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Abstract

The rapid increase in the performance of graphics hardware have made the GPU a strong candi-
date for performing many compute intensive tasks, especially many data-parallel tasks. Off-the-shelf
GPUs are rated at upwards of 2 TFLOPs of peak power today. The high compute power of the modern
Graphics Processing Units (GPUs) has been exploited in a wide variety of domain other than graphics.
They have proven to be powerful computing work horses in various fields. We leverage the processing
power of GPUs to solve two highly compute intensive problems: Singular Value Decomposition and
Ray Tracing Parametric Patches. Singular Value Decomposition is an important matrix factorization
technique used to decompose a matrix into several component matrices. It is used in a wide variety of
application related to signal processing, scientific computing, etc. However, little work has been done
to implement Singular Value Decomposition on parallel architectures. Direct ray tracing of paramet-
ric patches provides high geometric precision resulting in less artifacts and results in better rendering
using true normals for lighting at every pixel. Researchers have developed algorithms to ray tracing
parametric surfaces directly, but these algorithms are either computationally expensive or have other
disadvantages. Both these problems are both computationally demanding and amenable to massively
parallel implementations. Singular Value Decomposition computations requires factorizing a dense ma-
trix into component matrices. Finding the intersection of a ray with a Bézier patch requires finding
the roots of a 18 degree polynomial. They require enormous number of floating point operations. The
advent of GPUs with support for higher precision and their ever-growing amount of parallel horsepower
makes them a tempting resource for such numerical computations. We propose parallel implementations
for these problems on a GPU. They outperform the best CPU implementations available significantly.

We implement the Singular Value Decomposition of a dense matrix on GPUs using the two step
Golub Reinsch algorithm. In the first step, bidiagonalization decomposes a given dense matrix into
bidiagonal matrix and component orthogonal matrix using a series of Householder transformations. In
the next step, diagonalization is performed by applying the implicitly shifted QR algorithm which takes
O(n) iterations. It decomposes the bidiagonal matrix into a diagonal matrix and orthogonal matrices.
Each householder transformation reduces a row-column pair. We divide the number of householder
transformations required into n/L blocks. L householder transformations are applied in parallel by
mapping them to CUBLAS operations to derive maximum performance. We thus, exploit the underly-
ing hardware to the maximum. We use a hybrid implementation for the diagonalization step that splits
the computations between the CPU and the GPU. Every iteration of the QR algorithm applies Givens
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rotations on the elements of the bidiagonal matrix and the corresponding inverse rotations are applied
on the rows of the orthogonal matrices which are initially identity. Transformation applied on each row
depends on the previous row and transformation applied on it, thus making computations on every row
independent. Rotations on the elements of the bidiagonal matrix are applied on the CPU. The inverse
transformations are performed on every row in parallel on the GPU. We combine the power and func-
tionality of using CUDA and the high performance software libraries available with it to exploit the
GPU parallelism and achieve high computing performance. This approach can be used for solving other
graphics and non-graphics tasks. Our complete Singular Value Decomposition implementation outper-
forms the MATLAB and Intel R©Math Kernel Library (MKL) LAPACK implementation significantly
on the CPU. We show a speedup of upto 60 over the MATLAB implementation and upto 8 over the Intel
MKL implementation on a Intel Dual Core 2.66GHz PC with NVIDIA GTX 280. We are able to com-
pute the Singular Value Decomposition of very large matrices, upto 14K which is otherwise impossible
on the CPU due to memory limitations. The GPUs are limited to single precision numbers, though that
is changing with the newer generations. The error due to lower precision was less than 0.001%.

We present correct ray tracing of parametric bicubic surfaces on the GPU using Kajiya’s approach
without subdividing to the GPU. We use a BVH representation of the patches to remove non-intersecting
rays. The process starts with a list of rays to be traced in each frame. The BVH is traversed for each ray
to enumerate the potential ray-patch intersections. This method forms a univariate 18-degree polynomial
for each intersection and finds its roots using the Laguerre’s method. The real roots are the parameter
values at the intersection points. Polynomial formation and root finding for each ray-patch intersection
can be performed independently, making it ideal for processing on the GPU. Our algorithm treats all
bounces in a modular fashion. Rays for a subsequent bounce are generated at the end of each bounce and
process can be repeated. It finds the exact points of intersection and it is able to provide exact lighting
using per pixel normal. We perform the BVH traversal, finding the v-root using Laguerre’s method,
finding the u-root using a GCD computation, generating rays for subsequent bounces, and shading on
the GPU in parallel. The bulk of the time (as high as 82%) is spent on polynomial root finding. Slow
double precision computations need to be used for it. Direct ray tracing facilitates shading at each pixel
using the true normals. The ray tracing time depends on the number of ray-patch intersections evaluated.
Each intersection takes around 3.7 microseconds on GTX 280. This makes the method faster on future
hardware and highly amenable to multi-GPU processing. The time taken is about 466 milliseconds for
primary rays on the Killeroo model, with similar times for subsequent bounces, on a GTX 280. We
achieve a speed up of 340x on NVIDIA GTX 280 and 990x on NVIDIA GTX 480 over the MATLAB
implementation of the Kajiya’s algorithm on a AMD Dual Core Processor PC. The limiting factors of
performance are slow double precision arithmetic and the low amount of shared memory on today’s
GPUs. The next generation of GPUs have significantly improved both these aspects and we expect
to see interactive rates on them. Our algorithm exploits parallelism by dividing the computations into
independent tasks.
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curves a and b respectively. The intersection of the bicubic curves gives the point of
intersection of the ray with the patch. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Subdivision of a matrix into blocks of size L . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Division of a matrix row into CUDA thread blocks . . . . . . . . . . . . . . . . . . . 26

3.3 Singular Value Decomposition computation time for square matrices on Intel MKL and
GPU(GTX 280 and 8800 GTX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Singular Value Decomposition computation time for rectangular matrices(M×N ) with
leading dimension 8K and varying N on Intel MKL and GPU(GTX 280) . . . . . . . . 30

3.5 Speedup for Singular Value Decomposition, Partial Bidiagonalization and Diagonaliza-
tion on GTX 280 over Intel MKL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6 Discrepancy plot for singular values of a 3K×3K matrix . . . . . . . . . . . . . . . . 32

4.1 Patch data layout in the texture memory of the GPU. The first control point of all the P
patches are stored linearly followed by the second and so on. The layout increases the
spatial locality of memory accesses. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Depth first ray traversal example. Each thread in the traverse kernel traverses the BVH
for the ray assigned to it. The patch id of the potential intersections and the total number
of intersections are recorded in Mem Queue and Sum respectively. The intersected patch
id and pixel information is then rearranged using rearrange kernel after performing scan
on Sum and stored in patch ID, pixel x and pixel y. . . . . . . . . . . . . . . . . . . . 37

ix



x LIST OF FIGURES

4.3 Each thread of the block computes a coefficient for an intersection. T (k, j) denotes
the jth coefficient of Ti polynomial for the kth intersection in the block. A thread with
thread id (k, j) computes T (k, j). Every half warp computes the same coefficient but
for different intersection. In this case, 4 warps do not perform any computations. 2
warps do not perform any computations while computing Si. No threads are wasted
while computing (a,b,c) and (d,e,f ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Optional caption for list of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.5 Optional caption for list of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.6 Time spent in different kernels of our ray tracing system for Teapot (T), Bigguy (B) and

Killeroo (K) models for primary (P), shadow (S) and reflected (R) rays. Y axis shows
(Model, Type of ray) tuple. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.7 Shows the speedup on GTX 280 and GTX 480 over the CPU MATLAB implementation
for Teapot (T), Bigguy (B) and Killeroo (K) models for primary (P), shadow (S) and
reflected rays (R). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.8 Shows the time taken in microseconds on GTX 280 and GTX 480 to compute a ray
patch intersection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.9 Shows the percentage of threads that find real root while finding the first root in different
warps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.10 Screen shots for different models. (a) Teapot with one level of reflection. (b) Teapot
with reflection and shadow. (c) Bigguy with shadow. (d) Killeroo with shadow. (e)
Three teapots with shadows and one level of reflection. True normals used for shading
guarantees accurate shading and gives high quality images. . . . . . . . . . . . . . . . 52



List of Tables

Table Page

3.1 Total computation time for Singular Value Decomposition (SVD) (in seconds) for dif-
ferent matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Bidiagonalization time (in seconds) for different matrices . . . . . . . . . . . . . . . . 30
3.3 Diagonalization time (in seconds) for different matrices . . . . . . . . . . . . . . . . . 31

4.1 Time for executing different kernels of the ray tracing algorithm on GPU for primary
(P), shadow (S) and reflection rays (R) for different models on GTX 280. . . . . . . . 45

4.2 Time for executing different kernels of the ray tracing algorithm on GPU for primary
(P), shadow (S) and reflection rays (R) for different models on GTX 480. . . . . . . . 45

4.3 Shows the time taken in seconds on GTX 280 and GTX 480 to render a frame for
different models and type of rays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Shows the time taken in seconds on GTX 480 to render a frame for Killeroo model with
primary rays and 280000 intersections. The intersections are processed in batches using
limited device memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5 Shows the time taken in seconds on GTX 280 and Tesla S1070 GPU to render a frame
for different models and type of rays. . . . . . . . . . . . . . . . . . . . . . . . . . . 51

xi



Chapter 1

Introduction

Graphics Processing Unit (GPU) is a processor inside a graphics card commonly used for graphics
rendering. It offloads 3D or 2D graphics rendering from the processor. It is mainly used for playing 3D
games of high-end 3D rendering and in embedded systems, mobile phones, personal computers, work
stations, and game consoles. It implements a number of graphics primitive operations in a way that
makes running them much faster. Modern day GPUs are efficient at manipulating computer graphics,
and their highly parallel structure makes them more effective than general-purpose CPUs for a range of
complex algorithms.

Recent graphics architectures provide high memory bandwidth and computational horsepower. For
example, the NVIDIA GeForce GTX 280 can achieve a sustained 141 GB/sec of memory bandwidth,
and 1 TFLOPs of theoretical peak performance. Graphics hardware performance doubled every six
months in recent past. The rate of growth outpaces the oft-quoted Moores Law as applied to traditional
microprocessors; compare to a yearly rate of roughly 1.4x for CPU performance as shown in Figure
1.1. The disparity in performance can be attributed to fundamental architectural differences: CPUs are
optimized for high performance on sequential code, many transistors are dedicated to supporting non-
computational tasks like branch prediction and caching. Highly parallel nature of graphics computations
enables GPUs to use additional transistors for computation, achieving high arithmetic intensity with the
same transistor count. The raw speed, increased precision, and rapidly expanding programmability of
the hardware make it an attractive platform for general-purpose computation.

The rapid increase in the performance of graphics hardware, coupled with recent improvements in its
programmability, have made graphics hardware a compelling platform for computationally demanding
tasks in a wide variety of application domain other than graphics. We leverage the processing power
of GPUs to solve two highly compute and data intensive problems: Singular Value Decomposition and
Ray Tracing Parametric Patches.

Computing the Singular Value Decomposition of a dense matrix and ray tracing parametric patches
requires enormous number of floating point operations. Although, the problems are not related, they
are both computationally demanding and amenable to massively parallel implementations. Singular
Value Decomposition computation requires factorizing a dense matrix into component matrices whereas
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Figure 1.1 CPU/GPU performance growth plot. Theoretical performance of graphics processors is
much higher than CPU performance. Image obtained from the documents provided by NVIDIA.

finding the intersection of a ray with a Bézier patch requires finding the roots of a very high degree
polynomial. Both these operations require tremendous amounts of floating point calculations. The
advent of GPUs with support for higher precision and their ever-growing amount of parallel horsepower
makes them a tempting resource for such numerical computations. Our GPU implementations exploits
the architecture well and outperforms the best CPU implementations available significantly.

Singular Value Decomposition is a way of factoring matrices into a series of linear approximations
that expose the underlying structure of the matrix and has many applications. However, not much work
was done for implementing it on the GPU. Ours is, the recent implementation of the Singular Value
Decomposition algorithm on the GPU. Computing the Singular Value Decomposition requires factoriz-
ing the given dense matrix into a bidiagonal one by applying a series of Householder transformations.
The bidiagonal matrix is then reduced to a diagonal matrix by applying the implicit shifted QR algo-
rithm. The Singular Value Decomposition algorithm has a high computational complexity and requires
enormous data transfer from the device. The computations can be mapped well on the GPU. The house-
holder transformations required for bidiagonalizing a matrix are mapped to GPU BLAS operations. We
propose a hybrid algorithm for diagonalizing a bidiagonal matrix. It divides the computations between
CPU and GPU to achieve maximum performance. Our implementation outperforms the popular and
fast CPU implementations significantly.

Ray tracing is one of the major methodologies in realistic image synthesis. The heart of ray tracer
lies in the ray-environment intersection routine. Our work deals with designing a ray tracer for direct ray
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tracing of parametric surfaces, especially Bézier surfaces. However, one problem with Bézier patches
is that calculating their intersections with lines is difficult making them awkward for pure ray tracing.
Several researchers have developed algorithm for intersecting rays with parametric surfaces. Unfortu-
nately, most of these algorithms are either very expensive or have other disadvantage. We address the
above issue by adapting Kajiya’s ray patch intersection algorithm to the GPU. It is robust and finds the
exact point of intersection of a ray with a patch. It requires finding the roots of an 18 degree polynomial
per ray patch intersection. It requires enormous number of double precision operations. Our algorithm
renders highly accurate scenes in interactive time with shadows and reflections.

1.1 GPU architecture

Commodity computer graphics chips are probably today’s most powerful computational hardware
for unit cost. GPUs have gone from afterthought peripherals to modern, powerful, and programmable
processors in their own right. Many researchers and developers have become interested in harnessing
the power of commodity graphics hardware for general-purpose computing.

In 3D computer graphics, a rendering pipeline is meant to accept certain representations of a 3D
scene as input and produce a fast 2D raster image as output. The various pipeline stages are imple-
mented as fixed functions on hardware for graphics acceleration. The vertex and fragment stages were
made programmable in 2005. They were programmed using shaders. The shader model 4.0 involves
significant changes to the rendering pipeline. It keeps all the shaders at the same level calling it a uni-
fied architecture, because of which all shaders have fast access to the textures. It introduced a new
programmable stage called the geometry shader which gives the capability of generating more vertices
and primitives and saves the CPU to GPU bandwidth. The new rendering pipeline in Figure 1.2 also
features streaming data out in the middle of the pipeline to the memory. This gives the facility of not
going through the whole pipeline to process stream data which is not to be rendered.

The Shader Model 4.0 GPUs use the same processor core to implement vertex, geometry and frag-
ment processing. Separate processors with different capabilities were used for different stages of the
earlier GPUs. It dynamically allocate the available processing resources to vertex, geometry and pixel
units are demanded by the load increasing resource utilization. Unified architecture provides the advan-
tage to access the texture memory for all shaders. It allows to store geometry in form of textures and
efficiently access the same from vertex shader.

NVIDIA kicked off the GPU computing revolution with the introduction of CUDA, its massively
parallel computing ISA and hardware architecture. CUDA has unleashed unprecedented performance
boosts across a wide range of applications. First introduced with the NVIDIA GeForce 8800 GPU
and now standard across all NVIDIA’s modern GPUs, CUDA is the foundation of NVIDIA’s parallel
computing strategy. The addition of OpenCL is another major milestone in the GPU revolution that
gives developers another powerful programming option. OpenCL (Open Computing Language) is a
framework for writing programs that execute across heterogeneous platforms consisting of CPUs, GPUs

3
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Figure 1.2 Shader Model 4

and other processors. It allows developers to harness the massive parallel computing power of the GPU.
Its architecture shares a range of computational interfaces with two competitors, NVIDIA’s Compute
Unified Device Architecture and Microsoft’s Direct Compute.

GPUs are high performance, many-core processors capable of very high computation and data
throughput. Once specially designed for computer graphics and difficult to program, todays GPUs are
general-purpose parallel processors with support for accessible programming interfaces and industry
standard languages such as C. Developers who port their applications to GPUs often achieve speedups
of orders of magnitude vs. optimized CPU implementations.

Figure 1.3 shows the design of a GPU. The key to performance is the multitude of thread processors.
In the figure, there are eight thread processors and in each sixteen multiprocessors, for 128 thread
processors total. NVIDIA delivers GPUs with up to 30 multiprocessors and 240 thread processors. In
each clock, each TP can produce a result, giving this design a very high peak performance rating.

Each multiprocessor executes in SIMD mode, meaning each thread processor in that multiprocessor
executes the same instruction simultaneously. If one thread processor is executing a floating point add,
they all are; if one is doing a memory read, they all are. Moreover, each instruction is quad-clocked.
Meaning the SIMD width is 32, even though there are only eight thread processors. Many scalar threads
happen to be executing in SIMD mode, called SIMT execution. Careful orchestration of the 32 threads
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that execute in SIMD mode is necessary for best performance. The multiprocessors themselves execute
asynchronously, and without communication.

Each multiprocessor has a special function unit, which handles infrequent, expensive operations, like
divide, square root and so on; it operates more slowly than other operations, but since it is infrequently
used, it doesnt affect performance. There is a high bandwidth, low latency local memory attached to
each multiprocessor. The threads executing on that multiprocessor can communicate among themselves
using this local memory. In the current NVIDIA generation, the local memory is quite small (16KB).

There is also a large global memory (over 1GB). This is physical, not virtual and paging is not
supported, so all the data has to fit in memory. The device memory has very high bandwidth, but high
latency to the multiprocessors. The device memory is not directly accessible from the host, nor is the
host memory directly visible to the GPU. Data from the host that needs to be processed by the GPU
must be moved via DMA (across the IO bus) from the host to the device memory and the results are
moved back.

There is a hierarchy of parallelism; threads executing within a multiprocessor can share and com-
municate using the local memory, while threads executing on different multiprocessors cannot commu-
nicate or synchronize. This hierarchy is explicit in the programming model as well. Parallelism comes
in two flavors; outer, asynchronous parallelism between thread groups or thread blocks, and inner, syn-
chronous parallelism with a thread block. All the threads of a thread block will always be assigned as a
group to a single multiprocessor, while different thread blocks can be assigned to different multiproces-
sors.
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Because of the high latency to the device memory, the multiprocessors are highly multithreaded as
well. When one set of SIMD threads execute a memory operation, the multiprocessor will switch to
execute another set of SIMD threads. The other SIMD threads may be part of the same thread block, or
may come from a different block assigned to the same multiprocessor.

The GPU is designed as a throughput engine; its designed to get a lot of work done on a lot of data,
all very quickly, all in parallel. To get high performance, the program needs enough parallelism to keep
the thread processors busy. Each thread block needs enough parallelism to fill all the thread processors
in a multiprocessor, and at least as many thread blocks as you have multiprocessors. More parallelism
must be maintained to keep the multiprocessors busy when they need to thread switch past a long latency
memory operation.

1.2 Singular Value Decomposition

The Singular Value Decomposition is an important technique used to decompose a rectangular real
or complex matrix into several component matrices, exposing many of the useful and interesting prop-
erties of the original matrix. The matrix is decomposed into a set of factors (often orthogonal and
independent) that are optimal based on some criterion. It represents an expansion of the original data in
a coordinate system where the covariance matrix is diagonal. Matrix computations using the Singular
Value Decomposition are more robust to numerical errors.

Using the Singular Value Decomposition, one can determine the dimension of the matrix range
called the rank. The Singular Value Decomposition can also quantify the sensitivity of a linear system
to numerical error or obtain a matrix inverse. It also provides solutions to least-squares problems and
handles situations when matrices are either singular or numerically very close to singular.

A Singular Value Decomposition of an m× n matrix A is any factorization of the form

A = UΣV T (1.1)

where U is an m×m orthogonal matrix, V is an n× n orthogonal matrix, and Σ is an m× n diagonal
matrix with elements sij = 0 if i 6= j and sii ≥ 0 in descending order along the diagonal.

The Singular Value Decomposition of a matrixA can be computed using the Golub-Reinsch (Bidiag-
onalization and Diagonalization) algorithm or the Hestenes method. We use the Golub-Reinsch method
as it is simple and compact, and maps well to the SIMD GPU architecture. It is also popular in many
numerical libraries. Hestenes algorithm is a Jacobi type approach that gives low performance and hence
not popular. Golub-Reinsch algorithm is a two step algorithm [51]. LAPACK Singular Value Decom-
position routine implements this method. In the first step, the matrix is reduced to a bidiagonal matrix
using Householder reflections. This takesO(mn2) floating point operations, assuming thatm ≥ n. The
second step is to compute the Singular Value Decomposition of the bidiagonal matrix using implicitly
shifted QR iterations. In practice, it suffices to compute the Singular Value Decomposition up to a cer-
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tain precision taking O(n) iterations, each costing O(n) flops. Thus, the first step is more expensive,
and the overall cost is O(mn2) flops.

Algorithm 1 outlines the Singular Value Decomposition algorithm for a input matrix A.

1: B ← QTAP {Bidiagonalization of A to B}
2: Σ← XTBY {Diagonalization of B to Σ}
3: U ← QX
4: V T ← (PY )T {Compute orthogonal matrices U and V T and Singular Value

Decomposition of A = UΣV T }
Algorithm 1: Singular Value Decomposition

Singular Value Decomposition is widely used in applications related to principal component analy-
sis, pattern recognition and image processing for singular value spectral analysis. The Singular Value
Decomposition also has a variety of applications in signal processing, scientific computing, automatic
control, and many other areas. The Singular Value Decomposition is also applied extensively to the
study of linear inverse problems, and is useful in the analysis of regularization methods and plays a
crucial role in the field of Quantum information and numerical weather prediction.

1.3 Ray Tracing Parametric Patches

Ray tracing is one the most important technique for generating realistic images. It produces very high
degree of photo realism. It is capable of simulating a wide variety of effects, such as reflection, refraction
and shadows. The serious disadvantage of ray tracing is the performance since it deals with thousands of
ray-object intersections for every image. Surface representations such as splines, NURBS or subdivision
surfaces provides a simple and powerful method of describing three-dimensional geometrical objects
for use in computer graphics applications. They form the foundation of most CAD systems used in the
industry today. Due to the increasing popularity it becomes more important to ray trace these shapes fast
and in high quality. Generally, in a modern ray tracing system, triangle meshes are commonly used for
defining 3D shapes or free-form surfaces are tessellated into triangles which may cause visual artifacts
to appear. Moreover, triangulating the surfaces has high preprocessing costs and require large amount
of memory for storing the tessellated triangles. These problems can be avoided by directly ray tracing
free form surfaces. It reduces the preprocessing costs and requires less memory due to smaller number
of primitives. Rendering free-form surfaces directly provides higher geometric precision resulting in
less artifacts. Better rendering is achieved by using true normals for lighting at every pixel.

Bézier patches are visually intuitive, and for many applications, mathematically convenient. They
can be of any degree, but bicubic Bézier surfaces generally provide enough degrees of freedom for most
applications. They are more compact, easier to manipulate, and have much better continuity properties.
In addition, other common parametric surfaces such as spheres and cylinders can be well approximated
by relatively small numbers of cubic Bézier patches.
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Several algorithms were proposed by researches for direct ray tracing of parametric patches. They
can be classified into two categories, Subdivision methods and Numerical methods. Recursive subdivi-
sion methods were the first to be used for ray tracing parametric surface patches. If the bounding volume
of a patch is pierced by the ray, then the patch is subdivided and bounding volumes are produced for
each subpatch. The subdivision process is repeated until either no bounding volumes are intersected or
the intersected bounding volume is smaller than a predetermined minimum. Numerical methods finds
the exact point of intersection of a ray with a patch without subdivision. It transforms finding the in-
tersection to solving a numerical equation. They are generally robust and do not require preliminary
subdivision to satisfy some a priori approximation. However, solving the numerical equation has high
computational complexity that prelude their use in ”real-life” rendering systems.

Kajiya [25] uses ideas from algebraic geometry to obtain a numerical procedure for intersecting a
ray with a bicubic surface patch without subdivisions. A ray represented by two planes is intersected
with the patch to form two bicubic curves. Intersection of the bicubic curves gives the point at which the
ray pierces the patch. It requires finding the roots of a univariate 18 degree polynomial and computing
gcd of bicubic polynomials for every ray patch intersection. This method has several advantages: It is
robust and guarantees to find the correct point of intersection. For patches of lower degree, it proceeds
more quickly. The algorithm is simply structured, with few indeterminate loops, and thus can be imple-
mented in hardware. No memory overhead is required. However, it needs enormous amount of floating
point operations for finding all the roots of a univariate 18 degree polynomial, making it unsuitable for
interactive implementation on a CPU.

1.4 Contributions of the thesis

In this thesis, we present efficient implementations of two highly compute intensive problems on
the GPU using the CUDA programming framework. We implement the Singular Value Decomposition
algorithm on the GPU using the twin step Golub Reinsch algorithm (Bidiagonalization followed by
Diagonalization). Computing the Singular Value Decomposition requires applying transformations to a
given dense matrix. The transformations map well to the GPU architecture.

We also give an algorithm for direct ray tracing of parametric surfaces on the GPU using numerical
method to find the intersection of a ray with the parametric patch without subdividing. In requires
finding the roots of the univariate 18 degree polynomial for each ray patch intersection. The polynomial
formation and finding its roots for a ray patch intersection pair is independent of every other intersection
making it an ideal candidate for parallel processing.

Although, the two problems are not related, they exhibit similar properties. We try to leverage
the performance of GPUs for finding the Singular Value Decomposition and ray tracing of parametric
patches, being both computationally demanding and massively parallel. We apply similar optimizations
techniques while designing the parallel solutions. Both problems have high memory requirements. Our
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algorithms exploits the parallelism in the GPU architecture and achieves high computing performance
on them. The main contributions of this thesis are the following:

• We present an efficient implementation of Singular Value Decomposition of a dense matrix on
GPU using the twin step of bidiagonalization followed by diagonalization, for the first time on
the GPU.

– Our Singular Value Decomposition implementation outperforms the well known MATLAB
and Intel Math Kernel Library LAPACK implementation significantly on the CPU.

– We map the series of Householder transformations required for bidiagonalizing a matrix to
the BLAS operations and implement it using the optimized CUBLAS library.

– We use a hybrid implementation for the diagonalization step that splits the computations
between the CPU and the GPU to derive maximum performance.

– We are able to compute the Singular Value Decomposition of very large matrices, upto
14K×14K which is otherwise impossible on the CPU due to memory limitations. The error
on the GPU using single precision is less than 0.0001% than by using double precision.

• We adapt the ray-patch intersection approach proposed by Kajiya which computes exact hit points
of a ray with a Bézier patch without subdividing it to the GPU. It facilitates ray tracing of dynamic
bicubic patches by dividing the computations into independent tasks. Ours is, a recent effort to
bring ray tracing of bicubic surfaces to near interactive rates with interactivity a strong possibility
in the immediate future.

– We show exact lighting, shadowing and reflections. Our approach gives highly accurate
rendering in near interactive rates.

– We demonstrate smooth silhouettes, shadows and reflections on parametric models of dif-
ferent complexity in interactive time.

– The time taken to ray trace a scene is linear in the number of ray patch intersections eval-
uated and is independent of the number of primitives. Each intersection takes around 3.7
microseconds on GTX 280, irrespective of the number of primitives, whether primary or
secondary ray tracing, etc.

– Our ray tracing system is highly amenable to multi-GPU processing and is expected to be
faster on future hardware.
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Chapter 2

Background and Related Work

GPUs were originally designed to perform the highly parallel computations required for graphics
rendering. But over the last couple of years, they have proven to be powerful computing workhorses
across more than just graphics applications. Designed with more resources devoted to data processing
rather than flow control and data caching, GPUs can be leveraged to significantly accelerate portions
of codes traditionally run on CPUs, ranging from science and engineering applications to financial
modeling.

2.1 GPGPU

GPGPU stands for General-Purpose computation on GPUs, also known as GPU Computing. GPUs
are capable of very high computation and data throughput. Once specially designed for computer graph-
ics and difficult to program, todays GPUs are general-purpose parallel processors with support for ac-
cessible programming interfaces and industry-standard languages such as C. Developers who port their
applications to GPUs often achieve speedups of orders of magnitude vs. optimized CPU implementa-
tions.

Modern graphics architectures have become flexible as well as powerful. Once fixed function
pipelines capable of outputting only 8-bit per channel color values, modern GPUs include fully pro-
grammable processing units that support vectorized floating point operations at full IEEE single preci-
sion and double precision. The current generation of GPUs include vertex texture access, full branching
support in the vertex pipeline, and limited branching capability in the fragment pipeline and geometry
shaders (programmable primitive assembly) bringing flexibility to an entire new stage.

As GPUs evolved, major graphics software libraries such as OpenGL and Direct3D began to exhibit
enhanced ability to program these new GPUs by defining special shading functions in their API. Shaders
are used to program the GPU programmable rendering pipeline, which has mostly superseded the fixed-
function pipeline that allowed only common geometry transformation and pixel shading functions; with
shaders, customized effects can be used.
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A new concept is to use a general purpose graphics processing unit as a modified form of stream
processor. This concept turns the massive floating-point computational power of a modern graphics ac-
celerators shader pipeline into general-purpose computing power, as opposed to being hard wired solely
to do graphical operations. High level languages have emerged to support the new programmability of
the vertex and pixel pipelines. In certain applications requiring massive vector operations, this can yield
several orders of magnitude high performance than a conventional CPU. The two largest discrete GPU
designers, ATI and NVIDIA, are beginning to pursue this new approach with an array of applications.
Both NVIDIA and ATI have teamed with Stanford University to create a GPU-based client for the Fold-
ing@Home distributed computing project, for protein folding calculations. In certain circumstances the
GPU calculates forty times faster than the conventional CPUs traditionally used by such applications.

2.2 CUDA architecture

Recently NVIDIA began releasing cards supporting an API extension to the C programming lan-
guage CUDA (Compute Unified Device Architecture), which allows specified functions from a normal
C program to run on the GPU’s stream processors. This makes C programs capable of taking advantage
of a GPUs ability to operate on large matrices in parallel, while still making use of the CPU when appro-
priate. One takes a traditional C code that runs on the host (CPU) and offloads data parallel sections of
the code, or kernels, to the device (GPU). CUDA is also the first API to allow CPU-based applications
to access directly the resources of a GPU for more general purpose computing without the limitations
of using a graphics API. It provides an access to the tremendous processing power of NVIDIA GPUs
through the revolutionary new programming interface. The CUDA architecture can be programmed in
industry-standard C with a few extensions. It supports a device-level application programming inter-
face (API) and supports the upcoming OpenCL and DirectX 11 Compute standards. GPUs now act as
co-processor to the CPU, off loading major part of processing.

The CUDA software stack is composed of several layers: a hardware driver, an application program-
ming interface (API) and its runtime, and two higher-level mathematical libraries of common usage,
CUFFT and CUBLAS that are both described in separate documents. The hardware has been designed
to support lightweight driver and runtime layers, resulting in high performance. Figure 2.1 and 2.2
shows the CUDA hardware and software model respectively.

CUDA Hardware Model: At the hardware level the GTX 280 processor is a collection of 30 multi-
processors, with 8 processors each. Each multiprocessor has its own shared memory which is common
to all the 8 processors inside it. It also has a set of 32-bit registers, texture, and constant memory
caches. In any cycle, each processor of the multiprocessor executes the same instruction on different
data. Communication between multiprocessors is through the device memory, which is available to all
the processors of the multiprocessors.

CUDA Programming Model: For the programmer, the CUDA model is a collection of threads run-
ning in parallel. A warp is a collection of threads that can run simultaneously on a multiprocessor. The
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Figure 2.1 CUDA hardware model. Image obtained from the documents provided by NVIDIA.

warp size is fixed for a specific GPU, 32 on present GPUs. The programmer decides the number of
threads to be executed. If the number of threads is more than the warp size, they are time-shared inter-
nally on the multiprocessor. A collection of threads (called a block) is mapped to a multiprocessor at a
given time. Multiple blocks can be assigned to a multiprocessor and their execution is time-shared. A
single computation on a device generates a number of blocks. A collection of all the blocks in a single
computation is called a grid. All threads of the blocks mapped to a multiprocessor divide its resources
equally amongst themselves. Each thread and block is given a unique ID that can be accessed within
the thread during its execution. Each thread executes a single instruction set called the kernel. GPU is a
co-processor to the CPU and needs to be initiated by the CPU.

CUDA has several advantages over traditional general purpose computation on GPUs (GPGPU)
using graphics APIs.

• Scattered reads: code can read from arbitrary addresses in memory.

• Shared memory: CUDA exposes a fast shared memory region (16KB in size) that can be shared
amongst threads. This can be used as a user-managed cache, enabling higher bandwidth than is
possible using texture look ups.

• Faster downloads and read backs to and from the GPU

• Full support for integer and bit wise operations, including integer texture look ups.
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Figure 2.2 CUDA programming model. Image obtained from the documents provided by NVIDIA.

The CUDA programming model has the following limitations:

• CUDA uses a recursion-free, function-pointer-free subset of the C language, plus some simple
extensions. However, a single process must run spread across multiple disjoint memory spaces,
unlike other C language runtime environments.

• Texture rendering is not supported.

• For double precision (only supported in newer GPUs like GTX 260) there are some deviations
from the IEEE 754 standard: round-to-nearest-even is the only supported rounding mode for
reciprocal, division, and square root. In single precision, denormals and signalling NaNs are not
supported; only two IEEE rounding modes are supported (chop and round-to-nearest even), and
those are specified on a per-instruction basis rather than in a control word; and the precision of
division/square root is slightly lower than single precision.

• The bus bandwidth and latency between the CPU and the GPU may be a bottleneck.

• Threads should be running in groups of at least 32 for best performance, with total number of
threads numbering in the thousands. Branches in the program code do not impact performance
significantly, provided that each of 32 threads takes the same execution path; the SIMD execution
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model becomes a significant limitation for any inherently divergent task (e.g. traversing a space
partitioning data structure during raytracing).

• Unlike OpenCL, CUDA-enabled GPUs are only available from NVIDIA (GeForce 8 series and
above, Quadro and Tesla).

2.3 Singular Value Decomposition

 B                                   Q                          A                           PT

 =

 X                           B                          YT

 =

Figure 2.3 Subdivision of a matrix into blocks of size L

Singular Value Decomposition of a dense matrix is computed using the two step Golub Reinsch
algorithm as shown in Figure 2.3. It decomposes the matrix A into component orthogonal matrices U ,
V and a diagonal matrix Σ. In the first step, dense matrix A of size m × n is reduced to a bidiagonal
matrix B by applying n Householder transformations. Each transformation reduces a row-column pair.
The asymptotic time of which is order of 3. Inverse transformations are applied on the orthogonal
matrices Q and P which are initially identity.

The matrix B is then reduced to a diagonal matrix Σ by applying the iterative implicitly shifted QR
algorithm. Every iteration of the QR algorithm applies Givens rotations on the elements of B and the
corresponding inverse rotations are applied on the rows of the orthogonal matrices XT and Y T which
are initially identity. Each rotation reduces the superdiagonal elements of B. The iterations converge
when all the superdiagonal elements ofB converge to zero. The final orthogonal matrices of the Singular
Value Decomposition are computed as U = QX and V T = (PY )T .

2.3.1 Related Work

Several algorithms have been developed on the GPUs for mathematical computations like sorting
[20], geometric computations, matrix multiplications, FFT [34] and graph algorithms [23, 48]. Kruger
and Westermann [27] introduced a framework for the implementation of linear algebra operators on
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vectors and matrices that exploits the parallelism on GPUs. Galoppo et al. [17] reduced the matrix
decomposition and row operations to a series of rasterization problems on the GPU. Christen et al. [10]
proposed algorithms to accelerate sparse direct factorization and non-linear interior point optimization
on the GPU using CUDA. Barrachina et al. [3] proposed two high-level application programming in-
terfaces that use the GPU as a co-processor for dense linear algebra operations. There have been many
efforts towards optimizing and tuning of the Level 3 CUBLAS Graphics Processors. Barrachina et al.
[2] proposed several alternative implementations that are competitive with those in CUBLAS. Fujimoto
[15] proposed a new algorithm for matrix-vector multiplication on NVIDIA CUDA architecture. Bar-
rachina et al. [4] presented several algorithms to compute the solution of a linear system of equations.
Fatica and Jeong [14] proposed how MATLAB could be extended to take advantage of the computa-
tional power offered by the latest GPUs. NVIDIA’s CUDA library [36] comes with an implementation
of simple Basic Linear Algebra Subprograms (BLAS) on GPU, called the CUBLAS.

There have been many efforts towards parallelizing the Singular Value Decomposition algorithm on
architectures like the FPGA, Cell Processors, GPU, etc., which have scalable parallel architecture. Ma
et al. [32] proposed the implementation of two-sided rotation Jacobi Singular Value Decomposition
algorithm on a two million gate FPGA. They proposed a mesh connected array structure of simple
2 × 2 processors to compute Singular Value Decomposition of large matrix. Bobda and Steenbock [6]
proposed an efficient implementation of the Singular Value Decomposition for large matrices and the
possibility of integrating FPGA’s as a part of a Distributed Reconfigurable System (DRS). Baker [1]
described a parallel algorithm to compute the Singular Value Decomposition of block circulant matrices
on the Cray-2. Dickson et al. [12] designed a programmable processor for computing the Givens
rotation using approximate rotation method. The processor can also be programmed for Singular Value
Decomposition computation. Yamamoto et al. [53] proposed a method to speed up the Singular Value
Decomposition of very large rectangular matrices using the CSX600 floating point co-processor. They
achieve up to 3.5 times speedup over the Intel MKL on 3.2GHz Xeon processor for a 100000 × 4000
matrix but was not efficient on smaller matrices. Zhang Shu [42] presented the implementation of One
Sided Jacobi method for Singular Value Decomposition on GPU using CUDA. The performance of their
algorithm is limited by the availability of shared memory and works well only for small size matrices.
Bondhugula et al. [7] proposed a hybrid GPU based implementation of Singular Value Decomposition
using fragment shaders and frame buffer objects in which the diagonalization would be performed on
the CPU.

There are several numerical libraries such as ATLAS and the Intel Math Kernel Library which are
widely used for different applications on the CPU. They are designed to achieve high accuracy as well
as high memory bandwidth and computational throughput on the CPUs, e.g. Intel MKL is optimized
for Intel processors. Intel MKL LAPACK gives better performance than standard LAPACK on Intel
processors.

15



2.4 Ray Tracing Parametric Patches

Kajiya’s ray patch intersection algorithm is briefly described in this section. It uses algebraic geome-
try approach to find a ray patch intersection point without subdivision. The procedure guarantees to find
the exact point of intersection. A ray is represented as an intersection of two planes (l0, l1) as shown in
Figure 2.4. These planes intersect the bicubic patch in two bicubic curves a and b. Intersection of these
bicubic curves gives the point at which the ray pierces the patch. Finding the point of intersection of two
bicubic curves requires solving a univariate 18 degree polynomial. The real roots of the polynomial give
the points of intersection of the bicubic curves, hence the point of intersection of the ray. Polynomial
roots gives the v parameter of the point of intersection. The u parameter is found by finding the GCD
of a and b on substituting v parameter value. A ray can intersect a patch in 18 points (both real and
complex). Per pixel normals can be found by evaluating the partial derivatives of the patch equation.

Figure 2.4 Shows the intersection of a ray with a Bézier patch. A ray is represented as an intersection of
two planes (l0, l1). Planes l0 and l1 intersect a Bézier patch in two bicubic curves a and b respectively.
The intersection of the bicubic curves gives the point of intersection of the ray with the patch.

The roots of the polynomial are found using the numerically stable Laguerre’s method. It is an
efficient algorithm for numerically computing the roots of a polynomial and guaranteed to converge to a
root irrespective of the initial guess. It is cubically convergent tripling the number of digits of accuracy
at every step. Finding all the roots of the polynomial guarantees finding the correct point of intersection
of ray with patch giving better rendering and shading for the parametric models.

2.4.1 Related Work

Two broad approaches have been used to render bicubic patches in high quality. The first approach
computes the exact hit point numerically. The second refines the surface using subdivision usually till
an error criterion is met, followed by rendering using polygons.

Exact ray tracing of bicubic surfaces was proposed by Kajiya [25]. His method represents a ray using
two planes, which are intersected with the patches. The resulting pair of bicubic curve equations result
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in a univariate 18-degree polynomial equation, whose solution yields the v parameter of the intersec-
tion, with the u parameter obtained using a GCD computation. Kajiya proposed Laguerre’s method for
polynomial roots. Toth solved the ray surface intersection directly using multivariate Newton iteration
[47]. Utilizing results from interval analysis, Toth proposes a method for identifying regions of param-
eter space in which the Newton iteration is guaranteed to converge to a unique solution. Toth’s method
is robust, dealing correctly with all possible cases. His method still consumes considerable amounts of
computing time. Joy and Bhetanabhotla [24] advocate the use of quasi-Newton methods for finding lo-
cal minima of a function representing the squared distance of a ray from points on a parametric surface.
However, naive utilization of ray coherence may cause convergence to incorrect solutions. Manocha
and Krishnan found the polynomial roots using eigenvalues of its characteristic matrix [33]. Iteratively
solving the ray-patch intersection in the ray space or parameter space has also been attempted using
the Newton’s method [18] or after restricting the intersections using Bézier Clipping [35, 49]. Lewis et
al. proposed a hardware based design of a pipelined architecture for ray Bézier patch intersection [29].
These methods are computationally very expensive for interactive rendering.

In recursive subdivision, the patch is subdivided if the bounding volume of a patch is pierced by
the ray. The procedure is then repeated until either no bounding volumes are intersected or the ray
intersects the bounded subpatch. The method was first described by Whitted [50], who uses spheres
as bounding volumes. Rubin and Whitted [40] use basically the same method with bounding boxes
instead of spheres. An approach based on recursive subdivision was presented by Woodward [52]. The
subdivision process is carried out in the orthogonal viewing coordinate system of the ray. Benthin et al.
[5] subdivides the patch in the parameter space followed by triangulation for fast rendering of bicubic
patches. They achieved near interactive frame rates on a PC.

Real-time rendering using view-dependent, GPU-assisted tessellation was achieved recently. Patney
and Owens use a REYES-style adaptive surface subdivision exploiting the data-parallelism of the GPU
[37]. Eisenacher et al. use a view dependent adaptive subdivision that bounds the screen space projec-
tion error [13]. Their method assigns more quads to curved areas and fewer to flatter parts and achieve
over 70 fps on models like the Killeroo on a top-line GPU. These methods are the fastest available to-
day, but still approximate the surface using triangles, making exact lighting and reflections not so easy
to produce.

Exact hit points can be computed by adapting Kajiya’s approach to the GPU in interactive time. It
will provide exact lighting, shadowing, and reflections. Ray tracing of algebraic [31], implicit [43], and
triangulated [39, 26, 28] surfaces on the GPU has been reported. The GPU specific optimizations they
used are relevant to our work also.

2.5 GPU Applications

In the late 1990’s computer scientists and researchers began to use GPUs for running general purpose
computational tasks. It let to a huge performance boost for a wide range of scientific applications. Archi-
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tectural advances and new software tools have made GPU hardware more amenable to general purpose
programming. As a result, GPU’s are now used to accelerate computationally intensive applications.
The GPUs ability to operate on large data sets in parallel makes it more effective than a general-purpose
CPU for a range of complex image processing, computational finance, and other applications. With the
introduction of CUDA architecture, GPGPU problems are now addressed with a much simpler API for
GPU.

In recent years, there has been a renewed interest in real-time ray tracing for interactive applica-
tions. Ray Tracing algorithms can be highly parallelized on shared memory and distributed memory
systems. Lauterbach et al. [28] presented two novel parallel algorithms for rapidly constructing bound-
ing volume hierarchies on many-core GPUs for fast ray tracing. Loop and Blinn [31] proposes a parallel
algorithm on GPU for real-time rendering of algebraic surfaces defined by Bézier tetrahedra. Singh
and Narayanan [43] presented a ray-tracing procedure to render general implicit surfaces efficiently on
the GPU. Guntury and Narayanan [22] present a novel approach to ray tracing by decomposing the
algorithm into several data-parallel stages that are mapped efficiently to GPU. In addition to graphics
rendering, GPUs are used in game physics calculations; examples include Physx [38]. CUDA has also
been used to accelerate non-graphical applications in computational biology, cryptography and other
fields by an order of magnitude or more. Several algorithms have been developed for sorting, geometric
computations, matrix multiplication, Fast Fourier Transform and graph algorithms.

Medical imaging is one of the earliest applications to take advantage of GPU computing to get
acceleration. Liang [30] proposed a new hardware-based accelerated algorithm for volume rendering
of CT scans on GPU for rapid visualization. Stone et al. [44] proposed GPU accelerated advanced
magnetic resonance imaging reconstruction algorithm, thereby improving the quality of MR images
across a broad spectrum of applications. Several researches have developed GPU implementations of
many computer vision algorithms. OpenVIDIA: Parallel GPU Computer Vision introduced by Fung
and Mann [16] utilizes the computational power of the GPU to provide real-time computer vision and
imaging (Canny edge detection, filtering, matching features, image registration). Yang and Pollefeys
[54] used GPUs for real-time stereo depth extraction from multiple images. Fast gain adaptive KLT
tracking on the GPU was proposed by Zach et al. [55].

Recently, GPUs have been used to accelerate a variety of numerical algorithms. Tomov and Dongarra
[46] presented a Hessenberg reduction algorithm for hybrid multicore and GPU systems that gets more
than 16 performance improvement over the current LAPACK algorithm. Cevahir et al. [8] propose a
scalable implementation of a Conjugate Gradient solver for unstructured matrices on a GPU-extended
cluster. A well known data parallel primitives library CUDPP was developed by Sengupta et al. [41].
It implements data-parallel algorithm primitives such as parallel prefix sum, parallel sort and parallel
reduction.
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Chapter 3

Singular Value Decomposition

Singular Value Decomposition of a dense matrix factorizes it into component matrices. Section 2.3
gives the overview of the two Golub Reinsch Singular Value Decomposition algorithm. The algorithm
and its implementation on the GPU is described in detail in the following sections.

3.1 Singular Value Decomposition Algorithm

In the first step, the matrix is reduced to a bidiagonal matrix. The operation is performed by applying
a series of Householder transformations on the original matrix. These transformations can be mapped
well to the BLAS operations on the GPU. In the second step, the bidiagonal matrix is reduced to a
diagonal matrix by applying implicitly shifted QR iterations. Each iteration reduces the elements of
the bidiagonal matrix close to a diagonal matrix. After sufficient iterations are reached, the bidiagonal
matrix is reduced to diagonal matrix. We describe the bidiagonalization and diagonalization procedure
in detail in the following sections.

3.1.1 Bidiagonalization

In this step, the given matrix A is decomposed as

A = QBP T (3.1)

by applying a series of householder transformations where B is a bidiagonal matrix and Q and P are
unitary householder matrices. For a matrix of size m × n with m ≥ n, we first select a householder
vector u(1) of length m for vector A(1 : m, 1) and v(1) of length n for A(1, 2 : n) such that

Â1 = (I − σ1,1u(1)u(1)T
)A(I − σ2,1v(1)v(1)T

) (3.2)

= H1AG1 =


α1 β1 0 . . . 0
0 x x . . . x
...

...
...

0 x . . . x

 .
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Â1 has zeros below the diagonal and to the right of the superdiagonal of the first row and A(1, 1) is
updated to α1 and A(1, 2) is updated to β1. This is the first column-row elimination.

We denote the left householderm×mmatrices asHi’s and right householder n×nmatrices asGi’s
and the corresponding σ’s as σ1,i’s and σ2,i’s respectively. The elimination procedure is then repeated
for second column A(2 : m, 2) and row A(2, 3 : n) and so on. If m > n, n columns and n − 2 rows
must be eliminated. After all the columns and rows are eliminated we obtain a final bidiagonal matrix
B such that

B = QTAP, (3.3)

where

QT =
n∏

i=1

Hi, P =
n−2∏
i=1

Gi. (3.4)

Here, Hi = I − σ1,iu(i)u(i)T
and Gi = I − σ2,iv(i)v(i)T

. The u(i)’s are vectors of length m

with i − 1 leading zeros and v(i)’s are vectors of length n with i leading zeros. These are formed as
u(i) = [0 . . . 0, û(i)]T and v(i) = [0 . . . 0, v̂(i)]T where û(i) is a vector of m− i+ 1 trailing components
of u(i) and v̂(i) is a vector of n− i trailing components of v(i). In general, for a vector y = [y1, . . . , yl]
of length l the selection of householder vector r and scalars σ and α as given below

σ = (y1 + a)/a (3.5)

and r =
y + [a, 0, . . . , 0]T

y1 + a
(3.6)

satisfies (I − σrrT )y = [α, 0, . . . , 0]T . û(i) of length m − (i − 1) and αi for A(i : m, i) and v̂(i) of
length n− i and βi for A(i, i+ 1 : n) are computed similar to r and α in Equation 3.5 to 3.6.

The householder bidiagonalization can be achieved by alternating matrix vector multiplies with rank-
one updates introduced by Golub and Kahan [19]. The multiplication of A matrix by Hi updates A(i :
m, i+ 1 : n) and A(i, i) and multiplication by Gi updates A(i+ 1 : m, i+ 1 : n) and A(i, i+ 1). We
can summarize the update of the trailing matrix A after ith column-row elimination as two rank updates
as

A(i+ 1 : m, i+ 1 : n) = A(i+ 1 : m, i+ 1 : n)

−û(i)ẑ(i)T

− ŵ(i)v̂(i)T

where

ẑ(i)T

= xT − σ2,i(xT v̂(i))v̂(i)T

,

ŵ(i) = σ2,iA(i : m, i+ 1 : n)v̂(i)

and x = σ1,iA
T (i : m, i+ 1 : n)û(i).

The householder matrices Q and P given in Equation 3.4 are computed similarly as it also involves
multiplication by Hi’s and Gi’s respectively, but in reverse order. The update rule after ith column-row
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elimination is

Q(1 : m, i : m) = Q(1 : m, i : m)− k̂(i)û(i)T

and

P T (i : n, 1 : n) = P T (i : n, 1 : n)− v̂(i)̂l(i)
T

, where

k̂(i)
= σ1,iQ(1 : m, i : m)û(i) and

l̂(i) = σ2,iP
T (i : n, 1 : n)T v̂(i).

The updates can be expressed using BLAS level 2 operations. After every column-row elimination,
the trailing matrix is updated. This method is computationally expensive and involves many reads and
writes to the memory after each elimination. We can increase the computation to read ratio by deferring
the update of the trailing matrix, by bidiagonalizing a block of columns and rows together and updating
the trailing matrix as proposed in [9]. The LAPACK implementation also uses the blocking approach.
This requires the computation of new rows and columns belonging to the block just before elimination
due to the previous eliminations in the block.

The matrix A is divided into blocks of size L as shown in Figure 3.1 and the update occurs only after
L columns and rows are bidiagonalized. Extra computations are performed for the updated columns
and rows of the same block, which require û(i)’s, v̂(i)’s, ŵ(i)’s and ẑ(i)’s due to previous eliminations in
the block. These vectors are also needed for updating the trailing matrix once L columns and rows are
eliminated. As the set of update vectors is incremented with every elimination, more computations are
required to update the columns and the rows before elimination. The householder matrices Q and P T

are also block updated for which k̂(i)
’s and l̂(i)’s are stored. The value of L is chosen depending on the

performance of the BLAS routines. The algorithm has a total floating point operation count of O(mn2)
for m ≥ n.

Figure 3.1 Subdivision of a matrix into blocks of size L

This method requires an additional storage of a m×L array Umat to store û(i)’s, a L×n array Vmat

to store v̂(i)’s, a m × L array Wmat to store ŵ(i)’s, a L × n array Zmat to store ẑ(i)’s, a m × L array
Qmat to store k̂(i)

’s and a L × n array Pmat to store l̂(i)’s. Since these are required only for updating
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the matrix, they can be reused after every block update. The trailing matrix is accessed only during the
matrix update.

Require: m ≥ n
1: kMax← n

L {L is the block size}
2: for i = 1 to kMax do
3: t← L(i− 1) + 1

4: Compute û(t), α1,t, σ1,t, k̂
(t)

CUBLAS
5: Eliminate A(t : m, t) and update Q(1 : m, t) CUBLAS
6: Compute new A(t, t+ 1 : n) CUBLAS

7: Compute v̂(t), α2,t, σ2,t, l̂
(t)

CUBLAS
8: Eliminate A(t, t+ 1 : n) and update P T (t, 1 : n) CUBLAS
9: Compute ŵ(t), ẑ(t) and store the vectors CUBLAS

10: for k = 2 to L do
11: t← L(i− 1) + k
12: Compute new A(t : m, t) using k − 1 update vectors CUBLAS

13: Compute û(t), α1,t, σ1,t, k̂
(t)

CUBLAS
14: Eliminate A(t : m, t) and update Q(1 : m, t) CUBLAS
15: Compute new A(t, t+ 1 : n) CUBLAS

16: Compute v̂(t), α2,t, σ2,t, l̂
(t)

CUBLAS
17: Eliminate A(t, t+ 1 : n) and update P T (t, 1 : n) CUBLAS
18: Compute ŵ(t), ẑ(t) and store the vectors CUBLAS
19: end for
20: Update A(iL+ 1 : m, iL+ 1 : n), Q(1 : m, iL+ 1 : m) and P T (iL+ 1 : n, 1 : n) CUBLAS
21: end for

Algorithm 2: Bidiagonalization algorithm. All the steps are executed using CUBLAS Matrix-Vector
and Matrix-Matrix multiplication routines.

3.1.2 Diagonalization

The bidiagonal matrix can be reduced to a diagonal matrix by iteratively applying the implicitly
shifted QR algorithm [11]. The matrix B obtained in the first step is decomposed as

Σ = XTBY (3.7)

where Σ is a diagonal matrix, X and Y are orthogonal unitary matrices.
Algorithm 3 describes the diagonalization procedure. The d(i)′s are the diagonal elements and e(i)′s

are the superdiagonal elements of the matrix B. Every iteration updates the diagonal and the superdiag-
onal elements such that the value of the superdiagonal elements becomes less than their previous value.
On convergence of the algorithm, d(i)′s contains the singular values andX and Y T contains the singular
vectors of B.
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1: iter← 0, maxitr← 12 ∗N ∗N {N is the number of main diagonal elements}, k2 ← N
2: for i = 1 to maxitr do
3: if k2 <= 1 then
4: break the loop
5: end if
6: if iter > maxitr then
7: return false
8: end if
9: matrixsplitflag← false

10: for l = 1 to k2 − 1 do
11: k1 ← k2 − l {Find diagonal block matrix to work on}
12: if abs(e(k1)) <= thres then
13: matrixsplitflag← true, break the loop
14: end if
15: end for
16: if !matrixsplitflag then
17: k1 ← 1
18: else
19: e(k1)← 0
20: if k1 == k2 − 1 then
21: k2 ← k2 − 1, continue with next iteration
22: end if
23: end if
24: k1 = k1 + 1
25: if k1 == k2 − 1 then
26: Compute SVD of 2× 2 block and coefficient vectors C1, S1 and C2, S2 of length 1
27: Apply forward row transformation on the rows k2 − 1 and k2 of Y T using C1, S1 GPU kernel
28: Apply forward column transformation on the columns k2 − 1 and k2 of X using C2, S2 GPU kernel
29: k2 ← k2 − 2, continue with next iteration
30: end if
31: Select shift direction: forward if d(k1) < d(k2), else backward, Apply convergence test on the sub block
32: Compute the shift from 2-by-2 block at the end of the sub matrix, iter← iter+k2 − k1

33: Apply simplified/shifted forward/backward Givens rotation on the rows k1 to k2 of B and compute C1,
S1 and C2, S2 of length k2 − k1

34: Apply forward/backward transformation on the rows k1 to k2 of Y T using C1, S1 GPU kernel
35: Apply forward/backward transformation on the columns k1 to k2 of X using C2, S2 GPU kernel
36: end for
37: Sort the singular values and corresponding singular vectors in decreasing order. GPU kernel

Algorithm 3: Diagonalization algorithm. Steps 27-28, 34-35 and 37 are executed on the GPU.

The algorithm finds indexes k1 and k2 with k1 < k2 in each iteration such that e(k1) is below a
threshold which depends on the machine precision. If k1 and k2 differ by 1 or 2, one or two singular
values can be extracted directly and k2 moves up. Otherwise, a series of Givens rotations modify d(i)
and e(i) in the range k1 to k2 such that e(i)’s become smaller than before. Each rotation is captured in
the coefficient vectors (C1,S1) and (C2,S2). Corresponding inverse rotations are applied on X and Y T

matrix using the coefficient vectors. Algorithm 4 and 5 describes the rotations applied on the rows of
Y T in the forward and backward direction respectively. Similar rotations are applied on the columns of
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X using C2 and S2. See [11] for more details on the steps. The computation converges when all the
singular values are found.

Require: k1 < k2

1: for j=k1 to k2 − 1 do
2: t← Y T (j + 1, 1 : n)C1(j − k1 + 1)
3: t← t− Y T (j, 1 : n)S1(j − k1 + 1)
4: Y T (j, 1 : n)← Y T (j, 1 : n)C1(j − k1 + 1) + Y T (j + 1, 1 : n)S1(j − k1 + 1)
5: Y T (j + 1, 1 : n)← t
6: end for

Algorithm 4: Forward transformation on the rows of Y T

Require: k1 < k2

1: for j=k2 − 1 to k1 do
2: t← Y T (j + 1, 1 : n)C1(j − k1 + 1)
3: t← t− Y T (j, 1 : n)S1(j − k1 + 1)
4: Y T (j, 1 : n)← Y T (j, 1 : n)C1(j − k1 + 1) + Y T (j + 1, 1 : n)S1(j − k1 + 1)
5: Y T (j + 1, 1 : n)← t
6: end for

Algorithm 5: Backward transformation on the rows of Y T

3.2 Singular Value Decomposition on GPU

3.2.1 Bidiagonalization on GPU

Algorithm 2 describes the bidiagonalization procedure. Each step can be performed using CUDA
BLAS functions. CUBLAS [36] provides high performance matrix-vector, matrix-matrix multiplica-
tions and norm computation function. The blocking approach for bidiagonalization can be performed
efficiently since CUBLAS gives high performance for matrix-vector, matrix-matrix multiplications even
if one of the dimensions is small. Experiments prove that CUBLAS deliver much higher performance
when operating on matrices with dimensions that are a multiple of 32 due to memory alignment is-
sues [2]. Hence, we pad the vectors and matrices with zeros, transforming their dimensions to the next
multiple of 32.

The performance of the GPU libraries depend on data placement and how the library is used. The
movement of data is of consideration when using BLAS in general. We assume that initially the input
matrixA is on the CPU and is transferred to the GPU. NVIDIA 8800 GTX has a sustained internal mem-
ory bandwidth of 86.4 GB/s but the bandwidth between the CPU and the GPU is an order of magnitude
lower. Hence CPU to GPU transfers should be minimized. The matrices Q, P T , Umat, Vmat, Wmat and
Zmat are initialized on the device. All the operations required for bidiagonalization are done on the data
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local to the GPU using CUBLAS library routines. Since the thread-processors of the GPU operate on
GPU data, there is no expensive data transfer between the GPU and the CPU. The bidiagonalization is
performed inplace, i.e.,A becomes the bidiagonal matrix. After the bidiagonalization of matrixA on the
GPU, the diagonal and superdiagonal elements of the bidiagonal matrix are copied to the CPU to proceed
with the diagonalization as described in the next section while matrices Q and P T reside on the device
memory. The sequential bidiagonalization algorithm has a complexity of O(mn2) for m ≥ n. Our use
of the latest CUBLAS 2.0 library keeps the GPU implementation very efficient on the given hardware.
The total storage requirement for the algorithm is (3(mL+Ln) +m2 + n2 +mn+ 2 max(m,n))× 4
bytes on the GPU.

3.2.2 Diagonalization on GPU

In this section, we present the parallel version of the diagonalization algorithm and its implemen-
tation on the GPU. The diagonal and superdiagonal elements of B are copied to the CPU. Applying
Givens rotations on B and computing the coefficient vectors can be done sequentially on the CPU as it
only requires access to the diagonal and superdiagonal elements. In Algorithm 4, the computations for
every row of Y T depends only on the next row, i.e., every element of a row depends only on the element
below it and its corresponding coefficient vector element. In Algorithm 5, the computations depends
only on the row above it. Similarly for the columns of X . The computations for each row depends on
the results from the previous row, making it difficult to parallelize across rows. However, the results
for all the elements of the row can be computed in parallel. We use the thread processors of the GPU
to process elements of each row in parallel. This gives high performance on large matrices but also
works well for medium sized matrices. The transformation of the matrices Y T and X would be done
in parallel on the GPU. In Algorithm 3, steps 27-28, 34-35 and 37 are executed on the GPU. A simple
swap kernel is called for sorting the vectors. The matrices Y T and X reside on the device memory and
are initialized to identity.

Our algorithm divides a row of the matrix into blocks as shown in Figure 3.2. Each thread operates on
one element of the row. Since the transformations are applied on k2−k1 +1 rows, the kernel runs a loop
of k2 − k1 similar to Algorithm 4 with each modifying two rows. This division of the row into blocks
and looping can be done efficiently on CUDA architecture, since each thread performs independent
computations. The data required for the computations in the block is stored in shared memory and the
computations are performed efficiently on a multiprocessor.

The coefficient vectors C1 and S1 are copied from the CPU to the device memory. At any instant
during the kernel execution, an element of the coefficient vector is required by all elements of two rows.
Hence, we use the shared memory to store the vectors.

We allocate 64 to 256 threads for a block depending on the size of the matrix. This ensures that
there are enough blocks and all the multiprocessors are alloted atleast 2 blocks. When the thread block
contains T threads, it must use the shared memory of at most 2KB to keep 8 blocks active on a multi-
processor which will give optimal performance. At any instant, a block will require 2× (T ×4) bytes of
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Figure 3.2 Division of a matrix row into CUDA thread blocks

shared memory for the T elements of the two rows of the matrix it is working on as we use floating point
arithmetic. Every iteration of the loop in the forward kernel modifies two rows of the matrix. Since the
second row is again modified in the next iteration only the first updated row is copied back to the device.
The second updated row remains in the shared memory for the next iteration. The shared memory is
reused for copying the third row for the next iteration and the iteration proceeds.

Hence, the amount of shared memory that could be used to store coefficient vectors is 2K−(2×T×4)
bytes. However, the memory required for the coefficient vectors is 2 × (k2 − k1) × 4 bytes which can
exceed 2K − (2 × T × 4) bytes for large matrices. In order to only use the available shared memory
for the coefficient vectors we copy a fixed number of coefficient vector elements of C1 and S1 into
2K − (2 × T × 4) bytes, process the same number of rows and then reuse the shared memory for
copying the next set of vector elements. The backward row transformation kernel is similar to the
forward row transformation kernel.

Since the column transformations are similar to row transformations, we use the row transformation
kernel on the rows of XT instead of the columns of X . This requires copy of C2 and S2 to the GPU.
As the elements are accessed sequentially there are no noncoalesced memory accesses. The access to
the shared memory has no bank conflicts. All the threads in a block are used for copying the vectors
from the global memory to the shared memory which requires that the vectors are padded to the nearest
multiple of block size.

On convergence, d(i)’s contain the singular values. Y T and XT reside in the device memory which
will be further used for computing the orthogonal matrices U and V . Our algorithm is efficient as it
performs exactly the same number of operations on the GPU as the corresponding sequential algorithm.
The total storage requirement for the algorithm is (6 min(m,n))×4 bytes on the CPU and (m2+n2)×4
bytes on the GPU.
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3.2.3 Complete Singular Value Decomposition

We perform two matrix-matrix multiplications at the end to compute orthogonal matrices U = QX

and V T = (PY )T as given in Equation 1.1. We use CUBLAS matrix multiplication routines. The
matrices Q, P T , XT , Y T , U and V T are on the device. The orthogonal matrices U and V T can then be
copied to the CPU. d(i)’s contains the singular values, i.e., diagonal elements of Σ and is on the CPU.

3.3 Performance of Singular Value Decomposition

In this section, we analyze the performance of our algorithm with the optimized CPU implementation
of Singular Value Decomposition on MATLAB and Intel MKL 10.0.4 LAPACK. We enable dynamic
threading in Intel MKL for good performance. We tested our algorithm on an Intel Dual Core 2.66GHz
PC and a NVIDIA GeForce 8800 GTX graphics processor with CUDA 1.1 and a NVIDIA GTX 280
processor with CUDA 2.0. The 8800 GTX has 128 stream processors divided into 16 multiprocessors
with 8 texture access units and a total of 768 MB of memory. The GTX 280 has 240 stream processors
divided into 30 multiprocessors with 10 texture access units and a total of 1 GB of memory. According to
NVIDIA, GTX 280 can achieve a peak performance of 622 GFLOPS and 8800 GTX of 345.6 GFLOPS.
However, 8800 GTX gives 120 GFLOPS performance for single precision matrix multiply and 375
GFLOPS on GTX 280. We used Intel Core 2 Duo CPU E6750 @ 2.66Ghz processor for our experiments
which is said to be rated 22.4 GFLOPS.

We generated 10 random dense matrices of single precision numbers for each size. The Singular
Value Decomposition algorithm was executed for each matrix 10 times. To avoid a particularly good
or bad sample, we averaged over the random matrices for each size. The average did not vary much
if 10 or more matrices were used. Table 3.1 gives the overall average times in seconds using CUDA,
MATLAB and Intel MKL. We achieve a speedup of 3.04-8.2 over the Intel MKL implementation and
3.32-59.3 over the MATLAB implementation for the square and non-square matrices on NVIDIA GTX
280. The CPU still out-performs the GPU implementation for small matrices. For large square matrices,
the speedup increases with the size of the matrix. Figure 3.3 shows the time required for computing the
Singular Value Decomposition of square matrices and Figure 3.4 shows the time required for computing
the Singular Value Decomposition of rectangular matrices with leading dimension M=8K.

Bobda and Steenbock in [6] report only the timing for Singular Value Decomposition computation
of 106 × 106 matrix which takes about 17 Hrs. We compute Singular Value Decomposition for much
smaller matrices. Bondhugula et al. [7] only report the time for the bidiagonalization of the matrix.
Dickson et al. [12] presented a programmable processor design suitable for Singular Value Decom-
position, but do not give any Singular Value Decomposition results. Yamamoto et al. [53] give the
optimized algorithm only for large rectangular matrices. The maximum speedup they achieve is 4 with
CSX600 board over the CPU implementation for a large rectangular matrix, but get little speedup on
smaller matrices.
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SVD SVD SVD SVD Speedup

SIZE MATLAB MKL GTX 280 8800 MKL/280

64× 64 0.01 0.003 0.054 0.048 0.05
128× 128 0.03 0.014 0.077 0.116 0.18
256× 256 0.210 0.082 0.265 0.319 0.31
512× 512 3.19 0.584 0.958 1.129 0.61
1K×1K 72 11.255 3.725 4.28 3.02
2K×2K 758.6 114.625 19.6 21.656 5.84
3K×3K 2940 402.7 52.8 61.31 7.62
4K×4K 6780 898.23 114.32 133.68 7.85
1K×512 5.070 2.27 1.523 3.749 1.48
2K×512 10.74 12.8 3.118 4.072 4.11
4K×512 34.33 54.7 8.311 12.418 6.58
8K×32 24.310 17.112 3.506 - 4.88
8K×64 47.87 33.7 5.016 - 6.72
8K×256 107.57 103.8 13.96 - 7.4
8K×512 137.98 215 26.33 - 8.16
8K×1K 254.26 417 50.364 - 8.2
8K×2K 1371.9 808 111.3 - 7.25

Table 3.1 Total computation time for Singular Value Decomposition (SVD) (in seconds) for different
matrices

Table 3.2 gives the timings for bidiagonalization on the GPU and Intel MKL. Since Intel MKL
routine performs the partial bidiagonalization, i.e., it bidiagonalizes the given matrix and returns the
householder vectors instead of householder matrix, we compare it with the time required for partial
bidiagonalization on the GPU. We achieve a speedup of 1.58-16.5 over Intel MKL on bidiagonaliza-
tion. We experimented with different values of block size. We used the block size of 1 when n is small
and 16 for large n. The performance for the square matrices increases with the size of the matrix. For
rectangular matrices, the performance increases with the increase in n since blocking can be performed
efficiently. The bidiagonalization by Bondhugula et al. [7] performs only partial bidiagonalization.
Their timings given on http://www.cs.unc.edu/ geom/Numeric/svd/ are best compared with partial bidi-
agonalization timings given in Table 3.2, Column 5. Our timing is comparable (11 seconds on GTX
280, 14 seconds on 8800 GTX, compared to 19 seconds on 7900). Raw rating of the GPU speed doesn’t
guarantee proportionate performance on this operation as can be seen from the minor speedup on GTX
280 over 8800 GTX. We also compare our work efficient diagonalization algorithm with the Intel MKL’s
diagonalization algorithm. Table 3.3 gives the timings for diagonalization on the GPU and Intel MKL.
We achieve a speedup of 1.41-17.72 on the diagonalization step over Intel MKL implementation. The
performance of our kernel is limited by the availability of registers per thread. We used 64 threads in a
block for small matrices and 128 for larger matrices. It is done to keep all the multiprocessors active.
We could achieve 67%-83% occupancy on diagonalization since only 8 blocks could be active at a time.
The performance increases with the increase in the size of the matrix.
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Figure 3.3 Singular Value Decomposition computation time for square matrices on Intel MKL and
GPU(GTX 280 and 8800 GTX)

Figure 3.5 shows the speed up achieved on GTX 280 over Intel MKL for Singular Value Decom-
position, partial bidiagonalization and diagonalization. A sustained bandwidth of 2 GB/s can be easily
obtained from the CPU to the GPU. This will translate to 2ms of transfer time for 1K × 1K matrix
and 32ms for 4K × 4K matrix. The Singular Value Decomposition computation time makes the data
transfer time irrelevant. The timings in Table 3.1, 3.2 and 3.3 exclude the cost of transferring the matrix
from the CPU to the GPU since the overhead of transfer of data from the CPU to the GPU and back is
only to the order of tens of milliseconds.

GPUs are today limited to single precision arithmetic mostly. The GTX 280 has very limited double
precision support, but at a very heavy performance penalty. We explored the discrepancy or error due to
the reduced precision by comparing the results of the GPU version with the CPU version term by term.
The maximum difference in the singular values was 0.013% but the average was less than 0.00005%.
Similarly, the maximum error of any entry in the U and V matrices was 0.01% with an average of
0.001%. Figure 3.6 shows the plot of the error distribution in the singular values for a 3K×3K matrix.

Tables 3.1, 3.2 and 3.3 bring out the following points. The optimized Intel MKL does a very good
job on smaller matrices, but the performance of the GPU improves with the size of the matrix. The
diagonalization contributes a major share to the performance improvement on the GPU especially on
larger matrices. The bidiagonalization step takes more time on the CPU than the diagonalization step.
On the GPU, however, diagonalization is much faster. The GTX 280, surprisingly, improves the perfor-
mance only by 10-15% over the 8800 GTX but is able to handle larger matrices due to the larger internal
memory.
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Figure 3.4 Singular Value Decomposition computation time for rectangular matrices(M×N ) with lead-
ing dimension 8K and varying N on Intel MKL and GPU(GTX 280)

Partial Partial Partial
Bidiag. Bidiag. Bidiag. Bidiag. Bidiag.

SIZE GTX 280 8800 MKL GTX 280 8800

128× 128 0.060 0.075 0.003 0.050 0.063
512× 512 0.570 0.637 0.1478 0.373 0.430
1K×1K 2.40 2.588 3.8122 1.068 1.304
3K×3K 41 51.80 184 11.114 14.088
4K×4K 92.7 105.071 361.8 21.8 27.576
8K×32 1.499 − 0.020 0.143 0.066
8K×256 11.8 − 2.721 1.245 1.276
8K×512 23.8 − 13.8 2.650 2.8
8K×2K 101 − 220.500 14.3 20.281

Table 3.2 Bidiagonalization time (in seconds) for different matrices
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Diagonalization Diagonalization Diagonalization
SIZE Intel MKL GTX 280 8800

128× 128 0.010 0.017 0.041
512× 512 0.5439 0.385 0.381
1K×1K 6.417 1.3 1.347
3K×3K 159.413 11.6 11.821
4K×4K 354.3 20 21.7
8K×32 0.022 0.007 −
8K×256 0.564 0.159 −
8K×512 2.239 0.530 −
8K×2K 100.000 8.2 −

Table 3.3 Diagonalization time (in seconds) for different matrices
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Figure 3.6 Discrepancy plot for singular values of a 3K×3K matrix
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Chapter 4

Ray Tracing Parametric Patches

Kajiya’s ray patch intersection algorithm is described briefly in Section 2.4. We describe the Kajiya’s
ray patch intersection algorithm and its implementation on the GPU in detail in the following sections.

4.1 The Ray-Bézier Patch Intersection Algorithm

We adapt the ray-patch intersection approach proposed by Kajiya [25]. It is both robust and suitable
for implementation on a pipelined architecture. It needs a large number of floating point operations.
There were attempts to closely approximate Kajiya’s algorithm by finding the closest point of intersec-
tion using Newton’s iteration on the CPU [18]. However, no implementation exists to find the exact
points of intersection in interactive time. The advent of GPUs with support for higher precision and
their ever-growing amount of parallel horsepower makes them a tempting resource for such numerical
computations. We try to leverage the performance of GPUs for ray tracing parametric surfaces, being
both computationally demanding and massively parallel.

A Bézier bi-cubic patch of degree 3 is defined by

Q(u, v) =
[
u3 u2 u 1

]
MPMt


v3

v2

v

1

 , (4.1)

where 0 ≤ u, v ≤ 1 are the patch parameters. P is the control matrix and M is the Bézier basis matrix.
Parametric derivative with respect to u is given by

Qu(u, v) =
∂Q

∂u
=
[

3u2 2u 1 0
]

MPMt


v3

v2

v

1

 .
Qv(u, v) for v can be given similarly.
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A ray is represented as intersection of two planes (l0, l1). Intersecting a ray with a patch gives two
algebraic equations:

aiju
3−iv3−j = 0 (4.2)

biju
3−iv3−j = 0, (4.3)

where i, j ε {0, 1, 2, 3}. aij = l0kPk
ij and bij = l1kPk

ij , where k ε {0, 1, 2, 3} and l0k and l1k are the
horizontal and vertical planes representing the ray.

The intersection points of Equations 4.2 and 4.3 give the (u, v) parameter values at which the ray in-
tersects the patch. There are a maximum of 18 intersection points when a ray pierces a patch. Equations
4.2 and 4.3 can be written as polynomials in u:

a(u, v) = A0u
3 +A1u

2 +A2u+A3 = 0

b(u, v) = B0u
3 +B1u

2 +B2u+B3 = 0,

where Ai and Bi are cubic polynomials in v. To calculate the intersection of a(u, v) and b(u, v) curves
we find the common roots of the cubic polynomials in u. The vanishing of the Bezout determinant R
given as

R =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B0A1 −B1A0 B0A2 −B2A0 B0A3 −B3A0

B0A2 −B2A0 B0A3 −B3A0 B1A3 −B3A1

+B1A2 −B2A1

B0A3 −B3A0 B1A3 −B3A1 B2A3 −B3A2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(4.4)

is an 18 degree polynomial in v.
For every real root vi such that 0 ≤ vi ≤ 1 ofR, ui can be obtained by computing the GCD of a(u, vi)

and b(u, vi) using the standard Euclidean algorithm for polynomials. Real (ui, vi) pair represents a real
point of intersection. A ray can intersect a patch in 18 points (real or complex). The (x, y, z) coordinates
of the point in 3D space are computed using Equation 4.1 and the corresponding normal n is computed
as the cross product of the parametric tangents:

n =
∂Q

∂u
× ∂Q

∂v
. (4.5)

4.2 Ray Tracing Algorithm on GPU

Algorithm 6 shows the high level view of our ray tracing system. We create a BVH using the
surface area heuristics (SAH) of parametric patches. This reduces the number of ray patch intersections
significantly. The patch id of every potential intersection is recorded against the ray by traversing the
BVH.
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We form the 18 degree polynomial for all ray patch intersections in parallel on the GPU. The 18 roots
of the polynomials, i.e., v parameters are found one by one using the Laguerre’s root finding procedure
on GPU for all intersections. Finally, the u parameter is obtained by finding the GCD of the corre-
sponding cubic polynomials. The 3D point and the corresponding normal is calculated subsequently.
We recursively spawn secondary rays at each intersection point and intersect with the BVH. Similar to
primary rays, values for parameter v and u are found at each level to find a real intersection point. For
a real point of intersection the shading information is accumulated. All the calculations are performed
in the world space. The polynomial evaluation and root finding are done using complex arithmetic. All
numbers are represented using double precision as single precision turned out to be inadequate.

The overall process is controlled and coordinated by the CPU, with separate kernels for steps 2-8.
We describe the individual components in detail in the following subsections.

Preprocessing
1: Create the BVH of the model using SAH on the CPU. Store in depth first order with skip pointers.

Repeat every frame
2: Compute M horizontal and N vertical planes on the GPU in the world space using frustum corner

information.
3: Traverse BVH for every ray in parallel on the GPU. Record the (rayid, patchid) for each patch the

ray may intersect. Let Num Intersect be the total number of such potential intersections.

For all potential intersections in parallel on the GPU.
4: Compute the 18 degree polynomial by evaluating R.
5: Solve the polynomial, giving 18 complex roots for v.
6: For each real v, find the GCD of bicubic polynomials, giving the u parameter.
7: Find (x, y, z) and normal n for real (u, v) pair.
8: Spawn secondary (shadow or reflection) rays. Compute the plane equations in the direction of the

secondary ray. Repeat steps 3-7.
9: Compute the shading information by combining colors from all levels and record the color.

Algorithm 6: Overview of our ray tracing system on GPU

4.2.1 Preprocessing

We create a BVH of axis-aligned bounding box of the patches in the object space on the CPU once.
The algorithm approximates the SAH using streamed binning of centroids [21]. BVH is better suited for
dynamic scenes. It examines the potential partitions at every level and uses a split plane and dimension
which minimizes the SAH cost function. Depth first layout with skip offsets [45] is used to store
the BVH on GPU. We use the texture memory to store the patch and BVH data to exploit it caching
properties.

A BVH node is represented using 56 bytes: six double values for the axis aligned bounding box, one
32-bit integer value for the patch id (-1 for non-leaf nodes) and one 32-bit integer value to store the skip
pointer. Each value is stored in a different texture. A patch is represented using 48 doubles on GPU. In
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the texture memory, the first control point of all the P patches are stored linearly followed by the second
and so on as shown in Figure 4.1. (X(i, j), Y (i, j), Z(i, j)) represents the jth control point of ith patch.
Creating the BVH of Killeroo model with 11532 patches takes 340ms on the CPU. The BVH can be
recomputed on the CPU in parallel with the intersections on the GPU, if the patches are dynamic.

X(1,1)                               X(P,1)
                                       
X(1,16)                             X(P,16)
Y(1,1)                               Y(P,1)

Y(1,16)                             Y(P,16)
Z(1,1)                                Z(P,1)

Z(1,16)                              Z(P,16)

Number of Patches

Figure 4.1 Patch data layout in the texture memory of the GPU. The first control point of all the P
patches are stored linearly followed by the second and so on. The layout increases the spatial locality of
memory accesses.

To find the ray patch intersection, we represent a ray as the intersection of two planes. One plane re-
mains constant as we move along a row on the screen, similarly along a column. For a screen resolution
of M ×N we compute M horizontal and N vertical planes. M ×N rays can be represented using M
+ N plane equations which are computed once on the GPU. A ray passing through the pixel (i, j) uses
ith horizontal and jth vertical planes. This is implemented on the GPU. We use kernels planesX and
planesY to compute horizontal and vertical planes respectively, in which every thread computes a plane
equation. It takes less than 1 milliseconds to estimate the plane equations on the GPU. Plane equations
are computed every frame in the world space using frustum corner information.

4.2.2 BVH Traversal on the GPU

Each ray traverses the BVH of patches in depth first order on the GPU. The ray id (x, y) and patch
id tuple is stored for every potential intersection after the traversal on the global memory. We then
rearrange the ray-patch intersection data for further processing.

We write separate kernels to map the BVH traversal to efficient GPU execution. We assign a thread
for each ray in screen space and traverse the BVH independent of other rays. Kernels (traverse, scan,
rearrange) are executed in that order. We use an execution configuration of (M ×N)/256 blocks, each
with 256 threads for the kernels. We allocate a memory block of sizeM×N×K for the working queue
Mem Queue used in the traversal procedure. The value of K depends on the maximum number of ray
patch intersections. We use a value of 6 in the current version. We initialize the integer array Sum with
zeros.

In the traverse kernel, the ray id is computed by each thread from block and thread information.
Starting node data of the BVH is read from position 0 in the texture. At each node we perform intersec-
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tion tests with AABB of the node using ray-AABB test. Whenever a ray intersects the BVH leaf node,
we store the patch id in Mem Queue. The node position is incremented when a ray intersects the node,
otherwise the node position is updated to value stored in the skip pointer. The number of intersected
children is saved in Sum. Traversing the BVH in depth first order avoids the use of stack. An efficient
parallel packet based traversal algorithm using a shared stack is proposed by [21]. However, we restrict
ourselves to simple depth first traversal.

Since the intersected patch id information is irregular in Mem Queue, we use a scan to rearrange the
data [41]. We perform a parallel scan operation using scan kernel on Sum array and store the results in
Prefix Sum.

We use the rearrange kernel to write pixel positions and rearrange the patch id’s in linear arrays
using the Prefix Sum values. We propagate the value of patch id from Mem Queue to the output array
patch ID specified by offset equal to Sumi and length equal to Prefix Sumi. Ray id (x, y) is written to
pixel x and pixel y. The rearranged regular data is used independently for further computations on the
GPU. It gives the number of ray patch intersections, say Num Intersect. Thus, we store Num Intersect
patch id’s in patch ID and ray id’s in pixel x and pixel y. Figure 4.2 shows an example of BVH traversal
and data rearrangement.

Mem_Queue

Sum
patch_ID

pixel_y

pixel_x0

1

2

2 3

4

4

5

3 1 2 2 0

0 3 4 6 8 Prefix_Sum

5    5    5    6   7    7    5   5

4    4    4    4    4   4   5    5

0    1    2    2    3   4    4   5

rearrange

  scan

Input pixel (x,y)

traverse

4,5  4,6 4,7  5,5 5,6

Figure 4.2 Depth first ray traversal example. Each thread in the traverse kernel traverses the BVH for
the ray assigned to it. The patch id of the potential intersections and the total number of intersections
are recorded in Mem Queue and Sum respectively. The intersected patch id and pixel information is
then rearranged using rearrange kernel after performing scan on Sum and stored in patch ID, pixel x
and pixel y.

In our algorithm, each ray makes independent traversal decisions resulting in multibranching within
a CUDA warp of threads. We minimize divergence by assigning adjacent pixel locations to the nearby
threads as we expect adjacent rays to traverse the tree nodes in the same order. Reading the node data
from textures incurs little read overhead. Our kernels use only a few live registers and limited shared
memory, giving 100% device utilization.
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4.2.3 Computing the 18 degree polynomial

We compute the 18 degree polynomial in parallel for Num Intersect intersections. Equation 4.4 can
be simplified as

R(a, b) =

∣∣∣∣∣∣∣
a b c

b c+ d e

c e f

∣∣∣∣∣∣∣ , (4.6)

where every term is a 6 degree polynomial in v. Expanding the determinant R requires the computation
of six 6 degree polynomials, six 12 degree polynomials, and three 18 degree polynomials.

We use a kernel bezout for forming the 18 degree polynomial in v parameter for all the ray patch
intersections in parallel. A CUDA block processes 16 ray patch intersections, each using 21 threads.
Number of blocks used is the ceiling of Num Intersect/16, each with 21 × 16 threads. The use of
336 threads per block may seem inefficient on today’s GPU but gives the best performance among the
alternatives. The number of ray patch intersections can be greater than the number of visible pixels.
Arrays patch ID, pixel x and pixel y are passed to the kernel and the patch control points for every pixel
are read from the texture memory. Pseudocode for bezout kernel which computes 16 intersections in ith

block is given in Algorithm 7.

1: Allocate Shared memory (SM), register q per thread
2: i = Block Id, j = 0
3: while j < 16 do
4: Read ind = patch ID[i× 16 + j], pixx = pixel x[i× 16 + j], pixy = pixel y[i× 16 + j]
5: Read planeX and planeY for pixx and pixy and copy patch data to shared memory
6: Compute 32 coefficients A = (A0, A1, A2, A3) and B = (B0, B1, B2, B3) using 32 threads
7: Write the coefficients to d A and d B in the global memory
8: Increment j
9: end while

For all the sixteen intersections assigned to a block
10: Read A and B coefficients in shared memory

Compute:
11: (a,b,c) using 21 threads and store in SM
12: (d,e,f ) using 21 threads and store in SM
13: T1 = (c+ d)f − e2 using 13 threads and store in SM
14: S1 = a((c+ d)f − e2) using 19 threads and store in q
15: T2 = bf − ce using 13 threads and store in SM
16: S2 = b(bf − ce) using 19 threads and update q
17: T3 = be− c(c+ d) using 13 threads and store SM
18: S3 = c(be− c(c+ d)) using 19 threads and update q

19: 19 register values of q corresponding to coefficients of a polynomial is written to d pr in the global
memory

Algorithm 7: bezout kernel evaluates 16 polynomials assigned to ith intersection block
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Kernel computes the (A0, A1, A2, A3) and (B0, B1, B2, B3) coefficients sequentially for the sixteen
intersections in the block. 32 threads compute the coefficients in parallel. The coefficients are written
to d A and d B in the global memory as shown in Figure 4.4(a). A(i, j) denote the jth coefficient of A
for ith ray-patch intersection.

The computations in a block requires a maximum of 21 × 16 threads. We formulate the parallel
computations for sixteen intersections in the block as matrix operations. Computing a, b and c (degree 6)
polynomials together for an intersection requires calculating 21 coefficients in parallel. Each half warp
of 16 threads computes a coefficient of the 21 coefficients for the sixteen intersections. We therefore
require, 21× 16 threads in a block, of which first 7× 16 compute coefficients of a, next 7× 16 compute
coefficients of b and next 7× 16 compute coefficients of c. Similarly for d, e and f . Computation of Ti

and Si where i ε {1, 2, 3} as computed in Algorithm 7 requires 13×16 and 19×16 threads respectively.
Steps 10-19 are executed sequentially in the kernel. Mapping between threads and the coefficients to
be computed of polynomial Ti is shown in Figure 4.3. Similar division is used for computing (a,b,c),
(d,e,f ) and Si.

T(1,1)       T(2,1)                  T(16,1)

T(1,13)    T(2,13)                T(16,13)

      Block Dimension X = 16

 

Y = 21
Dimension

  Block 

       8 half warps are unused 

Figure 4.3 Each thread of the block computes a coefficient for an intersection. T (k, j) denotes the jth

coefficient of Ti polynomial for the kth intersection in the block. A thread with thread id (k, j) computes
T (k, j). Every half warp computes the same coefficient but for different intersection. In this case, 4
warps do not perform any computations. 2 warps do not perform any computations while computing Si.
No threads are wasted while computing (a,b,c) and (d,e,f )

Every half warp computes the same coefficients but for different intersections, it runs for same length.
For example, first coefficient of a requires only a multiplication operation, but second coefficient re-
quires 2 multiplications and an addition operation. Texture memory is used to pass the lengths of the
calculation for a coefficient. Coefficients for 12 and 18 degree polynomials are computed similarly.

We observe thread divergence between half warps within a warp during coefficient computation.
It cannot be avoided due to different lengths of computation required for different coefficients. Other
mapping configurations give worse results. Although, few warps are wasted at different steps in the
kernel, this configuration utilizes the resources best.

Sixteen 18-degree polynomials are formed on each CUDA block, and are written to the global mem-
ory as shown in Figure 4.4(b). The real coefficients are stored in d pr in the global memory. While
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A(1,1)     A(2,1)

A(1,16)   A(2,16) B(1,16)  B(2,16)

B(1,1)    B(2,1)

(a) Data layout for d A and d B in the global memory

Xr(1,1)      Xr(2,1)

Xr(1,19)     Xr(2,19)

(b) Data layout for d pr in the
global memory

Figure 4.4 The first coefficient of A, B for the Num Intersect intersections is stored continuously in
the linear memory. Similar layout is used to store the real coefficients of the polynomial. The layout
increases coherent access to the coefficients and avoids any uncoalesced data read and write since a
thread is assigned for every intersection. The memory block has a width of Num Intersect.

writing the polynomial coefficients, we store the first coefficient of all the polynomials continuously
followed by the second, etc. Xr(i, j) denotes the jth coefficient of the ith polynomial respectively.
This data layout avoids all uncoalesced reads and writes.

The performance of the bezout kernel is limited by the use of registers. We are able to obtain a
occupancy of 69% using this configuration.

4.2.4 Finding the polynomial roots

The polynomial obtained in the above section is solved using the Laguerre’s root finding method.
We use this method as it guarantees the convergence to some root of the polynomial irrespective of the
initial guess and has good global convergence properties. Because of the cubic convergence, 5 to 7
iterations are sufficient in practice. Algorithm 8 shows the procedure for finding a root x of polynomial
p(x) using Laguerre’s method. The constants maxIter and threshold control the accuracy.

1: Set initial guess x0

2: for k = 0 to maxIter do
3: G = p′(xk)/p(xk)
4: H = G2 − p′′(xk)/p(xk)
5: α = n/(G±

√
(n− 1)(nH −G2))

6: xk+1 = xk − α
7: if α < threshold then
8: break
9: end if

10: end for
Algorithm 8: Laguerre’s root finding procedure

The v parameter corresponding to 18 complex roots of the polynomial are calculated first. We find
all the roots using the Laguerre’s method, initializing them to 1/

√
2+1/

√
2j. Once a real root is found,

the polynomial is deflated by synthetically dividing by the monomial corresponding to the root. Since
complex roots always appear in pairs, the polynomial is deflated by the quadratic polynomial obtained
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by multiplying the complex conjugates for complex root. The coefficients of the deflated polynomial
are always real.

We use separate kernels to find the root and to deflate the polynomial. We use an execution configu-
ration of Num Intersect/64 blocks, each with 64 threads for the kernels. The order in which the kernels
are invoked from the CPU is shown below:

1: i = 0, Set initial guess for all roots
2: while i < 18 do
3: Invoke laguerre kernel for finding the ith root xi

4: Invoke deflate kernel, deflates polynomial by xi

5: Increment i
6: end while

Each CUDA block processes 64 intersections in parallel. Every thread handles one polynomial. A root
is found after every invocation of laguerre kernel. We maintain a shared variable count in a block. It is
initialized to 0 for every iteration in the kernel. If the root is not found for a polynomial in an iteration
in the block, the corresponding thread updates the count value to 1. The kernel loops as long as a
polynomial exists for which a root has not been found or if the maximum number of iterations is not
reached. Once a root is found for all the polynomials in the block, only the real root is written to d realv
in the global memory below the previously found real root. Since, roots are required for deflating the
polynomial, we also store the complex roots in a temporary array which can be reused after deflating
the polynomial.

Finding a root of a polynomial requires polynomial coefficients which are represented using 19×8 =
152 bytes. Each block would require 152 × 64 = 9728 bytes. Polynomial coefficients are transferred
repeatedly from the global memory to the kernel. The laguerre kernel executes all steps listed in Algo-
rithm 8. The polynomial coefficients are read once in the deflate kernel and the updated coefficients are
written to d pr in the global memory.

The effective number of registers available is half when using double precision arithmetic. The
performance of laguerre kernel is limited by the number of registers used per block. We use 64 threads
per block. Splitting the root finding method into laguerre and deflate kernels reduces the number of
registers used per kernel. We are able to keep the occupancy of the device above 25% for the laguerre
kernel and 50% for deflate kernel. The first real root of all the polynomials are stored continuously in
the linear memory, followed by the real second root, etc., as shown in Figure 4.5(a). V r(i, j) denotes
the jth real root of ith polynomial. Pseudocode for laguerre and deflate kernels which finds ith root of
p(x) is given in Algorithm 9.

4.2.5 Computing the GCD of bi-cubic polynomials

To find the u parameter at intersections, we successively substitute the vi obtained earlier in Equa-
tions 4.2 and 4.3. The GCD of the polynomials gives the u parameter, ui = GCD(a(u, vi), b(u, vi)).
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Vr(1,1)     Vr(2,1)

Vr(1,18)  Vr(2,18)

(a)

R   R    R   R   R    R

R   R         R   R

R

 2     2    1     3     2    1

d_counterv

(b)

Figure 4.5 4.5(a) shows the data layout for d realv in the global memory. The memory block has a
width of Num Intersect. 4.5(b) shows how the real roots of 5 degree polynomials are arranged to lie
continuously in a column. The count of the number of real roots for every polynomial is stored in
d countv

The GCD is computed using the standard Euclidean algorithm for polynomials. The 3D point (x, y, z)
and the corresponding normal n for a real (ui, vi) is calculated as given in Equations 4.1 and 4.5. We
compute the GCD only for real vi and further reduce the computations by processing only real vi and ui

pairs. We invoke (gcd, 3Dpoints) in that order using Num Intersect/256 blocks, each with 256 threads.

We use a gcd kernel which finds ui only for real vi by computing the GCD of cubic polynomials for
the intersections. The number of real v for every polynomial can be read from d countv array. Every
CUDA block finds the u parameter for 256 polynomials. Each thread handles one polynomial and loops
for count (read from d countv) times and finds the GCD using the Euclidean algorithm.

Whenever a real (ui, vi) pair is found, flag value is set and the real pair counter is updated. The ui

and vi are then written below the previous real root in the column in d realu and d realv respectively.
The point is rendered only if the flag indicates a real point of intersection. We keep the count of the
number of real (u, v) pair for every polynomial in an integer array d countu. The (A0, A1, A2, A3),
(B0, B1, B2, B3) coefficient values are loaded from the global memory. Limited shared memory makes
it unsuitable to store the coefficients.

We use kernel 3Dpoints which finds the points (x, y, z) and n only for real (u, v). Every CUDA
block finds the points for 256 intersections. Each thread handles one intersection and loops for count
(read from d countu) times and finds the (x, y, z) points. The patch control points could not be stored
in the shared memory, and hence are read every time from the texture.

The performance of the kernels is limited by the availability of registers. Shared memory is used to
store the register values. We achieve occupancy of 25% for gcd and 3Dpoints kernel. Pseudocode for
gcd and 3Dpoints which processes the jth polynomial is given in Algorithm 10.
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laguerre kernel to find ith root of p(x)
1: Initialize shared variable count to 1
2: while count == 1 do
3: count = 0
4: Read p(x) from d pr and compute α as given in Algorithm 8
5: if α > threshold then
6: Update xi to xi − α, count = 1
7: else
8: break
9: end if

10: end while
11: Write real xi.r to d realv. Store xi in temporary array.
12: For real xi, increment value in d countv.

deflate kernel to divide p(x) by xi

13: Read p(x). Read xi from temporary array.
14: If xi is real, divide p(x) by x− xi.r
15: For complex xi, divide p(x) by x2 − 2xi.rx+ (xi.r)2 + (xi.i)2

16: Write new coefficients to d pr

Algorithm 9: Find ith root of the polynomial p(x)

4.2.6 Secondary Rays

We spawn secondary (shadow or reflected) rays at the nearest real point of intersection of the primary
ray with a patch. Similar to primary ray traversal, the secondary ray traverses the BVH and stores
(primary ray id, patch id) as in Step 3 of Algorithm 6. This information is used for computing the color
at a pixel at which the primary rays intersects the patch.

Two orthogonal planes for secondary rays are chosen using their direction. The steps 3-8 in Al-
gorithm 6 are invoked separately for shadow and reflected ray. The real points of intersection of the
secondary ray with the patch is found using the Laguerre’s method and Euclidean algorithm on the
GPU.

If a real intersection is found for a shadow ray, the point from which it is spawned is shadowed.
Similarly, for the reflected ray, the nearest real intersection is used to compute the final color at the point
from which it is spawned.

4.2.7 Rendering

We use the standard illumination equation for computing the color value at a pixel. Points with real
(u, v) value found by intersecting primary rays with the patch and are not shadowed are used to compute
the color at a pixel (x, y), i.e., primary ray id. For reflected ray, full illumination at the intersection point
is computed. Contributions of the secondary rays are combined in the reverse order as in standard ray

43



gcd kernel computes u parameter
1: count1 = d countv[j]
2: Compute j value from block and thread index
3: Initialize count2 to zero
4: while i < count1 do
5: Read v.r from d realv
6: Compute bicubic a(u, v.r) and b(u, v.r)
7: x = GCD(a, b)
8: if x.i == 0 and 0 ≤ x.r ≤ 1 then
9: index = j+ count2 ? Num Intersect

10: d realv[index] = v.r
11: d realu[index] = x.r
12: Increment count2
13: end if
14: Increment i
15: end while
16: d countu[j] = count2

3Dpoints kernel computes (x, y, z) and n
17: count = d countu[j]
18: Compute j value from block and thread index
19: Initialize d flag to zero
20: while i < count do
21: Read v from d realv and u from d realu
22: Compute x, y, z and n as given in Equations 4.1 and 4.5
23: d flag[j + i ? Num Intersect] = 1
24: Increment i
25: end while

Algorithm 10: Finds the GCD and 3D points for jth polynomial

tracing. The color and depth information of the point is stored in the color and depth buffer respectively.
Per pixel normals are used to compute the light equation.

4.3 Results and Analysis

We test our ray tracing system for primary and secondary rays (at 512× 512 resolution). We use the
Teapot (32 patches), Bigguy (3570 patches) and Killeroo (11532 patches) Bézier models. We build the
BVH on the CPU for these models using streamed binning algorithm. The leaf of the BVH contains
exactly one patch. All measurements were done using an Intel 2.4GHz Core 2 CPU and NVIDIA
GeForce 280 GTX graphics card and GTX 480 (Fermi) graphics processor. The kernels were compiled
using CUDA 2.2. We used a threshold of 10−20 to 10−15 for convergence of root finding.
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4.3.1 Ray Tracing Performance

Figures 4.10(a)-4.10(e) shows the results of our ray tracing system on different models. Constructing
BVH using the SAH gives high quality trees and achieves fast construction time. BVH traversal on GPU
is easier to implement and uses less live registers. Although, rays make independent traversal decision
and traverse the tree in depth first order the time taken is very less in comparison to time taken to ray
trace the scene. The number of patches intersected per ray depends on the depth complexity of the
model and the heuristics used while constructing the BVH. In our case, number of patches intersected
per ray are in the range 2-4.

Model
Type Number Patch BVH Polynomial Solve GCD, Time

of of per Traversal Formation poly- (x,y,z) per
Ray intersections ray nomial and n frame

Time(secs) Time(secs) Time(secs) Time(secs) (secs)

Teapot
P 54389 2.01 0.004 0.019 0.175 0.013 0.211
S 29626 2.32 0.003 0.012 0.111 0.010 0.136
R 41096 3.21 0.004 0.031 0.143 0.011 0.189

Bigguy
P 114048 3.23 0.007 0.043 0.352 0.015 0.417
S 114112 3.47 0.007 0.048 0.350 0.015 0.420
R 143040 4.34 0.008 0.104 0.480 0.022 0.614

Killeroo
P 127040 1.43 0.010 0.050 0.390 0.016 0.466
S 138240 1.72 0.011 0.061 0.420 0.016 0.508
R 146432 1.82 0.013 0.105 0.446 0.022 0.586

Table 4.1 Time for executing different kernels of the ray tracing algorithm on GPU for primary (P),
shadow (S) and reflection rays (R) for different models on GTX 280.

Model
Type Number Patch BVH Polynomial Solve GCD, Time

of of per Traversal Formation poly- (x,y,z) per
Ray intersections ray nomial and n frame

Time(secs) Time(secs) Time(secs) Time(secs) (secs)

Teapot
P 54389 2.01 0.001 0.0064 0.0596 0.004 0.071
S 29626 2.32 0.001 0.0037 0.0333 0.003 0.041
R 41096 3.21 0.0012 0.0093 0.0432 0.0033 0.057

Bigguy
P 114048 3.23 0.00245 0.01505 0.1242 0.00525 0.147
S 114112 3.47 0.00245 0.0168 0.1235 0.00525 0.148
R 143040 4.34 0.00248 0.03224 0.1488 0.00682 0.190

Killeroo
P 127040 1.43 0.0035 0.0175 0.1375 0.0056 0.164
S 138240 1.72 0.00385 0.02135 0.148 0.0056 0.179
R 146432 1.82 0.00429 0.03465 0.149 0.00726 0.195

Table 4.2 Time for executing different kernels of the ray tracing algorithm on GPU for primary (P),
shadow (S) and reflection rays (R) for different models on GTX 480.
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Model
Type Time Time

of (secs) (secs) Speedup
Ray GTX 480 GTX 280

Teapot
P 0.071 0.211 2.94
S 0.041 0.136 3.28
R 0.057 0.189 3.3

Bigguy
P 0.147 0.420 2.83
S 0.148 0.420 2.83
R 0.190 0.614 3.23

Killeroo
P 0.164 0.466 2.83
S 0.179 0.508 2.83
R 0.195 0.586 2.99

Table 4.3 Shows the time taken in seconds on GTX 280 and GTX 480 to render a frame for different
models and type of rays.

Model
Time Number
(secs) of

GTX 480 Batches

Killeroo
0.3612 1
0.182 2
0.090 4

Table 4.4 Shows the time taken in seconds on GTX 480 to render a frame for Killeroo model with
primary rays and 280000 intersections. The intersections are processed in batches using limited device
memory.

The time taken for each step of ray tracing system for different rays and models on GTX 280 is
given in Table 4.1. The measurements are averaged over 10-15 frames. The total time includes the time
taken for computing the plane equations, about 1-2 ms per frame. Figure 4.6 presents the time spent in
different kernels for primary, shadow and reflection rays. Finding the roots of the higher degree poly-
nomials is the most time critical step of our algorithm and takes about 82% of the total time on average.
Table 4.1 shows that the time to process a ray-patch intersection is about 3.7 microseconds. It is nearly
constant for primary and secondary rays. This gives us a way to predict performance on other situations,
as the rendering time scales linearly with the number of intersections (i.e., total Num Intersect). Table
4.2 gives the time taken for ray tracing models on GTX 480. The time taken to process a ray-patch
intersection is about 1.28 microcseconds on GTX 480.

Table 4.4 shows the time taken to process the intersections for Killeroo model in batches. The
intersections are processed using the limited device memory. Experiments show that the time taken to
process a intersection remains almost constant if enough intersections are batched to keep the device
busy. Table 4.5 shows the timings of multi GPU implementation on Tesla S1070. Per intersection
processing time remains almost constant on multi GPU. The overall rendering time decreases by a
factor of the number of GPUs used.
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Figure 4.6 Time spent in different kernels of our ray tracing system for Teapot (T), Bigguy (B) and
Killeroo (K) models for primary (P), shadow (S) and reflected (R) rays. Y axis shows (Model, Type of
ray) tuple.

Table 4.3 shows the time taken in seconds on GTX 280 and GTX 480 for rendering a frame for
different models and type of rays. The improvement in the double precision performance on GTX 480
is 4x over GTX 280. Speedup of 3 is achieved on GTX 480 over GTX 280. Figure 4.8 shows the
average time taken in microseconds on GTX 280 and GTX 480 to compute a ray patch intersection. It
takes on average 3.7 microseconds on GTX 280 and 1.3 microseconds on GTX 480 to find a ray patch
intersection. 48KB of memory is used as L1 cache on GTX 480 and 16KB shared memory available is
used to store the intermediate values in the kernels. This configuration guarantees maximum coherence
between the coefficients in the cache.

Figure 4.7 shows the speedup achieved on GTX 280 and GTX 480 over the equivalent CPU MAT-
LAB implementation on a Intel 2.4GHz dual core processor. GTX 480 gives a speedup of 1000x and
GTX 280 gives a speedup of 350x.

Each thread in laguerre kernel finds a real or complex root. 20-25% real roots are found in every
iteration. Figure 4.9 shows the percentage of threads that finds real root in different warps for finding
the first root. Real root deflates the polynomial by one degree. When a complex root is found the
polynomial is deflated by a quadratic polynomial obtained by multiplying the complex root and its
conjugate thus deflating the polynomial by two degree. The polynomial p(xi), first derivative p′(xi)
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Figure 4.7 Shows the speedup on GTX 280 and GTX 480 over the CPU MATLAB implementation for
Teapot (T), Bigguy (B) and Killeroo (K) models for primary (P), shadow (S) and reflected rays (R).

and second derivative p′′(xi) are computed using Werner’s method for polynomial evaluation. The
highest degree coefficient of all the polynomials is stored continuously in a row. This guarantees less
divergence while evaluating the polynomials in further iterations. Divergence occurs only at the end
while evaluating the polynomials.

Enough active threads are assigned to keep the GPU busy. The occupancy ranges from 25% to 100%.
The performance of the kernels is mostly limited by the number of registers used per thread. We split
the kernels wherever possible to reduce the number of registers used. Uncoalesced data reads and writes
are avoided by using appropriate and compact data structure.

4.3.2 Memory Requirements and Bandwidth

Memory required to store the BVH in depth first order equals the total number of nodes formed.
Each node is represented using 8 values stored in different textures and requires a total of 56 bytes
(Section 4.2.1). A working queue is maintained for traversing the BVH. Ray patch intersections to be
evaluated are kept in integer arrays. Only the patch control points (16 per patch) are stored in the texture
memory. For a ray-patch intersection, 32A andB coefficients and 19 polynomial coefficients are stored
in the global memory. The memory requirements are maximum for the first root and come down as the
polynomial is deflated. The total memory requirements are 32 + 19 = 51 doubles or 408 bytes per ray-
patch intersection to be evaluated. For a million pixel display, with 50% empty pixels and an average
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Figure 4.8 Shows the time taken in microseconds on GTX 280 and GTX 480 to compute a ray patch
intersection.

ray-patch intersection of 2, the total memory required is 408 MB. However, the ray-patch intersections
can be processed in batches, based on available memory, as they are totally independent of one another.

Another related issue is the memory bandwidth used while executing the laguerre kernel. The patch
coefficients are repeatedly read from the global memory. Multiple reads from the global memory in-
curs a performance penalty while solving the polynomials making it the most time critical step of our
algorithm. The coefficients cannot be stored in shared memory on GTX 280. GTX 480 has a maximum
of 48KB shared memory which can be used to store the coefficients. However, storing the coefficients
in shared memory than directly reading from global memory incurs a load overhead thereby decreasing
the performance.

4.3.3 Strengths and Limitations

Our ray tracing method facilitates ray tracing of dynamic bicubic patches. All the operations except
BVH construction (constructed only once on CPU) are performed on GPU. Our algorithm exploits
parallelism by dividing the computations into independent tasks. Kernels have low branch divergence
and high memory access coherence. The time taken is linear in the number of ray-patch intersections
evaluated. Shadow or further bounces do not add to any additional overheads. This gives a way to
predict performance based on the rendering and scene complexity. A data structure that can reduce the
average number of ray-patch intersections evaluated can boost the performance directly.
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Figure 4.9 Shows the percentage of threads that find real root while finding the first root in different
warps.

The primary limitation of our method is its memory usage. However, this can be solved by computing
ray-patch intersections in batches. Batch processing has no appreciable impact on the performance if
sufficient number of threads run in each to keep the GPU busy, based on our experiments. Two factors
that limit the speed of our approach on GTX 280 are double precision computation and registers. Double
precision is 4 times faster on GTX 480. Shared memory is used to store the intermediate register values.

Our method can be speeded up further by the use of multiple GPUs, as the ray-patch evaluations are
strictly independent. The root finding step will achieve linear speedup. The data transferred across the
GPUs can be limited to the relatively light (rayID, patchID) pairs.

4.3.4 Comparison with other ray tracing systems

Comparison with other ray-tracing efforts is not meaningful as most are from a different era. Ours
is, to the best of our knowledge, the first effort to bring ray tracing of bicubic surfaces to near interactive
rates with interactivity a strong possibility in the immediate future. Our approach will be advantageous
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Model
Type Time Time

of (secs) (secs)
Ray GTX 280 Tesla S1070

Teapot
P 0.211 0.06
S 0.136 0.035
R 0.189 0.05

Bigguy
P 0.417 0.109
S 0.420 0.111
R 0.614 0.168

Killeroo
P 0.466 0.117
S 0.508 0.134
R 0.586 0.152

Table 4.5 Shows the time taken in seconds on GTX 280 and Tesla S1070 GPU to render a frame for
different models and type of rays.

in situations which require highly accurate rendering in near-interactive rates. Figures 4.10(a)-4.10(e)
and the accompanying video show smooth silhouettes, shadows and reflections on parametric surfaces.
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(a) (b) (c) (d)

(e)

Figure 4.10 Screen shots for different models. (a) Teapot with one level of reflection. (b) Teapot with
reflection and shadow. (c) Bigguy with shadow. (d) Killeroo with shadow. (e) Three teapots with
shadows and one level of reflection. True normals used for shading guarantees accurate shading and
gives high quality images.
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Chapter 5

Conclusions

We presented the implementation of two compute intensive problems on the GPU using the CUDA
programming language. Computing Singular Value Decomposition of a matrix and direct ray tracing
of parametric patches both require enormous amount of floating point operations making them ideal
candidates for processing on the GPU. Our GPU implementations exploits the parallelism in the GPU
architecture well and achieves high computing performance on them. Ours is, to the best of our knowl-
edge, the first implementation of these problems on the GPU.

Singular Value Decomposition is implemented on the GPU using the two step Golub Reinsch algo-
rithm. The bidiagonalization of a matrix is performed entirely on the GPU using the optimized CUBLAS
library to derive maximum performance. We used a hybrid implementation for the diagonalization of
the matrix that splits the computations between the CPU and the GPU, giving good performance results.
Our implementation using the CUBLAS and CUDA kernels outperforms the optimized CPU implemen-
tations available significantly. We show a speedup of upto 60 over the MATLAB implementation and
upto 8 over the Intel MKL implementation on a Intel Dual Core 2.66GHz PC on NVIDIA GTX 280.

We are able to compute the Singular Value Decomposition of very large matrices of the order 14K
which is impossible on the CPU due to memory limitations. The GPUs are limited to single precision
numbers, though that is changing with the newer generations. The error due to the lower precision was
less than 0.001% on the random matrices we experimented with. Our approach of using CUDA and the
software libraries available with it can be used for solving many other graphics and non-graphics tasks.

We presented an implementation of direct ray tracing of bicubic parametric patches. Our method
finds the ray-surface intersections on the GPU by adapting and optimizing Kajiya’s method on it. The
method guarantees to find the exact point of intersection by finding the roots of a 18 degree polynomial
facilitating shading at each pixel using true normals. The time taken is directly proportional to the
number of ray-patch intersections that are evaluated and is relatively independent of the number of
patches. Thus, primary rays and subsequent bounces can all be handled equally well, providing high
quality rendering. Each intersection takes around 3.7 microseconds on GTX 280, irrespective of the
number of primitives. We are able demonstrate highly accurate rendering of complex models in near-
interactive rates with smooth silhouettes, shadows and reflections on parametric surfaces. We achieve a
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speedup of 340x on GTX 280 and 990x on GTX 480 over the optimized MATLAB implementation on
the AMD Dual CPU Processor of the same algorithm.

The linear dependence of our method on the ray-patch intersections provides a way towards improv-
ing the performance in the future. Firstly, faster double precision arithmetic and larger shared memory
will improve the basic root finding step proportionately, bringing down the overall time. Both improve-
ments are available in the next generation GPUs. The ray-patch intersections evaluated by traversing
the BVH result in independent computations in our method. These may be performed in batches when
memory or other resources are not available on a single GPU. They can also be performed in parallel
when multiple GPUs are available. Direct ray tracing of Bézier surfaces at interactive rates will be a
reality in the near future.
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