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1 INTRODUCTION

Nuclei are characterized by an atomic number Z, a mass
number A, and a nuclear spin /. The value of I depends on
those of A and Z (Table 1). Nuclei with spin / > § are multiple
energy level systems and are called quadrupolar nuclei. They
represent more than 70% of those in the Periodic Table. How-
ever, they are not as frequently investigated in NMR as other
elements, because of their quadrupole moments Q, which inter-
act with the electric field gradient (EFG) generated by their
surroundings. This coupling, called the quadrupolar interaction
and denoted by Hq, may be much stronger than the amplitude
of the rf excitation pulse. As a result, it affects the line
intensity and alters the lineshape. These effects make the in-
terpretation of spectra more difficult. Usually, only the first
two expansion terms of Hq are considered: the first-order,

Table 1 Value of Nuclear Spin [ as a Function of Atomic Number Z
and Mass Number A
Z
A Odd Even
0Odd Half-integer [ Half-integer /
Even Integer [ I1=0

For list of General Abbreviations see end-papers

(H'd]), and second-order, (Hg]'], quadrupolar interactions, in the
vocabulary of standard perturbation theory. Hy' splits the spec-
trum of a half-integer quadrupole spin system in a single
crystal into 27 — 1 satellite lines, but the central line remains at
the Larmor frequency wy. The additional effect of HG' is to
shift further all the lines, including the central line.

When the sample is in powder form, as it usually is, it is
mainly the central line that is observed. Moreover, its lineshape
becomes nonsymmetrical when Hg" is large. In favorable cases,
the powder pattern of the satellite spinning sidebands is
detected using the popular MAS technique (see Magic Angle
Spinning and Rotating Solids). The powder pattern of the cen-
tral line is characterized by three parameters: the quadrupolar
coupling constant x = e°gQ/h, which is the product of a
nuclear property (eQ) and a crystal property (eq), the asymme-
try parameter n and the center of gravity of the experimental
line, S¢& (in ppm). x is a measure of the strength of the quad-
rupolar interaction and 7 a measure of the deviation of the
EFG from axial symmetry. The true chemical shift §cg of the
central line is related to these three parameters:?

2

Xp 2 3 i )
bos = 838+ H(1 + YA + 1) -] [ﬁ] @

A precise determination of d¢g is required if its value has to be

correlated with bond lengths and bond angles. Several methods

are available for determining x and 7. They can be grouped
into two categories:

1. there is a series of techniques, especially the mechanical
spinning of the sample,"™ based on the frequency domain
response of the spin system (see Variable Angle Sample
Spinning);

2. the second series deals with the time domain response of
the spin system to rf excitation®® (see Nutation Spec-
troscopy of Quadrupolar Nuclei).

The experimental center of gravity 6¢& is determined by spec-

tral simulation. However, spectra acquired with DAS or DOR

probes provide this value directly® (see Double Rotation and

Dynamic Angle Spinning). Books dealing with these modern

techniques are available.”**

In the present article, we focus on the frequency domain re-
sponse of half-integer quadrupolar spin larger than 1. (Jellison
and co-workers'? calculated perturbation terms up to third
order for integer spins / = 1 and 3.) The first part is devoted to
a derivation of the Hamiltonians corresponding to first- and
second-order perturbations, with the emphasis on the different
conventions used in the literature, namely, the asymmetry par-
ameter, the components of spherical tensors in their principal
axis system, the Larmor frequency, transitions, and the tran-
sition frequency. With this in mind, the Magnus expansion is
applied instead of standard perturbation theory. For simplicity,
Hamiltonians are expressed in angular velocity units and relax-
ation phenomena are not taken into account. In the second
part, NMR parameters related to single crystal spectra (see
High-Pressure NMR, Incommensurate Systems, and Phase
Transitions & Critical Phenomena in Solids) and powder pat-
terns in static and MAS measurements are presented (see
Amorphous Materials, Quadrupolar Nuclei in Glasses, Quad-
rupolar Nuclei in Solids, and Vanadium Catalysts: Solid State
NMR), in particular, the second-order quadrupolar shift, the
critical points and the lineshapes of the powder patterns for
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various values of 7, and the second-order quadrupolar shift for
the center of gravity of a powder pattern. In the appendix, the
commonly used Euler angles as well as those used by Baugher
and co-workers'*™'® are given in graphical form. The Wigner
rotation matrix, expressing the components of the same spheri-
cal tensor in two different coordinate frames, is also given.

2 QUADRUPOLAR HAMILTONIAN IN A UNIFORM

SPACE
Slichter'® and others'”" introduce the quadrupolar inter-
action from the classical concept of the charge density for a
nucleus in a space where the three coordinate axes x, y, and z
are equivalent. Then, the quantum mechanical form of this
interaction is obtained using operators. Thanks to the Wigner—
Eckart theorem, the Hamiltonian representing the quadrupolar
interaction independently of the Cartesian coordinate frame is
defined:

eQ

Hy = ———o— Va3l 1s + I51,) — &, 2
Hq 6”21_”0.;“ wslBaly + Is1a) — 8ol (I + 1) (2a)
with
>PuU
03 = s 2b
77 Ga 0B i) (2b)

6, is the Kronecker delta symbol, U is the electrostatic poten-
tial at the origin (inside the nucleus) generated by external
charges, and V,,; are the Cartesian components of the EFG at
the origin, V, which is a second-rank symmetrical tensor (see
Deuterium NMR in Solids and Liquid Crystalline Samples:
Deuterium NMR). In the principal axis system XF*S of the

EFG, V is diagonal:
Vigk 0 0
V=| 0 Vy 0 (3)
0 0 Vg

with the convention |Vz| = | Vyyl = | Vyx|. Furthermore, the
Laplace equation Vyx + Vyy + V2, = 0 holds for V. Thus, only
two independent parameters are required:

eq = sz ':"I'a)
Yo =V

= (4b)

]
the largest component and the asymmetry parameter, respect-
ively, with 1 =5 = 0.

In the coordinate frame Y7, the Cartesian tensor represen-
tation of the quadrupolar interaction [equation (2a)] takes the
form

WHo = 92 BRI +uBE B

4121 —
In terms of the operators
j*. =ij(+i}r. ;‘. =jx — 'Liv (51))

equation (5a) becomes

£q0

W =iar—n

BE — I+ 1)+ (P + 1) (5¢)

Sometimes, the opposite convention is adopted for 7:

Viy — Vix
n= Vi (6)

which is associated with the condition |Vzz| = |Vixl =

| Vel 192 As a result, a negative sign appears in front of 7 in
equations (5a) and (5¢) and in subsequent expressions contain-
ing 7).

3 SPHERICAL TENSOR REPRESENTATION FOR
THE QUADRUPOLAR HAMILTONIAN

The passage from one coordinate frame to another is more
conveniently realized if the quadrupolar interaction is
expressed as a second-rank irreducible spherical tensor (see
Internal Spin Interactions & Rotations in Selids), according
to Mehring:*'

2
é?Q Fyilglil—g)
Y " (-1)'vaT

a2 -1) &,

s eQ 12 g2yl
417(2‘,_”#;( 1yv-ar (7)

iHg =

In any Cartesian coordinate frame X, the spherical tensor
and Cartesian tensor components of W are related by

vz =y, = 3‘/54:

1
v{_ll] V! = —-V(_-_ = iv_r:
yia-ll = Vo=V =iV, =
V22 = Vo= %(V“ - Vi) + iV,

v =y = %(Vu - Vi) = iVy

and those of T as

720 = W6BI2 —1(1+1), T3V =

_}:}n e ?;i— (9]
TV =4i ¢4, T® =11,

T2-2) _§ j

with [, = I, +il, and [ = I, —il,. These two operators are
different from those of equation (5b) despite the same nota-
tion. It is worth noting that the numerical factors in the com-
ponents of W and T [equations (8) and (9)] differ from author
to author.

Using equations (7)—(9), the spherical tensor representation
of the quadrupolar interaction in the coordinate frame X
becomes

- g_'Q - - = -
WHq = =T ”{%\/613.(3 =T+ DV + (LI, +1.1)V_
— (L1 + 1LV, + BV, 4+ P vy} (10)

Slichter'® uses nearly the same relationship, apart from a nega-
tive sign due to another choice of V. From equations (4a),

For References see p. 3847
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(4b), and (8), the spherical tensor components of V in 3" are
obtained:

VA = fieq, VPSS = VRIS —0. VPR VRS e (11a)

If the other convention for 7, namely, equation (6) is used then
the spherical tensor components of ¥ in "% are?”

VEAS = \/xeq‘ VPAS = yPAS — o yPAS _ yPAS _ Loy (11D)

4 QUADRUPOLAR INTERACTION AS A
PERTURBATION OF ZEEMAN INTERACTION

A nuclear spin possesses a magnetic moment u and an
angular momentum AI, which are related by the gyromagnetic
ratio ~:

u=yhl (12)

In the laboratory frame X", the direction of the strong sta-
tic magnetic field B, is taken as the z axis. The coupling
of the magnetic moment with By is the Zeeman interaction

Hz:

ﬁ';"?.z =-—p-By= _hwl}}z
wy = ¥By

(13a)
(13b)

where wo/2m is the Larmor frequency. Sometimes this fre-
quency is defined as wy/2m = —yBy27. As a result, the Zee-
man interaction takes the form #H, = Auwol.. As with n, the
choice of wy changes the sign of some expressions below.

We deal with the case where Hg can be treated as a weak
perturbation of the Zeeman interaction. It is then more con-
venient to express interactions in the frame X°™ rotating
relative to £ with an angular velocity wy so that the spherical
tensor representation of the quadrupolar interaction expressed
by equation (10) becomes time-dependent:*>

WHolt) = (’-xp(i?{'zr}h?fq exp(—iHzt)
){if[u- —I(I+ )]Vy

4:(2;
+ 1, (21 + 1)V_, exp(—iwpt) — I_ (2. — 1)V, exp(iwpt)
+ P V_y exp(—i2wpt) + I Vs exp(i2uir) } (14)

However, the first term in the curly brackets (i.e., the secular
term) remains time-independent. In order to make the quadru-
polar interaction completely time-independent, Hq(t) is aver-
aged over one Larmor period 27m/wy up to first-order (see
Average Hamiltonian Theory), using the Magnus expansion:>

wo 2mfun 2wy
g f dr ) — 20 f dr f d [Ha () Ho ()]
0

1]
=HY +H (15)

(Ha(n))

For list of General Abbreviations see end-papers

with

HO - @ ﬁ[3{*3 2

Q " 421 -1k 3 =1V (]

2
_ i LT.’T;%—I}E} (VeVoV_iI, (2L, + 1)
— VEVoVil_ (26, = 1)* + 2vV6VoV_, 2 (I, + 1)
+ 2\/_""{]"’213 !z =L}
+ 2V VI L[AI(T + 1) — 87 — 1]
+ 2V VoL [21(1 + 1) = 22 - 1]} (17)

Usually, only the secular terms that commute with A!
(i.e., the last two terms in the curly brackets of HY)’
considered. With this simplification, H(Q and Hy’ are equwal-
ent to the first-order, Hm, and second-order, Hg], terms
in standard perturbation theory.u ies;

eQ V6

[ _ o) _ VO g
Hy = Hy 4T3 BE - (I + 1)V (18)
2
g __ L[ e
Ho = Hy' = {41(-2: — 1)&]

x {2V Vi L[4I(1 + 1) — 8* — 1]
+ 2V VaL2I(1 + 1) — 217 — 1]} (19)

lespectwely Equations (18) and (19), derived in the rotatmg
frame ¥:°°, are unchanged in the laboratory frame . This is
because they commute with the Zeeman interaction. In other
words, they commute with the operator /.. From now on, we
shall use the language of standard perturbation theory. The first-
order quadrupolar interaction Hy! is 1ndtpcnd::nt of wy, whereas
the second-order quadrupolar interaction H[Q is inversely pro-
portional to wy. Therefore, a strong static magnetic field is
required to reduce the effects of Hi'.

5 ENERGY LEVELS AND THE SPECTRUM OF A
SINGLE CRYSTAL

When a free spin / is introduced into a strong static mag-
netic field, the Zeeman interaction splits its 2/ + 1 energy
levels |m), whose energy is defined by

(m|Hzlm) = —muwq (20)

and the difference between two consecutive energy levels
(m —1, m), expressed in angular velocity units, is
wi:?l.m = {m = 1[Hglm — 1) — (m{Hz|m) = wp (21a)
We choose the same convention as Abragam'™ for the pair
(m—1, m) and equation (21a) to represent the transition and
the transition frequency, respectively, but other authors choose
(m, m—1), (m, m+1), (m+1, m), equation (21a) or its nega-
tive
(7]

Wt = {m|HZ|m> -

(m — 1|Hz|m — 1) (21b)
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Of course, these choices affect some later relationships dealing
with transitions and transition frequencies. Equation (21a)
implies that the energy levels |m) of a free spin in a strong
static magnetic field B, are equally spaced. The separation
between two adjacent levels is wy. In the spectrum, a single
line is located at wy However, these energy levels may be
shifted by other interactions, including the quadrupolar inter-
action discussed in this article.

The first-order quadrupolar interaction HE.] shifts the energy
levels |m) by an amount

@ V6

(mlHQ) |m) = TS

Bm? — I(I+ 1)y (22)

and in the spectrum, its contribution to the line position, i.e.,
the first-order quadrupolar shift )’ | o Of the line position as-
sociated with the transition (m— 1, m), is

Wil {m — ]|H Im— l)-—{m|h’,!:;]|m}

m—1.m
B 3£Q \/_(
T a@2r—-1n 3

- 2m)Vy (23)

The spectrum consists of 27 lines, the central one of which, as-
sociated with the transition (—J, 1), is still located at wy. The
other 2/ — 1 lines are called satellite lines.

When the second-order quadrupolar interaction H{;' is taken
into account, the energy levels |m) are shifted further:?

| 0 1°
" W [4:(21 - 1)5]

X {2V Vim[aI(I + 1) — 8m* — 1]
+ 2V o Vam[21(I + 1) — 2m®* — 1]} (24)

21
(m|H|m) =

. _—— 2 .
and its contribution wf,,’lm to the line Egmuon. i.e., the sec-

ond-order quadrupolar shift of the line, is

“in—1.m

W2 = (m = 1H I = 1) = (m|HE |m)

_ @ eQ ]2
wo |412I— DA
x AV Vi[2d4m(m — 1) — 41(I + 1) + 9]
VAV [I2mm—1) — 41T+ 1) +6]}  (25)

Therefore, the line associated with the transition (m — 1, m) is
located in the spectrum at

| 2
“‘)M~|m_“)u+“‘£n’|.m+wp[nllm (26}

In the following two subsections, we apply equation (26) to
two experiments, in which the single crystal is either static or
is spinning at the magic angle.

5.1 Spectrum of a Static Single Crystal

We have to express Vj in equation (23), and V|, V_,, V3,
and V_; in equation (25) in terms of the components of V in
$PAS | equation (11a). For this purpose, the following relation-
ship is used:

Figure 1 Euler angles defining the direction of By in the principal
axis system L5 of the EFG during a static experiment

Z sz} ‘ﬂ‘ ,}}VJPE\S (2?)

J==1

where the Euler angles a, /3, and 7 describe the direction of
the strong static magnetic field in ©**% (Figure 1) and 'Df‘:’ (a,
3, %) is the Wigner rotation matrix defined in the appendix.
For example,

Vo= /3 eq[l(3cos? - 1) + Yysin® Beos2a] (28)
Its substitution into equation (18) yields
Hy! = Yoq[312 — I(1 + 1)) (29)
with

3x 1 2 | (A
e S, T S L o e 3
Wiy “@E-n [2(3 cos” 3 — 1) + 3 sin SLU.‘,ZQJ (30)

A negative sign will appear in front of 7 if the other conven-
tion for 7, equation (6), is chosen or the Euler angles used
by Baugher and co-workers™™® are used. The definitions of
HY' by equation (29) or of wq by equation (30) are not unique.
Other definitions can be found in the literature. The first-order
quadrupolar shift of the lines (m— 1, m), equation (23),
becomes

A1 jstatic
m—1.m

= (1 — 2m)wq (31)
The lines in the spectrum are separated by the same quantity
2wy, but the central line is not shifted.

The other two factors V,V_, and V>V _, in equation (25) are

WV = —3e qz[(—mv,‘ cos® 2a + 2ncos 2a — 3) cos® 3
+ (jn cos® 20 — 2ncos 2a — -_gf_: +3)cos® 3
+ 4721 = cos? 2a))| (32a)
VaVios = 3¢ (30 cos’ 2a — ir;wt...n +3)cos' 3
- (uﬁ-r,r cos? 20 + E’i - i}cun a4
-+ %ni cos® 2a + }r_:cos 2o + g] (32b)

The second-order quadrupolar shift of the central line, using
equation (25), is given by

For References see p. 3847
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2
(2)static 1 3\ £}
L= ~ g [y 10+
x [A(a, n) cos* B+ Bla, ) cos® B+ Cla,n)]  (33)
with
Ala, ) = =2+ Incos 20 — Hncos 2a)*
Bla,n) =% - %r}z — 2ncos2a + Hncos 20)? (34)

Cla,n) = -3+ — Incos2a — ¥(ncos 2a)?

When the EFG has axial symmetry (1 = 0), equation (33)
becomes simply

2
(pstatic | 3x 3
w—]fll,f? = 16wy [2!(2!__ ”] [{“+ ]) 4]
x (1 —cos® 3)(9cos” 3 —1) (35)

It is worth noting that the third Euler angle v does not appear
in equations (30), (33), and (34); this is because B, is a sym-
metry axis for the spins. Our results are identical to those of
Narita and co-workers?’ [note that their paper contains a typo-
graphical error concerning the expression of cos2a in C(a,
1)]. Subsequently, Baugher and co-workers'® obtained ex-
pressions similar to equation (34), except that their terms con-
taining 7 have the opposite sign. Their comment 23,
concerning the sign in front of all the terms in cos2a, is
explained in our appendix using the Euler angles (Figure 10)
defined by Goldstein."* Another way to obtain the same results
as those of Baugher and co-workers'® is to employ the usual
Euler angles (Figure 9) and to replace 17 by —# (the other con-
vention for 7). This point is confirmed by Hirshinger and co-
workers® and by Chu and Gerstein.?? ' Wolf and co-workers™
have determined the third-order perturbation term, and shown
that it is proportional to (2m — 1)/w§. Therefore, the position of
the central line is not shifted further by this new term.

5.2 Spectrum of a Rotating Single Crystal

First of all, the expressions for Vi, Vi, V_;, V5, and V_, must
be expressed in terms of the components of V in the coordinate
frame £MAS of the rotor. To do this, the Wigner rotation
matrix is applied once more:

Figure 2 Euler an/g!es defining the direction of By in the rotor
coordinate frame ©M*% during a MAS experiment. In M5, B, rotates
around the rotor with the angular velocity wy; 6, is the magic angle;
the third angle is v=0

For list of General Abbreviations see end-papers

Vi= " D (wit, 0, 0)VMA5 (36)

j=-2

where w, is the angular velocity of the rotor and #,, = 54.73°

is the magic angle (Figure 2). Then, V}'5 must be
expressed in terms of the components of V in Y45
VMAS = 3 D (0. BV (37)
k=2

where the Euler angles o, [, and 7 describe the direction of
the rotor in ¥"*% (Figure 3).
The first step, equation (36), yields

(11MAS » 31‘ 9 .
wlIMAS \ﬁu - 2m}§}rﬁ?—lﬁv3“‘5(3 cos B, — 1) (38)

The second step, equation (37), yields the first-order quadrupo-
lar shift:

w5 — 11 — 2m)wq(3 cos® B, — 1) (39)

m—1m
This shift is zero when the crystal rotates at the magic angle.
In other words, all the energy levels become equally spaced.
Therefore, a single line instead of 2/ lines appears in the spec-
trum at wy.

For the second-order quadrupolar shift, the first step,
equation (36), yields

@mas _ 2 eQ :
o wo |41(21 — 1)hA

x {—tVIASVMAS(SOm(m — 1) — 61(1 + 1) + 17)
+ VMASVES Bm(m — 1) + 2]
— LS VIAS (1am(m — 1) — 21(1 + 1) + 5]} (40)

The second step, equation (37), yields, in the fast rotation
regime,’

Figure 3 FEuler angles defining the direction of the rotor in the
principal axis system X273 of the EFG during a MAS experiment. In
P45 the rotor containing the sample appears static
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, 3 2
Cmas 3 X 1.2
“m—1m 32wy I:n:z{ = |}j| (1+ Ml )

x [21(1 4+ 1) — 14m(m — 1) — 5]

.

3 y 2

+ —_—

128wy [1(21 - 1)
x [61(F + 1) — 3dm(m — 1) — 13g(ee, 3,17)  (41)

with
gla, B.m) = 3(1 + 6cos® 3 — T cos* 9)
+am(1 — 8 cos® 3+ 7 cos® 3) cos 2a

e ﬁ’fzi—?'(f —cos? @) cos® 20+ 8 —dcost 4] (42)

For the central line, the second-order quadrupolar shift is*!

2
(2IMAS 1 3x k1]
w—l_.f'?.l_.,"? == w{] |:2f{2f _ l)] ["'U F ” i 3‘,'
x [D{ov, i) cos® 3+ E(a, n)eos® 3 + Fla,n)]  (43)
with

Dia,n) = % — %rlr cos 2o + I—N[?]ms 2(1'}'2

Ela,n) = —g + Ilf”?: + ncos2a — %{?;(‘.0520]1 (44)

Fla,n) = % — %n cos 20 + ﬁ(r; cos 2(\')2

As in the case of a static sample, the Euler angle v does not
appear in equations (43) and (44). This is because the exper-
imental conditions correspond to the fast rotation regime. How-
ever, this angle does appear in the intermediate regime where
the angular velocity of the rotor is of the same order of magni-
tude as the linewidth. As a result, spinning sidebands appear in
the spectrum. Samoson and co-workers™ established a general
expression for QU MAS hat clearly shows the presence of

m—l.m
modulations due to the rotation of the rotor:

(2IMAS
m—1,m

4
= w::ﬂ[: + E[A,‘ cos(nwt) + B, sin{nw,t)] (45)

n=1

2

Two typographical errors appear in the annexe of their paper:n
the expressions for A? and A3 should be

AY = —IW2sin 23 pl, + %\/ri cos 20’ sin 24* o3,
N i " [46)

Ay = %sin2 n‘Apﬁu + %\/ﬁ cos 20 (1 + cos? ) pn

Equation (45) allows us to investigate the spinning sidebands
(see High Speed MAS of Half-Integer Quadrupolar Nuclei in
Solids and Sideband Analysis in Magic Angle Spinning NMR
of Solids).

6 POWDER SPECTRUM

In most cases, the sample is in powder form, because the
growth of single crystals of significant size is not always poss-
ible. As a result, only the central line is detected in NMR (see
Fast Ion Conductors, Geological Applications, High Tem-

perature Superconductors, Intercalation Compounds and
Molecular Sieves: Crystalline Systems). However, satellite
lines can be detected without spinning the sample if
x/2m < 300kHz; for example, for **Na (I = 3) in NaNO; or "Li
= %) in LINbO;. When the MAS technique is applied, the
spinning sidebands of the satellite lines are detected; for
example, for iodine 71 = 3) in KI or the two isotopes of
bromine (7 = 3) in KBr. These two compounds are used for set-
ting the magic angle of the MAS probe in the vicinity of *“Si
and *’Al frequencies, respectively.

In a powder sample, the principal axes of the EFG associ-
ated with each crystallite are randomly oriented with respect to
B;. The transition frequencies are not unique, but depend on
the distribution of the Euler angles « and 3 describing the
direction of the rotor in the coordinate frame ™% in a MAS
experiment at high spinning rate, or the direction of By in the
coordinate frame X% in an experiment without spinning.

The resonance condition w(cy, cos ) represents a surface in
a three-dimensional space described by the parameters w, o,
and cos 3. The critical points of this surface define divergences
and shoulders in the spectrum. They are roots of the two

coupled equations'**?

17} :
= Wi s _(
5o (n,ws,;’)‘ =10

a=ros d=y
il

mw{cr. cos J’]‘ =1

=S =8

The nature of the critical point (r, §) is related to the sign of
the Wronskian determinant Dy

(‘Fu.,' ? I’IF:JJ (:')2:.'.,' y ”
Dw = ]i(?)rr{'}(::).-i _f) ) (mi) (01 0{)&:_,-1'_):| (48)

=F.cnsd=s

It Dy is positive then the critical point (r, s) represents a diver-
gence; if Dy is negative then the critical point represents a
shoulder. Unfortunately, this method does not allow us to
determine the lineshape. Therefore, numerical calculations are
required.

6.1 Powder Pattern for a Pair of Satellite Lines

For static samp]es,n numerical calculations are based on the
summation of signals for the direction of each crystallite. The
two Euler angles are redefined by a = 27p/300 and cos 3 =
p/300, where p = 0, ..., 300. For each value of 7, the sum-
mation is performed on

wiatic 4 3x(1 — 2m) .

| Fistata XA G c
w — — = 3cos” 3~ 1+ ysin® deos2a (49)
m—|.m / 8”2!‘ I? !

A satellite lineshape is shown in Figure 4. The positions of the
shoulder and divergence'* are derived from equations (47) and
(48). The powder pattern of a pair of satellite lines for several
values of 7 is plotted in Figure 5.

For References see p. 3847
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Figure 4 Critical points™® of a satellite powder pattem associated
with the transition (m — 1, m); b = 3x(1 — 2m)/8I(21 - 1)

6.2 Powder Pattern for the Central Line

The critical points in the powder pattern of the central line
have been determined for the two experiments. For a static
sample, they have been determined by Stauss.*? Two patterns
(Figure 6) appear according to the value of 7 comjgared with 1;
for example, for *°K in inorganic potassium salts® or '*°La in
lanthanum salts.3* It is worth noting that these critical points
depend neither on the convention for 7} nor on the choice of
Euler angles: changing 1 to —n yields the same set of critical
points. For a rotating sample, these points have been deter-
mined by Miiller.*" As previously, two powder patterns (Figure
7) appear, depending on the value of 7 compared with % These

patterns are clearly observed in ZTAl r:m'npound&35

0

.

o

Ry
f”\/'H

Figure 5 Simulated powder pattern of a pair of satellite lines for
increasing values of the asymmetry parameter 7 from 0 to 1 in steps
of 0.1

0.7

i
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The powder pattern of the central line is obtained as in the
previous case using equation (33) for a static sample or
equation (43) for a rapidly rotating sample. To facilitate the
comparison, the two sets of spectra are superposed as shown in
Figure 8. We can see that the linewidth is reduced by a factor
ranging from 2 to 4, depending on the value of n when a MAS
experiment is performed (see Line Narrowing Methods in
Solids). From a practical point of view, the asymmetry par-
ameter of an experimental spectrum can be estimated by
comparing the lineshape with those in Figure 8. Then the quad-
rupolar coupling constant can be calculated using the positions
of the experimental critical points and those represented in
Figures 6 and 7. Other simple procedures are also defined for
extracting guadrupa[ar parameters from the spectra of static™
or rm.ating3 samples.

The second-order quadrupolar shift of the center of gravity
Wiso(m — 1, m) of the powder pattern is determined as follows:'

v 2 .
Wisa(m — 1,m) = 4]-—7r ﬁ ddsin 3 ,/; dox WIS
__3 X g 1,2
T [I(H— |)] s
x [I(I+1)—9m(m—1)—13] (50)

From a practical point of view, the experimental chemical
shift of the center of gravity associated with the transition
(m—1, m), 6¢&m—1, m), consists of two terms: the true
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Figure 6 Critical points determined by Stauss.’® They are associated
with the powder patiern of the central line in a static experiment;
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Figure 7 Corrected critical points®™'' determined by Miiller.”® They
are associated with the powder pattern of the central line in a MAS
experiment;

o I 1? 3
o= g [mor [0+ -3

chemical shift écs(m — 1, m) and the contribution from the sec-
ond-order quadrupolar shift wis(m — 1, m)/wy. Thus,

Seg(m — 1,m) = 608 (m — 1,m) — wig(m — 1, m) Jwy (51)

For the central line, equation (51) becomes equation (1).

7 APPENDIX

The Euler angles are extensively used in the study of the
quadrupolar interaction, especially in MAS, VAS, DAS, and
DOR. They are defined as three successive positive angles of
rotation for the coordinate frame (c.f.) as described in Figure 9.
First [Figure (9a)], the starting c.f. (x, y, z), called the old c.f.,
in which we know the components V" of the spherical ten-
sor V, is rotated counterclockwise around the z axis by an
angle . This rotation generates a new c.f. (X, ¥, z). Then
[(Figure (9b)] the counterclockwise rotation of this intermediate
c.f. around the Y axis by an angle J generates a second inter-
mediate c.f. (X', ¥, Z'). Finally [Figure (9c)], this second
intermediate c.f. is rotated counterclockwise by an angle 5
around the 7" axis, resulting in a c.f. (x', ¥/, Z'), called the new

<

'

LY
LAA
AL

Figure 8 Superposition of simulated powder patterns of the central
line during static and MAS (shaded spectra) experiments for increasing
values of the asymmetry parameter 1 from 0 to | in steps of 0.1

c.f,, in which we wish to know the components V™" of the
spherical tensor V. It is worth noting that, in this definition of
the Euler angles, /3 and o also represent the polar angles of the
2’ axis in the old coordinate frame.

As explained by Spicss.m the mathematical tool for expres-
sing the components of the same spherical tensor V in two
different coordinate frames, where the new c.f. is obtained by
three positive angles of rotation («, 3, 7) of the old one, is the
Wigner rotation matrix D) (v, 3, ) reported in Table 2. This
matrix relates the components V; W of the spherical tensor in
the new c.f. to the known components VP'" of the same tensor

in the old one by the relationships®®2!-38-?
N )
V=3 D BVt (52)
==

with the summation over the first subscript.

Figure 10 shows the Euler angles used by Baugher and co-
workers.'>'5 First [Figure (10a)], as in the previous definition,
the old c.f. (x, y, 2) is rotated counterclockwise by an angle ¢
around the z axis, generating an intermediate c.f. (X, Y, z).
Then [Figure (10b)] this intermediate c.f. is rotated counter-

For References see p. 3847
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Figure 9 Euler angles defining positive rotation of the coordinate
frame (x, y, z). They are used by Narita and co-workers.”” Spiess,?’
Doane,*® and Freude and Haase.” The angles 4 and o are the polar
angles of the 2’ axis in (x, ¥, 2)

clockwise, this time around the X axis, by an angle 6, generat-
ing a second intermediate c.f. (X, Y’, Z'). Finally [Figure
(10¢)], a counterclockwise rotation of this second intermediate
c.f. around the z' axis by an angle 1 produces the new c.f. (x',
¥, Z). In contrast to the previous definition,  and ¢ are not
the polar angles of the 7" axis in the old coordinate frame. In
Figure 9, « is the angle relating the y axis and the line of
nodes Y, whereas in Figure 10, ¢ is the angle relating the x
axis and the line of nodes X. These two angles are related by
rr-i-%n' = ¢. In other words, o:+%?r and ¢ correspond to the
angle connecting the x axis with the line of nodes. As a result,
cos2¢ = —cos2a. This explains the change of sign for the
terms containing 77 in equations (30) and (34), as in the paper
of Baugher and co-workers.'®
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1 INTRODUCTION

The first use of nuclear magnetic resonance (NMR) to study
glass structure using nuclei having electric quadrupole
moments was reported by Silver and Bray in 1958." In that
work, the interaction between the nuclear electrical quadrupole
moment (possessed by all nuclei having a spin / > 1) and the
electric field gradient at the nuclear site is small in comparison
with the Zeeman interaction of the nuclear magnetic dipole
moment with an externally applied magnetic field. The energy
levels and transition frequencies can be calculated® using the
quadrupolar interaction as a perturbation of the Zeeman inter-
action,

It is this case that is discussed and illustrated with specific
examples in the following section. Extensive studies of this
type have been summarized and referenced in a number of
reviews of NMR studies of glasses.*” (Note that the review by
Eckert® contains, on p. 163, a table of 39 earlier reviews, list-
ing their main topics.) Succeeding sections of this article
contain discussions of the cases in which the magnetic field is
absent [i.e., pure nuclear quadrupole resonance (NQR) studies],
and cases in which the Zeeman interaction is present but suffi-

For list of General Abbreviations see end-papers

ciently small to be treated as a perturbation of the quadrupolar
interaction.

There will necessarily be some overlap between the material
presented in this article and in other portions of the Encyclope-
dia. Cross references to pertinent subjects are given at the end
of the article.

2 NMR WITH A QUADRUPOLAR PERTURBATION

Figure 1 displays the energy levels for the case of the pure
Zeeman interaction (i.e. no quadrupolar interaction present),
and the shifting of those levels when a relatively small quadru-
polar interaction is present. The shifts depend on the coupling
of the nuclear electrical quadrupole moment ¢Q with the com-
ponents of the electric field gradient (EFG) tensor at the
nuclear site. These are V,,, V,,, and V_, in the system of princi-
pal axes for the EFG. Here V is the electrical potential at the
nuclear site arising from charges outside the nucleus, and V,, =
8°VIAx*, etc. The shifts also depend on the angles 6 and ¢ that
specify the orientation of the magnetic field B with respect to
the principal axes of the EFG. Since all angles # and ¢ are
equally probable in a finely divided polycrystalline powder or
a glass, the NMR spectra for those cases will be the envelope
of responses observed for a single crystal as it is placed in all
possible orientations in the magnetic field. The resulting theor-
etical ‘powder pattern’ for a quadrupolar interaction that is
sufficiently small to be treated with first-order perturbation the-
ory is displayed in Figure 2 for the case of a nuclear spin I =
%, (No dipolar or other broadening mechanisms have been
taken into account.) Here y = ¢’gQ = €’V..Q is the quadrupole
coupling constant that measures the strength of the quadrupolar
interaction, and 1 = (V,,—V,,)/V,; is the asymmetry parameter
that measures the departure of the EFG from axial symmetry.
(With 1V_.| = |V, | = IV, one finds that 0 < 5 < 1.)
Note that the ‘central” transition (m = +1 — —1) is unaffected
at first-order, and remains at the Larmor frequency v, while
the ‘satellite’ transitions (m = +3 — +land m = -3 & -}
are spread out into the *powder patterns’. :

Broadening mechanisms (e.g., dipolar interactions, and dis-
tributions in the EFG components) smooth the divergences in
the theoretical powder pattern, and give breadth to the central
transition peak. This is exemplified in Figure 3 for the particu-
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Figure 1 Energy levels arising from the interaction of the nuclear

magnetic dipole moment with a magnetic field: (a) no electrical
quadrupolar interaction; (b) small quadrupolar interaction present (the
levels shown are appropriate for the ''B nucleus)



