
Singular Value Decomposition on GPU using CUDA

by

Sheetal Lahabar, P J Narayanan

in

IPDPS 2009
(IEEE International Parallel Distributed Processing Symposium)

Report No: IIIT/TR/2009/163

Centre for Visual Information Technology
International Institute of Information Technology

Hyderabad - 500 032, INDIA
May 2009

Singular Value Decomposition on GPU using CUDA

Sheetal Lahabar
Center for Visual Information Technology

International Institute of Information Technology
Hyderabad, India

sheetal@students.iiit.ac.in

P. J. Narayanan
Center for Visual Information Technology

International Institute of Information Technology
Hyderabad, India

pjn@iiit.ac.in

Abstract

Linear algebra algorithms are fundamental to many com-
puting applications. Modern GPUs are suited for many
general purpose processing tasks and have emerged as
inexpensive high performance co-processors due to their
tremendous computing power. In this paper, we present the
implementation of singular value decomposition (SVD) of a
dense matrix on GPU using the CUDA programming model.
SVD is implemented using the twin steps of bidiagonalization
followed by diagonalization. It has not been implemented on
the GPU before. Bidiagonalization is implemented using a
series of Householder transformations which map well to
BLAS operations. Diagonalization is performed by applying
the implicitly shifted QR algorithm. Our complete SVD
implementation outperforms the MATLAB and Intel R©Math
Kernel Library (MKL) LAPACK implementation significantly
on the CPU. We show a speedup of upto 60 over the
MATLAB implementation and upto 8 over the Intel MKL
implementation on a Intel Dual Core 2.66GHz PC on
NVIDIA GTX 280 for large matrices. We also give results
for very large matrices on NVIDIA Tesla S1070.

1. Introduction

The singular value decomposition (SVD) is an important
technique used for factorization of a rectangular real or
complex matrix. Matrix computations using the SVD are
more robust to numerical errors. It is used for computing
the pseudoinverse of a matrix, solving homogeneous lin-
ear equations, solving the total least square minimization
problem and finding approximation matrix. It is also widely
used in applications related to principal component analysis,
signal processing, pattern recognition and image processing
for singular value spectral analysis. The SVD also has
a variety of applications in scientific computing, signal
processing, automatic control and many other areas.

A SVD of a m × n matrix A is any factorization of the
form

A = UΣV T , (1)

where U is a m × m orthogonal matrix, V is a n × n
orthogonal matrix and Σ is a m × n diagonal matrix with

elements sij = 0 if i �= j and sii ≥ 0 in descending order
along the diagonal.

The rapid increase in the performance of graphics hard-
ware has made GPU a strong candidate for performing many
compute intensive tasks, especially many data-parallel tasks.
GPUs now include fully programmable processing units that
follow a stream programming model and support vector-
ized floating-point operations. High level languages have
emerged to support the new programmability. NVIDIA’s 8-
series GPU with CUDA computing environment provides
the standard C like language interface for the programmable
processors, which eliminates the overhead of learning an
inadequate API [21]. The Close-To-Metal (CTM) from
ATI/AMD [1] is another interface for programming GPUs
which treat them as massively parallel co-processors. GPUs
provide tremendous memory bandwidth and computational
horsepower. For example, the NVIDIA GeForce 8800 GTX
can achieve a sustained memory bandwidth of 86.4 GB/s and
a theoretical maximum of 346 GFLOPS. It has 768 MB of
storage space. NVIDIA GTX 280 can achieve a theoretical
maximum of 933 GFLOPS. The GPU performance has been
growing at a faster rate than Moore’s law. NVIDIA Tesla
S1070 Computing System has four Tesla T10 computing
processors with 4 GB memory per processor. A Tesla T10
processor can a achieve a theoretical peak performance of a
teraflop.

Recently, GPUs have been extensively used for scien-
tific computations. However, little work has been done to
solve problems like SVD which has numerous applications.
In this paper, we present an implementation of SVD for
dense matrices on the GPU using the CUDA model. Our
implementation uses NVIDIA’s CUBLAS library and CUDA
kernels. We achieve a speedup of 3 to 60 over the MATLAB
implementation and 3 to 8 over the Intel MKL implemen-
tation of SVD on a Intel Dual Core 2.66GHz PC. We are
able to compute the SVD of very large matrices which is
otherwise impossible on the CPU due to memory limitations.
We also demonstrate the ease of programmability with the
availability of CUDA libraries for complex mathematical
applications.

Section 2 describes the related work done for solving
numerical problems. Section 3 describes the SVD algorithm

in detail and its GPU implementation. Section 4 presents the
experimental results and its comparison with other available
sources. Future work and conclusion are given in Section 5.

2. Related Work

Several algorithms have been developed on the GPUs
for mathematical computations like sorting [16], geometric
computations, matrix multiplications, FFT [20] and graph
algorithms [17], [23]. Kruger et al. [18] introduced a frame-
work for the implementation of linear algebra operators
on vectors and matrices that exploits the parallelism on
GPUs. Galoppo et al. [14] reduced the matrix decomposition
and row operations to a series of rasterization problems
on the GPU. Christen et al. [9] proposed algorithms to
accelerate sparse direct factorization and non-linear interior
point optimization on the GPU using CUDA. Barrachina
et al. [4] proposed two high-level application programming
interfaces that use the GPU as a co-processor for dense
linear algebra operations. There have been many efforts
towards optimizing and tuning of the Level 3 CUBLAS
Graphics Processors. Barrachina et al. [5] proposed several
alternative implementations that are competitive with those
in CUBLAS. Fujimoto [13] proposed a new algorithm for
matrix-vector multiplication on NVIDIA CUDA architec-
ture. Barrachina et al. [3] presented several algorithms to
compute the solution of a linear system of equations. Fatica
et al. [12] proposed how MATLAB could be extended to take
advantage of the computational power offered by the latest
GPUs. NVIDIA’s CUDA library [21] comes with an im-
plementation of simple Basic Linear Algebra Subprograms
(BLAS) on GPU, called the CUBLAS.

There have been many efforts towards parallelizing the
SVD algorithm on architectures like the FPGA, Cell Proces-
sors, GPU, etc., which have scalable parallel architecture.
Ma et al. [19] proposed the implementation of two-sided
rotation Jacobi SVD algorithm on a two million gate FPGA.
They proposed a mesh connected array structure of simple
2× 2 processors to compute SVD of a large matrix. Bobda
et al. [6] proposed an efficient implementation of the SVD
for large matrices and the possibility of integrating FPGA’s
as a part of a Distributed Reconfigurable System (DRS).
Baker [2] described a parallel algorithm to compute the
SVD of block circulant matrices on Cray-2. Dickson et
al. [11] designed a programmable processor for computing
the Givens rotation using approximate rotation method. The
processor can also be programmed for SVD computation.
Yamamoto et al. [25] proposed a method to speed up the
SVD of very large rectangular matrices using the CSX600
floating point co-processor. They achieve up to 3.5 times
speedup over the Intel MKL on 3.2GHz Xeon processor
for a 100000× 4000 matrix but was not efficient on smaller
matrices. Zhang Shu et al. [22] presented the implementation
of One Sided Jacobi method for SVD on GPU using

CUDA. The performance of their algorithm is limited by
the availability of shared memory and works well only for
small size matrices. Bondhugula et al. [7] proposed a hybrid
GPU based implementation of singular value decomposition
using fragment shaders and frame buffer objects in which
the diagonalization would be performed on the CPU.

There are several numerical libraries such as ATLAS and
the Intel Math Kernel Library which are widely used for
different applications on the CPU. They are designed to
achieve high accuracy as well as high memory bandwidth
and computational throughput on the CPUs, e.g. Intel MKL
is optimized for Intel processors. Intel MKL LAPACK
gives better performance than standard LAPACK on Intel
processors.

3. SVD Algorithm

The SVD of a matrix A can be computed using the Golub-
Reinsch (Bidiagonalization and Diagonalization) algorithm
or the Hestenes method. We use the Golub-Reinsch method
as it is simple and compact, and maps well to the SIMD GPU
architecture. It is also popular in many numerical libraries.
Hestenes algorithm is a Jacobi type approach that gives
low performance and hence not popular. Golub-Reinsch
algorithm is used in the LAPACK package which is a two
step algorithm [24]. The matrix is first reduced to a bidiag-
onal matrix using a series of householder transformations.
The bidiagonal matrix is then diagonalized by performing
implicitly shifted QR iterations [10]. SVD is an O(mn2)
algorithm for m ≥ n. Algorithm 1 describes the SVD
algorithm for a input matrix A.

Algorithm 1 Singular Value Decomposition

1: B ← QT AP {Bidiagonalization of A to B}
2: Σ← XT BY {Diagonalization of B to Σ}
3: U ← QX
4: V T ← (PY)T {Compute orthogonal matrices U and

V T and SVD of A = UΣV T }

3.1. Bidiagonalization

3.1.1. Algorithm. In this step, the given matrix A is de-
composed as

A = QBPT (2)

by applying a series of householder transformations where B
is a bidiagonal matrix and Q and P are unitary householder
matrices. For a matrix of size m × n with m ≥ n, we
first select a householder vector u(1) of length m for vector

2

A(1 : m, 1) and v(1) of length n for A(1, 2 : n) such that

Â1 = (I − σ1,1u(1)u(1)T

)A(I − σ2,1v(1)v(1)T

) (3)

= H1AG1 =

⎡
⎢⎢⎢⎢⎣

α1 β1 0 . . . 0
0 x x . . . x
...

...
...

0 x . . . x

⎤
⎥⎥⎥⎥⎦

.

Â1 has zeros below the diagonal and to the right of the
superdiagonal of the first row and A(1, 1) is updated to α1

and A(1, 2) is updated to β1. This is the first column-row
elimination.

We denote the left householder m ×m matrices as Hi’s
and right householder n × n matrices as Gi’s and the
corresponding σ’s as σ1,i’s and σ2,i’s respectively. The
elimination procedure is then repeated for second column
A(2 : m, 2) and row A(2, 3 : n) and so on. If m > n, n
columns and n − 2 rows must be eliminated. After all the
columns and rows are eliminated we obtain a final bidiagonal
matrix B such that

B = QT AP, (4)

where

QT =
n∏

i=1

Hi, P =
n−2∏
i=1

Gi. (5)

Here, Hi = I − σ1,iu(i)u(i)T

and Gi = I − σ2,iv(i)v(i)T

.
The u(i)’s are vectors of length m with i− 1 leading zeros
and v(i)’s are vectors of length n with i leading zeros.
These are formed as u(i) = [0 . . . 0, û(i)]T and v(i) =
[0 . . . 0, v̂(i)]T , where û(i) is a vector of m − i + 1 trailing
components of u(i) and v̂(i) is a vector of n − i trailing
components of v(i). In general, for a vector y = [y1, . . . , yl]
of length l the selection of householder vector r and scalars
σ and α as given below

α = −sign(y1) ||y|| , a = sign(y1) ||y|| , (6)

σ = (y1 + a)/a (7)

and r =
y + [a, 0, . . . , 0]T

y1 + a
, (8)

such that (I − σrrT)y = [α, 0, . . . , 0]T . û(i) of length m−
(i− 1) and αi for A(i : m, i) and v̂(i) of length n− i and
βi for A(i, i + 1 : n) are computed similar to r and α in
Equation 6 to 8.

The householder bidiagonalization can be achieved by
alternating matrix vector multiplies with rank-one updates
introduced by Golub and Kahan [15]. The multiplication
of A by Hi updates A(i : m, i + 1 : n) and A(i, i) and
multiplication by Gi updates A(i + 1 : m, i + 1 : n) and
A(i, i + 1). We can summarize the update of the trailing

matrix A after ith column-row elimination as two rank
updates as

A(i + 1 : m, i + 1 : n) = A(i + 1 : m, i + 1 : n)

−û(i)ẑ(i)T − ŵ(i)v̂(i)T

,

where

ẑ(i)T

= xT − σ2,i(xT v̂(i))v̂(i)T

,

ŵ(i) = σ2,iA(i : m, i + 1 : n)v̂(i)

and x = σ1,iA
T (i : m, i + 1 : n)û(i).

The householder matrices Q and P given in Equation 5
are computed similarly as it also involves multiplication by
Hi’s and Gi’s respectively, but in reverse order. We use the
term partial bidiagonalization to refer to the computation
of the matrix B in Equation 4, without keeping track of the
P and Q matrices. This is computationally less expensive
than complete bidiagonalization and was the operation im-
plemented on the GPU by Bondhugula et al [7]. The update
rule after ith column-row elimination is

Q(1 : m, i : m) = Q(1 : m, i : m)− k̂
(i)

û(i)T

and

PT (i : n, 1 : n) = PT (i : n, 1 : n)− v̂(i)̂l
(i)T

, where

k̂
(i)

= σ1,iQ(1 : m, i : m)û(i) and

l̂
(i)

= σ2,iP
T (i : n, 1 : n)T v̂(i).

The updates can be expressed using BLAS level 2 op-
erations. After every column-row elimination, the trailing
matrix is updated. This method is computationally expensive
and involves many reads and writes to the memory. We
can increase the computation to read ratio by deferring the
update of the trailing matrix by bidiagonalizing a block of
columns and rows together and then updating the trailing
matrix as proposed in [8]. The LAPACK implementation
also uses the blocking approach. It requires the computation
of new rows and columns belonging to the block just before
elimination due to the previous eliminations in the block.

The matrix A is divided into blocks of size L as shown
in Figure 1 and the update occurs only after L columns and
rows are bidiagonalized. Extra computations are performed
for the updated columns and rows of the same block,
which require û(i)’s, v̂(i)’s, ŵ(i)’s and ẑ(i)’s due to previous
eliminations in the block. These vectors are required for
updating the trailing matrix once L columns and rows are
eliminated. As the set of update vectors is incremented with
every elimination, more computations are required to update
the columns and rows before elimination. The householder
matrices Q and PT are also block updated for which k̂

(i)
’s

and l̂
(i)

’s are stored. The value of L is chosen depending on
the performance of the BLAS routines. The block algorithm
has a total floating point operation count of O(mn2) for
m ≥ n.

3

Figure 1. Subdivision of a matrix into blocks of size L

This method requires an additional storage of a m × L
array Umat to store û(i)’s, a L×n array Vmat to store v̂(i)’s,
a m × L array Wmat to store ŵ(i)’s, a L × n array Zmat

to store ẑ(i)’s, a m × L array Qmat to store k̂
(i)

’s and a

L × n array Pmat to store l̂
(i)

’s. Since these are required
only for updating the matrix, they can be reused after every
block update. The trailing matrix is accessed only during the
matrix update.

Algorithm 2 Bidiagonalization algorithm
Require: m ≥ n

1: kMax← n
L {L is the block size}

2: for i = 1 to kMax do
3: t← L(i− 1) + 1
4: Compute û(t), α1,t, σ1,t, k̂

(t)

5: Eliminate A(t : m, t) and update Q(1 : m, t)
6: Compute new A(t, t + 1 : n)
7: Compute v̂(t), α2,t, σ2,t, l̂

(t)

8: Eliminate A(t, t + 1 : n) and update PT (t, 1 : n)
9: Compute ŵ(t), ẑ(t) and store the vectors

10: for k = 2 to L do
11: t← L(i− 1) + k
12: Compute new A(t : m, t) using k−1 update vectors

13: Compute û(t), α1,t, σ1,t, k̂
(t)

14: Eliminate A(t : m, t) and update Q(1 : m, t)
15: Compute new A(t, t + 1 : n)
16: Compute v̂(t), α2,t, σ2,t, l̂

(t)

17: Eliminate A(t, t + 1 : n) and update PT (t, 1 : n)
18: Compute ŵ(t), ẑ(t) and store the vectors
19: end for
20: Update A(iL+1 : m, iL+1 : n), Q(1 : m, iL+1 : m)

and PT (iL + 1 : n, 1 : n)
21: end for

3.1.2. Bidiagonalization on the GPU. Algorithm 2 de-
scribes the bidiagonalization procedure. Each step can
be performed using CUDA BLAS functions. CUBLAS
[21] provides high performance matrix-vector, matrix-matrix
multiplication and norm computation function. The blocking
approach for bidiagonalization can be performed efficiently
since CUBLAS gives high performance for matrix-vector,
matrix-matrix multiplication even if one of the dimensions is
small. Experiments prove that CUBLAS deliver much higher
performance when operating on matrices with dimensions
that are a multiple of 32 due to memory alignment issues
[5]. Hence, we pad the vectors and matrices with zeros,
transforming their dimensions to the next multiple of 32.

The performance of the GPU libraries depend on data
placement and how the library is used. The movement of
data is of consideration when using BLAS in general. We
assume that initially the input matrix A is on the CPU
and is transferred to the GPU. NVIDIA 8800 GTX has
a sustained internal memory bandwidth of 86.4 GB/s but
the bandwidth between the CPU and the GPU is an order
of magnitude lower. Hence CPU to GPU transfers should
be minimized. The matrices Q, PT , Umat, Vmat, Wmat,
Zmat, Qmat and Pmat are initialized on the device. All
the operations required for bidiagonalization are done on
the data local to the GPU using CUBLAS library routines.
Since the thread-processors of the GPU operate on GPU
data, there is no expensive data transfer between the GPU
and the CPU. The bidiagonalization is performed inplace,
i.e., A becomes the bidiagonal matrix. After the bidiago-
nalization of matrix A on the GPU, only the diagonal and
superdiagonal elements of the bidiagonal matrix are copied
to the CPU to proceed with the diagonalization as described
in the next section while matrices Q and PT remain on
the device. Our use of the latest CUBLAS 2.0 library
keeps the GPU implementation very efficient on the given
hardware. The total storage requirement for the algorithm is
(3(mL + Ln) + m2 + n2 + mn + 2max(m,n))× 4 bytes
on the GPU.

3.2. Diagonalization of a bidiagonal matrix

3.2.1. Algorithm. The bidiagonal matrix can be reduced to a
diagonal matrix by iteratively applying the implicitly shifted
QR algorithm [10]. The matrix B obtained in the first step
is decomposed as

Σ = XT BY, (9)

where Σ is a diagonal matrix, X and Y are orthogonal
unitary matrices.

Algorithm 3 describes the diagonalization procedure. The
d(i)′s are the diagonal elements and e(i)′s are the super-
diagonal elements of the matrix B. Every iteration updates
the diagonal and the superdiagonal elements such that the
value of the superdiagonal elements becomes less than their

4

previous value. On convergence of the algorithm, d(i)′s
contains the singular values and X and Y T contains the
singular vectors of B.

Algorithm 3 Diagonalization algorithm
1: iter ← 0
2: maxitr ← 12 ∗ N ∗ N {N is the number of main diagonal

elements}
3: k2 ← N {k2 points to the last element of unconverged part

of matrix}
4: for i = 1 to maxitr do
5: if k2 <= 1 then
6: break the loop
7: end if
8: if iter > maxitr then
9: return false

10: end if
11: matrixsplitflag ← false
12: for l = 1 to k2 − 1 do
13: k1 ← k2 − l {Find diagonal block matrix to work on}
14: if abs(e(k1)) <= thres then
15: matrixsplitflag ← true, break the loop
16: end if
17: end for
18: if !matrixsplitflag then
19: k1 ← 1
20: else
21: e(k1)← 0
22: if k1 == k2 − 1 then
23: k2 ← k2 − 1, continue with next iteration
24: end if
25: end if
26: k1 = k1 + 1
27: if k1 == k2 − 1 then
28: Compute SVD of 2×2 block and coefficient vectors C1,

S1 and C2, S2 of length 1
29: Apply forward row transformation on the rows k2 − 1

and k2 of Y T using C1, S1

30: Apply forward column transformation on the columns
k2 − 1 and k2 of X using C2, S2

31: k2 ← k2 − 2, continue with next iteration
32: end if
33: Select shift direction: forward if d(k1) < d(k2), else

backward
34: Apply convergence test on the sub block, continue next

iteration if any value converges
35: Compute the shift from 2× 2 block at the end of the sub

matrix
36: iter ← iter+k2 − k1

37: Apply simplified/shifted forward/backward Givens rotation
on the rows k1 to k2 of B and compute C1, S1 and C2, S2

of length k2 − k1

38: Apply forward/backward transformation on the rows k1 to
k2 of Y T using C1, S1

39: Apply forward/backward transformation on the columns k1

to k2 of X using C2, S2

40: end for
41: Sort the singular values and corresponding singular vectors in

decreasing order

The algorithm finds indexes k1 and k2 with k1 < k2 in
each iteration such that e(k1) is below a threshold which

depends on the machine precision. If k1 and k2 differ by 1
or 2, one or two singular values can be extracted directly
and k2 moves up. Otherwise, a series of Givens rotations
modify d(i) and e(i) in the range k1 to k2 such that e(i)’s
become smaller than before. Each rotation is captured in
the coefficient vectors (C1, S1) and (C2, S2). Corresponding
inverse rotations are applied on Y T and X using the coeffi-
cient vectors (C1, S1) and (C2, S2) respectively. Algorithm
4 and 5 describes the rotations applied on the rows of Y T

in the forward and backward direction respectively. Similar
rotations are applied on the columns of X using C2 and
S2. See [10] for more details on the steps. The computation
converges when all the singular values are found.

Algorithm 4 Forward transformation on the rows of Y T

Require: k1 < k2

1: for j=k1 to k2 − 1 do
2: t← Y T (j + 1, 1 : n)C1(j − k1 + 1)
3: t← t− Y T (j, 1 : n)S1(j − k1 + 1)
4: Y T (j, 1 : n)← Y T (j, 1 : n)C1(j−k1 +1)+Y T (j +

1, 1 : n)S1(j − k1 + 1)
5: Y T (j + 1, 1 : n)← t
6: end for

Algorithm 5 Backward transformation on the rows of Y T

Require: k1 < k2

1: for j=k2 − 1 to k1 do
2: t← Y T (j + 1, 1 : n)C1(j − k1 + 1)
3: t← t− Y T (j, 1 : n)S1(j − k1 + 1)
4: Y T (j, 1 : n)← Y T (j, 1 : n)C1(j−k1 +1)+Y T (j +

1, 1 : n)S1(j − k1 + 1)
5: Y T (j + 1, 1 : n)← t
6: end for

3.2.2. Diagonalization on the GPU. In this section, we
present the parallel version of the diagonalization algorithm
and its implementation on the GPU. The diagonal and su-
perdiagonal elements of B are copied to the CPU. Applying
Givens rotations on B and computing the coefficient vectors
is done sequentially on the CPU as it only requires access
to the diagonal and superdiagonal elements. In Algorithm
4, the computations for every row of Y T depends only on
the next row, i.e., every element of a row depends only on
the element below it and its corresponding coefficient vector
element. In Algorithm 5, the operations on a row depends
only on the row above it. Similarly for the columns of X .
The computations for each row depends on the results from
the previous row, making it difficult to parallelize across
rows. However, the results for all the elements of the row
can be computed in parallel. We use the thread processors
of the GPU to process elements of each row in parallel. This

5

gives high performance on large matrices but also works well
for medium sized matrices. The transformation of matrices
Y T and X is done in parallel on the GPU. In Algorithm
3, steps 29-30, 38-39 and 41 are executed on the GPU. A
simple swap kernel is called for sorting the vectors. The
matrices Y T and X are initialized to identity on the device.

Our algorithm divides a row of the matrix into blocks as
shown in Figure 2. Each thread operates on one element of
the row. Since the transformations are applied on k2−k1+1
rows, the kernel runs a loop of k2−k1 similar to Algorithm
4 with each modifying two rows. This division of the
row into blocks and looping can be done efficiently on
CUDA architecture, since each thread performs independent
computations. The data required for the block is stored
in shared memory and the operations can be performed
efficiently on a multiprocessor.

Figure 2. Division of a matrix row into CUDA thread
blocks

The coefficient vectors C1 and S1 are copied from the
CPU to the device memory. At any instant during the kernel
execution, an element of the coefficient vector is required by
all elements of two rows. Hence, we use the shared memory
to store the coefficient vectors.

We allocate 64 to 256 threads for a block depending on the
size of the matrix. This ensures that there are enough blocks
and all the multiprocessors are allotted atleast 2 blocks.
When the thread block contains T threads, it must use the
shared memory of at most 2KB to keep 8 blocks active on
a multiprocessor which will give optimal performance. At
any instant, a block will require 2× (T ×4) bytes of shared
memory for the T elements of the two rows of the matrix it
is working on as we use floating point arithmetic. Every
iteration of the loop in the forward kernel modifies two
rows of the matrix. Since the second row is again modified
in the next iteration only the first updated row is copied
back to the device. The second updated row remains in the
shared memory for the next iteration. The shared memory is
reused for copying the third row for the next iteration and
the iteration proceeds.

The amount of shared memory that could be used to store
coefficient vectors is 2KB−(2×T × 4) bytes. However, the
memory required for the coefficient vectors is 2 × (k2 −
k1) × 4 bytes which can exceed 2KB−(2 × T × 4) bytes
for large matrices. In order to only use the available shared
memory for the coefficient vectors we copy a fixed number
of coefficient vector elements of C1 and S1 into 2KB−(2×
T × 4) bytes, process the same number of rows and then
reuse the shared memory for copying the next set of vector
elements. The backward row transformation kernel is similar
to the forward row transformation kernel.

Since the column transformations are similar to row
transformations, we use the row transformation kernel on
the rows of XT instead of the columns of X . This requires
copying C2 and S2 to the GPU. As the elements are accessed
sequentially there are no non-coalesced memory accesses.
The access to the shared memory has no bank conflicts. All
the threads in a block are used for copying the vectors from
the global memory to the shared memory which requires
that the vectors are padded to the nearest multiple of block
size.

On convergence, d(i)’s contain the singular values. Y T

and XT are on the device which are further used for
computing the orthogonal matrices U and V . Our algorithm
is efficient as it performs exactly the same number of
operations on the GPU as the corresponding sequential
algorithm. The total storage requirement for the algorithm
is (6min(m,n))× 4 bytes on the CPU and (m2 + n2)× 4
bytes on the GPU.

3.3. Complete SVD

We perform two matrix-matrix multiplications at the end
to compute orthogonal matrices U = QX and V T = (PY)T

as given in Equation 1. We use CUBLAS matrix multiplica-
tion routines. The matrices Q, PT , XT , Y T , U and V T are
on the device. The orthogonal matrices U and V T can then
be copied to the CPU. d(i)’s contains the singular values,
i.e., diagonal elements of Σ and is on the CPU.

4. Results

In this section, we analyze the performance of our al-
gorithm with the optimized CPU implementation of SVD
on MATLAB and Intel MKL 10.0.4 LAPACK. We enable
dynamic threading in Intel MKL for good performance. We
tested our algorithm on a Intel Dual Core 2.66GHz PC and a
NVIDIA GeForce 8800 GTX graphics processor, a NVIDIA
GTX 280 processor and NVIDIA Tesla S1070. NVIDIA
Tesla S1070 has 4 Tesla T10 GPU processors and a total
memory of 16 GB and can achieve a theoretical maximum
of 4 TFLOPS performance. We used a GPU of Tesla S1070
with 240 cores and 4 GB memory with a compute power
of 1 TFLOPS. The 8800 GTX has 128 stream processors

6

divided into 16 multiprocessors with 8 texture access units
and a total of 768 MB of memory. The GTX 280 has 240
stream processors divided into 30 multiprocessors with 10
texture access units and a total of 1 GB memory. According
to NVIDIA, GTX 280 can achieve a peak performance of
933 GFLOPS and 8800 GTX of 345.6 GFLOPS. However,
GTX 280 gives 375 GFLOPS and 8800 GTX gives 120
GFLOPS performance for single precision matrix multiply
using CUBLAS. We used Intel Core 2 Duo CPU E6750 @
2.66GHz processor for our experiments which is said to be
rated 22.4 GFLOPS.

We generated 10 random dense matrices of single pre-
cision numbers for each size. The SVD algorithm was
executed for each matrix 10 times. To avoid a particularly
good or bad sample, we averaged over the random matrices
for each size. The average did not vary much if 10 or more
matrices were used. Table 1 gives the overall average time in
seconds on GPU, MATLAB and Intel MKL. SVD computa-
tion includes the time taken for bidiagonalization, diagonal-
ization and computing the orthogonal matrices. We achieve
a speedup of 3.04 to 8.2 over the Intel MKL implementation
and 3.32 to 59.3 over the MATLAB implementation for
various square and rectangular matrices on GTX 280. The
CPU still out-performs the GPU implementation for small
matrices. For large square matrices, the speedup increases
with the size of the matrix. Figure 3 shows the time for
computing the SVD of square matrices and Figure 4 shows
the time for computing the SVD of rectangular matrices with
leading dimension m=8K.

SVD SVD SVD SVD Speedup

SIZE MATLAB MKL GTX 280 8800 MKL/280

64 × 64 0.01 0.003 0.054 0.048 0.05

128 × 128 0.03 0.014 0.077 0.116 0.18

256 × 256 0.210 0.082 0.265 0.319 0.31

512 × 512 3.19 0.584 0.958 1.129 0.61

1K×1K 72 11.255 3.725 4.28 3.02

2K×2K 758.6 114.625 19.6 21.656 5.84

3K×3K 2940 402.7 52.8 61.31 7.62

4K×4K 6780 898.23 114.32 133.68 7.85

1K×512 5.070 2.27 1.523 3.749 1.48

2K×512 10.74 12.8 3.118 4.072 4.11

4K×512 34.33 54.7 8.311 12.418 6.58

8K×32 24.310 17.112 3.506 - 4.88

8K×64 47.87 33.7 5.016 - 6.72

8K×256 107.57 103.8 13.96 - 7.4

8K×512 137.98 215 26.33 - 8.16

8K×1K 254.26 417 50.364 - 8.2

8K×2K 1371.9 808 111.3 - 7.25

Table 1. Total computation time for SVD (in seconds)
for different matrices

Table 2 gives the timings for bidiagonalization on the
GPU and Intel MKL. Since Intel MKL routine performs the

1000

100

10

1

0.1

4K3K2K1K5120

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Matrix dimension

GTX 280
Intel MKL

8800 GTX

Figure 3. SVD computation time (in seconds) for square
matrices on Intel MKL and GPU (GTX 280 and 8800
GTX)

1000

100

10

1

0.1
2K1K512256640

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Matrix dimension n

Intel MKL
GTX 280

Figure 4. SVD computation time (in seconds) for rect-
angular matrices (m×n) with leading dimension m=8K
and varying n on Intel MKL and GPU (GTX 280)

partial bidiagonalization, refer Section 3.1.1, we compare it
with the time required for partial bidiagonalization on the
GPU. We achieve a speedup of 1.58 to 16.5 over Intel MKL
on partial bidiagonalization. We experimented with different
values of block size. We used the block size of 1 when
n is small and 16 for large n. The performance for the
square matrices increases with the size of the matrix. For
rectangular matrices, the performance increases with the in-
crease in n since blocking can be performed efficiently. The
bidiagonalization by Bondhugula et al. [7] performs only
partial bidiagonalization. Their timings given on http:
//www.cs.unc.edu/∼geom/Numeric/svd/ are best
compared with partial bidiagonalization timings given in
Table 2, Column 5. Our timing is comparable (11 seconds
on GTX 280, 14 seconds on 8800 GTX, compared to 19

7

seconds on 7900). Raw rating of the GPU speed doesn’t
guarantee proportionate performance on this operation as
can be seen from the minor speedup on GTX 280 over 8800
GTX.

Partial Partial Partial
Bidiag. Bidiag. Bidiag. Bidiag. Bidiag.

SIZE GTX 280 8800 MKL GTX 280 8800

128 × 128 0.060 0.075 0.003 0.050 0.063

512 × 512 0.570 0.637 0.1478 0.373 0.430

1K×1K 2.40 2.588 3.8122 1.068 1.304

2K×2K 14.40 15.47 47.9 4.6 5.4

3K×3K 41 51.80 184 11.114 14.088

4K×4K 92.7 105.071 361.8 21.8 27.576

8K×32 1.499 − 0.020 0.143 0.066

8K×256 11.8 − 2.721 1.245 1.276

8K×512 23.8 − 13.8 2.650 2.8

8K×2K 101 − 220.500 14.3 20.281

Table 2. Bidiagonalization and partial bidiagonalization
time (in seconds) for different matrices

Bobda et al. in [6] report only the timing for SVD
computation of 106×106 matrix which takes about 17 hours.
We compute SVD for much smaller matrices. Bondhugula
et al. [7] report only the time for the bidiagonalization of
the matrix. Dickson et al. [11] presented a programmable
processor design suitable for SVD, but do not give any
SVD results. Yamamoto et al. [25] give the optimized
algorithm only for large rectangular matrices. The maximum
speedup they achieve is 4 with CSX600 board over the CPU
implementation for a large rectangular matrix, but get little
speedup on smaller matrices.

We also compare our work efficient diagonalization al-
gorithm with the Intel MKL diagonalization algorithm.
Table 3 gives the timings for diagonalization on the GPU
and Intel MKL. We achieve a speedup of 1.41 to 17.72
on diagonalization over Intel MKL implementation. The
performance of our kernel is limited by the availability of
registers per thread. We used 64 threads in a block for small
matrices and 128 for larger matrices. It is done to keep all
the multiprocessors active. We could achieve 67% to 83%
occupancy on diagonalization since only 8 blocks could be
active at a time. The performance increases with the increase
in the size of the matrix.

Figure 5 shows the speed up achieved on GTX 280
over Intel MKL for SVD, partial bidiagonalization and
diagonalization. A sustained bandwidth of 2 GB/s can be
easily obtained from the CPU to the GPU. This will translate
to 2 milliseconds of transfer time for 1K×1K matrix and 32
milliseconds for 4K×4K matrix. The SVD computation time
makes the data transfer time irrelevant. The timings in Table
1, 2, 3, 4 and 5 exclude the cost of transferring the matrix
from the CPU to the GPU since the overhead of transfer of

Diagonalization Diagonalization Diagonalization
SIZE Intel MKL GTX 280 8800

128 × 128 0.010 0.017 0.041

512 × 512 0.5439 0.385 0.381

1K×1K 6.417 1.3 1.347

2K×2K 49.1 5.14 5.29

3K×3K 159.413 11.6 11.821

4K×4K 354.3 20 21.7

8K×32 0.022 0.007 −
8K×256 0.564 0.159 −
8K×512 2.239 0.530 −
8K×2K 100.000 8.2 −

Table 3. Diagonalization time (in seconds) for different
matrices

20

16

12

8

4

0
4K3K2K1K5122560

S
pe

ed
up

(I
nt

el
 M

K
L/

 G
T

X
 2

80
)

Matrix dimension

Partial Bidiag.
SVD
Diag.

Figure 5. Speedup for square matrices for SVD, Partial
Bidiagonalization and Diagonalization on GTX 280 over
Intel MKL

data from the CPU to the GPU and back is only to the order
of tens of milliseconds.

Tables 1, 2 and 3 bring out the following points. The
optimized Intel MKL does a very good job on smaller
matrices, but the performance of the GPU improves with
the size of the matrix. The diagonalization contributes a
major share to the performance improvement on the GPU
especially on larger matrices. The bidiagonalization step
takes more time on the CPU than the diagonalization step.
On the GPU, however, diagonalization is much faster. The
GTX 280, surprisingly, improves the performance only by
10% to 15% over the 8800 GTX but is able to handle larger
matrices due to the larger internal memory.

Table 4 and 5 gives the timing for computing the SVD
of very large square and rectangular matrices on NVIDIA
Tesla S1070. We report the timing for square matrices upto
14K×14K and rectangular matrices upto 16K×12K which is
otherwise impossible to compute on the CPU due to memory
limitations. SVD of a 14K×14K matrix takes about 76

8

SIZE SVD Bidiag. Diag. Partial Bidiag.

1K×1K 3.58 2.30 1.27 1.02

2K×2K 19.58 13.7 5.8 4.9

3K×3K 52.6 40.91 11.4 11.03

4K×4K 109.32 89.50 19.6 21.2

5K×5K 207.13 166.5 39.2 39.6

6K×6K 346.9 282.3 62.2 62

7K×7K 536.8 436.5 96.4 92.5

8K×8K 798.6 648.3 144.6 127.2

9K×9K 1131.5 911.7 211.47 176.4

10K×10K 1538.5 1226.4 301.9 234.1

11K×11K 2050 1608.8 426.6 306.5

12K×12K 2717 2104 593.3 397.3

13K×13K 3545.4 2702.1 818.38 507.2

14K×14K 4573.2 3428.8 1113 628.6

Table 4. Computation time (in seconds) for SVD,
Bidiagonalization, Diagonalization and Partial

Bidiagonalization for very large square matrices on
NVIDIA Tesla S1070

SIZE SVD Bidiag. Diag. Partial Bidiag.

16K×1K 208.24 182.3 2.5 11.5

16K×2K 400.25 366.5 10.27 31.8

16K×3K 600.08 553.3 23.2 57.8

16K×4K 814.5 750.2 40.5 92.2

16K×5K 1042 953.8 64.1 134.4

16K×6K 1296.5 1177.4 94.5 178.9

16K×7K 1553.8 1394 134.42 230

16K×8K 1855.4 1641.1 188.2 292.1

16K×9K 2214.8 1931.3 255.9 366.6

16K×10K 2586.5 2213.7 344.23 454.5

16K×11K 2960.9 2475.6 454.3 550.2

16K×12K 3437.2 2813.2 590.7 662

Table 5. Computation time (in seconds) for SVD,
Bidiagonalization, Diagonalization and Partial

Bidiagonalization for very large rectangular matrices on
NVIDIA Tesla S1070

minutes and 57 minutes for a 16K×12K matrix on the GPU.
On the CPU, we could compute the SVD of upto 10K×10K
square matrices. SVD of a 10K×10K matrix takes about 4.5
hours on the CPU using Intel MKL and 25.6 minutes on
the GPU using our algorithm. Figure 6 shows the timing for
computing the SVD of very large matrices on NVIDIA Tesla
S1070. From Table 1 and 4 we observe that the timings on
NVIDIA Tesla S1070 is slightly better than on GTX 280.

GPUs are today limited to single precision arithmetic
mostly. The GTX 280 has very limited double precision sup-
port, but at a very heavy performance penalty. We explored
the discrepancy or error due to the reduced precision by
comparing the results of the GPU version with the CPU
version which uses double precision term by term. The

10000

1000

100

10

1

0.1

14K13K12K11K10K9K8K7K6K5K4K3K2K1K0

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

k

(m=n=k)
(m=16K, n=k)

Figure 6. SVD computation time (in seconds) for very
large square matrices (m × n) with m = n = k and
rectangular matrices (m × n) with m = 16K and n = k
on NVIDIA Tesla S1070

maximum difference in the singular values was 0.013%
but the average was less than 0.00005%. Similarly, the
maximum error of any entry in the U and V matrices was
0.01% with an average of 0.001%. Figure 7 shows the error
distribution in computing the singular values of a 3K×3K
matrix.

 0

 20

 40

 60

 80

 100

 120

 140

-0.003 -0.002 -0.001 0 0.001 0.002 0.003

N
o

of
 s

in
gu

la
r

va
lu

es

Error percentage

Figure 7. Discrepancy plot for singular values of a
3K×3K matrix

5. Conclusion

In this paper, we presented the implementation of the
complete singular value decomposition on commodity
GPUs. The algorithm exploits the parallelism in the GPU
architecture and achieves high computing performance
on them. The bidiagonalization of a matrix is performed
entirely on the GPU using the optimized CUBLAS library

9

to derive maximum performance. We used a hybrid
implementation for the diagonalization of the matrix that
splits the computations between the CPU and the GPU,
giving good performance results. We could compute the
SVD of very large matrices upto the order 14K which is
impossible on the CPU due to memory limitations. The
GPUs are limited to single precision numbers, though that
is changing with the newer generations. The error due to
the lower precision was less than 0.001% on the random
matrices we experimented with. Our approach of using
CUDA and the software libraries available with it can be
used for solving many other graphics and non-graphics tasks.

Acknowledgments: We gratefully acknowledge the
contributions of NVIDIA through generous equipment
donations. We also thank the Naval Research Board of
India for their financial support.

References

[1] ATI Corporation. 2007. ATI CTM (Close To Metal) guide.
Technical report. Available on:http://www.ati.amd.com/
companyinfo/researcher/documents/ATI CTM Guide.pdf.

[2] Baker, J. 1989. Macrotasking the Singular Value Decompo-
sition of Block Circulant Matrices on the Cray-2. In Proc. of
ACM.

[3] Barrachina, S., Castillo, M., Igual, F., Mayo, R. and Quintana-
Orti, E. 2008. Solving Dense Linear Systems on Graphics
Processors. In Proc. of the European Conference on Parallel
Computing.

[4] Barrachina, S., Castillo, M., Igual, F., Mayo, R. and Quintana-
Orti, E. 2008. GLAME@lab: An M-script API for Linear
Algebra Operations on Graphics Processors. In Proc. of
Para’08.

[5] Barrachina, S., Castillo, M., Igual, F. and Mayo, R. 2008.
Evaluation and Tuning of the Level 3 CUBLAS for Graphics
Processors. In Proc. of Parallel and Distributed Scientific and
Engineering Computing.

[6] Bobda, C. and Steenbock, N. 2001. Singular Value Decom-
position on Distributed Reconfigurable Systems. In Proc. of
12th IEEE Workshop on Rapid System Prototyping.

[7] Bondhugula, V., Govindaraju, N. and Manocha, D. 2006.
Fast Singular Value Decomposition on Graphics Processors.
Technical report. University of North Carolina.

[8] Choi, J., Dongarra, J. and Walker, D. 1995. The design of
a parallel dense linear algebra software library: Reduction
to Hessenberg, tridiagonal and bidiagonal form. Numer. Alg.,
10:379-399.

[9] Christen, M., Schenk, O. and Burkhart, H. 2007. General-
Purpose Sparse Matrix Building Blocks using the NVIDIA
CUDA Technology Platform. Workshop on General Purpose
Processing on Graphics Processing Units, Boston.

[10] Demmel, J. and Kahan, W. 1990. Computing Small Singular
Values of Bidiagonal Matrices with Guaranteed High Relative
Accuracy. SIAM J. Sci. Stat. Comput. 11, 873-912.

[11] Dickson, K. and McCanny, J. 2006. Programmable Processor
Design for Givens Rotations Bases Applications. In Proc.
of 4th IEEE Workshop on Sensor Array and Multi-Channel
Processing.

[12] Fatica, M. and Jeong. W. 2007. Accelerating MATLAB with
CUDA. In Proc. of High Performance Embedded Computing.

[13] Fujimoto, N. 2008. Faster Matrix-Vector Multiplication on
GeForce 8800 GTX. In Proc. of IEEE International Parallel
and Distributed Processing Symposium.

[14] Galoppo, N., Govindaraju, N., Henson, M. and Manocha,
D. 2005. LU-GPU: Efficient Algorithms for Solving Dense
Linear Systems on Graphics Hardware. In Proc. of ACM/IEEE
Super Computing Conference.

[15] Golub, G. and Kahan, W. 1965. Calculating the Singular
Values and Pseudo-Inverse of a Matrix. SIAM J. Num. Anal.,
2:205-24.

[16] Govindaraju, N., Gray, J., Kumar, R. and Manocha, D. 2006.
GPUTeraSort: High Performance Graphics Co-processor
Sorting for Large Database Management. In Proc. of ACM
SIGMOD International Conference on Management of Data.

[17] Harish, P. and Narayanan, P. J. 2007. Accelerating Large
Graph Algorithms on the GPU using CUDA. In Proc. of High
Performance Computing.

[18] Kruger, J. and Westermann, R. 2003. Linear Algebra Oper-
ators for GPU implementation of Numerical Algorithms. In
Proc. of SIGGRAPH.

[19] Ma, Weiwei., Kaye, M., Luke, D. and Doraiswami, R. 2006.
An FPGA-Based Singular Value Decomposition Processor.
In Proc. of Canadian Conference on Electrical and Computer
Engineering.

[20] Moreland, K. and Angel, E. 2003. The FFT on a GPU. In
Proc. of SIGGRAPH/Eurographics Workshop on Graphics
Hardware. pp. 112119.

[21] NVIDIA Corporation. 2007. NVIDIA CUBLAS Library.
http://developer.download.nvidia.com/compute/cuda/1 1/
CUBLAS Library 1.1.pdf.

[22] Shu, Z. One Sided Jacobi Method on CUDA for SVD.
Application Research of computers. http://forums.nvidia.com/
index.php?act=Attach&type=post&id=8958

[23] Vineet, V. and Narayanan, P. J. 2008. CUDA-Cuts: Fast Graph
Cuts on the GPU. In CVPR Workshop on Visual Computer
Vision on GPUs.

[24] Wilkinson, J. and Reinsch, C. 1971. Handbook for Automatic
Computation: Vol. II-Linear Algebra. Springer-Verlag. New
York.

[25] Yamamoto, Y., Fukaya, T., Uneyama, T., Takata, M., Kimura,
K., Iwasaki, M. and Nakamura, Y. 2007. Accelerating the
Singular Value Decomposition of Rectangular Matrices with
the CSX600 and the Integrable SVD. LNCS, Vol. 4671/2007.
Springer Berlin.

10

