C to Java: Converting Pointers into References

Erik D. Demaine
Department of Computer Science
University of Waterloo
Waterloo, Ontario N2L 3G1, Canada
eddemaine@uwaterloo.ca

Abstract

We consider the problem of converting C pointers to the less flexible concept of references.
Our main application is converting scientific applications from C to Java. We provide a general
method to model essentially all features of pointers using references. The model is easily imple-
mented in Java. We give optimizations that map key facilities like arrays and structures onto
the obvious Java equivalents, arrays and objects. These improvements make the conversion “op-
timal” for all typed pointers. For untyped pointers, we can still fall back on the general model,
hence providing general automatic conversion from C to Java code, whose efficiency improves
with the quality of the C code.

1 Introduction

The C language is well known for its overly flexible pointers. A pointer may represent the address
of an individual value, an array, a structure, or a position in an array or structure. Pointers can be
cast into other pointer types or integers, split into pieces and later rejoined, and can take part in
arithmetic operations. While this gives the programmer immense flexibility, most of these abilities
are considered unnecessary, and when used are dangerous and lead to code that is difficult to debug.

For this reason, many modern languages such as Java support a much more restricted model
called references. The programmer has limited access to the references themselves; typically, one
can only assign to a reference andtest whether two references point to the same object. Other
uses of a reference are implicitly about the object it refers to; usually, the programmer does not
explicitly dereference or take the address of an object. This leads to significantly safer and simpler
code.

Since C is popular, there is a lot of code written in it. Many want to extend such programs
and exploit features of more modern programming languages. For example, one may want to port
an application to Java for demonstration on the World Wide Web. Since C and Java are similar in
syntax, the main difficulty in converting between the two is the conversion between major concepts,
in particular pointers and references.

In this paper, we discuss automatic conversion of pointers into references, with the application
of converting C code into Java. Our main focus is on translating scientific applications written
in C. A significant example of such a program is SuperLU [1, 2|, a state-of-the-art general sparse
linear solver released in 1997 and available only in C.

The rest of this paper is outlined as follows. Section 2 surveys related work. In Section 3, we
give a general and flexible conversion model that provides nearly full conversion from C to Java.
Section 4 discusses how this can be improved to be “optimal” for most applications. We conclude
in Section 5.

2 Related Work

Much work has been done on converting Java to C for optimization purposes; see for example
Harissa [3], j2¢ [4], JCC [5], and Toba [6]. However, little has been done on the reverse direction.
Of particular relevance are c2j [7] and ¢2j++ [8]. Both are tools for translating C++ to Java.
c2j++ is based on c2j; the main difference is that c2j++ is written in Java, whereas c2j is written
in C++.

Unfortunately, the tools are limited. They essentially ignore the problem of pointers, which is the
main difficulty of C-to-Java conversion. For example, they simply remove all pointer dereferences,
that is, remove asterisks and convert “->” to “.”. This is often correct when dealing with objects
and pointers to objects, but (for example) never works for arrays. For scientific applications, arrays
are perhaps the most important and common data structure, so their conversion is important.
Indeed, we pay much attention to their efficient representation in Java in this paper.

Another related project is a recent Fortran-to-Java converter £2j [9]. It is of interest because it
uses an intermediate representation of C, that is, it converts Fortran code into C, and converts the
result to Java. However, this was done purely for convenience (since a Fortran-to-C converter was
already available), and does not support general C to Java conversion; in particular, pointers are
completely avoided. In comparison to our work, it also implements facilities for call-by-reference
and multi-dimensional arrays, but the methods they use do not work in general (for both Fortran
and C).

A couple of minor results in this paper have been partially achieved before. Section 4.1 discusses
possible methods for passing basic values such as integers to functions by reference in Java. We
know of one system supporting this, EPP [10]. EPP is a framework for Java preprocessors and one
example, called ref [11], adds an operator “&” for passing values by reference. It implements this
using one-element arrays, but in such a way that does not allow taking general addresses of basic
values, unlike our methods in Section 4.1.

Section 4.1 also gives the results from a benchmark we wrote, comparing the various options
for call-by-reference in Java. A related “microbenchmark” has been developed by Griswold and
Phillips [12].

3 Block Model

This section defines what we call the block model of pointers. It allows us to abstract essentially
all features of C pointers into a simple theoretical framework. The few limitations are discussed in
Section 3.4.

At any time in the model, the memory consists of a collection of independent “top-level” blocks.
Blocks can be dynamically created. Each block consists of a basic C value (character, integer,
or floating-point value of some size), a pointer, or a structure containing several sub-blocks. A
particular kind of structure of interest is the array, where each sub-block has the same type.
Pointers can either be the special value null or refer to a (not necessarily top-level) block.

Let us introduce some notation for this model. We write *p to denote the block pointed to by
p. Note that p is also a block, since pointers are stored in blocks, and we associate blocks with
their values. Hence, we can construct pointers to pointers, and so on. We write b = (b1,...,b,)
when b is a structure block with sub-blocks b1, ..., b,.

We can now consider how pointers in such a model can be mapped onto references.

3.1 Pointer Comparison and Arithmetic

Suppose we want to determine whether p < ¢ for two pointers p and g. More generally, we will
define the relation &b < &c, where &b denotes the address of a block b. This makes sense if b
and ¢ are in the same top-level block. The ordering of addresses is defined by the following two
properties. (As is common, a < b means a < b and b £ a.)

1. If b= (by,...,by), then &by = &b and &b; < &b;qq for all 1 < i < n.

2. The relation < is transitive; that is, if &by < &bo and &by < &bs then &by < &bs.

If we want to define < over all addresses, we could assign some order to the top-level blocks.
For example, we could define that &b < &c for two top-level blocks b and ¢ if b was created before
c.

Note that this ordering of addresses also makes it easy to add integers to pointers. Basically,
adding n to a pointer p involves finding the n'" successor of p. However, we must take into account
that each time we find the successor, we skip over a block of arbitrary size, whereas we want to
skip over a particular number of bytes (n times the size of p’s type). Similarly, we can define the
difference of two pointers p and ¢; it is simply the n such that p = ¢+n. In general, we can support
pointer arithmetic.

3.2 Stack

The block model only models heaps. What about variables allocated on the stack? One possibility
is to model each stack element as a heap allocation. In fact, while this adds extra overhead, it is
the most efficient general method. This is because, while Java has a stack, it does not support
taking the address of anything on the stack [13]. Objects cannot be allocated on the stack (unlike
C++ for example); only references to objects can be allocated on the stack. One cannot pass basic
values by reference or otherwise find their addresses. Hence, all objects whose addresses are used at
some point, which is all that our model is supposed to cover, must indeed be on the heap in Java.
That is, if we encounter a stack object in the C source whose address is used, we must convert it
into a heap allocation if we plan on converting to Java.

3.3 Implementation in Java

The block model is easy to implement in Java. We make an abstract class Block, which includes
an entry parent of type StructB. StructB is a final class extending Block, consisting of an array
of children. There are several other final classes extending Block. For example, IntB represents a
block consisting of a single integer val, and PointerB represents a block pointing to some other
block target. One can then define how to compare two pointers, increment a pointer, and in
general do arithmetic on pointers, as we have described. An example of the conversion process is
given in Figure 1.

This implementation has a limitation with dynamic allocation: we must know the type of block
at the time of creation. This can be difficult with calls to the C malloc function, since only a
number of bytes is passed in. Fortunately, most dynamic allocations are of the form malloc (n *
sizeof (type)), which indicates that we should allocate a structure block with n entries of the
specified type. In other words, we can modify the definition of sizeof to indicate type information.
Most of the time, this will be sufficient.

main () { main () {

int al4] = {1,2,3,0}; IntB[] a. = {new IntB (1), new IntB (2),
printf ("%d\n", sum (a)); new IntB (3), new IntB (0)};
} StructB a = new StructB (a));
int sum (int *a) { System.out.println (sum (new PointerB (a)));
int s = 0; }
while (*a !'= 0) int sum (PointerB a) {
s += *(at++); int s = 0;
return s; while (((IntB) a.target).val != 0) {
} s += ((IntB) a.target).val;
a.increment ();
}
return s;
}

(a) (b)
Figure 1: Example of block model. (a) Input C code. (b) Resulting Java code.

However, in C one could callmalloc (nl * sizeof (typel) + n2 * sizeof (type2)). This
suggests a structure block with n1 4+ n2 elements, but it does not indicate the relative order of
typel and type2 elements; they may be interspersed arbitrarily. To solve this case, we can create
an unknown block, that is, an object of type UnknownB. Such a block stores its size in bytes and
a Block[] array of that size. Initially all elements of the array are null, and as sections of the
allocated space get used, the corresponding blocks get created.

This allows dynamic determination of sub-block types. It induces some overhead since we must
check whether an array entry is null before using it, and if it is, we must create the block first.
However, most dynamic allocations declare the type ahead of time, so we should rarely have to use
this mechanism.

3.4 Extensions

The block model illustrates that we can automatically convert essentially any C code into Java.
It supports almost all “safe” C code, modelling basic C types, pointers, and structures. Pointers
are untyped, so they can be cast in the code as desired (including support for the void * type).
However, the block model does not support union types or casting between integers and pointers.
In general, such features represent extremely unwieldy type mangling that is fortunately uncommon
in “well-written” code. Hence, the lack of such support is usually of limited importance.

However, there are several possible modifications to the block model that support more C
features. For example, the most common form of union types, where only one entry is valid at
any time, can be represented by an unknown block with one entry. Before accessing it, we check
whether the entry is of the correct type, and if not replace it with a newly created block.

Another possibility, which fully supports C pointers including casting between integers, is to
store all addressable memory in an Object [] array. Then a pointer is simply an index into this array,
measured in bytes. As a result, we can trivially convert between pointers and integers, perform
pointer arithmetic and comparison, etc. The main difficulty with this approach is supporting
dynamic allocation of blocks with unknown types; if supported, we must check whether the array
entry is null before every access to addressable memory. In constrast, the block model only had
to do this for the blocks that had unknown types at creation time.

In conclusion, there are several possible strategies for general conversion, each with varying levels
of flexibility and efficiency. Indeed, there are probably several approaches yet to be discovered, and

the most appropriate model likely depends on the application. In the next section, we will see
how to achieve extremely efficient conversion for the most common uses of pointers in scientific
applications, such as arrays.

4 Improved Conversion

The block model is extremely general, but the code it generates can be much more complicated
than required. In particular, it can be much slower than the original C.

For example, consider the conversion in Figure 1. The main problem with the resulting Java
code is that it does not exploit Java’s existing facilities for arrays. It creates several objects to
duplicate the heap, representing it at the user level, for pointer-manipulation purposes. The reason
for this is that the converter does not know, when converting sum’s code, that a is an array. If it
knew, it could perform the conversion in Figure 2.

main () { main) {
int al4] = {1,2,3,0}; int[] a = {1,2,3,0};
printf ("%d\n", sum (a)); System.out.println (sum (a));
} }
int sum (int *a) { int sum (int[] a) {
int s = 0; int a_i = 0;
while (*a !'= 0) int s = 0;
s += *x(a++); while (ala_i] '= 0)
return s; s += ala_i++];
} return s;
}

(a) (b)

Figure 2: Example of the improved conversion. (a) Input C code. (b) Resulting Java code.

We can not expect much better code than this; it is simple and efficient. The goal of this section
is to generate such a perfect mapping of C facilities onto Java features. Indeed, the methods of this
section will perform the optimal conversion above.

4.1 Call-By-Reference

Passing values by reference is perhaps the most fundamental use of C pointers. In Java, values are
passed by reference if and only if they are objects or arrays. The first question we must ask, then,
is how to pass basic variables (that is, variables of basic type such as integer) by reference in Java.
Let us call a variable addressable if its address is taken at some point in the C source. Otherwise,
we do not need to worry about the variable.

The most obvious method is to replace all addressable basic variables with objects that simply
contain an entry of that type (Figure 3). When such a variable is declared, it must be created using
the new operator. If we wish to use or modify the value of the variable, we use or modify the entry
in the corresponding object. The address of the variable is simply the corresponding object.

A similar method is to replace addressable basic variables with one-element arrays (Figure 4).
Again, their declarations must now include creations with the new operator. Accessing the variable
corresponds to accessing the first element of the array, and the address of the variable is the array
itself. Indeed, the array method is nearly identical to the object method, replacing “Int” with
“int [1.7

C Java

public final class Int {

) ; int var; — Int var = new Int ();
publlc. Int (int val) { int ivar = 5; — Int ivar = new Int (5);
this.val = val; var++; — var.val++;
} o f (&var); — £ (var);
public int val; int *ptr = &var; + Int ptr = var;
} (*ptr)++; — ptr.val++;
f (ptr); — £ (ptr);

Figure 3: Call-by-reference using objects.

C Java

int var; — int[] var = new int[1];
int ivar = 5; — int[] ivar = {5};
var++; — var[0]++;

f (&var); — f (var);

int *ptr = &var; +~— int[] ptr = var;
(*ptr)++; — ptr[0]++;

f (ptr); — £ (ptr);

Figure 4: Call-by-reference using arrays.

Objects and arrays are likely the only general methods for addressing basic variables. We could
imagine achieving call-by-reference by passing copies of basic variables, instead of their pointers,
and having the new values returned (e.g., through global variables for single-threaded programs).
However, it does not seem possible to provide the desired semantics in general; for example, how
could a pointer then be stored in a variable?

An obvious question is which of the two methods is more efficient in current Java implemen-
tations. To answer this, we ran a simple benchmark to compare the time for incrementing the
first entry of an array versus incrementing the entry of an object. We also compared with the
time for incrementing a basic integer variable. For accurate evaluation, we had to loop over several
iterations and divide the (user CPU) time by the number of iterations. For correct evaluation, we
subtracted the time to simply run through an empty loop of the same length.

The results are given in Table 1. Objects win over arrays most of the time, so we will likely
choose them when possible. The difference is small on interpreted JVM’s, but is more significant
on the JVM with JIT (Just In Time) compilation. We likely want to leave the choice as an option
to the conversion process, in case the relative performance differs on other machines.

Machine and JVM Opt. | Integer | Object Array

Sun SPARCstation 20 | None | 20.6 ns | 162.6 ns | 225.5 ns
Sun’s 1.1.1 with JIT -0 | 20.3ns | 163.4 ns | 232.0 ns
IBM RS/6000 25T None | 23.4 us | 92.2us | 117.0 us
IBM’s 1.1.1 port -0 | 254 us| 91.2us | 116.9 us
DEC Alpha 3000/800S | None | 20.8 us | 169.4 us | 142.1 us
DEC’s 1.0.1 port -0 | 20.7 us | 160.7 us | 164.5 us

Table 1: Benchmark results comparing the access time for basic integers and elements of objects and
arrays. The code was compiled with javac from Sun’s JDK. “Opt.” gives the optimization level.
Curiously, higher optimization causes worse performance in some cases, and this phenomenon is
reproducible.

4.2 Arrays

Our main focus is on scientific applications, which mainly use basic numbers and arrays of numbers.
Hence, these two kinds of values should receive special attention with regard to optimization. Basic
C numbers are easily converted into efficient Java. The concern of this section is to map C arrays
onto Java arrays whenever possible.

One problem is that a C array with entries of type ¢ is really just a pointer to a block of type
t. This makes it unclear when a pointer p in fact represents an array. If xp is of basic type such
as integer or even a pointer, we can simply assume that it represents an array, since pointers to
basic values alone can also be represented by arrays. The other possibility is when *p is a structure
block, which we shall consider in Section 4.5.

Hence, we can map the C type ¢+ (pointer to type t) to the Java type J(tx) = J(¢)[] (Figure 5).
Any addressable variable v of type ¢ must also be mapped to this type, and references to v are
replaced by v[0], which the & operator converts back to v.

C Java,

int a[5]; — int[] a = new int[5];
int *p = a; +— int[] p = a;

p++; — Not allowed.

*p = 5; — plo] = 5;

pl2] = 10; — pl2] = 10;

int i; — int[] i = new int[1];
i=25; — i[0] = 5;

p = &i; = p=1i;

Figure 5: Mapping C arrays to Java arrays, requiring addressable basic integers to be mapped to
arrays. Pointing to elements of an array is not allowed.

4.3 Indexable Arrays

While Java arrays J(t)[] adequately represent pointers to basic variables and pointers to arrays,
they do not fully represent the C type t+. This is because Java arrays are not translatable. That is,
we cannot make an array that refers to a subsection of an existing array. In contrast, C allows one
to add an integer (such as 1) to a pointer that points to an array, causing it to point to a particular
element of the array. Such practice is common (for example, in SuperLU [1, 2]), since in C it allows
efficient access to individual elements of arrays; that is, repeatedly accessing a[i] is made faster
by assigning p = &ali] (or p = a+i) and then repeatedly accessing *p. We cannot make such an
optimization in Java, but we still want to convert such code into Java.

Our solution, called indezable arrays, is to add an integer index to an array, together forming
the Java notion of a pointer (to a basic type). That is, J(tx) = {J(¢)[], int}, where the braces
denote some kind of structure. In general, the structure will be represented by an object with two
entries (Figure 6). Note that basic variables have to be mapped to arrays in the rare case when
their address is stored in a pointer that also at some time points to an array.

One possible optimization, called unrolling, removes a level of indirection by replacing the
structure with two individual variables (Figure 7). This improves efficiency, except when we return
a pointer into an array from a function, in which case we must temporarily switch to the object
representation.

Pointers to particular elements of arrays clearly add extra overhead that we would like to avoid
for normal pointers to beginnings of arrays. That is, we do not want to force all pointers to have an

C Java

public class IntPointer {

. : . . . int al[5]; — int[] a = new int [5];
publlc. IntPointer (int[] a, int i) { int *p = a; +— IntPointer p =
th}s.z_a = a; new IntPointer (a, 0);
} this.i = t; pH+; — p.it+;
o *p = 5; — p.alp.i] = 5;
publ?c ?nt[:!'a; pl2] = 10; — p.alp.i+2] = 10;
public int i; int i; — int[] i = new int[1];
} i=5; — i[0] = 5;
p = &i; — p.a=1i; p.i = 0;

Figure 6: Indexable arrays using objects, requiring some basic integers to be mapped to arrays.

C Java
int al[5]; — int[] a = new int[5];
a[2] = 5; — a[2] = 5;
int *p = a; +— int[] p = a;
int pi = 0;
p++; — p-it++;
*p = 5; — plp-i]l = 5;
pl2] = 10; — plp-i+2] = 10;
int i; — int[] i = new int[1];
i=25; — i[0] = 5;
p = &i; = p =1
p-i = 0;
f (p); — £ (p, p-i);
p=g O; — IntPointer temp = g (;
p = temp.a;
p-i = temp.i;
return p; — return new IntPointer (p, p-i);

Figure 7: Unrolled indexable arrays. Returning indexable arrays from functions requires special
care.

extra index variable. Note that at conversion time, we can determine whether pointers may at some
time point to a particular element of an array, and hence require the extra variable. Similarly, we
can check if a variable of basic type can be addressed by simply using objects, which are typically
more efficient. For function arguments we can make a special optimization, by copying the function
for each type of arguments with which it is called (Figure 8). This allows effective optimization
of the special cases, even if multiple cases are exploited. In the worst case, which is rare, function
copying results in quadratic code expansion.

4.4 Multi-dimensional Arrays

Multi-dimensional C arrays are in fact one-dimensional arrays with syntactic sugar for accessing
elements. For example, if we declare int a[3] [4], then both a and a[2] have types corresponding
to int *. In contrast, Java’s multi-dimensional arrays have depth. For example, int[]1[] a = new
int [4] [] declares a as a four-element array of references to arrays; each entry of a is initially null.
Hence, multi-dimensional C arrays must be converted to one-dimensional Java arrays (Figure 9).

4.5 Structures

C structures quite obviously map to Java objects (Figure 10(a)). Any elements of a structure are
converted as if they represented variables. For example, in Figure 10, the address of entry i of

C Java

int i; — Int i;
f (&i); — £ (1);
int al[5]; +— int[] a = new int[5];
f (a); — £ (a);
int *p = &al[2]; — int[] p = a;
int p.i = 2;

f (p); — £ (p, p-i);
void f (int *i) { — void f (Int i) { i.val = 5; }

*i = 5; void f (int[] i) { i[0] = 5; }
} void f (int[] i, int ii) { i[i-i] =5; }

Figure 8: Copying functions to optimize for special cases. We make three copies of £ because of the
three different types of calls to £. Note the use of Java’s function overloading.

C Java
int a[3][4]; int[] a = new int[3*4];
int b[3]1[4] = {{1,2},{3},{4,5,6,7}}; int[] b = {1,2,0,0,3,0,0,0,4,5,6,7};
al11[2] = b[2][1]; a[1x4+2] = b[2+4+1];
int *p = a; int[] p = a;
int *q = b[2]; int[] q = b;
int gq.i = 2%4;

11111

Figure 9: Converting multi-dimensional C arrays to one-dimensional Java arrays.

struct T is taken; hence, it must be converted to be addressable, which involves converting the
type of entry i from int to Int (an object with an int in it). A similar transformation would
occur if a structure had an indexable array as an entry, for example. In addition, we must clone
(that is, duplicate) any structures that are passed by value, since objects can only be passed by
reference in Java.

As a potential optimization, we can unroll structures that are not addressable (Figure 10(b)).
This means that we do not have to clone anything when passing by value. Of course, we cannot pass
an unrolled structure by reference. For large structures that are passed between functions a lot,
unrolling may worsen efficiency. Hence, the user should be able to specify that certain structures
should or should not be unrolled.

4.6 Untyped Pointers

For void * pointers or pointers that are type cast, called untyped pointers, we cannot use the
efficient conversion we have discussed. Instead, we must resort to the block model of Section 3.3.
Note that we can detect which pointers must be typed. If the address of some block b is stored in
an untyped pointer, we must convert the entire top-level block containing b using the block model.
Any pointers that directly or may indirectly point to such information must also use the block
model.

Our goal is to use the block model as little as possible. Indeed, “well-written” (in particular sci-
entific) applications should not need it at all. Our analysis of SuperLU [1, 2], a good representative
of such applications, indicates that the block model is unnecessary. In general, the programmer
may want to hand-convert any code that requires the block model in order to improve efficiency.

C Java C Java

struct S { — class S implements struct S { +— char x.c;
Clonable { char c; int x_i;

char c; char c; int i;

int i; int i; }ox;
+; } £ (x); — f (x.c, x.i);
struct S x; — S x=new S (); x.i = 5; — x.i = 5;
f (x); — f (x.clone ()); x=g O; — Stemp =g O;
struct S *p = &x; — S p=x; X_c = temp.c;
g (P); — g (p); xi = temp.i;
x.i =5; — x.1=05; struct T { — char y_c;
p—>i++; = p.it+; char c; Int y_i;
struct T { — class T { int i;

char c; char c; oy

int i; Int i = new Int (); y.i = 5; y-i.val = 5;
s } f (&y.i); — £ (y.i);
struct T y; — Ty=newT Q;
y.i =5; — y.i.val = 5;
£ (&y.i); — £ (y.i);

(a) (b)

Figure 10: Converting C structures to Java objects. (a) Standard. (b) Unrolled.

5 Conclusion

We have presented a general model for complete and automatic C-to-Java conversion. We then
considered optimizations to this general conversion, for the common uses of pointers in scientific
applications. In particular, we can usually achieve the natural conversions of C arrays into Java
arrays and C structures into Java objects.

The implementation of our models are currently under development. We are also working on a
converter from C to Fortran 90, which mainly involves the same problem of converting pointers to
references. In the future, we plan on extending our work to convert C++ to Java and Fortran 90.

Acknowledgment

We thank Alan George and David Taylor for their valuable comments on this paper. Alan George
also motivated the development of this research. This work was supported by the Natural Sciences
and Engineering Research Council (NSERC).

References

[1] James W. Demmel, Stanley C. Eisenstat, John R. Gilbert, Xiaoye S. Li, and Joseph W. H.
Liu. A supernodal approach to sparse partial pivoting. Technical Report UCB//CSD-95-883,
Computer Science Division, U. C. Berkeley, July 1995. To appear in SIAM J. Matrix Analysis
and Applications.

[2] James W. Demmel, John R. Gilbert, and Xiaoye S. Li. SuperLU Users’ Guide, November
1997. World Wide Web. http://www.netlib.org/scalapack/prototype/superlu_ug.ps.

[3] Gilles Muller, Béarbara Moura, Fabrice Bellard, and Charles Consel. Harissa: A flexible and
efficient Java environment mixing bytecode and compiled code. In Proceedings of the 3rd
Conference on Object-Oriented Technologies and Systems, 1997.

10

[4]

Yukio Andoh. j2c/CafeBabe. World Wide Web. http://www.webcity.co.jp/info/andoh/
java/j2c.html.

Nik Shaylor. JCC — A Java to C converter, May 1997. World Wide Web. http://

www.geocities.com/CapeCanaveral/Hangar/4040/jcc.html.

Todd A. Proebsting, Gregg Townsend, Patrick Bridges, John H. Hartman, Tim Newsham,
and Scott A. Watterson. Toba: A Java-to-C translator. World Wide Web. http://
WWW.CS.arizona.edu/sumatra/toba.

Chris Laffra. C2J — A C++ to Java translator. In Advanced Java: Idioms, Pitfalls, Styles
and Programming Tips, chapter 4. Prentice Hall Computer Books, 1996.

Ilya Tilevich. C2J4++, C++ to Java translator written in Java, 1997. World Wide Web.
http://pacevm.dac.pace.edu/ " ny971734/c2j .html.

Geoffrey Fox, Xiaoming Li, Qiang Zheng, and Wu Zhigang. A prototype of FORTRAN-to-Java
converter. In Proceedings of the ACM 1997 Workshop on Java for Science and Engineering
Computation, Las Vagas, Nevada, June 1997.

Yuuji Ichisugi and Yves Roudier. The extensible Java preprocessor kit and a tiny data-parallel
Java. In Proceedings of the 1997 International Scientific Computing in Object-Oriented Parallel
Environments Conference, Marina del Rey, California, December 1997. World Wide Web.
http://www.aist.go.jp/ETL/etl/bunsan/~ichisugi/doc/iscope97.ps.gz.

Yuuji Ichisugi. epplib/reflsp. In EPP distribution, 1997. World Wide Web. http://
www.aist.go.jp/ETL/etl/bunsan/~ichisugi/.

William G. Griswold and Paul Phillips. UCSD benchmarks for Java. World Wide Web.
http://www-cse.ucsd.edu/ wgg/JavaProf/javaprof .html.

J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Java Series. Sun Microsys-
tems, 1996.

11

