
Massively Parallel Computing as a Service

Designing a service for use of massively parallel computation in a
service-oriented architecture

Frank Kusters

Radboud University Nijmegen & Logica
Research number 624

Massively Parallel Computing as a Service
Designing a service for use of massively parallel computation in a service-

oriented architecture

Massively Parallel Computing as a Service

Designing a service for use of massively parallel computation in a
service-oriented architecture

Frank Kusters

December 1, 2009

Radboud University Nijmegen & Logica
Research number 624

8

Versioning

Date Changes
March 17, 2008 Initial version
May 27, 2008 Updated chapters on definitions and architectures,

added chapter on software
June 18, 2008 Expanded Clean code, added chapter on Robotarm
July 2, 2008 Rewrite of introduction and chapter on definitions
October 19, 2008 Added chapter on software estimation
October 22, 2008 Revised chapter on software estimation
May 12, 2009 Rewrite of chapter on architectures
June 4, 2009 Rewrite of chapter on service-oriented architecture, re-

vised chapter on architectures
August 7, 2009 Rewrite of chapter on Hough transformation
September 23, 2009 Revised chapters on architectures, SOA and estima-

tion
October 23, 2009 Added discussion and conclusion, replaced introduc-

tion, abstract and preface, revised all other chapters
and appendices

December 1, 2009 Revised all chapters - Final version

Distribution
Recipient Organization
Frits Vaandrager Radboud University
Reinald Minnaar Radboud University
Theo Schouten Radboud University
Lambert Mühlenberg Logica
John Pleunis Logica

10

Abstract

As nowadays increasingly larger computer applications are developed, there is a
need for faster and cheaper computer systems and for software architectures to
improve development and deployment of applications. Many massively parallel
processors being developed from GPU’s (Graphical Processing Units) become
available now, promising teraflops on the desktop. Service-oriented architectures
are becoming popular because of their promise to separate the services provided
by large enterprise systems and to hide the implementation from the users. Only
speed and scalability are implementation dependent. In this thesis I studied the
question of how to offer massively parallel computing as a service.

To answer this question I took a largely experimental approach by designing,
implementing and testing an application as a service on a system consisting of a
standard PC with an Nvidia Tesla C870 board consisting of 16 vector processors
each capable of operating on 8 elements concurrently. The application was a
Hough transformation taken from an existing image processing application at
Logica. The needed implementation effort was large due to inadequacy of the
development environment; several suggestions for improving this are made. An
application speedup of up to a factor 10 was obtained, depending on the size of
the relevant data set used.

Based on the above experiment I showed that with some effort a generic
service can be built on a system consisting of a PC and one or more GPU based
massively parallel processing cards. Regarding the effort estimation methods
used by Logica, I determined that one of them, work breakdown structure com-
bined with expert estimation, is an easy and accurate approach.

The resulting conclusion of this thesis is that offering massive parallel com-
puting as a service is feasible.

12 Abstract

Acknowledgments

This thesis was created as part of my master research project for the Computer
Science master of the Radboud University Nijmegen, in cooperation with Logica.
The idea for the project originated from Martin van Amersfoorth.

I would like to thank Lambert Mühlenberg, Frits Vaandrager, John Pleunis
and Reinald Minnaar for their extended support during my research. Also, a
profound thanks goes to all students participating in the Working Tomorrow
program at Logica in 2008.

Venray, december 2009

14 Abstract

Contents

1. Introduction . 19
1.1 The fields . 19

1.1.1 Massively parallel computing 19
1.1.2 Service-oriented architecture 19
1.1.3 Software effort estimation 20

1.2 Research questions . 20
1.2.1 Specific questions . 20
1.2.2 Generalizations . 21

1.3 Related research . 21
1.4 Structure . 21

2. Architectures for parallel computing 23
2.1 Introduction . 23
2.2 Definitions . 24
2.3 Parallel models and architectures 25

2.3.1 Parallel models . 25
2.3.2 Parallel architectures . 26

2.4 x86 architecture . 28
2.4.1 Pipelining . 29
2.4.2 Superscalar . 29
2.4.3 SIMD . 29
2.4.4 Hyper-threading . 30
2.4.5 Multicore . 30

2.5 GPGPU architecture . 31
2.5.1 Vector processing . 31
2.5.2 Stream processing . 32
2.5.3 Implementations . 32

2.6 Discussion . 34

3. Software design in a service-oriented architecture 35
3.1 Introduction . 35
3.2 Definitions . 35
3.3 Service models . 37
3.4 Design principles . 37

3.4.1 Contracts . 37
3.4.2 Coupling . 38
3.4.3 Abstraction . 39
3.4.4 Reusability . 39
3.4.5 Autonomy . 40

16 Contents

3.4.6 Statelessness . 40
3.4.7 Discoverability . 40
3.4.8 Composability . 41

4. Implementation of a ‘Hough transformation’ service 43
4.1 Introduction . 43

4.1.1 Hough transformation . 43
4.2 Programming for the Tesla processor 44

4.2.1 Libraries . 44
4.2.2 Kernel . 45
4.2.3 Java / C# interface . 46
4.2.4 Hardware limitations . 46

4.3 Implementation . 47
4.3.1 First implementation in C 48
4.3.2 Second implementation in Java 49
4.3.3 Kernel . 51

4.4 Benchmarks . 53
4.4.1 Hardware setup . 53
4.4.2 Software setup . 53
4.4.3 Measurements . 54

4.5 Discussion . 55
4.5.1 Benchmark results . 55
4.5.2 Suggestions to Nvidia . 56

5. Selecting a software effort estimation method 57
5.1 Introduction . 57
5.2 Conceptual model . 57
5.3 Estimation goals . 58
5.4 Estimation approaches . 59

5.4.1 Expert judgment . 60
5.4.2 Analogy . 60
5.4.3 Work breakdown . 60
5.4.4 Function points . 60
5.4.5 Mathematical model . 61
5.4.6 Combination of methods 62

5.5 Case study on estimation methods 62
5.5.1 Estimation goal . 62
5.5.2 Estimation approach . 63

5.6 Discussion . 64

6. Discussion . 65
6.1 Massively parallel computing . 65
6.2 Service-oriented architecture . 66
6.3 Software effort estimation . 68

7. Conclusion . 69
7.1 Future directions . 69

Contents 17

Appendix: Building trial applications . 71
Matrix multiplication . 71
Image stitching . 71

18 Contents

1. Introduction

Massively parallel processors being developed from GPU’s (Graphical Process-
ing Units) become available now, promising teraflops on the desktop. Service-
oriented architectures are becoming popular because of their promise to separate
the services provided by large enterprise systems and to hide the implementa-
tion from the users. I will study the question of how to offer massively parallel
computing as a service. Furthermore I will look at the software effort estimation
methods used by Logica and determine whether they are the best fit.

1.1 The fields

In this section the current states of the fields of massively parallel computing,
service-oriented architecture and software effort estimation are described.

1.1.1 Massively parallel computing

As larger and larger computer applications are developed, faster and faster com-
puters and clusters are needed to execute these applications. Parallel comput-
ing divides processing and/or information of a computing task into partitions
(called subtasks). Each subtask is then executed simultaneously, speeding up
the execution measured in run time by approximately the number of partitions.
However, due to fact that some parts of an application cannot be parallelized,
the speedup is limited to relatively small amounts of processors. This is also
known as Amdahl’s law [3].

Gustafson showed that when the dataset is large enough, massively paral-
lel computing (MPC) allows division of the information into arbitrarily many
partitions or subtasks, therefore limiting the speedup only by the number of
processors executing the instructions [21]. The division into arbitrarily many
partitions is possible because of the limited dependencies between different par-
titions. Therefore MPC is only suitable for specific algorithms.

In hardware, massively parallel computing has recently gotten attention [31]
partly due to the availability of the Nvidia Tesla, a processor which enables
high performance computing on the desktop [13] and allows for relatively cheap
high performance servers. The high performance is achieved by using multiple
processors, which also perform instructions on multiple data elements simulta-
neously [29]. The hardware design necessitates software to be rewritten to fit
the architecture.

1.1.2 Service-oriented architecture

On the software side, service-oriented computing is becoming increasingly pop-
ular [37, 11]. Service-oriented architecture keeps every subsystem (a service)

20 1. Introduction

of a large enterprise application separate, thereby allowing for (among others)
more reuse of these services.

Essentially (and ideally), the implementation of a service is hidden from the
outside world. Whether or not a service utilizes massively parallel computing
is therefore an implementation detail and should manifest itself only in fast
response times. However, there are many algorithms and applications that could
be enhanced using massively parallel computing, which would cause similar code
to appear several times in a project (or enterprise). SOA strives to prevent the
last notion by creating a service that can then be used throughout the enterprise.

1.1.3 Software effort estimation

Software effort estimation focuses on the amount of time (the effort) it takes
to complete a software project. Software effort estimation is hard, as shown
by Moløkken and Jørgensen [28]. Most software projects exceed their allocated
time and/or budget. To increase the estimation accuracy (the deviation of the
actual effort from the original estimate), many estimation approaches have been
developed, with varying success.

1.2 Research questions

The aim of my research is to design and build a ‘massively parallel comput-
ing’ service: it should offer massively parallel computation while hiding the
implementation details of the underlying hardware architecture. Ultimately,
developers and architects should be able to use massively parallel computing in
their services without in-depth knowledge of the hardware architecture, which
is very necessary at this time [33, 5]. I do not aim at automatic parallelization
of existing services, as that is a different subject altogether.

An implementation of the aforementioned service has a significant impact on
the cost of development of new software that uses massively parallel computing.
It is therefore useful to quantify this impact, i.e. find out how much it will cost
to build a new service on top of the designed service.

To this end, I have devised the main research question as follows:

How can massively parallel computing be offered as a (business) ser-
vice?

To be able to answer the main question, I developed ten subquestions for my
research proposal. These are divided in specific questions and generalizations.

1.2.1 Specific questions

1. How are ‘massively parallel computing’, ‘service-oriented architecture’ and
related terms defined in literature?

2. How can a service be designed and constructed such that the specific case
of 3D image rendering can be performed on a general purpose massively
parallel processor?

3. How can the service be adapted into a demonstrator suitable for display
on events and to clients?

1.3. Related research 21

4. How are methods for cost estimation of software projects outlined in lit-
erature? Which of those methods, if applicable, does Logica use and how
does it compare to other methods?

5. What are the costs of a business service based on 3D image rendering,
based on the cost estimation method of Logica? Are there clients of Logica
for which such a business service would be attractive (i.e. cost-effective)?

1.2.2 Generalizations

6. What are the criteria to determine if an algorithm is suitable for mas-
sively parallel computation on architectures like those of the Nvidia Tesla?
Which classes of parallel algorithms satisfy these criteria?

7. How can a generic service be designed such that the implementation of
the applicable classes of algorithms on a general purpose massively parallel
processor can easily be carried out?

8. What are the advantages and disadvantages of using the aforementioned
design over existing systems?

9. What kind of business services can be offered using the developed design?

10. What are the business benefits (if any) to Logica for offering this business
service?

1.3 Related research

I am not the first to combine the concepts of massively parallel computing
and service-oriented architecture. Some researchers have implemented a highly
parallel computing infrastructure using a service-oriented architecture [16, 20].
Although it is an interesting way to achieve distributed computing, it does not
solve the problem of making integration into an existing SOA easier. Further-
more, massively parallel computing and distributed computing are not the same
architectures, which will be explained in section 2.3.2.

Some have used massively parallel computing in a SOA, but because it wasn’t
the main research goal, no details are given on the implementation [34]. This
is not the case with Hawick et al., who designed and implemented a service for
massively parallel computing in 1998 [22, 35]. The concept of a “service-oriented
architecture” didn’t exist, but they did touch many of the issues that arise in
designing a service. They also used a massively parallel computer, a “Connection
Machine” (which is a supercomputer design from the early nineties). However,
my research focuses on the more modern Nvidia Tesla instead.

1.4 Structure

The report is divided into four themes. The first theme, “architectures for
parallel computing”, is discussed in chapter 2. Chapter 3 is about “software
design in a service-oriented architecture”. In chapter 4, the implementation of a
real service is handled. Then software effort estimation methods are described
in chapter 5. Chapter 6 discusses the results. Lastly in chapter 7 a conclusion
is drawn from the research.

22 1. Introduction

2. Architectures for parallel computing

2.1 Introduction

As more and more massive computer simulations are developed, colossal datasets
are analyzed, and gigantic programs evolve, a need arises for an enormous
amount of processing power to deal with these programs. Traditionally, this
problem had been solved by building either special processors (an expensive
undertaking), building computer clusters from commodity parts (also relatively
expensive), or computer clusters from special processors, the highest priced pos-
sibility.

Because of the price, such equipment was mainly reserved for large research
departments within universities and enterprises. However, there are plenty of
companies who would like to have a decent amount of processing power without
the steep bill, and until recently they had to make do with tiny versions of those
computer clusters with commodity parts. In November 2006, this changed.
Three similar but different products were introduced independently by three
companies. These are:

• the Tesla family of processors, by Nvidia,

• the FireStream family of processors by Ati (now AMD), and

• the Cell processor by STI, a joint venture of Sony, Toshiba and IBM.

These products all have one thing in common: they are special processors
available for the price of a common processor. The rationale behind the low price
is fairly straightforward. The processors are the same as those found in popular
consumer products (video cards and game consoles), which means millions of
them are produced (so actually, they are common processors). This allows the
manufacturers to spread the R&D costs, thereby lowering the price of the final
product substantially.

The marketing brochures of the above-mentioned processors say they can
run programs up to 200 times faster compared to Intel and AMD processors,
depending on the application. This has to do with a radically different architec-
ture being employed. This is the subject I will cover in this chapter. In the next
section definitions are given for much-used terminology. Section three explains
different kinds of applications and the computer architectures that exist to han-
dle these applications. In the fourth and fifth section, the actual architectures
of the most common processors are explained: the x86 architecture and the new
GPGPU architecture. Finally, I will discuss the differences.

24 2. Architectures for parallel computing

2.2 Definitions

There are many terms used in the world of parallel computing, often inter-
changed. For clarity, I will give some strict definitions for terms used in this
chapter. I divided the terminology between conceptual terminology, which is
about the mathematical part of algorithms, and implementation terminology,
which is about the technical implementation of an algorithm (actual code and
execution by a computer).

Conceptual

job All calculations together; the entire computation, the undivided application.

task Part of a job [17, page 86]. A job is split into one or more tasks. Tasks
can be run in parallel to speed things up (see also ‘process’). Tasks can
themselves have subtasks.

granularity The average size of tasks in a job [2, page 15]. The more fine-
grained (i.e. smaller) tasks are, the more parallelism is possible, and the
more overhead is induced.

overhead Processing time that is not spent on the job, but used for communi-
cation and synchronization. (Of course, overhead should be reduced to a
minimum, which means that a program must be designed so that a min-
imal amount of communication and synchronization between tasks takes
place.)

embarassingly parallel An algorithm that is so easy to parallelize, with so little
overhead, that it’s ‘embarrassing’. For example, the well-known brute-
force search is embarrassingly parallel. (When finding a password that
decrypts a certain encrypted file, each password-check is independent from
every other password-check.) It is especially suited to grid computing, but
actually really useful on all highly parallel architectures (more on that later
on, in section 2.3.2).

Implementation

program The actual implementation of a job.

process The actual execution of a task [17, page 203]. Think of it as the dif-
ference between a mathematical formula and the calculation of the result
the formula. A process is more like the latter.

thread Also, the actual execution of a task. In hardware, there isn’t much of
a difference to a process: a common processor couldn’t care less if it is
executing a thread or a process. The operating system does care: threads
share memory with each other, while processes explicitly do not. Since
I am talking about hardware architectures, I will use both thread and
process; whichever suits the text best.

processor To the outside, the processor is the executor of a thread or process. In
a single computer, the processor is the CPU. In a distributed computing
environment, which consists of many computers (see page 26), there are

2.3. Parallel models and architectures 25

many processors; I will refer to them as processing elements. The load
balancer of such an architecture resembles the processor, as it delegates
the task at hand to one or more processing elements.

processing element The executor of a thread or process, as part of a bigger sys-
tem like a CPU or a distributed computing system.

2.3 Parallel models and architectures

Parallel models illustrate the way a program is structured. Parallel architectures
specify the way the computer(s) is (are) organized to execute such a program.

2.3.1 Parallel models

Grama et al. describe several commonly used parallel algorithm models. These
models are “a way of structuring a parallel algorithm [..] and applying the
appropriate strategy to minimize interactions” [17]. And by ‘interactions’, they
of course mean overhead. The following models are described (they are shown
in figure 2.1 on page 27):

pipeline model Also known as producer-consumer model, this model allows a
stream of data to flow through different processes, where each process
performs a task on the data. Each process consumes the data that the
previous process has produced, hence the name producer-consumer model.
A course-grained granularity causes the pipeline to take a long time to fill
up, whereas a small granularity causes more overhead to transfer data
between processes, necessitating a trade-off decision. (a)

data-parallel model Data is divided into equal-sized partitions. Similar or iden-
tical tasks are then performed by the processes on the different partitions.
Interprocess communication is usually performed via some kind of syn-
chronization point. This type of parallelism is also called data parallelism.
(b)

work pool model Any task with the accompanying data may be performed by
any process. A central data structure is used where each process gets and
returns its task and data. This model is very suitable when the amount
of data is small but the computation of the task is large. (c)

master-slave model A master or manager process generates and assigns work to
different slave or worker processes. This is useful in case the work must be
done in phases. The master process can preserve the order of the subtasks,
and force worker processes to synchronize. (d)

task graph model Knowledge about tasks is used to map them onto processes in
a way that minimizes communication overhead. This is especially useful
in cases where different tasks with little computation but large data sets
are used. The mappings of the tasks can be naturally expressed in a
dependency graph. It is also called task parallelism. (e)

hybrid model Any hierarchical or sequential combination of any of the above
models. For example, each process in a pipeline model may itself employ

26 2. Architectures for parallel computing

the data parallel model. Or, when a work pool task has finished, it may
be post-processed using a task graph model. (f)

2.3.2 Parallel architectures

As stated before, parallel architectures define the way computers are organized
to execute a parallel program. Often, an architecture is very suitable for exe-
cution of one specific type of parallel model. Figure 2.2 displays the relations
betweens the parallel architectures and I will explain them here.

parallel computing Executing multiple tasks simultaneously. This involves the
use of multiple processing elements (each executing one task), because
parallelism is not possible under the Von Neumann architecture (this is
explained in more detail in section 2.4, ‘x86 architecture’). Parallel com-
puting is a generalization of all architectures.

multiprocessing The use of multiple processors inside one computer, operating
independently of one another. These can be integrated in one chip, or
communicating on the same bus. They share all I/O and share all mem-
ory. Typically two threads can be executed simultaneously (the Intel Core
Duo processor comes to mind), but more threads is possible (e.g. with mul-
tiple Core Duo processors). This architecture is suited to the task graph
model, because of the all-round capabilities of the processing elements. It
is expected by some that this parallel architecture will lose its importance,
due to the increasing number of cores on consumer processors.

highly parallel computing “Using a large collection of processing elements that
can communicate and cooperate to solve large problems fast” [2]. This is
a generalization of several types of parallelism, as detailed below. It is also
called high performance computing. Each of these architectures matches
a different parallel model.

massively parallel computing Making multiple processing elements appear as one
computer. All I/O goes through one interface, as there is virtually no com-
munication between the processing elements. This allows massive scaling,
because overhead is usually the bottleneck when scaling a system. The
data-parallel model fits this architecture very well, since the data is not
interrelated.

distributed computing Using multiple computers (i.e. separate computers con-
nected via a network) for parallel computing. The speed of the network
is a major factor in the response time achieved by the system, because of
the overhead of network communication. This too is a generalization, of
the following two architectures:

cluster computing A distributed computing setup with a known and controlled
network, usually at the same geographic location. The hardware and
software used on computers in the system is very similar or the same.
The response time is usually several orders of magnitude shorter than
that of a grid computing network. This works really well with the master-
slave model, as the master knows exactly what the slaves are capable of
and can distribute the work accordingly.

2.3. Parallel models and architectures 27

in out

(a) The pipeline model

in out

(b) The data-parallel model

in out

(c) The workpool model

in

out
(d) The master-slave
model

in

out
(e) The task graph
model

in out

in out

(f) A hybrid model

Fig. 2.1: The commonly used models for structuring parallel algorithms

28 2. Architectures for parallel computing

Fig. 2.2: The relationships between parallel computing architectures

grid computing Grid computing is the opposite of cluster computing. Multiple
computers are joined in a network that is uncontrolled and potentially
hostile. Any type of hardware and software may be combined. This
naturally fits the work pool model, where processing elements pull the
data from the pool. The processing elements are not under any type of
control, so pushing data is out of the question.

cloud computing Cloud computing pops up every once in a while in the con-
text of distributed computing. However, it is entirely different. In cloud
computing, there is a grid or cluster running the software or environment
needed, so all one has to do is rent time and space on it. This is more of
a business concept than a hardware concept.

You may have noticed that the pipeline model is not matched to any of the
parallel architectures. That is because it is often used in embedded hardware
or integrated circuits where there are a lot of specialized processing elements.
Pipelining in the Unix-world is not as often used to parallelize and speed things
up. It can be though, and in that case usually employs the multiprocessing
architecture.

2.4 x86 architecture

In this section, I will discuss the x86 architecture, while the GPGPU architecture
is discussed in the next section.

Both types of processors use the Von Neumann architecture, which is a way
in which programs and data are handled by an execution unit. It is the only
mainstream architecture for general purpose computing; others, e.g. Harvard
architecture, are only used in embedded or exotic hardware. John von Neumann,
who designed the architecture in 1945, put the program in the same part of the
computer as the data, allowing the program to be data, effectively copying the
universal Turing machine. To save on costs, no mechanism for communication or
synchronization for parallel computing was provisioned: the program is executed
instruction by instruction, in sequence [2, page 109].

2.4. x86 architecture 29

The x86 architecture implements the Von Neumann model. It originated
from Intel with the advent of the Intel 8086 chip (of which the ‘x86’ name
stems) in 1978 and built upon an architecture designed by Computer Terminal
Corporation in 1970. It is the most popular architecture today in consumer and
enterprise computers.

Because the Von Neumann architecture does not take parallel computing
into account, Intel devised a number of innovations which allow for parallelism
(and thus speedup) but leave the appearance of single-threadedness intact (im-
plicit parallelism). With the 80486 processor, Intel introduced pipelining. The
consecutive Pentium processor was a superscalar processor. The Pentium MMX
processor added SIMD capabilities. Hyperthreading was introduced on the Pen-
tium 4, although it breaks with the paradigm of one instruction at a time
(making the parallelism explicit). And finally the Intel Core Duo processor was
the first Intel processor for consumers with multiple cores (essentially two pro-
cessors on one chip). I will now discuss these five methods of parallelization in
detail, using a car trim shop as illustration.

2.4.1 Pipelining

Pipelining (which was discussed earlier in section 2.3.1) is very similar to an
assembly line. Data passes by several execution units, which modify that data
in succession [17, page 12]. This is much like the assembly line, where a car
passes by several workers who each work on a seperate part of the car. So the
painter works on the car first, the car rolls to the upholsterer, and so forth. The
assembly line has the advantage that the car does not have to be carried back
and forth to each worker. (It would be really inefficient if you would put the
car in storage between each worker, which is exactly what a processor without
pipelining does.) Similarly, data doesn’t have to be stored and fetched after
every instruction or operation.

2.4.2 Superscalar

A superscalar processor utilizes the same principle as with pipelining, but it is
a bit different. The processor accepts instructions faster than it could execute
them normally. These instructions are then dispatched to different available
execution units in the processor [17, page 12]. Of course, this is often combined
with pipelining.

Suppose there is a painter and an upholsterer in the trim shop. Several
cars are ordered: two need to be upholstered and one just needs painting. A
traditional trim shop only handles one car at a time: one car is taken in and
upholstered, another car is taken in and upholstered, and the final car is taken in
and painted. It would be more efficient if, after the first car for the upholsterer
is taken in, a second car would be taken in so one of the painters can get to
work.

2.4.3 SIMD

The last optimization added to the x86 processor is the SIMD capability. SIMD
stands for ‘Single Instruction, Multiple Data’ and simply means that the pro-
cessor can modify more than one data element at a time. (Like having two

30 2. Architectures for parallel computing

painters in the trim shop to paint two cars at the same time.) This is a very
effective speedup because only one instruction needs to be fetched and decoded
for every two, four or eight elements. The (small) drawback is that the compiler
needs to be adapted to profit from it, because special instructions are used.

2.4.4 Hyper-threading

Hyper-threading allows the processor to advertise itself to the operating system
as two processors, although it is only one. The principle is simple: it is similar
to a superscalar processor. Only, the superscalar processor accepts instructions
faster than it can execute them, while the hyper-threading processor accepts
the instructions in parallel. The trim shop now has two doors where cars can
be taken in instead of one. For software to take advantage of hyper-threading,
it has to be multi-threaded (see the next section).

2.4.5 Multicore

Another method to achieve parallelism is just using more than one processor on
the same chip. They are physically seperate circuits, but they share the same
surrounding hardware like memory. There is no longer just one trim shop: it is
more like two trim shops in the same building. Using a multicore processor is a
form of multiprocessing because only a few processing elements are used.

Now communication and synchronization come in to play. There are two
ways to solve this:

Multiple programs

The first way is to execute entirely different programs at the same time. These
are different processes, each with their own instruction code and their own
memory space. The operating system then assigns the programs to their own
processors, so the programs won’t even know the other program is running. In
this case, the advantage over the use of a single-processor system is that the
processor doesn’t have to keep switching tasks, which incurs a lot of overhead.
The execution speed has effectively doubled (provided that there are no I/O
bottlenecks like a harddisk).

Programs running on such a system are very easy to implement. Any pro-
gram that does not make assumptions on the state of the system during execu-
tion will work. An example of such an assumption is that a specific file will keep
existing during the lifetime of the program. This is not necessarily true because
another program might delete the file. (Technically, this could also happen in a
single-processor system, although the condition is less likely to occur.)

Divide programs

The second way is to divide one program into subtasks. Each subtask is assigned
to a thread. Each thread is run on its own processor (again, the operating
system takes care of which thread runs on which processor). The difference is
that threads share memory with other threads, and possibly share code. Now it
starts to get a bit difficult, because the programmer himself has to take care of
communication and synchronization. He has to provide the threads with ways

2.5. GPGPU architecture 31

of knowing what the state of other threads is, he has to divide the work into
subtasks, etc. A compiler can help with this job (for example in Java there
is the Thread interface), but the majority of the work has to be done by the
programmer.

2.5 GPGPU architecture

We have seen how the x86 architecture works with regard to parallelism. Good
advances have been made, and especially the incorporation of more than one
processor in the same chip has made the technology of parallel computing avail-
able for the masses. However, to achieve massively parallel computing, the
number of processing elements has to be scaled way up. That is hardly possible
with the traditional x86 architecture because the level of overhead rises too high.
The amount of communication in typical multiprocessing applications increases
polynomially with the number of processing elements; this also depends on the
parallel model used.

Moreover, adding more chips means adding additional unnecessary circuitry:
x86 chips have circuitry for handling all kinds of I/O and instruction scheduling
(which is a substantial portion of the chip). A lot of this does not get used
in a multiprocessor system. But producing a chip without this circuitry is too
expensive: the design has to be thoroughly tested and fabricating a different
kind of chip incurs a lot of extra costs. All this for a relatively small market.

This is where GPGPU - which stands for ‘General Purpose Graphical Pro-
cessing Unit’ - comes in1. Powerful graphical processing units have been com-
mon in consumer computers since the advent of the 3Dfx Voodoo processor in
the mid-nineties. They accompanied the rise of 3D games, which require a lot
of identical computations: the rendering of thousands of 3D polygons to a 2D
screen. These processors are nowadays common in all mid- to high-end PC’s,
which means they are produced in enormous quantities, which equals a low
price per unit. These processors are not encumbered with the I/O capabilities
and instruction schedulers of x86 processors. The former are plain unnecessary,
while the latter is handled by the compiler at compile time.

But, we do need to be able to write something other than games for such a
processor. Several manufacturers created processors which allow this, namely
Nvidia, AMD, and STI, which is a joint venture of Sony, Toshiba and IBM. The
basis of each of their products is the same: ‘Multiple Instruction, Multiple Data’,
or MIMD. To implement this, two techniques are used that are not present in
the x86 architecture: vector processor and stream processing. I will explain
those techniques first, and then elaborate on the different products.

2.5.1 Vector processing

Vector processing is actually very similar to SIMD that is used by the x86
architecture. It employs the data-parallel model: an operation is fetched and

1 There have been other attempts at solving the problem of using the same chip for both
normal and highly parallel processing. In 1987 there was a company called INMOS that built
‘transputers’, (then) cheap processors which, when combined, could build both small desk
computers and super computers. It was more like a cross-over between massively parallel
computing and cluster computing. Unfortunately the company failed, but their ideas are used
in many of the concepts mentioned in this chapter.

32 2. Architectures for parallel computing

decoded once, and then executed on different operands, thereby saving fetch
and decode cycles for those operations. However, unlike SIMD in x86, which
only works with a few data elements (four, maybe eight) and with a few specific
instructions, vector processors do this on a lot of elements: 16 or even more,
and with every instruction. (The trim shop has grown to employ 16 painters.)
A significant speedup for the vector processor is achieved because it does the
fetch and decode only once for all 16 data elements, and then executes on each
data element, yielding 1 fetch + 16 execute = 17 cycles, saving 15 fetch and
decode cycles.

2.5.2 Stream processing

Because GPGPU’s can work on hundreds of thousands of data elements at a
time, it would be kind of troublesome for the programmer to instruct each
processing element seperately. It would be a lot more efficient to automate this;
the work can be more efficiently distributed over the processing elements.

So, the programmer divides his set of data into subsets. The compiler builds
the program using thousands of threads. Then, the same group of instructions
is executed on each subset. The compiler takes care of distribution of the data,
communication and synchronization, with some aid of the programmer. So in-
stead of a corporate customer (who needs several hundred cars trimmed) outside
the trim shop deciding what each worker must do, the trim shop has instead
hired a manager that tells the workers what to do. The master-slave model fits
nicely here.

Also, most compilers for GPGPU’s are built smart enough that they can
utilize the multiple vector processors which are available in a pipeline fashion,
further speeding things up.

2.5.3 Implementations

As mentioned in the introduction, there are three products available that imple-
ment this architecture. They are very similar in design, so I will mainly describe
their hardware configuration and performance.

Nvidia Tesla

The Nvidia Tesla is the name of a family of products made by Nvidia. The
first members of the family were based on the Nvidia G80 processor. One of
these processors is put on the Tesla C870 card, which is the card I used for my
research. It has 16 vector processors, each capable of operating on 8 elements
at the same time, for a total of 128 threads. It has 1.5GB of memory. Such
a card can then be bought separately as a PCI Express card (model C870), in
duo in a desktop casing (model D870) or in quadruple in a server casing (model
S870). The C870 is capable of 519 billion floating point operations per second
(GigaFLOPS).

In June 2008 Nvidia introduced the successor to the G80: the G200. With
30 vector processors instead of 16, the number of threads that can be han-
dled simultaneously leaps to 240. Also the clock speed increased a bit, so the
processing power is 936 million floating point operations per second (almost
one TeraFLOP). This is available as a PCI Express card with 4GB of memory

2.5. GPGPU architecture 33

(model C1060), or, like the S870, in a server case (model S1070). The latter has
an even higher clock speed, and can perform 4.3 TeraFLOPS. The Intel Core i7
(an x86 processor), which was introduced November 2008, is capable of only 51
GigaFLOPS, for a price about equal to the C1060.

The G80 and G200 processors are a coprocessor to the main processor, typi-
cally an x86 processor as mentioned in the previous section. The main processor
(or host processor) does all the ‘dirty’ work of running the operating system,
performing I/O, etc. To limit the amount of thread switching and the amount
of data that needs to be downloaded into the device’s memory, it is most effi-
cient to use it for applications with a high arithmetic intensity, i.e. with a lot of
(mathematical) operations per data element.

AMD FireStream

The AMD FireStream series is similar to the Nvidia Tesla family. Since I have
not used any of the older specimen, I will just outline the specifications of the
newest board, the AMD FireStream 9270, containing the Radeon R700 chip,
which was released in November 2008. It has 160 vector processors, arranged
in 10 groups of 16 processors. Each vector processor is capable of processing 5
data elements at a time, allowing for 800 threads to execute concurrently. The
board has 2GB of memory, and does 1.2 billion floating point operations per
second, slightly more than the Nvidia Tesla C1060, at roughly the same price.

STI Cell processor

The STI Cell processor is a processor jointly developed by Sony, Toshiba and
IBM (it is also called the IBM Cell processor). It is best known for its use in
the Sony PlayStation 3 game console. The Cell processor is the odd man out in
this lineup of GPGPU’s, because it is a hybrid design: it combines a number of
vector processors with a more all-round processor.

For business/development use it is available on the Mercury Cell Acceler-
ator Board 2 and the Fixstars GigaAccel 180. Both are PCI Express boards
including respectively 5 and 4GB of memory, and are capable of running an
entire operating system by themselves (due to the all-round processor). These
boards are expensive: they cost around 4 to 5 times as much as the Tesla or the
FireStream. The world’s fastest supercomputer (since June 2008) encompasses
6,480 AMD Opteron processors and 12,960 IBM PowerXCell 8i processors (that
model is a slight variation on the ‘normal’ Cell processor with better double
precision floating point performance).

As said before, the Cell is essentially a combination of a coprocessor and
host processor. The ‘host processor’ is the Power Processor Element, which
is a PowerPC2 processor in itself, capable of executing entire applications and
even an operating system. It can, at the will of the programmer, give highly
parallel arithmetic tasks to the Synergistic Processing Elements (SPE). An SPE
is actually just a vector processor capable of performing instructions on 16 data
elements at the same time. Thus, 8 SPE’s execute 16 threads simultaneously,
for a total of 128 threads. It can achieve 218 GigaFLOPS with this method.

2 The PowerPC architecture is a competitor of the x86 architecture.

34 2. Architectures for parallel computing

2.6 Discussion

In this chapter, I have given an overview of parallel models and architectures,
and shown how the x86 and GPGPU architectures differ from each other. The
basis of executing a program step by step from memory is the same; the distinc-
tion lies in the capability to execute an instruction on a lot of data elements at
the same time, using techniques like vector processing and stream processing.

The speedup of 200 times when compared to conventional x86 processors
can only be gained when the program fits in the data-parallel model and the
master-slave model at the same time, because only in this specific case can
advantage be taken of all processing elements.

Due to the widespread availability of GPGPU’s, massively parallel comput-
ing is now reachable for the masses. Already a great number of applications are
being developed that were deemed inconceivable before. It also seems that, with
some effort, a lot of programs can be squeezed into the data-parallel/master-
slave hybrid model[21].

I have chosen the Nvidia Tesla C870 board for my research because at the
beginning of my research, it was the cheapest board of the ones available and
it had the most documentation. Also, AMD FireStream products were not
available when I started my research. When my research was finished the dif-
ferences between the boards had diminished; there are even efforts to integrate
the software for the Tesla and FireStream products (called OpenCL).

3. Software design in a service-oriented
architecture

3.1 Introduction

Service-oriented architecture addresses the problem of software being so inter-
connected and so large that no-one alone has oversight and it is almost impos-
sible to change a subsystem without breaking something else. It does this by,
so to speak, putting every subsystem on its own island, with defined shipping
routes (swimming is not allowed).

I want to build my software as a service because I’m trying to make mas-
sively parallel computing available for the entire enterprise. If I can put mas-
sively parallel computing into a service, each new service that is built can use
it with relative ease, thereby leveraging the enormous power of MPC without
the drawback of complicated software design. In this chapter, I will show what
is needed to build such a service.

In the next section I define SOA and the related terms. In the third section,
different kinds of services are described. The fourth section enumerates all the
design ideas taken into account and the final section shows what kind of service
I will build and how the design principles apply to my design.

3.2 Definitions

The field of service-oriented architecture has been extensively described by
Thomas Erl [11, 12]. Because many researchers refer to his work, this chap-
ter will contain many of his ideas.

Erl takes several chapters to define and describe concepts and terms related
to SOA. Some terminology and concepts are shown in figure 3.1 to make their
relationships clearer. I have summarized Erl’s definitions and descriptions of
the concepts as follows (quoted parts are by Erl [12, pages 37-42]):

service “A physically independent software program with distinct design char-
acteristics”. These design characteristics are related to standardization,
coupling, abstraction, reusability, autonomy, statelessness, discoverability
and composability. Each of these is described a few sections further on.
Services are often referred to as web services in literature [4].

A service is usually built from three parts: a service contract, the actual
program that executes and processes the data, and a message processing
system that captures and translates messages for the actual program.

service-oriented design paradigm A programming paradigm that is centered a-
round services, much like object-orientation is centered around objects.

36 3. Software design in a service-oriented architecture

Fig. 3.1: The service-oriented computing concepts in relation to each other (di-
agram by Erl [12, page 41])

The paradigm comprises the principles which I mentioned in the previous
paragraph.

service-oriented solution logic Software that has been built according to the serv-
ice-oriented programming paradigm.

service-oriented architecture An architectural model in which “services are the
primary means of representing solution logic”.

service inventory A collection of services that form a coherent system. Usually
(entire) business processes of a company can be expressed in services from
the service inventory.

service composition As the name implies, this is a composition of services, au-
tomating (part of) an entire business process. The difference between a
service inventory and a service composition is that the inventory is just a
collection of services, whereas a composition is an actual software appli-
cation that does something (hopefully) useful.

orchestration The combination of services to perform a business process. The
difference between a service composition and orchestration is that a com-
position is a hierarchical composition of services, whereas orchestration is
a sequential combination.

service contract This is the technical contract (much like an API), which can
be read by a computer. A possible implementation of this is through a
WSDL definition. WSDL stands for Web Services Description Language,
which is the XML way of describing the interface of web services.

3.3. Service models 37

choreography Any protocol that defines the way in which services must interact
with each other [32]. In other words, a specification of the sequence of
messages that a service can receive and send. This is an extension of the
contract.

Finally, I use the term business service for “a business activity that often
results in intangible outcomes or benefits” [4]. So in this thesis service is used
in the technical (SOA) sense of the word and business service is used in the
business sense of the word.

3.3 Service models

Erl has identified three different service models [12, page 43]), which he defines
as follows:

entity service Much like an object in object orientation, an entity service defines
an entity that is part of the business process (but does not know about
that business process) with possible actions related to or on that entity.
An example of such an entity could be an invoice entity, which can have
the standard ‘create, read, update, delete’ actions and actions like ‘send’ or
‘pay’. The actions are only related to this entity. It can still be composed
out of other services.

task service A task service encapsulates (part of) a business process. That is, it
carries out a sequence of actions, involving multiple entity services. A task
service is a separate category because it “spans multiple entity domains
and does not fit cleanly within a functional context associated with a
business entity”.

utility service Utility services provide functionality that is not tied to any busi-
ness process and is often technology oriented. This functionality can be
anything, from exception handling to complex mathematical formulae.

3.4 Design principles

Erl has devoted a book specifically to explaining how services should be de-
signed: SOA Principles of Service Design[12]. Since I am designing a prototype
service for use in a service-oriented architecture, I will follow his guidelines (‘de-
sign principles’) This section shows how his guidelines apply to the service I am
designing.

3.4.1 Contracts

The first design principle Erl talks about is the standardization of ‘contracts’.
The contract states what a service does. This section is about how to design the
contract, which is not the same as designing what the service does. Erl mainly
suggests two things: 1. standardize the commands accepted by the service and
2. standardize the data representation.

Standardization of commands accepted by a service reduces the possibility
of confusion of service customers. If you build a Cat service with a ‘capability’

38 3. Software design in a service-oriented architecture

meow() and another service Dog with a capability woof(), it will be hard to find
the right capability for the job. They are easier to find when both capabilities
are called makeSound().

Erl states that it is a good idea to standardize your data representation (or
data model). This saves both development time and processing time, because
you don’t have to transform or convert your data for every service before the
service can work with the data. If you transmit a full date (‘May 22, 2009’)
with one service, and the other service expects a simple date (‘2009-05-22’), you
need a conversion layer which adds complexity and thus increases the probability
of errors.

Erl also talks about standardization of service policies. I do not discuss
these, as they are not related to my research on massively parallel computing.

3.4.2 Coupling

Coupling is the extent to which entities are connected to each other. I use
‘entities’ because it is not necessarily about connections between services; one
can for example speak of coupling between a service and its contract or between
a service and a data representation. Coupling is a tricky design principle. It is
tricky because you need it (how are services going to communicate without it?),
but you would like it absent as much as possible (to avoid too much dependence).
So there is a balance to be struck.

Erl lists five types of coupling within a service, which don’t exclude each
other:

1. Logic-to-Contract coupling. This is a preferred type of coupling, where
the contract is designed first and the ’solution logic’ second. This should
result in logic that actually does what the contract says, instead of the
other way around:

2. Contract-to-Logic coupling. The typical developer’s approach: build it
first, then make a contract for it. Which of course has the disadvantage
that no actual design principles are applied to the contract at all.

3. Contract-to-Technology coupling. The same as contract-to-logic coupling,
only the logic already exists, leaving the developer no option but to add a
contract to it. (Alternatively the developer can make a contract, then add
some conversion layer. This of course initially adds development time.)

4. Contract-to-Implementation coupling. This kind of coupling often exists
when interacting with the outside world in the form of databases, files, user
accounts, etcetera. When dealing with these connections, it is preferable
to minimize the number of services that use them. Also beware that the
database schema doesn’t sneak into the XML data representation, creating
a dependency on the database.

5. Contract-to-Functional coupling. This happens when service A comes to
rely on the way service B works, while B uses A to perform some function
for B. It is now effectively impossible for A to also perform a function for
C, making it tightly coupled.

3.4. Design principles 39

3.4.3 Abstraction

When talking about abstraction of a service, Erl actually talks about the ab-
straction of meta-information of that service. He speaks of four types of meta-
information: technology, functionality, programmatic logic and quality of service
information.

The abstraction of technology is fairly straightforward: why would I, as a
customer, care about what technology the service uses to accomplish its task?
If it does what it advertises (i.e. does what is in the contract), the technology
used is irrelevant. That also means there should be nothing in the contract
that is specific for the technology. The exact same reasoning can be used for
programmatic logic.

Quality of service (QoS) information is a bit different. Here, the QoS offered
is abstracted from the reasons for this specific QoS to be offered. So, if the
service is unavailable on sunday night, that is what should be stated in the
contract. The reason why (maintainance) is abstracted away, because it is not
of interest to the customer.

The abstraction of functionality is the odd man out. Erl says this (abstrac-
tion of functionality) happens when the service actually has more capabilities
than advertised in the contract. This seems only applicable in case of contract-
to-technology coupling. A program is available that does all kinds of things, but
only one of these things is needed for the service to do its duty. So, a contract
is added to the program that only advertises the single capability. Ideally the
logic is built after the contract is designed, and therefore there is no more logic
than advertised.

3.4.4 Reusability

The chapter on reusability boils down to two things: concurrent accessibility and
genericity. Concurrent accessibility is easy to explain, but less easy to actually
do: if a service is reusable it is might be used by multiple customers at the same
time. If the service is not prepared to handle this it will malfunction, and is
therefore not reusable. However, if the service manages a single resource like a
printer or a massively parallel processor, tasks must be handled appropriately
(a task queue comes to mind). More handling logic equals more complexity.

Genericity is best explained by the use of an example. Let us consider
entity services. An Employee service should be able to be used in a composition
with an Invoice, Complaint and Pay slip services. The generic design of the
Employee service seems reasonably straightforward (most likely it contains an
employee ID, a name, role, salary, etc. and their modification capabilities).
However, a Form service is needed, that should also be used in composition
with Invoice, Complaint and Pay slip. Now it gets tougher, because whereas
Employee is used by the other services, Form uses the other services itself. Still
there are advantages to making a generic Form service, because they could be
used everywhere in your service-oriented architecture, making other services (for
example a search service) more generic.

Some risks emerge (which are of course described in Erl’s book), and I’ll
highlight two of them:

• Reliability concerns. Suppose a service is built which the entire company
uses in its service compositions. If the service becomes unavailable, all

40 3. Software design in a service-oriented architecture

the other services would fail too. There are methods to fail gracefully,
and it is important to take those methods into account when designing
a service. Example methods are having a backup service standby, or
splitting message processing from the programming logic, so no messages
are lost.

• ‘Agile delivery’ concerns. Making a service more generic means more work.
If the service is not reused, all the time spent making the service generic
was wasted. So one needs to put serious thought into making a service
generic.

3.4.5 Autonomy

An autonomous service means that a service is in control over its environment
and especially its resources. Preferably, this control is exclusive, so the service
can guarantee consistent, scalable performance. Naturally there is a trade-off,
because as more and more consumers use the service, the less autonomous it
becomes. A completely autonomous service would be able to be deleted without
causing trouble. It is obvious that this ideal cannot be achieved. This part of
autonomy is already covered in the Coupling section. Erl has a nice definition
for a really autonomous service. It is called a service with Pure Autonomy,
where “the underlying logic and data resources are isolated and dedicated to
the service”.

This design principle also poses some risks of which one is worth noting:
overestimating service demand. Building a massively parallel computing service
which runs a simple calculator is overkill. This adds cost to implementation
and infrastructure. This can be solved by thorough examination of how big the
service needs to be, and making it easy to upgrade should the need arise. In my
project this problem is not relevant as the hardware available to me is fixed.

3.4.6 Statelessness

A service that keeps data when it is not actively processing that data is stateful.
A service that does not do this is stateless. Erl goes on to discuss a handful of
state types, types of data, and so on, which are not relevant for my research.

A stateless service needs to receive and send its data before and after each
activity. This has an impact on its performance. To make statelessness more
feasible Erl advises focusing on start-up times: “. . . transition from an idle state
to an active processing state in a highly efficient manner”. A way to accomplish
this is parsing XML messages using ‘high-performance parsers’ and ‘hardware
accelerators’. Erl recommends doing a ‘performance assessment’, in other words
a benchmark; just try different ways of doing things and see if the speed differ-
ence is significant.

3.4.7 Discoverability

Whereas the standardization design principle is geared towards contracts that
are read by machines, discoverability is really about humans. We still don’t have
computers that program themselves, so we need humans to connect services to
each other into compositions. If you work in a Fortune 500 company, chances

3.4. Design principles 41

are someone else has already created exactly the solution logic you require; the
challenge is to find it.

To be able to search for a service with any chance of success, one needs a
‘service registry’. A ‘service profile’, which is a templated document containing
everything there is to know about a service (in other words: the documentation),
is stored in this service registry.

Erl has an example for a service profile template in his book (chapter 15,
section 1). Some elements from this template are: purpose description, capa-
bilities, QoS requirements, version, status and custodian. Each capability gets
its own template, containing many of the same elements as the service template
itself.

On a sidenote, Erl considers the “application of this principle by non-com-
municative resources” a risk [12, page 381]:

Often the definition of service contracts is left to the same team
responsible for building the service itself. [. . .] this is generally de-
sirable. However, while these individuals may be the most qualified,
they may not be skilled communicators.

In other words, programmers shouldn’t be writing documentation, because they
are probably not good at it. This can be solved by “subjecting [the discover-
ability meta information] to a review and revision by technical resources trained
in the required communication skills”.

3.4.8 Composability

Composability shows similarities with reusability, in that one tries to use a ser-
vice on more than one occasion. However, since services are used in a hierarchy,
a composition controller isn’t necessarily reusable but does need to be compos-
able. This is in contrast to a composition member, which needs to be both.
Utility services are almost always composition members, seldomly controllers.
This is inherent to them being on the bottom of the service hierarchy.

Whereas reusability focuses on being able to work with several different
services, composability focuses on working with several services at the same
time. Ideally the output of a service A can be streamed by another service
B to a third service C, even though service A has no knowledge of, and no
connection to, service C. Erl defines that a point-to-point exchange, meaning
only two services are involved that communicate just with each other, is not a
service composition. At least three services need to be involved.

For this kind of composition to emerge, one needs a solid service inventory.
According to Erl, service inventories go through three stages before reaching
such a state. These are (each stage is explained by its name):

1. Initial service delivery projects,

2. Hybrid applications and a growing service inventory, and

3. A service inventory is established.

One of the risks of service composition identified by Erl is that a composition
member may become a performance bottleneck. He does not provide a solution;
he just states it to create awareness. I address this point in the discussion
(section 6.2).

42 3. Software design in a service-oriented architecture

4. Implementation of a ‘Hough
transformation’ service

4.1 Introduction

To show that an algorithm can be computed using a massively parallel processor
in a service-oriented architecture, I have taken the Hough transformation [10]
as an example. The Hough transformation is part of a set of algorithms used
in a prototype application within Logica. The application uses a camera and a
robot arm. The camera sends images to the software, which tries to recognize
a business card held in front of the camera, and then grasps the card using the
robot arm. The image recognition is split up in multiple steps:

1. Apply the following filters:

(a) Grayscale (color is unneccesary for the following steps)

(b) Subtraction of the initial background (it is assumed the background
is static, therefore it must not be processed)

(c) High-pass filter (to create a binary image)

2. Detect blobs (pixels that are contiguous)

3. Find blob to process (select the largest blob)

4. Detect edges of blob (needed for Hough transform, as the transform is
used to detect lines, not edges)

5. Perform Hough transformation (transform the image into a space graph
with votes for the most prominent lines in the image)

6. Find hotspots (corresponding to lines) in Hough space graph

7. Find lines looking like a rectangle (i.e. a business card)

As the Hough transform is a very general algorithm and it takes most of the
CPU time, it was decided to speed it up.

4.1.1 Hough transformation

The Hough technique transforms a binary image (an image with just black and
white pixels) into a Hough space graph. For each data point in the image (shown
in figure 4.11), lines at arbitrary angles are drawn through them (for example

1 http://en.wikipedia.org/wiki/Hough transform, viewed on 23 october 2009.

44 4. Implementation of a ‘Hough transformation’ service

for each degree on a 180 degree plane). The line perpendicular to the drawn
line that intersects the origin is then measured for its angle and its radius. The
corresponding point in the transformation (image on the right) is brightened by
one unit. The brightest spots thus define the radius and angle of those lines
through the origin. From them, the original lines in the image can be deduced
(but not their location or length).

Fig. 4.1: An example of a Hough transformation applied to an image (left) and
the rendering of the results (right). Image courtesy of Wikipedia.

The complexity of this algorithm is trivial: one draws all 180 (for exam-
ple) lines through each pixel of the original image. For a 320x240 image, this
yields 14 million identical operations. However, when processing High Defini-
tion images of 1920x1080 pixels, at 5 times the precision, thus drawing 900 lines
through each pixel, then the number of operations jumps to 1.9 billion. The cal-
culations are independent: they don’t rely on other pixels or other angles. The
memory access for storage is not entirely independent, as the same angle/radius
combination can be accessed for multiple input image pixels.

4.2 Programming for the Tesla processor

As mentioned in chapter 2, I chose to work with the Nvidia Tesla processor.
One cannot run software that has been written for an x86 processor on a Tesla
processor, as the paradigm is entirely different. So, the part one wants to run
on the Tesla has to be rebuilt.

There are several ways in which one can build software that runs on the
Tesla: through CUDA libraries (in C/C++ or FORTRAN), by building ones
own CUDA kernel (in C), or by using third-party Java and C# interfaces to the
CUDA libraries and/or kernel.

4.2.1 Libraries

Nvidia supplies two libraries for use on the Cuda platform: ‘CUBLAS’ and
‘CUFFT’. The libraries are self-contained: one does not need to write kernel

4.2. Programming for the Tesla processor 45

code to take advantage of them. The way to use the libraries is best explained
by the programming guide [30, page 1]:

The basic model by which applications use the CUBLAS library is
to create matrix and vector objects in GPU memory space, fill them
with data, call a sequence of CUBLAS functions, and, finally, upload
the results from GPU memory space back to the host.

Also, it is possible to combine kernel code and library code to achieve optimal
results. The CUFFT library provides a simple interface for computing parallel
Fast Fourier Transformations (FFT’s) on the Tesla. Similarly, CUBLAS is an
implementation of BLAS (Basic Linear Algebra Subprograms), a standard for
linear algebra computations such as matrix multiplication. For code examples,
I will refer to the programming guides [30].

4.2.2 Kernel

If the functionality provided by the CUBLAS and CUFFT libraries is not suffi-
cient (which is probably quite often the case), one can write their own custom
programs for the Nvidia Tesla by creating a ’kernel’. A kernel is an ordinary C
function, with the modifier global , like this:

g l o b a l void t e s tKerne l (f loat ∗ g idata , f loat ∗ g odata) {
// code goes here

}

It is probably useful to specify some data structure or variable to get the input
data from and to store the output data in (respectively g idata and g odata
in this case). The function can then be called as follows:

te s tKerne l<<< gr id , threads , mem size >>>(d idata , d odata) ;

The part between the angle brackets defines the execution configuration. The
execution configuration starts the kernel on the device with the amount of blocks
in grid, the amount of threads per block in threads, and the amount of memory
available per block in mem size. One block executes on one multiprocessor, and
one grid executes on one CUDA device. If one would execute the function on a
normal processor in a for-loop, it would be roughly equivalent to this:

int g r id ;
int threads ;
for (int gr id Idx = 0 ; g r id Idx < g r id ; g r id Idx++) {

for (int threadIdx = 0 ; threadIdx < threads ; threadIdx++) {
t e s tKerne l (d idata , d odata) ;

}
}

This method gives the programmer the freedom to do anything he or she wants.
However, it is not trivial to rewrite algorithms to fit this paradigm, especially
considering the hardware limitations (see section 4.2.4).

The kernel is the code that is run by the Tesla. Paralellism is created by the
compiler which makes sure the kernel code runs once per thread. The thread
itself must then decide what work to do. Usually this means a thread retrieves
a specific part of the data set that is being processed, processes it, and stores
the result (optionally somewhere else). A simple example is listed as follows:

46 4. Implementation of a ‘Hough transformation’ service

g l o b a l void add (int ∗data , int de l t a)
{

const int index = threadIdx . x + (blockIdx . x ∗ blockDim . x) ;
data [index] += de l t a ;

}

threadIdx.x is the id (within the block) of the thread that is currently
running. blockIdx.x is the id of the block that is executed, and blockDim.x
is the total number of blocks that will be executed. Thus, to get a unique
identifier (index) for the current thread, those variables are combined as shown.
The identifier is then used to retrieve a data element from an array. This data
element is not used by any other thread, therefore it is safe to modify the data
element (in this case add a value to it).

4.2.3 Java / C# interface

The Israeli company GASS (which stands for GPU based Advanced Supercom-
puting Solutions) created the jCUDA and CUDA.NET libraries, for use with
the respective languages. jCUDA employs JNI (Java Native Interface) to in-
terface with both the CUDA libraries and the CUDA kernel system. It is a
rudimentary interface which mimicks the behaviour of the C procedures used
to run a kernel. jCUDA can be retrieved from the GASS website2, along with
its documentation and examples.

Because the jCUDA API is so basic, I created a wrapper class to deal with
the specifics of loading a kernel function, setting its parameters and launching
the kernel. Using the wrapper, the example kernel given earlier can be run as
follows:
// i n i t i a l i z e data
int [] array = {1 , 2 , 3 , 4 , 5 , 6 , 7 , 8} ;
int de l t a = 5 ;

// i n i t i a l i z e device
CUDAWrapper cuda = new CUDAWrapper(new F i l e (” t e s t . cubin ”)) ;
cuda . getModuleFunction (”add”) ;

// se t parameters
CUdeviceptr arrayDevicePtr = cuda . setParameter (array) ;
cuda . setParameter (de l t a) ;

// launch !
cuda . launch (2 , 1 , 4 , 1 , 1) ;

// r e t r i e v e the r e s u l t
array = cuda . getParameterIntArr (arrayDevicePtr) ;

The kernel still has to be programmed in C, but since this is only a small
part of the entire application, this is less of a problem. The kernel then has
to be compiled (using Nvidia’s CUDA compiler, nvcc) into a library which is
dynamically linked.

A quick glance at the documentation of CUDA.NET reveals that it works
very similar to jCUDA. I have not looked at in detail, as it was not directly
relevant for my research.

4.2.4 Hardware limitations

The CUDA architecture has its limitations. Some are resolved by Nvidia with
new hardware models, some are not. The hardware models are defined by their

2 The URL of jCUDA is http://www.gass-ltd.co.il/en/products/jcuda/.

4.3. Implementation 47

‘compute capability’, currently ranging from version 1.0 (which is supported
by the Tesla C870 I’m using) to 1.3 (for the newest boards). I will list the
limitations I have encountered during development:

• The Tesla I’m using is not capable of performing atomic operations; if two
threads write to the same memory location, one succeeds, but it is not
known which one. Newer versions do support this.

• Section 2.5.3 already remarks the fact that the C870 board has 16 multi-
processors. This is important for the software, because there must be at
least as many blocks as there are multiprocessors. Otherwise, some of the
multiprocessors will be doing nothing. Likewise for the number of threads:
they should be a multiple of 32 to prevent parts of a multiprocessor idling,
or even a multiple of 64 to allow more freedom for the scheduler.

• Debugging is hard. There is an emulator which allows you to step through
the code in a normal debugger. The issue with the emulator is that it does
not differentiate between pointers to host memory and to device memory,
which was a big source of errors in my code. Debugging therefore happens
using old-fashioned temporary variables and arrays.

• Support for 64-bit floating point arithmetic (e.g. using the double data-
type) hasn’t been added until compute capability 1.3.

• The sine and cosine operators (sin() and cos()) operate with a devia-
tion of 2 ulps (unit of least precision). This means that for the float
datatype, inaccuracies of about 10−8 occur. This isn’t much, but it makes
it impossible to compare end results with those calculated by Java, which
operates with a 0.5 ulp margin. This problem is described in more detail
in section 4.3.2.

• There are two kinds of memory on a Tesla: global memory and shared
memory. The latter is way faster, but it only exists during the execution
of a block, meaning you need to keep it synchronized with global memory.

4.3 Implementation

As stated earlier, I will focus on programming the Hough transformation al-
gorithm for the Tesla processor. The original business card recognition soft-
ware is built in the programming language C#.NET, using the open source
AForge.NET library.

AForge.NET is a C# framework designed for developers and re-
searchers in the fields of Computer Vision and Artificial Intelligence
- image processing, neural networks, genetic algorithms, machine
learning, robotics, etc.3

The Hough transformation is implemented in AForge.NET in the Hough-
LineTransformation class of the AForge.Imaging namespace. It is called
Hough line transformation because the general Hough transformation can be

3 As found on the homepage of AForge.NET: http://www.aforgenet.com/framework/.

48 4. Implementation of a ‘Hough transformation’ service

used to detect any shape that can be defined by a limited number of parame-
ters; AForge.NET also supplies HoughCircleTransformation which, obviously,
detects circles.

4.3.1 First implementation in C

After building a few trial programs (listed in appendix 7.1), I began my first
attempt at getting the Hough transformation algorithm to work in C. I did not
succeed at this, due to various problems. The problems I encountered fall into
two categories: the first are due to inadequate documentation and errors that
are tough to solve without documentation, and the second are due to my lack
of experience in the C programming language. Or sometimes both.

• First of all, at the start of my research, the only documentation available
was a programming guide, a reference manual, some examples and a not
very active forum. This made it very hard to find solutions to error mes-
sages. ‘Howto’s’ can be immensely helpful, but they also were nowhere to
be found. Logica had no experts on CUDA programming, as I was the
first to use the technology.

• To just get the examples to work meant wading through compiler and
runtime errors which were caused by:

– the absence of third-party libraries (like GLUT, the OpenGL Utility
Toolkit),

– the wrong naming of shared libraries belonging to the Nvidia graphics
driver, which also interacts with the Tesla,

– incorrect file paths (shared libraries cannot be found by the compiler
or at runtime),

– the specific version of the GNU C compiler rejects certain syntax,
therefore necessitating the use of an older version of the compiler,

– the specific version of the graphics driver being incompatible with
the CUDA libraries,

– too strict settings of Security-Enhanced Linux (which is standard in
Fedora Linux and should be supported according to the documenta-
tion).

• After I got the examples running and I started writing my own software,
I ran into difficulty debugging C programs. The Eclipse debugger didn’t
work with the CUDA software development kit out of the box, and it was
hard to figure out why. The only way for me to debug was by printf-
ing variables to the console, which is a hassle. After a while I got DDD
(Display Data Debugger) to work, which is still rather primitive. And
even later a howto was published on the internet describing how to get
CUDA to work in Eclipse4, which solved this problem.

4 Quickstart for CUDA & Eclipse CDT, from the Nvidia forums:
http://forums.nvidia.com/index.php?showtopic=71535, viewed on 23 october 2009.

4.3. Implementation 49

• Programming your own kernel also means doing your own memory man-
agement. In C this works with pointers, and there is no difference between
pointers to host memory and pointers to device memory. At least not as
far as the compiler is concerned. Errors of this kind are very hard to
debug, as the emulator will run your application perfectly fine. The em-
ulator converts all device pointers to host pointers, since all code runs on
the host in emulation mode. The matter was further complicated by the
fact that I was trying to send a struct containing pointers to the device;
one needs to be very careful with allocating memory, copying data and
assigning pointers when using a struct within CUDA. Eventually I gave
up on the use of structs, and just used arrays (which is less elegant).

• The Nvidia compiler does not support the use of multidimensional arrays.
Since the Hough transformation deals with images, I needed to calculate
indexes into arrays representing images myself. This very easily leads to
confusion and hard to find bugs (because of mixing up x and y coordi-
nates and image width and height). The fact that image formats and the
AForge.NET code do not use the same coordinate system made things
even more complex.

In March of 2009, jCUDA was made available. Since I have more experience
in Java than in C, I switched to Java development.

4.3.2 Second implementation in Java

Getting jCUDA to work was relatively uncomplicated, although I’m sure my
previous experiences in C have helped. I have taken the Hough transformation
algorithm and ported it to Java. The prototype software should be adapted to
send the image to be analysed for the Hough transformation to the service, on
which the transformation is done using the Nvidia Tesla. The resulting graph
is then transferred back to the application to be processed further.

The application has just one interface to the outside: it is a function called
transform with two parameters: image (in the case of Java, of type
BufferedImage and precision of type int. The Java code of the specific
method is displayed in listing 4.1 on page 52.

I’ll walk through the code line by line to explain what is happening.

1-3 Class and method declaration.

4 A check is performed to see if the supplied image is a 256-color image and
if a valid precision is given.

6-15 The parameters needed for the calculation are calculated and put in an
array, as this is easier to send to the Tesla than sending seven seperate
integers.

17 The CUDA system is loaded, selecting the appropriate library file
(“hough.cubin”).

18 The necessary function (“transform”) from the library is chosen. There
could be multiple functions in a library, therefore the function has to be
specified.

50 4. Implementation of a ‘Hough transformation’ service

20 The Java image is converted to a simple array and sent to the Tesla.
The method setParameter takes care of allocating the correct amount
of memory on the Tesla, copying the data to the device, and sending the
pointer to the function.

21-22 A new array initialized with zeroes is sent to the Tesla. It uses the same
setParameter method as on the previous line. This time the return value
is stored (in houghMapDevicePtr); it is a pointer to the array in device
memory. We need to store this to be able to retrieve the contents of the
memory later. This wasn’t necessary before as that was input data.

23 The last data to be sent to the Tesla are the calculation parameters.

25 This method launches the kernel. The program code is loaded into the
memory of the Tesla and execution starts. This is actually an asyn-
chronous operation (meaning the execution of the Java application will
continue while the kernel is running), however there is code inside the
launch() method which synchronizes the application with the kernel, as
in this application there is nothing for the CPU to be done in the mean-
time.
The first two parameters define the block size, and the last three define
the grid size. I only use one-dimensional grids and blocks in this case,
therefore the second, fourth and fifth parameters are of the value 1. The
number of blocks should be maximized, and the number of threads should
be at least 32. Therefore I divided the number of degrees by 4, resulting in
45 threads being executed. The precision is multiplied by 4, maintaining
the 180 degrees to calculate.

27 When the launch has succeeded, the resulting data (the ‘Hough map’) is
copied from the Tesla back to the host computer to be processed further.

28-30 The array is ‘scaled’ first; this means the largest value is decreased to 255,
and all other values in the array are decreased by the same magnitude.
This is done to be able to convert the array to a grayscale image, which
only has 256 possible values (‘0 is completely black). Then the array is
converted to a BufferedImage and returned to the caller of the method.

Implementation notes

I compared the result of the Hough transformation on the Tesla with the result
of the same calculation on an x86 cpu, and found there were small differences.
These differences occur where the calculated radius is very close to an integer
number, e.g. a value of 0.9999999. The result is a float, which is casted to
an int. In C, a type cast to an integer means the floating point number is
truncated; in this case 0.9999999 is ‘rounded’ to 0. However, the same radius
calculation on the Tesla yields 1.0000000, and when this value is truncated, the
result is 1.

Using the round() function instead of truncating via a type cast does not
solve this problem; it merely moves the problem to the values 0.4999999 and
0.5000000. After digging through the documentation, it appears that the Tesla
has a larger margin for error than the x86 architecture. The documentation
states that the Tesla complies with the IEEE-754 standard (a standard for

4.3. Implementation 51

single-precision binary floating-point arithmetic), although its behaviour devi-
ates from what the x86 architecture does. The exact difference lies in the fact
that the computation of a sine, cosine and division on the CUDA architecture
have a ‘maximum ulp error’ of 2, whereas those computations on the x86 archi-
tecture have a maximum ulp error of 0.5.

‘Ulp’ stands for unit in the last place, and specifies the smallest gap between
two values stored in a binary floating point format. Since a single precision float
can store only 7 significant digits, this gap (‘1 ulp’) is 0.0000001 in the afore-
mentioned cases. This means the Tesla can have a discrepancy of 0.0000002,
which is enough to cause the issues described earlier. I have not found a way
to emulate this behaviour in the Java environment. Another solution would
be using double precision floating point numbers, except that ‘doubles’ are not
supported in compute capability 1.0 (also, using doubles would incur a severe
performance penalty).

After visualization of the Hough space graph, visual inspection revealed no
significant differences between the graphs generated on CUDA and graphs gen-
erated by an x86 processor.

4.3.3 Kernel

The kernel, which must be programmed in the Nvidia adaptation of the C
language, is shown in listing 4.2.

Again, I’ll do a walkthrough of the code.

1 The function declaration. extern ‘‘C’’ is used because the code will
be dynamically linked. global was explained in section 4.2.2. The
parameters are all arrays and speak for themselves.

2-8 The calculation parameters which were sent to the Tesla are extracted
from the array. This is done for code readability, but it has an additional
benefit: the array resides in ‘global’ memory, whereas the parameters
are now transferred to ‘shared’ memory. Shared memory is orders of
magnitude faster than global memory, so the algorithm should execute
faster.

9 Another calculation parameter is computed from the previous parameters.

11 The theta variable is determined from the id’s of the thread and the
block. Since each thread executes the algorithm with its own theta value,
the possibility of concurrent memory writes is eliminated.

13-14 The thread loops through all pixels of the image.

15 It is determined whether the current pixel is non-black (i.e. white, since
the input is a binary image). If that is the case, the Hough space graph
must be adjusted.

16-18 As explained at the beginning of this chapter (section 4.1.1), for each pixel
different lines are drawn through it. The angle of the line is determined
by theta * thetaStep. Then the distance of the line to the origin is
calculated; this distance (in pixels) is stored in radius.

52 4. Implementation of a ‘Hough transformation’ service

Listing 4.1: The Java method that calls the Hough transformation on the CUDA
architecture

1 public c lass HoughTransformation {
2 public stat ic BufferedImage transform (
3 BufferedImage image , int p r e c i s i o n) {
4 checkInput (image , p r e c i s i o n) ;
5
6 int [] params = new int [7] ;
7 int width = params [0] = image . getWidth () ;
8 int he ight = params [1] = image . getHeight () ;
9 int halfWidth = params [2] = width / 2 ;

10 int ha l fHe ight = params [3] = he ight / 2 ;
11 int halfHoughWidth = params [4] = (int)Math . sq r t (
12 halfWidth ∗ halfWidth + ha l fHe ight ∗ ha l fHe ight) ;
13 int houghWidth = params [5] = halfHoughWidth ∗ 2 ;
14 f ina l int DEGREES = 180 ;
15 int houghHeight = params [6] = DEGREES ∗ p r e c i s i o n ;
16
17 CUDAWrapper cuda = new CUDAWrapper(new F i l e (”hough . cubin ”)) ;
18 cuda . getModuleFunction (” transform”) ;
19
20 cuda . setParameter (imageToArray (image)) ;
21 CUdeviceptr houghMapDevicePtr =
22 cuda . setParameter (new int [houghWidth ∗ houghHeight]) ;
23 cuda . setParameter (params) ;
24
25 cuda . launchGrid (p r e c i s i o n ∗ 4 , 1 , DEGREES / 4 , 1 , 1) ;
26
27 int [] houghMap = cuda . getParameterIntArr (houghMapDevicePtr) ;
28
29 return arrayToImage (houghWidth , houghHeight , s ca l eArray (houghMap)) ;
30 }
31 }

Listing 4.2: The CUDA kernel that performs the Hough transformation, written
in C

1 extern ”C” g l o b a l void trans form (char ∗ in , int ∗out , int ∗params) {
2 int width = params [0] ;
3 int he ight = params [1] ;
4 int halfWidth = params [2] ;
5 int ha l fHe ight = params [3] ;
6 int halfHoughWidth = params [4] ;
7 int houghWidth = params [5] ;
8 int houghHeight = params [6] ;
9 f loat thetaStep = 3.141592653589793 f / houghHeight ;

10
11 const unsigned int theta = threadIdx . x + (blockIdx . x ∗ blockDim . x) ;
12
13 for (int y = 0 ; y < he ight ; y++) {
14 for (int x = 0 ; x < width ; x++) {
15 i f (in [x + y ∗ width] != 0) {
16 int rad iu s = (int) (cos (theta ∗ thetaStep) ∗
17 (x−halfWidth) − s i n (theta ∗ thetaStep) ∗
18 (y−ha l fHe ight)) + halfHoughWidth ;
19
20 i f ((rad iu s < 0) | | (rad iu s >= houghWidth)) {
21 continue ;
22 }
23
24 out [rad iu s + theta ∗ houghWidth]++;
25 }
26 }
27 }
28 }

4.4. Benchmarks 53

20-22 The radius is checked to see if it falls within the bounds of the Hough
space graph (although it should never be outside those bounds).

24 The ‘bucket’ in the Hough space graph that corresponds to the current
theta and radius is incremented by one.

4.4 Benchmarks

4.4.1 Hardware setup

The computer on which the benchmarks were run consists of:

• Intel Pentium 4 HT 2.8E processor

• 2x 1 GB dual channel DDR400 memory

• Intel D915GAG motherboard

• Nvidia Tesla C870 board (G80 processor with 1.5GB memory)

I emphasize that the Pentium was released in Februari 2004, whereas the
Tesla was released in November 2007. To compensate for this fact, all measure-
ments are adjusted to the time an Intel Core 2 Extreme QX6700 would have
taken to execute the application (this processor was also released in November
2007 and had the same initial price of 1000 USD). The adjustment is calculated
as follows: according to Intel, the Pentium 4 HT 2.8E can perform 5.6 GFLOPS
and the Core 2 Extreme QX6700 performs 45,6 GFLOPS. This is a difference of
a factor 45.6/5.6 = 8.14, so all CPU measurements are divided by this number.
My method does not take other differences into account like the memory speed
and bus speed. However, the Tesla is also slowed down a bit by the slow host
(the transfer bandwidth decreases by a factor 3). Lacking a faster test PC, the
difference could not be quantified. It is expected that it is not significant.

4.4.2 Software setup

The execution time of the transform method is measured by calling the Java
function System.getCurrentTimeMillis() twice, and calculating the differ-
ence. On the Linux 2.6 kernel this is a fairly reliable method of measuring
execution time; the only discrepancies expected are due to the Java Virtual Ma-
chine interrupting the process for either the garbage collector or the hot spot
compiler. It is worth mentioning that I measure not only the execution time on
the Tesla (like Nvidia does in the examples supplied with CUDA), but that the
overhead of copying to and from Tesla memory is included. This will of course
have an adverse affect on the measured times, but this more accurately reflects
real-world performance. Furthermore, the code of both the CPU and CUDA
versions are not optimized. The sine and cosine instructions could have been
put in a lookup table. This optimization is not performed by the compiler.

This is the software I am running on the test PC:

• Fedora Linux 9 with Linux kernel 2.6.27

• Nvidia graphics driver 180.06

54 4. Implementation of a ‘Hough transformation’ service

• OpenJDK 1.6.0

• CUDA Toolkit 2.1, build 1635

I have benchmarked the software with four kinds of input images:

1. a completely black image (the radius calculation is skipped every time),

2. an image of a business card of which the edges have been detected,

3. an image of a business card which was held between the thumb and other
fingers (causing the shape of the thumb to show up after the edge detec-
tion, shown in figure 4.2), and

4. a completely white image (causing a radius calculation on each pixel, mak-
ing this transformation the most lengthy process).

Fig. 4.2: An edge-detected business card, distorted by a thumb holding it.

Each of these images are used in two resolutions: one in the original resolu-
tion, as supplied by the prototype robot arm software used at Logica (176x113
pixels), and one in ‘HD’ (High Definition) resolution, which is used for high
quality video (1920x1080 pixels). The high resolution image is a resized version
of the original ones. The HD image is mainly used to illustrate the power of
the Tesla processor, as it was found that the detection of lines did not improve
with higher resolution images. The amount of white pixels in the business card
images is 6.5% of the total number of pixels for both resolutions.

Also, the images were processed with different value for the precision, namely
the values 1, 2 and 4. The distance between these values exists to show statis-
tically significant differences.

4.4.3 Measurements

All tests were run five times. The highest and lowest execution times were
discarded, after which the average was taken of the remaining three data points.
The resulting values have an accuracy of +/- 10 milliseconds. The x86 values
are adjusted to correct for the x86 processor speed, as described in section 4.4.1.
This led to the measurements shown in table 4.1.

From the results, some observations can be made.

4.5. Discussion 55

Tab. 4.1: Average measured times across five tests, in milliseconds
Precision 1 2 4
Image x86 CUDA x86 CUDA x86 CUDA
Original image
Completely black 2 153 3 159 1 166
Normal card 12 162 27 162 44 160
Card with thumb 13 144 30 161 55 197
Completely white 204 205 404 195 758 198
High definition
Completely black 15 1679 12 1549 14 1702
Normal card 1069 1668 2136 1724 4273 2020
Card with thumb 1266 1741 2541 1795 5077 2056
Completely white 19679 5621 39607 5846 78765 7763

• The Tesla is only faster when there is a big number of white pixels; it is
slower otherwise. This is due to the fact that the number of white-pixel-
tests (see line 15 in listing 4.2) is vastly larger for the Tesla. Whereas the
CPU code does not compute any angles when a pixel is black, the GPU
kernel has to check all pixels for every angle.

• For each increase in precision, the x86 processor shows a proportional
increase in execution time. The Tesla however, shows roughly equal exe-
cution times, irrespective of the precision! This is caused by the Tesla not
being able to harness its full power. It has 16 multiprocessors, of which
only 4 are used with the precision of 1, 8 are used with the precision of 2,
and all 16 are not used until the precision reaches 4.

• Even for very small data sets, the Tesla takes some 160ms. This is most
likely due to the overhead associated with copying data to the Tesla, start-
ing a kernel, and copying the data back to the host.

4.5 Discussion

I have shown that it is possible to build a Hough transformation service using
the CUDA architecture, and that this service can be substantially faster than
the equivalent x86-based service.

4.5.1 Benchmark results

The performance results are not as spectacular as Nvidia leads one to believe.
This can be partially attributed to the fact that I measured not only the time
it took a kernel to execute, but also included the initialization of Tesla memory.
As mentioned, this reflects real-world usage. Furthermore, the kernel is not as
optimized as it could have been. However, to accomplish full optimization, a
serious amount of profiling and analysis needs to be done. Depending on the
application, this might not always happen. Parallelizing the work over different
pixels instead of different degrees might show a performance increase. I was
unable to build a kernel showing this.

56 4. Implementation of a ‘Hough transformation’ service

One other factor is the applicability of Amdahl’s Law[3] in this case. It states
that the speedup of a parallel program is limited by the sequential part; if the
sequential part of a calculation takes 10% of the time on a single processor, no
matter the amount of processors, the speedup will be maximized at 10 times
the original speed. In my application, the bitmap has to be transferred to the
Tesla. This operation is sequential and it will slow the Tesla down.

4.5.2 Suggestions to Nvidia

As mentioned numerous times throughout this chapter, programming in the
CUDA architecture isn’t as easy as one would think, or as easy as I expected in
the beginning. To help out new developers, I highly recommend Nvidia builds
the following:

• A tutorial ‘programming for the CUDA architecture’. Currently there
exists only a tutorial to get to an ‘Hello world’ application; the rest of
the documentation consists solely of examples. A tutorial showing how to
build5 one or more of the examples would be really helpful.

• A tutorial ‘setting up a development environment for the CUDA archi-
tecture’ including what to do if it doesn’t work would be a tremendous
help.

• A small library of often-used functions with defaults. For example: copy-
ing an array to the Tesla usually involves both a memory allocation oper-
ation and a memory copy operation, so these could be combined. Or even
better, just make it possible to send a host array to the device function,
and make the conversion automatic! Every developer encounters these
same instructions; one could keep the existing instructions for added flex-
ibility. I already did this in my extension of the jCUDA library (which,
unfortunately, is not maintained by Nvidia but by a third party).

5 ‘Build’ as in ‘program the code’, not as in ‘compile’.

5. Selecting a software effort estimation
method

5.1 Introduction

An implementation of a service for massively parallel computing has an impact
on the effort of development of new software that uses massively parallel com-
puting. It is useful to quantify this impact, i.e. find out how much it will cost
to build software on top of the designed service, compared to how much it will
cost to build software directly for the architecture.

Software effort estimation focuses on the amount of time (the effort) it takes
to complete a software project. Software effort estimation is hard, as shown by
Moløkken and Jørgensen [28]. 60-80% of software projects exceed their allocated
time and/or budget. To increase the estimation accuracy (the deviation of the
actual effort from the original estimate), many estimation approaches have been
developed, with varying success. Also, I have taken a look at the methods used
by Logica, to be able to use criteria from the real world. I used these criteria
to compare methods from literature and to determine what is the best method.

In the next section, I show and explain the conceptual model used for this
research. The third section explains the methods described in literature. The
methods used by Logica are detailed in the fourth section. The final section
gives recommendations on best practices and methods.

5.2 Conceptual model

To determine which estimation methods there are, a literature study is car-
ried out. The basis for this literature study is research performed in 2007 by
Jørgensen et al., who have catalogued all publicly available, peer reviewed re-
search papers on cost estimation in their article A Systematic Review of Software
Development Cost Estimation Studies [25]. They have also classified estimation
approaches, enabling a focused research into each of the approaches while know-
ing all approaches have been covered. There are others who tried to list the
different methods, but Jørgensen’s research was by far the most comprehensive
[6, 7].

The logical question that follows after what approaches there are, is what
the best approach is. The most important criterium is of course accuracy. But
other factors cannot be ignored: the amount of work involved for arriving at an
estimate, the data needed for a specific approach (estimation by analogy needs
data from other projects to compare the current project to, which may not be
available) and possible other uses for the collected data (function point analysis
for example allows for defect estimation). I will compare the methods to each

58 5. Selecting a software effort estimation method

other using criteria which are important to Logica.
There are two sources to gather information on software estimation within

Logica. These sources are the documentation about the estimation processes
and the people actually performing and using the estimates. The documenta-
tion is available within Logica as the Estimating Framework (EFW). People
performing and using estimations are bid managers, project managers, delivery
managers and those in charge of choosing an estimation method. Since the
approaches mentioned by the documentation and employees might differ, it is
helpful to consult them both.

The available documentation needs to be studied and mapped to the ap-
proach categories as defined by Jørgensen. To get the information from em-
ployees, I conduct interviews with four key people, being two project managers
(of which one also conducted bids), a delivery manager and the ‘lead expert
estimating’. During the interviews I made notes which I have processed and
combined in this text. A point of interest is also whether any accuracy statis-
tics are available and what they are.

The conceptual model shown in figure 5.1 is applied to the gathered infor-
mation, resulting in the recommendation explained in the last section.

Fig. 5.1: The conceptual model for the recommendation on effort estimation
methods

5.3 Estimation goals

First it is important to establish a strict terminology concerning effort estimation
goals. There is no real widespread accepted use, as explained by Grimstad,
which often leads to confusion [19, page 303]:

Lack of precision leads easily to a mix of processes with different
purposes, e.g. a mix of processes with a focus on realism (estimation
of most likely effort), a focus on efficient development work (esti-
mation of planned effort), a focus on avoidance of budget overrun
(decisions on budgeted effort), and a focus on winning a bid (esti-
mation of price-to-win).

Therefore, I will follow his guidelines regarding terminology of estimation
goals. These goals refer to the different processes that produce the estimation

5.4. Estimation approaches 59

(as mentioned on the previous page), often leading to a different estimate. The
goals are:

actual effort The effort it actually took to build the software.

most likely effort The estimate that has the highest probability of becoming the
actual effort.

planned effort Most likely effort with a margin to make it possible to work effi-
ciently. For example, this takes the availability of developers into account,
as that may change during a project, while it impacts the end date.

budgeted effort Most likely effort with a margin to account for project risks. If
an error in the software pops up late in the project, the project can be
severely delayed. This can be taken into account when estimating the
project, even though the probability of a long delay happening may be
low.

price-to-win Effort based on the price needed to make a sale to a customer.
The ‘estimate’ is made backwards: a price is determined, after which it is
decided how much effort can be spent for that price.

Finally, the estimation accuracy is the difference between the actual effort
and the estimate. This can be measured in different ways, of which MRE (“mean
of magnitude of relative error”) is the most popular [26]. According to MRE, if a
project has a most likely effort of 10 months, but it took 11 months to complete,
it was overrun by 10%. A large MRE does not mean that the estimator did a
poor job, but merely that this estimate was incorrect. This can for example be
caused by the complexity of the project or by insufficient project management
[18]. Other methods of expressing estimation accuracy have been proposed [26],
but whether they are superior remains to be seen.

To be able to compare estimation accuracy across projects, the same estima-
tion goal must be used for each project [19]. Also, to compare the actual effort
to one of the goals, it needs to be adjusted for delivered work. If the most likely
effort includes a solution for a certain requirement, but that particular solution
is not built, the actual effort cannot be directly compared to the most likely
effort. Adjustments to the estimation of most likely effort are thus needed.

5.4 Estimation approaches

Because the cost of software is mainly dependent on the development effort, a
lot of work has been put in devising an estimate of that effort. An estimation
approach is a way to go from “this is the project” to “this is the effort the project
is going to take”. ‘Effort’ usually means the amount of time, which translates
into a certain cost. This can be the cost to the organization; it can also be the
cost to the customer (in which case the effort translates into a price).

The different estimation approaches are described and categorized by Jørgen-
sen. However, he states that his classification “was developed for the purpose of
our review and is not intended to be a general-purpose classification of software
effort estimation studies” [25, page 34]. I have taken his classification and re-
categorized them to better fit my research.

60 5. Selecting a software effort estimation method

5.4.1 Expert judgment

Estimation based on expert judgment relies solely on the opinion of one or more
experts. A structured approach to arrive at the estimate is not necessary. This
method relies heavily on the experience and skill of the estimator. To mitigate
the impact of subjectivity one can use the Delphi technique (a technique to reach
consensus between multiple experts [23]). To aid experts in arriving at a most
likely estimate, PERT may be used. PERT stands for Program Evaluation and
Review Technique and averages multiple estimates (optimistic, pessimistic and
most likely) with a weight of 4 for the most likely estimate and 1 for the others
[8, pages 19–27]. This has been shown to provide a more accurate estimate.

The advantage of expert judgment based estimation is that no historic data is
needed. The disadvantage is that when an experienced expert for the particular
software project is not available, the estimation accuracy may be very low. Also,
this method has a bias towards underestimation [24].

5.4.2 Analogy

Analogy-based estimation (and, closely related, case-based reasoning) utilizes
the data of previously completed projects. The goal is to find projects that
are at least partly similar in scope, staffing, etc. to the project to be estimated
(hence ‘analogy-based’). The actual effort of the found project is then used as
the estimate for the new project, after modification to make sure both projects
are comparable [14]. It is also possible to compare to a set of similar projects,
increasing the accuracy of the estimate.

The advantage of the analogy-based method is that estimates have their
direct basis in reality without any models, which makes it simple and fast. The
disadvantage is that previously completed projects that are analogous to the
current project are not always available [24].

5.4.3 Work breakdown

The work breakdown structure (WBS) decomposes the project into a subtask
hierarchy. These subtasks can also consist of other subtasks, until a level has
been reached where no more subtasks can be or need to be defined [36]. WBS is
not a full estimation method by itself, but needs to be combined with another
method like expert judgment or analogy-based estimation. The subtasks are
estimated one by one, and lastly all estimates are aggregated into the final
estimate (this is also called a bottom-up approach).

Because the work breakdown structure divides complex tasks into elemen-
tary subtasks, the complex tasks become less fuzzy allowing for more accurate
estimates [24], which is its greatest advantage. The disadvantage is that the
project must already be reasonably defined to be able to use this approach.

5.4.4 Function points

Estimation based on function point analysis (FPA) defines the software size in
function points. These points are then multiplied by the expected time per
function point, yielding a final estimate of the effort [15]. One could of course
multiply the function points by a cost per function point, immediately yielding
a price.

5.4. Estimation approaches 61

Function point analysis first establishes the size of the software in ‘unad-
justed function points’. In a nutshell, points are assigned based on the number
of inputs and outputs, to be determined from the requirements specification.
The number of points to assign have been determined by Albrecht, the inventor
of FPA [1]. The unadjusted function points are then corrected for 14 complexity
factors (called ‘general system characteristics’) of a project. Some examples of
these factors are performance, usability and distributed data processing. As
stated above, the final number of function points is then converted to a final
estimate of the effort.

Advantages of this model are that function points have been defined in
ISO/IEC standard 20926:2003, allowing for a repeatable estimation process.
Function points are also used for estimates of other variables (than develop-
ment effort), including the expected number of defects and the testing effort.
The disadvantage is that, due to the dependency on inputs and outputs, func-
tion points are especially suited for administrative systems and not so much for
technical (embedded) systems with highly complex algorithms.

5.4.5 Mathematical model

The idea of a mathematical model is that, for a set of cases, input variables
and actual effort are measured. Then the effort is modeled as a function of
the variables. For a new project, the estimator estimates or determines those
variables and enters them into the model. An effort estimate will then be
computed [14].

Mathematical models are not explicitly named in Jørgensen’s paper. How-
ever, the following of his categories are essentially mathematical models: re-
gression-based estimation, CART (classification and regression trees), simula-
tions, neural networks, theory-derived estimation models, the Bayesian estima-
tion model and “other techniques for estimation modeling”. They differ only
in the algorithm that establishes the model and in the specific input variables;
the principle for the estimator remains the same. I will not go into detail on
the specifics of these algorithms, but instead refer to Jørgensen’s work [25]. A
notable example of a method based on a mathematical model is COCOMO
(COnstructive COst MOdel).

When constructing a mathematical model, the training data is very impor-
tant. ‘Training data’ is the information that is fed into the model, i.e. the input
variables and the actual effort of previous projects. The higher the similarity
between the training data and the projects the model will be used for, the more
accurate its results will be.

The advantage to using mathematical models is that a modification to the
input variables immediately leads to a new estimate, thereby enabling the es-
timator to assess the impact of such changes. Examples of such variations are
the level of experience of team members, whether a project planning tool is
used, how many people are involved, etcetera. Also (depending on the input
variables), it can be used before requirements are established.

Disadvantages are that it can take a lot of effort to calibrate a mathematical
model for a specific software team or company. The assessment of input variables
is subjective (however this also holds for expert judgment). Because the model
has to be tailored for a specific situation or company, it is necessary that data
of previous projects is available (although this data may be taken from different

62 5. Selecting a software effort estimation method

companies). Finally, some of the models have little empirical research to show
their strengths and weaknesses.

5.4.6 Combination of methods

Because different estimation techniques achieve different accuracy results on dif-
ferent projects, it is useful to combine estimation methods. [27]. An example
might be a work breakdown structure, in which a subtask is transformed into
function points which is then used in a simulation [14]. Or, a combination of
methods that is more common, expert estimation of subtasks of a work break-
down structure. As noted in the description of the work breakdown structure,
it always needs to be combined with another method. The advantages and
disadvantages of combinations differ with the respective combination. A ‘best
of both worlds’ situation should be strived for, where the advantages of one
method cancel out the disadvantages of another.

5.5 Case study on estimation methods

As mentioned before, I have conducted a case study on estimation methods used
in a real business (in contrast to methods found in literature). Here also I made
a distinction between estimation goals and estimation approaches.

5.5.1 Estimation goal

Within Logica, no official distinction is made between estimation goals. That
being said, there are still some observations to be made:

Price-to-win is never used. An effort estimation, not a cost estimation, is
made by a ‘bid manager’ (a manager which creates offers for potential cus-
tomers). Once this estimation is done, the result is multiplied by an hour-rate
which yields a total price. If this price does not suit the customer, deviations
from the hourly rate are possible, but deviations from the estimate are not.
This ensures that effort estimates are never compromised to win a bid, which is
also recommended by Grimstad [19, page 308]. Compromised effort estimates
lead to problems, because they don’t reflect reality.

Actual effort is very precisely recorded for billing and project management
purposes. Regarding estimation accuracy, it is only used on a per-project basis
to determine the profit margin. It is not (yet) used to increase the estimation
accuracy by using previous estimates for new projects.

There is no distinction between the other estimation goals. However, it
is reasonable to assume that planned effort is used for variable-price projects
(because an accurate end date is important) and budgeted effort is used for
fixed-price projects (as more risks need to be taken into account, to prevent
cost overruns). There are efforts (explained in the next paragraph) to make
a clearer distinction between best-case, most likely, and worst-case estimates,
which can then be used to more precisely calculate most-likely, planned and
budgeted efforts.

5.5. Case study on estimation methods 63

5.5.2 Estimation approach

From the interviews I deduct that important criteria for Logica when choosing
software effort estimation methods are:

• estimation accuracy (of course),

• simplicity (to lower the resistance of estimators to use a certain method),

• availability of estimates early in the process (for pricing purposes, while
allowing for increasing accuracy later on),

• usability on a variety of systems and processes (not only software, but also
consultancy projects).

At Logica, multiple software effort estimation methods are in use (as of 2008).
These are ‘unstructured expert-based’, ‘spreadsheet-based’, ‘work breakdown
structure-based’, ‘stereotypes-based’ and ‘function point-based’. I will describe
them here and explain to which method in literature they map.

• Unstructured expert-based estimation is being used by some bid managers
throughout Logica and grew like this historically. It is essentially just
expert judgment, but is called ‘unstructured’ to indicate the unsystematic
nature. Due to the lack of structure and therefore lack of repeatability,
this method is currently being phased out.

• ‘Spreadsheet-based’ estimation is a method that employs self-made spread-
sheets (by the estimator) to aid in the estimation process. These spread-
sheets were seldomly created with awareness of existing estimation meth-
ods. No details are available on these methods, but they are probably
similar to expert judgment, work breakdown, mathematical model and
combination approaches. They have grown from the unstructured expert-
based estimation method, and are also currently being phased out.

• The most used method is work breakdown structure-based estimation
where subtasks are estimated using expert judgment. This method is
the preferred method and efforts are made to standardize this method
across Logica. This is also the method that is documented in the Es-
timating Framework. Its origins can be found in the company Admiral
which was acquired by Logica (then CMG) in 2000. The method was
subsequently engineered by Logica. ‘PERT’ (described under the expert
judgment method on page 60) in addition to WBS is used in parts of the
business unit Technical Software Engineering. This will be added to the
estimation method in a later stage.

• Estimation using ‘stereotypes’, essentially analogy-based estimation is an
addition to the previous method, where components of the software to be
built are similar to components that have been built before (the stereo-
types). The estimation data of that previous project (including the actual
effort) will then be used to enhance the estimate of the current project.
This method is in the pipeline to be added to the WBS when WBS is sat-
isfactorily implemented and there is sufficient data collected to be actually
implementable. This method was also inherited from Admiral.

64 5. Selecting a software effort estimation method

• Function point-based estimation is used as a secondary estimation ap-
proach, usually combined with the WBS method. It is mainly applicable
to administrative systems, which means that it is not used in all business
units within Logica. Primarily customers of the business unit Finance re-
quest this method be used, because it also allows for the estimation of the
number of defects (for more information see the description of function
point-based estimation on page 60). This also explains why Logica uses
it.

Summarizing, the estimation method that Logica intends to use in the future
is work breakdown structure-based estimation where subtasks are estimated
using a combination of expert judgment and analogy. Depending on the project
function points might also be used.

5.6 Discussion

Given the requirements of Logica, the expert judgment and analogy-based es-
timation approaches fit very well. Expert judgment has shown to be fairly
accurate, provided that the estimator is familiar with the environment. It also
matches up to the other requirements, as it is intuitive, available from the begin-
ning of a project (albeit roughly), and applicable to any kind of project. Because
there is plenty of information available on previous projects, analogy-based es-
timation is feasible for the same reasons as expert judgment. The combination
of analogy and expert judgment can compensate for the underestimation bias
of expert judgment.

Mathematical models, which also use information of previous projects, are
too complex or do not have a proven estimation accuracy. Function points are
not usable on different systems and processes, and also cannot be used until the
requirements specification is sufficiently detailed.

The work breakdown structure cannot be used in a project until the require-
ments are “reasonably defined” (as stated in the description of WBS on page
60). However, increasing accuracy is desired later on. It is relatively easy to
retrofit the work breakdown structure into the estimation process; when refining
or elaborating on early estimates, WBS is a perfect tool.

Logica intends to use WBS, expert judgment, analogy and function points in
the future. Function points are required by their customers for specific projects;
in that case, the disadvantage of the non-applicability to consulting projects is
not an issue. Also in the businesses in question, software is specified very well.

In my opinion the criteria for estimation approaches are fair, except one:
simplicity. Most of the methods which are deemed ‘too complex’ (i.e. the math-
ematical models) are complex to develop, but are not complex for the estimators.
A mathematical model could then be used in conjunction with expert estimation
and WBS, as a replacement for the analogies. This would reduce the amount of
time needed for an estimation, while still compensating for the underestimation
bias.

6. Discussion

In this chapter, I will show what has been learned on the fields that were men-
tioned in the introduction: massively parallel computing, service-oriented ar-
chitecture and software effort estimation. These remarks answer the questions
posed in the introduction.

6.1 Massively parallel computing

The Tesla is an excellent example of a massively parallel processor. Due to its
low price, it enables researchers and developers to make use of MPC, where they
previously could not due to budget constraints.

The Tesla is not suitable for all algorithms. Where it especially shines is
when large datasets are used (millions of data points) or when the calculations
per data point in the dataset are intensive (i.e. expressible in one function), but
equal for each data point. This means that an algorithm has to be restructured
so that the equality is ensured for each data point.

The Hough transformation, in this case used to detect lines in an image, is
only partially suited for this hardware architecture. It does satisfy the criterium
of intensive calculations (computing sine and cosine is relatively hard); however
the criterium of millions of data points does not entirely hold. Even when the
images are large, only a few percent of the pixels actually need calculation (in
the case of an actual business card image). This also means that the calculation
is not the same for every data point, causing a performance hit.

In the description of massively parallel computing on page 26, I stated “the
data-parallel model fits this architecture very well”. However, because the data
and the application need to be loaded into the Tesla from a host computer, and
because the Tesla can not synchronize all its data while running a kernel, the
algorithm also needs to fit the master-slave model. The master process is then
run on the host computer, and the slave processes on the Tesla.

The image can be split up in larger portions than just per pixel, and be sent
of to different processing elements. The fact that not every portion is equal does
not matter in a master-slave model. This also means that a cluster computing
architecture could have been used instead of a massively parallel computing
architecture.

I have been unable to find a definitive classification of algorithms, therefore
it is difficult to say which classes of algorithms fit the Tesla architecture well.
Still, algorithms from all fields of science and engineering have been success-
fully implemented on CUDA technology, as shown by Nvidia1 Some examples
are the fields of digital content creation, medical imaging and finance, which
have implemented neural networks, data mining algorithms, signal processing

1 http://www.nvidia.com/object/cuda home.html, viewed on 21 october 2009.

66 6. Discussion

algorithms and visual tracking algorithms. It is likely that the suitability of an
algorithm for the Tesla processor needs to be decided on a case-by-case basis.

In the case of the Hough transformation, the Tesla processor suffers from
relatively long startup times. This is because the time it takes for a kernel to
load and start is constant. The business card application only works with data
sets of at most a few megabytes, while the Tesla has the capability to store more
than a gigabyte. Processing such a large dataset will make the load time of the
kernel insignificant; it is not insignificant now.

The research questions mention the implementation of ‘3D image render-
ing’ on a massively parallel processor. However, due to the complexity of the
algorithms involved, the Hough transformation was used. The Hough transfor-
mation can be transformed to a demonstrator by integrating it into the business
card application that already exists. I have not done this, as it was not necessary
to answer the main research question.

6.2 Service-oriented architecture

In this section, I will show how I applied the design principles of Erl in my
design. The design principles coupling, abstraction and statelessness are of
specific importance for the Hough transformation case study.

With regard to the service model: for my purpose, where I want services to
be able to harness the power of massively parallel computing, a utility service
is the best fitting service model. It is technology oriented and agnostic of any
business process.

Contracts

The business unit where I worked at Logica does not have any standardization in
place for service-oriented architectures, therefore I could work according to my
own standards. My service to use massively parallel computing in a service is
relatively reusable, but only specializes in the Hough transformation. Therefore
the data representation is very specific: it only accepts black-and-white images
and returns images containing a Hough transformation.

Coupling

In the service I designed, I of course strived for Logic-to-Contract coupling.
When developing a prototype, using Contract-to-Functional coupling speeds
things up because you need less abstraction. However, that violates the recom-
mendations in the next section too. The massively parallel computing service
can be replaced by a ‘normal’, single-threaded computing service. That service
is slower, but enables the use of a backup system.

Abstraction

The abstraction of functionality is where the focus lies in my design. Although
the Tesla is capable of many things, only the basics will be used in a service-
oriented architecture. If a developer needs to use specific capabilities, it is likely
that he or she will program for the Tesla directly. To make the power of MPC
available to service customers, the technology is abstracted away completely.

6.2. Service-oriented architecture 67

Reusability

I have built a utility service, which is reusable by definition. A utility service
“provides functionality that is not tied to any business process”, i.e. can be
used by all kinds of business processes, hence is reusable. So if the service is
not reusable it won’t be a real utility service. Because the service is specific, I
(or the service customer) don’t need to write data transformation logic.

Autonomy

To build a purely autonomous service, I need exclusive access to both the Nvidia
Tesla and the data that needs to be processed. The former is not a problem,
the latter is. I have designed the service so that all data is copied at runtime,
ensuring exclusive access during execution of the task, but this increases trans-
mission times. (Erl does not address this problem: he just states that the ideal
is a seperate dedicated database for each service. How these databases should be
synchronized is left unclear.) The alternative is sharing the database, resulting
in Service Logic Autonomy, which is one step lower on the autonomy ladder.

An autonomous service should be scalable, and scalability often means con-
currency. The design principles are not just meant to be used on each service
by itself, but are meant to increase the usefulness of the entire service inven-
tory. Unfortunately I cannot design the service so, that other services become
scalable. This would require a parallelizing compiler, which is a research field
on its own.

Statelessness

A utility service like mine should be stateless. If it is not, this has a serious
effect the design principles reusability, autonomy and coupling. To reduce start-
up times (as recommended by Erl), I have just used a binary format for the data
to send to the Tesla, considering the amount of data it will process. This is in
contrast to using an XML format.

Discoverability

As with abstraction, Logica does not have any templates or other standards for
writing service meta information. This changes on a project-by-project basis.
Neither is there any service registry. The documentation will thus have to be
stored in Logica’s standard document management system. To comply with the
advice of letting people with ‘required communication skills’ review the service
profile, I let my project manager review it.

Composability

Existing bottlenecks may possibly be alleviated by adding a massive parallel
computing service to the service composition, if the bottleneck is processing
related, and not for example I/O related. The specific service that is the bot-
tleneck should be changed, so it delegates the intensive processing to the new
service.

Logica does not have a service inventory, so the inventory stages defined by
Erl do not apply.

68 6. Discussion

Other remarks

Designing a generic service to easily implement new algorithms is not possible
without a performance hit. One would need to build all kinds of basic functions
which could then be chained to an algorithm. As mentioned before, loading a
new kernel takes a lot of time, and chaining kernels would increase the loading
times accordingly.2 What would be possible, is the approach of Silis and Hawick
[22, 35], where one builds a service that accepts CUDA kernels, executes them
and returns the accompanying data.

However, service-oriented solution logic is often written in more high-level
languages like Java or C#, and it is not clear that the programmers of these
services are also skillful at programming in C for the Tesla processor. Besides,
even if the programmer is experienced in C programming, to get decent per-
formance from the Tesla processor requires thorough knowledge of the physical
hardware architecture of the Tesla processor.

Still, the advantage of such a system is that it then becomes easy to store
kernels in a database, and retrieve them when necessary. This could be easily
integrated into a service-oriented architecture. The disadvantages still remain:
a kernel must be programmed manually, so parallelisation of existing services
will not be automatic (and therefore, a lot of work). The design of a generic
service enables the operation of datacenter services. Since plain datacenter
services are not Logica’s core business, such a datacenter service could only be
used by other applications delivered by Logica. This could make deployment at
customer’s sites faster and cheaper, since the hardware is only installed at one
location.

6.3 Software effort estimation

At this point, estimating the effort required for implementation of new software
projects based on the Tesla processor is difficult. No estimation data is available
on previous projects with the Tesla, which means that analogy-based estimation
cannot be used. This also holds for approaches based on mathematical mod-
els. Function point-based estimation is not applicable for Tesla development,
because the number of inputs and outputs (the basis for function points) is un-
related to the amount of effort needed to implement an algorithm. However, a
combination of work breakdown structure and expert estimation is feasible, if
the expert has experience with the Tesla or similar technologies.

It is difficult to envision a business service based solely on the Hough trans-
formation service. However, a library of multiple graphics algorithms (i.e. imple-
menting the AForge.NET library on the Tesla) would be very useful. It enables
Logica to deliver ‘heavier’ applications than the competitors. The cost of this
can be calculated using the WBS and expert estimation methods as described
before.

2 NVIDIA has promised that, in the newest generation of Tesla processors which will be
introduced in 2010, kernels can be loaded while others are executing. This would make kernel
chaining feasible.

7. Conclusion

So, how can massively parallel computing be offered as a (business) service?
As we have seen in the previous chapter, there are a few sides to this ques-

tion. It is clear that massively parallel computing can be employed, cheaply, by
using Nvidia Tesla processors. The use of these processors in a service-oriented
architecture can then be accomplished in two ways:

• by creating an inventory of graphical algorithm services, or

• by building a service that runs arbitrary massively parallel applications
on demand.

The business case for the first way is that new graphics-intensive applications
can be built very fast, since they can reuse the already implemented services.
The application will also perform really well in terms of execution times, because
the services can be optimized.

The second way takes away the hassle of buying and setting up the hardware
for each new project. Developers can simple reuse the existing hardware infras-
tructure. It is also more versatile, because the uses are not limited to already
implemented algorithms.

Of course, both methods can be combined to benefit from the best of both
worlds.

7.1 Future directions

I would recommend that the second way of utilizing the Tesla in service-oriented
architectures (running arbitrary applications) be more thoroughly analyzed and
tried. As I stated, the hassle of setting up the hardware is gone. It would make
the power of massively parallel computing available for a lot more projects.

Furthermore, more research is necessary to determine ways to analyze the
suitability of an algorithm to the master-slave and data-parallel models. This
will enhance the decision process for which technologies to use for new projects.
Due to the similarities between the algorithms suited for massively parallel
computing and cluster computing, it might be possible to use the Tesla processor
for prototyping purposes for cluster computing software and vice versa. This
needs to be investigated.

Finally, I advise that the actual effort for additional projects on the Tesla
be measured and used in estimations for new projects. Special attention should
go to the time required to debug the applications.

70 7. Conclusion

Appendix: Building trial applications

To learn how to program for the Tesla and to demonstrate the power of the
processor, I’ve composed two small programs. The first multiplies two matrices,
a popular benchmark to measure raw performance. The second implements the
basics of a naive image stitching algorithm.

Matrix multiplication

The first program multiplies two matrices and stores the result in a third matrix.
This is a commonly used function to benchmark raw processing power [9], which
is also often used in real-world applications (so it is not a purely synthetic
benchmark). It works by creating two matrices of 10,000 by 10,000 elements
(in this case, random single precision floating point numbers). These matrices
are then multiplied using the CUBLAS library function cublasSgemm(), which
is equivalent to the Intel Math Kernel Library (MKL) function sgemm(). It
performs a general matrix multiplication, i.e. there are no optimizations for
sparse or symmetric matrices. This implies a complexity of close to O(n3).

Executing the program on an Intel Pentium 4 processor running at 2.8 GHz
takes about 20 minutes. Running it on the Nvidia Tesla takes roughly 8 seconds,
an improvement of two orders of magnitude. This needs some correction for
Moore’s law, as the Pentium 4 was released in 2002 and the G80 in 2006.

Image stitching

I implemented another algorithm on the Tesla that was not trivial but not too
difficult either. This time it was entirely built in kernel code. It is a naive
stitching algorithm, i.e. an algorithm that determines a shift in the horizontal
and vertical plane for one image to be layered on top of another, where the
difference between the two images is minimized.

The algorithm works by moving image B over image A. At each position,
the difference between the two images is determined by summing all absolute
differences of the gray values of pixels that are over each other. Because the
overlaid area differs each time, this needs to be compensated for. This is done
for the vertical shift by taking only the area of image A that is overlaid by B,
and calculating a correction factor that is dependend on the amount of vertical
shift. The horizontal shift is compensated for by taking a fixed-size strip. The
algorithm is näıve because it doesn’t correct anything in the image like the per-
spective or rotation. It also doesn’t take contrast between objects into account.
In listing 7.1 the program is shown in the language Clean. The Start func-
tion nicely shows that the algorithm mainly consists of map functions, thereby
showing the data parallelism.

72 7. Conclusion

Listing 7.1: The image stitching algorithm written in Clean

Width = 5
Height = 3
St r i p = 2

imga : : {{Int}}
imga = {{ 1 , 2 , 3}

,{ 4 , 5 , 6}
,{ 7 , 8 , 9}
,{10 ,11 ,12}
,{13 ,14 ,15}}

imgb : : {{Int}}
imgb = {{ 1 , 2 , 3}

,{ 4 , 5 , 6}
,{ 7 , 8 , 9}
,{10 ,11 ,12}
,{13 ,14 ,15}}

ShiftX = [−4 . . −2]
ShiftY = [−1 . . 1]

Min : : [Int] −> Int
Min l i s t = f o l d l Min 99999 l i s t
where

Min : : Int Int −> Int
Min a b

| a <= b = a
| otherwi se = b

Start : : ((Int , Int) , Int)
Start = Minelement (map Sumelements (map Getelements

(S h i f t r e s u l t s (diag2 Shi ftX Shi ftY))))

Minelement : : [((Int , Int) , Int)] −> ((Int , Int) , Int)
Minelement [((x , y) , sum)] = ((x , y) , sum)
Minelement [((x1 , y1) , sum1) : ((x2 , y2) , sum2) : xs]
| sum1<=sum2 = Minelement ([((x1 , y1) , sum1)] ++ xs)
| otherwi se = Minelement ([((x2 , y2) , sum2)] ++ xs)

Sumelements : : ((Int , Int) , [Int]) −> ((Int , Int) , Int)
Sumelements ((x , y) , l i s t) = ((x , y) , (f o l d l (+) 0 l i s t)

/ (S t r i p ∗ Height − abs (y)))

Getelements : : ((Int , Int) , [((Int , Int) , (Int , Int))]) −> ((Int , Int) , [Int])
Getelements ((x , y) , l i s t) = ((x , y) , (map Getelement l i s t))
where

Getelement : : ((Int , Int) , (Int , Int)) −> Int
Getelement ((xA, yA) , (xB , yB)) = abs (imga . [xA,yA] − imgb . [xB , yB])

S h i f t r e s u l t s : : [(Int , Int)] −> [((Int , Int) , [((Int , Int) , (Int , Int))])]
S h i f t r e s u l t s [] = []
S h i f t r e s u l t s [(x , y) : xs] = [((x , y) ,

[((xA,yA) , ((Hor i zonta lSh i f tB xA x) , (Ve r t i c a l Sh i f tB yA y))) \\
xA <− Hor i zonta lSh i f tA x

, yA <− Ver t i c a l Sh i f tA y
])] ++ S h i f t r e s u l t s xs

Hor i zonta lSh i f tA : : Int −> [Int]
Hor i zonta lSh i f tA x = [(Width + x) . . (Width + x + St r ip − 1)]

Ver t i c a l Sh i f tA : : Int −> [Int]
Ver t i c a l Sh i f tA y = [(max 0 y) . . (min Height (Height + y) − 1)]

Hor i zonta lSh i f tB : : Int Int −> Int
Hor i zonta lSh i f tB xA x = 0 − x − (Width − xA)

Ve r t i c a l Sh i f tB : : Int Int −> Int
Ver t i c a l Sh i f tB yA y = yA − y

Bibliography

[1] A. Albrecht. Measuring application development productivity. In Proceed-
ings of the Joint SHARE/GUIDE/IBM Application Development Sympo-
sium, volume 83, page 92, 1979.

[2] G. S. Almasi and A. Gottlieb. Highly parallel computing. Benjamin-
Cummings Publishing Co., Inc., Redwood City, CA, USA, 1989.

[3] G. M. Amdahl. Validity of the single processor approach to achieving large
scale computing capabilities. In AFIPS Conference Proceedings, volume 30,
pages 483–485, 1967.

[4] Z. Baida, J. Gordijn, and B. Omelayenko. A shared service terminology
for online service provisioning. In ICEC ’04: Proceedings of the 6th inter-
national conference on Electronic commerce, pages 1–10, New York, NY,
USA, 2004. ACM.

[5] R. G. Belleman, J. Bédorf, and S. F. Portegies Zwart. High performance
direct gravitational N-body simulations on graphics processing units II: An
implementation in cuda. New Astronomy, 13(2):103–112, 2007.

[6] B. Boehm, C. Abts, and S. Chulani. Software development cost estimation
approaches – a survey. Annals of Software Engineering, 10(1-4):177–205,
2000.

[7] L. C. Briand and I. Wieczorek. Resource modeling in software engineering.
Second edition of the Encyclopedia of Software Engineering, 2002.

[8] D. L. Cook. Program evaluation and review technique – applications in
education. Office of Education, U.S. Department of Health, Education,
and Welfare, Washington, D.C., 1966.

[9] J. J. Dongarra, P. Luszczek, and A. Petitet. The LINPACK Benchmark:
past, present and future, volume 15 issue 9, pages 803–820. John Wiley
& Sons, Ltd., University of Tennessee, Department of Computer Science,
Knoxville, TN 37996-3450, U.S.A.; Sun Microsystems, Inc., Paris, France,
2003.

[10] R. O. Duda and P. E. Hart. Use of the Hough transformation to detect
lines and curves in pictures. Communications of the ACM, 15(1):11–15,
1972.

[11] T. Erl. Service-Oriented Architecture: Concepts, Technology, and Design.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2005.

74 Bibliography

[12] T. Erl. SOA Principles of Service Design. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 2007.

[13] R. Farber. The future looks bright for teraflop computing. Scientific Com-
puting, 24(10):34, 2007.

[14] G. Finnie, G. Wittig, and J. Desharnais. A comparison of software effort
estimation techniques: Using function points with neural networks, case-
based reasoning and regression models. The Journal of Systems & Software,
39(3):281–289, 1997.

[15] G. Finnie, G. Wittig, and J. Desharnais. Reassessing function points. Aus-
tralasian Journal of Information Systems, 4(2), 1997.

[16] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. The physiology of the
grid: An open grid services architecture for distributed systems integra-
tion. Technical report, Open Grid Service Infrastructure WG, Global Grid
Forum, 2002.

[17] A. Grama, A. Gupta, G. Karypis, and V. Kumar. Introduction to Parallel
Computing. Addison Wesley Longman, 2003.

[18] S. Grimstad and M. Jørgensen. A framework for the analysis of soft-
ware cost estimation accuracy. In ISESE ’06: Proceedings of the 2006
ACM/IEEE international symposium on Empirical software engineering,
pages 58–65, New York, NY, USA, 2006. ACM.

[19] S. Grimstad, M. Jørgensen, and K. Moløkken-Østvold. Software effort
estimation terminology: The tower of Babel. Information and Software
Technology, 48(4):302–310, 2006.

[20] D. Guedes, W. Meira, and R. Ferreira. Anteater: A service-oriented ar-
chitecture for high-performance data mining. IEEE Internet Computing,
10(4):36–43, July 2006.

[21] J. L. Gustafson. Reevaluating Amdahl’s law. Communications of the ACM,
31(5):532–533, 1988.

[22] K. Hawick, H. James, C. Patten, and F. Vaughan. DISCWorld: A dis-
tributed high performance computing environment. In HPCN Europe
1998: Proceedings of the International Conference and Exhibition on High-
Performance Computing and Networking, pages 598–606, London, UK,
1998. Springer-Verlag.

[23] O. Helmer. Analysis of the future: the Delphi method, 1967. DTIC Re-
search Report AD0649640.

[24] J. Hill, L. C. Thomas, and D. E. Allen. Experts’ estimates of task dura-
tions in software development projects. International Journal of Project
Management, 18(1):13–21, 2000.

[25] M. Jørgensen and M. Shepperd. A systematic review of software develop-
ment cost estimation studies. IEEE Transactions on Software Engineering,
33(1):33–53, 2007.

Bibliography 75

[26] B. W. Lo and X. Gao. Assessing software cost estimation models: criteria
for accuracy, consistency and regression. Australasian Journal of Informa-
tion Systems, 5(1), 1997.

[27] S. G. MacDonell and M. J. Shepperd. Combining techniques to optimize
effort predictions in software project management. Journal of Systems and
Software, 66(2):91–98, 2003.

[28] K. Moløkken and M. Jørgensen. A review of surveys on software effort esti-
mation. In Proceedings of the 2003 International Symposium on Empirical
Software Engineering (ISESE03), pages 223–230, Los Alamitos, CA, USA,
2003. IEEE Computer Society.

[29] NVIDIA Corporation. NVIDIA CUDA Compute Unified Device Architec-
ture: Programming Guide v1.1, nov 2007.

[30] NVIDIA Corporation. NVIDIA CUDA CUBLAS Library v2.0, March 2008.

[31] J. D. Owens, D. Luebke, N. Govindaraju, et al. A survey of general-purpose
computation on graphics hardware. Computer Graphics Forum, 26(1):80–
113, 2007.

[32] C. Peltz. Web services orchestration and choreography. Computer,
36(10):46–52, 2003.

[33] S. F. Portegies Zwart, R. G. Belleman, and P. M. Geldof. High-performance
direct gravitational N-body simulations on graphics processing units. New
Astronomy, 12(8):641–650, 2007.

[34] I. H. F. Santos, A. B. Raposo, and M. Gattass. A service-oriented architec-
ture for a collaborative engineering environment in petroleum engineering.
In Proceedings of Virtual Concept, 2006.

[35] A. Silis and K. Hawick. World wide web server technology and interfaces
for distributed, high-performance computing systems. Technical Report
DHPC-017, Department of Computer Science, University of Adelaide, 1997.

[36] R. C. Tausworthe. The work breakdown structure in software project man-
agement. Journal of Systems and Software, 1(3):181–186, 1980.

[37] S. Vinoski. Web services interaction models. current practice. IEEE Inter-
net Computing, 6(3):89–91, 2002.

	Introduction
	The fields
	Massively parallel computing
	Service-oriented architecture
	Software effort estimation

	Research questions
	Specific questions
	Generalizations

	Related research
	Structure

	Architectures for parallel computing
	Introduction
	Definitions
	Parallel models and architectures
	Parallel models
	Parallel architectures

	x86 architecture
	Pipelining
	Superscalar
	SIMD
	Hyper-threading
	Multicore

	GPGPU architecture
	Vector processing
	Stream processing
	Implementations

	Discussion

	Software design in a service-oriented architecture
	Introduction
	Definitions
	Service models
	Design principles
	Contracts
	Coupling
	Abstraction
	Reusability
	Autonomy
	Statelessness
	Discoverability
	Composability

	Implementation of a `Hough transformation' service
	Introduction
	Hough transformation

	Programming for the Tesla processor
	Libraries
	Kernel
	Java / C# interface
	Hardware limitations

	Implementation
	First implementation in C
	Second implementation in Java
	Kernel

	Benchmarks
	Hardware setup
	Software setup
	Measurements

	Discussion
	Benchmark results
	Suggestions to Nvidia

	Selecting a software effort estimation method
	Introduction
	Conceptual model
	Estimation goals
	Estimation approaches
	Expert judgment
	Analogy
	Work breakdown
	Function points
	Mathematical model
	Combination of methods

	Case study on estimation methods
	Estimation goal
	Estimation approach

	Discussion

	Discussion
	Massively parallel computing
	Service-oriented architecture
	Software effort estimation

	Conclusion
	Future directions

	Appendix: Building trial applications
	Matrix multiplication
	Image stitching

