInputStream in = new CipherInputStream(
 new FileInputStream(inputFileName), cipher);
byte[] bytes = new byte[BLOCKSIZE];
int inLength = in.read(bytes);
while (inLength != -1)
{
 putData(bytes, inLength); // put data to destination
 inLength = in.read(bytes);
}

The cipher stream classes transparently handle the calls to update and doFinal, which is
clearly a convenience.

javax.security.CipherInputStream

CipherInputStream(InputStream in, Cipher cipher)

constructs an input stream that reads data from in and decrypts or encrypts them using
the given cipher.

int read()

int read(byte[] b, int off, int len)

read data from the input stream, which is automatically decrypted or encrypted.

javax.security.CipherOutputStream

CipherOutputStream(OutputStream out, Cipher cipher)

constructs an output stream that writes data to out and encrypts or decrypts them using
the given cipher.

void write(int ch)

void write(byte[] b, int off, int len)

write data to the output stream, which is automatically encrypted or decrypted.

void flush()

flushes the cipher buffer and carries out padding, if necessary.

CONTENTS

Chapter 10. Internationalization
Locales

Numbers and Currencies

Date and Time

Text

Resource Bundles

Graphical User Interface Localization

There's a big world out there; we hope that lots of its inhabitants will be interested in your
application or applet. The Internet, after all, effortlessly spans the barriers between countries.
On the other hand, when you write your applet in U.S. English, using the ASCII character set,
you are putting up a barrier. For example, even within countries that can function using the
ASCII character set, things as basic as dates and numbers are displayed differently. To a
German speaker, the date 3/4/95 means something different than it does to an English
speaker. Or, an applet like our calculator from Chapter 10 of Volume 1 could confuse people
who do not use the "." to separate the integer and fractional parts of a number.

Now, it is true that many Internet users are able to read English, but they will certainly be more
comfortable with applets or applications that are written in their own language and that present
data in the format with which they are most familiar. Imagine, for example, that you could write
a retirement calculator applet that would change how it displays its results depending on the
location of the machine that is downloading it. This kind of applet is immediately more
valuable—and smart companies will recognize its value.

The Java programming language was the first language designed from the ground up to
support internationalization. From the beginning, it had the one essential feature needed for
effective internationalization: it used Unicode for all strings. Unicode support makes it easy to
write programs in the Java programming language that manipulate strings in any one of
multiple languages.

NOTE

Many programmers believe that all they need to do to internationalize their application is to
support Unicode and to translate the messages in the user interface. However, as you will see
in this chapter, there is a lot more to internationalizing programs than just Unicode support.
Operating systems and even browsers may not necessarily be Unicode-ready. For example, it

CONTENTS

The best source for Unicode character tables is The Unicode Standard,
Version 3.0, [Addison-Wesley, 2000]. You can also see many of the code
charts at http://www.unicode.org.

is almost always necessary to have a translation layer between the character sets and fonts of
the host machine and the Unicode-centric Java virtual machine. Also, dates, times,
currencies—even numbers—are formatted differently in different parts of the world. You need
an easy way to configure menu and button names, message strings, and keyboard shortcuts
for different languages. You need to trigger the changes in a way that is based on information
the ambient machine can report to your program.

In this chapter, you'll see how to write internationalized Java applications and applets. You will
see how to localize date and time, numbers and text, and graphical user interfaces, and you'll
look at the tools that the SDK offers for writing internationalized programs. (And, by the way,
you will see how to write a retirement calculator applet that can change how it displays its
results depending on the location of the machine that is downloading it.)

Locales
When you look at an application that is adapted to an international market, the most obvious
difference you notice is the language. This observation is actually a bit too limiting for true
internationalization: Countries can share a common language, but you still may need to do
some work to make computer users of both countries happy.[1]

[1] "We have really everything in common with America nowadays, except, of course, language." Oscar Wilde.

In all cases, menus, button labels, and program messages will need to be translated to the
local language; they may also need to be rendered in a different script. There are many more
subtle differences; for example, numbers are formatted quite differently in English and in
German. The number

123,456.78

should be displayed as

123.456,78

for a German user. That is, the role of the decimal point and the decimal comma separator are
reversed! There are similar variations in the display of dates. In the United States, dates are
somewhat irrationally displayed as month/day/year. Germany uses the more sensible order of
day/month/year, whereas in China, the usage is year/month/day. Thus, the date

3/22/61

should be presented as

22.03.1961

to a German user. Of course, if the month names are written out explicitly, then the difference
in languages becomes apparent. The English

March 22, 1961

should be presented as

22. März 1961

in German, or

in Chinese.

You saw in Volume 1 that the java.text class has methods that can format numbers,
currencies, and dates. These methods can, in fact, do much more when you give them a
parameter that describes the location. To invoke these methods in a non-country-specific way,
you only have to supply objects of the Locale class. A locale describes

A language;

A location;

Optionally, a variant.

For example, in the United States, you use a locale with

language=English, location=United States.

In Germany, you use a locale with

language=German, location=Germany.

Switzerland has four official languages (German, French, Italian, and Rhaeto-Romance). A
German speaker in Switzerland would want to use a locale with

language=German, location=Switzerland

This locale would make formatting work similarly to how it would work for the German locale;
however, currency values would be expressed in Swiss francs, not German marks.

Variants are, fortunately, rare and are needed only for exceptional or system-dependent
situations. For example, the Norwegians are having a hard time agreeing on the spelling of
their language (a derivative of Danish). They use two spelling rule sets: a traditional one called
Bokmål and a new one called Nynorsk. The traditional spelling would be expressed as a
variant

language=Norwegian, location=Norway, variant=Bokmål

There are "Euro" variants for several European locales. For example, the locale

language=German, location=Germany, variant=Euro

uses the euro sign $ instead of DM for displaying currencies.

It is also possible to encode platform-dependent information in the variant.

To express the language and location in a concise and standardized manner, the Java
programming language uses codes that were defined by the International Standards
Organization. The local language is expressed as a lowercase two-letter code, following ISO-
639, and the country code is expressed as an uppercase two-letter code, following ISO-3166.
Tables 10-1 and 10-2 show some of the most common codes.

NOTE

For a full list of ISO-639 codes, see, for example,

http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt.

You can find a full list of the ISO-3166 codes at a number of sites, including

http://www.niso.org/3166.html.

Table 10-1. Common ISO-639 language codes
Language Code
Chinese zh
Danish da
Dutch nl
English en
French fr
Finnish fi
German de
Greek el
Italian it
Japanese ja
Korean ko
Norwegian no
Portuguese pt
Spanish sp
Swedish sv
Turkish tr

Table 10-2. Common ISO-3166 country codes

These codes do seem a bit random, especially since some of them are derived from local
languages (German = Deutsch = de, Chinese = zhongwen = zh), but they are, at least,
standardized.

To describe a locale, you concatenate the language, country code, and variant (if any) and
pass this string to the constructor of the Locale class. The variant is optional.

Locale germanGermany = new Locale("de", "DE");
Locale germanSwitzerland = new Locale("de", "CH");
Locale norwegianNorwayBokmål = new Locale("no", "NO", "B");

If you want to specify a locale that describes a language only and not a location, use an empty
string as the second argument of the constructor.

Locale german = new Locale("de", "");

These kinds of locales can be used only for language-dependent lookups. Since the locales do

Country Code
Austria AT
Belgium BE
Canada CA
China CN
Denmark DK
Finland FI
Germany DE
Great Britain GB
Greece GR
Ireland IE
Italy IT
Japan JP
Korea KR
The Netherlands NL
Norway NO
Portugal PT
Spain ES
Sweden SE
Switzerland CH
Taiwan TW
Turkey TR
United States US

not specify the location where German is spoken, you cannot use them to determine local
currency and date formatting preferences.

For your convenience, the SDK predefines a number of locale objects:

Locale.CANADA
Locale.CANADA_FRENCH
Locale.CHINA
Locale.FRANCE
Locale.GERMANY
Locale.ITALY
Locale.JAPAN
Locale.KOREA
Locale.PRC
Locale.TAIWAN
Locale.UK
Locale.US

The SDK also predefines a number of language locales that specify just a language without a
location.

Locale.CHINESE
Locale.ENGLISH
Locale.FRENCH
Locale.GERMAN
Locale.ITALIAN
Locale.JAPANESE
Locale.KOREAN
Locale.SIMPLIFIED_CHINESE
Locale.TRADITIONAL_CHINESE

Besides constructing a locale or using a predefined one, you have two other methods for
obtaining a locale object.

The static getDefault method of the Locale class gets the default locale as stored by
the local operating system. Similarly, in an applet, the getLocale method returns the locale
of the user viewing the applet. Finally, all locale-dependent utility classes can return an array of
the locales they support. For example,

Locale[] supportedLocales = DateFormat.getAvailableLocales();

returns all locales that the DateFormat class can handle. For example, at the time of this
writing, the DateFormat class knows how to format dates in Chinese but not in Vietnamese.
Therefore, the getAvailableLocales() returns the Chinese locales but no Vietnamese
ones.

NOTE

Once you have a locale, what can you do with it? Not much, as it turns out. The only useful
methods in the Locale class are the ones for identifying the language and country codes.
The most important one is getDisplayName. It returns a string describing the locale. This
string does not contain the cryptic two-letter codes, but it is in a form that can be presented to
a user, such as

German (Switzerland)

Actually, there is a problem here. The display name is issued in the default locale. That may
not be appropriate. If your user already selected German as the preferred language, you
probably want to present the string in German. You can do just that by giving the German
locale as a parameter: The code

Locale loc = new Locale("de", "CH");
System.out.println(loc.getDisplayName(Locale.GERMAN));

prints out

Deutsch (Schweiz)

But the real reason you need a Locale object is to feed it to locale-aware methods. For
example, the toLowerCase and toUpperCase methods of the String class can take
an argument of type Locale because the rules for forming uppercase letters differ by locale.
In France, accents are generally dropped for uppercase letters. But in French-speaking
Canada, they are retained. For example, the upper case of "étoile" (star) in France would be
"ETOILE," but in Canada it would be "ÉTOILE."

String star = "étoile";
String fr = star.toUpperCase(Locale.FRANCE);
// should return "ETOILE"
String ca = star.toUpperCase(Locale.CANADA_FRENCH);
// returns "ÉTOILE"

Well, not quite: actually, this is the way it is supposed to work, but at least up to SDK 1.4, the
toUpperCase method does not pay attention to the French locale. Still, we hope we have
given you an idea of what you will be able to do with a Locale object. (Actually, you can give
a Locale object to many other methods that carry out locale-specific tasks. You will see
many examples in the following sections.)

java.util.Locale

We do not discuss how to create new language-specific elements. If you
need to build a Brooklyn- or Texas-centric locale, please consult the SDK
documentation.

static Locale getDefault()

returns the default locale.

static void setDefault(Locale l)

sets the default locale.

String getDisplayName()

returns a name describing the locale, expressed in the current locale.

String getDisplayName(Locale l)

returns a name describing the locale, expressed in the given locale.

String getLanguage()

returns the language code, a lowercase two-letter ISO-639 code.

String getDisplayLanguage()

returns the name of the language, expressed in the current locale.

String getDisplayLanguage(Locale l)

returns the name of the language, expressed in the given locale.

String getCountry()

returns the country code as an uppercase two-letter ISO-3166 code.

String getDisplayCountry()

returns the name of the country, expressed in the current locale.

String getDisplayCountry(Locale l)

returns the name of the country, expressed in the given locale.

String getVariant()

returns the variant string.

String getDisplayVariant()

returns the name of the variant, expressed in the current locale.

String getDisplayVariant(Locale l)

returns the name of the variant, expressed in the given locale.

String toString()

returns a description of the locale, with the language, country, and variant separated by
underscores (e.g., "de_CH").

Numbers and Currencies
We already mentioned how number and currency formatting is highly locale dependent. The
Java programming language supplies a collection of formatter objects that can format and
parse numeric values in the java.text class. You go through the following steps to format
a number for a particular locale.

1. Get the locale object, as described in the preceding section.

2. Use a "factory method" to obtain a formatter object.

3. Use the formatter object for formatting and parsing.

The factory methods are static methods of the NumberFormat class that take a Locale
argument. There are three factory methods: getNumberInstance,
getCurrencyInstance, and getPercentInstance. These methods return objects
that can format and parse numbers, currency amounts, and percentages, respectively. For
example, here is how you can format a currency value in German.

Locale loc = new Locale("de", "DE");
NumberFormat currFmt = NumberFormat.getCurrencyInstance(loc);
double amt = 123456.78;
System.out.println(currFmt.format(amt));

This code prints

123.456,78 DM

Note that the currency symbol is DM and that it is placed at the end of the string. Also, note the
reversal of decimal points and decimal commas.

Conversely, if you want to read in a number that was entered or stored with the conventions of
a certain locale, then you use the parse method, which automatically uses the default locale.
For example, the following code parses the value that the user typed into a text field. The

parse method can deal with decimal points and commas, as well as digits in other
languages.

TextField inputField;
. . .
NumberFormat fmt = NumberFormat.getNumberInstance();
// get number formatter for default locale
Number input = fmt.parse(inputField.getText().trim());
double x = input.doubleValue();

The return type of parse is the abstract type Number. The returned object is either a
Double or a Long wrapper object, depending on whether the parsed number was a floating-
point number. If you don't care about the distinction, you can simply use the doubleValue
method of the Number class to retrieve the wrapped number.

If the number is not in the correct form, the method throws a ParseException. For
example, leading white space in the string is not allowed. (Call trim to remove it.) However,
any characters that follow the number in the string are simply ignored, so no exception is
thrown.

Note that the classes returned by the getXxxInstance factory methods are not actually of
type NumberFormat. The NumberFormat type is an abstract class, and the actual
formatters belong to one of its subclasses.

The factory methods merely know how to locate the object that belongs to a particular locale.

It is quite obvious that it takes effort to produce a formatter object for a particular locale.
Although the SDK supports only a limited number of localized formatters, more should follow
over time, and you can, of course, write your own.

You can get a list of the currently supported locales with the static
getAvailableLocales method. That method returns an array of the locales for which
number formatter objects can be obtained.

The sample program for this section lets you experiment with number formatters (see Figure
10-1). The combo box at the top of the figure contains all locales with number formatters. You
can choose between number, currency, and percentage formatters. Each time you make
another choice, the number in the text field is reformatted. If you go through a few locales, then
you get a good impression of how many ways there are to format a number or currency value.
You can also type a different number and click on the Parse button to call the parse method,
which tries to parse what you entered. If your input is successfully parsed, then it is passed to
format and the result is displayed. If parsing fails, then a "Parse error" message is displayed
in the text field.

Figure 10-1. The NumberFormatTest program

The code, shown in Example 10-1, is fairly straightforward. In the constructor, we call
NumberFormat.getAvailableLocales. For each locale, we call
getDisplayName, and we fill a combo box with the strings that the getDisplayName
method returns. Whenever the user selects another locale or clicks on one of the radio
buttons, we create a new formatter object and update the text field. When the user clicks on
the Parse button, we call the parse method to do the actual parsing, based on the locale
selected.

Example 10-1 NumberFormatTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.text.*;
 4. import java.util.*;
 5. import javax.swing.*;
 6.
 7. /**
 8. This program demonstrates formatting numbers under
 9. various locales.
 10. */
 11. public class NumberFormatTest
 12. {
 13. public static void main(String[] args)
 14. {
 15. JFrame frame = new NumberFormatFrame();
 16. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 17. frame.show();
 18. }
 19. }
 20.
 21. /**
 22. This frame contains radio buttons to select a number f
 23. a combo box to pick a locale, a text field to display

 24. a formatted number, and a button to parse the text fie
 25. contents.
 26. */
 27. class NumberFormatFrame extends JFrame
 28.{
 29. public NumberFormatFrame()
 30. {
 31. setSize(WIDTH, HEIGHT);
 32. setTitle("NumberFormatTest");
 33.
 34. getContentPane().setLayout(new GridBagLayout());
 35.
 36. ActionListener listener = new
 37. ActionListener()
 38. {
 39. public void actionPerformed(ActionEvent event
 40. {
 41. updateDisplay();
 42. }
 43. };
 44.
 45. JPanel p = new JPanel();
 46. addRadioButton(p, numberRadioButton, rbGroup, liste
 47. addRadioButton(p, currencyRadioButton, rbGroup, lis
 48. addRadioButton(p, percentRadioButton, rbGroup, list
 49.
 50. GridBagConstraints gbc = new GridBagConstraints();
 51. gbc.fill = GridBagConstraints.NONE;
 52. gbc.anchor = GridBagConstraints.EAST;
 53. add(new JLabel("Locale"), gbc, 0, 0, 1, 1);
 54. add(p, gbc, 1, 1, 1, 1);
 55. add(parseButton, gbc, 0, 2, 1, 1);
 56. gbc.anchor = GridBagConstraints.WEST;
 57. add(localeCombo, gbc, 1, 0, 1, 1);
 58. gbc.fill = GridBagConstraints.HORIZONTAL;
 59. add(numberText, gbc, 1, 2, 1, 1);
 60.
 61. locales = NumberFormat.getAvailableLocales();
 62. for (int i = 0; i < locales.length; i++)
 63. localeCombo.addItem(locales[i].getDisplayName())
 64. localeCombo.setSelectedItem(
 65. Locale.getDefault().getDisplayName());
 66. currentNumber = 123456.78;
 67. updateDisplay();

 68.
 69. localeCombo.addActionListener(listener);
 70.
 71. parseButton.addActionListener(new
 72. ActionListener()
 73. {
 74. public void actionPerformed(ActionEvent event
 75. {
 76. String s = numberText.getText();
 77. try
 78. {
 79. Number n = currentNumberFormat.parse(s)
 80. if (n != null)
 81. {
 82. currentNumber = n.doubleValue();
 83. updateDisplay();
 84. }
 85. else
 86. {
 87. numberText.setText("Parse error: " +
 88. }
 89. }
 90. catch(ParseException e)
 91. {
 92. numberText.setText("Parse error: " + s)
 93. }
 94. }
 95. });
 96. }
 97.
 98. /**
 99. A convenience method to add a component to given gr
100. layout locations.
101. @param c the component to add
102. @param gbc the grid bag constraints to use
103. @param x the x grid position
104. @param y the y grid position
105. @param w the grid width
106. @param h the grid height
107. */
108. public void add(Component c, GridBagConstraints gbc,
109. int x, int y, int w, int h)
110. {
111. gbc.gridx = x;

112. gbc.gridy = y;
113. gbc.gridwidth = w;
114. gbc.gridheight = h;
115. getContentPane().add(c, gbc);
116. }
117.
118. /**
119. Adds a radio button to a container.
120. @param p the container into which to place the butt
121. @param b the button
122. @param g the button group
123. @param listener the button listener
124. */
125. public void addRadioButton(Container p, JRadioButton b
126. ButtonGroup g, ActionListener listener)
127. {
128. b.setSelected(g.getButtonCount() == 0);
129. b.addActionListener(listener);
130. g.add(b);
131. p.add(b);
132. }
133.
134. /**
135. Updates the display and formats the number accordin
136. to the user settings.
137. */
138. public void updateDisplay()
139. {
140. Locale currentLocale = locales[
141. localeCombo.getSelectedIndex()];
142. currentNumberFormat = null;
143. if (numberRadioButton.isSelected())
144. currentNumberFormat
145. = NumberFormat.getNumberInstance(currentLocal
146. else if (currencyRadioButton.isSelected())
147. currentNumberFormat
148. = NumberFormat.getCurrencyInstance(currentLoc
149. else if (percentRadioButton.isSelected())
150. currentNumberFormat
151. = NumberFormat.getPercentInstance(currentLoca
152. String n = currentNumberFormat.format(currentNumber
153. numberText.setText(n);
154. }
155.

156. private Locale[] locales;
157.
158. private double currentNumber;
159.
160. private JComboBox localeCombo = new JComboBox();
161. private JButton parseButton = new JButton("Parse");
162. private JTextField numberText = new JTextField(30);
163. private JRadioButton numberRadioButton
164. = new JRadioButton("Number");
165. private JRadioButton currencyRadioButton
166. = new JRadioButton("Currency");
167. private JRadioButton percentRadioButton
168. = new JRadioButton("Percent");
169. private ButtonGroup rbGroup = new ButtonGroup();
170. private NumberFormat currentNumberFormat;
171. private static final int WIDTH = 400;
172. private static final int HEIGHT = 200;
173. }

java.text.NumberFormat

static Locale[] getAvailableLocales()

returns an array of Locale objects for which NumberFormat formatters are
available.

static NumberFormat getNumberInstance()

static NumberFormat getNumberInstance(Locale l)

static NumberFormat getCurrencyInstance()

static NumberFormat getCurrencyInstance(Locale l)

static NumberFormat getPercentInstance()

static NumberFormat getPercentInstance(Locale l)

return a formatter for numbers, currency amounts, or percentage values for the current
locale or for the given locale.

String format(double x)

String format(long x)

return the string resulting from formatting the given floating-point number or integer.

Number parse(String s)

parses the given string and returns the number value, as a Double if the input string
described a floating-point number, and as a Long otherwise. The beginning of the string
must contain a number; no leading white space is allowed. The number can be followed
by other characters, which are ignored. Throws a ParseException if parsing was
not successful.

void setParseIntegerOnly(boolean b)

boolean isParseIntegerOnly()

set or get a flag to indicate whether this formatter should parse only integer values.

void setGroupingUsed(boolean b)

boolean isGroupingUsed()

set or get a flag to indicate whether this formatter emits and recognizes decimal
separators (such as 100,000).

void setMinimumIntegerDigits(int n)

int getMinimumIntegerDigits()

void setMaximumIntegerDigits(int n)

int getMaximumIntegerDigits()

void setMinimumFractionDigits(int n)

int getMinimumFractionDigits()

void setMaximumFractionDigits(int n)

int getMaximumFractionDigits()

set or get the maximum or minimum number of digits allowed in the integer or fractional
part of a number.

Date and Time
When you are formatting date and time, there are four locale-dependent issues you need to
worry about:

The names of months and weekdays should be presented in the local language.

There will be local preferences for the order of year, month, and day.

The Gregorian calendar may not be the local preference for expressing dates.

The time zone of the location must be taken into account.

The Java DateFormat class handles these issues. It is easy to use and quite similar to the
NumberFormat class. First, you get a locale. You can use the default locale or call the static
getAvailableLocales method to obtain an array of locales that support date formatting.
Then, you call one of the three factory methods:

fmt = DateFormat.getDateInstance(dateStyle, loc);
fmt = DateFormat.getTimeInstance(timeStyle, loc);
fmt = DateFormat.getDateTimeInstance(dateStyle, timeStyle, loc

To specify the desired style, these factory methods have a parameter that is one of the
following constants:

DateFormat.DEFAULT

DateFormat.FULL (e.g., Thursday, September 18, 1997 8:42:46 o'clock
A.M.PDT for the U.S. locale)

DateFormat.LONG (e.g., September 18, 1997 8:42:46 A.M. PDT for the U.S.
locale)

DateFormat.MEDIUM (e.g., Sep 18, 1997 8:42:46 A.M. for the U.S. locale)

DateFormat.SHORT (e.g., 9/18/97 8:42 A.M. for the U.S. locale)

The factory method returns a formatting object that you can then use to format dates.

Date now = new Date();
String s = fmt.format(now);

Just as with the NumberFormat class, you can use the parse method to parse a date that
the user typed. For example, the following code parses the value that the user typed into a text
field.

TextField inputField;

. . .
DateFormat fmt = DateFormat.getDateInstance(DateFormat.MEDIUM)
 // get date formatter for default locale
Date input = fmt.parse(inputField.getText().trim());

If the number was not typed correctly, this code throws a ParseException. Note that
leading white space in the string is not allowed here, either. You should again call trim to
remove it. However, any characters that follow the number in the string will again be ignored.
Unfortunately, the user must type the date exactly in the expected format. For example, if the
format is set to MEDIUM in the U.S. locale, then dates are expected to look like

Sep 18, 1997

If the user types

Sep 18 1997

(without the comma) or the short format

9/18/97

then a parse error results.

A lenient flag interprets dates leniently. For example, February 30, 1999 will be
automatically converted to March 2, 1999. This seems dangerous, but, unfortunately, it is
the default. You should probably turn off this feature. The calendar object that is used to
interpret the parsed date will throw an IllegalArgumentException when the user
enters an invalid day/month/year combination.

Example 10-2 shows the DateFormat class in action. You can select a locale and see how
the date and time are formatted in different places around the world. If you see question-mark
characters in the output, then you don't have the fonts installed for displaying characters in the
local language. For example, if you pick a Chinese locale, the date may be expressed as

1997?9?19?

Figure 10-2 shows the program running under Chinese Windows; as you can see, it correctly
displays the output.

Figure 10-2. The DateFormatTest program running under Chinese Windows

You can also experiment with parsing. Type in a date or time, click the Parse lenient checkbox
if desired, and click on the Parse date or Parse time button.

The only mysterious feature about the code is probably the EnumCombo class. We used this
class to solve the following technical problem. We wanted to fill a combo with values such as
Short, Medium, and Long and then automatically convert the user's selection to integer
values DateFormat.SHORT, DateFormat.MEDIUM, and DateFormat.LONG. To do
this, we convert the user's choice to upper case, replace all spaces with underscores, and then
use reflection to find the value of the static field with that name. (See Chapter 5 of Volume 1 for
more details about reflection.)

Example 10-2 DateFormatTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.text.*;
 4. import java.util.*;
 5. import javax.swing.*;
 6.
 7. /**
 8. This program demonstrates formatting dates under
 9. various locales.
 10. */
 11. public class DateFormatTest
 12. {
 13. public static void main(String[] args)
 14. {
 15. JFrame frame = new DateFormatFrame();
 16. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOS
 17. frame.show();
 18. }
 19. }
 20.
 21. /**

 22. This frame contains combo boxes to pick a locale, date
 23. time formats, text fields to display formatted date an
 24. buttons to parse the text field contents, and a "lenie
 25. check box.
 26. */
 27. class DateFormatFrame extends JFrame
 28. {
 29. public DateFormatFrame()
 30. {
 31. setSize(WIDTH, HEIGHT);
 32. setTitle("DateFormatTest");
 33.
 34. getContentPane().setLayout(new GridBagLayout());
 35. GridBagConstraints gbc = new GridBagConstraints();
 36. gbc.fill = GridBagConstraints.NONE;
 37. gbc.anchor = GridBagConstraints.EAST;
 38. add(new JLabel("Locale"), gbc, 0, 0, 1, 1);
 39. add(new JLabel("Date style"), gbc, 0, 1, 1, 1);
 40. add(new JLabel("Time style"), gbc, 2, 1, 1, 1);
 41. add(new JLabel("Date"), gbc, 0, 2, 1, 1);
 42. add(new JLabel("Time"), gbc, 0, 3, 1, 1);
 43. gbc.anchor = GridBagConstraints.WEST;
 44. add(localeCombo, gbc, 1, 0, 2, 1);
 45. add(dateStyleCombo, gbc, 1, 1, 1, 1);
 46. add(timeStyleCombo, gbc, 3, 1, 1, 1);
 47. add(dateParseButton, gbc, 3, 2, 1, 1);
 48. add(timeParseButton, gbc, 3, 3, 1, 1);
 49. add(lenientCheckbox, gbc, 0, 4, 2, 1);
 50. gbc.fill = GridBagConstraints.HORIZONTAL;
 51. add(dateText, gbc, 1, 2, 2, 1);
 52. add(timeText, gbc, 1, 3, 2, 1);
 53.
 54. locales = DateFormat.getAvailableLocales();
 55. for (int i = 0; i < locales.length; i++)
 56. localeCombo.addItem(locales[i].getDisplayName())
 57. localeCombo.setSelectedItem(
 58. Locale.getDefault().getDisplayName());
 59. currentDate = new Date();
 60. currentTime = new Date();
 61. updateDisplay();
 62.
 63. ActionListener listener = new
 64. ActionListener()
 65. {

 66. public void actionPerformed(ActionEvent event
 67. {
 68. updateDisplay();
 69. }
 70. };
 71.
 72. localeCombo.addActionListener(listener);
 73. dateStyleCombo.addActionListener(listener);
 74. timeStyleCombo.addActionListener(listener);
 75.
 76. dateParseButton.addActionListener(new
 77. ActionListener()
 78. {
 79. public void actionPerformed(ActionEvent event
 80. {
 81. String d = dateText.getText();
 82. try
 83. {
 84. currentDateFormat.setLenient
 85. (lenientCheckbox.isSelected());
 86. Date date = currentDateFormat.parse(d);
 87. currentDate = date;
 88. updateDisplay();
 89. }
 90. catch(ParseException e)
 91. {
 92. dateText.setText("Parse error: " + d);
 93. }
 94. catch(IllegalArgumentException e)
 95. {
 96. dateText.setText("Argument error: " + d
 97. }
 98. }
 99. });
100.
101. timeParseButton.addActionListener(new
102. ActionListener()
103. {
104. public void actionPerformed(ActionEvent event
105. {
106. String t = timeText.getText();
107. try
108. {
109. currentDateFormat.setLenient

110. (lenientCheckbox.isSelected());
111. Date date = currentTimeFormat.parse(t);
112. currentTime = date;
113. updateDisplay();
114. }
115. catch(ParseException e)
116. {
117. timeText.setText("Parse error: " + t);
118. }
119. catch(IllegalArgumentException e)
120. {
121. timeText.setText("Argument error: " + t
122. }
123. }
124. });
125. }
126.
127. /**
128. A convenience method to add a component to given gr
129. layout locations.
130. @param c the component to add
131. @param gbc the grid bag constraints to use
132. @param x the x grid position
133. @param y the y grid position
134. @param w the grid width
135. @param h the grid height
136. */
137. public void add(Component c, GridBagConstraints gbc,
138. int x, int y, int w, int h)
139. {
140. gbc.gridx = x;
141. gbc.gridy = y;
142. gbc.gridwidth = w;
143. gbc.gridheight = h;
144. getContentPane().add(c, gbc);
145. }
146.
147. /**
148. Updates the display and formats the date according
149. to the user settings.
150. */
151. public void updateDisplay()
152. {
153. Locale currentLocale = locales[

154. localeCombo.getSelectedIndex()];
155. int dateStyle = dateStyleCombo.getValue();
156. currentDateFormat
157. = DateFormat.getDateInstance(dateStyle,
158. currentLocale);
159. String d = currentDateFormat.format(currentDate);
160. dateText.setText(d);
161. int timeStyle = timeStyleCombo.getValue();
162. currentTimeFormat
163. = DateFormat.getTimeInstance(timeStyle,
164. currentLocale);
165. String t = currentTimeFormat.format(currentTime);
166. timeText.setText(t);
167. }
168.
169. private Locale[] locales;
170.
171. private Date currentDate;
172. private Date currentTime;
173. private DateFormat currentDateFormat;
174. private DateFormat currentTimeFormat;
175.
176. private JComboBox localeCombo = new JComboBox();
177. private EnumCombo dateStyleCombo
178. = new EnumCombo(DateFormat.class,
179. new String[] { "Default", "Full", "Long",
180. "Medium", "Short" });
181. private EnumCombo timeStyleCombo
182. = new EnumCombo(DateFormat.class,
183. new String[] { "Default", "Full", "Long",
184. "Medium", "Short" });
185. private JButton dateParseButton = new JButton("Parse d
186. private JButton timeParseButton = new JButton("Parse t
187. private JTextField dateText = new JTextField(30);
188. private JTextField timeText = new JTextField(30);
189. private JTextField parseText = new JTextField(30);
190. private JCheckBox lenientCheckbox
191. = new JCheckBox("Parse lenient", true);
192. private static final int WIDTH = 400;
193. private static final int HEIGHT = 200;
194. }
195.
196. /**
197. A combo box that lets users choose from among static f

198. values whose names are given in the constructor.
199.*/
200.class EnumCombo extends JComboBox
201.{
202. /**
203. Constructs an EnumCombo.
204. @param cl a class
205. @param labels an array of static field names of cl
206. */
207. public EnumCombo(Class cl, String[] labels)
208. {
209. for (int i = 0; i < labels.length; i++)
210. {
211. String label = labels[i];
212. String name = label.toUpperCase().replace(' ', '_
213. int value = 0;
214. try
215. {
216. java.lang.reflect.Field f = cl.getField(name);
217. value = f.getInt(cl);
218. }
219. catch(Exception e)
220. {
221. label = "(" + label + ")";
222. }
223. table.put(label, new Integer(value));
224. addItem(label);
225. }
226. setSelectedItem(labels[0]);
227. }
228.
229. /**
230. Returns the value of the field that the user selecte
231. @return the static field value
232. */
233. public int getValue()
234. {
235. return ((Integer)table.get(getSelectedItem())).intVa
236. }
237.
238. private Map table = new HashMap();
239.}

java.text.DateFormat

static Locale[] getAvailableLocales()

returns an array of Locale objects for which DateFormat formatters are available.

static DateFormat getDateInstance(int dateStyle)

static DateFormat getDateInstance(int dateStyle, Locale l)

static DateFormat getTimeInstance(int timeStyle)

static DateFormat getTimeInstance(int timeStyle, Locale l)

static DateFormat getDateTimeInstance(int dateStyle, int
timeStyle)

static DateFormat getDateTimeInstance(int dateStyle, int
timeStyle, Locale l)

return a formatter for date, time, or date and time for the default locale or the given
locale.

String format(Date d)

returns the string resulting from formatting the given date/time.

Date parse(String s)

parses the given string and returns the date/time described in it. The beginning of the
string must contain a date or time; no leading white space is allowed. The date can be
followed by other characters, which are ignored. Throws a ParseException if
parsing was not successful.

void setLenient(boolean b)

boolean isLenient()

set or get a flag to indicate whether parsing should be lenient or strict. In lenient mode,

Parameters: dateStyle,
timeStyle

one of DEFAULT, FULL, LONG, MEDIUM,
SHORT

dates such as February 30, 1999 will be automatically converted to March 2,
1999. The default is lenient mode.

void setCalendar(Calendar cal)

Calendar getCalendar()

set or get the calendar object used for extracting year, month, day, hour, minute, and
second from the Date object. Use this method if you do not want to use the default
calendar for the locale (usually the Gregorian calendar).

void setTimeZone(TimeZone tz)

TimeZone getTimeZone()

set or get the time zone object used for formatting the time. Use this method if you do not
want to use the default time zone for the locale. The default time zone is the time zone of
the default locale, as obtained from the operating system. For the other locales, it is the
preferred time zone in the geographical location.

void setNumberFormat(NumberFormat f)

NumberFormat getNumberFormat()

set or get the number format used for formatting the numbers used for representing year,
month, day, hour, minute, and second.

Text
There are many localization issues to deal with when you display even the simplest text in an
internationalized application. In this section, we work on the presentation and manipulation of
text strings. For example, the sorting order for strings is clearly locale specific. Obviously, you
also need to localize the text itself: directions, labels, and messages will all need to be
translated. (Later in this chapter, you'll see how to build resource bundles. These let you
collect a set of message strings that work for a particular language.)

Collation (Ordering)

Sorting strings in alphabetical order is easy when the strings are made up of only English
ASCII characters. You just compare the strings with the compareTo method of the String
class. The value of

a.compareTo(b)

is a negative number if a is lexicographically less than b, 0 if they are identical, and positive
otherwise.

Unfortunately, unless all your words are in uppercase English ASCII characters, this method is
useless. The problem is that the compareTo method in the Java programming language
uses the values of the Unicode character to determine the ordering. For example, lowercase
characters have a higher Unicode value than do uppercase characters, and accented
characters have even higher values. This leads to absurd results; for example, the following
five strings are ordered according to the compareTo method:

America
Zulu
ant
zebra
Ångstrom

For dictionary ordering, you want to consider upper case and lower case to be equivalent. To
an English speaker, the sample list of words would be ordered as

America
Ångstrom
ant
zebra
Zulu

However, that order would not be acceptable to a Danish user. In Danish, the letter Å is a
different letter than the letter A, and it is collated after the letter Z! That is, a Danish user would
want the words to be sorted as

America
ant
zebra
Zulu
Ångstrom

Fortunately, once you are aware of the problem, collation is quite easy. As always, you start by
obtaining a Locale object. Then, you call the getInstance factory method to obtain a
Collator object. Finally, you use the compare method of the collator, not the
compareTo method of the String class, whenever you want to sort strings.

Locale loc = . . .;
Collator coll = Collator.getInstance(loc);
if (coll.compare(a, b) < 0) // a comes before b . . .;

Most importantly, the Collator class implements the Comparator interface. Therefore,
you can pass a collator object to the Collections.sort method to sort a list of strings:

Collections.sort(strings, coll);

You can set a collator's strength to select how selective it should be. Character differences are
classified as primary, secondary, and tertiary. For example, in English, the difference between
"A" and "Z" is considered primary, the difference between "A" and "Å" is secondary, and
between "A" and "a" is tertiary.

By setting the collator's strength to Collator.PRIMARY, you tell it to pay attention only to
primary differences. By setting the strength to Collator.SECONDARY, the collator will take
secondary differences into account. That is, two strings will be more likely to be considered
different when the strength is set to "secondary." For example,

// assuming English locale
String a = "Angstrom";
String b = "Ångstrom";
coll.setStrength(Collator.PRIMARY);
if (coll.compare(a, b) == 0) System.out.print("same");
else System.out.print("different");
// will print "same"
coll.setStrength(Collator.SECONDARY);
if (coll.compare(a, b) == 0) System.out.print("same");
else System.out.print("different");
// will print "different"

Table 10-3 shows how a sample set of strings is sorted with the three collation strengths. Note
that the strength indicates only whether two strings are considered identical.

Finally, there is one technical setting, the decomposition mode. The default, "canonical
decomposition," is appropriate for most uses. If you choose "no decomposition," then accented
characters are not decomposed into their base form + accent. This option is faster, but it gives
correct results only when the input does not contain accented characters. (It never makes
sense to sort accented characters by their Unicode values.) Finally, "full decomposition"
analyzes Unicode variants, that is, Unicode characters that ought to be considered identical.
For example, Japanese displays have two ways of showing English characters, called half-
width and full-width. The half-width characters have normal character spacing, whereas the
full-width characters are spaced in the same grid as the ideographs. (One could argue that this
is a presentation issue and it should not have resulted in different Unicode characters, but we
don't make the rules.) With full decomposition, half-width and full-width variants of the same
letter are recognized as identical.

It is wasteful to have the collator decompose a string many times. If one string is compared

Table 10-3. Collations with different strengths
Input PRIMARY SECONDARY TERTIARY
Ant, Angstrom = Ångstrom, Angstrom, Angstrom,
ant, Ant = ant, Ångstrom, Ångstrom,
Angstrom, Ant = ant Ant,
Ångstrom, ant

many times against other strings, then you can save the decomposition in a collation key
object. The getCollationKey method returns a CollationKey object that you can
use for further, faster comparisons. Here is an example:

String a = . . .;
CollationKey aKey = coll.getCollationKey(a);
if (aKey.compareTo(coll.getCollationKey(b) == 0)
 // fast comparison
 . . .

The program in Example 10-3 lets you experiment with collation order. Type a word into the
text field and click on Add to add it to the list of words. Each time you add another word, or
change the locale, strength, or decomposition mode, the list of words is sorted again. An =
sign indicates words that are considered identical (see Figure 10-3).

Figure 10-3. The CollationTest program

Example 10-3 CollationTest.java

 1. import java.io.*;
 2. import java.awt.*;
 3. import java.awt.event.*;
 4. import java.text.*;
 5. import java.util.*;

 6. import java.util.List;
 7. import javax.swing.*;
 8.
 9. /**
 10. This program demonstrates collating strings under
 11. various locales.
 12. */
 13. public class CollationTest
 14. {
 15. public static void main(String[] args)
 16. {
 17. JFrame frame = new CollationFrame();
 18. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 19. frame.show();
 20. }
 21. }
 22.
 23. /**
 24. This frame contains combo boxes to pick a locale, coll
 25. strength and decomposition rules, a text field and but
 26. to add new strings, and a text area to list the collat
 27. strings.
 28. */
 29. class CollationFrame extends JFrame
 30. {
 31. public CollationFrame()
 32. {
 33. setSize(WIDTH, HEIGHT);
 34. setTitle("CollationTest");
 35.
 36. getContentPane().setLayout(new GridBagLayout());
 37. GridBagConstraints gbc = new GridBagConstraints();
 38. gbc.fill = GridBagConstraints.NONE;
 39. gbc.anchor = GridBagConstraints.EAST;
 40. add(new JLabel("Locale"), gbc, 0, 0, 1, 1);
 41. add(new JLabel("Strength"), gbc, 0, 1, 1, 1);
 42. add(new JLabel("Decomposition"), gbc, 0, 2, 1, 1);
 43. add(addButton, gbc, 0, 3, 1, 1);
 44. gbc.anchor = GridBagConstraints.WEST;
 45. add(localeCombo, gbc, 1, 0, 1, 1);
 46. add(strengthCombo, gbc, 1, 1, 1, 1);
 47. add(decompositionCombo, gbc, 1, 2, 1, 1);
 48. gbc.fill = GridBagConstraints.HORIZONTAL;
 49. add(newWord, gbc, 1, 3, 1, 1);

 50. gbc.fill = GridBagConstraints.BOTH;
 51. add(new JScrollPane(sortedWords), gbc, 1, 4, 1, 1);
 52.
 53. locales = Collator.getAvailableLocales();
 54. for (int i = 0; i < locales.length; i++)
 55. localeCombo.addItem(locales[i].getDisplayName())
 56. localeCombo.setSelectedItem(
 57. Locale.getDefault().getDisplayName());
 58.
 59. strings.add("America");
 60. strings.add("ant");
 61. strings.add("Zulu");
 62. strings.add("zebra");
 63. strings.add(" ngstrom");
 64. strings.add("Angstrom");
 65. strings.add("Ant");
 66. updateDisplay();
 67.
 68. addButton.addActionListener(new
 69. ActionListener()
 70. {
 71. public void actionPerformed(ActionEvent event
 72. {
 73. strings.add(newWord.getText());
 74. updateDisplay();
 75. }
 76. });
 77.
 78. ActionListener listener = new
 79. ActionListener()
 80. {
 81. public void actionPerformed(ActionEvent event
 82. {
 83. updateDisplay();
 84. }
 85. };
 86.
 87. localeCombo.addActionListener(listener);
 88. strengthCombo.addActionListener(listener);
 89. decompositionCombo.addActionListener(listener);
 90. }
 91.
 92. /**
 93. A convenience method to add a component to given gr

 94. layout locations.
 95. @param c the component to add
 96. @param gbc the grid bag constraints to use
 97. @param x the x grid position
 98. @param y the y grid position
 99. @param w the grid width
100. @param h the grid height
101. */
102. public void add(Component c, GridBagConstraints gbc,
103. int x, int y, int w, int h)
104. {
105. gbc.gridx = x;
106. gbc.gridy = y;
107. gbc.gridwidth = w;
108. gbc.gridheight = h;
109. getContentPane().add(c, gbc);
110. }
111.
112. /**
113. Updates the display and collates the strings accord
114. to the user settings.
115. */
116. public void updateDisplay()
117. {
118. Locale currentLocale = locales[
119. localeCombo.getSelectedIndex()];
120.
121. currentCollator
122. = Collator.getInstance(currentLocale);
123. currentCollator.setStrength(strengthCombo.getValue(
124. currentCollator.setDecomposition(
125. decompositionCombo.getValue());
126.
127. Collections.sort(strings, currentCollator);
128.
129. sortedWords.setText("");
130. for (int i = 0; i < strings.size(); i++)
131. {
132. String s = (String)strings.get(i);
133. if (i > 0
134. && currentCollator.compare(s, strings.get(i -
135. {
136. sortedWords.append("= ");
137. }

138. sortedWords.append(s + "\n");
139. }
140. }
141.
142. private Locale[] locales;
143. private List strings = new ArrayList();
144. private Collator currentCollator;
145.
146. private JComboBox localeCombo = new JComboBox();
147. private EnumCombo strengthCombo
148. = new EnumCombo(Collator.class,
149. new String[] { "Primary", "Secondary", "Tertiary"
150. private EnumCombo decompositionCombo
151. = new EnumCombo(Collator.class,
152. new String[] { "Canonical Decomposition",
153. "Full Decomposition", "No Decomposition" });
154. private JTextField newWord = new JTextField(20);
155. private JTextArea sortedWords = new JTextArea(10, 20);
156. private JButton addButton = new JButton("Add");
157. private static final int WIDTH = 400;
158. private static final int HEIGHT = 400;
159.}
160.
161. /**
162. A combo box that lets users choose from among static f
163. values whose names are given in the constructor.
164. */
165. class EnumCombo extends JComboBox
166. {
167. /**
168. Constructs an EnumCombo.
169. @param cl a class
170. @param labels an array of static field names of cl
171. */
172. public EnumCombo(Class cl, String[] labels)
173. {
174. for (int i = 0; i < labels.length; i++)
175. {
176. String label = labels[i];
177. String name = label.toUpperCase().replace(' ', '
178. int value = 0;
179. try
180. {
181. java.lang.reflect.Field f = cl.getField(name)

182. value = f.getInt(cl);
183. }
184. catch(Exception e)
185. {
186. label = "(" + label + ")";
187. }
188. table.put(label, new Integer(value));
189. addItem(label);
190. }
191. setSelectedItem(labels[0]);
192. }
193.
194. /**
195. Returns the value of the field that the user select
196. @return the static field value
197. */
198. public int getValue()
199. {
200. return ((Integer)table.get(getSelectedItem())).intV
201. }
202.
203. private Map table = new HashMap();
204.}

java.text.Collator

static Locale[] getAvailableLocales()

returns an array of Locale objects for which Collator objects are available.

static Collator getInstance()

static Collator getInstance(Locale l)

return a collator for the default locale or the given locale.

int compare(String a, String b)

returns a negative value if a comes before b, 0 if they are considered identical, a
positive value otherwise.

boolean equals(String a, String b)

returns true if they are considered identical, false otherwise.

void setStrength(int strength) / int getStrength()

sets or gets the strength of the collator. Stronger collators tell more words apart. Strength
values are Collator.PRIMARY, Collator.SECONDARY, and
Collator.TERTIARY.

void setDecomposition(int decomp) / int getDecompositon()

sets or gets the decomposition mode of the collator. The more a collator decomposes a
string, the more strict it will be in deciding whether two strings ought to be considered
identical. Decomposition values are Collator.NO_DECOMPOSITION,
Collator.CANONICAL_DECOMPOSITION, and
Collator.FULL_DECOMPOSITION.

CollationKey getCollationKey(String a)

returns a collation key that contains a decomposition of the characters in a form that can
be quickly compared against another collation key.

java.text.CollationKey

int compareTo(CollationKey b)

returns a negative value if this key comes before b, 0 if they are considered identical, a
positive value otherwise.

Text Boundaries

Consider a "sentence" in an arbitrary language: Where are its "words"? Answering this
question sounds trivial, but once you deal with multiple languages, then just as with collation, it
isn't as simple as you might think. Actually, the situation is even worse than you might think—
consider the problem of determining where a character starts and ends. If you have a string
such as "Hello", then it is trivial to break it up into five individual characters: H|e|l|l|o.
But accents throw a monkey wrench into this simple model. There are two ways of describing
an accented character such as ä, namely, the character ä itself (Unicode \u00E4), or the
character a followed by a combining diaeresis .. (Unicode \u0308). That is, the string with
four Unicode characters Ba..r is a sequence of three logical characters:

B|a..|r. This situation is still relatively easy; it gets much more complex for Asian
languages such as the Korean Hangul script.

What about word breaks? Word breaks, of course, are at the beginning and the end of a word.
In English, this is simple: sequences of characters are words. For example, the word breaks in

The quick, brown fox jump-ed over the lazy dog.

are

The| |quick|,| |brown| |fox| |jump-ed| |over| |the| |lazy| |do

(The hyphen in jump-ed indicates a soft hyphen.)

Line boundaries are positions where a line can be broken on the screen or in printed text. In
English text, this decision is relatively easy. Lines can be broken before a word or after a
hyphen. For example, the line breaks in our sample sentence are

The |quick, |brown |fox |jump-|ed |over |the |lazy |dog.|

Note that line breaks are the points where a line can be broken, not the points where the lines
are actually broken.

Determining character, word, and line boundaries is simple for European and Asian
ideographic scripts, but it is quite complex for others, such as Devanagari, the script used to
write classical Sanskrit and modern Hindi.

Finally, you will want to know about breaks between sentences. In English, for example,
sentence breaks occur after periods, exclamation marks, and question marks.

Use the BreakIterator class to find out where you can break up text into components
such as characters, words, lines, and sentences. You would use these classes when writing
code for editing, displaying, and printing text.

Luckily, the break iterator class does not blindly break sentences at every period. It knows
about the rules for periods inside quotation marks, and about "…" ellipses. For example, the
string

The quick, brown fox jumped over the lazy "dog." And then
 ... what happened?

is broken into two sentences.

The quick, brown fox jumped over the lazy "dog." |And then
 ... what happened?|

Here is an example of how to program with break iterators. As always, you first get a break
iterator with a static factory method. You can request one of four iterators to iterate through

characters, words, lines, or sentences. Note that once you have a particular iterator object,
such as one for sentences, it can iterate only through sentences. More generally, a break
iterator can iterate only through the construct for which it was created. For example, the
following code lets you analyze individual words:

Locale loc = . . .;
BreakIterator wordIter = BreakIterator.getWordInstance(loc);

Once you have an iterator, you give it a string to iterate through.

String msg = " The quick, brown fox";
wordIter.setText(msg);

Then, call the first method to get the offset of the first boundary.

int f = wordIter.first(); // returns 3

In our example, this call to first returns a 3 —which is the offset of the first space inside the
string. You keep calling the next method to get the offsets for the next tokens. You know
there are no more tokens when a call to next returns the constant
BreakIterator.DONE. For example, here is how you can iterate through the remaining
word breaks.

int to;
while ((to = currentBreakIterator.next()) !=
 BreakIterator.DONE)
{ // do something with to
}

The program in Example 10-4 lets you type text into the text area on the top of the frame.
Then, select the way you want to break the text (character, word, line, or sentence). You then
see the text boundaries in the text area on the bottom (see Figure 10-4).

Figure 10-4. The TextBoundaryTest program

Example 10-4 TextBoundaryTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.text.*;
 4. import java.util.*;
 5. import javax.swing.*;
 6.
 7. /**
 8. This program demonstrates breaking text under
 9. various locales.
 10. */
 11. public class TextBoundaryTest
 12. {
 13. public static void main(String[] args)
 14. {
 15. JFrame frame = new TextBoundaryFrame();
 16. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 17. frame.show();
 18. }
 19. }
 20.
 21. /**

 22. This frame contains radio buttons to select where to b
 23. the text, a combo box to pick a locale, a text field a
 24. to enter text, and a text area to display the broken t
 25. */
 26. class TextBoundaryFrame extends JFrame
 27. {
 28. public TextBoundaryFrame()
 29. {
 30. setSize(WIDTH, HEIGHT);
 31. setTitle("TextBoundaryTest");
 32.
 33. ActionListener listener = new
 34. ActionListener()
 35. {
 36. public void actionPerformed(ActionEvent event
 37. {
 38. updateDisplay();
 39. }
 40. };
 41.
 42. JPanel p = new JPanel();
 43. addRadioButton(p, characterRadioButton, rbGroup, li
 44. addRadioButton(p, wordRadioButton, rbGroup, listene
 45. addRadioButton(p, lineRadioButton, rbGroup, listene
 46. addRadioButton(p, sentenceRadioButton, rbGroup, lis
 47.
 48. getContentPane().setLayout(new GridBagLayout());
 49. GridBagConstraints gbc = new GridBagConstraints();
 50. gbc.fill = GridBagConstraints.NONE;
 51. gbc.anchor = GridBagConstraints.EAST;
 52. add(new JLabel("Locale"), gbc, 0, 0, 1, 1);
 53. gbc.anchor = GridBagConstraints.WEST;
 54. add(localeCombo, gbc, 1, 0, 1, 1);
 55. add(p, gbc, 0, 1, 2, 1);
 56. gbc.fill = GridBagConstraints.BOTH;
 57. gbc.weighty = 100;
 58. add(new JScrollPane(inputText), gbc, 0, 2, 2, 1);
 59. add(new JScrollPane(outputText), gbc, 0, 3, 2, 1);
 60.
 61. locales = BreakIterator.getAvailableLocales();
 62. for (int i = 0; i < locales.length; i++)
 63. localeCombo.addItem(locales[i].getDisplayName())
 64. localeCombo.setSelectedItem(
 65. Locale.getDefault().getDisplayName());

 66.
 67. localeCombo.addActionListener(listener);
 68.
 69. inputText.setText("The quick, brown fox jump-ed\n"
 70. + "over the lazy \"dog.\" And then...what happene
 71. updateDisplay();
 72. }
 73.
 74. /**
 75. Adds a radio button to a container.
 76. @param p the container into which to place the butt
 77. @param b the button
 78. @param g the button group
 79. @param listener the button listener
 80. */
 81. public void addRadioButton(Container p, JRadioButton b
 82. ButtonGroup g, ActionListener listener)
 83. {
 84. b.setSelected(g.getButtonCount() == 0);
 85. b.addActionListener(listener);
 86. g.add(b);
 87. p.add(b);
 88. }
 89.
 90. /**
 91. A convenience method to add a component to given gr
 92. layout locations.
 93. @param c the component to add
 94. @param gbc the grid bag constraints to use
 95. @param x the x grid position
 96. @param y the y grid position
 97. @param w the grid width
 98. @param h the grid height
 99. */
100. public void add(Component c, GridBagConstraints gbc,
101. int x, int y, int w, int h)
102. {
103. gbc.gridx = x;
104. gbc.gridy = y;
105. gbc.gridwidth = w;
106. gbc.gridheight = h;
107. getContentPane().add(c, gbc);
108. }
109.

110. /**
111. Updates the display and breaks the text according
112. to the user settings.
113. */
114. public void updateDisplay()
115. {
116. Locale currentLocale = locales[
117. localeCombo.getSelectedIndex()];
118. BreakIterator currentBreakIterator = null;
119. if (characterRadioButton.isSelected())
120. currentBreakIterator
121. = BreakIterator.getCharacterInstance(currentL
122. else if (wordRadioButton.isSelected())
123. currentBreakIterator
124. = BreakIterator.getWordInstance(currentLocale
125. else if (lineRadioButton.isSelected())
126. currentBreakIterator
127. = BreakIterator.getLineInstance(currentLocale
128. else if (sentenceRadioButton.isSelected())
129. currentBreakIterator
130. = BreakIterator.getSentenceInstance(currentLo
131.
132. String text = inputText.getText();
133. currentBreakIterator.setText(text);
134. outputText.setText("");
135
136 . int from = currentBreakIterator.first();
137. int to;
138. while ((to = currentBreakIterator.next()) !=
139. BreakIterator.DONE)
140. {
141. outputText.append(text.substring(from, to) + "|"
142. from = to;
143. }
144. outputText.append(text.substring(from));
145. }
146.
147. private Locale[] locales;
148. private BreakIterator currentBreakIterator;
149.
150. private JComboBox localeCombo = new JComboBox();
151. private JTextArea inputText = new JTextArea(6, 40);
152. private JTextArea outputText = new JTextArea(6, 40);
153. private ButtonGroup rbGroup = new ButtonGroup();

154. private JRadioButton characterRadioButton
155. = new JRadioButton("Character");
156. private JRadioButton wordRadioButton
157. = new JRadioButton("Word");
158. private JRadioButton lineRadioButton
159. = new JRadioButton("Line");
160. private JRadioButton sentenceRadioButton
161. = new JRadioButton("Sentence");
162. private static final int WIDTH = 400;
163. private static final int HEIGHT = 400;
164. }

java.text.BreakIterator

static Locale[] getAvailableLocales()

returns an array of Locale objects for which BreakIterator objects are available.

static BreakIterator getCharacterInstance()

static BreakIterator getCharacterInstance(Locale l)

static BreakIterator getWordInstance()

static BreakIterator getWordInstance(Locale l)

static BreakIterator getLineInstance()

static BreakIterator getLineInstance(Locale l)

static BreakIterator getSentenceInstance()

static BreakIterator getSentenceInstance(Locale l)

return a break iterator for characters, words, lines, and sentences for the default or the
given locale.

void setText(String text)

void setText(CharacterIterator text)

CharacterIterator getText()

set or get the text to be scanned.

int first()

moves the current boundary to the first boundary position in the scanned string and
returns the index.

int next()

moves the current boundary to the next boundary position and returns the index. Returns
BreakIterator.DONE if the end of the string has been reached.

int previous()

moves the current boundary to the previous boundary position and returns the index.
Returns BreakIterator.DONE if the beginning of the string has been reached.

int last()

moves the current boundary to the last boundary position in the scanned string and
returns the index.

int current()

returns the index of the current boundary.

int next(int n)

moves the current boundary to the nth boundary position from the current one and
returns the index. If n is negative, then the position is set closer to the beginning of the
string. Returns BreakIterator.DONE if the end or beginning of the string has been
reached.

int following(int pos)

moves the current boundary to the first boundary position after offset pos in the scanned
string, and returns the index. The returned value is larger than pos, or it is equal to
BreakIterator.DONE.

Message Formatting

In the early days of "mail-merge" programs, you had strings like:

"On {2}, a {0} destroyed {1} houses and caused {3} of
 damage."

where the numbers in braces were placeholders for actual names and values. This technique

is actually very convenient for doing certain kinds of internationalization, and the Java
programming language has a convenience MessageFormat class to allow formatting text
that has a pattern. To use the class, follow these steps.

1. Write the pattern as a string. You can use up to 10 placeholders {0}...{9}. You can
use each placeholder more than once.

2. Construct a MessageFormat object with the pattern string as the constructor
parameter.

3. Build an array of objects to substitute for the placeholders. The number inside the braces
refers to the index in the array of objects.

4. Call the format method with the array of objects as a parameter.

CAUTION

Here is an example of these steps. We first supply the array of objects for the placeholders.

String pattern =
 "On {2}, a {0} destroyed {1} houses and caused {3} of
 damage.";
MessageFormat msgFmt = new MessageFormat(pattern);

Object[] msgArgs = {
 "hurricane",
 new Integer(99),
 new GregorianCalendar(1999, 0, 1).getTime(),
 new Double(10E7)
};
String msg = msgFmt.format(msgArgs);
System.out.println(msg);

The number of the placeholder refers to the index in the object array. For example, the first
placeholder {2} is replaced with msgArgs[2]. Since we need to supply objects, we have to
remember to wrap integers and floating-point numbers in their Integer and Double

Steps 1 and 2 build a MessageFormat object that uses the current
locale for formatting numbers and dates. If you need to specify a different
locale, you must first construct a MessageFormat object with a dummy
pattern, then call the setLocale method, and finally call the
applyPattern method with the actual pattern that you want to use.

MessageFormat format = new MessageFormat("");
format.setLocale(locale);
format.applyPattern(pattern);

wrappers before passing them. Notice the cumbersome construction of the date that we used.
The format method expects an object of type Date, but the Date(int, int, int)
constructor is deprecated in favor of the Calendar class. Therefore, we have to create a
Calendar object and then call the getTime (sic) method to convert it to a Date object.

This code prints:

On 1/1/99 12:00 AM, a hurricane destroyed 99 houses
 and caused 100,000,000 of damage.

That is a start, but it is not perfect. We don't want to display the time "12:00 AM," and we want
the damage amount printed as a currency value. The way we do this is by supplying an
(optional) format for some or all of the placeholders. There are two ways to supply formats:

By adding them to the pattern string;

By calling the setFormat or setFormats method.

Let's do the easy one first. We can set a format for each individual occurrence of a
placeholder. In our example, we want the first occurrence of a placeholder (which is
placeholder {2}) to be formatted as a date, without a time field. And we want the fourth
placeholder to be formatted as a currency. Actually, the placeholders are numbered starting at
0, so we actually want to set the formats of placeholders 0 and 3. We will use the formatters
that you saw earlier in this chapter, namely, DateFormat.getDateInstance(loc)
and NumberFormat.getCurrencyInstance(loc), where loc is the locale we
want to use. Conveniently, all formatters have a common base class Format. The
setFormat method of the MessageText class receives an integer, the 0-based count of
the placeholder to which the format should be applied, and a Format reference.

To build the format we want, we simply set the formats of placeholders 0 and 3 and then call
the format method.

msgFmt.setFormat(0,
 DateFormat.getDateInstance(DateFormat.LONG, loc));
msgFmt.setFormat(3, NumberFormat.getCurrencyInstance(loc));
String msg = msgFmt.format(msgArgs);
System.out.println(msg);

Now, the printout is

On January 1, 1999, a hurricane destroyed 99 houses
and caused $100,000,000.00 of damage.

Next, rather than setting the formats individually, we can pack them into an array. Use null if
you don't need any special format.

Format argFormats[] =

{
 DateFormat.getDateInstance(DateFormat.LONG, loc),
 null,
 null,
 NumberFormat.getCurrencyInstance(loc)
};

msgFmt.setFormats(argFormats);

Note that the msgArgs and the argFormats array entries do not correspond to one
another. The msgArgs indexes correspond to the number inside the {} delimiters. The
argFormats indexes correspond to the position of the {} delimiters inside the message
string. This arrangement sounds cumbersome, but there is a reason for it. It is possible for the
placeholders to be repeated in the string, and each occurrence may require a different format.
Therefore, the formats must be indexed by position. For example, if the exact time of the
disaster was known, we might use the date object twice, once to extract the day and once to
extract the time.

String pattern =
 "On {2}, a {0} touched down at {2} and destroyed {1}
 houses.";
MessageFormat msgFmt = new MessageFormat(pattern);

Format argFormats[] =
{ DateFormat.getDateInstance(DateFormat.LONG, loc),
 null,
 DateFormat.getTimeInstance(DateFormat.SHORT, loc),
 null
};
msg.setFormats(argFormats);

Object[] msgArgs = {
 "hurricane",
 new Integer(99),
 new GregorianCalendar(1999, 0, 1, 11, 45, 0).getTime(),
};
String msg = msgFmt.format(msgArgs);
System.out.println(msg);

This example code prints:

On January 1, 1999, a hurricane touched down
at 11:45 AM and destroyed 99 houses.

Note that the placeholder {2} was printed twice, with two different formats!

Rather than setting placeholders dynamically, we can also set them in the message string. For
example, here we specify the date and currency formats directly in the message pattern.

"On {2,date,long}, a {0} destroyed {1} houses
and caused {3,number,currency} of damage."

If you specify formats directly, you don't need to make a call to setFormat or
setFormats. In general, you can make the placeholder index be followed by a type and a
style. Separate the index, type, and style by commas. The type can be any of:

number
time
date
choice

If the type is number, then the style can be:

integer
currency
percent

or it can be a number format pattern such as $,##0. (See Chapter 3 of Volume 1 for a
discussion of number format patterns.)

If the type is either time or date, then the style can be:

short
medium
long
full

or a date format pattern. (See the documentation of the SimpleDateFormat class for
more information about the possible formats.)

Choice formats are more complex, and we take them up in the next section.

java.text.MessageFormat

MessageFormat(String pattern)

constructs a message format object with the specified pattern.

void applyPattern(String pattern)

sets the pattern of a message format object to the specified pattern.

void setLocale(Locale loc)

Locale getLocale()

set or get the locale to be used for the placeholders in the message. The locale is only
used for subsequent patterns that you set by calling the applyPattern method.

void setFormats(Format[] formats)

Format[] getFormats()

set or get the formats to be used for the placeholders in the message.

void setFormat(int i, Format format)

sets the formats to be used for the ith placeholder in the message.

String format(String pattern, Object[] args)

formats the objects by using args[i] as input for placeholder {i}.

Choice Formats

Let's look closer at the pattern of the preceding section:

"On {2}, a {0} destroyed {1} houses and caused {3} of damage."

If we replace the disaster placeholder {0} with "earthquake", then the sentence is not
grammatically correct in English.

On January 1, 1999, a earthquake destroyed . . .

That means what we really want to do is integrate the article "a" into the placeholder:

"On {2}, {0} destroyed {1} houses and caused {3} of damage."

Then, the {0} would be replaced with "a hurricane" or "an earthquake". That is
especially appropriate if this message needs to be translated into a language where the
gender of a word affects the article. For example, in German, the pattern would be

"{0} zerstörte am {2} {1} Häuser und richtete einen Schaden vo
 {3} an."

The placeholder would then be replaced with the grammatically correct combination of article
and noun, such as "Ein Wirbelsturm", "Eine Naturkatastrophe".

Now let us turn to the {1} parameter. If the disaster isn't all that catastrophic, then {1} might
be replaced with the number 1, and the message would read:

On January 1, 1999, a mudslide destroyed 1 houses and . . .

We would ideally like the message to vary according to the placeholder value, so that it can
read

no houses
one house
2 houses
. . .

depending on the placeholder value. The ChoiceFormat class was designed to let you do
this. A ChoiceFormat object is constructed with two arrays:

An array of limits

An array of format strings

double[] limits = . . .;
String[] formatStrings = . . .;
ChoiceFormat choiceFmt = new ChoiceFormat(limits,
 formatStrings);
double input = . . .;
String s = choiceFmt.format(input);

The limits and formatStrings arrays must have the same length. The numbers in the
limits array must be in ascending order. Then, the format method checks between which
limits the input falls. If

limits[i] <= input && input < limits[i + 1]

then formatStrings[i] is used to format the input. If the input is at least as large as the
last limit, then the last format string is used. And, if the input is less than limits[0], then
formatStrings[0] is used anyway.

For example, consider these limits and format strings:

double[] limits = {0, 1, 2};
String[] formatStrings = {"no houses", "one house", "many
 houses"};

Table 10-4 shows the return values of the call to

String selected = choiceFmt.format(input);

NOTE

Of course, in our case, we don't want to return "many houses" if the number of houses is
2 or greater. We still want the value to be formatted. Here is the code to format the value.

double[] limits = {0, 1, 2};
String[] formatStrings = {"no houses", "one house", "{1}
 houses"};
ChoiceFormat choiceFmt = new ChoiceFormat(limits,
 formatStrings);
msgFmt.setFormat(2, choiceFmt);

That is, we create the choice format object and set it as the format to use for the third
placeholder (because the count is 0-based).

Why do we use {1} in the format string? The usage is a little mysterious. When the message
format applies the choice format on the placeholder, the choice format returns "{1}
houses". That string is then formatted again by the message format, and the answer is
spliced into the result. As a rule, you should always feed back the same placeholder that was
used to make the choice. Otherwise, you can create weird effects.

Table 10-4. String selected by ChoiceFormat
input selected
input < 0 "no houses"
0 <= input && input < 1 "no houses"
1 <= input && input < 2 "one house"
2 <= input "many houses"

This example shows that the designer of the ChoiceFormat class was a bit
muddleheaded. If you have three strings, you need two limits to separate them. In
general, you need one fewer limit than you have strings. Thus, the first limit is
meaningless, and you can simply set the first and second limit to the same numbe
For example, the following code works fine:

double[] limits = {1, 1, 2};
String[] formatStrings = {"no houses", "one house", "m
 houses"};
ChoiceFormat choiceFmt = new ChoiceFormat(limits,
 formatStrings);

You can add formatting information to the returned string, for example,

String[] formatStrings
 = {"no houses", "one house", "{1, number, integer} houses"};

As you saw in the preceding section, it is also possible to express the choice format directly in
a format string. When the format type is choice, then the next parameter is a list of pairs,
each pair consisting of a limit and a format string, separated by a #. The pairs themselves are
separated by |. Here is how to express the house format:

{1,choice,0#no houses|1#one house|2#{1} houses}

Thus, there are three sets of choices:

0#no houses
1#one house
2#{1} houses

The first one is used if the placeholder value is < 1, the second is used if the value is at least 1
but < 2, and the third is used if the value is at least 2.

NOTE

You can use the < symbol to denote that a choice should be selected if the left bound is strictly
less than the right bound.

The < symbol is translated into a limit that is the next floating point number after the number
specified in the choice string. There is even a static method
ChoiceFormat.nextDouble to compute that number.

As previously noted, the first limit is meaningless. But here you can't set the
first and second limits to the same value; the format parser complains that

1#no houses|1#one house|2#{1} houses

is an invalid choice. In this case, you must set the first limit to any number
that is strictly less than the second limit. You can safely use - as the first
bound—write it as -\u221E, using the Unicode character for the infinity
symbol.

The syntax would have been a lot clearer if the designer of this class
realized that the limits belong between the choices, such as

no houses|1|one house|2|{1} houses
// not the actual format

You can also use the symbol (expressed as the Unicode character code \u2264) as a
synonym for #.

For example,

{0,choice,-\u221E<negative|0\u2264zero|0<positive}

or

{0,choice,- <negative|0 zero|0<positive}

yields the following strings:

negative if - input and input < 0:

zero if 0 input and input < ChoiceFormat.nextDouble(0)

positive if ChoiceFormat.nextDouble(0) input

Let's return to our natural disaster scenario. If we put the choice string inside the original
message string, then we get the rather monstrous format instruction:

String pattern =
"On {2,date,long}, {0} destroyed {1,choice,0#no houses|1#one
 house|2#{1} houses}
and caused {3,number,currency} of damage.";

Or, in German,

String pattern =
"{0} zerstörte am {2,date,long} {1,choice,0#kein Haus|1#ein
 Haus|2#{1} Häuser}
und richtete einen Schaden von {3,number,currency} an.";

Note that the ordering of the words is different in German, but the array of objects you pass to
the format method is the same. The order of the placeholders in the format string takes care
of the changes in the word ordering.

java.text.ChoiceFormat

ChoiceFormat(String pattern)

constructs a choice format from a pattern string containing a | delimited set of pairs,
each of which is of the form limit#formatString.

ChoiceFormat(double limits[], String formatStrings[])

constructs a choice format with the given limits and formats. The limits must be
increasing. If input is the value to be formatted, then it is formatted with the
formatString[i], where i is the smallest index such that limits[i] <=
input. However, all inputs that are less than limits[1] are formatted with
formatString[0].

static double nextDouble(double x)

returns the smallest double-precision floating-point number that is strictly greater than x.
For example, nextDouble(0) is 4.9E-324.

Character Set Conversion

As you know, the Java programming language itself is fully Unicode-based. However,
operating systems typically have their own, homegrown, often incompatible character
encoding, such as ISO 8859 -1 (an 8 -bit code sometimes called the "ANSI" code) in the
United States, or BIG5 in Taiwan. So, the input that you receive from a user might be in a
different encoding system, and the strings that you show to the user must eventually be
encoded in a way that the local operating system understands.

Of course, inside your program, you should always use Unicode characters. You have to hope
that the implementation of the Java virtual machine on that platform successfully converts input
and output between Unicode and the local character set. For example, if you set a button label,
you specify the string in Unicode, and it is up to the Java virtual machine to get the button to
display your string correctly. Similarly, when you call getText to get user input from a text
box, you get the string in Unicode, no matter how the user entered it.

However, you need to be careful with text files. Never read a text file one byte at a time!
Always use the InputStreamReader or FileReader classes that were described in
Volume 1, Chapter 12. These classes automatically convert from a particular character
encoding to Unicode. By default, they use the local encoding scheme, but as you saw in
Volume 1, Chapter 12, you can specify the encoding in the constructor of the
InputStreamReader class, for example,

InputStreamReader in = new InputStreamReader(in, "8859_1");

Unfortunately, there is currently no connection between locales and character encodings. For
example, if your user has selected the Chinese Traditional locale zh_TW, there is no method
in the Java programming language that tells you that the BIG5 character encoding would be
the most appropriate.

When writing text files, you need to decide:

Is the output of the text file intended for humans to read or for use with other programs
on their local machines?

Is the output simply going to be fed into the same or another program?

If the output is intended for human consumption or a non-Unicode-enabled program, you'll
need to convert it to the local character encoding by using a PrintWriter, as you saw in
Volume 1, Chapter 12. Otherwise, just use the writeUTF method of the
DataOutputStream to write the string in Unicode Text Format. Then, of course, the
program reading the file must open it as a DataInputStream, and must read the string
with the readUTF method.

TIP

Of course, with both data streams and object streams, the output will not be in human-
readable form.

International Issues and Source Files

It is worth keeping in mind that you, the programmer, will need to communicate with the Java
compiler. And you do that with tools on your local system. For example, you can use the
Chinese version of Notepad to write your Java source code files. The resulting source code
files are not portable because they use the local character encoding (GB or BIG5, depending
on which Chinese operating system you use). Only the compiled class files are portable—they
will automatically use the UTF encoding for identifiers and strings. That means that even when
a program is compiling and running, three character encodings are involved:

Source files: local encoding

Class files: UTF

Virtual machine: Unicode

To make your source files portable, restrict yourself to using the plain ASCII encoding. That is,
you should change all non-ASCII characters to their equivalent Unicode encodings. For
example, rather than using the string "Häuser", use "H\u0084user". The SDK contains
a utility, native2ascii, that you can use to convert the native character encoding to plain
ASCII. This utility simply replaces every non-ASCII character in the input with a \u followed by
the four hex digits of the Unicode value. To use the native2ascii program, simply provide
the input and output file names.

In the case of input to a program in the Java programming language, an
even better choice is to use serialization. Then, you never have to worry at
all how strings are saved and loaded.

native2ascii Myfile.java Myfile.temp

You can convert the other way with the -reverse option:

native2ascii -reverse Myfile.java Myfile.temp

And you can specify another encoding with the -encoding option. The encoding name must
be one of those listed in the encodings table in Chapter 12 of volume 1.

native2ascii -encoding Cp437 Myfile.java Myfile.temp

Finally, we strongly recommend that you restrict yourself to plain ASCII class names. Since the
name of the class also turns into the name of the class file, you are at the mercy of the local
file system to handle any non-ASCII coded names—and it will almost certainly not do it right.
For example, depressingly enough, Windows 95 uses yet another character encoding, the so-
called Code Page 437 or original PC encoding, for its file names. Windows 95 makes a valiant
attempt to translate between ANSI and original names, but the JVM class loader does not. (NT
is much better this way.) For example, if you make a class Bär, then the JDK class loader will
complain that it "cannot find class BΣr." There is a reason for this behavior, but you don't want
to know. Simply stick to ASCII for your class names until all computers around the world offer
consistent support for Unicode.

Resource Bundles
When localizing an application, you'll probably have a dauntingly large number of message
strings, button labels, and so on, that all need to be translated. To make this task feasible,
you'll want to define the message strings in an external location, usually called a resource. The
person carrying out the translation can then simply edit the resource files without having to
touch the source code of the program.

NOTE

Java technology, unfortunately, does not have a mechanism for storing external resources in
text files. Instead, all resource data must be put in a class, either as static variables or as
return values of method calls. You create a different class for each locale, and then the
getBundle method of the ResourceBundle class automatically locates the correct class
for your locale.

NOTE

Java technology resources are not the same as Windows or Macintosh
resources. A Windows executable program stores resources such as
menus, dialog boxes, icons, and messages in a section separate from the
program code. A resource editor can be used to inspect and update these
resources without affecting the program code.

Chapter 10 of Volume 1 describes a concept of file resources, where data

Locating Resources

When localizing an application, you need to make a set of classes that describe the locale-
specific items (such as messages, labels, and so on) for each locale that you want to support.
Each of these classes must extend the class ResourceBundle. (You'll see a little later the
details involved in designing these kinds of classes.) You also need to use a naming
convention for these classes, where the name of the class corresponds to the locale. For
example, resources specific for Germany go to the class ProgramResources_de_DE,
while those that are shared by all German-speaking countries go into
ProgramResources_de. Taiwan-specific resources go into
ProgramResources_zh_TW, and any Chinese language strings go into
ProgramResources_zh. In general, use

ProgramResources_language_country

for all country-specific resources, and use

ProgramResources_language

for all language-specific resources. Finally, as a fallback, you can put the U.S. English strings
and messages into the class ProgramResources, without any suffix. Then, compile all
these classes and store them with the other application classes for the project.

Once you have a class for the resource bundle, you load it with the command

ResourceBundle currentResources =
 ResourceBundle.getBundle("ProgramResources", currentLocale)

The getBundle method attempts to load the class that matches the current locale by
language, country, and variant. If it is not successful, then the variant, country, and language
are dropped in turn. That is, the getBundle method tries to load one of the following classes
until it is successful.

ProgramResources_language_country_variant
ProgramResources_language_country
ProgramResources_language
ProgramResources

files, sounds, and images can be placed in a JAR file. The getResource
method of the class Class finds the file, opens it, and returns a URL to the
resource. Why? When you write a program that needs access to files, it
needs to find the files. By placing the files into the JAR file, you leave the
job of finding the files to the class loader, which already knows how to
locate the class files. While this mechanism does not directly support
internationalization, it is useful for locating localized property files, and we
take advantage of it in the next section.

If all these attempts are unsuccessful, then the getBundle method tries all over again, only
this time it uses the default locale instead of the current locale. If even these attempts fail, the
method throws a MissingResourceException.

Once the getBundle method has located a class, say, ProgramResources_de_DE, it
will still keep looking for ProgramResources_de and ProgramResources. If these
classes exist, they become the parents of the ProgramResources_de_DE class in a
resource hierarchy. Later, when looking up a resource, the getObject method will search
the parents if the lookup was not successful in the current class. That is, if a particular
resource was not found in ProgramResources_de_DE, then the
ProgramResources_de and ProgramResources will be queried as well.

This is clearly a very useful service and one that would be tedious to program by hand. A
resource mechanism of the Java programming language lets you locate the class that is the
best match for localization information. It is very easy to add more and more localizations to an
existing program: all you have to do is add additional resource classes.

Now that you know how a program can locate the correct resource, we show you how to place
the language-dependent information into the resource class. Ultimately, it would be nice if you
could get tools that even a nonprogrammer could use to define and modify resources. We
hope and expect that developers of integrated Java programming environments will eventually
provide such tools. But right now, creating resources still involves some programming. We take
that up next.

Placing Resources into Bundles

In the Java programming language, you place resources inside classes that extend the
ResourceBundle class. Each resource bundle implements a lookup table. When you
design a program, you provide a key string for each setting you want to localize, and you use
that key string to retrieve the setting. Use getString to retrieve a string resource.

String computeButtonLabel
 = resources.getString("computeButton");

However, a resource bundle can store objects of any kind. Not all localized settings are strings!
You use the getObject method to retrieve arbitrary objects from the bundle.

Color backgroundColor
 = (Color)resources.getObject("backgroundColor");
double[] paperSize
 = (double[])resources.getObject("defaultPaperSize");

TIP

You do not need to place all resources for your application into a single
bundle. You could have one bundle for button labels, one for error
messages, and so on.

To implement your own resource bundle class, you need to implement two methods:

Enumeration getKeys()
Object handleGetObject(String key)

The getObject and getString methods call the handleGetObject method that you
supply. For example, you can write the following classes to provide German and U.S. English
resources.

public class ProgramResources extends ResourceBundle
 // place getKeys method in common superclass
{
 public Enumeration getKeys()
 {
 return Collections.enumeration(Arrays.asList(keys));
 }

 private String[] keys = { "computeButton", "backgroundColor
 "defaultPaperSize" };
}

public class ProgramResources_de extends ProgramResources{
{
 public Object handleGetObject(String key)
 {
 if (key.equals("computeButton"))
 return "Rechnen";
 else if (key.equals("backgroundColor")
 return Color.black;
 else if (key.equals("defaultPaperSize")
 return new double[] { 210, 297 };
 }
}

public class ProgramResources_en_US extends ProgramResources{
{
 public Object handleGetObject(String key)
 {
 if (key.equals("computeButton"))
 return "Compute";
 else if (key.equals("backgroundColor")
 return Color.blue;
 else if (key.equals("defaultPaperSize")
 return new double[] { 216, 279 };
 }

}

NOTE

Of course, it is extremely tedious to write this kind of code for every resource bundle. The Java
standard library provides two convenience classes, ListResourceBundle and
PropertyResourceBundle, to make the job easier.

The ListResourceBundle lets you place all your resources into an object array, and then
it does the lookup for you. You need to supply the following skeleton:

public class ProgramResources_language_country
 extends ListResourceBundle
{
 public Object[][] getContents() { return contents; }
 private static final Object[][] contents =
 {
 // localization information goes here
 }
}

For example,

public class ProgramResources_de
 extends ListResourceBundle
{
 public Object[][] getContents() { return contents; }
 private static final Object[][] contents =
 {
 { "computeButton", "Rechnen" },
 { "backgroundColor", Color.black },
 { "defaultPaperSize", new double[] { 210, 297 } }
 }
}

public class ProgramResources_en_US

Everyone on the planet, with the exception of the United States and
Canada, uses ISO 216 paper sizes. For more information, see
http://www.cl.cam.ac.uk/~mgk25/iso-paper.html. According to the U.S.
Metric Association (http://lamar.colostate.edu/~hillger), there are only three
countries in the world that have not yet officially adopted the metric system,
namely, Liberia, Myanmar (Burma), and the United States of America. U.S.
businesses that wish to extend their export market further need to go
metric. See http://ts.nist.gov/ts/htdocs/200/202/mpo_reso.htm for a useful
set of links to information about the metric (SI) system.

 extends ListResourceBundle
{
 public Object[][] getContents() { return contents; }
 private static final Object[][] contents =
 {
 { "computeButton", "Compute" },
 { "backgroundColor", Color.blue },
 { "defaultPaperSize", new double[] { 216, 279 } }
 }
}

Note that you need not supply the getObject lookup method. The Java library provides it in
the superclass ListResourceBundle.

As an alternative, if all your settings are strings, you can use the more convenient
PropertyResourceBundle mechanism. You place all your strings into a property file, as
described in Chapter 2. This is simply a text file with one key/value pair per line. A typical file
would look like this:

computeButton=Rechnen
backgroundColor=black
defaultPaperSize=210x297

Then you name your property files according to the following pattern:

ProgramStrings.properties
ProgramStrings_en.properties
ProgramStrings_de_DE.properties

You can load the resources simply as

ResourceBundle bundle
 = ResourceBundle.getBundle("ProgramStrings", locale);

The getBundle locates the appropriate property file and turns it into a
PropertyResourceBundle. You never work with the PropertyResourceBundle
class directly.

Placing all resources into a text file is enormously attractive. It is much easier for the person
performing the localization, especially if he or she is not familiar with the Java programming
language, to understand a text file than a file with code. The downside is that your program
must parse strings (such as the paper size "210x297" in the example above.) The best
solution is, therefore, to put the string resources into property files and use a
ListResourceBundle for those resource objects that are not strings.

CAUTION

NOTE

java.util.ResourceBundle

static ResourceBundle getBundle(String baseName, Locale
loc)

static ResourceBundle getBundle(String baseName)

load the resource bundle class with the given name, for the given locale or the default
locale, and its parent classes. If the resource bundle classes are located in a package,
then the base name must contain the full package name, such as
"intl.ProgramResources". The resource bundle classes must be public so
that the getBundle method can access them.

Object getObject(String name)

looks up an object from the resource bundle or its parents.

String getString(String name)

looks up an object from the resource bundle or its parents and casts it as a string.

String[] getStringArray(String name)

looks up an object from the resource bundle or its parents and casts it as a string array.

Files for storing properties are always 7-bit ASCII files. If you need to place
Unicode characters into a properties file, you need to encode them by using
the \uxxxx encoding. For example, to specify "colorName=Grün",
use

colorName=Gr\u00FCn

You can use the native2ascii tool to generate these files.

In this section, you saw how to create resource bundles programmatically.
Of course, a lot of the code is completely routine. The Java
Internationalization and Localization Toolkit
(http://java.sun.com/products/jilkit) is a tool that can help you manage the
creation and maintenance of resource bundles.

Enumeration getKeys()

returns an enumeration object to enumerate the keys of this resource bundle. It
enumerates the keys in the parent bundles as well.

Graphical User Interface Localization
We have spent a lot of time showing you how to localize your applications. Now, we explain
how localization requires you to change the kind of code you write. For example, you have to
be much more careful how you code your event handlers for user interface events. Consider
the following common style of programming:

public class MyApplet extends JApplet
 implements ActionListener
{
 public void init()
 {
 JButton cancelButton = new JButton("Cancel");
 cancelButton.addActionListener(this);
 . . .
 }

 public void actionPerformed(ActionEvent evt)
 {
 String arg = evt.getActionCommand();
 if (arg.equals("Cancel"))
 doCancel();
 else . . .
 }
 . . .
}

Many programmers write this kind of code, and it works fine as long as you never
internationalize the interface. However, when the button name is translated to German,
"Cancel" turns into "Abbrechen." Then, the name needs to be updated automatically in both
the init method and the actionPerformed method. This is clearly error prone—it is a
well-known corollary to Murphy's law in computer science that two entities that are supposed to
stay in sync, won't. In this case, if you forget to update one of the occurrences of the string,
then the button won't work. There are three ways you can eliminate this potential problem.

1. Use inner classes instead of separate actionPerformed procedures.

2. Identify components by their reference, not their label.

3. Use the name attribute to identify components.

Let us look at these three strategies one by one.

Rather than having one handler that handles many actions, you can easily define a separate
handler for every component. For example,

public class MyApplet extends JApplet implements ActionListene
{
 public void init()
 {
 JButton cancelButton = new JButton("Cancel");
 cancelButton.addActionListener(new
 ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 doCancel();
 }
 });
 . . .
 }
 . . .
}

This code creates an inner class that listens just to the Cancel button. Since the button and its
listener are now tightly joined, there is no more code to parse the button label. Hence, there is
only one occurrence of the label string to localize.

We think this is the best solution to the problem of joining a user interface component and its
associated handler code. You may not like inner classes, either because they are confusing to
read or because each inner class results in an additional class file. The next choice, therefore,
is to make the button into an instance variable and compare its reference against the source of
the command.

public class MyApplet extends JApplet implements ActionListene
{
 public void init()
 {
 cancelButton = new JButton("Cancel");
 cancelButton.addActionListener(this);
 . . .
 }

 public void actionPerformed(ActionEvent evt)
 {
 Object source = evt.getSource();
 if (source == cancelButton)

 doCancel();
 else . . .
 }
 . . .
 private JButton cancelButton;
}

This approach works fine too. Note that now every user interface element must be stored in an
instance variable, and the actionPerformed method must have access to the variables.

Finally, you can give any class that inherits from Component (such as the Button class) a
name property. This name may or may not be distinct from its label in a specific locale, but this
is irrelevant; the name property stays constant regardless of locale changes. For example, if
you give a cancel button the name "cancel1", this is not a visual attribute of the button, it is
simply a text string associated with the button. (Think of it as a property of the button—see
Chapter 8 for more on properties.) When an action event is triggered, you first get the source
and then you can find the name attribute of the source.

public class MyApplet extends JApplet implements ActionListene
{
 public void init()
 {
 JButton cancelButton = new JButton("Cancel");
 cancelButton.setName("cancel1");
 cancelButton.addActionListener(this);
 . . .
 }

 public void actionPerformed(ActionEvent evt)
 {
 Component source = (Component)evt.getSource();
 if (source.getName().equals("cancel1"))
 doCancel();
 . . .
 }
 . . .
}

java.awt.Component

void setName(String s)

String getName()

set or get a component name, an arbitrary tag associated with the component.

Localizing an Applet

In this section, we apply the material from this chapter to localize a retirement calculator
applet.

The applet calculates whether or not you are saving enough money for your retirement. You
enter your age, how much money you save every month, and so on (see Figure 10-5).

Figure 10-5. The retirement calculator in English

The text area and the graph show the balance of the retirement account for every year. If the
numbers turn negative toward the later part of your life and the bars in the graph show up
below the x-axis, you need to do something; for example, save more money, postpone your
retirement, die earlier, or be younger.

The retirement calculator now works in three locales (English, German, and Chinese). Here
are some of the highlights of the internationalization.

The labels, buttons, and messages are translated into German and Chinese. You can
find them in the classes RetireResources_de, RetireResources_zh.
English is used as the fallback—see the RetireResources file. To generate the
Chinese messages, we first typed the file, using Notepad running in Chinese Windows,
and then we used the native2ascii utility to convert the characters to Unicode.

Whenever the locale changes, we reset the labels and reformat the contents of the text
fields.

The text fields handle numbers, currency amounts, and percentages in the local format.

The computation field uses a MessageFormat. The format string is stored in the
resource bundle of each language.

Just to show that it can be done, we use different colors for the bar graph, depending on
the language chosen by the user.

Examples 10-5 through 10-8 show the code. Examples 10-9 through 10-11 are the property
files for the localized strings. Figures 10-6 and 10-7 show the outputs in German and Chinese.
To see Chinese characters, you need to run the applet under Chinese Windows or manually
install the Chinese fonts. Otherwise, all Chinese characters show up as "missing character"
icons.

Figure 10-6. The retirement calculator in German

Figure 10-7. The retirement calculator in Chinese

NOTE

In sum, while the localization mechanism of the Java programming language still has some
rough edges, it does have one major virtue. Once you have organized your application for
localization, it is extremely easy to add more localized versions. You simply provide more
resource files, and they will be automatically loaded when a user wants them.

Example 10-5 Retire.java

 1..import java.awt.*;
 2. import java.awt.event.*;
 3. import java.awt.geom.*;
 4. import java.applet.*;
 5. import java.util.*;
 6. import java.text.*;
 7. import java.io.*;
 8. import javax.swing.*;
 9.

This applet was harder to write than a typical localized application because
the user can change the locale on-the-fly. The applet, therefore, had to be
prepared to redraw itself whenever the user selects another locale. If you
simply want to display your applet in the user's default locale, you will not
need to work so hard. You can simply call getLocale() to find the
locale of your user's system, and then use it for the entire duration of the
applet.

 10. /**
 11. This applet shows a retirement calculator. The UI is d
 12. in English, German, and Chinese.
 13. */
 14. public class Retire extends JApplet
 15. {
 16. public void init()
 17. {
 18. GridBagLayout gbl = new GridBagLayout();
 19. getContentPane().setLayout(gbl);
 20.
 21. GridBagConstraints gbc = new GridBagConstraints();
 22. gbc.weightx = 100;
 23. gbc.weighty = 0;
 24.
 25. gbc.fill = GridBagConstraints.NONE;
 26. gbc.anchor = GridBagConstraints.EAST;
 27. add(languageLabel, gbc, 0, 0, 1, 1);
 28. add(savingsLabel, gbc, 0, 1, 1, 1);
 29. add(contribLabel, gbc, 2, 1, 1, 1);
 30. add(incomeLabel, gbc, 4, 1, 1, 1);
 31. add(currentAgeLabel, gbc, 0, 2, 1, 1);
 32. add(retireAgeLabel, gbc, 2, 2, 1, 1);
 33. add(deathAgeLabel, gbc, 4, 2, 1, 1);
 34. add(inflationPercentLabel, gbc, 0, 3, 1, 1);
 35. add(investPercentLabel, gbc, 2, 3, 1, 1);
 36.
 37. gbc.fill = GridBagConstraints.HORIZONTAL;
 38. gbc.anchor = GridBagConstraints.WEST;
 39. add(localeCombo, gbc, 1, 0, 2, 1);
 40. add(savingsField, gbc, 1, 1, 1, 1);
 41. add(contribField, gbc, 3, 1, 1, 1);
 42. add(incomeField, gbc, 5, 1, 1, 1);
 43. add(currentAgeField, gbc, 1, 2, 1, 1);
 44. add(retireAgeField, gbc, 3, 2, 1, 1);
 45. add(deathAgeField, gbc, 5, 2, 1, 1);
 46. add(inflationPercentField, gbc, 1, 3, 1, 1);
 47. add(investPercentField, gbc, 3, 3, 1, 1);
 48.
 49. computeButton.setName("computeButton");
 50. computeButton.addActionListener(new
 51. ActionListener()
 52. {
 53. public void actionPerformed(ActionEvent event

 54. {
 55. getInfo();
 56. updateData();
 57. updateGraph();
 58. }
 59. });
 60. add(computeButton, gbc, 5, 3, 1, 1);
 61.
 62. gbc.weighty = 100;
 63. gbc.fill = GridBagConstraints.BOTH;
 64. add(retireCanvas, gbc, 0, 4, 4, 1);
 65. add(new JScrollPane(retireText), gbc, 4, 4, 2, 1);
 66. retireText.setEditable(false);
 67. retireText.setFont(new Font("Monospaced", Font.PLAI
 68.
 69. info.setSavings(0);
 70. info.setContrib(9000);
 71. info.setIncome(60000);
 72. info.setCurrentAge(35);
 73. info.setRetireAge(65);
 74. info.setDeathAge(85);
 75. info.setInvestPercent(0.1);
 76. info.setInflationPercent(0.05);
 77.
 78. localeCombo.addActionListener(new
 79. ActionListener()
 80. {
 81. public void actionPerformed(ActionEvent event
 82. {
 83. setCurrentLocale(
 84. locales[localeCombo.getSelectedIndex()]
 85. }
 86. });
 87.
 88. locales = new Locale[]
 89. { Locale.US, Locale.CHINA, Locale.GERMANY };
 90.
 91. int localeIndex = 0; // US locale is default select
 92.
 93. for (int i = 0; i < locales.length; i++)
 94. // if current locale one of the choices, we'll s
 95. if (getLocale().equals(locales[i])) localeIndex
 96.
 97. setCurrentLocale(locales[localeIndex]);

 98. }
 99.
100. /**
101. A convenience method to add a component to given gr
102. layout locations.
103. @param c the component to add
104. @param gbc the grid bag constraints to use
105. @param x the x grid position
106. @param y the y grid position
107. @param w the grid width
108. @param h the grid height
109. */
110. public void add(Component c, GridBagConstraints gbc,
111. int x, int y, int w, int h)
112. {
113. gbc.gridx = x;
114. gbc.gridy = y;
115. gbc.gridwidth = w;
116. gbc.gridheight = h;
117. getContentPane().add(c, gbc);
118. }
119.
120. /**
121. Sets the current locale.
122. @param locale the desired locale
123. */
124. public void setCurrentLocale(Locale locale)
125. {
126. currentLocale = locale;
127.
128. int localeIndex = localeCombo.getSelectedIndex();
129. localeCombo.removeAllItems();
130. for (int i = 0; i < locales.length; i++)
131. {
132. String language
133. = locales[i].getDisplayLanguage(currentLocale
134. localeCombo.addItem(language);
135. }
136. if (localeIndex >= 0)
137. localeCombo.setSelectedIndex(localeIndex);
138.
139. res = ResourceBundle.getBundle("RetireResources",
140. currentLocale);
141. resStrings = ResourceBundle.getBundle("RetireString

142. currentLocale);
143. currencyFmt
144. = NumberFormat.getCurrencyInstance(currentLocale
145. numberFmt
146. = NumberFormat.getNumberInstance(currentLocale);
147. percentFmt
148. = NumberFormat.getPercentInstance(currentLocale)
149.
150. updateDisplay();
151. updateInfo();
152. updateData();
153. updateGraph();
154. }
155.
156. /**
157. Updates all labels in the display.
158. */
159. public void updateDisplay()
160. {
161. languageLabel.setText(resStrings.getString("languag
162. savingsLabel.setText(resStrings.getString("savings"
163. contribLabel.setText(resStrings.getString("contrib"
164. incomeLabel.setText(resStrings.getString("income"))
165. currentAgeLabel.setText(
166. resStrings.getString("currentAge"));
167. retireAgeLabel.setText(resStrings.getString("retire
168. deathAgeLabel.setText(resStrings.getString("deathAg
169. inflationPercentLabel.setText(
170. resStrings.getString("inflationPercent"));
171. investPercentLabel.setText(
172. resStrings.getString("investPercent"));
173. computeButton.setText(
174. resStrings.getString("computeButton"));
175.
176. validate();
177. }
178.
179. /**
180. Updates the information in the text fields.
181. */
182. public void updateInfo()
183. {
184. savingsField.setText(
185. currencyFmt.format(info.getSavings()));

186. contribField.setText(
187. currencyFmt.format(info.getContrib()));
188. incomeField.setText(currencyFmt.format(info.getInco
189. currentAgeField.setText(
190. numberFmt.format(info.getCurrentAge()));
191. retireAgeField.setText(
192. numberFmt.format(info.getRetireAge()));
193. deathAgeField.setText(
194. numberFmt.format(info.getDeathAge()));
195. investPercentField.setText(
196. percentFmt.format(info.getInvestPercent()));
197. inflationPercentField.setText(
198. percentFmt.format(info.getInflationPercent()));
199. }
200.
201. /**
202. Updates the data displayed in the text area.
203. */
204. public void updateData()
205. {
206. retireText.setText("");
207. MessageFormat retireMsg = new MessageFormat("");
208. retireMsg.setLocale(currentLocale);
209. retireMsg.applyPattern(resStrings.getString("retire
210.
211. for (int i = info.getCurrentAge();
212. i <= info.getDeathAge(); i++)
213. {
214. Object[] args = { new Integer(i),
215. new Double(info.getBalance(i)) };
216. retireText.append(retireMsg.format(args) + "\n")
217. }
218. }
219.
220. /**
221. Updates the graph.
222. */
223. public void updateGraph()
224. {
225. retireCanvas.setColorPre(
226. (Color)res.getObject("colorPre"));
227. retireCanvas.setColorGain(
228. (Color)res.getObject("colorGain"));
229. retireCanvas.setColorLoss(

230. (Color)res.getObject("colorLoss"));
231. retireCanvas.setInfo(info);
232. repaint();
233. }
234.
235. /**
236. Reads the user input from the text fields.
237. */
238. public void getInfo()
239. {
240. try
241. {
242. info.setSavings(currencyFmt.parse(
243. savingsField.getText()).doubleValue());
244. info.setContrib(currencyFmt.parse(
245. contribField.getText()).doubleValue());
246. info.setIncome(currencyFmt.parse(
247. incomeField.getText()).doubleValue());
248. info.setCurrentAge(numberFmt.parse(
249. currentAgeField.getText()).intValue());
250. info.setRetireAge(numberFmt.parse(
251. retireAgeField.getText()).intValue());
252. info.setDeathAge(numberFmt.parse(
253. deathAgeField.getText()).intValue());
254. info.setInvestPercent(percentFmt.parse(
255. investPercentField.getText()).doubleValue());
256. info.setInflationPercent(percentFmt.parse(
257. inflationPercentField.getText()).doubleValue(
258. }
259. catch (ParseException exception)
260. {
261. }
262. }
263.
264. private JTextField savingsField = new JTextField(10);
265. private JTextField contribField = new JTextField(10);
266. private JTextField incomeField = new JTextField(10);
267. private JTextField currentAgeField = new JTextField(4)
268. private JTextField retireAgeField = new JTextField(4);
269. private JTextField deathAgeField = new JTextField(4);
270. private JTextField inflationPercentField = new JTextFi
271. private JTextField investPercentField = new JTextField
272. private JTextArea retireText = new JTextArea(10, 25);
273. private RetireCanvas retireCanvas = new RetireCanvas()

274. private JButton computeButton = new JButton();
275. private JLabel languageLabel = new JLabel();
276. private JLabel savingsLabel = new JLabel();
277. private JLabel contribLabel = new JLabel();
278. private JLabel incomeLabel = new JLabel();
279. private JLabel currentAgeLabel = new JLabel();
280. private JLabel retireAgeLabel = new JLabel();
281. private JLabel deathAgeLabel = new JLabel();
282. private JLabel inflationPercentLabel = new JLabel();
283. private JLabel investPercentLabel = new JLabel();
284.
285. private RetireInfo info = new RetireInfo();
286.
287. private Locale[] locales;
288. private Locale currentLocale;
289. private JComboBox localeCombo = new JComboBox();
290. private ResourceBundle res;
291. private ResourceBundle resStrings;
292. private NumberFormat currencyFmt;
293. private NumberFormat numberFmt;
294. private NumberFormat percentFmt;
295. }
296.
297. /**
298. The information required to compute retirement income
299. */
300. class RetireInfo
301. {
302. /**
303. Gets the available balance for a given year.
304. @param year the year for which to compute the balan
305. @return the amount of money available (or required)
306. that year
307. */
308. public double getBalance(int year)
309. {
310. if (year < currentAge) return 0;
311. else if (year == currentAge)
312. {
313. age = year;
314. balance = savings;
315. return balance;
316. }
317. else if (year == age)

318. return balance;
319. if (year != age + 1)
320. getBalance(year - 1);
321. age = year;
322. if (age < retireAge)
323. balance += contrib;
324. else
325. balance -= income;
326. balance = balance
327. * (1 + (investPercent - inflationPercent));
328. return balance;
329. }
330.
331. /**
332. Gets the amount of prior savings.
333. @return the savings amount
334. */
335. public double getSavings()
336. {
337. return savings;
338. }
339.
340. /**
341. Sets the amount of prior savings.
342. @param x the savings amount
343. */
344. public void setSavings(double x)
345. {
346. savings = x;
347. }
348.
349. /**
350. Gets the annual contribution to the retirement acco
351. @return the contribution amount
352. */
353. public double getContrib()
354. {
355. return contrib;
356. }
357.
358. /**
359. Sets the annual contribution to the retirement acco
360. @param x the contribution amount
361. */

362. public void setContrib(double x)
363. {
364. contrib = x;
365. }
366.
367. /**
368. Gets the annual income.
369. @return the income amount
370. */
371. public double getIncome()
372. {
373. return income;
374. }
375.
376. /**
377. Sets the annual income.
378. @param x the income amount
379. */
380. public void setIncome(double x)
381. {
382. income = x;
383. }
384.
385. /**
386. Gets the current age.
387. @return the age
388. */
389. public int getCurrentAge()
390. {
391. return currentAge;
392. }
393.
394. /**
395. Sets the current age.
396. @param x the age
397. */
398. public void setCurrentAge(int x)
399. {
400. currentAge = x;
401. }
402.
403. /**
404. Gets the desired retirement age.
405. @return the age

406. */
407. public int getRetireAge()
408. {
409. return retireAge;
410. }
411.
412. /**
413. Sets the desired retirement age.
414. @param x the age
415. */
416. public void setRetireAge(int x)
417. {
418. retireAge = x;
419. }
420.
421. /**
422. Gets the expected age of death.
423. @return the age
424. */
425. public int getDeathAge()
426. {
427. return deathAge;
428. }
429.
430. /**
431. Sets the expected age of death.
432. @param x the age
433. */
434. public void setDeathAge(int x)
435. {
436. deathAge = x;
437. }
438.
439. /**
440. Gets the estimated percentage of inflation.
441. @return the percentage
442. */
443. public double getInflationPercent()
444. {
445. return inflationPercent;
446. }
447.
448. /**
449. Sets the estimated percentage of inflation.

450. @param x the percentage
451. */
452. public void setInflationPercent(double x)
453. {
454. inflationPercent = x;
455. }
456.
457. /**
458. Gets the estimated yield of the investment.
459. @return the percentage
460. */
461. public double getInvestPercent()
462. {
463. return investPercent;
464. }
465.
466. /**
467. Sets the estimated yield of the investment.
468. @param x the percentage
469. */
470. public void setInvestPercent(double x)
471. {
472. investPercent = x;
473. }
474.
475. private double savings;
476. private double contrib;
477. private double income;
478. private int currentAge;
479. private int retireAge;
480. private int deathAge;
481. private double inflationPercent;
482. private double investPercent;
483.
484. private int age;
485. private double balance;
486. }
487.
488. /**
489. This panel draws a graph of the investment result.
490. */
491. class RetireCanvas extends JPanel
492. {
493. public RetireCanvas()

494. {
495. setSize(WIDTH, HEIGHT);
496. }
497.
498. /**
499. Sets the retirement information to be plotted.
500. @param newInfo the new retirement info.
501. */
502. public void setInfo(RetireInfo newInfo)
503. {
504. info = newInfo;
505. repaint();
506. }
507.
508. public void paintComponent(Graphics g)
509. {
510. Graphics2D g2 = (Graphics2D)g;
511. if (info == null) return;
512.
513. double minValue = 0;
514. double maxValue = 0;
515. int i;
516. for (i = info.getCurrentAge();
517. i <= info.getDeathAge(); i++)
518. {
519. double v = info.getBalance(i);
520. if (minValue > v) minValue = v;
521. if (maxValue < v) maxValue = v;
522. }
523. if (maxValue == minValue) return;
524.
525. int barWidth = getWidth() / (info.getDeathAge()
526. - info.getCurrentAge() + 1);
527. double scale = getHeight() / (maxValue - minValue);
528.
529. for (i = info.getCurrentAge();
530. i <= info.getDeathAge(); i++)
531. {
532. int x1 = (i - info.getCurrentAge()) * barWidth +
533. int y1;
534. double v = info.getBalance(i);
535. int height;
536. int yOrigin = (int)(maxValue * scale);
537.

538. if (v >= 0)
539. {
540. y1 = (int)((maxValue - v) * scale);
541. height = yOrigin - y1;
542. }
543. else
544. {
545. y1 = yOrigin;
546. height = (int)(-v * scale);
547. }
548.
549. if (i < info.getRetireAge())
550. g2.setColor(colorPre);
551. else if (v >= 0)
552. g2.setColor(colorGain);
553. else
554. g2.setColor(colorLoss);
555. Rectangle2D bar = new Rectangle2D.Double(x1, y1,
556. barWidth - 2, height);
557. g2.fill(bar);
558. g2.setColor(Color.black);
559. g2.draw(bar);
560. }
561. }
562.
563. /**
564. Sets the color to be used before retirement.
565. @param color the desired color
566. */
567. public void setColorPre(Color color)
568. {
569. colorPre = color;
570. repaint();
571. }
572.
573. /**
574. Sets the color to be used after retirement while
575. the account balance is positive.
576. @param color the desired color
577. */
578. public void setColorGain(Color color)
579. {
580. colorGain = color;
581. repaint();

582. }
583.
584. /**
585. Sets the color to be used after retirement when
586. the account balance is negative.
587. @param color the desired color
588. */
589. public void setColorLoss(Color color)
590. {
591. colorLoss = color;
592. repaint();
593. }
594.
595. private RetireInfo info = null;
596.
597. private Color colorPre;
598. private Color colorGain;
599. private Color colorLoss;
600. private static final int WIDTH = 400;
601. private static final int HEIGHT = 200;
602. }

Example 10-6 RetireResources.java

 1. import java.util.*;
 2. import java.awt.*;
 3.
 4. /**
 5. These are the English non-string resources for the reti
 6. calculator.
 7. */
 8. public class RetireResources
 9. extends java.util.ListResourceBundle
10. {
11. public Object[][] getContents() { return contents; }
12. static final Object[][] contents =
13. {
14. // BEGIN LOCALIZE
15. { "colorPre", Color.blue },
16. { "colorGain", Color.white },
17. { "colorLoss", Color.red }
18. // END LOCALIZE
19. };
20. }

Example 10-7 RetireResources_de.java

 1. import java.util.*;
 2. import java.awt.*;
 3.
 4. /**
 5. These are the German non-string resources for the retir
 6. calculator.
 7. */
 8. public class RetireResources_de
 9. extends java.util.ListResourceBundle
10. {
11. public Object[][] getContents() { return contents; }
12. static final Object[][] contents =
13. {
14. // BEGIN LOCALIZE
15. { "colorPre", Color.yellow },
16. { "colorGain", Color.black },
17. { "colorLoss", Color.red }
18. // END LOCALIZE
19. };
20. }

Example 10-8 RetireResources_zh.java

 1. import java.util.*;
 2. import java.awt.*;
 3.
 4. /**
 5. These are the Chinese non-string resources for the reti
 6. calculator.
 7. */
 8. public class RetireResources_zh
 9. extends java.util.ListResourceBundle
10. {
11. public Object[][] getContents() { return contents; }
12. static final Object[][] contents =
13. {
14. // BEGIN LOCALIZE
15. { "colorPre", Color.red },
16. { "colorGain", Color.blue },
17. { "colorLoss", Color.yellow }
18. // END LOCALIZE
19. };
20. }

Example 10-9 RetireStrings.properties

 1. language=Language
 2. computeButton=Compute
 3. savings=Prior Savings
 4. contrib=Annual Contribution
 5. income=Retirement Income
 6. currentAge=Current Age
 7. retireAge=Retirement Age
 8. deathAge=Life Expectancy
 9. inflationPercent=Inflation
10. investPercent=Investment Return
11. retire=Age: {0,number} Balance: {1,number,currency}

Example 10-10 RetireStrings_de.properties

 1. language=Sprache
 2. computeButton=Rechnen
 3. savings=Vorherige Ersparnisse
 4. contrib=J hrliche Einzahlung
 5. income=Einkommen nach Ruhestand
 6. currentAge=Jetziges Alter
 7. retireAge=Ruhestandsalter
 8. deathAge=Lebenserwartung
 9. inflationPercent=Inflation
10. investPercent=Investitionsgewinn
11. retire=Alter: {0,number} Guthaben: {1,number,currency}

Example 10-11 RetireStrings_zh.properties

 1. language=\u8bed\u8a00
 2. computeButton=\u8ba1\u7b97
 3. savings=\u65e2\u5b58
 4. contrib=\u6bcf\u5e74\u5b58\u91d1
 5. income=\u9000\u4f11\u6536\u5165
 6. currentAge=\u73b0\u5cad
 7. retireAge=\u9000\u4f11\u5e74\u9f84
 8. deathAge=\u9884\u671f\u5bff\u547d
 9. inflationPercent=\u901a\u8d27\u81a8\u6da8
10. investPercent=\u6295\u8d44\u62a5\u916c
11. retire=\u5e74\u9f84: {0,number} \u603b\u7ed3: {1,number,cu

java.applet.Applet

Locale getLocale()

gets the current locale of the applet. The current locale is determined from the client
computer that executes the applet.

CONTENTS

Chapter 11. Native Methods
Calling a C Function from the Java Programming Language

Numeric Parameters and Return Values

String Parameters

Accessing Object Fields

Accessing Static Fields

Signatures

Calling Java Methods

Arrays

Error Handling

The Invocation API

A Complete Example: Accessing the Windows Registry

We hope that you are convinced that code written in the Java programming language has a
number of advantages over code written in languages like C or C++ — even for platform -
specific applications. Here, of course, it is not portability that is the issue but rather features
like these:

You are more likely to produce bug-free code with the Java programming language than
with C or C++.

Multithreading is probably easier to code in the Java programming language than in most
other languages.

Networking code is a breeze.

Portability is simply a bonus that you may or may not want to take advantage of down the line.

While a "100% Pure Java" solution is nice in principle, realistically, for an application, there are
situations where you will want to write (or use) code written in another language. (Such code is
usually called native code.) There are three obvious reasons why this may be the right choice:

1. You have substantial amounts of tested and debugged code available in that language.
Porting the code to the Java programming language would be time consuming, and the
resulting code would need to be tested and debugged again.

CONTENTS

2. Your application requires access to system features or devices, and using Java
technology would be cumbersome, at best, or impossible, at worst.

3. Maximizing the speed of the code is essential. For example, the task may be time-critical,
or it may be code that is used so often that optimizing it has a big payoff. This is actually
the least plausible reason. With just-in-time (JIT) compilation, intensive computations
coded in the Java programming language are not that much slower than compiled C
code.

If you are in one of these three situations, it might make sense to call the native code from
programs written in the Java programming language. Of course, with the usual security
manager in place, once you start using native code, you are restricted to applications rather
than applets. In particular, the native code library you are calling must exist on the client
machine, and it must work with the client machine architecture.

To make calling native methods possible, Java technology comes with hooks for working with
system libraries, and the JDK has a few tools to relieve some (but not all) of the programming
tedium.

NOTE

Still, keep in mind: If you use native methods, you lose portability. Even when you distribute
your program as an application, you must supply a separate native method library for every
platform you wish to support. This means you must also educate your users on how to install
these libraries! Also, while users may trust that applets can neither damage data nor steal
confidential information, they may not want to extend the same trust to code that uses native
method libraries. For that reason, many potential users will be reluctant to use programs in the
Java programming language that require native code. Aside from the security issue, native
libraries are unlikely to be as safe as code written in the Java programming language,
especially if they are written in a language like C or C++ that offers no protection against
overwriting memory through invalid pointer usage. It is easy to write native methods that
corrupt the Java virtual machine, compromise its security, or trash the operating system.

Thus, we suggest using native code only as a last resort. If you must gain access to a device,
such as a serial port, in a program, then you may need to write native code. If you need to
access an existing body of code, why not consider native methods as a stopgap measure and
eventually port the code to the Java programming language? If you are concerned about
efficiency, benchmark a Java platform implementation. In most cases, the speed using a just-
in-time compiler will be sufficient. A talk at the 1996 JavaOne conference showed this clearly.
The implementors of the cryptography library at Sun Microsystems reported that a pure Java
platform implementation of their cryptographic functions was more than adequate. It was true
that the code was not as fast as a C implementation would have been, but it turned out not to
matter. The Java platform implementation was far faster than the network I/O. And this turns
out to be the real bottleneck.

The language you use for your native code doesn't have to be C or C++;
you could use code compiled with a FORTRAN compiler, if you have
access to a binding between the Java and FORTRAN programming
languages.

In summary, there is no point in sacrificing portability for a meaningless speed improvement;
don't go native until you determine that you have no other choice.

NOTE

Finally, we use C as our language for native methods in this chapter because C is probably the
language most often used for native methods. In particular, you'll see how to make the
correspondence between Java data types, feature names, and function calls and those of C.
(This correspondence is usually called the C binding.)

C++ NOTE

Calling a C Function from the Java Programming
Language
Suppose you have a C function that does something you like and, for one reason or another,
you don't want to bother reimplementing it in the Java programming language. For the sake of
illustration, we'll assume it is the useful and venerable printf function. You want to be able
to call printf from your programs. The Java programming language uses the keyword
native for a native method, and you will obviously need to encapsulate the printf function in
a class. So, you might write something like:

public class Printf
{
 public native String printf(String s);
}

You actually can compile this class, but when you go to use it in a program, then the virtual
machine will tell you it doesn't know how to find printf—reporting an
UnsatisfiedLinkError. So the trick is to give the run time enough information so that it
can link in this class. As you will soon see, under the JDK this requires a three-step process:

1. Generate a C stub for a function that translates between the Java platform call and the

In this chapter, we describe the so-called Java Native Interface (JNI)
binding. An earlier language binding (sometimes called the raw native
interface) was used with Java 1.0, and a variation of that earlier binding was
used by the Microsoft Virtual Machine. Sun Microsystems has assured
developers that the JNI binding described here is a permanent part of the
Java platform, and that it needs to be supported by all Java virtual
machines.

You can also use C++ instead of C to write native methods. There are a few
advantages—type checking is slightly stricter, and accessing the JNI
functions is a bit more convenient. However, JNI does not support any direct
correspondence between Java platform classes and those in C++

actual C function. The stub does this translation by taking parameter information off the
virtual machine stack and passing it to the compiled C function.

2. Create a special shared library and export the stub from it.

3. Use a special method, called System.loadLibrary, to tell the Java run-time
environment to load the library from Step 2.

We now show you how to carry out these steps for various kinds of examples, starting from a
trivial special-case use of printf and ending with a realistic example involving the registry
function for Windows—platform-dependent functions that are obviously not available directly
from the Java platform.

Working with the printf Function

Let's start with just about the simplest possible situation using printf: calling a native
method that prints the message, "Hello, Native World." Obviously we are not even tapping into
the useful formatting features of printf! Still, this is a good way for you to test that your C
compiler works as expected before you try implementing more ambitious native methods.

As we mentioned earlier, you first need to declare the native method in a class. The native
keyword alerts the compiler that the method will be defined externally. Of course, native
methods will contain no code in the Java programming language, and the method header is
followed immediately by a terminating semicolon. This means, as you saw in the example
above, native method declarations look similar to abstract method declarations.

class HelloNative
{
 public native static void greeting();
 . . .
}

In this particular example, note that we also declare the native method as static. Native
methods can be both static and nonstatic. This method takes no parameters; we do not yet
want to deal with parameter passing, not even implicit parameters.

Next, write a corresponding C function. You must name that function exactly the way the Java
runtime environment expects. Here are the rules:

1. Use the full Java method name, such as HelloNative.greeting. If the class is in
a package, then prepend the package name, such as
com.horstmann.HelloNative.greeting.

2. Replace every period with an underscore, and append the prefix Java_. For example,
Java_HelloNative_greeting or
Java_com_horstmann_HelloNative_greeting.

3. If the class name contains characters that are not ASCII letters or digits—that is, '_',
'$', or Unicode characters with code > '\u007F'—replace them with _0xxxx,
where xxxx is the sequence of four hexadecimal digits of the character's Unicode value.

NOTE

Actually, nobody does this by hand; instead, you should run the javah utility, which
automatically generates the function names. To use javah, first, compile the source file
(given in Example 11-3).

javac HelloNative.java

Next, call the javah utility to produce a C header file. The javah executable can be found in
the jdk/bin directory.

javah HelloNative

NOTE

Using javah creates a header file, HelloNative.h, as in Example 11-1.

Example 11-1 HelloNative.h

 1. /* DO NOT EDIT THIS FILE - it is machine generated */
 2. #include <jni.h>
 3. /* Header for class HelloNative */
 4.
 5. #ifndef _Included_HelloNative
 6. #define _Included_HelloNative
 7. #ifdef __cplusplus
 8. extern "C" {

If you overload native methods, that is, if you provide multiple native
methods with the same name, then you must append a double underscore
followed by the encoded argument types. We describe the encoding of the
argument types later in this chapter. For example, if you have a native
method, greeting, and another native method greeting(int
repeat), then the first one is called
Java_HelloNative_greeting__, and the second,
Java_HelloNative_greeting__I.

If you are still using JDK1.1, be sure to use the -jni flag when running
javah. Without that flag, the javah tool in JDK 1.1 generates the header
file for the Java 1.0 binding. Starting with JDK 1.2, the JNI binding is the
default.

 9. #endif
10. /*
11. * Class: HelloNative
12. * Method: greeting
13. * Signature: ()V
14. */
15. JNIEXPORT void JNICALL Java_HelloNative_greeting
16. (JNIEnv *, jclass);
17.
18. ifdef __cplusplus
19. }
20. #endif
21. #endif

As you can see, this file contains the declaration of a function
Java_HelloNative_greeting. (The strings JNIEXPORT and JNICALL are defined
in the header file jni.h. They denote compiler-dependent specifiers for exported functions
that come from a dynamically loaded library.)

Now, you simply have to copy the function prototype from the header file into the source file
and give the implementation code for the function, as shown in Example 11-2.

Example 11-2 HelloNative.c

1. #include "HelloNative.h"
2. #include <stdio.h>
3.
4. JNIEXPORT void JNICALL Java_HelloNative_greeting(JNIEnv* en
5. jclass cl)
6.{
7. printf("Hello world!\n");
8.}

In this simple function, we ignore the env and cl arguments. You'll see their use later.

C++ NOTE

You can use C++ to implement native methods. However, you must then
declare the functions that implement the native methods as extern "C".
For example,

#include "HelloNative.h"
#include <stdio.h>

extern "C"
JNIEXPORT void JNICALL Java_HelloNative_greeting

Next, compile the C code into a dynamically loaded library. The details depend on your
compiler.

For example, with the Gnu C compiler on Linux, use these commands:

gcc -c -fPIC -I/usr/local/jdk/include/
 -I/jdk/include/linux HelloNative.c
gcc -shared -o libHelloNative.so HelloNative.o

With the Sun compiler under the Solaris operating environment, the command to use is

cc -G -I/usr/local/jdk/include
 -I/usr/local/jdk/include/solaris
 HelloNative.c -o libHelloNative.so

With the Microsoft C++ compiler under Windows, the command you use is

cl -Ic:\jdk\include -Ic:\jdk\include\win32 -LD HelloNative.c
 -FeHelloNative.dll

You can also use the freely available Cygwin programming environment from
http://www.cygwin.com. It contains the Gnu C compiler and libraries for UNIX-style
programming on Windows. With Cygwin, use the commands

gcc -c -D__int64="long long"
 -Ic:/jdk/include/ -Ic:/jdk/include/win32 HelloNative.c
dllwrap --add-stdcall-alias -o HelloNative.dll HelloNative.o

You may need to use different paths to specify the locations of the header files, depending on
which directory contains the SDK.

TIP

 (JNIEnv* env, jclass cl)
{
 printf("Hello, Native World!\n");
}

If you use the Microsoft C++ compiler to compile DLLs from a DOS shell,
first run the batch file

c:\devstudio\vc\bin\vcvars32.bat

That batch file properly configures the command-line compiler by setting up
the path and the environment variables needed by the compiler.

NOTE

Finally, we need to add the call to the System.loadLibrary method that ensures that the
virtual machine will load the library prior to the first use of the class. The easiest way to do this
is to use a static initialization block in the class that contains the native method, as in Example
11-3:

Example 11-3 HelloNative.java

1. class HelloNative
2. {
3. public static native void greeting();
4.
5. static
6. {
7. System.loadLibrary("HelloNative");
8. }
9. }

Assuming you have followed all the steps given above, you are now ready to run the
HelloNativeTest application shown in Example 11-4.

Example 11-4 HelloNativeTest.java

1. class HelloNativeTest
2. {
3. public static void main(String[] args)
4. {
5. HelloNative.greeting();

The Windows version of the header file jni_md.h contains the type
declaration

typedef __int64 jlong;

which is specific to the Microsoft compiler. If you use the Gnu compiler, you
may want to edit that file, for example

#ifdef __GNUC__
 typedef long long jlong;
#else
 typedef __int64 jlong;
#endif

Alternatively, compile with -D__int64="long long", as shown in the
sample compiler invocation.

6. }
7. }

If you compile and run this program, the message "Hello, Native World!" is displayed in a
terminal window.

Of course, this is not particularly impressive by itself. However, if you keep in mind that this
message is generated by the C printf command and not by any Java programming
language code, you will see that we have taken the first steps toward bridging the gap between
the two languages!

NOTE

java.lang.System

void loadLibrary(String libname)

loads the library with the given name. The library is located in the library search path.
The exact method for locating the library is operating-system dependent. Under
Windows, this method searches first the current directory, then the directories listed in
the PATH environment variable.

void load(String filename)

loads the library with the given file name. If the library is not found, then an
UnsatisfiedLinkError is thrown.

Numeric Parameters and Return Values
When passing numbers between C and the Java programming language, you need to
understand which types correspond to each other. For example, while C does have data types

Some shared libraries for native code need to run initialization code. You
can place any initialization code into a JNI_OnLoad method. Similarly,
when the VM shuts down, it will call the JNI_OnUnload method if you
provide it. The prototypes are

jint JNI_OnLoad(JavaVM* vm, void* reserved);
void JNI_OnUnload(JavaVM* vm, void* reserved);

The JNI_OnLoad method needs to return the minimum version of the VM
that it requires, such as JNI_VERSION_1_1.

called int and long, their implementation is platform dependent. On some platforms, ints
are 16-bit quantities, and on others they are 32-bit quantities. In the Java platform, of course,
an int is always a 32-bit integer. For that reason, the Java Native Interface defines types
jint, jlong, and so on.

Table 11-1 shows the correspondence between Java types and C types.

In the header file jni.h, these types are declared with typedef statements as the
equivalent types on the target platform. That header file also defines the constants
JNI_FALSE = 0 and JNI_TRUE = 1.

Using printf for Formatting Numbers

Recall that the Java library has no elegant way for formatted printing of floating-point numbers.
Of course, you can use the DecimalFormat class (see Volume 1, Chapter 3) and build
custom formats—we just don't think this is as easy as a simple call to printf. Since
printf is quick, easy, and well known, let's suppose you decide to implement the same
functionality via a call to the printf function in a native method.

We don't actually recommend this approach: the native code needs to be compiled for every
target platform. We are using it because it shows off the techniques of passing parameters to a
native method and obtaining a return value.

Example 11-5 shows a class called Printf1 that uses a native method to print a floating-
point number with a given field width and precision.

Example 11-5 Printf1.java

 1. class Printf1
 2. {
 3. public static native int print(int width, int precision
 4. double x);
 5.

Table 11-1. Java types and C types
Java Programming Language C Programming Language Bytes
boolean jboolean 1
byte jbyte 1
char jchar 2
short jshort 2
int jint 4
long jlong 8
float jfloat 4
double jdouble 8

 6. static
 7. {
 8. System.loadLibrary("Printf1");
 9. }
10. }

Notice that when implementing the method in C, all int and double parameters are
changed to jint and jdouble, as shown in Example 11-6.

Example 11-6 Printf1.c

 1. #include "Printf1.h"
 2. #include <stdio.h>
 3.
 4. JNIEXPORT jint JNICALL Java_Printf1_print
 5. (JNIEnv* env, jclass cl, jint width, jint precision, jdo
 6. {
 7. char fmt[30];
 8. jint ret;
 9. sprintf(fmt, "%%%d.%df", width, precision);
10. ret = printf(fmt, x);
11. fflush(stdout);
12. return ret;
13. }

The function simply assembles a format string "%w.pf" in the variable fmt, then calls
printf. It then returns the number of characters printed.

Example 11-7 shows the test program that demonstrates the Printf1 class.

Example 11-7 Printf1Test.java

 1. class Printf1Test
 2. {
 3. public static void main(String[] args)
 4. {
 5. int count = Printf1.print(8, 4, 3.14);
 6. count += Printf1.print(8, 4, (double)count);
 7. System.out.println();
 8. for (int i = 0; i < count; i++)
 9. System.out.print("-");
10. System.out.println();
11. }
12. }

String Parameters
Next, we want to consider how to transfer strings to and from native methods. As you know,
strings in the Java programming language are sequences of 16-bit Unicode characters; C
strings are null-terminated strings of 8-bit characters, so strings are quite different in the two
languages. The Java Native Interface has two sets of functions, one that converts Java strings
to UTF (Unicode Text Format) and one that converts them to arrays of Unicode characters,
that is, to jchar arrays. The UTF format was discussed in Chapter 1—recall that ASCII
characters are encoded "as is," but all other Unicode characters are encoded as 2-byte or 3-
byte sequences.

If your C code already uses Unicode, you'll want to use the second set of conversion functions.
On the other hand, if all your Java strings are restricted to ASCII characters, you can use the
UTF conversion functions.

A native method with a String parameter actually receives a value of an opaque type called
jstring. A native method with a return value of type String must return a value of type
jstring. JNI functions are used to read and construct these jstring objects. For
example, the NewStringUTF function makes a new jstring object out of a char array
that contains UTF-encoded characters. Unfortunately, JNI functions have a somewhat odd
calling convention. Here is a call to the NewStringUTF function.

JNIEXPORT jstring JNICALL Java_HelloNative_getGreeting
 (JNIEnv* env, jclass cl)
{
 jstring jstr;
 char greeting[] = "Hello, Native World\n";
 jstr = (*env)->NewStringUTF(env, greeting);
 return jstr;
}

All calls to JNI functions use the env pointer that is the first argument of every native method.
The env pointer is a pointer to a table of function pointers (see Figure 11-1). Therefore, you
must prefix every JNI call with (*env)-> to actually dereference the function pointer.
Furthermore, env is the first parameter of every JNI function. This setup is somewhat
cumbersome, and it could have easily been made more transparent to C programmers. We
suggest that you simply supply the (*env)-> prefix without worrying about the table of
function pointers.

Figure 11-1. The env pointer

C++ NOTE

The NewStringUTF function lets you construct a new jstring. To read the contents of
an existing jstring object, use the GetStringUTFChars function. This function returns
a const jbyte* pointer to the UTF characters that describe the character string. Note that
a specific virtual machine is free to use UTF for its internal string representation, so you may
get a character pointer into the actual Java string. Since Java strings are meant to be
immutable, it is very important that you treat the const seriously and do not try to write into
this character array. On the other hand, if the virtual machine uses Unicode characters for its
internal string representation, then this function call allocates a new memory block that will be
filled with the UTF equivalents.

The virtual machine must know when you are finished using the UTF string, so that it can
garbage-collect it. (The garbage collector runs in a separate thread, and it can interrupt the
execution of native methods.) For that reason, you must call the
ReleaseStringUTFChars function.

Alternatively, you can supply your own buffer to hold the string characters by calling the
GetStringRegion or GetStringUTFRegion methods.

Finally, the GetStringUTFLength function returns the number of characters needed for
the UTF encoding of the string.

It is simpler to access JNI functions in C++. The C++ version of the
JNIEnv class has inline member functions that take care of the function
pointer lookup for you. For example, you can call the NewStringUTF
function as

jstr = env->NewStringUTF(greeting);

Note that you omit the JNIEnv pointer from the parameter list of the call.

Accessing Java strings from C code

jstring NewStringUTF(JNIEnv* env, const char bytes[])

returns a new Java string object from an UTF string, or NULL if the string cannot be
constructed.

jsize GetStringUTFLength(JNIEnv* env, jstring string)

returns the number of characters required for the UTF encoding.

const jbyte* GetStringUTFChars(JNIEnv* env, jstring
string, jboolean* isCopy)

returns a pointer to the UTF encoding of a string, or NULL if the character array cannot
be constructed. The pointer is valid until ReleaseStringUTFChars is called.

void ReleaseStringUTFChars(JNIEnv* env, jstring string,
const jbyte bytes[])

informs the virtual machine that the native code no longer needs access to the Java
string through bytes.

Parameters: env the JNI interface pointer
 bytes the null-terminated UTF string

Parameters: env the JNI interface pointer
 string a Java string object

Parameters: env the JNI interface pointer
 string a Java string object
 isCopy points to a jboolean that is filled with JNI_TRUE if a copy is

made; with JNI_FALSE otherwise

Parameters: env the JNI interface pointer

void GetStringRegion(JNIEnv *env, jstring string, jsize
start, jsize length, jchar *buffer)

copies a sequence of Unicode characters from a string to a user-supplied buffer.

void GetStringUTFRegion(JNIEnv *env, jstring string, jsize
start, jsize length, jbyte *buffer)

copies a sequence of UTF8 characters from a string to a user-supplied buffer. The buffer
must be long enough to hold the bytes. In the worst case, 3 X length bytes are
copied.

jstring NewString(JNIEnv* env, const jchar chars[], jsize
length)

returns a new Java string object from a Unicode string, or NULL if the string cannot be
constructed.

jsize GetStringLength(JNIEnv* env, jstring string)

returns the number of characters in the string.

 string a Java string object
 bytes a pointer returned by GetStringUTFChars

Parameters: env the JNI interface pointer
 string a Java string object
 start the starting index
 length the number of characters to copy
 buffer the user-supplied buffer

Parameters: env the JNI interface pointer
 chars the null-terminated UTF string
 length the number of characters in the string

Parameters: env the JNI interface pointer
 string a Java string object

const jchar* GetStringChars(JNIEnv* env, jstring string,
jboolean* isCopy)

returns a pointer to the Unicode encoding of a string, or NULL if the character array
cannot be constructed. The pointer is valid until ReleaseStringChars is called.

void ReleaseStringChars(JNIEnv* env, jstring string, const
jchar chars[])

informs the virtual machine that the native code no longer needs access to the Java
string through chars.

Calling sprintf in a Native Method
Let us put these functions we just described to work and write a class that calls the C function
sprintf. We would like to call the function as shown in Example 11-8.

Example 11-8 Printf2Test.java

 1. class Printf2Test
 2. {
 3. public static void main(String[] args)
 4. {
 5. double price = 44.95;
 6. double tax = 7.75;
 7. double amountDue = price * (1 + tax / 100);
 8.
 9. String s = Printf2.sprint("Amount due = %8.2f", amou
10. System.out.println(s);
11. }
12. }

Parameters: env the JNI interface pointer
 string a Java string object
 isCopy is either NULL or points to a jboolean that is filled with

JNI_TRUE if a copy is made; with JNI_FALSE otherwise

Parameters: env the JNI interface pointer
 string a Java string object
 chars a pointer returned by GetStringChars

Example 11-9 shows the class with the native sprintf method.

Example 11-9 Printf2.java

1. class Printf2
2. {
3. public static native String sprint(String format, double
4.
5. static
6. {
7. System.loadLibrary("Printf2");
8. }
9. }

Therefore, the C function that formats a floating-point number has the prototype

JNIEXPORT jstring JNICALL Java_Printf2_sprint
 (JNIEnv* env, jclass cl, jstring format, jdouble x)

Example 11-10 shows the code for the C implementation. Note the calls to
GetStringUTFChars to read the format argument, NewStringUTF to generate the
return value, and ReleaseStringUTFChars to inform the virtual machine that access to
the string is no longer required.

Example 11-10 Printf2.c

 1. #include "Printf2.h"
 2. #include <string.h>
 3. #include <stdlib.h>
 4. #include <float.h>
 5.
 6. /**
 7. @param format a string containing a printf format speci
 8. (such as "%8.2f"). Substrings "%%" are skipped.
 9. @return a pointer to the format specifier (skipping the
10. or NULL if there wasn't a unique format specifier
11. */
12. char* find_format(const char format[])
13. {
14. char* p;
15. char* q;
16.
17. p = strchr(format, '%');
18. while (p != NULL && *(p + 1) == '%') /* skip %% */
19. p = strchr(p + 2, '%');

20. if (p == NULL) return NULL;
21. /* now check that % is unique */
22. p++;
23. q = strchr(p, '%');
24. while (q != NULL && *(q + 1) == '%') /* skip %% */
25. q = strchr(q + 2, '%');
26. if (q != NULL) return NULL; /* % not unique */
27. q = p + strspn(p, " -0+#"); /* skip past flags */
28. q += strspn(q, "0123456789"); /* skip past field width
29. if (*q == '.') { q++; q += strspn(q, "0123456789"); }
30. /* skip past precision */
31. if (strchr("eEfFgG", *q) == NULL) return NULL;
32. /* not a floating point format */
33. return p;
34. }
35.
36. JNIEXPORT jstring JNICALL Java_Printf2_sprint(JNIEnv* env,
37. jclass cl, jstring format, jdouble x)
38. {
39. const char* cformat;
40. char* fmt;
41. jstring ret;
42.
43. cformat = (*env)->GetStringUTFChars(env, format, NULL);
44. fmt = find_format(cformat);
45. if (fmt == NULL)
46. ret = format;
47. else
48. {
49. char* cret;
50. int width = atoi(fmt);
51. if (width == 0) width = DBL_DIG + 10;
52. cret = (char*)malloc(strlen(cformat) + width);
53. sprintf(cret, cformat, x);
54. ret = (*env)->NewStringUTF(env, cret);
55. free(cret);
56. }
57. (*env)->ReleaseStringUTFChars(env, format, cformat);
58. return ret;
59. }

In this function, we chose to keep the error handling simple. If the format code to print a
floating-point number is not of the form %w.pc, where c is one of the characters e, E, f, g, or
G, then what we simply do is not format the number. You will see later how to make a native

method throw an exception.

Accessing Object Fields
All the native methods that you saw so far were static methods with number and string
parameters. We next consider native methods that operate on objects. As an exercise, we will
implement a method of the Employee class that was introduced in Chapter 4 of Volume 1,
using a native method. Again, this is not something you would normally want to do, but it does
illustrate how to access object fields from a native method when you need to do so.

Consider the raiseSalary method. In the Java programming language, the code was
simple.

public void raiseSalary(double byPercent)
{
 salary *= 1 + byPercent / 100;
}

Let us rewrite this as a native method. Unlike the previous examples of native methods, this is
not a static method. Running javah gives the following prototype.

JNIEXPORT void JNICALL Java_Employee_raiseSalary
 (JNIEnv *, jobject, jdouble);

Note the second argument. It is no longer of type jclass but of type jobject. In fact, it is
the equivalent of the this reference. Static methods obtain a reference to the class, whereas
nonstatic methods obtain a reference to the implicit this argument object.

Now we access the salary field of the implicit argument. In the "raw" Java-to-C binding of
Java 1.0, this was easy—a programmer could directly access object data fields. However,
direct access requires all virtual machines to expose their internal data layout. For that reason,
the JNI requires programmers to get and set the values of data fields by calling special JNI
functions.

In our case, we need to use the GetDoubleField and SetDoubleField functions
because the type of salary is a double. There are other functions—
GetIntField/SetIntField, GetObjectField/SetObjectField, and so on—
for other field types. The general syntax is:

x = (*env)->GetXxxField(env, class, fieldID);
(*env)->GetXxxField(env, class, fieldID, x);

Here, class is a value that represents a Java object of type Class, and fieldID is a
value of a special type, jfieldID, that identifies a field in a structure and Xxx represents a
Java data type (Object, Boolean, Byte, and so on). There are two ways for obtaining the
class object. The GetObjectClass function returns the class of any object. For

example:

jclass class_Employee = (*env)->GetObjectClass(env, obj_this);

The FindClass function lets you specify the class name as a string (curiously, with /
instead of periods as package name separators).

jclass class_String
 = (*env)->FindClass(env, "java/lang/String");

Use the GetFieldID function to obtain the fieldID. You must supply the name of the
field and its signature, an encoding of its type. For example, here is the code to obtain the field
ID of the salary field.

jfieldID id_salary
 = (*env)->GetFieldID(env, class_Employee, "salary", "D");

The string "D" denotes the type double. You will learn the complete rules for encoding
signatures in the next section.

You may be thinking that accessing a data field seems quite convoluted. However, since the
designers of the JNI did not want to expose the data fields directly, they had to supply
functions for getting and setting field values. To minimize the cost of these functions,
computing the field ID from the field name—which is the most expensive step—is factored out
into a separate step. That is, if you repeatedly get and set the value of a particular field, you
incur only once the cost of computing the field identifier.

Let us put all the pieces together. The following code reimplements the raiseSalary
method as a native method.

JNIEXPORT void JNICALL Java_Employee_raiseSalary
 (JNIEnv* env, jobject obj_this, jdouble byPercent)
{
 /* get the class */
 jclass class_Employee = (*env)->GetObjectClass(env,
 obj_this);

 /* get the field ID */
 jfieldID id_salary = (*env)->GetFieldID(env, class_Employee
 "salary", "D");

 /* get the field value */
 jdouble salary = (*env)->GetDoubleField(env, obj_this,
 id_salary);

 salary *= 1 + byPercent / 100;

 /* set the field value */
 (*env)->SetDoubleField(env, obj_this, id_salary, salary);
}

CAUTION

Examples 11-11 and 11-12 show the Java code for a test program and the Employee class.
Example 11-13 contains the C code for the native raiseSalary method.

Accessing Static Fields
Accessing static fields is similar to accessing nonstatic fields. You use the
GetStaticFieldID and GetStaticXxxField/SetStaticXxxField functions.
They work almost identically to their nonstatic counterpart. There are only two differences.

Since you have no object, you must use FindClass instead of GetObjectClass
to obtain the class reference.

You supply the class, not the instance object, when accessing the field.

For example, here is how you can get a reference to System.out.

/* get the class */

Class references are only valid until the native method returns. Thus, you cannot
cache the return values of GetObjectClass in your code. Do not store away
a class reference for reuse in a later method call. You need to call
GetObjectClass every time the native method executes. If this is
intolerable, you can lock the reference with a call to NewGlobalRef:

static jclass class_X = 0;
static jfieldID id_a;
. . .
if (class_X == 0)
{
 jclass cx = (*env)->GetObjectClass(env, obj);
 class_X = (*env)->NewGlobalRef(env, cx);
 id_a = (*env)->GetFieldID(env, cls, "a", ". . .");
}

Now you can use the class reference and field IDs in subsequent calls. When
you are done using the class, make sure to call

(*env)->DeleteGlobalRef(env, class_X);

jclass class_System = (*env)->FindClass(env,
 "java/lang/System");

/* get the field ID */
jfieldID id_out = (*env)->GetStaticFieldID(env,
 class_System, "out", "Ljava/io/PrintStream;");

/* get the field value */
jobject obj_out = (*env)->GetStaticObjectField(env,
 class_System, id_out);

Example 11-11 EmployeeTest.java

 1. public class EmployeeTest
 2. {
 3. public static void main(String[] args)
 4. {
 5. Employee[] staff = new Employee[3];
 6.
 7. staff[0] = new Employee("Harry Hacker", 35000);
 8. staff[1] = new Employee("Carl Cracker", 75000);
 9. staff[2] = new Employee("Tony Tester", 38000);
10.
11. int i;
12. for (i = 0; i < 3; i++) staff[i].raiseSalary(5);
13. for (i = 0; i < 3; i++) staff[i].print();
14. }
15. }

Example 11-12 Employee.java

 1. public class Employee
 2. {
 3. public Employee(String n, double s)
 4. {
 5. name = n;
 6. salary = s;
 7. }
 8.
 9. public native void raiseSalary(double byPercent);
10.
11. public void print()
12. {
13. System.out.println(name + " " + salary);
14. }

15.
16. private String name;
17. private double salary;
18.
19. static
20. {
21. System.loadLibrary("Employee");
22. }
23. }

Example 11-13 Employee.c

 1. #include "Employee.h"
 2.
 3. #include <stdio.h>
 4.
 5. JNIEXPORT void JNICALL Java_Employee_raiseSalary(JNIEnv* e
 6. jobject obj_this, jdouble byPercent)
 7. {
 8. /* get the class */
 9. jclass class_Employee = (*env)->GetObjectClass(env,
10. obj_this);
11.
12. /* get the field ID */
13. jfieldID id_salary = (*env)->GetFieldID(env,
14. class_Employee, "salary", "D");
15.
16. /* get the field value */
17. jdouble salary = (*env)->GetDoubleField(env, obj_this,
18. id_salary);
19.
20. salary *= 1 + byPercent / 100;
21.
22. /* set the field value */
23. (*env)->SetDoubleField(env, obj_this, id_salary, salary
24. }

Accessing object fields

jfieldID GetFieldID(JNIEnv *env, jclass cl, const char ame
[], const char sig[])

returns the identifier of a field in a class.

Xxx GetXxxField(JNIEnv *env, jobject obj, jfieldID id)

returns the value of a field. The field type Xxx is one of Object, Boolean, Byte,
Char, Short, Int, Long, Float, or Double.

void SetXxxField(JNIEnv *env, jobject obj, jfieldID id, Xxx
value)

sets a field to a new value. The field type Xxx is one of Object, Boolean, Byte,
Char, Short, Int, Long, Float, or Double.

jfieldID GetStaticFieldID(JNIEnv *env, jclass cl, const
char name[], const char sig[])

returns the identifier of a static field in a class.

Parameters: env the JNI interface pointer
 cl the class object
 name the field name
 sig the encoded field signature

Parameters: env the JNI interface pointer
 obj the object whose field is being returned
 id the field identifier

Parameters: env the JNI interface pointer
 obj the object whose field is being set
 id the field identifier
 value the new field value

Parameters: env the JNI interface pointer
 cl the class object
 name the field name
 sig the encoded field signature

Xxx GetStaticXxxField(JNIEnv *env, jclass cl, jfieldID id)

returns the value of a static field. The field type Xxx is one of Object, Boolean,
Byte, Char, Short, Int, Long, Float, or Double.

void SetStaticXxxField(JNIEnv *env, jclass cl, jfieldID
id, Xxx value)

sets a static field to a new value. The field type Xxx is one of Object, Boolean,
Byte, Char, Short, Int, Long, Float, or Double.

Signatures
To access object fields and call methods that are defined in the Java programming language,
you need to learn the rules for "mangling" the names of data types and method signatures. (A
method signature describes the parameters and return type of the method.) Here is the
encoding scheme:

Parameters: env the JNI interface pointer
 cl the class object whose static field is being set
 id the field identifier

Parameters: env the JNI interface pointer
 cl the class object whose static field is being set
 id the field identifier
 value the new field value

B byte
C char
D double
F float
I int
J long
Lclassname; a class type
S short
V void
Z boolean

Note that the semicolon at the end of the L expression is the terminator of the type expression,
not a separator between parameters. For example, the constructor

Employee(java.lang.String, double, java.util.Date)

has a signature

"(Ljava/lang/String;DLjava/util/Date;)V"

As you can see, there is no separator between the D and Ljava/util/Date;.

Also note that in this encoding scheme, you must use / instead of . to separate the package
and class names.

To describe an array type, use a [. For example, an array of strings is

[Ljava/lang/String;

A float[][] is mangled into

[[F

For the complete signature of a method, you list the parameter types inside a pair of
parentheses and then list the return type. For example, a method receiving two integers and
returning an integer is encoded as

(II)I

The print method that we used in the preceding example has a mangled signature of

(Ljava/lang/String;)V

That is, the method receives a string and returns void.

TIP

You can use the javap command with option -s to generate the field signatures
class files. For example, run:

javap -s -private Classname

You get the following output, displaying the signatures of all fields and methods.

public synchronized class Employee extends java.lang.O
 /* ACC_SUPER bit set */
{
 private java.lang.String name;

NOTE

Calling Java Methods
Of course, Java programming language functions can call C functions—that is what native
methods are for. Can we go the other way? Why would we want to do this anyway? The
answer is that it often happens that a native method needs to request a service from an object
that was passed to it. We first show you how to do it for nonstatic methods, and then we show
you how to do it for static methods.

Nonstatic Methods

As an example of calling a Java method from native code, let's enhance the Printf class
and add a member function that works similarly to the C function fprintf. That is, it should
be able to print a string on an arbitrary PrintWriter object.

class Printf3
{
 public native static void fprint(PrintWriter out,
 String s, double x);
 . . .
}

 /* Ljava/lang/String; */
 private double salary;
 /* D */
 private java.util.Date hireDay;
 /* Ljava/util/Date; */
 public Employee(java.lang.String,double,java.util.
 /* (Ljava/lang/String;DLjava/util/Date;)V
 public void print();
 /* ()V */
 public void raiseSalary(double);
 /* (D)V */
 public int hireYear();
 /* ()I */
}

There is no rational reason why programmers are forced to use this
mangling scheme for describing signatures. The designers of the native
calling mechanism could have just as easily written a function that reads
signatures in the Java programming language style, such as void
(int,java.lang.String), and encodes them into whatever internal
representation they prefer. Then again, using the mangled signatures lets
you partake in the mystique of programming close to the virtual machine.

We first assemble the string to be printed into a String object str, as in the sprint
method that we already implemented. Then, we call the print method of the
PrintWriter class from the C function that implements the native method.

You can call any Java method from C by using the function call

(*env)->CallXxxMethod(env, implicit parameter, methodID,
 explicit parameters)

Replace Xxx with Void, Int, Object, etc., depending on the return type of the method.
Just as you need a fieldID to access a field of an object, you need a method ID to call a
method. You obtain a method ID by calling the JNI function GetMethodID and supplying the
class, the name of the method, and the method signature.

In our example, we want to obtain the ID of the print method of the PrintWriter class.
As you saw in Chapter 1, the PrintWriter class has nine different methods, all called
print. For that reason, you must also supply a string describing the parameters and return
value of the specific function that you want to use. For example, we want to use void
print(java.lang.String). As described in the preceding section, we must now
"mangle" the signature into the string "(Ljava/lang/String;)V".

Here is the complete code to make the method call, by:

1. Obtaining the class of the implicit parameter;

2. Obtaining the method ID;

3. Making the call.

/* get the class */
class_PrintWriter = (*env)->GetObjectClass(env, out);

/* get the method ID */
id_print = (*env)->GetMethodID(env, class_PrintWriter,
 "print", "(Ljava/lang/String;)V");

/* call the method */
(*env)->CallVoidMethod(env, out, id_print, str);

Examples 11-14 and 11-15 show the Java code for a test program and the Printf3 class.
Example 11-16 contains the C code for the native fprint method.

NOTE

The numerical method IDs and field IDs are conceptually similar to Method and
Field objects in the reflection API. You can convert between them with the follow

Static Methods

Calling static methods from native methods is similar to calling nonstatic methods. There are
two differences.

You use the GetStaticMethodID and CallStaticXxxMethod functions.

You supply a class object, not an implicit parameter object, when invoking the method.

As an example of this, let's make the call to the static method

System.getProperty("java.class.path")

from a native method. The return value of this call is a string that gives the current class path.

First, we need to find the class to use. Since we have no object of the class System readily
available, we use FindClass rather than GetObjectClass.

jclass class_System = (*env)->FindClass(env, "java/lang/System

Next, we need the ID of the static getProperty method. The encoded signature of that
method is

"(Ljava/lang/String;)Ljava/lang/String;"

since both the parameter and the return value are a string. Hence, we obtain the method ID as
follows:

jmethodID id_getProperty = (*env)->GetStaticMethodID(env,
 class_System, "getProperty",
 "(Ljava/lang/String;)Ljava/lang/String;");

Finally, we can make the call. Note that the class object is passed to the
CallStaticObjectMethod function.

jobject obj_ret = (*env)->CallStaticObjectMethod(env,
 class_System, id_getProperty,

functions:

jobject ToReflectedMethod(JNIEnv* env, jclass class,
 jmethodID methodID); // returns Method object
methodID FromReflectedMethod(JNIEnv* env, jobject meth
jobject ToReflectedField(JNIEnv* env, jclass class,
 jfieldID fieldID); // returns Field object
fieldID FromReflectedField(JNIEnv* env, jobject field)

 (*env)->NewStringUTF(env, "java.class.path"));

The return value of this method is of type jobject. If we want to manipulate it as a string, we
must cast it to jstring:

jstring str_ret = (jstring)obj_ret;

C++ NOTE

Constructors

A native method can create a new Java object by invoking its constructor. You invoke the
constructor by calling the NewObject function.

jobject obj_new = (*env)->NewObject(env, class, methodID,
 construction parameters);

You obtain the method ID needed for this call from the GetMethodID function by specifying
the method name as "<init>" and the encoded signature of the constructor (with return
type void). For example, here is how a native method can create a FileOutputStream
object.

const char[] fileName = ". . .";
jstring str_fileName = (*env)->NewStringUTF(env, fileName);
jclass class_FileOutputStream = (*env)->FindClass(env,
 "java/io/FileOutputStream");
jmethodID id_FileOutputStream = (*env)->GetMethodID(env,
 class_FileOutputStream, "<init>", "(Ljava/lang/String;)V");
jobject obj_stream = (*env)->NewObject(env,
 class_FileOutputStream, id_FileOutputStream, str_fileName);

Note that the signature of the constructor takes a parameter of type java.lang.String
and has a return type of void.

Alternative Method Invocations

There are several variants of the JNI functions for calling a Java method from native code.

In C, the types jstring, jclass, as well as the array types that will be
introduced later, are all type equivalent to jobject. The cast of the
preceding example is therefore not strictly necessary in C. But in C++, these
types are defined as pointers to "dummy classes" that have the correct
inheritance hierarchy. For example, the assignment of a jstring to a
jobject is legal without a cast in C++, but the assignment from a
jobject to a jstring requires a cast.

These are not as important as the functions that we already discussed, but they are
occasionally useful.

The CallNonvirtualXxxMethod functions receive an implicit argument, a method ID, a
class object (which must correspond to a superclass of the implicit argument), and explicit
arguments. The function calls the version of the method in the specified class, bypassing the
normal dynamic dispatch mechanism.

All call functions have versions with suffixes "A" and "V" that receive the explicit parameters in
an array or a va_list (as defined in the C header stdarg.h).

Example 11-14 Printf3Test.java

 1. import java.io.*;
 2.
 3. class Printf3Test
 4. {
 5. public static void main(String[] args)
 6. {
 7. double price = 44.95;
 8. double tax = 7.75;
 9. double amountDue = price * (1 + tax / 100);
10. PrintWriter out = new PrintWriter(System.out);
11. Printf3.fprint(out, "Amount due = %8.2f\n", amountDu
12. out.flush();
13. }
14. }

Example 11-15 Printf3.java

 1. import java.io.*;
 2.
 3. class Printf3
 4. {
 5. public static native void fprint(PrintWriter out,
 6. String format, double x);
 7.
 8. static
 9. {
10. System.loadLibrary("Printf3");
11. }
12. }

Example 11-16 Printf3.c

 1. #include "Printf3.h"

 2. #include <string.h>
 3. #include <stdlib.h>
 4. #include <float.h>
 5.
 6. /**
 7. @param format a string containing a printf format speci
 8. (such as "%8.2f"). Substrings "%%" are skipped.
 9. @return a pointer to the format specifier (skipping the
10. or NULL if there wasn't a unique format specifier
11. */
12. char* find_format(const char format[])
13. {
14. char* p;
15. char* q;
16.
17. p = strchr(format, '%');
18. while (p != NULL && *(p + 1) == '%') /* skip %% */
19. p = strchr(p + 2, '%');
20. if (p == NULL) return NULL;
21. /* now check that % is unique */
22. p++;
23. q = strchr(p, '%');
24. while (q != NULL && *(q + 1) == '%') /* skip %% */
25. q = strchr(q + 2, '%');
26. if (q != NULL) return NULL; /* % not unique */
27. q = p + strspn(p, " -0+#"); /* skip past flags */
28. q += strspn(q, "0123456789"); /* skip past field width
29. if (*q == '.') { q++; q += strspn(q, "0123456789"); }
30. /* skip past precision */
31. if (strchr("eEfFgG", *q) == NULL) return NULL;
32. /* not a floating point format */
33. return p;
34. }
35.
36. JNIEXPORT void JNICALL Java_Printf3_fprint(JNIEnv* env,
37. jclass cl, jobject out, jstring format, jdouble x)
38. {
39. const char* cformat;
40. char* fmt;
41. jstring str;
42. jclass class_PrintWriter;
43. jmethodID id_print;
44.
45. cformat = (*env)->GetStringUTFChars(env, format, NULL);

46. fmt = find_format(cformat);
47. if (fmt == NULL)
48. str = format;
49. else
50. {
51. char* cstr;
52. int width = atoi(fmt);
53. if (width == 0) width = DBL_DIG + 10;
54. cstr = (char*)malloc(strlen(cformat) + width);
55. sprintf(cstr, cformat, x);
56. str = (*env)->NewStringUTF(env, cstr);
57. free(cstr);
58. }
59. (*env)->ReleaseStringUTFChars(env, format, cformat);
60.
61. /* now call ps.print(str) */
62.
63. /* get the class */
64. class_PrintWriter = (*env)->GetObjectClass(env, out);
65.
66. /* get the method ID */
67. id_print = (*env)->GetMethodID(env, class_PrintWriter,
68. "print", "(Ljava/lang/String;)V");
69.
70. /* call the method */
71. (*env)->CallVoidMethod(env, out, id_print, str);
72. }

Executing Java methods from C code

jmethodID GetMethodID(JNIEnv *env, jclass cl, const char
name[], const char sig[])

returns the identifier of a method in a class.

Parameters: env the JNI interface pointer
 cl the class object
 name the method name
 sig the encoded method signature

void CallXxxMethod(JNIEnv *env, jobject obj, jmethodID id,
args)

void CallXxxMethodA(JNIEnv *env, jobject obj,jmethodID id,
jvalue args[])

void CallXxxMethodV(JNIEnv *env, jobject obj, jmethodID
id, va_list args)

These functions call a method. The return type Xxx is one of Object, Boolean,
Byte, Char, Short, Int, Long, Float, or Double. The first function has a
variable number of arguments—simply append the method parameters after the method
ID. The second function receives the method arguments in an array of jvalue, where
jvalue is a union defined as

typedef union jvalue
{
 jboolean z;
 jbyte b;
 jchar c;
 jshort s;
 jint i;
 jlong j;
 jfloat f;
 jdouble d;
 jobject l;
} jvalue;

The third function receives the method parameters in a va_list, as defined in the C
header stdarg.h.

void CallNonvirtualXxxMethod(JNIEnv *env, jobject obj,
jclass cl, jmethodID id, args)

void CallNonvirtualXxxMethodA(JNIEnv *env, jobject obj,
jclass cl, jmethodID id, jvalue args[])

Parameters: env the JNI interface pointer
 obj the implicit argument of the method
 id the method identifier
 args the method arguments

void CallNonvirtualXxxMethodV(JNIEnv *env, jobject obj,
jclass cl, jmethodID id, va_list args)

These functions call a method, bypassing dynamic dispatch. The return type Xxx is one
of Object, Boolean, Byte, Char, Short, Int, Long, Float, or Double. The
first function has a variable number of arguments—simply append the method
parameters after the method ID. The second function receives the method arguments in
an array of jvalue. The third function receives the method parameters in a va_list,
as defined in the C header stdarg.h.

jmethodID GetStaticMethodID(JNIEnv *env, jclass cl, const
char name[], const char sig[])

returns the identifier of a static method in a class.

void CallStaticXxxMethod(JNIEnv *env, jclass cl, jmethodID
id, args)

void CallStaticXxxMethodA(JNIEnv *env, jclass cl,
jmethodID id, jvalue args[])

void CallStaticXxxMethodV(JNIEnv *env, jclass cl,
jmethodID id, va_list args)

These functions call a static method. The return type Xxx is one of Object,
Boolean, Byte, Char, Short, Int, Long, Float, or Double. The first function
has a variable number of arguments—simply append the method parameters after the
method ID. The second function receives the method arguments in an array of jvalue.
The third function receives the method parameters in a va_list, as defined in the C

Parameters: env the JNI interface pointer
 obj the implicit argument of the method
 cl the class whose implementation of the method is tobe called
 id the method identifier
 args the method arguments

Parameters: env the JNI interface pointer
 cl the class object
 name the method name
 sig the encoded method signature

header stdarg.h.

jobject NewObject(JNIEnv *env, jclass cl, jmethodID id,
args)

jobject NewObjectA(JNIEnv *env, jclass cl, jmethodID id,
jvalue args[])

jobject NewObjectV(JNIEnv *env, jclass cl, jmethodID id,
va_list args)

These functions call a constructor. The method ID is obtained from GetMethodID with
a method name of "<init>" and a return type of void. The first function has a
variable number of arguments—simply append the method parameters after the method
ID. The second function receives the method arguments in an array of jvalue. The
third function receives the method parameters in a va_list, as defined in the C
header stdarg.h.

Arrays
All array types of the Java programming language have corresponding C types, as shown in
Table 11-2.

Parameters: env the JNI interface pointer
 cl the class of the static method
 id the method identifier
 args the method arguments

Parameters: env the JNI interface pointer
 cl the class to be instantiated
 id the constructor method identifier
 args the constructor arguments

Table 11-2. Correspondence between Java array types and C types
Java type C type
boolean[] jbooleanArray
byte[] jbyteArray
char[] jcharArray
int[] jintArray
short[] jshortArray

The type jarray denotes a generic array.

C++ NOTE

long[] jlongArray
float[] jfloatArray
double[] jdoubleArray
Object[] jobjectArray

In C, all these array types are actually type synonyms of jobject. In C++,
however, they are arranged in the inheritance hierarchy shown in Figure 11-
2.

Figure 11-2. Inheritance hierarchy of array types

The GetArrayLength function returns the length of an array.

jarray array = ...;
jsize length = (*env)->GetArrayLength(env, array);

How you access elements in the array depends on whether the array stores objects or a
primitive type (bool, char, or a numeric type). You access elements in an object array with
the GetObjectArrayElement and SetObjectArrayElement methods.

jobjectArray array = ...;
int i, j;
jobject x = (*env)->GetObjectArrayElement(env, array, i);
(*env)->SetObjectArrayElement(env, array, j, x);

While simple, this approach is also clearly inefficient; you want to be able to access array
elements directly, especially when doing vector and matrix computations.

The GetXxxArrayElements function returns a C pointer to the starting element of the
array. As with ordinary strings, you must remember to call the corresponding
ReleaseXxxArrayElements function to tell the virtual machine when you no longer
need that pointer. Here, the type Xxx must be a primitive type, that is, not Object. You can
then read and write the array elements directly. However, since the pointer may point to a
copy, any changes that you make are guaranteed to be reflected in the original array only
when you call the corresponding ReleaseXxxArrayElements function!

NOTE

Here is a code sample that multiplies all elements in an array of double values by a
constant. We obtain a C pointer a into the Java array and then access individual elements as
a[i].

jdoubleArray array_a = ...;
double scaleFactor = ...;
double* a = (*env)->GetDoubleArrayElements(env, array_a, NULL)
for (i = 0; i < (*env)->GetArrayLength(env, array_a); i++)
 a[i] = a[i] * scaleFactor;
(*env)->ReleaseDoubleArrayElements(env, array_a, 0);

You can find out if an array is a copy by passing a pointer to a jboolean
variable as the third parameter to a GetXxxArrayElements method.
The variable is filled with JNI_TRUE if the array is a copy. If you aren't
interested in that information, just pass a NULL pointer.

Whether the virtual machine actually copies the array depends on how it allocates arrays and
does its garbage collection. Some "copying" garbage collectors routinely move objects around
and update object references. That strategy is not compatible with "pinning" an array to a
particular location because the collector cannot update the pointer values in native code.
However, the garbage collector in the current virtual machine supplied with the SDK is not a
copying collector, which means that arrays are pinned.

NOTE

If you want to access a few elements of a large array, use the GetXxxArrayRegion and
SetXxxArrayRegion methods that copy a range of elements from the Java array into a C
array and back.

You can create new Java arrays in native methods with the NewXxxArray function. To
create a new array of objects, you specify the length, the type of the array elements, and an
initial element for all entries (typically, NULL). Here is an example.

jclass class_Employee = (*env)->FindClass(env, "Employee");
jobjectArray array_e = (*env)->NewObjectArray(env, 100,
 class_Employee, NULL);

Arrays of primitive types are simpler. You just supply the length of the array.

jdoubleArray array_d = (*env)->NewDoubleArray(env, 100);

The array is then filled with zeroes.

NOTE

Manipulating Java Arrays in C code

In the Sun JVM implementation, boolean arrays are represented as
packed arrays, and the GetBooleanArrayElements method copies
them into unpacked arrays of jboolean values.

SDK 1.4 adds three methods to the JNI API

jobject NewDirectByteBuffer(JNIEnv* env, void* address
 capacity)
void* GetDirectBufferAddress(JNIEnv* env, jobject buf)
jlong GetDirectBufferCapacity(JNIEnv* env, jobject buf

Direct buffers are used in the java.nio package to support more efficient input/
operations and to minimize the copying of data between native and Java arrays.

jsize GetArrayLength(JNIEnv *env, jarray array)

returns the number of elements in the array.

jobject GetObjectArrayElement(JNIEnv *env, jobjectArray
array, jsize index)

returns the value of an array element.

void SetObjectArrayElement(JNIEnv *env, jobjectArray
array, jsize index, jobject value)

sets an array element to a new value.

Xxx* GetXxxArrayElements(JNIEnv *env, jarray array,
jboolean* isCopy)

yields a C pointer to the elements of a Java array. The field type Xxx is one of
Boolean, Byte, Char, Short, Int, Long, Float, or Double. The pointer must
be passed to ReleaseXxxArrayElements when it is no longer needed.

Parameters: env the JNI interface pointer
 array the array object

Parameters: env the JNI interface pointer
 array the array object
 index the array offset

Parameters: env the JNI interface pointer
 array the array object
 index the array offset
 value the new value

Parameters: env the JNI interface pointer

void ReleaseXxxArrayElements(JNIEnv *env, jarray array, Xxx
elems[], jint mode)

notifies the virtual machine that a pointer obtained by GetXxxArrayElements is no
longer needed.

void GetXxxArrayRegion(JNIEnv *env, jarray array, jint
start, jint length, Xxx elems[])

copies elements from a Java array to a C array. The field type Xxx is one of Boolean,
Byte, Char, Short, Int, Long, Float, or Double.

void SetXxxArrayRegion(JNIEnv *env, jarray array, jint
start, jint length, Xxx elems[])

copies elements from a C array to a Java array. The field type Xxx is one of Boolean,
Byte, Char, Short, Int, Long, Float, or Double.

 array the array object
 isCopy is either NULL or points to a jboolean that is filled with

JNI_TRUE if a copy is made; with JNI_FALSE otherwise

Parameters: env the JNI interface pointer
 array the array object
 elems the pointer to the array elements that is no longer needed
 mode 0 = frees the elems buffer after updating array elements

JNI_COMMIT = do not free the elems buffer after updating
the array elements

JNI_ABORT = free the elems buffer without updating the
array elements

Parameters: env the JNI interface pointer
 array the array object
 start the starting index
 length the number of elements to copy
 elems the C array that holds the elements

Error Handling
Native methods are a significant security risk to programs in the Java programming language.
The C runtime system has no protection against array bounds errors, indirection through bad
pointers, and so on. It is particularly important that programmers of native methods handle all
error conditions to preserve the integrity of the Java platform. In particular, when your native
method diagnoses a problem that it cannot handle, then it should report this problem to the
Java virtual machine. Then, you would naturally throw an exception in this situation. However,
C has no exceptions. Instead, you must call the Throw or ThrowNew function to create a
new exception object. When the native method exits, the Java virtual machine will throw that
exception.

To use the Throw function, call NewObject to create an object of a subtype of
Throwable. For example, here we allocate an EOFException object and throw it.

jclass class_EOFException = (*env)->FindClass(env,
 "java/io/EOFException");
jmethodID id_EOFException = (*env)->GetMethodID(env,
 class_EOFException,
 "<init>", "()V"); /* ID of default constructor */
jthrowable obj_exc = (*env)->NewObject(env, class_EOFException
 id_EOFException);
(*env)->Throw(env, obj_exc);

It is usually more convenient to call ThrowNew, which constructs an exception object, given a
class and a UTF string.

(*env)->ThrowNew(env, (*env)->FindClass(env,
 "java/io/EOFException"),
 "Unexpected end of file");

Both Throw and ThrowNew merely post the exception; they do not interrupt the control flow
of the native method. Only when the method returns does the Java virtual machine throw the
exception. Therefore, every call to Throw and ThrowNew should always immediately be
followed by a return statement.

C++ NOTE

Parameters: env the JNI interface pointer
 array the array object
 start the starting index
 length the number of elements to copy
 elems the C array that holds the elements

 If you implement native methods in C++, you cannot currently throw a Java

Normally, native code need not be concerned with catching Java exceptions. However, when a
native method calls a Java method, that method might throw an exception. Moreover, a
number of the JNI functions throw exceptions as well. For example,
SetObjectArrayElement throws an ArrayIndexOutOfBoundsException if the
index is out of bounds, and an ArrayStoreException if the class of the stored object is
not a subclass of the element class of the array. In situations like these, a native method
should call the ExceptionOccurred method to determine whether an exception has been
thrown. The call

jthrowable obj_exc = (*env)->ExceptionOccurred(env);

returns NULL if no exception is pending, or it returns a reference to the current exception
object. If you just want to check whether an exception has been thrown, without obtaining a
reference to the exception object, use

jbool occurred = (*env)->ExceptionCheck(env);

Normally, a native method should simply return when an exception has occurred so that the
virtual machine can propagate it to the Java code. However, a native method may analyze the
exception object to determine if it can handle the exception. If it can, then the function

(*env)->ExceptionClear(env);

must be called to turn off the exception.

In our next example, we implement the fprint native method with the paranoia that is
appropriate for a native method. Here are the exceptions that we throw:

A NullPointerException if the format string is NULL;

An IllegalArgumentException if the format string doesn't contain a % specifier
that is appropriate for printing a double;

An OutOfMemoryError if the call to malloc fails.

Finally, to demonstrate how to check for an exception when calling a Java method from a
native method, we send the string to the stream, a character at a time, and call
ExceptionOccurred after each call. Example 11-17 shows the code for the native
method, and Example 11-18 contains the definition of the class containing the native method.
Notice that the native method does not immediately terminate when an exception occurs in the

 exception object in your C++ code. In a C++ binding, it would be possible to
implement a translation between exceptions in the C++ and Java
programming languages—however, this is not currently implemented. You
need to use Throw or ThrowNew to throw a Java exception in a native
C++ method, and you need to make sure that your native methods throw no
C++ exceptions.

call to PrintWriter.print—it first frees the cstr buffer. When the native method
returns, the virtual machine again raises the exception. The test program in Example 11-19
demonstrates how the native method throws an exception when the formatting string is not
valid.

Example 11-17 Printf4.c

 1. #include "Printf4.h"
 2. #include <string.h>
 3. #include <stdlib.h>
 4. #include <float.h>
 5.
 6. /**
 7. @param format a string containing a printf format speci
 8. (such as "%8.2f"). Substrings "%%" are skipped.
 9. @return a pointer to the format specifier (skipping the
10. or NULL if there wasn't a unique format specifier
11. */
12. char* find_format(const char format[])
13. {
14. char* p;
15. char* q;
16.
17. p = strchr(format, '%');
18. while (p != NULL && *(p + 1) == '%') /* skip %% */
19. p = strchr(p + 2, '%');
20. if (p == NULL) return NULL;
21. /* now check that % is unique */
22. p++;
23. q = strchr(p, '%');
24. while (q != NULL && *(q + 1) == '%') /* skip %% */
25. q = strchr(q + 2, '%');
26. if (q != NULL) return NULL; /* % not unique */
27. q = p + strspn(p, " -0+#"); /* skip past flags */
28. q += strspn(q, "0123456789"); /* skip past field width
29. if (*q == '.') { q++; q += strspn(q, "0123456789"); }
30. /* skip past precision */
31. if (strchr("eEfFgG", *q) == NULL) return NULL;
32. /* not a floating point format */
33. return p;
34. }
35.
36. JNIEXPORT void JNICALL Java_Printf4_fprint(JNIEnv* env,
37. jclass cl, jobject out, jstring format, jdouble x)
38. {

39. const char* cformat;
40. char* fmt;
41. jclass class_PrintWriter;
42. jmethodID id_print;
43. char* cstr;
44. int width;
45. int i;
46.
47. if (format == NULL)
48. {
49. (*env)->ThrowNew(env,
50. (*env)->FindClass(env,
51. "java/lang/NullPointerException"),
52. "Printf4.fprint: format is null");
53. return;
54. }
55.
56. cformat = (*env)->GetStringUTFChars(env, format, NULL);
57. fmt = find_format(cformat);
58.
59. if (fmt == NULL)
60. {
61. (*env)->ThrowNew(env,
62. (*env)->FindClass(env,
63. "java/lang/IllegalArgumentException"),
64. "Printf4.fprint: format is invalid");
65. return;
66. }
67.
68. width = atoi(fmt);
69. if (width == 0) width = DBL_DIG + 10;
70. cstr = (char*)malloc(strlen(cformat) + width);
71.
72. if (cstr == NULL)
73. {
74. (*env)->ThrowNew(env,
75. (*env)->FindClass(env, "java/lang/OutOfMemoryErro
76. "Printf4.fprint: malloc failed");
77. return;
78. }
79.
80. sprintf(cstr, cformat, x);
81.
82. (*env)->ReleaseStringUTFChars(env, format, cformat);

83.
84. /* now call ps.print(str) */
85.
86. /* get the class */
87. class_PrintWriter = (*env)->GetObjectClass(env, out);
88.
89. /* get the method ID */
90. id_print = (*env)->GetMethodID(env, class_PrintWriter,
91. "print", "(C)V");
92.
93. /* call the method */
94. for (i = 0; cstr[i] != 0 && !(*env)->ExceptionOccurred(e
95. i++)
96. (*env)->CallVoidMethod(env, out, id_print, cstr[i]);
97.
98. free(cstr);
99.}

Example 11-18 Printf4.java

 1. import java.io.*;
 2.
 3. class Printf4
 4. {
 5. public static native void fprint(PrintWriter ps,
 6. String format, double x);
 7.
 8. static
 9. {
10. System.loadLibrary("Printf4");
11. }
12. }

Example 11-19 Printf4Test.java

 1. import java.io.*;
 2.
 3. class Printf4Test
 4. {
 5. public static void main(String[] args)
 6. {
 7. double price = 44.95;
 8. double tax = 7.75;
 9. double amountDue = price * (1 + tax / 100);
10. PrintWriter out = new PrintWriter(System.out);

11. /* This call will throw an exception--note the %% */
12. Printf4.fprint(out, "Amount due = %%8.2f\n", amountD
13. out.flush();
14. }
15. }

Error handling in C code

jint Throw(JNIEnv *env, jthrowable obj)

prepares an exception to be thrown upon exiting from the native code. Returns 0 on
success, a negative value on failure.

jint ThrowNew(JNIEnv *env, jclass clazz, const char msg[])

prepares an exception to be thrown upon exiting from the native code. Returns 0 on
success, a negative value on failure.

jthrowable ExceptionOccurred(JNIEnv *env)

returns the exception object if an exception is pending, or NULL otherwise.

jboolean ExceptionCheck(JNIEnv *env)

returns true if an exception is pending.

Parameters: env the JNI interface pointer
 obj the exception object to throw

Parameters: env the JNI interface pointer
 cl the class of the exception object to throw
 msg a UTF string denoting the String construction argument of the

exception object

Parameters: env the JNI interface pointer

void ExceptionClear(JNIEnv *env)

clears any pending exceptions.

The Invocation API
Up to now, we have considered programs in the Java programming language that made a few
C calls, presumably because C was faster or allowed access to functionality that was
inaccessible from the Java platform. Suppose you are in the opposite situation. You have a C
or C++ program and would like to make a few calls to Java code, perhaps because the Java
code is easier to program. Of course, you know how to call the Java methods. But you still
need to add the Java virtual machine to your program so that the Java code can be
interpreted. The so-called invocation API used to embed the Java virtual machine into a C or
C++ program. Here is the minimal code that you need to initialize a virtual machine.

JavaVMOption options[1];
JavaVMInitArgs vm_args;
JavaVM *jvm;
JNIEnv *env;

options[0].optionString = "-Djava.class.path=.";

memset(&vm_args, 0, sizeof(vm_args));
vm_args.version = JNI_VERSION_1_2;
vm_args.nOptions = 1;
vm_args.options = options;

JNI_CreateJavaVM(&jvm, (void**)&env, &vm_args);

The call to JNI_CreateJavaVM creates the virtual machine, and fills in a pointer jvm to
the virtual machine and a pointer env to the execution environment.

You can supply any number of options to the virtual machine. Simply increase the size of the
options array and the value of vm_args.nOptions. For example,

options[i].optionString = "-Djava.compiler=NONE";

deactivates the just-in-time compiler.

TIP

Parameters: env the JNI interface pointer

Parameters: env the JNI interface pointer

Once you have set up the virtual machine, you can call Java methods in the way described in
the preceding sections: simply use the env pointer in the usual way. You need the jvm
pointer only to call other functions in the invocation API. Currently, there are only four such
functions. The most important one is the function to terminate the virtual machine:

(*jvm)->DestroyJavaVM(jvm);

The C program in Example 11-20 sets up a virtual machine and then calls the main method of
the Welcome class, which was discussed in Chapter 2 of Volume 1. (Make sure to compile
the Welcome.java file before starting the invocation test program.)

Example 11-20 InvocationTest.c

 1. #include <jni.h>
 2. #include <stdlib.h>
 3.
 4. int main()
 5. {
 6. JavaVMOption options[2];
 7. JavaVMInitArgs vm_args;
 8. JavaVM *jvm;
 9. JNIEnv *env;
10. long status;
11.
12. jclass class_Welcome;
13. jclass class_String;
14. jobjectArray args;
15. jmethodID id_main;
16.
17. options[0].optionString = "-Djava.class.path=.";
18.
19. memset(&vm_args, 0, sizeof(vm_args));
20. vm_args.version = JNI_VERSION_1_2;
21. vm_args.nOptions = 1;
22. vm_args.options = options;

When you run into trouble and your program crashes, refuses to initialize
the JVM, or can't load your classes, then turn on the JNI debugging mode.
Set an option to

options[i].optionString = "-verbose:jni";

You will see a flurry of messages that indicate the progress in initializing the
JVM. If you don't see your classes loaded, check both your path and your
class path settings.

23.
24. status = JNI_CreateJavaVM(&jvm, (void**)&env, &vm_args)
25. if (status == JNI_ERR)
26. {
27. printf("Error creating VM\n");
28. return 1;
29. }
30.
31. class_Welcome = (*env)->FindClass(env, "Welcome");
32. id_main = (*env)->GetStaticMethodID(env, class_Welcome,
33. "main", "([Ljava/lang/String;)V");
34.
35. class_String = (*env)->FindClass(env, "java/lang/String
36. args = (*env)->NewObjectArray(env, 0, class_String, NUL
37. (*env)->CallStaticVoidMethod(env, class_Welcome,
38. id_main, args);
39.
40. (*jvm)->DestroyJavaVM(jvm);
41.
42. return 0;
43. }

To compile this program under Linux, use:

gcc -I/usr/local/jdk/include -I/usr/local/jdk/include/linux
 -o InvocationTest
 -L/usr/local/jdk/jre/lib/i386/client
 -ljvm
 InvocationTest.c

Under Solaris, use:

cc -I/usr/local/jdk/include -I/usr/local/jdk/include/solaris
 -o InvocationTest
 -L/usr/local/jdk/jre/lib/sparc
 -ljvm
 InvocationTest.c

When compiling in Windows with the Microsoft C compiler, you use the command line:

cl -Ic:\jdk\include -Ic:\jdk\include\win32
 InvocationTest.c c:\jdk\lib\jvm.lib

With Cygwin, you have to work a little harder. First make a file jvm.def that contains the
statement:

EXPORTS
 JNI_CreateJavaVM@12

Run the command:

dlltool -k --input-def jvm.def
 --dll c:\\jdk\\jre\\bin\\hotspot\\jvm.dll
 --output-lib jvm.a

Then compile with:

gcc -Ic:\jdk\include -Ic:\jdk\include\win32
 -D__int64="long long"
 -o InvocationTest
 InvocationTest.c jvm.a

Before you run the program under Linux/UNIX, you must make sure that the
LD_LIBRARY_PATH contains the directories for the shared libraries. For example, if you use
the bash shell on Linux, issue the command:

export LD_LIBRARY_PATH=/usr/local/jdk/jre/lib/i386/client
 :/usr/local/jdk/jre/lib/i386

On Windows, make sure the directory

c:\jdk\jre\bin\hotspot

is on the PATH.

CAUTION

TIP

Invocation API functions

The exact locations of the various library files varies somewhat from one
release of the SDK to the next. You may need to search for files called
libjvm.so, jvm.dll, or (with older SDK versions) libjava.so, in
the jdk/bin, jdk/lib, and jdk/jre/lib directories, and adjust the
instructions accordingly.

If you develop an application that invokes the virtual machine by using a
Windows launcher, then you may not trust your users to set the library path.
You can help your users and load the shared library or DLL manually. The
javac and java programs do just that. For sample code, see the file
launcher/java_md.c in the src.jar file that is a part of the SDK.

jint JNI_CreateJavaVM(JavaVM** p_jvm, void** p_env,
JavaVMInitArgs* vm_args)

initializes the Java virtual machine. The function returns 0 if successful, JNI_ERR on
failure.

jint DestroyJavaVM(JavaVM* jvm)

destroys the virtual machine. Returns 0 on success, a negative number on failure. This
function must be called through a virtual machine pointer, i.e., (*jvm)-
>DestroyJavaVM(jvm).

A Complete Example: Accessing the Windows Registry
In this section, we describe a full, working example that covers everything we discussed in this
chapter: using native methods with strings, arrays, objects, constructor calls, and error
handling. What we show you is how to put a Java platform wrapper around a subset of the
ordinary C-based API used to work with the Windows registry. Of course, being a Windows-
specific feature, a program using the Windows registry is inherently nonportable. For that
reason, the standard Java library has no support for the registry, and it makes sense to use
native methods to gain access to it.

An Overview of the Windows Registry

For those who are not familiar with the Windows registry: It is a data depository that is
accessed by the Windows operating system, and that is available as a storage area for
application programs. (A good book is Inside the Windows 95 Registry by Ron Petrusha
[O'Reilly 1996].) In older versions of Windows, the operating system as well as applications
used so-called INI files to store configuration parameters. Windows programs are supposed to
use the registry instead. The registry has a number of advantages.

INI files store data as strings; the registry supports other data types such as integers and
byte arrays.

Parameters: p_jvm filled with a pointer to the invocation API function table
 p_env filled with a pointer to the JNI function table
 vm_args the virtual machine arguments

Parameters: jvm the virtual machine pointer

INI file sections cannot have subsections; the registry supports a complete tree structure.

Configuration parameters were distributed over many INI files; placing them into the
registry provides a single point for administration and backup.

On the downside, the registry is also a single point of failure—if you mess up the registry, your
computer may malfunction or even fail to boot! The sample program that we present in this
section is safe, but if you plan to make any modifications to it, you should learn how to back up
the registry before proceeding. See the book by Petrusha for information on how to back up
the Windows registry.

We don't suggest that you use the registry to store configuration parameters for your Java
programs. XML files are a better solution—see chapter 12 for more information. We simply use
the registry to demonstrate how to wrap a nontrivial native API into a Java class.

The principal tool for inspecting the registry is the registry editor. Because of the potential for
error by naïve but enthusiastic users, there is no icon for launching the registry editor. Instead,
start a DOS shell (or open the Start->Run dialog) and type regedit. Figure 11-3 shows the
registry editor in action.

Figure 11-3. The registry editor

The left side shows the keys, which are arranged in a tree structure. Note that each key starts
with one of the HKEY nodes like

HKEY_CLASSES_ROOT
HKEY_CURRENT_USER
HKEY_LOCAL_MACHINE
. . .

The right side shows the name/value pairs that are associated with a particular key. For
example, the key

HKEY_LOCAL_MACHINE\SOFTWARE\JavaSoft\Java Development Kit\1.4

has two name/value pairs, such as,

JavaHome="c:\jdk1.4"
MicroVersion="0"

In this case, the values are strings. The values can also be integers or arrays of bytes.

A Java Platform Interface for Accessing the Registry

We will implement a simple interface to access the registry from Java code, and then
implement this interface with native code. Our interface allows only a few registry operations;
to keep the code size down, we omitted other important operations such as adding, deleting,
and enumerating keys. (Following our model and the information supplied in Petrusha's book,
it would be easy to add the remaining registry API functions.)

Even with the limited subset that we supply, you can

Enumerate all names stored in a key;

Read the value stored with a name;

Set the value stored with a name.

Here is the Java platform class that encapsulates a registry key.

public class Win32RegKey
{
 public Win32RegKey(int theRoot, String thePath) { . . . }
 public Enumeration names() { . . . }
 public native Object getValue(String name);
 public native void setValue(String name, Object value);

 public static final int HKEY_CLASSES_ROOT = 0x80000000;
 public static final int HKEY_CURRENT_USER = 0x80000001;

 public static final int HKEY_LOCAL_MACHINE = 0x80000002;
 . . .
}

The names method returns an enumeration that holds all the names stored with the key. You
can get at them with the familiar hasMoreElements/nextElement methods. The
getValue method returns an object that is either a string, an Integer object, or a byte
array. The value parameter of the setValue method must also be of one of these three
types.

Here is a simple function that lists the strings that are stored with the key

HKEY_LOCAL_MACHINE\SOFTWARE\JavaSoft\Java Development Kit\1.4

(You should change the key to the version of the SDK that is installed on your system.)

public static void main(String[] args)
{
 Win32RegKey key = new Win32RegKey(
 Win32RegKey.HKEY_LOCAL_MACHINE,
 "SOFTWARE\JavaSoft\Java Development Kit\1.4");

 Enumeration enum = key.names();

 while (enum.hasMoreElements())
 {
 String name = (String)enum.nextElement();
 System.out.println(name + "=" + key.getValue(name));
 }
}

A typical output of this program is as follows:

JavaHome=c:\jdk1.4
MicroVersion=0

Implementing the Registry Access Functions as Native Methods

We need to implement three actions:

Get the value of a key;

Set the value of a key;

Iterate through the names of a key.

Fortunately, you have seen essentially all the tools that are required, such as the conversion
between Java strings and arrays and those of C. And you saw how to raise a Java exception in
case something goes wrong.

Two issues make these native methods more complex than the preceding examples. The
getValue and setValue methods deal with the type Object, which can be one of
String, Integer, or byte[]. And the enumeration object needs to store the state
between successive calls to hasMoreElements/nextElement.

Let us first look at the getValue method. The code (which is shown in Example 11-22) goes
through the following steps.

1. Open the registry key. To read their values, the registry API requires that keys be open.

2. Query the type and size of the value that is associated with the name.

3. Read the data into a buffer.

4. If the type is REG_SZ (a string), then call NewStringUTF to create a new string with
the value data.

5. If the type is REG_DWORD (a 32-bit integer), then invoke the Integer constructor.

6. If the type is REG_BINARY, then call NewByteArray to create a new byte array, and
SetByteArrayRegion to copy the value data into the byte array.

7. If the type is none of these or if there was an error when calling an API function, throw an
exception and carefully release all resources that had been acquired up to that point.

8. Close the key and return the object (String, Integer, or byte[]) that had been
created.

As you can see, this example illustrates quite nicely how to generate Java objects of different
types.

In this native method, coping with the generic return type is not difficult. The jstring,
jobject, or jarray reference was simply returned as a jobject. However, the
setValue method receives a reference to an Object, and it must determine its exact type
so it can save it as either a string, integer, or byte array. We can make this determination by
querying the class of the value object, finding the class references for
java.lang.String, java.lang.Integer, and byte[], and comparing them with
the IsAssignableFrom function.

If class1 and class2 are two class references, then the call

(*env)->IsAssignableFrom(env, class1, class2)

returns JNI_TRUE when class1 and class2 are the same class or class1 is a
subclass of class2. In either case, references to objects of class1 can be cast to
class2. For example, when

(*env)->IsAssignableFrom(env,
 (*env)->GetObjectClass(env, value)
 (*env)->FindClass(env, "[B"))

is true, then we know that value is a byte array.

Here is an overview of the code of the setValue method.

1. Open the registry key for writing.

2. Find the type of the value to write.

3. If the type is String, call GetStringUTFChars to get a pointer to the characters.
Also, obtain the string length.

4. If the type is Integer, call the intValue method to get the integer stored in the
wrapper object.

5. If the type is byte[], call GetByteArrayElements to get a pointer to the bytes.
Also, obtain the string length.

6. Pass the data and length to the registry.

7. Close the key. If the type is String or byte[], then also release the pointer to the
characters or bytes.

Finally, let us turn to the native methods that enumerate keys. These are methods of the
Win32RegKeyNameEnumeration class (see Example 11-21). When the enumeration
process starts, we must open the key. For the duration of the enumeration, we must retain the
key handle. That is, the key handle must be stored with the enumeration object. The key
handle is of type DWORD, a 32-bit quantity, and, hence, can be stored in a Java integer. It is
stored in the hkey field of the enumeration class. When the enumeration starts, the field is
initialized with SetIntField. Subsequent calls read the value with GetIntField.

TIP

In this example, we store three other data items with the enumeration object. When the
enumeration first starts, we can query the registry for the count of name/value pairs and the
length of the longest name, which we need so we can allocate C character arrays to hold the

As this example shows, using a Java object field to store native-state data
is very useful for implementing native methods.

names. These values are stored in the count and maxsize fields of the enumeration
object. Finally, the index field is initialized with –1 to indicate the start of the enumeration, is
set to 0 once the other object fields are initialized, and is incremented after every enumeration
step.

Here, we walk through the native methods that support the enumeration.

The hasMoreElements method is simple.

1. Retrieve the index and count fields.

2. If the index is –1, call the startNameEnumeration function, which opens the key,
queries the count and maximum length, and initializes the hkey, count, maxsize,
and index fields.

3. Return JNI_TRUE if index is less than count; JNI_FALSE otherwise.

The nextElement method needs to work a little harder.

1. Retrieve the index and count fields.

2. If the index is –1, call the startNameEnumeration function, which opens the key,
queries the count and maximum length, and initializes the hkey, count, maxsize,
and index fields.

3. If index equals count, throw a NoSuchElementException.

4. Read the next name from the registry.

5. Increment index.

6. If index equals count, close the key.

To compile the program, you must link in the advapi32.lib library.

Before compiling, remember to run javah on both Win32RegKey and
Win32RegKeyNameEnumeration. The complete command line is

cl -Ic:\jdk\include -Ic:\jdk\include\win32 -LD
 Win32RegKey.c advapi32.lib -FeWin32RegKey.dll

With Cygwin, use

gcc -c -Ic:\jdk\include
 -Ic:\jdk\include\win32 -Ic:\cygwin\usr\include\w32api
 -D__int64="long long"

 Win32RegKey.c
dllwrap --add-stdcall-alias -o Win32RegKey.dll Win32RegKey.o

Example 11-23 shows a program to test our new registry functions. We add three name/value
pairs, a string, an integer, and a byte array to the key.

HKEY_LOCAL_MACHINE\SOFTWARE\JavaSoft\Java Development Kit\1.4

You should edit the version number to match your SDK installation (or simply use some other
existing registry key).

We then enumerate all names of that key and retrieve their values. The program should print
out

JavaHome=c:\jdk1.4
MicroVersion=0
Default user=Harry Hacker
Lucky number=13
Small primes=2 3 5 7 11 13

Although adding these name/value pairs to that key probably does no harm, you may want to
use the registry editor to remove them after running this program.

Example 11-21 Win32RegKey.java

 1. import java.util.*;
 2.
 3. /**
 4. A Win32RegKey object can be used to get and set values
 5. a registry key in the Windows registry.
 6. */
 7. public class Win32RegKey
 8. {
 9. /**
10. Construct a registry key object.
11. @param theRoot one of HKEY_CLASSES_ROOT, HKEY_CURREN
12. HKEY_LOCAL_MACHINE, HKEY_USERS, HKEY_CURRENT_CONFIG,
13. HKEY_DYN_DATA
14. @param thePath the registry key path
15. */
16. public Win32RegKey(int theRoot, String thePath)
17. {
18. root = theRoot;
19. path = thePath;
20. }
21.

22. /**
23. Enumerates all names of registry entries under the p
24. that this object describes.
25. @return an enumeration listing all entry names
26. */
27. public Enumeration names()
28. {
29. return new Win32RegKeyNameEnumeration(root, path);
30. }
31.
32. /**
33. Gets the value of a registry entry.
34. @param name the entry name
35. @return the associated value
36. */
37. public native Object getValue(String name);
38.
39. /**
40. Sets the value of a registry entry.
41. @param name the entry name
42. @param value the new value
43. */
44. public native void setValue(String name, Object value);
45.
46. public static final int HKEY_CLASSES_ROOT = 0x80000000;
47. public static final int HKEY_CURRENT_USER = 0x80000001;
48. public static final int HKEY_LOCAL_MACHINE = 0x80000002
49. public static final int HKEY_USERS = 0x80000003;
50. public static final int HKEY_CURRENT_CONFIG = 0x8000000
51. public static final int HKEY_DYN_DATA = 0x80000006;
52.
53. private int root;
54. private String path;
55.
56. static
57. {
58. System.loadLibrary("Win32RegKey");
59. }
60. }
61.
62. class Win32RegKeyNameEnumeration implements Enumeration
63. {
64. Win32RegKeyNameEnumeration(int theRoot, String thePath)
65. {

66. root = theRoot;
67. path = thePath;
68. }
69.
70. public native Object nextElement();
71. public native boolean hasMoreElements();
72.
73. private int root;
74. private String path;
75. private int index = -1;
76. private int hkey = 0;
77. private int maxsize;
78. private int count;
79. }
80.
81. class Win32RegKeyException extends RuntimeException
82. {
83. public Win32RegKeyException() {}
84. public Win32RegKeyException(String why)
85. {
86. super(why);
87. }
88. }

Example 11-22 Win32RegKey.c

 1. #include "Win32RegKey.h"
 2. #include "Win32RegKeyNameEnumeration.h"
 3. #include <string.h>
 4. #include <stdlib.h>
 5. #include <windows.h>
 6.
 7. JNIEXPORT jobject JNICALL Java_Win32RegKey_getValue(JNIEn
 8. jobject this_obj, jstring name)
 9. {
 10. const char* cname;
 11. jstring path;
 12. const char* cpath;
 13. HKEY hkey;
 14. DWORD type;
 15. DWORD size;
 16. jclass this_class;
 17. jfieldID id_root;
 18. jfieldID id_path;

 19. HKEY root;
 20. jobject ret;
 21. char* cret;
 22.
 23. /* get the class */
 24. this_class = (*env)->GetObjectClass(env, this_obj);
 25.
 26. /* get the field IDs */
 27. id_root = (*env)->GetFieldID(env, this_class, "root",
 28. id_path = (*env)->GetFieldID(env, this_class, "path",
 29. "Ljava/lang/String;");
 30.
 31. /* get the fields */
 32. root = (HKEY)(*env)->GetIntField(env, this_obj, id_roo
 33. path = (jstring)(*env)->GetObjectField(env, this_obj,
 34. id_path);
 35. cpath = (*env)->GetStringUTFChars(env, path, NULL);
 36.
 37. /* open the registry key */
 38. if (RegOpenKeyEx(root, cpath, 0, KEY_READ, &hkey)
 39. != ERROR_SUCCESS)
 40. {
 41. (*env)->ThrowNew(env,
 42. (*env)->FindClass(env, "Win32RegKeyException"),
 43. "Open key failed");
 44. (*env)->ReleaseStringUTFChars(env, path, cpath);
 45. return NULL;
 46. }
 47.
 48. (*env)->ReleaseStringUTFChars(env, path, cpath);
 49. cname = (*env)->GetStringUTFChars(env, name, NULL);
 50.
 51. /* find the type and size of the value */
 52. if (RegQueryValueEx(hkey, cname, NULL, &type, NULL, &s
 53. != ERROR_SUCCESS)
 54. {
 55. (*env)->ThrowNew(env,
 56. (*env)->FindClass(env, "Win32RegKeyException"),
 57. "Query value key failed");
 58. RegCloseKey(hkey);
 59. (*env)->ReleaseStringUTFChars(env, name, cname);
 60. return NULL;
 61. }
 62.

 63. /* get memory to hold the value */
 64. cret = (char*)malloc(size);
 65.
 66. /* read the value */
 67. if (RegQueryValueEx(hkey, cname, NULL, &type, cret, &s
 68. != ERROR_SUCCESS)
 69. {
 70. (*env)->ThrowNew(env,
 71. (*env)->FindClass(env, "Win32RegKeyException"),
 72. "Query value key failed");
 73. free(cret);
 74. RegCloseKey(hkey);
 75. (*env)->ReleaseStringUTFChars(env, name, cname);
 76. return NULL;
 77. }
 78.
 79. /* depending on the type, store the value in a string,
 80. integer or byte array */
 81. if (type == REG_SZ)
 82. {
 83. ret = (*env)->NewStringUTF(env, cret);
 84. }
 85. else if (type == REG_DWORD)
 86. {
 87. jclass class_Integer = (*env)->FindClass(env,
 88. "java/lang/Integer");
 89. /* get the method ID of the constructor */
 90. jmethodID id_Integer = (*env)->GetMethodID(env,
 91. class_Integer, "<init>", "(I)V");
 92. int value = *(int*)cret;
 93. /* invoke the constructor */
 94. ret = (*env)->NewObject(env, class_Integer, id_Inte
 95. value);
 96. }
 97. else if (type == REG_BINARY)
 98. {
 99. ret = (*env)->NewByteArray(env, size);
100. (*env)->SetByteArrayRegion(env, (jarray)ret, 0, siz
101. cret);
102. }
103. else
104. {
105. (*env)->ThrowNew(env,
106. (*env)->FindClass(env, "Win32RegKeyException"),

107. "Unsupported value type");
108. ret = NULL;
109. }
110.
111. free(cret);
112. RegCloseKey(hkey);
113. (*env)->ReleaseStringUTFChars(env, name, cname);
114.
115. return ret;
116. }
117.
118. JNIEXPORT void JNICALL Java_Win32RegKey_setValue(JNIEnv*
119. jobject this_obj, jstring name, jobject value)
120. {
121. const char* cname;
122. jstring path;
123. const char* cpath;
124. HKEY hkey;
125. DWORD type;
126. DWORD size;
127. jclass this_class;
128. jclass class_value;
129. jclass class_Integer;
130. jfieldID id_root;
131. jfieldID id_path;
132. HKEY root;
133. const char* cvalue;
134. int ivalue;
135.
136. /* get the class */
137. this_class = (*env)->GetObjectClass(env, this_obj);
138.
139. /* get the field IDs */
140. id_root = (*env)->GetFieldID(env, this_class, "root",
141. id_path = (*env)->GetFieldID(env, this_class, "path",
142. "Ljava/lang/String;");
143.
144. /* get the fields */
145. root = (HKEY)(*env)->GetIntField(env, this_obj, id_roo
146. path = (jstring)(*env)->GetObjectField(env, this_obj,
147. id_path);
148. cpath = (*env)->GetStringUTFChars(env, path, NULL);
149.
150. /* open the registry key */

151. if (RegOpenKeyEx(root, cpath, 0, KEY_WRITE, &hkey)
152. != ERROR_SUCCESS)
153. {
154. (*env)->ThrowNew(env,
155. (*env)->FindClass(env, "Win32RegKeyException"),
156. "Open key failed");
157. (*env)->ReleaseStringUTFChars(env, path, cpath);
158. return;
159. }
160.
161. (*env)->ReleaseStringUTFChars(env, path, cpath);
162. cname = (*env)->GetStringUTFChars(env, name, NULL);
163.
164. class_value = (*env)->GetObjectClass(env, value);
165. class_Integer = (*env)->FindClass(env, "java/lang/Inte
166. /* determine the type of the value object */
167. if ((*env)->IsAssignableFrom(env, class_value,
168. (*env)->FindClass(env, "java/lang/String")))
169. {
170. /* it is a string--get a pointer to the characters *
171. cvalue = (*env)->GetStringUTFChars(env, (jstring)va
172. NULL);
173. type = REG_SZ;
174. size = (*env)->GetStringLength(env, (jstring)value)
175. }
176. else if ((*env)->IsAssignableFrom(env, class_value,
177. class_Integer))
178. {
179. /* it is an integer--call intValue to get the value
180. jmethodID id_intValue = (*env)->GetMethodID(env,
181. class_Integer, "intValue", "()I");
182. ivalue = (*env)->CallIntMethod(env, value, id_intVa
183. type = REG_DWORD;
184. cvalue = (char*)&ivalue;
185. size = 4;
186. }
187. else if ((*env)->IsAssignableFrom(env, class_value,
188. (*env)->FindClass(env, "[B")))
189. {
190. /* it is a byte array--get a pointer to the bytes *
191. type = REG_BINARY;
192. cvalue = (char*)(*env)->GetByteArrayElements(env,
193. (jarray)value, NULL);
194. size = (*env)->GetArrayLength(env, (jarray)value);

195. }
196. else
197. {
198. /* we don't know how to handle this type */
199. (*env)->ThrowNew(env,
200. (*env)->FindClass(env, "Win32RegKeyException"),
201. "Unsupported value type");
202. RegCloseKey(hkey);
203. (*env)->ReleaseStringUTFChars(env, name, cname);
204. return;
205. }
206.
207. /* set the value */
208. if (RegSetValueEx(hkey, cname, 0, type, cvalue, size)
209. != ERROR_SUCCESS)
210. { (*env)->ThrowNew(env,
211. (*env)->FindClass(env, "Win32RegKeyException"),
212. "Query value key failed");
213. }
214.
215. RegCloseKey(hkey);
216. (*env)->ReleaseStringUTFChars(env, name, cname);
217.
218. /* if the value was a string or byte array, release th
219. pointer */
220. if (type == REG_SZ)
221. {
222. (*env)->ReleaseStringUTFChars(env, (jstring)value,
223. cvalue);
224. }
225. else if (type == REG_BINARY)
226. {
227. (*env)->ReleaseByteArrayElements(env, (jarray)value
228. cvalue, 0);
229. }
230. }
231.
232. /* helper function to start enumeration of names */
233. static int startNameEnumeration(JNIEnv* env, jobject this
234. jclass this_class)
235. {
236. jfieldID id_index;
237. jfieldID id_count;
238. jfieldID id_root;

239. jfieldID id_path;
240. jfieldID id_hkey;
241. jfieldID id_maxsize;
242.
243. HKEY root;
244. jstring path;
245. const char* cpath;
246. HKEY hkey;
247. int maxsize = 0;
248. int count = 0;
249.
250. /* get the field IDs */
251. id_root = (*env)->GetFieldID(env, this_class, "root",
252. id_path = (*env)->GetFieldID(env, this_class, "path",
253. "Ljava/lang/String;");
254. id_hkey = (*env)->GetFieldID(env, this_class, "hkey",
255. id_maxsize = (*env)->GetFieldID(env, this_class, "maxs
256. "I");
257. id_index = (*env)->GetFieldID(env, this_class, "index"
258. "I");
259. id_count = (*env)->GetFieldID(env, this_class, "count"
260. "I");
261.
262. /* get the field values */
263. root = (HKEY)(*env)->GetIntField(env, this_obj, id_roo
264. path = (jstring)(*env)->GetObjectField(env, this_obj,
265. id_path);
266. cpath = (*env)->GetStringUTFChars(env, path, NULL);
267.
268. /* open the registry key */
269. if (RegOpenKeyEx(root, cpath, 0, KEY_READ, &hkey)
270. != ERROR_SUCCESS)
271. {
272. (*env)->ThrowNew(env,
273. (*env)->FindClass(env, "Win32RegKeyException"),
274. "Open key failed");
275. (*env)->ReleaseStringUTFChars(env, path, cpath);
276. return -1;
277. }
278. (*env)->ReleaseStringUTFChars(env, path, cpath);
279.
280. /* query count and max length of names */
281. if (RegQueryInfoKey(hkey, NULL, NULL, NULL, NULL,
282. NULL, NULL, &count, &maxsize, NULL, NULL, NULL)

283. != ERROR_SUCCESS)
284. {
285. (*env)->ThrowNew(env,
286. (*env)->FindClass(env, "Win32RegKeyException"),
287. "Query info key failed");
288. return -1;
289. }
290.
291. /* set the field values */
292. (*env)->SetIntField(env, this_obj, id_hkey, (DWORD)hke
293. (*env)->SetIntField(env, this_obj, id_maxsize, maxsize
294. (*env)->SetIntField(env, this_obj, id_index, 0);
295. (*env)->SetIntField(env, this_obj, id_count, count);
296. return count;
297. }
298.
299. JNIEXPORT jboolean JNICALL
300. Java_Win32RegKeyNameEnumeration_hasMoreElements(JNIEnv* e
301. jobject this_obj)
302. { jclass this_class;
303. jfieldID id_index;
304. jfieldID id_count;
305. int index;
306. int count;
307. /* get the class */
308. this_class = (*env)->GetObjectClass(env, this_obj);
309.
310. /* get the field IDs */
311. id_index = (*env)->GetFieldID(env, this_class, "index"
312. "I");
313. id_count = (*env)->GetFieldID(env, this_class, "count"
314. "I");
315.
316. index = (*env)->GetIntField(env, this_obj, id_index);
317. if (index == -1) /* first time */
318. {
319. count = startNameEnumeration(env, this_obj, this_cl
320. index = 0;
321. }
322. else
323. count = (*env)->GetIntField(env, this_obj, id_count
324. return index < count;
325. }
326.

327. JNIEXPORT jobject JNICALL
328. Java_Win32RegKeyNameEnumeration_nextElement(JNIEnv* env,
329. jobject this_obj)
330. {
331. jclass this_class;
332. jfieldID id_index;
333. jfieldID id_hkey;
334. jfieldID id_count;
335. jfieldID id_maxsize;
336.
337. HKEY hkey;
338. int index;
339. int count;
340. int maxsize;
341.
342. char* cret;
343. jstring ret;
344.
345. /* get the class */
346. this_class = (*env)->GetObjectClass(env, this_obj);
347.
348. /* get the field IDs */
349. id_index = (*env)->GetFieldID(env, this_class, "index"
350. "I");
351. id_count = (*env)->GetFieldID(env, this_class, "count"
352. "I");
353. id_hkey = (*env)->GetFieldID(env, this_class, "hkey",
354. id_maxsize = (*env)->GetFieldID(env, this_class, "maxs
355. "I");
356.
357. index = (*env)->GetIntField(env, this_obj, id_index);
358. if (index == -1) /* first time */
359. {
360. count = startNameEnumeration(env, this_obj, this_cl
361. index = 0;
362. }
363. else
364. count = (*env)->GetIntField(env, this_obj, id_count
365.
366. if (index >= count) /* already at end */
367. {
368. (*env)->ThrowNew(env,
369. (*env)->FindClass(env,
370. "java/util/NoSuchElementException"),

371. "past end of enumeration");
372. return NULL;
373. }
374.
375. maxsize = (*env)->GetIntField(env, this_obj, id_maxsiz
376. hkey = (HKEY)(*env)->GetIntField(env, this_obj, id_hke
377. cret = (char*)malloc(maxsize);
378.
379. /* find the next name */
380. if (RegEnumValue(hkey, index, cret, &maxsize, NULL, NU
381. NULL, NULL) != ERROR_SUCCESS)
382. {
383. (*env)->ThrowNew(env,
384. (*env)->FindClass(env, "Win32RegKeyException"),
385. "Enum value failed");
386. free(cret);
387. RegCloseKey(hkey);
388. (*env)->SetIntField(env, this_obj, id_index, count)
389. return NULL;
390. }
391.
392. ret = (*env)->NewStringUTF(env, cret);
393. free(cret);
394.
395. /* increment index */
396. index++;
397. (*env)->SetIntField(env, this_obj, id_index, index);
398.
399. if (index == count) /* at end */
400. {
401. RegCloseKey(hkey);
402. }
403.
404. return ret;
405. }

Example 11-23 Win32RegKeyTest.java

 1. import java.util.*;
 2.
 3. public class Win32RegKeyTest
 4. {
 5. public static void main(String[] args)
 6. {

 7. Win32RegKey key = new Win32RegKey(
 8. Win32RegKey.HKEY_LOCAL_MACHINE,
 9. "SOFTWARE\\JavaSoft\\Java Development Kit\\1.4");
10.
11. key.setValue("Default user", "Harry Hacker");
12. key.setValue("Lucky number", new Integer(13));
13. key.setValue("Small primes", new byte[]
14. { 2, 3, 5, 7, 11 });
15.
16. Enumeration enum = key.names();
17.
18. while (enum.hasMoreElements())
19. {
20. String name = (String)enum.nextElement();
21. System.out.print(name + "=");
22.
23. Object value = key.getValue(name);
24.
25. if (value instanceof byte[])
26. {
27. byte[] bvalue = (byte[])value;
28. for (int i = 0; i < bvalue.length; i++)
29. System.out.print((bvalue[i] & 0xFF) + " ");
30. }
31. else System.out.print(value);
32.
33. System.out.println();
34. }
35. }
36. }

Type inquiry functions

jboolean IsAssignableFrom(JNIEnv *env, jclass cl1, jclass
cl2)

returns JNI_TRUE if objects of the first class can be assigned to objects of the second
class; JNI_FALSE otherwise. This is the case when the classes are the same, cl1 is a
subclass of cl2, or cl2 represents an interface that is implemented by cl1 or one of
its superclasses.

jclass GetSuperClass(JNIEnv *env, jclass cl)

returns the superclass of a class. If cl represents the class Object or an interface,
returns NULL.

Parameters: env the JNI interface pointer
 cl1, cl2 class references

Parameters: env the JNI interface pointer
 cl a class reference

CONTENTS

Chapter 12. XML
An Introduction to XML

Parsing an XML Document

Document Type Definitions

Namespaces

Using the SAX Parser

Generating XML Documents

XSL Transformations

The preface of the book Essential XML by Don Box, et al. [Addison-Wesley 2000] states only
half-jokingly: "The Extensible Markup Language (XML) has replaced Java, Design Patterns,
and Object Technology as the software industry's solution to world hunger." Indeed, as you will
see in this chapter, XML is a very useful technology for describing structured information. XML
tools make it easy to process and transform that information. But XML is not a silver bullet.
You need domain-specific standards and code libraries to use it effectively. Moreover, far from
making Java obsolete, XML and Java work very well together. Essentially all important XML
libraries have been implemented first in Java, and many of them are unavailable in any other
programming language. Since the late 1990s, IBM, Apache, and others have been
instrumental in producing high-quality Java libraries for XML processing. Starting with SDK 1.4,
Sun has integrated the most important libraries into the Java 2 Platform, Standard Edition.

NOTE

This chapter gives an introduction into XML and covers the XML features of SDK 1.4. As
always, we will point out along the way when the hype surrounding XML is justified, and when
you have to take it with a grain of salt and solve your problems the old-fashioned way, through
good design and code.

An Introduction to XML
You have seen several examples of property files to describe the configuration of a program,
for example in Chapters 2 and 4. A property file contains a set of name/value pairs, such as

fontname=Times Roman

CONTENTS

You can download the Java API for XML Processing (JAXP) library from
http://java.sun.com/xml to add the same XML processing capabilities to
older Java installations.

fontsize=12
windowsize=400 200
color=0 50 100

You can use the Properties class to read in such a file with a single method call. That's a
nice feature, but it doesn't really go far enough. In many cases, the information that you want
to describe has more structure than the property file format can comfortably handle. For
example, consider the fontname/fontsize entries in the example. It would be more
object-oriented to have a single entry:

font=Times Roman 12

But then parsing the font description gets ugly—you have to figure out when the font name
ends and when the font size starts.

Property files have a single flat hierarchy. You can often see programmers work around that
limitation with key names such as

title.fontname=Helvetica
title.fontsize=36
body.fontname=Times Roman
body.fontsize=12

Another shortcoming of the property file format is caused by the fact that keys have to be
unique. To store a sequence of values, you need another workaround, such as

menu.item.1=Times Roman
menu.item.2=Helvetica
menu.item.3=Goudy Old Style

The XML format solves these problems because it can express hierarchical structures, which
is more flexible than the flat table structure of a property file.

An XML file for describing a program configuration might look like this:

<configuration>
 <title>

 <name>Helvetica</name>
 <size>36</size>

 </title>
 <body>
 <name>Times Roman</name>
 <size>12</size>
 </body>

 <window>
 <width>400</width>
 <height>200</height>
 </window>
 <color>
 <red>0</red>
 <green>50</green>
 <blue>100</blue>
 </color>
 <menu>
 <item>Times Roman</item>
 <item>Helvetica</item>
 <item>Goudy Old Style</item>
 </menu>
</configuration>

The XML format allows you to express the structure hierarchy and repeated elements without
contortions.

As you can see, the format of an XML file is very straightforward. It looks very similar to an
HTML file. There is a good reason—both the XML and HTML formats are descendants of the
venerable Standard Generalized Markup Language (SGML).

SGML has been around since the 1970s for describing the structure of complex documents. It
has been used with good success in some industries that require ongoing maintenance of
massive documentation, in particular the aircraft industry. But SGML is quite complex, so it has
never caught on in a big way. Much of that complexity arises from the fact that SGML has two
conflicting goals. SGML wants to make sure that documents are formed according to the rules
for their document type. But it also wants to make data entry easy by allowing shortcuts that
reduce typing. XML was designed as a simplified version of SGML for use on the Internet. As
is often true, simpler is better, and XML has enjoyed the immediate and enthusiastic reception
that has eluded SGML for so long.

NOTE

Even though XML and HTML have common roots, there are important differences between the
two.

Unlike HTML, XML is case sensitive. For example, <H1> and <h1> are different XML
tags.

In HTML, you can omit end tags such as </p> or tags if it is clear from the
context where a paragraph or list item ends. In XML, you can never omit an end tag.

You can find a very nice version of the XML standard, with annotations by
Tim Bray, at http://www.xml.com/axml/axml.html.

In XML, elements that have a single tag without a matching end tag must end in a /,
such as . That way, the parser knows not to look
for a tag.

In XML, attribute values must be enclosed in quotation marks. In HTML, quotation marks
are optional. For example, <applet code="MyApplet.class" width=300
height=300> is legal HTML but not legal XML. In XML, you would have to use
quotation marks: width="300".

In HTML, you can have attribute names without values, such as <input
type="radio" name="language" value="Java" checked>. In XML, all
attributes must have values, such as checked="true" or (ugh)
checked="checked".

NOTE

The Structure of an XML Document

An XML document should start with a header such as

<?xml version="1.0"?>

or

<?xml version="1.0" encoding="UTF-8"?>

Strictly speaking, a header is optional, but it is highly recommended.

NOTE

The header is normally followed by a document type declaration, such as

<!DOCTYPE web-app PUBLIC
 "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"

The current recommendation for web documents by the World Wide Web
Consortium (W3C) is the XHTML standard, which tightens up the HTML
standard to be XML compliant. You can find a copy of the XHTML standard
at http://www.w3.org/TR/xhtml1/. XHTML is backwards-compatible with
current browsers, but unfortunately many current HTML authoring tools do
not yet support it. Once XHTML becomes more widespread, you can use
the XML tools that are described in this chapter to analyze web documents.

Because SGML was created for processing of real documents, XML files
are called documents, even though most XML files describe data sets that
one would not normally call documents.

 "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

Document type declarations are an important mechanism to ensure the correctness of a
document, but they are not required. We will discuss them later in this chapter.

Finally, the body of the XML document contains the root element, which can contain other
elements. For example,

<?xml version="1.0"?>
<!DOCTYPE configuration . . .>
<configuration>
 <title>

 <name>Helvetica</name>
 <size>36</size>

 </title>
 . . .
</configuration>

An element can contain child elements, text, or both. In the example above, the font element
has two child elements, name and size. The name element contains the text
"Helvetica".

TIP

XML elements can contain attributes, such as

<size unit="pt">36</size>

There is some disagreement among XML designers about when to use elements and when to
use attributes. For example, it would seem easier to describe a font as

It is best if you structure your XML documents such that an element
contains either child elements or text. In other words, you should avoid
situations such as

 Helvetica
 <size>36</size>

This is called mixed contents in the XML specification. As you will see later
in this chapter, you can design much cleaner document type definitions if
you avoid mixed contents.

than

 <name>Helvetica</name>
 <size>36</size>

However, attributes are much less flexible. Suppose you want to add units to the size value. If
you use attributes, then you have to add the unit to the attribute value:

Ugh! Now you have to parse the string "36 pt", just the kind of hassle that XML was
designed to avoid. Adding an attribute to the size element is much cleaner:

 <name>Helvetica</name>
 <size unit="pt">36</size>

A commonly used rule of thumb is that attributes should only be used when they modify the
interpretation of a value, not to specify values. If you find yourself engaged in metaphysical
discussions about whether a particular setting is a modification of the interpretation of a value
or not, then just say "no" to attributes and use elements throughout. Many useful DTDs don't
use attributes at all.

NOTE

Elements and text are the "bread and butter" of XML documents. There are a few other
markup instructions that you may encounter.

Character references have the form &#d; or &#xh;. Here d is a decimal Unicode value
and h is a hexadecimal Unicode value. Examples are

é

In HTML, the rule for attribute usage is simple: If it isn't displayed on the
web page, it's an attribute. For example, consider a hyperlink

Java Technology

The string Java Technology is displayed on the web page, but the
URL of the link is not a part of the displayed page. However, that rule isn't
all that helpful for most XML files since the data in an XML file isn't normally
meant to be viewed by humans.

™

which denote the characters é and ™.

Entity references have the form &name;. The entity references

<
>
&
"
'

have predefined meanings: the less than, greater than, ampersand, quotation mark, and
apostrophe characters. You can define other entity references in a Document Type
Definition (DTD).

CDATA sections are delimited by <![CDATA[and]]>. They are a special form of
character data. You can use them to include strings that contain characters such as < >
& without having them interpreted as markup, for example

<![CDATA[< & > are my favorite delimiters]]>

CDATA sections cannot contain the string]]>. Use this feature with caution! It is too
often used as a backdoor for smuggling legacy data into XML documents.

Processing instructions are delimited by <? and ?>, for example

<?xml-stylesheet href="mystyle.css" type="text/css"?>

These instructions are for the benefit of the application that processes the XML
document. Every XML document starts with a processing instruction

<?xml version="1.0"?>

Comments are delimited by <!-- and -->, for example

<!-- This is a comment. -->

Comments should not contain the string --. Comments should only be information for
human readers. They should never contain hidden commands. Use processing
instructions for commands.

Parsing an XML Document
To process an XML document, you need to parse it. A parser is a program that reads a file,
confirms that the file has the correct format, breaks it up into the constituent elements, and lets

a programmer access those elements. There are two kinds of XML parsers:

The Document Object Model (DOM) parser reads an XML document into a tree structure.

The Simple API for XML (SAX) parser generates events as it reads an

XML document.

The DOM parser is easier to use for most purposes, and we will explain it first.

You would want to consider the SAX parser if you process very long documents whose tree
structures would use up a lot of memory, or if you are just interested in a few elements and you
don't care about their context.

The DOM parser interface is standardized by the World Wide Web Consortium (W3C). The
org.w3c.dom package contains the definitions of interface types such as Document and
Element. Different suppliers, such as the Apache Organization and IBM, have written DOM
parsers whose classes implement these interfaces. The Sun Java API for XML Processing
(JAXP) library actually makes it possible to plug in any of these parsers. But Sun also includes
its own DOM parser in the Java SDK. We'll use the Sun parser in this chapter.

To read an XML document, you need a DocumentBuilder object which you get from a
DocumentBuilderFactory, like this:

DocumentBuilderFactory factory
 = DocumentBuilderFactory.newInstance();
DocumentBuilder builder
 = factory.newDocumentBuilder();

You can now read a document from a file:

File f = . . .
Document doc = builder.parse(f);

Alternatively, you can use an URL:

URL u = . . .
Document doc = builder.parse(u);

You can even specify an arbitrary input stream:

InputStream in = . . .
Document doc = builder.parse(in);

NOTE

If you use an input stream as an input source, then the parser will not be

The Document object is an in-memory representation of the tree structure of the XML
document. It is composed of objects whose classes implement the Node interface and its
various subinterfaces. Figure 12-1 shows the inheritance hierarchy of the subinterfaces.

Figure 12-1. The Node interfaces and its subinterfaces

You start analyzing the contents of a document by calling the getDocumentElement
method. It returns the root element.

Element root = doc.getDocumentElement();

For example, if you are processing a document

<?xml version="1.0"?>

 . . .

then calling getDocumentElement returns the font element.

The getTagName method returns the tag name of an element. For example, in the
preceding example, root.getTagName() returns the string "font".

To get the element's children (which may be subelements, text, comments, or other nodes),
use the getChildNodes method. That method returns a collection of type NodeList.

able to locate other files that are referenced relative to the location of the
document, such as a DTD in the same directory. You can install an "entity
resolver" to overcome that problem. But it is usually easier to just use a file
or URL than an input stream.

That type was invented before the standard Java collections, and it has a different access
protocol. The item method gets the item with a given index, and the getLength method
gives the total count of the items. Therefore, you can enumerate all children like this:

NodeList children = root.getChildNodes();
for (int i = 0; i < children.getLength(); i++)
{
 Node child = children.item(i);
 . . .
}

You have to be careful when analyzing the children. Suppose for example that you are
processing the document

 <name>Helvetica</name>
 <size>36</size>

You would expect the font element to have two children, but the parser reports five:

The whitespace between and <name>

The name element

The whitespace between </name> and <size>

The size element

The whitespace between </size> and

Figure 12-2 shows the DOM tree.

Figure 12-2. A Simple DOM Tree

If you only expect subelements, then you can ignore the whitespace:

for (int i = 0; i < children.getLength(); i++)
{
 Node child = children.item(i);
 if (child instanceof Element)
 {
 Element childElement = (Element)child;
 . . .
 }
}

Now you only look at two elements, with tag names name and size.

As you will see in the next section, you can do even better if your document has a document
type declaration. Then the parser knows which elements don't have text nodes as children,
and it can suppress the whitespace for you.

When analyzing the name and size elements, you want to retrieve the text strings that they
contain. Those text strings are themselves contained in child nodes of type Text. Since you
know that these Text nodes are the only children, you can use the getFirstChild
method without having to traverse another NodeList. Then use the getData method to
retrieve the string stored in the Text node.

for (int i = 0; i < children.getLength(); i++)
{
 Node child = children.item(i);

 if (child instanceof Element)
 {
 Element childElement = (Element)child;
 Text textNode = childElement.getFirstChild();
 String text = textNode.getData().trim();
 if (childElement.getTagName().equals("name"))
 name = text;
 else if (childElement.getTagName().equals("size"))
 size = Integer.parseInt(text);
 }
}

TIP

You can also get the last child with the getLastChild, and the next sibling of a node with
getNextSibling. Therefore, another way of traversing a set of child nodes is

for (Node childNode = element.getFirstChild();
 childNode != null;
 childNode = childNode.getNextSibling())
{
 . . .
}

NOTE

It is a good idea to call trim on the return value of the getData method.
If the author of an XML file puts the beginning and the ending tag on
separate lines, such as

<size>
 36
</size>

then the parser includes all line breaks and spaces in the text node data.
Calling the trim method removes the whitespace surrounding the actual
data.

It is rather tedious to search for nodes in an XML tree by looking at the root,
its children, grandchildren, and so on. The XPath technology simplifies
searches. For example, you can locate the node with the
path /configuration/title/font/name with a single method
call. However, XPath is not yet a part of the XML library in the Java
platform. You can find out the XPath specification at
http://www.w3.org/TR/xpath. The Xalan library from the Apache group
contains an implementation of XPath; see http://xml.apache.org/xalan-

To enumerate the attributes of a node, call the getAttributes method. It returns a
NamedNodeMap object which contains Node objects that describe the attributes. You can
traverse the nodes in a NamedNodeMap in the same way as a NodeList. Then call the
getNodeName and getNodeValue methods to get the attribute names and values.

NamedNodeMap attributes = element.getAttributes();
for (int i = 0; i < attributes.getLength(); i++)
{
 Node attribute = attributes.item(i);
 String name = attribute.getNodeName();
 String value = attribute.getNodeValue();
 . . .
}

Alternatively, if you know the name of an attribute, you can retrieve the corresponding value
directly:

String unit = element.getAttribute("unit");

You have now seen how to analyze a DOM tree. The program in Example 12-1 puts these
techniques to work. You can use the File -> Open menu option to read in an XML file. A
DocumentBuilder object parses the XML file and produces a Document object. The
program displays the Document object as a JTree (see Figure 12-3).

Figure 12-3. A parse tree of an XML document

j/overview.html.

The tree display shows clearly how child elements are surrounded by text containing
whitespace and comments. For greater clarity, the program displays newline and return
characters as \n and \r. (Otherwise, they would show up as hollow boxes, the default
symbol for a character that Swing cannot draw in a string.)

If you followed the section on trees in Chapter 6, you will recognize the techniques that this
program uses to display the tree. The DOMTreeModel class implements the TreeModel
interface. The getRoot method returns the root element of the document. The getChild
method gets the node list of children and returns the item with the requested index. However,
the tree model returns DOM Node objects whose toString methods aren't necessarily
descriptive. Therefore, the program installs a tree cell renderer that extends the default cell
renderer and sets the label text to a more descriptive form. The cell renderer displays the
following:

For elements, the element tag name and all attributes;

For character data, the interface (Text, Comment, or CDATASection), followed by the
data, with new lines and returns replaced by \n and \r;

For all other node types, the class name followed by the result of toString.

If you need to analyze XML documents that contain other node types (such as processing
instructions), then you can enhance the program accordingly. The purpose of the program is
not to be a polished XML viewer—there are many slicker programs available—but to show you

how to analyze and enumerate the children and attributes of DOM tree nodes.

NOTE

Example 12-1 DOMTreeTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.io.*;
 4. import javax.swing.*;
 5. import javax.swing.event.*;
 6. import javax.swing.tree.*;
 7. import javax.xml.parsers.*;
 8. import org.w3c.dom.*;
 9. import org.xml.sax.*;
 10.
 11. /**
 12. This program displays an XML document as a tree.
 13. */
 14. public class DOMTreeTest
 15. {
 16. public static void main(String[] args)
 17. {
 18. JFrame frame = new DOMTreeFrame();
 19. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 20. frame.show();
 21. }
 22. }
 23.
 24. /**
 25. This frame contains a tree that displays the contents
 26. an XML document.
 27. */
 28. class DOMTreeFrame extends JFrame
 29. {
 30. public DOMTreeFrame()
 31. {
 32. setTitle("DOMTreeTest");
 33. setSize(WIDTH, HEIGHT);
 34.
 35. JMenu fileMenu = new JMenu("File");

You can get a very nice free XML viewer from IBM AlphaWorks at
http://www.alphaworks.ibm.com/tech/xmlviewer.

 36. JMenuItem openItem = new JMenuItem("Open");
 37. openItem.addActionListener(new
 38. ActionListener()
 39. {
 40. public void actionPerformed(ActionEvent event
 41. {
 42. openFile();
 43. }
 44. });
 45. fileMenu.add(openItem);
 46.
 47. JMenuItem exitItem = new JMenuItem("Exit");
 48. exitItem.addActionListener(new
 49. ActionListener()
 50. {
 51. public void actionPerformed(ActionEvent event
 52. {
 53. System.exit(0);
 54. }
 55. });
 56. fileMenu.add(exitItem);
 57.
 58. JMenuBar menuBar = new JMenuBar();
 59. menuBar.add(fileMenu);
 60. setJMenuBar(menuBar);
 61. }
 62.
 63. /**
 64. Open a file and load the document.
 65. */
 66. public void openFile()
 67. {
 68. JFileChooser chooser = new JFileChooser();
 69. chooser.setCurrentDirectory(new File("."));
 70.
 71. chooser.setFileFilter(new
 72. javax.swing.filechooser.FileFilter()
 73. {
 74. public boolean accept(File f)
 75. {
 76. return f.isDirectory()
 77. || f.getName().toLowerCase().endsWith("
 78. }
 79. public String getDescription()

 80. {
 81. return "XML files";
 82. }
 83. });
 84. int r = chooser.showOpenDialog(this);
 85. if (r != JFileChooser.APPROVE_OPTION) return;
 86. File f = chooser.getSelectedFile();
 87. try
 88. {
 89. if (builder == null)
 90. {
 91. DocumentBuilderFactory factory
 92. = DocumentBuilderFactory.newInstance();
 93. builder = factory.newDocumentBuilder();
 94. }
 95.
 96. Document doc = builder.parse(f);
 97. JTree tree = new JTree(new DOMTreeModel(doc));
 98. tree.setCellRenderer(new DOMTreeCellRenderer());
 99.
100. setContentPane(new JScrollPane(tree));
101. validate();
102. }
103. catch (IOException exception)
104. {
105. JOptionPane.showMessageDialog(this, exception);
106. }
107. catch (ParserConfigurationException exception)
108. {
109. JOptionPane.showMessageDialog(this, exception);
110. }
111. catch (SAXException exception)
112. {
113. JOptionPane.showMessageDialog(this, exception);
114. }
115. }
116.
117. private DocumentBuilder builder;
118. private static final int WIDTH = 400;
119. private static final int HEIGHT = 400;
120. }
121.
122. /**
123. This tree model describes the tree structure of a Java

124. object. Children are the objects that are stored in in
125. variables.
126. */
127. class DOMTreeModel implements TreeModel
128. {
129. /**
130. Constructs an empty tree.
131. */
132. public DOMTreeModel(Document aDoc)
133. {
134. doc = aDoc;
135. }
136.
137. public Object getRoot()
138. {
139. return doc.getDocumentElement();
140. }
141.
142. public int getChildCount(Object parent)
143. {
144. Node node = (Node)parent;
145. NodeList list = node.getChildNodes();
146. return list.getLength();
147. }
148.
149. public Object getChild(Object parent, int index)
150. {
151. Node node = (Node)parent;
152. NodeList list = node.getChildNodes();
153. return list.item(index);
154. }
155.
156. public int getIndexOfChild(Object parent, Object child
157. {
158. Node node = (Node)parent;
159. NodeList list = node.getChildNodes();
160. for (int i = 0; i < list.getLength(); i++)
161. if (getChild(node, i) == child)
162. return i;
163. return -1;
164. }
165.
166. public boolean isLeaf(Object node)
167. {

168. return getChildCount(node) == 0;
169. }
170.
171. public void valueForPathChanged(TreePath path,
172. Object newValue) {}
173.
174. public void addTreeModelListener(TreeModelListener l)
175.
176. public void removeTreeModelListener(TreeModelListener
177.
178. private Document doc;
179. }
180.
181. /**
182. This class renders a class name either in plain or ita
183. Abstract classes are italic.
184. */
185. class DOMTreeCellRenderer extends DefaultTreeCellRenderer
186. {
187. public Component getTreeCellRendererComponent(JTree tr
188. Object value, boolean selected, boolean expanded,
189. boolean leaf, int row, boolean hasFocus)
190. {
191. super.getTreeCellRendererComponent(tree, value,
192. selected, expanded, leaf, row, hasFocus);
193. Node node = (Node)value;
194. if (node instanceof Element)
195. setText(elementString((Element)node));
196. else if (node instanceof CharacterData)
197. setText(characterString((CharacterData)node));
198. else
199. setText(node.getClass() + ": " + node.toString()
200. return this;
201. }
202.
203. public static String elementString(Element e)
204. {
205. StringBuffer buffer = new StringBuffer();
206. buffer.append("Element: <");
207. buffer.append(e.getTagName());
208. NamedNodeMap attributes = e.getAttributes();
209. for (int i = 0; i < attributes.getLength(); i++)
210. {
211. buffer.append(' ');

212. Node attributeNode = attributes.item(i);
213. buffer.append(attributeNode.getNodeName());
214. buffer.append('=');
215. buffer.append('"');
216. buffer.append(attributeNode.getNodeValue());
217. buffer.append('"');
218. }
219. buffer.append('>');
220. return buffer.toString();
221. }
222.
223. public static String characterString(CharacterData nod
224. {
225. StringBuffer buffer = new StringBuffer(node.getData
226. for (int i = 0; i < buffer.length(); i++)
227. {
228. if (buffer.charAt(i) == '\r')
229. {
230. buffer.replace(i, i + 1, "\\r");
231. i++;
232. }
233. else if (buffer.charAt(i) == '\n')
234. {
235. buffer.replace(i, i + 1, "\\n");
236. i++;
237. }
238. else if (buffer.charAt(i) == '\t')
239. {
240. buffer.replace(i, i + 1, "\\t");
241. i++;
242. }
243. }
244. if (node instanceof Text)
245. buffer.insert(0, "Text: ");
246. else if (node instanceof Comment)
247. buffer.insert(0, "Comment: ");
248. else if (node instanceof CDATASection)
249. buffer.insert(0, "CDATASection: ");
250.
251. return buffer.toString();
252. }
253.}

javax.xml.parsers.DocumentBuilderFactory

static DocumentBuilderFactory newInstance()

returns an instance of the DocumentBuilderFactory class.

DocumentBuilder newDocumentBuilder()

returns an instance of the DocumentBuilder class.

javax.xml.parsers.DocumentBuilder

Document parse(File f)

Document parse(String url)

Document parse(InputStream in)

parse an XML document from the given file, URL, or input stream and returns the parsed
document.

org.w3c.dom.Document

Element getDocumentElement()

returns the root element of the document.

org.w3c.dom.Element

String getTagName()

returns the name of the element.

String getAttribute(String name)

returns the attribute value of the attribute with the given name, or the empty string if there
is no such attribute.

org.w3c.dom.Node

NodeList getChildNodes()

returns a node list that contains all children of this node.

Node getFirstChild()

Node getLastChild()

get the first or last child node of this node, or null if this node has no children.

Node getNextSibling()

Node getPreviousSibling()

get the next or previous sibling of this node, or null if this node has no siblings.

Node getParentNode()

gets the parent of this node, or null if this node is the document node.

NamedNodeMap getAttributes()

returns a node map that contains Attr nodes that describe all attributes of this node.

String getNodeName()

returns the name of this node. If the node is an Attr node, then the name is the
attribute name.

String getNodeValue()

returns the value of this node. If the node is an Attr node, then the value is the attribute
value.

org.w3c.dom.CharacterData

String getData()

returns the text stored in this node.

org.w3c.dom.NodeList

int getLength()

returns the number of nodes in this list.

Node item(int index)

returns the node with the given index. The index is between 0 and getLength() -
1.

org.w3c.dom.NamedNodeMap

int getLength()

returns the number of nodes in this map.

Node item(int index)

returns the node with the given index. The index is between 0 and getLength() -
1.

Document Type Definitions
In the preceding section, you saw how to traverse the tree structure of a DOM document.
However, if you simply follow that approach, you'll find that you are going to have quite a bit of
tedious programming and error checking. Not only do you have to deal with whitespace
between elements, but you also need to check whether the document contains the nodes that
you expect. For example, suppose you are reading an element:

 <name>Helvetica</name>
 <size>36</size>

You get the first non-whitespace child. Then you need to check that its tag name is "name".
You need to check that it has one child node of type Text. You move on to the next non-
whitespace child and make the same check. What if the author of the document switched the
order of the children, or added another child element? It is tedious to code all the error
checking, and reckless to skip the checks.

Fortunately, one of the major benefits of an XML parser is that it can automatically verify that a
document has the correct structure. Then the parsing becomes much simpler. For example, if
you know that the font fragment has passed validation, then you can simply get the two
grandchildren, cast them as Text nodes and get the text data, without any further checking.

To specify the document structure, you supply a document type definition (DTD). A DTD
contains rules that explain how a document should be formed, by specifying the legal child
elements and attributes for each element. For example, a DTD might contain a rule:

<!ELEMENT font (name,size)>

This rule expresses that a font element must always have two children, which are name and
size elements.

It is not strictly a requirement for an XML document to use a DTD, but most serious uses of
XML involve DTDs.

There are several methods for supplying a DTD. You can include a DTD in an XML document
like this:

<?xml version="1.0"?>
<!DOCTYPE configuration [
 <!ELEMENT configuration . . .>
 more rules
 . . .
]>
<configuration>
 . . .
</configuration>

As you can see, the rules are included inside a DOCTYPE declaration, in a block delimited by
[. . .]. The document type must match the name of the root element, such as
configuration in our example.

Supplying a DTD inside an XML document is somewhat uncommon because DTDs can get

lengthy. It makes more sense to store the DTD externally. The SYSTEM declaration can be
used for that purpose. You specify a URL that contains the DTD, for example:

<!DOCTYPE configuration SYSTEM "config.dtd">

or

<!DOCTYPE configuration SYSTEM "http://myserver.com/config.dtd

CAUTION

Finally, there is a mechanism for identifying "well-known" DTDs that has its origin in SGML.
Here is an example:

<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//
 "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

If an XML processor knows how to locate the DTD with the public identifier, then it need not go
to the URL.

NOTE

If you use a relative URL for the DTD (such as "config.dtd"), then you
need to give the parser a File or URL object, not an InputStream. If
you must parse from an input stream, supply an entity resolver—see the
following note.

If you use a DOM parser, and would like to support a PUBLIC identifier, call
the setEntityResolver method of the DocumentBuilder class to
install an object of a class that implements the EntityResolver interface.
That interface has a single method, resolveEntity. Here is the outline of
a typical implementation:

class MyEntityResolver implements EntityResolver
{
 public InputSource resolveEntity(String publicID,
 String systemID)
 {
 if (publicID.equals(a known ID))
 return new InputSource(DTD data);
 else
 return null; // use default behavior
 }
}

Now that you have seen how the parser locates the DTD, let us consider the various kinds of
rules.

The ELEMENT rule specifies what children an element can have. You specify a regular
expression, made up of the components shown in Table 12-1.

Here are several simple but typical examples. The following rule states that a menu element
contains 0 or more item elements.

<!ELEMENT menu (item)*>

This set of rules states that a font is described by a name followed by a size, each of which
contain text.

<!ELEMENT font (name,size)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT size (#PCDATA)>

The abbreviation PCDATA denotes parsed character data. The data is called "parsed"
because the parser interprets the text string, looking for < characters that denote the start of a
new tag, or & characters that denote the start of an entity.

NOTE

You can construct the input source from an InputStream, a Reader, or a
string.

Table 12-1. Rules for Element Content
Rule Meaning
E* 0 or more occurrences of E
E+ 1 or more occurrences of E
E? 0 or 1 occurrences of E
E1|E2| . . . |En One of E1, E2, … , En

E1, E2, . . . , En E1 followed by E2, … , En
#PCDATA Text
(#PCDATA|E1|E2| . . .
|En)*

0 or more occurrences of text and E1, E2, … ,En in any
order (mixed content)

ANY Any children allowed
EMPTY No children allowed

There is no way to express in a DTD that the text of the size element should
be an integer. A newer specification, called XML Schema Definition (XSD),
lets you specify the legal contents of a document with much greater precision.

An element specification can contain regular expressions that are nested and complex. For
example, here is a rule that describes the makeup of a chapter in this book:

<!ELEMENT chapter (intro,(heading,(para|image|table|note)+)+)

Each chapter starts with an introduction, which is followed by one or more sections consisting
of a heading and one or more paragraphs, images, tables, or notes.

However, there is one common case when you can't define the rules to be as flexible as you
might like. Whenever an element can contain text, then there are only two valid cases. Either
the element contains nothing but text, such as

<!ELEMENT name (#PCDATA)>

Or the element contains any combination of text and tags in any order, such as

<!ELEMENT para (#PCDATA|em|strong|code)*>

It is not legal to specify other types of rules that contain #PCDATA. For example, the following
rule is illegal:

<!ELEMENT captionedImage (image,#PCDATA)>

You have to rewrite such a rule, either by introducing another caption element, or by
allowing any combination of image tags and text.

This restriction simplifies the job of the XML parser when parsing mixed content (a mixture of
tags and text). Because you lose some control when allowing mixed content, it is best to
design DTDs such that all elements contain either other elements or nothing but text.

NOTE

In XSD, the font specification can be expressed like this:

<xsd:complexType name="Font">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="size" type="xsd:integer"/>
 </xsd:sequence>
</xsd:complexType>
<xsd:element name="font" type="Font"/>

You can find more information about the XML Schema specification at
http://www.w3.org/XML/Schema. At this time, there is no support for the XML
Schema technology in the Java SDK.

 Actually, it isn't quite true that you can specify arbitrary regular expressions

You also specify rules to describe the legal attributes of elements. The general syntax is

<!ATTLIST element attribute type default>

Table 12-2 shows the legal attribute types, and Table 12-3 shows the syntax for the defaults.

Here are two typical attribute specifications:

<!ATTLIST font style (plain|bold|italic|bold-italic) plain>
<!ATTLIST size unit CDATA #IMPLIED>

The first specification describes the style attribute of a font element. There are four legal
attribute values, and the default value is plain. The second specification expresses that the

 of elements in a DTD rule. An XML parser may reject certain complex rule
sets that lead to "non-deterministic" parsing. For example, a regular
expression ((x,y)|(x,z)) is non-deterministic. When the parser sees
x, it doesn't know which of the two alternatives to take. This expression can
be rewritten in a deterministic form, as (x,(y|z)). However, there are
some expressions that can't be reformulated, such as ((x,y)*|x?).
The Sun parser gives no warnings when presented with an ambiguous
DTD. It simply picks the first matching alternative when parsing, which
causes it to reject some correct inputs. Of course, the parser is well within
its rights to do so, since the XML standard allows a parser to assume that
the DTD is unambiguous.

In practice, this isn't an issue over which you should lose sleep since most
DTDs are so simple that you never run into ambiguity problems.

Table 12-2. Attribute types
Type Meaning
CDATA Any character string
(A1|A2| . . . |An) One of the string attributes A1 A2 . . . |An
NMTOKEN, NMTOKENS One or more name tokens
ID A unique ID
IDREF, IDREFS One or more references to a unique ID
ENTITY, ENTITIES One or more unparsed entities

Table 12-3. Attribute defaults
Default Meaning
#REQUIRED Attribute is required.
#IMPLIED Attribute is optional.
A Attribute is optional; the parser reports it to be A if it is not specified.
#FIXED A The attribute must either be unspecified or A; in either case, the parser reports

it to be A.

unit attribute of the size element can contain any character data sequence.

NOTE

The handling of a CDATA attribute value is subtly different from the processing of #PCDATA
that you have seen before, and quite unrelated to the <![CDATA[...]]> sections. The
attribute value is first normalized, that is, the parser processes character and entity references
(such as é or <) and replaces whitespace with spaces.

An NMTOKEN (or name token) is similar to CDATA, but most non-alphanumeric characters
and internal whitespace are disallowed, and the parser removes leading and trailing
whitespace. NMTOKENS is a whitespace-separated list of name tokens.

The ID construct is quite useful. An ID is a name token that must be unique in the
document—the parser checks the uniqueness. You will see an application in the next sample
program. An IDREF is a reference to an ID that exists in the same document—which the
parser also checks. IDREFS is a whitespace-separated list of ID references.

An ENTITY attribute value refers to an "unparsed external entity." That is a holdover from
SGML that is rarely used in practice. The annotated XML specification at
http://www.xml.com/axml/axml.html has an example.

A DTD can also define entities, or abbreviations that are replaced during parsing. You can find
a good example for the use of entities in the user interface descriptions for the
Mozilla/Netscape 6 browser. Those descriptions are formatted in XML and contain entity
definitions such as

<!ENTITY back.label "Back">

Elsewhere, text can contain an entity reference, for example:

<menuitem label="&back.label;"/>

The parser replaces the entity reference with the replacement string. To internationalize the
application, only the string in the entity definition needs to be changed. There are other uses of
entities that are more complex and less commonly used. Look at the annotated XML
specification for details.

This concludes the introduction to DTDs. Now that you have seen how to use DTDs, you can

We generally recommend to use elements, not attributes, to describe data.
Following that recommendation, the font style should be a separate
element, such as <style>plain</style>....
However, attributes have an undeniable advantage for enumerated types
since the parser can verify that the values are legal. For example, if the font
style is an attribute, the parser checks that it is one of the four allowed
values, and it supplies a default if no value was given.

configure your parser to take advantage of them. First, tell the document builder factory to turn
on validation.

factory.setValidating(true);

All builders produced by this factory will validate their input against a DTD. The most useful
benefit of validation is to ignore whitespace in element content. For example, consider the XML
fragment

 <name>Helvetica</name>
 <size>36</size>

A non-validating parser reports the whitespace between the font, name, and size
elements because it has no way of knowing if the children of font are

(name,size)
(#PCDATA,name,size)*

or perhaps

ANY

Once the DTD specifies that the children are (name,size), the parser knows that the
whitespace between them is not text. Call

factory.setIgnoringElementContentWhitespace(true);

and the builder will stop reporting the whitespace in text nodes. That means, you can now rely
upon the fact that a font node has two children. You no longer need to program a tedious
loop:

for (int i = 0; i < children.getLength(); i++)
{
 Node child = children.item(i);
 if (child instanceof Element)
 {
 Element childElement = (Element)child;
 if (childElement.getTagName().equals("name")) . . .
 else if (childElement.getTagName().equals("size")) . . .
 }
}

Instead, you can simply access the first and second child:

Element nameElement = (Element)children.item(0);
Element sizeElement = (Element)children.item(1);

That is why DTDs are so useful. You don't overload your program with rule checking code—
the parser has already done that work by the time you get the document.

TIP

NOTE

When the parser reports an error, your application will want to do something about it—log it,
show it to the user, or throw an exception to abandon the parsing.

Therefore, you should install an error handler whenever you use validation. Supply an object
that implements the ErrorHandler interface. That interface has three methods:

void warning(SAXParseException exception)
void error(SAXParseException exception)
void fatalError(SAXParseException exception)

You install the error handler with the setErrorHandler method of the
DocumentBuilder class:

builder.setErrorHandler(handler);

javax.xml.parsers.DocumentBuilder

void setEntityResolver(EntityResolver resolver)

sets the resolver to locate entities that are referenced in the XML documents to be

Many programmers who start using XML are uncomfortable with DTDs and
end up analyzing the DOM tree on the fly. If you need to convince
colleagues of the benefit of using DTDs, show them the two coding
alternatives—it should win them over.

There is a danger in accessing children by their position in the node list.

If the DTD evolves, the list positions may change. Using the XPath
technology, you can access tree elements in a more stable fashion by a
path name, such as /configuration/title/font/name.
However, XPath is not currently a part of the Java SDK.

parsed.

void setErrorHandler(ErrorHandler handler)

sets the handler to report errors and warnings that occur during parsing.

org.xml.sax.EntityResolver

public InputSource resolveEntity(String publicID, String
systemID)

returns an input source that contains the data referenced by the given ID(s), or null to
indicate that this resolver doesn't know how to resolve the particular name. The
publicID parameter may be null if no public ID was supplied.

org.xml.sax.InputSource

InputSource(InputStream in)

InputSource(Reader in)

InputSource(String systemID)

construct an input source from a stream, reader, or system ID (usually a relative or
absolute URL).

org.xml.sax.ErrorHandler

void fatalError(SAXParseException exception)

void error(SAXParseException exception)

void warning(SAXParseException exception)

override these methods to provide handlers for fatal errors, nonfatal errors, and
warnings.

org.xml.sax.SAXParseException

int getLineNumber()

int getColumnNumber()

return the line and column number of the end of the processed input that caused the
exception.

javax.xml.parsers.DocumentBuilderFactory

boolean isValidating()

void setValidating(boolean value)

The "validating" property of the factory. If set to true, the parsers that this factory
generate validate their input.

boolean isIgnoringElementContentWhitespace()

void setIgnoringElementContentWhitespace(boolean value)

The "ignoringElementContentWhitespace" property of the factory. If set to true, the
parsers that this factory generate ignore whitespace text between element nodes that
don't have mixed content (i.e., a mixture of elements and #PCDATA).

A Practical Example

In this section, we will work through a practical example that shows the use of XML in a
realistic setting. Recall from Volume 1 Chapter 9 that the GridBagLayout is the most
useful layout manager for Swing components. However, it is feared not just for its complexity
but also for the programming tedium. It would be much more convenient to put the layout
instructions into a text file instead of producing large amounts of repetitive code. In this section,
you will see how to use XML to describe a grid bag layout, and how to parse the layout files.

A grid bag is made up of rows and columns, very similar to an HTML table. Similar to an HTML

table, we'll describe it as a sequence of rows, each of which contains cells:

<gridbag>
 <row>
 <cell>...</cell>
 <cell>...</cell>
 . . .
 </row>
 <row>
 <cell>...</cell>
 <cell>...</cell>
 . . .
 </row>
 . . .
</gridbag>

The gridbag.dtd specifies these rules:

<!ELEMENT gridbag (row)*>
<!ELEMENT row (cell)*>

Some cells can span multiple rows and columns. In the grid bag layout, that is achieved by
setting the gridwidth and gridheight constraints to values larger than 1. We will use
attributes of the same name:

<cell gridwidth="2" gridheight="2">

Similarly, we will use attributes for the other grid bag constraints fill, anchor, gridx,
gridy, weightx, weighty, ipadx, and ipady. (We don't handle the insets
constraint because its value is not a simple type, but it would be straightforward to support it.)
For example,

<cell fill="HORIZONTAL" anchor="NORTH">

For most of these attributes, we provide the same defaults as the GridBagConstraints
default constructor:

<!ATTLIST cell gridwidth CDATA "1">
<!ATTLIST cell gridheight CDATA "1">
<!ATTLIST cell fill (NONE|BOTH|HORIZONTAL|VERTICAL) "NONE">
<!ATTLIST cell anchor (CENTER|NORTH|NORTHEAST|EAST
 |SOUTHEAST|SOUTH|SOUTHWEST|WEST|NORTHWEST) "CENTER">
<!ATTLIST cell ipadx CDATA "0">
<!ATTLIST cell ipady CDATA "0">

However, we use default weights of 100, which is more useful than the

GridBagConstraints default of 0:

<!ATTLIST cell weightx CDATA "100">
<!ATTLIST cell weighty CDATA "100">

The gridx and gridy values get special treatment because it would be tedious and
somewhat error-prone to specify them by hand. Supplying them is optional:

<!ATTLIST cell gridx CDATA #IMPLIED>
<!ATTLIST cell gridy CDATA #IMPLIED>

If they are not supplied, the program determines them according to the following heuristic: in
column 0, the default gridx is 0. Otherwise, it is the preceding gridx plus the preceding
gridwidth. The default gridy is always the same as the row number. Thus, you don't
have to specify gridx and gridy in the most common cases, where a component spans
multiple rows. But if a component spans multiple columns, then you need to specify gridx
whenever you skip over that component.

NOTE

The program parses the attributes and sets the grid bag constraints. For example, to read the
grid width, the program contains a single statement:

constraints.gridwidth
 = Integer.parseInt(e.getAttribute("gridwidth"));

The program need not worry about a missing attribute since the parser automatically supplies
the default value if no other value was specified in the document.

To test whether a gridx or gridy attribute was specified, we call the getAttribute
method and check if it returns the empty string:

String value = e.getAttribute("gridy");
if (value.length() == 0) // use default
 constraints.gridy = r;
else
 constraints.gridx = Integer.parseInt(value);

Grid bag experts may wonder why we don't use the RELATIVE and
REMAINDER mechanism to let the grid bag layout automatically determine
the gridx and gridy positions. We tried, but no amount of fussing would
produce the layout of the font dialog example of Volume 1. Reading through
the GridBagLayout source code, it is apparent that the algorithm just
won't do the heavy lifting that would be required to reliably find the
appropriate positions.

A cell can contain any component, but we found it convenient to allow the user to specify more
general Java beans. That lets us specify non-component types such as borders. A bean is
defined by a class name and zero or more properties:

<!ELEMENT bean (class, property*)>
<!ELEMENT class (#PCDATA)>

As always when using beans, the class must have a default constructor.

A property contains a name and a value.

<!ELEMENT property (name, value)>
<!ELEMENT name (#PCDATA)>

The value is an integer, Boolean, string, or another bean:

<!ELEMENT value (int|string|boolean|bean)>
<!ELEMENT int (#PCDATA)>
<!ELEMENT string (#PCDATA)>
<!ELEMENT boolean (#PCDATA)>

Here is a typical example, a JLabel whose text property is set to the string "Face: ".

<bean>
 <class>javax.swing.JLabel</class>
 <property>
 <name>text</name>
 <value><string>Face: </string></value>
 </property>
</bean>

It seems like a bother to surround a string with the <string> tag. Why not just use
#PCDATA for strings and leave the tags for the other types? Then we would need to use
mixed content and weaken the rule for the value element to

<!ELEMENT value (#PCDATA|int|boolean|bean)*>

However, that rule would allow an arbitrary mixture of text and tags.

The program sets a property by using the BeanInfo class. The BeanInfo enumerates the
property descriptors of the bean. We search for the property with the matching name, and then
call its setter method with the supplied value.

When our program reads in a user interface description, it has enough information to construct
and arrange the user interface components. But, of course, the interface is not alive—no event
listeners have been attached. To add event listeners, it is necessary to locate the components.
For that reason, we support an optional attribute of type ID for each bean:

<!ATTLIST bean id ID #IMPLIED>

For example, here is a combo box with an ID:

<bean id="face">
 <class>javax.swing.JComboBox</class>
</bean>

Recall that the parser checks that IDs are unique.

A programmer can attach event handlers like this:

gridbag = new GridBagPane("fontdialog.xml");
setContentPane(gridbag);
JComboBox face = (JComboBox)gridbag.get("face");
face.addListener(listener);

NOTE

The program in Example 12-2 shows how to use the GridBagPane class to do all the boring
work of setting up the grid bag layout. The layout is defined in Example 12-3. Figure 12-4
shows the result. The program only initializes the combo boxes (which are too complex for the
bean property setting mechanism that the GridBagPane supports), and attaches event
listeners. The GridBagPane class in Example 12-4 parses the XML file, constructs the
components, and lays them out. Example 12-5 shows the DTD.

Figure 12-4. A font dialog defined by an XML layout

In this example, we only use XML to describe the component layout and
leave it to programmers to attach the event handlers in the Java code. You
could go a step further and add the code to the XML description. The most
promising approach is to use a scripting language such as BeanShell
(http://www.beanshell.org) for the code.

This example is a typical use of XML. The XML format is robust enough to express complex
relationships. The XML parser adds real value by taking over the routine job of validity
checking and supplying defaults. That reduces the effort for both the utility provider—the
implementor of the GridBagPane class—and the user of this utility—the programmer who
can now express user interface layouts in a file rather than lengthy code. Of course, authoring
the XML file is still a bit tedious, even with an XML editor. The next step would be to provide a
drag-and-drop authoring tool that automatically emits the XML code. With such an
environment, the Java user interface programmer can enjoy the same productivity and
convenience as a Windows or Mac programmer, while retaining the benefits of layout
management.

NOTE

Example 12-2 GridBagTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import javax.swing.*;
 4.
 5. /**

The JSR-057 working group is proposing a more ambitious XML-based
standard to describe and archive Java beans. See
http://java.sun.com/products/jfc/tsc/articles/persistence/index.html for more
information.

 6. This program shows how to use an XML file to describe
 7. a gridbag layout
 8. */
 9. public class GridBagTest
10. {
11. public static void main(String[] args)
12. {
13. JFrame frame = new FontFrame();
14. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE)
15. frame.show();
16. }
17. }
18.
19. /**
20. This frame contains a font selection dialog that
21. is described by an XML file.
22. */
23. class FontFrame extends JFrame
24. {
25. public FontFrame()
26. {
27. setSize(WIDTH, HEIGHT);
28. setTitle("GridBagTest");
29.
30. gridbag = new GridBagPane("fontdialog.xml");
31. setContentPane(gridbag);
32.
33. face = (JComboBox)gridbag.get("face");
34. size = (JComboBox)gridbag.get("size");
35. bold = (JCheckBox)gridbag.get("bold");
36. italic = (JCheckBox)gridbag.get("italic");
37.
38. face.setModel(new DefaultComboBoxModel(new Object[]
39. {
40. "Serif", "SansSerif", "Monospaced",
41. "Dialog", "DialogInput"
42. }));
43.
44. size.setModel(new DefaultComboBoxModel(new Object[]
45. {
46. "8", "10", "12", "15", "18", "24", "36", "48"
47. }));
48.
49. ActionListener listener = new

50. ActionListener()
51. {
52. public void actionPerformed(ActionEvent event)
53. {
54. setSample();
55. }
56. };
57.
58. face.addActionListener(listener);
59. size.addActionListener(listener);
60. bold.addActionListener(listener);
61. italic.addActionListener(listener);
62.
63. setSample();
64. }
65.
66. /**
67. This method sets the text sample to the selected fon
68. */
69. public void setSample()
70. {
71. String fontFace = (String)face.getSelectedItem();
72. int fontSize = Integer.parseInt(
73. (String)size.getSelectedItem());
74. JTextArea sample = (JTextArea)gridbag.get("sample");
75. int fontStyle
76. = (bold.isSelected() ? Font.BOLD : 0)
77. + (italic.isSelected() ? Font.ITALIC : 0);
78.
79. sample.setFont(new Font(fontFace, fontStyle, fontSiz
80. sample.repaint();
81. }
82.
83. private GridBagPane gridbag;
84. private JComboBox face;
85. private JComboBox size;
86. private JCheckBox bold;
87. private JCheckBox italic;
88. private static final int WIDTH = 400;
89. private static final int HEIGHT = 400;
90. }

Example 12-3 fontdialog.xml

 1. <?xml version="1.0"?>
 2. <!DOCTYPE gridbag SYSTEM "gridbag.dtd">
 3. <gridbag>
 4. <row>
 5. <cell anchor="EAST" weightx="0" weighty="0">
 6. <bean>
 7. <class>javax.swing.JLabel</class>
 8. <property>
 9. <name>text</name>
10. <value><string>Face: </string></value>
11. </property>
12. </bean>
13. </cell>
14. <cell fill="HORIZONTAL" weighty="0">
15. <bean id="face">
16. <class>javax.swing.JComboBox</class>
17. </bean>
18. </cell>
19. <cell gridheight="4" fill="BOTH">
20. <bean id="sample">
21. <class>javax.swing.JTextArea</class>
22. <property>
23. <name>text</name>
24. <value><string>The quick brown fox jumps over the
 dog</string></value>
25. </property>
26. <property>
27. <name>editable</name>
28. <value><boolean>false</boolean></value>
29. </property>
30. <property>
31. <name>lineWrap</name>
32. <value><boolean>true</boolean></value>
33. </property>
34. <property>
35. <name>border</name>
36. <value>
37. <bean>
38. <class>javax.swing.border.EtchedBorder</class
39. </bean>
40. </value>
41. </property>
42. </bean>
43. </cell>

44. </row>
45. <row>
46. <cell anchor="EAST" weightx="0" weighty="0">
47. <bean>
48. <class>javax.swing.JLabel</class>
49. <property>
50. <name>text</name>
51. <value><string>Size: </string></value>
52. </property>
53. </bean>
54. </cell>
55. <cell fill="HORIZONTAL" weighty="0">
56. <bean id="size">
57. <class>javax.swing.JComboBox</class>
58. </bean>
59. </cell>
60. </row>
61. <row>
62. <cell gridwidth="2" weightx="0" fill="NONE">
63. <bean id="bold">
64. <class>javax.swing.JCheckBox</class>
65. <property>
66. <name>text</name>
67. <value><string>Bold</string></value>
68. </property>
69. </bean>
70. </cell>
71. </row>
72. <row>
73. <cell gridwidth="2" weightx="0" fill="NONE">
74. <bean id="italic">
75. <class>javax.swing.JCheckBox</class>
76. <property>
77. <name>text</name>
78. <value><string>Italic</string></value>
79. </property>
80. </bean>
81. </cell>
82. </row>
83. </gridbag>

Example 12-4 GridBagPane.java

 1. import java.awt.*;

 2. import java.beans.*;
 3. import java.io.*;
 4. import java.lang.reflect.*;
 5. import javax.swing.*;
 6. import javax.xml.parsers.*;
 7. import org.w3c.dom.*;
 8. import org.xml.sax.*;
 9.
 10. /**
 11. This panel uses an XML file to describe its
 12. components and their grid bag layout positions.
 13. */
 14. public class GridBagPane extends JPanel
 15. {
 16. /**
 17. Constructs a grid bag pane.
 18. @param filename the name of the XML file that
 19. describes the pane's components and their positions
 20. */
 21. public GridBagPane(String filename)
 22. {
 23. setLayout(new GridBagLayout());
 24. constraints = new GridBagConstraints();
 25.
 26. try
 27. {
 28. DocumentBuilderFactory factory
 29. = DocumentBuilderFactory.newInstance();
 30. factory.setValidating(true);
 31. factory.setIgnoringElementContentWhitespace(true
 32. DocumentBuilder builder = factory.newDocumentBui
 33. Document doc = builder.parse(new File(filename))
 34. parseGridbag(doc.getDocumentElement());
 35. }
 36. catch (ParserConfigurationException exception)
 37. {
 38. exception.printStackTrace();
 39. }
 40. catch (SAXException exception)
 41. {
 42. exception.printStackTrace();
 43. }
 44. catch (IOException exception)
 45. {

 46. exception.printStackTrace();
 47. }
 48. }
 49.
 50. /**
 51. Gets a component with a given name
 52. @param name a component name
 53. @return the component with the given name, or null
 54. no component in this grid bag pane has the given na
 55. */
 56. public Component get(String name)
 57. {
 58. Component[] components = getComponents();
 59. for (int i = 0; i < components.length; i++)
 60. {
 61. if (components[i].getName().equals(name))
 62. return components[i];
 63. }
 64. return null;
 65. }
 66.
 67. /**
 68. Parses a gridbag element.
 69. @param e a gridbag element
 70. */
 71. private void parseGridbag(Element e)
 72. {
 73. NodeList rows = e.getChildNodes();
 74. for (int i = 0; i < rows.getLength(); i++)
 75. {
 76. Element row = (Element)rows.item(i);
 77. NodeList cells = row.getChildNodes();
 78. for (int j = 0; j < cells.getLength(); j++)
 79. {
 80. Element cell = (Element)cells.item(j);
 81. parseCell(cell, i, j);
 82. }
 83. }
 84. }
 85.
 86. /**
 87. Parses a cell element.
 88. @param e a cell element
 89. @param r the row of the cell

 90. @param c the column of the cell
 91. */
 92. private void parseCell(Element e, int r, int c)
 93. {
 94. // get attributes
 95.
 96. String value = e.getAttribute("gridx");
 97. if (value.length() == 0) // use default
 98. {
 99. if (c == 0) constraints.gridx = 0;
100. else constraints.gridx += constraints.gridwidth;
101. }
102. else
103. constraints.gridx = Integer.parseInt(value);
104.
105. value = e.getAttribute("gridy");
106. if (value.length() == 0) // use default
107. constraints.gridy = r;
108. else
109. constraints.gridx = Integer.parseInt(value);
110.
111. constraints.gridwidth
112. = Integer.parseInt(e.getAttribute("gridwidth"));
113. constraints.gridheight
114. = Integer.parseInt(e.getAttribute("gridheight"))
115. constraints.weightx
116. = Integer.parseInt(e.getAttribute("weightx"));
117. constraints.weighty
118. = Integer.parseInt(e.getAttribute("weighty"));
119. constraints.ipadx
120. = Integer.parseInt(e.getAttribute("ipadx"));
121. constraints.ipady
122. = Integer.parseInt(e.getAttribute("ipady"));
123.
124. // use reflection to get integer values of static f
125. Class cl = GridBagConstraints.class;
126.
127. try
128. {
129. String name = e.getAttribute("fill");
130. Field f = cl.getField(name);
131. constraints.fill = f.getInt(cl);
132. }
133. catch(Exception ex)

134. {
135. }
136.
137. try
138. {
139. String name = e.getAttribute("anchor");
140. Field f = cl.getField(name);
141. constraints.anchor = f.getInt(cl);
142. }
143. catch(Exception ex)
144. {
145. }
146.
147. Component comp = (Component)parseBean(
148. (Element)e.getFirstChild());
149. add(comp, constraints);
150. }
151.
152. /**
153. Parses a bean element.
154. @param e a bean element
155. */
156. private Object parseBean(Element e)
157. {
158. try
159. {
160. NodeList children = e.getChildNodes();
161. Element classElement = (Element)children.item(0)
162. String className
163. = ((Text)classElement.getFirstChild()).getDat
164.
165. Class cl = Class.forName(className);
166.
167. Object obj = cl.newInstance();
168.
169. if (obj instanceof Component)
170. ((Component)obj).setName(e.getAttribute("id")
171.
172. for (int i = 1; i < children.getLength(); i++)
173. {
174. Node propertyElement = children.item(i);
175. Element nameElement
176. = (Element)propertyElement.getFirstChild();
177. String propertyName

178. = ((Text)nameElement.getFirstChild()).getData
179.
180. Element valueElement
181. = (Element)propertyElement.getLastChild();
182. Object value = parseValue(valueElement);
183. BeanInfo beanInfo = Introspector.getBeanInfo(cl)
184. PropertyDescriptor[] descriptors
185. = beanInfo.getPropertyDescriptors();
186. boolean done = false;
187. for (int j = 0; !done && j < descriptors.length;
188. {
189. if (descriptors[j].getName().equals(propertyN
190. {
191. descriptors[j].getWriteMethod().invoke(obj
192. new Object[] { value });
193. done = true;
194. }
195. }
196.
197. }
198. return obj;
199. }
200. catch (Exception ex)
201. {
202. // the reflection methods can throw various exceptio
203. ex.printStackTrace();
204. return null;
205. }
206. }
207.
208. /**
209. Parses a value element.
210. @param e a value element
211. */
212. private Object parseValue(Element e)
213. {
214. Element child = (Element)e.getFirstChild();
215. if (child.getTagName().equals("bean"))
216. return parseBean(child);
217. String text = ((Text)child.getFirstChild()).getData()
218. if (child.getTagName().equals("int"))
219. return new Integer(text);
220. else if (child.getTagName().equals("boolean"))
221. return new Boolean(text);

222. else if (child.getTagName().equals("string"))
223. return text;
224. else
225. return null;
226. }
227.
228. private GridBagConstraints constraints;
229. }

Example 12-5 gridbag.dtd

 1. <!ELEMENT gridbag (row)*>
 2. <!ELEMENT row (cell)*>
 3. <!ELEMENT cell (bean)>
 4. <!ATTLIST cell gridx CDATA #IMPLIED>
 5. <!ATTLIST cell gridy CDATA #IMPLIED>
 6. <!ATTLIST cell gridwidth CDATA "1">
 7. <!ATTLIST cell gridheight CDATA "1">
 8. <!ATTLIST cell weightx CDATA "100">
 9. <!ATTLIST cell weighty CDATA "100">
10. <!ATTLIST cell fill (NONE|BOTH|HORIZONTAL|VERTICAL) "NONE"
11. <!ATTLIST cell anchor (CENTER|NORTH|NORTHEAST|EAST|SOUTH
 EAST|SOUTH|SOUTHWEST|WEST|NORTHWEST) "CENTER">
12. <!ATTLIST cell ipadx CDATA "0">
13. <!ATTLIST cell ipady CDATA "0">
14.
15. <!ELEMENT bean (class, property*)>
16. <!ATTLIST bean id ID #IMPLIED>
17. <!ELEMENT class (#PCDATA)>
18. <!ELEMENT property (name, value)>
19. <!ELEMENT name (#PCDATA)>
20. <!ELEMENT value (int|string|boolean|bean)>
21. <!ELEMENT int (#PCDATA)>
22. <!ELEMENT string (#PCDATA)>
23. <!ELEMENT boolean (#PCDATA)>

Namespaces
Java uses packages to avoid name clashes. Programmers can use the same name for
different classes as long as they aren't in the same package. XML has a similar namespace
mechanism for element and attribute names.

A namespace is identified by a Uniform Resource Identifier (URI), such as

http://www.w3.org/2001/XMLSchema

uuid:1c759aed-b748-475c-ab68-10679700c4f2
urn:com:books-r-us

The HTTP URL form is the most common. Note that the URL is just used as an identifier
string, not to locate a document. For example, the namespace identifiers

http://www.horstmann.com/corejava

http://www.horstmann.com/corejava/index.html

denote different namespaces, even though a web server would serve the same document for
both URLs.

There doesn't have to be any document at a namespace URL—the XML parser doesn't
attempt to find anything at that location. However, as a help to programmers who encounter a
possibly unfamiliar namespace, it is customary to place a document explaining the purpose of
the namespace at the URL location. For example, if you point your browser to the namespace
URL for the XML Schema namespace (http://www.w3.org/2001/XMLSchema), you will find a
document describing the XML Schema standard.

Why use HTTP URLs for namespace identifiers? It is easy to ensure that they are unique. If
you choose a real URL, then the host part's uniqueness is guaranteed by the domain name
system. Your organization can then arrange for the uniqueness of the remainder of the URL.
This is the same rationale that underlies the use of reversed domain names in Java package
names.

Of course, while you want long namespace identifiers for uniqueness, you don't want to deal
with long identifiers any more than you have to. In Java, you use the import mechanism to
specify the long names of packages, and then use just the short class names. In XML, there is
a similar mechanism, like this:

<element xmlns="namespace URI">
 children
</element>

The element and its children are now part of the given namespace.

A child can provide its own namespace, for example:

 <element xmlns="namespace URI">
 <child xmlns="namespace URI #2">
 grandchildren
 </child>
 more children
</element>

Then the first child and the grandchildren are part of the second namespace.

That simple mechanism works well if you only need a single namespace, or if the namespaces
are naturally nested. Otherwise, you will want to use a second mechanism that has no analog
in Java. You can have an alias for a namespace—a short identifier that you choose for a
particular document. Here is a typical example:

<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="html"/>
 . . .
</xsl:stylesheet>

The attribute

xmlns:alias="namespace URI"

defines a namespace and an alias. In our example, the alias is the string xsl. Thus,
xsl:stylesheet really means "stylesheet in the namespace
http://www.w3.org/1999/XSL/Transform".

NOTE

You can control how the parser deals with namespaces. By default, the Sun DOM parser is not
"namespace aware."

To turn on namespace handling, call the setNamespaceAware method of the
DocumentBuilderFactory:

factory.setNamespaceAware(true);

Then all builders that the factory produces support namespaces. Each node has three
properties:

Only child elements inherit the namespace of their parent. Attributes without an
explicit alias prefix are never part of a namespace. Consider this contrived exampl

<configuration xmlns="http://www.horstmann.com/corejav
 xmlns:si="http://www.bipm.fr/enus/3_SI/si.html"
>
 <size value="210" si:unit="mm"/>
 . . .
</configuration>

The elements configuration and size are part of the namespace with URI
http://www.horstmann.com/corejava. The attribute si:unit is part of the
namespace with URI http://www.bipm.fr/enus/3_SI/si.html. But the attribute value
not part of any namespace.

The qualified name, with an alias prefix, returned by getNodeName, getTagName,
and so on;

The local name, without a prefix or a namespace, returned by the getLocalName
method;

The namespace URI, returned by the getNamespaceURI method.

Here is an example. Suppose the parser sees the following element:

<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

Then it reports the following:

Qualified name = xsl:stylesheet

Local name = stylesheet

Namespace URI = http://www.w3.org/1999/XSL/Transform

NOTE

org.w3c.dom.Node

String getLocalName()

returns the local name (without alias prefix), or null if the parser is not namespace
aware.

String getNameSpaceURI()

returns the namespace URI, or null if the node is not part of a namespace, or if the
parser is not namespace aware.

javax.xml.parsers.DocumentBuilderFactory

If namespace awareness is turned off, then getLocalName and
getNamespaceURI return null.

boolean isNamespaceAware()

void setNamespaceAware(boolean value)

The "namespaceAware" property of the factory. If set to true, the parsers that this
factory generates are namespace aware.

Using the SAX Parser
The DOM parser reads an XML document in its entirety into a tree data structure. For most
practical applications, DOM works fine. But it can be inefficient if the document is large and if
your processing algorithm is simple enough that you can analyze nodes "on the fly," without
having to see all of the tree structure. In these cases, you want to use the SAX parser instead.
The SAX parser reports events as it parses the components of the XML input. But it does not
store the document in any way—it is up to the event handlers whether they want to build a
data structure. In fact, the DOM parser is built on top of the SAX parser. It builds the DOM tree
as it receives the parser events.

Whenever you use a SAX parser, you need a handler that defines the event actions for the
various parse events. The ContentHandler interface defines several callback methods
that the parser executes as it parses the document. Here are the most important ones:

startElement/endElement are called when a start tag or end tag is encountered.

characters is called whenever character data is encountered.

startDocument/endDocument are called once each, at the start and the end of
the document.

For example, when parsing the fragment

 <name>Helvetica</name>
 <size units="pt">36</size>

the parser makes sure the following calls are generated:

1. startElement, element name: font

2. startElement, element name: name

3. characters, content: Helvetica

4. endElement, element name: name

5. startElement, element name: size, attributes: units="pt"

6. characters, content: 36

7. endElement, element name: size

8. endElement, element name: font

Your handler needs to override these methods and have them carry out whatever action you
want to carry out as you parse the file. The program at the end of this section prints out all links
 in an HTML file. It simply overrides the startElement method of the
handler to check for links with name a and an attribute with name href. This is potentially
useful for implementing a "web crawler," a program that reaches more and more web pages by
following links.

NOTE

The sample program is a good example for the use of SAX. We don't care at all in which
context the a elements occur, and there is no need to store a tree structure.

Here is how you get a SAX parser:

SAXParserFactory factory = SAXParserFactory.newInstance();
SAXParser parser = factory.newSAXParser();

You can now process a document:

parser.parse(source, handler);

Here, source can be a file, URL string, or input stream. The handler belongs to a
subclass of DefaultHandler. The DefaultHandler class defines do-nothing methods
for the four interfaces:

Unfortunately, most HTML pages deviate so much from proper XML that
the example program will not be able to parse them. As already mentioned,
the World Wide Web Consortium (W3C) recommends that web designers
use XHTML, an HTML dialect that can be displayed by current web
browsers and that is also proper XML. See http://www.w3.org/TR/xhtml1/
for more information on XHTML. Since the W3C "eats its own dog food,"
their web pages are written in XHTML. You can use those pages to test the
example program. For example, if you run

java SAXTest http://www.w3c.org/MarkUp

then you will see a list of the URLs of all links on that page.

ContentHandler
DTDHandler
EntityResolver
ErrorHandler

The example program defines a handler that overrides the startElement method of the
ContentHandler interface to watch out for a elements with an href attribute:

DefaultHandler handler = new
 DefaultHandler()
 {
 public void startElement(String namespaceURI,
 String lname, String qname, Attributes attrs)
 throws SAXException
 {
 if (lname.equalsIgnoreCase("a") && attrs != null)
 {
 for (int i = 0; i < attrs.getLength(); i++)
 {
 String aname = attrs.getLocalName(i);
 if (aname.equalsIgnoreCase("href"))
 System.out.println(attrs.getValue(i));
 }
 }
 }
 };

The startElement method has three parameters that describe the element name. The
qname parameter reports the qualified name of the form alias:localname. If
namespace processing is turned on, then the namespaceURI and lname parameters
describe the namespace and local (unqualified) name.

As with the DOM parser, namespace processing is turned off by default. You activate
namespace processing by calling the setNamespaceAware method of the factory class:

SAXParserFactory factory = SAXParserFactory.newInstance();
factory.setNamespaceAware(true);
SAXParser saxParser = factory.newSAXParser();

Example 12-6 contains the code for the web crawler program. Later in this chapter, you will
see another interesting use of SAX. An easy way of turning a non-XML data source into XML
is to report the SAX events that an XML parser would report. See the section on XSL
transformations for details.

Example 12-6 SAXTest.java

 1. import java.io.*;
 2. import java.net.*;
 3. import javax.xml.parsers.*;
 4. import org.xml.sax.*;
 5. import org.xml.sax.helpers.*;
 6.
 7. /**
 8. This program demonstrates how to use a SAX parser. The
 9. program prints all hyperlinks links of an XHTML web pag
10. Usage: java SAXTest url
11. */
12. public class SAXTest
13. {
14. public static void main(String[] args) throws Exception
15. {
16. String url;
17. if (args.length == 0)
18. {
19. url = "http://www.w3c.org";
20. System.out.println("Using " + url);
21. }
22. else
23. url = args[0];
24.
25. DefaultHandler handler = new
26. DefaultHandler()
27. {
28. public void startElement(String namespaceURI,
29. String lname, String qname, Attributes attr
30. {
31. if (lname.equalsIgnoreCase("a") && attrs !=
32. {
33. for (int i = 0; i < attrs.getLength(); i
34. {
35. String aname = attrs.getLocalName(i);
36. if (aname.equalsIgnoreCase("href"))
37. System.out.println(attrs.getValue(
38. }
39. }
40. }
41. };
42.
43. SAXParserFactory factory = SAXParserFactory.newInsta
44. factory.setNamespaceAware(true);

45. SAXParser saxParser = factory.newSAXParser();
46. InputStream in = new URL(url).openStream();
47. saxParser.parse(in, handler);
48. }
49.}

javax.xml.parsers.SAXParserFactory

static SAXParserFactory newInstance()

returns an instance of the SAXParserFactory class.

SAXParser newSAXParser()

returns an instance of the SAXParser class.

boolean isNamespaceAware()

void setNamespaceAware(boolean value)

The "namespaceAware" property of the factory. If set to true, the parsers that this
factory generates are namespace aware.

boolean isValidating()

void setValidating(boolean value)

The "validating" property of the factory. If set to true, the parsers that this factory
generates validate their input.

javax.xml.parsers.SAXParser

void parse(File f, DefaultHandler handler)

void parse(String url, DefaultHandler handler)

void parse(InputStream in, DefaultHandler handler)

parse an XML document from the given file, URL, or input stream and reports parse
events to the given handler.

org.xml.sax.ContentHandler

void startDocument()

void endDocument()

These methods are called at the start and the end of the document.

void startElement(String uri, String lname, String qname,
Attributes attr)

void endElement(String uri, String lname, String qname)

These methods are called at the start and the end of an element.

void characters(char[] data, int start, int length)

This method is called when the parser reports character data.

org.xml.sax.Attributes

Parameters: uri the URI of the namespace (if the parser is namespace aware)
 lname the local name without alias prefix (if the parser is namespace

aware)
 qname the element name (if the parser is not namespace aware), or the

qualified name with alias prefix (if the parser reports qualified
names in addition to local names)

Parameters: data an array of character data
 start the index of the first character in the data array that is a part of

the reported characters
 length the length of the reported character string

int getLength()

returns the number of attributes stored in this attribute collection.

String getLocalName(int index)

returns the local name (without alias prefix) of the attribute with the given index, or the
empty string if the parser is not namespace aware.

String getURI(int index)

returns the namespace URI of the attribute with the given index, or the empty string if the
node is not part of a namespace, or if the parser is not namespace aware.

String getQName(int index)

returns the qualified name (with alias prefix) of the attribute with the given index, or the
empty string if the qualified name is not reported by the parser.

String getValue(int index)

String getValue(String qname)

String getValue(String uri, String lname)

return the attribute value from a given index, qualified name, or namespace URI + local
name. Returns null if the value doesn't exist.

Generating XML Documents
You now know how to write Java programs that read XML. Let us now turn to the opposite
process, producing XML output. Of course, you could write an XML file simply by making a
sequence of print calls, printing the elements, attributes, and text content. But that would
not be a good idea. The code is rather tedious, and you can easily make mistakes if you don't
pay attention to special symbols (such as " or <) in the attribute values and text content.

A better approach is to build up a DOM tree with the contents of the document, and then write
out the tree contents. To build a DOM tree, you start out with an empty document. You can get
an empty document by calling the newDocument method of the DocumentBuilder
class.

Document doc = builder.newDocument();

Use the createElement method of the Document class to construct the elements of your
document.

Element rootElement = doc.createElement(rootName);

Element childElement = doc.createElement(childName);

Use the createTextNode method to construct text nodes:

Text textNode = doc.createTextNode(textContents);

Add the root element to the document, and add the child nodes to their parents:

doc.appendChild(rootElement);
rootElement.appendChild(childElement);
childElement.appendChild(textNode);

As you build up the DOM tree, you may also need to set element attributes. Simply call the
setAttribute method of the Element class:

rootElement.setAttribute(name, value);

Somewhat curiously, the DOM API currently has no support for writing a DOM tree to an
output stream. To overcome this limitation, we will use the XML Style Sheet Transformations
(XSLT) API. We will apply the "do nothing" transformation to the document and capture its
output. To include a DOCTYPE node in the output, you also need to set the SYSTEM and
PUBLIC identifiers as output properties.

// construct the "do nothing" transformation

Transformer t = TransformerFactory
 .newInstance().newTransformer();
// set output properties to get a DOCTYPE node
t.setOutputProperty("doctype-system", systemIdentifier);
t.setOutputProperty("doctype-public", publicIdentifier);
// apply the "do nothing" transformation
// and send the output to a file
t.transform(new DOMSource(doc),
 new StreamResult(new FileOutputStream(file)));

For more information about XSLT, turn to the next section. Right now, consider this code a
"magic incantation" to produce XML output.

NOTE

Example 12-7 is a typical program that produces XML output. The program draws a modernist
painting—a random set of colored rectangles (see Figure 12-5). To save a masterpiece, we

The resulting XML file contains no whitespace (that is, no line breaks or
indentations). If you like whitespace, set the "indent" output property to
"yes".

use the Scalable Vector Graphics (SVG) format. SVG is an XML format to describe complex
graphics in a device-independent fashion. You can find more information about SVG at
http://www.w3c.org/Graphics/SVG. To view SVG files, download the Apache Batik viewer
(http://xml.apache.org/batik) or the Adobe browser plug-in
(http://www.adobe.com/svg/main.html). Figure 12-6 shows the Apache Batik viewer.

Figure 12-5. Generating Modern Art

Figure 12-6. The Apache Batik SVG Viewer

We don't want to go into details about SVG. If you are interested in SVG, we suggest you start
with the tutorial on the Adobe site. For our purposes, we just need to know how to express a
set of colored rectangles. Here is a sample:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 20000802//EN"
"http://www.w3.org/TR/2000/CR-SVG-20000802/DTD/svg-20000802.dt
<svg width="300" height="150">
<rect x="231" y="61" width="9" height="12" fill="#6e4a13"/>

<rect x="107" y="106" width="56" height="5" fill="#c406be"/>
. . .
</svg>

As you can see, each rectangle is described as a rect node. The position, width, height, and
fill color are attributes. The fill color is an RGB value in hexadecimal.

NOTE

Here is the source code for the program. You can use the same technique whenever you need
to generate XML output.

Example 12-7 XMLWriteTest.java

 1.import java.awt.*;
 2.import java.awt.geom.*;
 3.import java.io.*;
 4.import java.util.*;
 5.import java.awt.event.*;
 6.import javax.swing.*;
 7.import javax.xml.parsers.*;
 8.import javax.xml.transform.*;
 9.import javax.xml.transform.dom.*;
 10.import javax.xml.transform.stream.*;
 11.import org.w3c.dom.*;
 12.
 13.
 14. /**
 15. This program shows how to write an XML file. It saves
 16. a file describing a modern drawing in SVG format.
 17. */
 18. public class XMLWriteTest
 19. {
 20. public static void main(String[] args)
 21. {

As you can see, SVG uses attributes heavily. In fact, some attributes are
quite complex. For example, here is a path element:

<path d="M 100 100 L 300 100 L 200 300 z">

The M denotes a "moveto" command, L is "lineto," and z is "closepath" (!).
Apparently, the designers of this data format didn't have much confidence
in using XML for structured data. In your own XML formats, you may want
to use elements instead of complex attributes.

 22. XMLWriteFrame frame = new XMLWriteFrame();
 23. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE
 24. frame.show();
 25. }
 26. }
 27.
 28. /**
 29. A frame with a panel for showing a modern drawing.
 30. */
 31. class XMLWriteFrame extends JFrame
 32. {
 33. public XMLWriteFrame()
 34. {
 35. setTitle("XMLWriteTest");
 36. setSize(WIDTH, HEIGHT);
 37.
 38. // add panel to frame
 39.
 40. panel = new RectanglePanel();
 41. Container contentPane = getContentPane();
 42. contentPane.add(panel);
 43.
 44. // set up menu bar
 45.
 46. JMenuBar menuBar = new JMenuBar();
 47. setJMenuBar(menuBar);
 48.
 49. JMenu menu = new JMenu("File");
 50. menuBar.add(menu);
 51.
 52. JMenuItem newItem = new JMenuItem("New");
 53. menu.add(newItem);
 54. newItem.addActionListener(new
 55. ActionListener()
 56. {
 57. public void actionPerformed(ActionEvent event
 58. {
 59. panel.newDrawing();
 60. }
 61. });
 62.
 63. JMenuItem saveItem = new JMenuItem("Save");
 64. menu.add(saveItem);
 65. saveItem.addActionListener(new

 66. ActionListener()
 67. {
 68. public void actionPerformed(ActionEvent event
 69. {
 70. try
 71. {
 72. saveDocument();
 73. }
 74. catch (TransformerException exception)
 75. {
 76. JOptionPane.showMessageDialog(
 77. XMLWriteFrame.this, exception.toStri
 78. }
 79. catch (IOException exception)
 80. {
 81. JOptionPane.showMessageDialog(
 82. XMLWriteFrame.this, exception.toStri
 83. }
 84. }
 85. });
 86.
 87. JMenuItem exitItem = new JMenuItem("Exit");
 88. menu.add(exitItem);
 89. exitItem.addActionListener(new
 90. ActionListener()
 91. {
 92. public void actionPerformed(ActionEvent event
 93. {
 94. System.exit(0);
 95. }
 96. });
 97.
 98. }
 99.
100. /**
101. Saves the drawing in SVG format.
102. */
103. public void saveDocument()
104. throws TransformerException, IOException
105. {
106. JFileChooser chooser = new JFileChooser();
107. if (chooser.showSaveDialog(this) != JFileChooser.APP
108. return;
109. File f = chooser.getSelectedFile();

110. Document doc = panel.buildDocument();
111. Transformer t = TransformerFactory
112. .newInstance().newTransformer();
113.
114. t.setOutputProperty("doctype-system",
115. "http://www.w3.org/TR/2000/CR-SVG-20000802/DTD/svg-200008
116.);
117. t.setOutputProperty("doctype-public",
118. "-//W3C//DTD SVG 20000802//EN");
119.
120. t.transform(new DOMSource(doc),
121. new StreamResult(new FileOutputStream(f)));
122. }
123.
124. public static final int WIDTH = 300;
125. public static final int HEIGHT = 200;
126.
127. private RectanglePanel panel;
128.}
129.
130./**
131. A panel that shows a set of colored rectangles
132.*/
133.class RectanglePanel extends JPanel
134.{
135. public RectanglePanel()
136. {
137. rects = new ArrayList();
138. colors = new ArrayList();
139. generator = new Random();
140.
141. DocumentBuilderFactory factory
142. = DocumentBuilderFactory.newInstance();
143. try
144. {
145. builder = factory.newDocumentBuilder();
146. }
147. catch (ParserConfigurationException exception)
148. {
149. exception.printStackTrace();
150. }
151. }
152.
153. /**

154. Create a new random drawing.
155. */
156. public void newDrawing()
157. {
158. int n = 10 + generator.nextInt(20);
159. rects.clear();
160. for (int i = 1; i <= n; i++)
161. {
162. int x = generator.nextInt(getWidth());
163. int y = generator.nextInt(getHeight());
164. int width = generator.nextInt(getWidth() - x);
165. int height = generator.nextInt(getHeight() - y);
166. rects.add(new Rectangle(x, y, width, height));
167. int r = generator.nextInt(256);
168. int g = generator.nextInt(256);
169. int b = generator.nextInt(256);
170. colors.add(new Color(r, g, b));
171. }
172. repaint();
173. }
174.
175. public void paintComponent(Graphics g)
176. {
177. if (rects.size() == 0) newDrawing();
178. super.paintComponent(g);
179. Graphics2D g2 = (Graphics2D)g;
180.
181. // draw all rectangles
182. for (int i = 0; i < rects.size(); i++)
183. {
184. g2.setColor((Color)colors.get(i));
185. g2.fill((Rectangle2D)rects.get(i));
186. }
187. }
188.
189. /**
190. Creates an SVG document of the current drawing.
191. @return the DOM tree of the SVG document
192. */
193. public Document buildDocument()
194. {
195.
196. Document doc = builder.newDocument();
197. Element svgElement = doc.createElement("svg");

198. doc.appendChild(svgElement);
199. svgElement.setAttribute("width", "" + getWidth());
200. svgElement.setAttribute("height", "" + getHeight())
201.
202. for (int i = 0; i < rects.size(); i++)
203. {
204. Color c = (Color)colors.get(i);
205. Rectangle2D r = (Rectangle2D)rects.get(i);
206. Element rectElement = doc.createElement("rect");
207. rectElement.setAttribute("x", "" + r.getX());
208. rectElement.setAttribute("y", "" + r.getY());
209. rectElement.setAttribute("width", "" + r.getWidt
210. rectElement.setAttribute("height", "" + r.getHei
211. rectElement.setAttribute("fill", colorToString(c
212. svgElement.appendChild(rectElement);
213. }
214.
215. return doc;
216. }
217.
218. /**
219. Converts a color to a hex value.
220. @param c a color
221. @return a string of the form #rrggbb
222. */
223. private static String colorToString(Color c)
224. {
225. StringBuffer buffer = new StringBuffer();
226. buffer.append(Integer.toHexString(
227. c.getRGB() & 0xFFFFFF));
228. while(buffer.length() < 6) buffer.insert(0, '0');
229. buffer.insert(0, '#');
230. return buffer.toString();
231. }
232.
233. private ArrayList rects;
234. private ArrayList colors;
235. private Random generator;
236. private DocumentBuilder builder;
237. }

javax.xml.parsers.DocumentBuilder

Document newDocument()

returns an empty document.

org.w3c.dom.Document

Element createElement(String name)

returns an element with the given name.

Text createTextNode(String data)

returns a text node with the given data.

org.w3c.dom.Node

void appendChild(Node child)

appends a node to the list of children of this node.

org.w3c.dom.Element

void setAttribute(String name, String value)

sets the attribute with the given name to the given value.

void setAttributeNS(String uri, String qname, String
value)

sets the attribute with the given namespace URI and qualified name to the given value.

javax.xml.transform.TransformerFactory

static Transformer newInstance()

returns an instance of the TransformerFactory class.

Transformer newTransformer()

returns an instance of the Transformer class that carries out an identity or "do
nothing" transformation.

javax.xml.transform.Transformer

void setOutputProperty(String name, String value)

sets an output property. See http://www.w3.org/TR/xslt#output for a listing of the
standard output properties. The most useful ones are:

void transform(Source from, Result to)

transforms an XML document.

javax.xml.transform.dom.DOMSource

Parameters: uri The URI of the namespace, or null.
 qname The qualified name. If it has an alias prefix, then uri must not be

null.
 value The attribute value.

Parameter: doctype-
public

the public ID to be used in the DOCTYPE declaration

 doctype-
system

the system ID to be used in the DOCTYPE
declaration

 indent yes or no

DOMSource(Node n)

constructs a source from the given node. Usually, n is a document node.

javax.xml.transform.stream.StreamResult

StreamResult(File f)

StreamResult(OutputStream out)

StreamResult(Writer out)

StreamResult(String systemID)

construct a stream result from a file, stream, writer, or system ID (usually a relative or
absolute URL).

XSL Transformations
As you have seen, the XML format is a very useful interchange format for structured data.
However, most XML data is not intended for viewing by end-users. In this section, you will see
how to transform XML data into presentation formats such as HTML or plain text.

NOTE

The purpose of a style sheet with transformation templates is to describe the conversion of
XML documents into some other format (see Figure 12-7).

In this section, you will see how to transform XML data into HTML for
presentation in a browser. An alternate approach is to display XML files
directly in a browser. For example, Internet Explorer shows XML documents
as trees. More importantly, the latest versions of Netscape, Internet
Explorer, and Opera let you specify a cascading style sheet (CSS) with an
XML document. With a style sheet, you can control how you want the
browser to display the contents of XML elements. You can find the style
sheet specification at http://www.w3c.org/TR/REC-CSS2. The article "XML
and CSS: Structured Markup with Display Semantics" by Pankaj Kamthan
(http://tech.irt.org/articles/js198) contains a nice discussion of the pros and
cons of using CSS with XML.

Figure 12-7. Applying XSL Transformations

Here is a typical example. We want to transform XML files with employee records into HTML
documents. Consider this input file.

<staff>
 <employee>
 <name>Carl Cracker</name>
 <salary>75000</salary>
 <hiredate year="1987" month="12" day="15"/>
 </employee>
 <employee>
 <name>Harry Hacker</name>
 <salary>50000</salary>
 <hiredate year="1989" month="10" day="1"/>
 </employee>
 <employee>
 <name>Tony Tester</name>
 <salary>40000</salary>
 <hiredate year="1990" month="3" day="15"/>
 </employee>
</staff>

The desired output is an HTML table:

<table border="1">
<tr>
<td>Carl Cracker</td><td>$75000.0</td><td>1987-12-15</td>
</tr>
<tr>
<td>Harry Hacker</td><td>$50000.0</td><td>1989-10-1</td>
</tr>
<tr>

<td>Tony Tester</td><td>$40000.0</td><td>1990-3-15</td>
</tr>
</table>

This table can be included in a larger HTML document, for example a Java Server Page.

The XSLT specification is quite complex, and entire books have been written on the subject.
We can't possibly discuss all the features of XSLT, so we will only work through a
representative example. You can find more information in the book Essential XML by Don Box,
et al. The XSL specification is available at http://www.w3.org/TR/xslt.

A style sheet with transformation templates has this form:

<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">
 <xsl:output method="html"/>
 . . .
 templates
 . . .
</xsl:stylesheet>

In our example, the xsl:output element specifies the method as HTML. Other valid
method settings are xml and text.

Here is a typical template:

<xsl:template match="/staff/employee">
 <tr><xsl:apply-templates/></tr>
</xsl:template>

The value of the match attribute is an XPath expression. XPath is yet another XML standard.
An XPath describes a set of nodes in an XML document. For example, the XPath

/staff/employee

describes all employee elements that are children of the staff root element.

The XPath

/staff/employee/hiredate/@year

describes all year attribute nodes of hiredate elements within employee elements that
are children of the staff root node. The @ sign denotes an attribute.

The XPath

/staff/employee/name/text()

describes all text nodes that are children of name elements within employee elements that
are children of the staff root node. The () denote a function—besides text(), there are
a number of other functions that can be used inside XPath expressions.

There are many more elaborate XPath expressions—see Essential XML by Don Box or the
specification at http://www.w3c.org/TR/xpath.

Let us now return to the example template. It states: Whenever you see a node in the XPath
set /staff/employee, do the following:

Emit the string <tr>.

Keep applying templates as you process its children.

Emit the string </tr> after you are done with all children.

In other words, this template generates the HTML table row markers around every employee
record.

The XSLT processor starts processing by examining the root element. Whenever a node
matches one of the templates, then it applies the template. (If multiple templates match, the
best-matching one is used—see the specification for the gory details.) If no template matches,
the processor carries out a default action. For text nodes, the default is to include the contents
in the output. For elements, the default action is to create no output but to keep processing the
children.

Here is a template for transforming name nodes in an employee file:

<xsl:template match="/staff/employee/name">
 <td><xsl:apply-templates/></td>
</xsl:template>

As you can see, the template produces the <td>...</td> delimiters, and it asks the
processor to recursively visit the children of the name element. There is just one child, the text
node. When the processor visits that node, it emits the text contents (provided, of course, that
there is no other matching template).

You have to work a little harder if you want to copy attribute values into the output. Here is an
example:

<xsl:template match="/staff/employee/hiredate">
 <td><xsl:value-of select="@year"/>-<xsl:value-of
 select="@month"/>-<xsl:value-of select="@day"/></td>

</xsl:template>

When processing a hiredate node, this template emits

The string <td>

The value of the year attribute

A hyphen

The value of the month attribute

A hyphen

The value of the day attribute

A hyphen

The string </td>

The xsl:value-of statement computes the string value of a node set. The node set is
specified by the XPath value of the select attribute. In this case, the path is relative to the
currently processed node. The node set is converted to a string by concatenating the string
values of all nodes. The string value of an attribute node is its value. The string value of a text
node is its contents. The string value of an element node is the concatenation of the string
values of its child nodes (but not its attributes).

Example 12-9 contains all transformation templates to turn an XML file with employee records
into an XML table.

Example 12-10 shows a different set of transformations. The input is the same XML file, and
the output is plain text in the familiar property file format:

employee.1.name=Carl Cracker
employee.1.salary=75000.0
employee.1.hiredate=1987-12-15
employee.2.name=Harry Hacker
employee.2.salary=50000.0
employee.2.hiredate=1989-10-1
employee.3.name=Tony Tester
employee.3.salary=40000.0
employee.3.hiredate=1990-3-15

That example uses the position() function which yields the position of the current node,
as seen from its parent. We get an entirely different output, simply by switching the style sheet.
Thus, you can safely use XML to describe your data, even if some applications need the data
in another format. Just use XSLT to generate the alternative format.

It is extremely simple to generate XSL transformations in Java. Set up a transformer factory for
each style sheet. Then get a transformer object, and tell it to transform a source to a result.

File styleSheet = new File(filename);
StreamSource styleSource = new StreamSource(styleSheet);
Transformer t = TransformerFactory
 .newInstance().newTransformer(styleSource);
t.transform(source, result);

The parameters of the transform method are objects of classes that implement the
Source and Result interfaces. There are three implementations of the Source interface:

DOMSource
SAXSource
StreamSource

You can construct a StreamSource from a file, stream, reader, or URL, and a
DOMSource from the node of a DOM tree. For example, in the preceding section, we invoked
the identity transformation as

t.transform(new DOMSource(doc), result);

In our example program, we will do something slightly more interesting. Rather than starting
out with an existing XML file, we will produce a SAX XML reader that gives the illusion of
parsing an XML file, by emitting appropriate SAX events. Actually, the XML reader reads a flat
file, as described in Chapter 12 of Volume 1. The input file looks like this:

Carl Cracker|75000.0|1987|12|15
Harry Hacker|50000.0|1989|10|1
Tony Tester|40000.0|1990|3|15

The XML reader generates SAX events as it processes the input. Here is a part of the parse
method of the EmployeeReader class that implements the XMLReader interface.

AttributesImpl attributes = new AttributesImpl();
handler.startDocument();
handler.startElement("", "staff", "staff", attributes);
while ((line = in.readLine()) != null)
{
 handler.startElement("", "employee", "employee", attributes
 StringTokenizer t = new StringTokenizer(line, "|");
 handler.startElement("", "name", "name", attributes);
 String s = t.nextToken();
 handler.characters(s.toCharArray(), 0, s.length());
 handler.endElement("", "name", "name");
 . . .

 handler.endElement("", "employee", "employee");
}
handler.endElement("", rootElement, rootElement);
handler.endDocument();

The SAXSource for the transformer is constructed from the XML reader:

t.transform(new SAXSource(new EmployeeReader(),
 new InputSource(new FileInputStream(filename))), result);

This is an ingenious trick to convert non-XML legacy data into XML. Of course, most XSLT
applications will already have XML input data, and you can simply invoke the transform
method on a StreamSource, like this:

t.transform(new StreamSource(file), result);

The transformation result is an object of a class that implements the Result interface. The
Java library supplies three classes:

DOMResult
SAXResult
StreamResult

To store the result in a DOM tree, use a DocumentBuilder to generate a new document
node and wrap it into a DOMResult:

Document doc = builder.newDocument();
t.transform(source, new DOMResult(doc));

To save the output in a file, use a StreamResult:

t.transform(source, new StreamResult(file));

Example 12-8 contains the complete source code. Examples 12-9 and 12-10 contain two style
sheets. This example concludes our discussion of the XML support in the Java library. We
hope you now have a good perspective of the major strengths of XML, in particular automated
parsing and validation, and a powerful transformation mechanism. Of course, all this
technology is only going to work for you if you design your XML formats well. You need to
make sure that the formats are rich enough to express all your business needs, that they are
stable over time, and that your business partners are willing to accept your XML documents.
Those issues can be far more challenging than dealing with parsers, DTDs or transformations.

Example 12-8 TransformTest.java

 1. import java.io.*;
 2. import java.util.*;

 3. import javax.xml.parsers.*;
 4. import javax.xml.transform.*;
 5. import javax.xml.transform.dom.*;
 6. import javax.xml.transform.sax.*;
 7. import javax.xml.transform.stream.*;
 8. import org.xml.sax.*;
 9. import org.xml.sax.helpers.*;
 10.
 11. /**
 12. This program demonstrates XSL transformations. It appl
 13. a transformation to a set of employee records. The rec
 14. are stored in the file employee.dat and turned into XM
 15. format. Specify the stylesheet on the command line, e.
 16. java TransformTest makeprop.xsl
 17. */
 18. public class TransformTest
 19. {
 20. public static void main(String[] args) throws Exceptio
 21. {
 22. String filename;
 23. if (args.length > 0) filename = args[0];
 24. else filename = "makehtml.xsl";
 25. File styleSheet = new File(filename);
 26. StreamSource styleSource = new StreamSource(styleSh
 27.
 28. Transformer t = TransformerFactory
 29. .newInstance().newTransformer(styleSource);
 30. t.transform(new SAXSource(new EmployeeReader(),
 31. new InputSource(new FileInputStream("employee.da
 32. new StreamResult(System.out));
 33. }
 34. }
 35.
 36. /**
 37. This class reads the flat file employee.dat and report
 38. parser events to act as if it was parsing an XML file.
 39. */
 40. class EmployeeReader implements XMLReader
 41. {
 42. public void parse(InputSource source)
 43. throws IOException, SAXException
 44. {
 45. InputStream stream = source.getByteStream();1
 46. BufferedReader in = new BufferedReader(

 47. new InputStreamReader(stream));
 48. String rootElement = "staff";
 49. AttributesImpl atts = new AttributesImpl();
 50.
 51. if (handler == null)
 52. throw new SAXException("No content handler");
 53.
 54. handler.startDocument();
 55. handler.startElement("", rootElement, rootElement, att
 56. String line;
 57. while ((line = in.readLine()) != null)
 58. {
 59. handler.startElement("", "employee", "employee", at
 60. StringTokenizer t = new StringTokenizer(line, "|
 61.
 62. handler.startElement("", "name", "name", atts);
 63. String s = t.nextToken();
 64. handler.characters(s.toCharArray(), 0, s.length(
 65. handler.endElement("", "name", "name");
 66.
 67. handler.startElement("", "salary", "salary", att
 68. s = t.nextToken();
 69. handler.characters(s.toCharArray(), 0, s.length(
 70. handler.endElement("", "salary", "salary");
 71.
 72. atts.addAttribute("", "year", "year", "CDATA",
 73. t.nextToken());
 74. atts.addAttribute("", "month", "month", "CDATA",
 75. t.nextToken());
 76. atts.addAttribute("", "day", "day", "CDATA",
 77. t.nextToken());
 78. handler.startElement("", "hiredate", "hiredate",
 79. handler.endElement("", "hiredate", "hiredate");
 80. atts.clear();
 81.
 82. handler.endElement("", "employee", "employee");
 83. }
 84.
 85. handler.endElement("", rootElement, rootElement);
 86. handler.endDocument();
 87. }
 88.
 89. public void setContentHandler(ContentHandler aHandler)
 90. {

 91. handler = aHandler;
 92. }
 93.
 94. public ContentHandler getContentHandler()
 95. {
 96. return handler;
 97. }
 98.
 99. // the following methods are just do-nothing implement
100. public void parse(String systemId)
101. throws IOException, SAXException {}
102. public void setErrorHandler(ErrorHandler handler) {}
103. public ErrorHandler getErrorHandler() { return null; }
104. public void setDTDHandler(DTDHandler handler) {}
105. public DTDHandler getDTDHandler() { return null; }
106. public void setEntityResolver(EntityResolver resolver)
107. public EntityResolver getEntityResolver() { return nul
108. public void setProperty(String name, Object value) {}
109. public Object getProperty(String name) { return null;
110. public void setFeature(String name, boolean value) {}
111. public boolean getFeature(String name) { return false;
112.
113. private ContentHandler handler;
114. }

Example 12-9 makehtml.xsl

 1. <?xml version="1.0" encoding="ISO-8859-1"?>
 2.
 3. <xsl:stylesheet
 4. xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 5. version="1.0">
 6.
 7. <xsl:output method="html"/>
 8.
 9. <xsl:template match="/staff">
10. <table border="1"><xsl:apply-templates/></table>
11. </xsl:template>
12.
13. <xsl:template match="/staff/employee">
14. <tr><xsl:apply-templates/></tr>
15. </xsl:template>
16.
17. <xsl:template match="/staff/employee/name">

18. <td><xsl:apply-templates/></td>
19. </xsl:template>
20.
21. <xsl:template match="/staff/employee/salary">
22. <td>$<xsl:apply-templates/></td>
23. </xsl:template>
24.
25. <xsl:template match="/staff/employee/hiredate">
26. <td><xsl:value-of select="@year"/>-<xsl:value-of
27. select="@month"/>-<xsl:value-of select="@day"/></td>
28. </xsl:template>
29.
30. </xsl:stylesheet>

Example 12-10 makeprop.xsl

 1. <?xml version="1.0"?>
 2.
 3. <xsl:stylesheet
 4. xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 5. version="1.0">
 6.
 7. <xsl:output method="text"/>
 8.
 9. <xsl:template match="/staff/employee">
10. employee.<xsl:value-of select="position()"/>.name=<xsl:val
 select="name/text()"/>
11. employee.<xsl:value-of select="position()"/>.salary=<xsl:v
 of select="salary/text()"/>
12. employee.<xsl:value-of select="position()"/>.hire
 date=<xsl:value-of select="hiredate/@year"/>-<xsl:value-o
 select="hiredate/@month"/>-<xsl:value-of select="hiredate
13. </xsl:template>
14.
15. </xsl:stylesheet>

javax.xml.transform.TransformerFactory

Transformer newTransformer(Source from)

returns an instance of the Transformer class that reads a style sheet from the given

source.

javax.xml.transform.stream.StreamSource

StreamSource(File f)

StreamSource(InputStream in)

StreamSource(Reader in)

StreamSource(String systemID)

construct a stream source from a file, stream, reader, or system ID (usually a relative or
absolute URL).

javax.xml.transform.sax.SAXSource

SAXSource(XMLReader reader, InputSource source)

constructs a SAX source that obtains data from the given input source and uses the
given reader to parse the input.

org.xml.sax.XMLReader

void setContentHandler(ContentHandler handler)

sets the handler that is notified of parse events as the input is parsed.

void parse(InputSource source)

parses the input from the given input source and sends parse events to the content
handler.

javax.xml.transform.dom.DOMResult

DOMResult(Node n)

constructs a source from the given node. Usually, n is a new document node.

org.xml.sax.helpers.AttributesImpl

void addAttribute(String uri, String lname, String qname,
String type, String value)

adds an attribute to this attribute collection.

void clear()

removes all attributes from this attribute collection.

Parameters: uri the URI of the namespace
 lname the local name without alias prefix
 qname the qualified name with alias prefix
 type the type, one of "CDATA", "ID", "IDREF", "IDREFS",

"NMTOKEN", "NMTOKENS", "ENTITY", "ENTITIES", or
"NOTATION"

 value the attribute value

CONTENTS

	封面
	前言
	正文
	Chapter 1. Multithreading
	What Are Threads?
	Interrupting Threads
	Thread Properties
	Thread Priorities
	Selfish Threads
	Synchronization
	Deadlocks
	User Interface Programming with Threads
	Using Pipes for Communication Between Threads

	Chapter 2. Collections
	Collection Interfaces
	Concrete Collections
	The Collections Framework
	Algorithms
	Legacy Collections

	Chapter 3. Networking
	Connecting to a Server
	Implementing Servers
	Sending E-Mail
	Advanced Socket Programming
	URL Connections
	Posting Form Data
	Harvesting Information from the Web

	Chapter 4. Database Connectivity: JDBC
	The Design of JDBC
	The Structured Query Language
	Installing JDBC
	Basic JDBC Programming Concepts
	Executing Queries
	Scrollable and Updatable Result Sets
	Metadata
	Transactions
	Advanced Connection Management

	Chapter 5. Remote Objects
	Remote Method Invocations
	Setting Up Remote Method Invocation
	Parameter Passing in Remote Methods
	Using RMI with Applets
	Server Object Activation
	Java IDL and CORBA

	Chapter 6. Advanced Swing
	Lists
	Trees
	Tables
	Styled Text Components
	Component Organizers

	Chapter 7. Advanced AWT
	The Rendering Pipeline
	Shapes
	Areas
	Strokes
	Paint
	Coordinate Transformations
	Clipping
	Transparency and Composition
	Rendering Hints
	Reading and Writing Images
	Image Manipulation
	Printing
	The Clipboard
	Drag and Drop

	Chapter 8. JavaBeans.
	Why Beans?
	The Bean-Writing Process
	Using Beans to Build an Application
	Naming Patterns for Bean Properties and Events
	Bean Property Types
	Adding Custom Bean Events
	Property Editors
	Going Beyond Naming Patterns
	Customizers
	The Bean Context

	Chapter 9. Security
	Class Loaders
	Bytecode Verification
	Security Managers and Permissions
	Digital Signatures
	Code Signing
	Encryption

	Chapter 10. Internationalization
	Locales
	Numbers and Currencies
	Date and Time
	Text
	Resource Bundles
	Graphical User Interface Localization

	Chapter 11. Native Methods
	Calling a C Function from the Java Programming
Language
	Numeric Parameters and Return Values
	String Parameters
	Accessing Object Fields
	Accessing Static Fields
	Signatures
	Calling Java Methods
	Arrays
	Error Handling
	The Invocation API
	A Complete Example: Accessing the Windows Registry

	Chapter 12. XML
	An Introduction to XML
	Parsing an XML Document
	Document Type Definitions
	Namespaces
	Using the SAX Parser
	Generating XML Documents
	XSL Transformations

