# nb-cogwheel_159_103_0_1_-83.in # approach: selection of the desired coherence (7Q) after the first pulse # and (1Q) after the second pulse with cogwheel phase cycling # N = 159, wA = 103, wB = 0, wC = 1, and wRec = -83 # spin-9/2 echo amplitude optimization # versus the first-pulse duration # in three-pulse split-t1 7QMAS, # the second-pulse duration p2 = 4 micro seconds # the third-pulse duration p3 = 2 micro seconds spinsys { channels 93Nb nuclei 93Nb quadrupole 1 1 1e6 1 0 0 0 } par { spin_rate 5000 variable tsw 0.25 sw 1.0e6/tsw np 17 crystal_file rep10 gamma_angles 10 proton_frequency 800e6 start_operator I1z detect_operator I1c verbose 1101 variable rf 90000 variable rf3 93000 variable p2 4 variable p3 2 variable N 159 variable wA 103 variable wB 0 variable wC 1 variable wRec -83 } proc pulseq {} { global par maxdt $par(tsw) acq -x for {set i 1} {$i < $par(np)} {incr i} { pulse $par(tsw) $par(rf) $par(phA) store 2 pulse $par(p2) $par(rf) $par(phB) pulse $par(p3) $par(rf3) $par(phC) acq [expr $par(phREC) - 90] reset prop 2 } } proc main {} { global par for {set j 0} {$j < $par(N)} {incr j} { set par(phA) [expr $j*$par(wA)*360./$par(N)] set par(phB) [expr $j*$par(wB)*360./$par(N)] set par(phC) [expr $j*$par(wC)*360./$par(N)] set par(phREC) [expr $j*$par(wRec)*360./$par(N)] set g [fsimpson] if [info exists f] { fadd $f $g funload $g } else { set f $g } } fsave $f $par(name).fid funload $f puts "Larmor frequency (Hz) of 93Nb: " puts [resfreq 93Nb $par(proton_frequency)] } # SIMP # NP=17 # SW=4000000 # TYPE=FID # DATA # 0 0 # 9.3240744e-09 6.40330988e-09 # 9.39863831e-09 9.82284165e-09 # 1.23277433e-08 1.30685214e-08 # 1.55568299e-07 1.60577729e-08 # 2.75039619e-06 1.87115017e-08 # 2.88025484e-05 2.09557651e-08 # 0.000200319003 2.27243788e-08 # 0.00101787756 2.39622278e-08 # 0.00402646379 2.46303866e-08 # 0.0129595087 2.47110901e-08 # 0.035050097 2.42117988e-08 # 0.0816375703 2.31652386e-08 # 0.166972306 2.16243059e-08 # 0.30473034 1.9653144e-08 # 0.503102221 1.73172783e-08 # 0.76055247 1.46765293e-08 # END