# na-cogwheel_23_-14_-11_-10_0.in # approach: selection of the desired coherence (3Q) after the first pulse # and (1Q) after the second pulse with cogwheel phase cycling # N = 23, wA = -14, wB = -11, wC = -10, and wRec = 0 # Cog23(-14, -11, -10, 0) # spin-3/2 anti echo amplitude optimization # versus the first-pulse duration # in three-pulse split-t1 3QMAS, # the second-pulse duration p2 = 4 micro seconds # the third-pulse duration p3 = 2 micro seconds spinsys { channels 23Na nuclei 23Na quadrupole 1 1 1e6 1 0 0 0 } par { spin_rate 5000 variable tsw 0.25 sw 1.0e6/tsw np 17 crystal_file rep100 gamma_angles 10 proton_frequency 800e6 start_operator I1z detect_operator I1c verbose 1101 variable rf 90000 variable rf3 93000 variable p2 4 variable p3 2 variable N 23 variable wA -14 variable wB -11 variable wC -10 } proc pulseq {} { global par maxdt $par(tsw) acq -x for {set i 1} {$i < $par(np)} {incr i} { pulse $par(tsw) $par(rf) $par(phA) store 2 pulse $par(p2) $par(rf) $par(phB) pulse $par(p3) $par(rf3) $par(phC) acq -y reset prop 2 } } proc main {} { global par for {set j 0} {$j < $par(N)} {incr j} { set par(phA) [expr $j*$par(wA)*360./$par(N)] set par(phB) [expr $j*$par(wB)*360./$par(N)] set par(phC) [expr $j*$par(wC)*360./$par(N)] set g [fsimpson] if [info exists f] { fadd $f $g funload $g } else { set f $g } } fsave $f $par(name).fid funload $f puts "Larmor frequency (Hz) of 23Na: " puts [resfreq 23Na $par(proton_frequency)] } # SIMP # NP=17 # SW=4000000 # TYPE=FID # DATA # 0 0 # -2.05588265e-05 4.82873463e-11 # -0.000619528565 5.49610357e-11 # -0.00425033403 5.94895244e-11 # -0.015561427 6.03544437e-11 # -0.0398291138 5.67218494e-11 # -0.0806927982 4.87970775e-11 # -0.138941008 3.76269016e-11 # -0.213223134 2.45905518e-11 # -0.301964835 1.09361409e-11 # -0.404752632 -2.37954101e-12 # -0.521872148 -1.45631285e-11 # -0.652226709 -2.47618592e-11 # -0.791301451 -3.20208859e-11 # -0.931003982 -3.54349328e-11 # -1.06193022 -3.44169693e-11 # -1.17683433 -2.88570973e-11 # END